WO2018070398A1 - Transparent polyimide resin, transparent polyimide resin composition, transparent polyimide resin film, infrared absorbing composition, infrared cut filter, and production method for transparent polyimide resin film - Google Patents

Transparent polyimide resin, transparent polyimide resin composition, transparent polyimide resin film, infrared absorbing composition, infrared cut filter, and production method for transparent polyimide resin film Download PDF

Info

Publication number
WO2018070398A1
WO2018070398A1 PCT/JP2017/036735 JP2017036735W WO2018070398A1 WO 2018070398 A1 WO2018070398 A1 WO 2018070398A1 JP 2017036735 W JP2017036735 W JP 2017036735W WO 2018070398 A1 WO2018070398 A1 WO 2018070398A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide resin
group
transparent polyimide
film
ring
Prior art date
Application number
PCT/JP2017/036735
Other languages
French (fr)
Japanese (ja)
Inventor
一成 中原
悠太郎 堀江
福坂 潔
康敏 伊藤
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2018545010A priority Critical patent/JP7036021B2/en
Publication of WO2018070398A1 publication Critical patent/WO2018070398A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/04Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters for filtering out infrared radiation

Definitions

  • the present invention relates to a transparent polyimide resin, a transparent polyimide resin composition, a transparent polyimide resin film, an infrared absorbing composition, an infrared cut filter, and a method for producing a transparent polyimide resin film. More specifically, the transparency of the film is good and the mechanical strength is improved. It is related with the transparent polyimide resin etc. which were excellent in.
  • a transparent substrate used for the outermost surface of the display is required to have strong mechanical strength and chemical stability such as scratch resistance, flexibility, impact resistance, and light resistance.
  • EL organic electroluminescence
  • foldable displays have been developed, and such displays are required to be transparent and have excellent bending resistance.
  • transparent and flexible printed boards are required to have high mechanical strength (bending strength, elastic modulus, etc.) and heat resistance.
  • high durability is required for in-vehicle films.
  • a transparent film with high mechanical strength and high heat resistance is expected in many fields.
  • Polyimide has been developed as a glass replacement film in recent years due to its high mechanical strength and heat resistance.
  • the polymer terminal has a large molecular mobility and affects the melting point, glass transition point, and thermal decomposition temperature.
  • the mobility at the molecular end is suppressed by the ⁇ - ⁇ interaction between the aromatic skeletons to improve the thermal decomposition temperature (non- (See Patent Document 1).
  • it is effective to reduce the mobility of the entire polymer chain, so it is necessary to suppress not only the mobility of the polymer end but also the mobility of the main chain .
  • Patent Document 2 describes that during polyimide synthesis, the amount of carboxylic dianhydride units is increased and polymerized, and the terminal is made carboxylic anhydride to suppress coloring.
  • the elastic modulus of the transparent polyimide having a carboxylic anhydride terminal described in this document is described as 1.0 to 3.0 GPa, which is insufficient for the required mechanical strength. If the terminal is a carboxylic acid anhydride, coloring by the amine can be suppressed, but since the carboxylic acid anhydride decomposes into a dicarboxylic acid structure, the terminal mobility is improved, and the elastic modulus and heat resistance are improved. It is not considered.
  • Patent Document 3 it is described that phthalic anhydride is modified at the amine terminal of a transparent polyimide.
  • this patent document has no description about the effect of terminal modification on mechanical strength, and the mechanical strength and heat resistance required by the polyimide terminal-modified with phthalic anhydride described in Examples could not be imparted.
  • the present invention has been made in view of the above-mentioned problems and situations, and a problem to be solved is to provide a transparent polyimide resin having good transparency and excellent mechanical strength (bending resistance, elastic modulus, etc.). Moreover, it is providing the transparent polyimide resin composition using a polyimide resin, a transparent polyimide resin film, an infrared rays absorption composition, and an infrared cut filter. Furthermore, it is providing the manufacturing method of a transparent polyimide resin film.
  • the transparent polyimide resin having aromaticity at the terminal has excellent solubility in a solvent (hereinafter also referred to as “re-solubility”) and is easy to produce a film by a solution casting method, and thus is excellent in productivity. I found.
  • the said polyimide has the structure represented by following General formula (1) or General formula (2),
  • the transparent polyimide resin as described in any one of 1st term
  • a and R each independently represents an aromatic ring, an aromatic heterocyclic ring, an aliphatic hydrocarbon group having 2 to 39 carbon atoms, or an alicyclic hydrocarbon group having 2 to 39 carbon atoms
  • a and R may be —O—, —SO 2 —, —CO—, —CH 2 —, —C (CH 3 ) 2 —, —OSi (CH 3 ) 2 —,
  • an alicyclic hydrocarbon group may be linked, provided that at least one aromatic moiety is present in the structure represented by A or R.
  • R 1 to R 8 are each independently a polyimide. Represents a terminal group, provided that at least one of R 1 to R 4 and at least one of R 5 to R 8 are N Two end groups having one or more aromatic rings having an ICS value in the range of -15.0 to -8.0, or two aromatic rings having an NICS value in the range of -15.0 to -7.0. It is a terminal group having two or more.
  • said A represents the following structure, The polyimide resin of Claim 5 characterized by the above-mentioned. [The above structure is bonded to N in the general formula (1) and the general formula (2) in the * part. ]
  • said R represents the following structure, The polyimide resin of Claim 5 or 6 characterized by the above-mentioned. [The above structure is bonded to the carbonyl group in the imide group at the * moiety. ]
  • a transparent polyimide resin composition comprising the transparent polyimide resin according to any one of items 1 to 7.
  • a transparent polyimide resin film comprising the transparent polyimide resin according to any one of items 1 to 7.
  • An infrared ray absorbing composition comprising the transparent polyimide resin according to any one of items 1 to 7.
  • An infrared cut filter comprising the transparent polyimide resin according to any one of items 1 to 7.
  • the manufacturing method of the transparent polyimide resin film characterized by including a process.
  • the above-mentioned means of the present invention can provide a transparent polyimide resin having good transparency and excellent mechanical strength.
  • the transparent polyimide resin composition using a transparent polyimide resin, a transparent polyimide resin film, an infrared rays absorption composition, and an infrared cut filter can be provided.
  • the manufacturing method of the said transparent polyimide resin film excellent in productivity can be provided.
  • the transparent polyimide is produced by a method of suppressing the generation of a CT complex by making the structure of the polyimide donor site and acceptor site orthogonal, a method of introducing an alicyclic monomer, a method of using a fluorine-based monomer, etc.
  • a method of introducing an alicyclic monomer a method of using a fluorine-based monomer, etc.
  • the transparent polyimide that can use these interactions is a polyimide containing an aromatic moiety in the main chain, and it was thought that the mechanical strength could be improved by introducing a substituent having a specific aromaticity at the terminal. .
  • the present inventors examined the end of the transparent polyimide in accordance with the above idea, and introduced a specific aromatic substituent having no crosslinking group at the end of the transparent polyimide containing an aromatic skeleton in the main chain. As a result, a transparent polyimide resin having high mechanical strength could be obtained.
  • polyimide refers to a compound having a polyimide structure
  • polyimide resin refers to a resin containing the polyimide
  • polyimide resin film refers to a film made from the polyimide resin
  • the transparent polyimide resin of the present invention has a terminal group having an aromatic ring having a NICS value in the range of -15.0 to -8.0 at least one end of the polyimide, and a NICS value of -15.0 to It has any group of terminal groups having two or more aromatic rings in the range of ⁇ 7.0. This feature is a technical feature common to the claimed invention.
  • the polyimide is a polymer of an aromatic dicarboxylic acid anhydride and an aromatic diamine having a sterically hindered group at the ortho position of the amino group, a transparent polyimide resin, and a transparent It is preferable from the viewpoint of excellent transparency of the polyimide resin film.
  • the polyimide is preferably a polymer of an alicyclic dicarboxylic acid anhydride and an aromatic diamine from the viewpoint of excellent transparency of the transparent polyimide resin and the transparent polyimide resin film.
  • the terminal group is preferably a terminal group having one or more aromatic rings having a NICS value in the range of ⁇ 14.0 to ⁇ 10.0 from the viewpoint of excellent mechanical strength of the transparent polyimide resin film. .
  • the polyimide has a structure represented by the general formula (1) or the general formula (2) from the viewpoint of excellent re-solubility, and production by a solution casting method is possible, thereby improving productivity. Excellent.
  • This effect is an effect that cannot be obtained with a polyimide resin having a crosslinkable group at the end of the polyimide.
  • the transparent polyimide resin composition of the present invention preferably contains the transparent polyimide resin of the present invention from the viewpoint of excellent transparency, mechanical strength, and heat resistance.
  • the transparent polyimide resin film of the present invention preferably contains the transparent polyimide resin of the present invention from the viewpoint of excellent mechanical strength, heat resistance, and productivity of the transparent polyimide resin film.
  • the method for producing the transparent polyimide resin film of the present invention includes a step of preparing a dope obtained by dissolving the transparent polyimide resin of the present invention in an organic solvent, and casting the dope on a support to form a film. It is preferable from a viewpoint which is excellent in productivity of a transparent polyimide resin film to include a process.
  • is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • the transparent polyimide resin of the present invention is a transparent polyimide resin containing a polyimide having an aromatic moiety, and has a NICS value in the range of ⁇ 15.0 to ⁇ 8.0 at at least one of the ends of the polyimide. It has a terminal group having an aromatic ring and any group of terminal groups having two or more aromatic rings having a NICS value in the range of -15.0 to -7.0.
  • the conventional transparent polyimide resin (for example, the transparent polyimide resin described in Patent Document 2) has a benzene ring at the terminal, and does not correspond to the terminal group having a specific NICS value according to the present invention.
  • the polyimide according to the present invention is a compound containing an imide bond in a repeating unit, and is preferably formed from diamine or a derivative thereof and an acid anhydride or a derivative thereof.
  • the polyimide according to the present invention is characterized in that it includes a structure that suppresses the CT complex between and within the polyimide. Thereby, coloring is improved and transparency is improved.
  • an aromatic diamine having an electron-withdrawing group an aromatic diamine having a sterically hindered group at the ortho position, a monomer having a highly sterically hindered group, an alicyclic ring It is necessary to use a formula monomer or the like.
  • the polyimide according to the present invention is characterized by having an aromatic moiety in the main chain in order to provide desired performance.
  • the aromatic part should just be introduce
  • the polyimide according to the present invention is preferably a polymer of an aromatic dicarboxylic acid anhydride and an aromatic diamine having a sterically hindered group at the ortho position of the amino group.
  • the polyimide is preferably a polymer of an alicyclic dicarboxylic acid anhydride and an aromatic amine.
  • the terminal of the polyimide according to the present invention is substituted with a structure containing an aromatic ring having a NICS value of -15.0 to -8.0, or two or more aromatic rings having a NICS value of -15.0 to -7.0 are present. It is characterized by being substituted with the structure it contains. This suppresses the mobility of the resin by forming ⁇ - ⁇ interaction or CH- ⁇ interaction between the resin ends or the aromatic moiety contained in the main chain described above, so that the mechanical strength and heat resistance are reduced. improves.
  • the polyimide according to the present invention is substituted with a structure containing an aromatic ring having a NICS value of -15.0 to -8.0 on at least one of the terminals, or an aromatic ring having a NICS value of -15.0 to -7.0. As long as it is substituted with a structure containing 2 or more, and it is preferable that both ends are substituted.
  • the molecular weight of the polyimide in the present invention is preferably in the range of 30,000 to 500,000, more preferably in the range of 50,000 to 300,000, and in the range of 70,000 to 250,000. It is particularly preferred. If the molecular weight is 30,000 or more, the mechanical strength as a polymer is improved, and if it is 500,000 or less, the viscosity becomes an appropriate viscosity, so that the productivity of polyimide and polyimide film is excellent.
  • Polyimide having a structure represented by General Formula (1) or General Formula (2)> As the polyimide that can be used in the present invention, a polyimide having a repeating unit represented by the general formula (1) or the general formula (2) and a terminal structure is particularly preferable.
  • a and R each independently represents an aromatic ring, an aromatic heterocyclic ring, an aliphatic hydrocarbon group having 2 to 39 carbon atoms, or an alicyclic hydrocarbon group having 2 to 39 carbon atoms
  • a and R may be —O—, —SO 2 —, —CO—, —CH 2 —, —C (CH 3 ) 2 —, —OSi (CH 3 ) 2 —,
  • an alicyclic hydrocarbon group may be linked, provided that at least one aromatic moiety is present in the structure represented by A or R.
  • R 1 to R 8 are each independently a polyimide. Represents a terminal group, provided that at least one of R 1 to R 4 and at least one of R 5 to R 8 are N Two end groups having one or more aromatic rings having an ICS value in the range of -15.0 to -8.0, or two aromatic rings having an NICS value in the range of -15.0 to -7.0. It is a terminal group having two or more.)
  • the A or R has at least one aromatic moiety in the structure, and has a partial structure that suppresses the intermolecular or intramolecular CT described above.
  • the polyimide resin can be made transparent by having a partial structure that suppresses intermolecular or intramolecular CT in the structure represented by A or R.
  • “having two or more aromatic rings” means that there are two or more 5-membered rings or 6-membered rings, and the condensed ring counts each ring individually. Therefore, in the present invention, the naphthalene ring is “two aromatic rings”.
  • aromatic hydrocarbon ring represented by A and R for example, benzene ring, biphenyl ring, naphthalene ring, azulene ring, fluorene ring, anthracene ring, phenanthrene ring, pyrene ring, chrysene ring, naphthacene ring, triphenylene ring, o-terphenyl ring, m-terphenyl ring, p-terphenyl ring, acenaphthene ring, coronene ring, fluoranthrene ring, naphthacene ring, pentacene ring, perylene ring, pentaphen ring, picene ring, pyrene ring, pyranthrene ring, Anthraanthrene rings and the like can be mentioned.
  • a benzene ring, a biphenyl ring, a naphthalene ring and a pyrene ring are preferable, and a benzene ring, a biphenyl ring and a naphthalene ring are more preferable. By introducing these rings, the mechanical strength is improved.
  • Examples of the aromatic heterocycle represented by A and R include a silole ring, a furan ring, a thiophene ring, an oxazole ring, a pyrrole ring, a pyridine ring, a pyridazine ring, a pyrimidine ring, a pyrazine ring, a triazine ring, and an oxadiazole ring.
  • Triazole ring imidazole ring, pyrazole ring, thiazole ring, indole ring, benzimidazole ring, benzthiazole ring, benzoxazole ring, quinoxaline ring, quinazoline ring, phthalazine ring, thienothiophene ring, carbazole ring, azacarbazole ring (carbazole ring) Any one or more of the carbon atoms constituting the dibenzosilole ring, dibenzofuran ring, dibenzothiophene ring, benzothiophene ring or dibenzofuran ring.
  • a pyridine ring, a pyrimidine ring, a triazine ring, a benzimidazole ring and a quinazoline ring are preferable, and a pyridine ring, a pyrimidine ring and a triazine ring are more preferable.
  • a pyridine ring, a pyrimidine ring and a triazine ring are more preferable.
  • the aliphatic hydrocarbon group having 4 to 39 carbon atoms represented by A and R include groups such as butane, octane and decane.
  • Examples of the alicyclic hydrocarbon group having 4 to 39 carbon atoms represented by A and R include, for example, cyclobutane, cyclopentane, cyclohexane, bicyclo [2.2.2] oct-7-ene, bicyclo [2 2.2] groups such as octane, dicyclohexylmethane, 3,6-dimethylcyclohexylmethane, 1,4-diphenylcyclohexane and the like.
  • Examples of the divalent aliphatic hydrocarbon group having 2 to 39 carbon atoms represented by A and R include, in addition to a linear or branched aliphatic hydrocarbon group having 2 to 39 carbon atoms, the following structural formula: And the group represented.
  • n represents the number of repeating units, preferably 1 to 5, and more preferably 1 to 3.
  • X is an alkanediyl group having 1 to 3 carbon atoms, that is, a methylene group, an ethylene group, a trimethylene group, or a propane-1,2-diyl group, and a methylene group is preferable.
  • A preferably has the following structure.
  • A-1, A-2, A-5, A-6, A-7, A-8, A-12, A-9, A-19, A-22, A-24, A-26, AC-3, AC-7, AC-10, and AC-11 are preferable because the mechanical strength is improved by improving the rigidity of the main chain.
  • R preferably has the following structure.
  • the above structure is bonded to the carbonyl group in the imide group at the * part.
  • B-1, B-4, B-5, B-6, B-9, B-10, and B-17 are more preferable from the viewpoint of improving transparency due to the effects of electronic effects and steric hindrance. .
  • B-1, B-4, B-5, B-6, B-9, B-14, B-15, B-16, and B-17 have high main chain rigidity and improved mechanical strength. Therefore, it is preferable.
  • B-6 and B-15 from the viewpoint of improving the light resistance to ultraviolet rays.
  • the substituent that can be substituted for A and R is not particularly limited, and examples thereof include a hydrogen atom, a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom, etc.), alkyl group (methyl group, ethyl group, n-propyl).
  • the substituent substituted with A is preferably a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group, an acyl group, an amide group, an aryl group, or a perfluoroalkyl group. Transparency improves by containing these groups.
  • Any one of R 1 to R 4 or any one of R 5 to R 8 in the general formula (1) and the general formula (2) has a NICS value in the range of ⁇ 15.0 to ⁇ 8.0.
  • a compound having an aromatic ring having a NICS value of less than ⁇ 15.0 is substantially difficult to synthesize, or has a very low productivity because it introduces a complicated synthesis route by introducing a substituent.
  • Any one of R 1 to R 4 in the general formula (1) and any one of R 5 to R 8 in the general formula (2) is within a range of NICS values from ⁇ 15.0 to ⁇ 8.0. More preferably, it is a terminal group having one or more aromatic rings.
  • R 1 and R 3 in the general formula (1) and R 5 and R 7 in the general formula (2) both have one or more aromatic rings having a NICS value in the range of -15.0 to -8.0.
  • R 1 to R 8 in the general formula (1) and the general formula (2) one or more aromatic rings having a NICS value in the range of ⁇ 15.0 to ⁇ 8.0 are included.
  • a group that is not a terminal group and that is not a terminal group having two or more aromatic rings having a NICS value in the range of -15.0 to -7.0 is not particularly limited. This is the same group as the substituent that can be substituted for A and R in the general formula (2).
  • R 1 and R 2 , R 3 and R 4 , R 5 and R 6 , and R 7 and R 8 may be condensed to form a ring.
  • the NICS value of the terminal group having two or more is preferably ⁇ 8.0 or less, more preferably ⁇ 9.0 or less, and particularly preferably ⁇ 10.0 or less.
  • the mechanical strength is improved by strengthening the interaction between the terminal and the main chain or the terminals.
  • the end group of the polyimide represented by R 1 to R 8 in the general formula (1) and the general formula (2) preferably has the following structure.
  • the * part is bonded to the main chain part of the polyimide.
  • NICS nucleus-independent chemical shift
  • This NICS value is an index used for quantification of aromaticity by magnetic properties. If the ring is aromatic, the ring current effect strongly shields the center of the ring, and conversely if it is antiaromatic. Anti-shielding (J. Am. Chem. Soc. 1996, 118, 6317). Depending on the magnitude of the NICS value, it is possible to determine the strength of the ring current, that is, the degree of contribution of ⁇ electrons to the aromaticity of the ring. Specifically, it represents the chemical shift (calculated value) of a virtual lithium ion arranged directly in the center of the ring, and the larger the value, the stronger the ⁇ property.
  • the NICS value was calculated using Gaussian 09 (Revision C.01, US Gaussian Software). Specifically, first, the structure was optimized using B3LYP (density functional method) as a calculation method and 6-31G * (a function obtained by adding a polarization function to a split valence basis set) as a basis function. Subsequently, using the optimized structure, a dummy atom is placed at the center of the ring for calculating the NICS value, and one point calculation is performed by the NMR shielding constant calculation method (GIAO) with the basis function 6-311 + G ** to which the dispersion function is added. A value obtained by multiplying the NMR shielding constant of the obtained dummy atom by -1 was defined as a NICS value.
  • B3LYP density functional method
  • 6-31G * a function obtained by adding a polarization function to a split valence basis set
  • Table 1 shows the NICS values in typical ring structures described in the literature.
  • a 5-membered aromatic heterocyclic ring such as a pyrrole ring, a thiophene ring, or a furan ring has a larger NICS value than an aromatic hydrocarbon such as a benzene ring or a naphthalene ring.
  • an aromatic five-membered ring is expected to enhance the CH / ⁇ interaction.
  • the intermolecular force contributed by ⁇ electrons includes ⁇ / ⁇ interaction in addition to CH / ⁇ interaction.
  • the ⁇ / ⁇ interaction is an intermolecular force that acts between two aromatic rings. Since an aromatic ring has a high polarizability, it is an intermolecular force that greatly contributes to dispersion force (London dispersion force). For this reason, an aromatic ring having a wide ⁇ -conjugated system has a higher polarizability and is likely to interact with ⁇ / ⁇ .
  • Benzene which is a 6 ⁇ -electron system, has the most stable structure when one benzene ring is placed perpendicular to one benzene ring and a benzene ring and a hydrogen atom interact with each other.
  • Naphthalene (10 ⁇ electrons) and anthracene (14 ⁇ electrons) with a wide system are most stable when the aromatic rings are stacked by ⁇ / ⁇ interaction. Is strong.
  • the NICS value can be controlled by a substituent substituted on the ring, and when the electron donating group is substituted, the NICS value becomes negative and when the electron withdrawing group is substituted, the NICS value tends to become positive.
  • Aromatic, aliphatic or alicyclic tetracarboxylic acids or their derivatives may be used alone or in combination of two or more. Further, other tetracarboxylic acids or derivatives thereof (particularly dianhydrides) may be used in combination as long as they do not impair the solvent solubility of polyimide, the flexibility of the transparent polyimide resin film, the thermocompression bonding property, and the transparency.
  • Examples of such other tetracarboxylic acids or derivatives thereof include pyromellitic acid, 3,3 ′, 4,4′-biphenyltetracarboxylic acid, 2,3,3 ′, 4′-biphenyltetracarboxylic acid, 2, 2-bis (3,4-dicarboxyphenyl) propane, 2,2-bis (2,3-dicarboxyphenyl) propane, 2,2-bis (3,4-dicarboxyphenyl) -1,1,1 , 3,3,3-hexafluoropropane, 2,2-bis (2,3-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropane, bis (3,4-dicarboxy) Phenyl) sulfone, bis (3,4-dicarboxyphenyl) ether, bis (2,3-dicarboxyphenyl) ether, 3,3 ′, 4,4′-benzophenonetetracarboxylic acid, 2,2
  • 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride or biphenyltetracarboxylic dianhydride is excellent in transparency and heat due to heat shrinkage. This is preferable from the viewpoint of easy correction.
  • the repeating unit represented by the formula (1.1) is preferably 10 to 100 mol%, more preferably 50 to 100 mol%, still more preferably 80 to 100 mol%, particularly preferably all the repeating units. Is 90 to 100 mol%.
  • the number of repeating units of formula (1.1) in one molecule of polyimide (A) is 10 to 2000, preferably 20 to 200, and further within this range, the glass transition temperature is 230 to 350 ° C. The temperature is preferably 250 to 330 ° C.
  • the polyamic acid can be obtained by polymerizing at least one of the tetracarboxylic acids and at least one of the diamines in a suitable solvent.
  • the polyamic acid ester is diesterified by ring-opening the tetracarboxylic dianhydride with an alcohol such as methanol, ethanol, isopropanol, or n-propanol, and the obtained diester is converted into the above-mentioned diester in an appropriate solvent. It can be obtained by reacting with a diamine compound. Furthermore, the polyamic acid ester can also be obtained by esterification by reacting the carboxylic acid group of the polyamic acid obtained as described above with an alcohol as described above.
  • the reaction between the tetracarboxylic dianhydride and the diamine compound can be carried out under conventionally known conditions. There are no particular limitations on the order of addition or addition method of the tetracarboxylic dianhydride and the diamine compound.
  • a polycarboxylic acid can be obtained by sequentially adding a tetracarboxylic dianhydride and a diamine compound to a solvent and stirring at an appropriate temperature.
  • the amount of the diamine compound is usually 0.8 mol or more, preferably 1 mol or more with respect to 1 mol of tetracarboxylic dianhydride. On the other hand, it is 1.2 mol or less normally, Preferably it is 1.1 mol or less.
  • the yield of the polyamic acid obtained can be improved by making the quantity of a diamine compound into such a range.
  • the concentration of tetracarboxylic dianhydride and diamine compound in the solvent is appropriately set according to the reaction conditions and the viscosity of the polyamic acid solution.
  • the total mass of the tetracarboxylic dianhydride and the diamine compound is not particularly limited, but is usually 1% by mass or more, preferably 5% by mass or more with respect to the total amount of the solution, while usually 70%. It is not more than mass%, preferably not more than 30 mass%.
  • the reaction temperature is not particularly limited, but is usually 0 ° C. or higher, preferably 20 ° C. or higher, and is usually 100 ° C. or lower, preferably 80 ° C. or lower.
  • the reaction time is not particularly limited but is usually 1 hour or longer, preferably 2 hours or longer, and is usually 100 hours or shorter, preferably 24 hours or shorter.
  • Examples of the polymerization solvent used in this reaction include hydrocarbon solvents such as hexane, cyclohexane, heptane, benzene, toluene, xylene and mesitylene; carbon tetrachloride, dichloromethane, chloroform, 1,2-dichloroethane, chlorobenzene and dichlorobenzene.
  • hydrocarbon solvents such as hexane, cyclohexane, heptane, benzene, toluene, xylene and mesitylene
  • carbon tetrachloride dichloromethane, chloroform, 1,2-dichloroethane, chlorobenzene and dichlorobenzene.
  • halogenated hydrocarbon solvents such as fluorobenzene; ether solvents such as diethyl ether, tetrahydrofuran, 1,4-dioxane and methoxybenzene; ketone solvents such as acetone and methyl ethyl ketone; N, N-dimethylformamide, N, N— Amide solvents such as dimethylacetamide and N-methyl-2-pyrrolidone; aprotic polar solvents such as dimethyl sulfoxide and ⁇ -butyrolactone; pyridine, picoline, lutidine, quinoline and isoquinoline Ring-based solvents; phenols and phenolic solvents such as cresol, but and the like, but is not particularly limited.
  • a polymerization solvent only 1 type can also be used and 2 or more types of solvents can also be mixed and used.
  • an acid anhydride group or an amino group can be arbitrarily selected by using either one of a tetracarboxylic dianhydride and a diamine compound in excess during the polymerization reaction.
  • the terminal group is an acid anhydride terminal
  • the terminal may be sealed with a monofunctional amine compound or isocyanate compound.
  • the amine compound or isocyanate compound used here is not particularly limited as long as it is a monofunctional primary amine compound or isocyanate compound.
  • aniline methylaniline, dimethylaniline, trimethylaniline, ethylaniline, diethylaniline, triethylaniline, aminophenol, methoxyaniline, aminobenzoic acid, biphenylamine, naphthylamine, cyclohexylamine, phenyl isocyanate, xylylene isocyanate, cyclohexyl isocyanate , Methylphenyl isocyanate, trifluoromethylphenyl isocyanate, and the like.
  • terminal group is an amine terminal
  • 4-ethynylphthalic anhydride methylphthalic anhydride, dimethylphthalic anhydride, trimellitic anhydride, naphthalenedicarboxylic anhydride, etc.
  • amides may be formed by reaction with monocarboxylic acid anhydrides or acid chlorides, such as p-methoxybenzoic anhydride, naphthalenecarboxylic acid chloride, 4-acetoxybenzoic acid chloride, thiophene-2-carbonyl chloride, etc. Can be raised.
  • the polyimide is a method in which the polyamic acid solution is heated to imidize the polyamic acid (thermal imidization method), or a polycyclic acid (imidation catalyst) is added to the polyamic acid solution to imidize the polyamic acid. It can be obtained by a method (chemical imidization method).
  • thermo imidization method a method of imidizing polyamic acid by heating the polyamic acid solution
  • a reaction vessel for polymerizing polyamic acid from an acid anhydride and a diamine may be continued as it is and imidized in the reaction vessel.
  • the polyamic acid in the polymerization solvent is heated for, for example, 80 to 300 ° C. for 0.1 to 200 hours to advance imidization.
  • the temperature range is preferably 150 to 200 ° C., and by setting the temperature range to 150 ° C. or higher, imidization can be reliably progressed and completed. It is possible to prevent an increase in the resin concentration due to oxidation of unreacted raw materials and volatilization of the solvent.
  • an azeotropic solvent can be added to the polymerization solvent in order to efficiently remove water generated by the imidization reaction.
  • the azeotropic solvent for example, aromatic hydrocarbons such as toluene, xylene and solvent naphtha, and alicyclic hydrocarbons such as cyclohexane, methylcyclohexane and dimethylcyclohexane can be used.
  • the amount added is about 1 to 30% by mass, preferably 5 to 20% by mass, based on the total amount of organic solvent.
  • a known ring closure catalyst is added to the polyamic acid in the polymerization solvent to advance imidization.
  • the ring-closing catalyst include aliphatic tertiary amines such as trimethylamine and triethylenediamine, and heterocyclic tertiary amines such as isoquinoline, pyridine and picoline. Examples thereof include substituted nitrogen-containing heterocyclic compounds, N-oxide compounds of nitrogen-containing heterocyclic compounds, substituted or unsubstituted amino acid compounds, aromatic hydrocarbon compounds having an hydroxy group, or aromatic heterocyclic compounds.
  • alkyl imidazole such as dimethylimidazole, N-methylimidazole, N-benzyl-2-methylimidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 5-methylbenzimidazole, N-benzyl-2-methyl Imidazole derivatives such as imidazole, isoquinoline, 3
  • a substituted pyridine such as 5-dimethylpyridine, 3,4-dimethylpyridine, 2,5-dimethylpyridine, 2,4-dimethylpyridine, 4-n-propylpyridine, p-toluenesulfonic acid, etc. can be preferably used. it can.
  • the addition amount of the ring closure catalyst is preferably about 0.01 to 2 times equivalent, particularly about 0.02 to 1 time equivalent to the amic acid unit of the polyamic acid.
  • a dehydrating agent may be added to the polyamic acid solution.
  • a dehydrating agent include aliphatic acid anhydrides such as acetic anhydride, phthalates, and the like. Examples thereof include aromatic acid anhydrides such as acid anhydrides, and these can be used alone or in combination.
  • it is preferable to use a dehydrating agent because the reaction can proceed at a low temperature.
  • it is possible to imidize polyamic acid only by adding a dehydrating agent to the polyamic acid solution it is preferable to imidize by heating or addition of a ring-closing catalyst as described above because the reaction rate is slow. .
  • the polyimide solution imidized in the reaction kettle is advantageous because it is less likely to cause a decrease in molecular weight due to hydrolysis over time than the polyimide solution. Further, since the imidization reaction has progressed in advance, for example, in the case of a polyimide having an imidization rate of 100%, imidization on the cast film is unnecessary, and the drying temperature can be lowered.
  • the ring-closed polyimide may be reprecipitated using a poor solvent or the like, purified to a solid, dissolved in a solvent, and cast and dried to form a film.
  • polyamic acid in order to increase the molecular weight of polyamic acid, it is polymerized and cyclized with dimethylacetamide, solidified with methanol, dried, then made into a solution containing an additive with dichloromethane, then cast and dried.
  • dimethylacetamide solidified with methanol
  • dichloromethane a solution containing an additive with dichloromethane
  • dichloromethane when used as a solvent, it can be used in combination with other solvents.
  • a co-solvent such as tetrahydrofuran (THF), dioxolane, cyclohexanone, cyclopentanone, ⁇ -butyrolactone, ethanol, methanol, butanol, ilopropanol can be used as appropriate.
  • the polyamideimide resin can be synthesized by a usual method. For example, an isocyanate method, an amine method (acid chloride method, low temperature solution polymerization method, room temperature solution polymerization method, etc.), etc., but the polyamideimide resin used in the present invention is preferably soluble in an organic solvent, as described above. For reasons such as ensuring the reliability of peel strength (adhesive strength), production by the isocyanate method is preferred. Also, industrially, it is preferable because the solution at the time of polymerization can be applied as it is.
  • the polyimide resin of the present invention is a transparent polyimide resin.
  • the transparent polyimide resin means a polyimide resin having a total light transmittance of 80% or more when a polyimide film having a thickness of 40 ⁇ m is produced from the polyimide resin.
  • the total light transmittance is more preferably 85% or more, and still more preferably 90% or more. A higher total light transmittance is preferable because transparency increases.
  • the description of the numerical value that the total light transmittance is 80% or more shows the preferable range.
  • the total light transmittance of the transparent polyimide resin film can be measured according to JIS K 7375-2008 for one transparent polyimide resin film sample conditioned for 24 hours in an air conditioning room at 23 ° C. and 55% RH.
  • the measurement can measure the transmittance in the visible light region (range of 400 to 700 nm) using a spectrophotometer U-3300 manufactured by Hitachi High-Technologies Corporation.
  • the total light transmittance 80% or more it can be adjusted by selecting the type of polyimide.
  • the transparent polyimide resin of the present invention is preferably a colorless transparent polyimide resin.
  • a yellow index value (YI value) when a transparent polyimide resin film having a thickness of 40 ⁇ m is made of the transparent polyimide resin is 5.0 or less. More preferably, it is in the range of 0.3 to 2.0, and particularly preferably in the range of 0.3 to 1.6. A smaller yellow index value (YI value) is preferable because coloring is less.
  • the description of the numerical value that the yellow index value (YI value) is 5.0 or less indicates the preferable range.
  • the YI value can be adjusted by selecting the type of polyimide.
  • the yellow index value can be obtained according to the YI (yellow index: yellowness index) of the film defined in JIS K 7103.
  • the yellow index value is measured by preparing a film sample and using a spectrophotometer U-3300 manufactured by Hitachi High-Technologies Corporation and the attached saturation calculation program, etc., as a light source specified in JIS Z 8701.
  • the tristimulus values X, Y and Z of the color are obtained, and the yellow index value is obtained according to the definition of the following formula.
  • the transparent polyimide resin of the present invention preferably has a limit amount (solubility) that dissolves in 100 g of dichloromethane at 25 ° C. from the viewpoint of producing a film with high productivity by the solution casting method. If the solubility is 1 g or more, it can be easily produced by the solution casting method. When the solubility is 50 g or more, it is difficult to form a film at the time of casting the solution, and film formation becomes difficult.
  • the solubility of the polyimide according to the present invention can be adjusted by selecting the type of polyimide used in the present invention.
  • polyimides In order to make polyimides soluble, it is effective to reduce the ratio of the structure of imide groups and aromatic hydrocarbons that work in the direction of increasing the planarity of the molecular skeleton of polyimide. It is also effective to introduce structural isomers, bending groups, aliphatic groups or alicyclic groups instead of aromatic groups, and bulky skeletons such as fluorine atoms and fluorenes.
  • Examples of compounds include alicyclic, 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, 1,2,3,4, 5-cyclohexanetetracarboxylic dianhydride, 2,3,5-tricarboxycyclopentylacetic acid dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, (bicyclo [4.2.0] octane -3,4,7,8-tetracarboxylic dianhydride) bicyclo [2.2.1] heptanedimethanamine, the structure having a bending group is 2,3 ', 3,4'-biphenyltetracarboxylic Acid dianhydride, 3,4'-oxydiphthalic anhydride, 4,4 'oxydiphthalic anhydride, 3,3', 4,4'-benzophenone tetracarboxylic dianhydride, 3,3
  • Examples of the compound containing a fluorine atom include 4,4 '-(hexafluoroisopropylidene) diphthalic anhydride, 2,2'-bis (trifluoromethyl) benzidine, 2,2-bis (3-amino-4 -Hydroxyphenyl) hexafluoropropane, compounds containing a fluorene group include 9,9-bis (4-amino-3-fluorophenyl) fluorene, 9,9-bis [4- (3,4-dicarboxyphenoxy) ) -Phenyl] fluorene anhydride, 9,9-bis [4- (3,4-dicarboxyphenoxy) -phenyl] fluorene anhydride, 9,9-Bis (3,4-dicboxyphenyl) fluorene Pilot fluorene Dianhydride It is done.
  • Transparent polyimide resin composition Various resins, additives and solvents can be mixed into the transparent polyimide resin of the present invention to obtain a transparent polyimide resin composition.
  • a transparent polyimide resin composition of the present invention it can be used as a material for a resin molded product or the like, in addition to a manufacturing material such as a transparent polyimide resin film described below.
  • a transparent polyimide resin film can be obtained using the above-described transparent polyimide resin and transparent polyimide resin composition of the present invention.
  • additives It is preferable that the following additives are mixed in the transparent polyimide resin film of the present invention.
  • the transparent polyimide resin film of the present invention can contain a mechanical strength modifier. Since the transparent polyimide resin in the present invention contains an aromatic ring in the main chain and has an aromatic ring having a specific NICS value at the polymer terminal, a compound having an aromatic ring is preferable from the viewpoint of improving mechanical strength. It is more preferable to add a compound containing two or more compounds or a compound containing a heteroaromatic ring, and a compound containing two or more aromatic rings or a nitrogen-containing aromatic heterocyclic compound is particularly preferable.
  • Examples of the preferable compound include compounds represented by general formula (1) and general formula (2) described in International Publication No. 2014/109350, compounds containing a 1,3,5-triazine skeleton, Examples thereof include compounds containing a 3-pyrimidine skeleton and polyesters containing an aromatic ring described in paragraph [0040] of JP2013-232005.
  • the transparent polyimide resin film of the present invention has, for example, silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, kaolin, talc, calcined calcium silicate, hydrated calcium silicate, silicic acid. It is preferable to include a matting agent such as inorganic fine particles such as aluminum, magnesium silicate and calcium phosphate, and a crosslinked polymer. Of these, silicon dioxide is preferable because it can reduce the haze of the film.
  • the primary average particle diameter of the fine particles is preferably 20 nm or less, more preferably 5 to 16 nm, and particularly preferably 5 to 12 nm.
  • These fine particles preferably form secondary particles having a particle size of 0.1 to 5 ⁇ m and are contained in the polyimide.
  • a preferable average particle size is 0.1 to 2 ⁇ m, and more preferably 0.2 to 0.00. 6 ⁇ m.
  • irregularities having a height of about 0.1 to 1.0 ⁇ m are formed on the film surface, thereby providing appropriate slipperiness to the film surface.
  • the primary average particle diameter of the fine particles used in the present invention is measured by observing the particles with a transmission electron microscope (magnification of 500,000 to 2,000,000 times), observing 100 particles, measuring the particle diameter, and measuring the average. Let the value be the primary average particle size.
  • the transparent polyimide resin film of the present invention preferably contains an ultraviolet absorber from the viewpoint of improving light resistance.
  • the ultraviolet absorber is intended to improve light resistance by absorbing ultraviolet rays of 400 nm or less, and the transmittance at a wavelength of 370 nm is preferably in the range of 0.1 to 30%, more preferably. Is in the range of 1-20%, more preferably in the range of 2-10%.
  • the UV absorbers preferably used in the present invention are benzotriazole UV absorbers, benzophenone UV absorbers, and triazine UV absorbers, and particularly preferably benzotriazole UV absorbers and benzophenone UV absorbers.
  • a discotic compound such as a compound having a 1,3,5-triazine ring is also preferably used as the ultraviolet absorber.
  • the transparent polyimide resin film of the present invention preferably contains two or more kinds of ultraviolet absorbers.
  • a polymeric ultraviolet absorber can be preferably used, and in particular, a polymer type ultraviolet absorber described in JP-A-6-148430 is preferably used. Moreover, it is preferable that the ultraviolet absorber does not have a halogen group.
  • the method of adding the UV absorber is to add the dope after dissolving the UV absorber in an alcohol such as methanol, ethanol, butanol, an organic solvent such as dichloromethane, methyl acetate, acetone, dioxolane, or a mixed solvent thereof, or You may add directly in dope composition.
  • an alcohol such as methanol, ethanol, butanol
  • an organic solvent such as dichloromethane, methyl acetate, acetone, dioxolane, or a mixed solvent thereof, or You may add directly in dope composition.
  • the amount of UV absorber used is not uniform depending on the type of UV absorber, usage conditions, etc., but when the dry film thickness of the transparent polyimide resin film is 15 to 50 ⁇ m, it is 0.5% relative to the transparent polyimide resin film.
  • the range of ⁇ 10% by mass is preferred, and the range of 0.6 ⁇ 4% by mass is more preferred.
  • Antioxidant are also referred to as deterioration inhibitors. When an electronic device or the like is placed in a high humidity and high temperature state, the transparent polyimide resin film may be deteriorated.
  • the antioxidant has a role of delaying or preventing the transparent polyimide resin film from being decomposed by, for example, the residual solvent amount of halogen in the transparent polyimide resin film or phosphoric acid of the phosphoric acid plasticizer. It is preferable to make it contain in the transparent polyimide resin film of invention.
  • a hindered phenol compound is preferably used.
  • 2,6-di-t-butyl-p-cresol, pentaerythrityl-tetrakis [3- (3,5-di- -T-butyl-4-hydroxyphenyl) propionate] triethylene glycol-bis [3- (3-t-butyl-5-methyl-4-hydroxyphenyl) propionate], 1,6-hexanediol-bis [3 -(3,5-di-t-butyl-4-hydroxyphenyl) propionate], 2,4-bis- (n-octylthio) -6- (4-hydroxy-3,5-di-t-butylanilino)- 1,3,5-triazine, 2,2-thio-diethylenebis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], oct Decyl-3- (3,5-di-t-butyl-4-hydroxyphenyl
  • 2,6-di-t-butyl-p-cresol, pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], triethylene glycol-bis [3 -(3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate] is preferred.
  • hydrazine-based metal deactivators such as N, N′-bis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyl] hydrazine and tris (2,4-di- A phosphorus processing stabilizer such as t-butylphenyl) phosphite may be used in combination.
  • the amount of these compounds added is preferably in the range of 1 ppm to 1.0% by mass relative to the transparent polyimide resin film, and more preferably in the range of 10 to 1000 ppm.
  • Phase difference control agent In order to improve the display quality of image display devices such as liquid crystal display devices, a retardation control agent is added to the transparent polyimide resin film, or an alignment film is formed to provide a liquid crystal layer, derived from a polarizing plate protective film and a liquid crystal layer By compounding the above phase difference, optical compensation ability can be imparted to the transparent polyimide resin film.
  • Examples of the retardation control agent include aromatic compounds having two or more aromatic rings as described in European Patent No. 91656A2, and rod-like compounds described in JP-A-2006-2025. Two or more aromatic compounds may be used in combination.
  • the aromatic ring of the aromatic compound is preferably an aromatic heterocyclic ring including an aromatic heterocyclic ring in addition to the aromatic hydrocarbon ring.
  • the aromatic heterocycle is generally an unsaturated heterocycle. Of these, the 1,3,5-triazine ring described in JP-A-2006-2026 is preferable.
  • the compound having the structure represented by the general formula (A1) also functions as a phase difference controlling agent.
  • the compound which has a structure represented by general formula (A1) can provide both the function of both phase difference control and optical value fluctuation
  • the amount of these retardation control agents added is preferably in the range of 0.5 to 20% by mass, preferably in the range of 1 to 10% by mass with respect to 100% by mass of the transparent polyimide resin film resin. It is more preferable.
  • preferable release agents include phosphate ester type surfactants, carboxylic acid or carboxylate type surfactants. Agents, sulfonic acid or sulfonate surfactants, and sulfate ester surfactants are effective. A fluorine-based surfactant in which part of the hydrogen atoms bonded to the hydrocarbon chain of the surfactant is substituted with fluorine atoms is also effective. Examples of the release agent are given below.
  • RZ-1 C 8 H 17 O—P ( ⁇ O) — (OH) 2 RZ-2 C 12 H 25 O—P ( ⁇ O) — (OK) 2 RZ-3 C 12 H 25 OCH 2 CH 2 O—P ( ⁇ O) — (OK) 2 RZ-4 C 15 H 31 (OCH 2 CH 2 ) 5 O—P ( ⁇ O) — (OK) 2 RZ-5 ⁇ C 12 H 25 O (CH 2 CH 2 O) 5 ⁇ 2 -P ( O) -OH RZ-6 ⁇ C 18 H 35 (OCH 2 CH 2 ) 8 O ⁇ 2 —P ( ⁇ O) —ONH 4 RZ-7 (tC 4 H 9 ) 3 —C 6 H 2 —OCH 2 CH 2 O—P ( ⁇ O) — (OK) 2 RZ-8 (iso-C 9 H 19 —C 6 H 4 — O— (CH 2 CH 2 O) 5 —P ( ⁇ O) — (OK) (OH) RZ-9 C 12 H 25 SO 3 Na RZ-10 C 12 H
  • the additive contained in the transparent polyimide resin film of the present invention is not limited to the fine particles.
  • the transparent polyimide resin composition and transparent polyimide resin film of the present invention can contain a dye having absorption in the visible to infrared.
  • a dye having absorption in the visible range for example, it can be used for a specific wavelength cut film or the like that can control the wavelength of the display light source and expand the color range.
  • dye which has absorption in an infrared region can be used for the infrared cut film for sensors, for example. By adding these dyes, it becomes possible to adjust to a desired transmittance.
  • the dye having absorption in the visible to infrared and an organic dye or an inorganic dye can be used.
  • organic dyes examples include phthalocyanine dyes, azo dyes, oxocarbon dyes, cyanine dyes, Ni complex dyes, and the like. From the viewpoint of heat resistance and sharpness of absorption, the organic dye is preferably a phthalocyanine dye, an oxocarbon dye, a cyanine dye, or a Ni complex dye, and more preferably an oxocarbon dye.
  • the inorganic dye include metal oxide fine particles and copper complex compounds. Preferred inorganic dyes include tungsten oxide fine particles, indium oxide fine particles, and copper complex fine particles having phosphonic acid as a ligand, and copper complex fine particles having phosphonic acid as a ligand are more preferable.
  • the copper complex fine particles used in the present invention are preferably copper complex fine particles containing phosphonic acid and copper ions described in JP-A-2002-006101, and alkylphosphonic acids having 2 to 6 carbon atoms and copper ions. Particularly preferred are copper complex-based fine particles containing.
  • the dye having visible to infrared absorption used in the transparent polyimide resin composition and transparent polyimide resin film of the present invention may be dissolved in the resin or dispersed as fine particles.
  • the addition amount of the dye having absorption in the visible to infrared region used in the transparent polyimide resin composition and the transparent polyimide resin film of the present invention is not particularly limited, but is preferably in the range of 0.01 to 80% by mass.
  • a range of 05 to 50% by mass is further preferable, and a range of 0.1 to 30% by mass is particularly preferable. It can adjust to a desired transmittance
  • the addition of 0.01% by mass or more makes it possible to control the transmittance. By setting the content within 35% by mass, bleeding out, dye aggregation, and fine particle aggregation are suppressed, and transparency is improved.
  • the transparent polyimide resin film of the present invention preferably has the above-described total light transmittance and YI value, but other preferable physical property values include the following physical property values.
  • the tensile modulus can be measured by the following method according to JIS K7127. 1) A film is cut out to a size of 100 mm (MD direction) ⁇ 10 mm (TD axis) to obtain a test piece. Using a Tensilon RTC-1225A manufactured by Orientec Co., the distance between chucks is 50 mm, the test piece is pulled in the longitudinal direction (MD direction) of the test piece, and the tensile elastic modulus in the MD direction is measured. The measurement can be performed at 23 ° C. and 55% RH. 2) Similarly, the film is cut into a size of 100 mm (TD direction) ⁇ 10 mm (MD direction) to obtain a test piece.
  • test piece is pulled in the length direction (TD direction) in the same manner as described above, and the tensile elastic modulus in the TD direction is measured. 3) The average value of the tensile elastic modulus in the MD direction and the TD direction obtained in 1) and 2) is calculated.
  • the tensile elastic modulus of the transparent polyimide resin film is preferably 4 GPa or more, and more preferably 5 GPa or more.
  • the haze can be measured according to JIS K 7136 using a haze meter NDH-2000 (manufactured by Nippon Denshoku Industries Co., Ltd.). Measured under the conditions of 23 ° C. and 55% RH, the light source of the haze meter is a halogen bulb of 5V9W, and the light receiving part is a silicon photocell (with a relative visibility filter).
  • the method for producing a transparent polyimide resin film of the present invention includes a step of preparing a dope obtained by dissolving the transparent polyimide resin of the present invention in an organic solvent, and a step of casting the dope on a support to form a film. including.
  • the method for producing the transparent polyimide resin film of the present invention includes a step of preparing a dope obtained by dissolving the transparent polyimide resin of the present invention in an organic solvent (dope preparation step), and casting the dope on a support.
  • FIG. 1 is a diagram schematically showing an example of a dope preparation step, a casting step, a drying step, and a winding step of a solution casting film forming method preferable for the present invention.
  • the fine particle dispersion in which the solvent and the matting agent are dispersed by the disperser passes from the charging tank 141 through the filter 144 and is stocked in the stock tank 142.
  • the cycloolefin resin as the main dope is dissolved in the dissolving pot 101 together with the solvent, and a matting agent stored in the stock pot 142 is appropriately added and mixed to form the main dope.
  • the obtained main dope is filtered from the filter 103 and the stock kettle 104 by the filter 106, the additive is added by the merge pipe 120, mixed by the mixer 121, and fed to the pressure die 130.
  • additives for example, UV absorbers, antioxidants, etc.
  • a solvent passed from the additive charging pot 110 through the filter 112 and stocked in the stock pot 113.
  • the main dope is mixed by the merging pipe 120 and the mixer 121 through the filter 115 and the conduit 116.
  • the main dope fed to the pressure die 130 is cast on a metal belt-like support 131 to form a web 132, and peeled at a peeling position 133 after predetermined drying to obtain a film.
  • the peeled web 132 is dried until it reaches a predetermined residual solvent amount while passing through a large number of conveying rollers in the first drying device 134 and then stretched in the longitudinal direction or the width direction by the stretching device 135. After stretching, the film is dried while being passed through the transport roller 137 until it reaches a predetermined residual solvent amount by the second drying device 136, and is wound into a roll by the winding device 138.
  • Dope preparation process In the method for producing the transparent polyimide resin film of the present invention, it is preferable that a dope is prepared by dissolving a transparent polyimide resin in a solvent, and the dope is used to form a film by a solution casting film forming method.
  • a low-boiling solvent having a boiling point of 80 ° C. or lower as the main solvent because the film production process temperature (particularly the drying temperature) can be reduced and the thermal shrinkage can be reduced.
  • “used as a main solvent” means that if it is a mixed solvent, 55% by mass or more is used with respect to the total amount of the solvent, preferably 70% by mass or more, more preferably 80% by mass or more, and particularly preferably. Is 90% by mass or more. Of course, if it is used alone, it becomes 100% by mass.
  • the low boiling point solvent only needs to dissolve polyimide and other additives at the same time.
  • dichloromethane as the non-chlorinated solvent, methyl acetate, ethyl acetate, amyl acetate, acetone, Methyl ethyl ketone, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, cyclohexanone, ethyl formate, 2,2,2-trifluoroethanol, 2,2,3,3-hexafluoro-1-propanol, 1,3- Difluoro-2-propanol, 1,1,1,3,3,3-hexafluoro-2-methyl-2-propanol, 1,1,1,3,3,3-hexafluoro-2-propanol, 2, 2,3,3,3-pentafluoro-1-propanol, nitroethane, methanol, ethanol, n-propanol,
  • the low boiling point solvent having a boiling point of 80 ° C. or less among the above solvents, dichloromethane (40 ° C.), ethyl acetate (77 ° C.), methyl ethyl ketone (79 ° C.), tetrahydrofuran (66 ° C.), acetone (56.5 ° C.) And at least one selected from 1,3-dioxolane (75 ° C.) as a main solvent (the parentheses each represent a boiling point).
  • a poor solvent such as hexane, heptane, benzene, toluene, xylene, chlorobenzene, or o-dichlorobenzene is used to such an extent that the polyimide and the organic compound having a carbonyl group according to the present invention do not precipitate. May be.
  • Alcohol solvents can also be used.
  • the alcohol solvent is preferably selected from methanol, ethanol, and butanol from the viewpoint of improving peelability and enabling high-speed casting. Of these, methanol or ethanol is preferably used. When the ratio of the alcohol in the dope increases, the web gels and peeling from the metal support becomes easy.
  • a method carried out at normal pressure a method carried out below the boiling point of the main solvent, a method carried out under pressure above the boiling point of the main solvent, JP-A-9-95544, JP-A-9-
  • Various dissolution methods can be used, such as a method using the cooling dissolution method described in JP-A-95557 or JP-A-9-95538, and a method using high pressure described in JP-A-11-21379.
  • the prepared dope is guided to a filter by a liquid feed pump or the like and filtered.
  • the main solvent of the dope is dichloromethane
  • the gel-like foreign matter in the dope can be removed by filtering the dope at a temperature of boiling point at 1 atm of the dichloromethane + 5 ° C. or more.
  • a preferred temperature range is 45 to 120 ° C, more preferably 45 to 70 ° C, and even more preferably within a range of 45 to 55 ° C.
  • a raw material for the resin used for preparing the dope a material obtained by pelletizing polyimide and other compounds in advance can be preferably used.
  • the prepared dope is fed to a die through a feed pump (for example, a pressurized metering gear pump), and cast on an endless support that moves indefinitely, such as a stainless steel belt or a metal support such as a rotating metal drum. Cast the dope from the die into position.
  • a feed pump for example, a pressurized metering gear pump
  • an endless support that moves indefinitely, such as a stainless steel belt or a metal support such as a rotating metal drum. Cast the dope from the die into position.
  • the metal support in casting (cast) is preferably a mirror-finished surface, and the support is a stainless steel belt or a drum whose surface is plated with a casting, or a metal support such as a stainless steel belt or a stainless steel belt. Is preferably used.
  • the cast width can be in the range of 1 to 4 m, preferably in the range of 1.5 to 3 m, more preferably in the range of 2 to 2.8 m.
  • the support may not be made of metal, for example, polyethylene terephthalate (PET) film, polyethylene naphthalate (PEN) film, polybutylene terephthalate (PBT) film, nylon 6 film, nylon 6,6 film, polypropylene film.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PBT polybutylene terephthalate
  • nylon 6 film nylon 6,6 film
  • polypropylene film polypropylene film.
  • a belt made of polytetrafluoroethylene or the like can be
  • the traveling speed of the metal support is not particularly limited, but is usually 5 m / min or more, preferably 10 to 180 m / min, particularly preferably 80 to 150 m / min. As the traveling speed of the metal support increases, entrained gas is more likely to be generated, and the occurrence of film thickness unevenness due to disturbance is more pronounced.
  • the traveling speed of the metal support is the moving speed of the outer surface of the metal support.
  • the die has a shape that becomes gradually narrower toward the discharge port in the vertical cross section with respect to the width direction.
  • the die usually has tapered surfaces on the downstream side and the upstream side in the lower traveling direction, and a discharge port is formed in a slit shape between the tapered surfaces.
  • a die made of metal is preferably used, and specific examples include stainless steel, titanium, and the like. In the present invention, when manufacturing films having different thicknesses, it is not necessary to change to dies having different slit gaps.
  • ⁇ It is preferable to use a pressure die that can adjust the slit shape of the die base and easily make the film thickness uniform.
  • the pressure die include a coat hanger die and a T die, and any of them is preferably used. Even when films with different thicknesses are continuously manufactured, the discharge rate of the dies is maintained at a substantially constant value. Therefore, when a pressure die is used, conditions such as extrusion pressure and shear rate are also substantially reduced. Maintained at a constant value.
  • two or more pressure dies may be provided on the metal support, and the dope amount may be divided and laminated.
  • the solvent evaporation step is a pre-drying step which is performed on a metal support and the cast film is heated on the metal support to evaporate the solvent.
  • a method of appropriately selecting and combining them is also preferable.
  • the surface temperature of the metal support may be the same as a whole or may vary depending on the position.
  • the temperature of the heating air is preferably in the range of 10 to 220 ° C.
  • the temperature of the heating air (drying temperature) is preferably 200 ° C. or lower, more preferably 140 ° C. or lower, and further preferably 120 ° C. or lower.
  • the solvent evaporation step it is preferable to dry the cast film until the residual solvent amount is in the range of 10 to 150% by mass from the viewpoint of the peelability of the cast film and the transportability after peeling.
  • the amount of residual solvent can be expressed by the following formula.
  • Residual solvent amount (% by mass) ⁇ (MN) / N ⁇ ⁇ 100
  • M is the mass at a predetermined point of the casting membrane (film)
  • N is the mass when M is dried at 200 ° C. for 3 hours.
  • M when calculating the amount of residual solvent achieved in the solvent evaporation step is the mass of the cast film immediately before the peeling step.
  • the peeling tension when peeling the metal support from the casting film is usually in the range of 60 to 400 N / m. However, if wrinkles are likely to occur during peeling, peeling is performed with a tension of 190 N / m or less. It is preferable.
  • the temperature at the peeling position on the metal support is preferably in the range of ⁇ 50 to 60 ° C., more preferably in the range of 10 to 40 ° C., and in the range of 15 to 40 ° C. Is most preferred.
  • the peeled film may be sent directly to the stretching process, or may be sent to the stretching process after being sent to the first drying process so as to achieve a desired residual solvent amount.
  • the film is sequentially sent to the first drying step and the stretching step after the peeling step.
  • the first drying step is a drying step in which the film is heated and the solvent is further evaporated.
  • the drying means is not particularly limited, and for example, hot air, infrared rays, a heating roller, microwaves and the like can be used. From the viewpoint of simplicity, it is preferable to dry with hot air or the like while transporting the film with rollers arranged in a staggered manner.
  • the drying temperature is preferably in the range of 30 to 200 ° C., taking into account the amount of residual solvent and the stretching ratio during conveyance.
  • the drying temperature is preferably 200 ° C. or lower, more preferably 140 ° C. or lower, and further preferably 120 ° C. or lower.
  • the heat shrinkage rate of the film can be increased.
  • the stretching operation may be performed in multiple stages. Moreover, when performing biaxial stretching, simultaneous biaxial stretching may be performed and you may implement in steps.
  • stepwise means that, for example, stretching in different stretching directions can be sequentially performed, stretching in the same direction is divided into multiple stages, and stretching in different directions is added to any one of the stages. Is also possible.
  • the preferred draw ratio for simultaneous biaxial stretching can be in the range of x1.01 to x1.5 in both the width direction and the longitudinal direction.
  • the amount of residual solvent at the start of stretching is preferably in the range of 0.1 to 200% by mass.
  • the amount of the residual solvent is 0.1% by mass or more, the effect of improving the flatness by stretching is obtained, and if it is 200% or less, stretching is easy.
  • the film may be stretched in the longitudinal direction or the width direction, preferably in the width direction, so that the film thickness after stretching is in a desired range.
  • the transparent polyimide resin film is preferably stretched in a temperature range of (Tg ⁇ 200) to (Tg + 100) ° C. with respect to the glass transition temperature (Tg). If it extends in the said temperature range, since a extending
  • the stretching temperature is more preferably in the range of (TgL ⁇ 150) to (TgH + 50) ° C.
  • the self-supporting film peeled from the support can be stretched in the longitudinal direction by regulating the running speed with a stretching roller.
  • the entire width of the film is held with clips or pins in the width direction in the entire drying process or a part of the process as disclosed in JP-A-62-46625.
  • a method of drying while drying (referred to as a tenter method), among which a tenter method using a clip is preferably used.
  • the film stretched in the longitudinal direction or the unstretched film is preferably introduced into the tenter in a state where both ends in the width direction are held by the clip, and stretched in the width direction while running with the tenter clip.
  • stretching in the width direction stretching in the width direction of the film at a stretching speed in the range of 50 to 1000% / min is preferable from the viewpoint of improving the flatness of the film.
  • the stretching speed is 50% / min or more, the planarity is improved and the film can be processed at high speed, which is preferable from the viewpoint of production aptitude, and if it is within 1000% / min, the film is broken. Can be processed without any problem.
  • More preferable stretching speed is in the range of 100 to 500% / min.
  • the stretching speed is defined by the following formula.
  • Stretching speed (% / min) [(d 1 / d 2 ) ⁇ 1] ⁇ 100 (%) / t
  • d 1 is the width dimension in the stretching direction of the resin film after stretching
  • d 2 is the width dimension in the stretching direction of the resin film before stretching
  • t is the time (min) required for stretching. .
  • the stretching step usually, after stretching, holding and relaxation are performed. That is, in this step, it is preferable to perform a stretching step for stretching the film, a holding step for holding the film in a stretched state, and a relaxation step for relaxing the film in the stretched direction in this order.
  • the drawing at the draw ratio achieved in the drawing step is held at the drawing temperature in the drawing step.
  • the relaxation stage the stretching in the stretching stage is held in the holding stage, and then the stretching is relaxed by releasing the tension for stretching.
  • the relaxation step may be performed at a temperature lower than the stretching temperature in the stretching step.
  • the stretched film is heated and dried.
  • a means for preventing the mixing of used hot air by installing a nozzle capable of exhausting used hot air (air containing solvent or wet air) is also preferably used.
  • the hot air temperature is more preferably in the range of 40 to 350 ° C.
  • the drying time is preferably about 5 seconds to 30 minutes, more preferably 10 seconds to 15 minutes.
  • the heating and drying means is not limited to hot air, and for example, infrared rays, heating rollers, microwaves, etc. can be used. From the viewpoint of simplicity, it is preferable to dry with hot air or the like while transporting the film with rollers arranged in a staggered manner.
  • the drying temperature is preferably in the range of 40 to 150 ° C. from the viewpoint of easy heating shrinkage. More preferably, it is 40 to 120 ° C.
  • the second drying step it is preferable to dry the film until the residual solvent amount is 0.5% by mass or less.
  • Winding process is a process of winding up the obtained transparent polyimide resin film, and cooling to room temperature.
  • the winding machine may be a commonly used one, and can be wound by a winding method such as a constant tension method, a constant torque method, a taper tension method, a program tension control method with a constant internal stress, or the like.
  • the thickness of the transparent polyimide resin film is not particularly limited, and is preferably in the range of 1 to 200 ⁇ m, particularly 1 to 100 ⁇ m, for example.
  • both ends of the transparent polyimide resin film sandwiched between tenter clips when stretched and conveyed may be slit.
  • the slit end portion of the transparent polyimide resin film is preferably cut into a width of 1 to 30 mm, then dissolved in a solvent and reused as a recycled material.
  • Each process from the solvent evaporation process to the winding process described above may be performed in an air atmosphere or an inert gas atmosphere such as nitrogen gas. Moreover, each process, especially a drying process and a extending process, are performed in consideration of the explosion limit concentration of the solvent in the atmosphere.
  • Heating process After the winding step, a heating step of further heat-treating the transparent polyimide resin film dried in the second drying step in order to improve imidization in the polymer chain molecules and between the polymer chain molecules to improve mechanical properties. You can go.
  • the said 2nd drying process may serve as a heating process.
  • the heating means is performed using a known means such as hot air, an electric heater, or a microwave.
  • a known means such as hot air, an electric heater, or a microwave.
  • the electric heater the above-described infrared heater can be used.
  • the heating step if the transparent polyimide resin film is heated rapidly, problems such as an increase in surface defects occur, and therefore it is preferable to select a heating method as appropriate.
  • the heating step is preferably performed in a low oxygen atmosphere.
  • the heating temperature in the second drying step and the heating step exceeds 450 ° C.
  • the energy required for heating becomes very large, resulting in an increase in manufacturing cost and an increase in environmental load.
  • the following is preferable.
  • the transparent polyimide resin film of the present invention is preferably long, specifically, preferably has a length in the range of about 100 to 10,000 m, and is wound into a roll. Further, the width of the transparent polyimide resin film of the present invention is preferably 1 m or more, more preferably 1.4 m or more, and particularly preferably 1.4 to 4 m.
  • the transparent polyimide resin film of the present invention can be used as a coating film in addition to the single film as described above.
  • a transparent polyimide resin composition (infrared absorbing composition) of the present invention containing an infrared absorbing compound is applied as an infrared absorbing layer on a silicon wafer or a color filter for an image sensor and dried to form a film.
  • the film can be used as it is without being peeled off, or can be used without being peeled off by applying a transparent polyimide resin composition as an infrared absorbing layer to an elemental glass or phosphoric acid glass and drying it.
  • the infrared absorbing layer is preferably a near infrared absorbing layer.
  • the film thickness of the infrared absorbing layer is usually 20 to 200 ⁇ m, preferably 50 to 100 ⁇ m.
  • it is usually 0.1 to 100 ⁇ m, preferably 0.5 to 10 ⁇ m.
  • the transparent polyimide resin film of the present invention may be formed on a substrate, and there is no particular limitation on the type of glass, plastic and the like, and it may be transparent or opaque.
  • the support substrate is preferably transparent. Examples of the transparent support substrate preferably used include glass, quartz, transparent electrodes such as ITO, and transparent resin films.
  • polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (TAC), cellulose acetate butyrate, cellulose acetate propionate ( CAP), cellulose esters such as cellulose acetate phthalate, cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide , Polyethersulfone (PES), polyphenylene sulfide, polysulfones, Cycloolefin resins such as polyether imide, polyether ketone imide, polyamide, fluororesin, nylon, polymethyl methacrylate, acrylic or polyarylate, Arton (trade name, manufactured by JSR) or Appel
  • the glass substrate is not particularly limited as long as it is a glass substrate containing silicate as a main component, and examples thereof include a quartz glass substrate having a crystal structure.
  • an absorption glass substrate in which CuO or the like is added to fluorophosphate glass or phosphate glass, a borosilicate glass substrate, a soda glass substrate, a colored glass substrate, an alkali-free glass substrate, a quartz glass substrate, or the like is used.
  • glass substrates such as alkali-free glass substrates and low ⁇ -ray glass substrates are preferred.
  • the other constituent layers constituting the image sensor are not particularly limited.
  • the dielectric multilayer film is configured by alternately laminating a low refractive index dielectric film and a high refractive index dielectric film.
  • the low refractive index and the high refractive index mean having a low refractive index and a high refractive index with respect to the refractive index of the adjacent layer.
  • the high refractive index dielectric film preferably has a refractive index (nd) of 1.6 or more, more preferably in the range of 2.2 to 2.5.
  • the high refractive index dielectric film material include Ta 2 O 5 , TiO 2 , and Nb 2 O 5 . Of these, TiO 2 is preferable from the viewpoints of film formability, reproducibility in refractive index, and stability.
  • the low refractive index dielectric film preferably has a refractive index (nd) of less than 1.6, more preferably 1.45 or more and less than 1.55, and even more preferably 1.45 to 1. Within the range of .47.
  • the low refractive index dielectric material include SiO x N y .
  • SiO 2 is desirable from the viewpoints of film reproducibility, stability, economy, and the like.
  • a vacuum film formation process such as a CVD method, a sputtering method, or a vacuum deposition method, or a wet film formation process such as a spray method or a dip method can be used.
  • the average transmittance of light having a wavelength of 430 to 620 nm is preferably 90% or more, more preferably 92% or more, and further preferably 95% or more in the spectral transmittance curve at an incident angle of 0 °.
  • the average transmittance of light having a wavelength of 710 to 1100 nm is preferably 10% or less, more preferably 8% or less, and further preferably 5% or less.
  • the dielectric multilayer film is preferably 15 or more, more preferably 25 or more, more preferably 30 or more as the total number of laminated layers of the low refractive index dielectric layer and the high refractive index dielectric layer. Is more preferable. However, when the total number of laminated layers increases, the warp of the dielectric multilayer film increases, and the total film thickness increases.
  • the film thickness is preferably thin from the viewpoint of reducing the thickness of the optical filter after satisfying the preferred number of seat layers.
  • the film thickness of such a dielectric multilayer film is preferably in the range of 2 to 10 ⁇ m.
  • the transparent polyimide resin film of the present invention can be preferably used as a transparent FPC, an in-vehicle film, a film member of an image display device, and a sensor film.
  • the device to be applied is not particularly limited.
  • an organic electroluminescence (EL) image display device a liquid crystal image display device (LCD), an organic photoelectric conversion device, a touch panel, a polarizing plate, a retardation film, a transparent FPC film, an image Examples include an infrared cut film for sensors, an infrared cut film for iris authentication, and the like.
  • the polyimide resin film of the present invention can be used as a transparent conductive film for a touch panel by providing the film with a transparent conductive layer.
  • the shape of the pattern of the transparent conductive layer is not particularly limited as long as it is a pattern that works well as a touch panel (for example, a capacitive touch panel).
  • a touch panel for example, a capacitive touch panel.
  • a touch panel can be produced by laminating a transparent conductive film patterned on the x-axis and a transparent conductive film patterned on the y-axis using an adhesive film and providing a cover glass on the outermost surface.
  • a touch panel display device can be manufactured by combining with a display device.
  • the transparent polyimide resin film of the present invention can be used as an LED substrate to provide an LED certification device.
  • a composite substrate with a double-sided substrate or an aluminum plate can be used.
  • heat dissipation is required as the brightness of the LED increases, it is possible to improve the heat dissipation by combining with an aluminum plate.
  • the present invention can also be applied to an organic electroluminescence lighting device using an organic material.
  • the transparent polyimide resin film of the present invention can also be used as a front member for a flexible display.
  • a flexible display on which a front member for flexible display is mounted for example, an organic EL device in which an organic functional layer such as a light emitting layer is laminated on a substrate, a gas barrier film, a film color filter, polarizing plate protection on one side or both sides A polarizing plate including a film, a film-type touch sensor, and the like are laminated in this order.
  • the front member for flexible display is laminated
  • the transparent polyimide resin film of this invention may be used for the board
  • Dicarboxylic acid anhydrides and diamines used for the synthesis of polyimide were samples purified by recrystallization or column chromatography.
  • Example 1 ⁇ Preparation of polyimide resin film 1> To a 4-neck flask equipped with a dry nitrogen gas inlet tube, a condenser, a Dean-Stark agglomerator filled with toluene, and a stirrer, 2,2-bis (3,4-dicarboxyphenyl) -1,1,1, 4,4.4 g (0.10 mol) of 3,3,3-hexafluoropropane dianhydride (manufactured by Daikin Industries, Ltd.) was added to N, N-dimethylacetamide (400 g), and the mixture was stirred at room temperature under a nitrogen stream.
  • 2,2-bis (3,4-dicarboxyphenyl) -1,1,1, 4,4.4 g 2,2-bis (3,4-dicarboxyphenyl) -1,1,1, 4,4.4 g (0.10 mol) of 3,3,3-hexafluoropropane dianhydride (manufactured by Daikin Industries, Ltd.) was added
  • IR absorption analysis (IR) measurement was performed using FT / IR-670Plus manufactured by JASCO Corporation. Absorbance of IR imide group (near 1375CM -1 ) / (absorbance of IR benzene ring (near 1500 cm -1 )) )), It was confirmed that the imidation ratio was 95% or more.
  • Polyimide resin films 2 to 60 were obtained by the same molar ratio and synthesis method as those of polyimide resin film 1 except that the monomers used and the end-capping compounds were changed to compounds capable of obtaining the partial structure shown in Table 2.
  • a plurality of dicarboxylic acid anhydrides when a plurality of dicarboxylic acid anhydrides are used, a plurality of types of dicarboxylic acid anhydrides are dissolved simultaneously, and when a plurality of diamine compounds are used, they are simultaneously dissolved in N, N-dimethylacetamide. It was added dropwise to the reaction solution later.
  • the total amount of the dicarboxylic acid to be used, the total amount of the diamine compound, and the total amount of the end-capping agent were added so as to have the same molar amount as the material constituting the polyimide resin film 1. Moreover, when using together 2 types of dicarboxylic acid or a diamine compound, the mixing ratio of 2 types of compounds was added by equimolar amount of 1: 1.
  • the imidization rate was measured by the same method as for the polyimide resin film 1, and it was confirmed that the imidization rate was 95% or more.
  • 2,2′-bis (trifluoromethyl) benzidine (32.0 g, 0.10 mol) was added thereto, and the mixture was heated and stirred at 40 ° C. for 10 hours.
  • the reaction solution was uniformly cast on a stainless steel belt support at a temperature of 40 ° C. and a width of 150 mm. The temperature of the stainless steel belt was controlled at 40 ° C.
  • the stainless steel belt was put into a 50 ° C. vacuum oven and the pressure was reduced to 0.1 kPa, followed by heat drying for 1 hour. Thereafter, the temperature was set to 220 ° C., and heat drying was performed for 6 hours. The oven was cooled and the film was peeled from the stainless steel belt to obtain a polyimide resin film 61 having a thickness of 40 ⁇ m. It was confirmed that the imidation ratio was 95% or more by the same method as for the polyimide resin film 1.
  • Polyimide resin films 62 to 64 were obtained by the same molar ratio and synthesis method as those of the polyimide resin film 61 except that the monomers used and the end-capping compounds were changed to compounds that give the partial structures shown in Table 2.
  • the imidization rate was measured by the same method as that for the polyimide resin film 1, and it was confirmed that the imidization rate was 95% or more.
  • Polyimide resin films 65 to 73 were obtained by the same molar ratio and synthesis method as those of the polyimide resin film 1 except that the monomers used and the end-capping compounds were changed to compounds capable of obtaining the partial structures shown in Table 2. It was confirmed that the imidation ratio was 95% or more by the same method as for the polyimide resin film 1.
  • a polyimide resin having a terminal sealed with phthalic anhydride was prepared in the same manner as described in paragraphs [0094] to [0096] of JP2012-251080A.
  • the obtained resin was uniformly cast on a stainless steel belt support at a temperature of 40 ° C. and a width of 150 mm so that the thickness after drying was 40 ⁇ m.
  • the temperature of the stainless steel belt was controlled at 40 ° C.
  • the stainless steel belt was put into a reduced pressure oven at 50 ° C., the pressure was reduced to 0.1 kPa, and heating was performed at a reduced pressure for 30 minutes. Thereafter, the temperature was raised to 200 ° C. by 1 ° C. in 1 minute while maintaining the reduced pressure, and then heated under reduced pressure for 4 hours.
  • the oven was cooled and the film was peeled from the stainless steel belt to obtain a polyimide resin film 74 having a thickness of 40 ⁇ m.
  • the terminal group of the synthesized comparative compound was made to have the following partial structure.
  • the * part is bonded to the main chain part of the polyimide.
  • the elastic modulus, bending resistance, and YI value of the polyimide resin films 1 to 74 produced as described above were evaluated as follows.
  • the weight average molecular weights of the polyimide resin films 1 to 74 were all in the range of 100,000 to 250,000.
  • the prepared polyimide resin film was stored for 24 hours in an environment of 23 ° C. and 55% RH. Thereafter, the elastic modulus was measured according to the method described in JIS K7127 under the environment of 23 ° C. and 55% RH. Tensilon RTA-100 manufactured by Orientec Co., Ltd. was used as the tensile tester. The shape of the test piece was No. 1 type test piece, and the test speed was 10 mm / min. Based on the numerical value of the obtained elastic modulus, it was evaluated according to the following criteria.
  • a 5.0 GPa or more B 4.0 GPa or more and less than 5.0 GPa C less than 4.0 GPa (bending resistance)
  • the prepared polyimide resin film was subjected to a bending resistance test (sliding bending test) using a bending fatigue tester. Evaluation was continued under the conditions of a load of 500 G, a refraction angle of 135 °, a refraction cycle of 175 cpm, and a refractive portion locality radius of 0.38 mm until the bent portion became cloudy by visual observation.
  • the polyimide resin film of the present invention was an excellent polyimide resin film with no white turbidity at the bent portion even when the number of folding times was 5000 times or more, and little curling after the bending test.
  • the yellow index value is measured according to JIS Z8701 using the spectrophotometer U-3300 manufactured by Hitachi High-Technologies Corporation and the attached saturation calculation program. The tristimulus values X, Y, and Z of the light source color being obtained were obtained, and the yellow index value was obtained according to the following formula.
  • the YI value was evaluated as a measure of the transparency of the polyimide resin film.
  • Yellow index (YI) 100 (1.28X-1.06Z) / Y A: Less than 2.0 B: 2.0 or more and less than 4.0 C: 4.0 or more and less than 5.0 D: 5.0 or more and less than 6.0
  • YI Yellow index
  • the NICS values in the table were calculated using Gaussian 03 (Revision B.03, US Gaussian software). Specifically, from the structure optimized using B3LYP (density functional method) as the calculation method and 6-31 + G (function in which the diffusion gauss function is added to the split valence basis set) as the basis function, the NMR shielding constant It is calculated by a calculation method (GIAO).
  • GIAO a calculation method
  • the NICS value was calculated by substituting the * part of the partial structure of the exemplified compound and the comparative compound with a saturated hydrocarbon.
  • evaluation 1 is the value of the ring with the largest NICS value among the aromatic rings, and was classified according to the following criteria.
  • D The ring with the largest NICS value among the aromatic rings The value of is greater than ⁇ 8.0
  • the evaluation 2 is the case where there are two or more aromatic rings, and was classified according to the following criteria.
  • Example 2 Of the polyimide resin films prepared in Example 1, polyimide resin film numbers 1, 6, 30, 43 to 57, 66, 69, 70, 72 were redissolved in a mixed solvent of dichloromethane and ethanol, and film number 24 , 33 were redissolved in cyclohexanone, and each polyimide resin film was prepared by the following method.
  • polyimide resin film C1 ⁇ Preparation of polyimide resin film C1>
  • the polyimide resin film 1 produced in Example 1 was dissolved in 30 g, 200 g of dichloromethane, and 5 g of ethanol, formed on a glass substrate at 25 ° C., and then peeled and dried by heating in an oven at 120 ° C. for 20 minutes for 40 ⁇ m polyimide. Resin film C1 was obtained.
  • a polyimide resin film C2 was produced in the same manner as the production of the polyimide resin film C1, except that the polyimide resin film to be re-dissolved was changed to the polyimide resin film 6 of Example 1.
  • Polyimide resin films C3 and C4 were produced in the same manner as the production of the polyimide resin film C1, except that the polyimide resin film 24 and the polyimide resin film 33 were changed and the solvent was changed to 200 g of cyclohexanone.
  • Polyimide resin films C5 to C24 were produced in the same manner as the production of the polyimide resin film C1, except that the polyimide resin film 1 was changed to a film having the resin composition shown in the table.
  • the transparent polyimide resin film of the present invention had good elastic modulus, bending resistance, and YI value.
  • Example 3 The following additives were added to the polyimide resin films C1 to C24 obtained in Example 2 at a ratio of 5% by mass with respect to the polyimide resin to prepare polyimide resin films D1 to D24 in the same manner as in Example 2. Evaluation similar to Example 2 was performed with respect to each obtained polyimide resin film.
  • the transparent polyimide resin film of the present invention had good elastic modulus, bending resistance, and YI value.
  • the dimensional stability due to wet heat is improved when stored in an environment of 60 ° C. and 90% RH for 500 hours.
  • Example 4 ⁇ Preparation of polyimide resin film E1> 30 g of the polyimide resin film 11 prepared in Example 1, 200 g of dichloromethane, 5 g of ethanol, and 30 mg of the following infrared-absorbing organic dye 1 were added and dissolved, formed on a glass substrate at 25 ° C., and 120 ° C. after peeling. Was dried in an oven for 20 minutes to obtain a 40 ⁇ m polyimide resin film E1.
  • polyimide resin film E2> 30 g of the polyimide resin film 44 prepared in Example 1, 200 g of dichloromethane, 5 g of ethanol, and 30 mg of the following organic dye 1 were added and dissolved, and the film was formed on a glass substrate at 25 ° C.
  • Polyimide resin films E6 to E10 were produced in the same manner except that the organic dye of the polyimide resin films E1 to E5 was changed to the organic dye 2.
  • Polyimide resin films E11 to E15 were produced in the same manner except that the organic dye of the polyimide resin films E1 to E5 was changed to the organic dye 3.
  • An IR cut filter was produced by forming a dielectric multilayer film on the polyimide resin films E1 to E15 by the following method.
  • a dielectric composed of two layers of a 30 nm layer made of Al 2 O 3 and a 165 nm layer made of SiO 2 is used.
  • the body layer was formed in this order.
  • the refractive index of the layer made of Al 2 O 3 formed was 1.60, and the refractive index of the layer made of SiO 2 formed was 1.45.
  • An image sensor was prepared using the composition as a mixed color filter with reference to Japanese Patent Application Laid-Open No. 2016-72266.
  • polyimide resin films E4 to E5, E9 to E10, and E14 to E15 did not satisfy sufficient performance.
  • the polyimide resin films E4 to E5, E9 to E10, and E14 to E15 are considered to be due to the progress of decomposition of the organic dye due to the heat and stress applied during the dielectric multilayer film fabrication process and sensor fabrication.
  • Example 5 An IR cut filter was prepared by forming a polyimide thin film to which a dielectric multilayer film and a dye were added on a glass substrate by the following method.
  • Asahi Glass fluorophosphate glass substrate NF-50TX (hereinafter referred to as “glass substrate A”) having a size of 76 mm ⁇ 76 mm ⁇ 0.214 mm is obtained by using Asahi Glass hydrofluoroether solvent Asahiklin (registered trademark) AE3000 (trade name). Washed for 10 minutes with a sonic cleaner. A high refractive index film and a low refractive index film are alternately formed on one main surface of the cleaned glass substrate A obtained above using an IAD vacuum vapor deposition apparatus, and then totaled.
  • dielectric multilayer film R a near-infrared reflective dielectric multilayer film (hereinafter, dielectric multilayer film R) as a first dielectric multilayer film having 40 layers (total layer thickness: 5950 nm). ) was formed. Note that TiO 2 was used as the high refractive index material, and SiO 2 was used as the low refractive index material.
  • the glass substrate A having the dielectric multilayer film R obtained above was washed again with an ultrasonic cleaner for 20 minutes using the Asahi Glass hydrofluoroether solvent Asahiklin (registered trademark) AE3000.
  • a 30 nm layer made of Al 2 O 3 and a 170 nm layer made of SiO 2 were formed using a vacuum deposition apparatus. These two dielectric layers were formed in this order.
  • the refractive index of the layer made of Al 2 O 3 formed was 1.60
  • the refractive index of the layer made of SiO 2 formed was 1.45.
  • An image pickup device was manufactured using the composition as a mixed color filter with reference to Japanese Patent Application Laid-Open No. 2016-72266.
  • a CMOS sensor and a CCD sensor using the laminates 1 to 3, 6 to 8, and 11 to 13 were used. Showed good performance.
  • the laminates 4, 5, 9, 10, 14, and 15 did not satisfy sufficient performance.
  • the laminates 4, 5, 9, 10, 14, and 15 are considered to have been caused by the decomposition of the organic dye due to heat and stress applied during the dielectric multilayer film production process and sensor production.
  • the present invention is used for a transparent polyimide resin film, a transparent polyimide resin composition, a transparent polyimide resin film, an infrared absorbing composition, an infrared cut filter, and a method for producing a transparent polyimide resin film, which have good film transparency and excellent mechanical strength. can do.

Abstract

The transparent polyimide resin according to the present invention is characterized in that at least one of the terminals of the polyimide has either a terminal group having an aromatic ring that has an NICS value falling within the range of -15.0 to -8.0 or a terminal group having two or more aromatic rings that have an NICS value falling within the range of -15.0 to -7.0.

Description

透明ポリイミド樹脂、透明ポリイミド樹脂組成物、透明ポリイミド樹脂フィルム、赤外線吸収組成物、赤外線カットフィルター及び透明ポリイミド樹脂フィルムの製造方法Transparent polyimide resin, transparent polyimide resin composition, transparent polyimide resin film, infrared absorbing composition, infrared cut filter, and method for producing transparent polyimide resin film
 本発明は、透明ポリイミド樹脂、透明ポリイミド樹脂組成物、透明ポリイミド樹脂フィルム、赤外線吸収組成物、赤外線カットフィルター及び透明ポリイミド樹脂フィルムの製造方法に関し、より詳しくは、フィルムの透明性が良く、機械強度に優れた透明ポリイミド樹脂等に関する。 The present invention relates to a transparent polyimide resin, a transparent polyimide resin composition, a transparent polyimide resin film, an infrared absorbing composition, an infrared cut filter, and a method for producing a transparent polyimide resin film. More specifically, the transparency of the film is good and the mechanical strength is improved. It is related with the transparent polyimide resin etc. which were excellent in.
 近年、スマートフォンやタブレット端末の普及に伴い、これらをさらに軽量化、薄膜化する技術が必要となり、ガラス基板を代替するポリマー基板が求められている。特にディスプレイ最表面に用いられる透明基板には耐傷性、フレキシブル性、耐衝撃性、耐光性などの強い機械強度と化学的な安定性が求められる。また、有機エレクトロルミネッセンス(EL)ディスプレイの普及に伴い、折り畳み可能なディスプレイも開発されており、そのようなディスプレイには透明で折り曲げ耐性に優れるフィルムが求められている。また、透明でフレキシブルなプリント基板には機械強度(折り曲げ強度や弾性率など)が高く、耐熱性のあるフィルムが求められている。さらに車載用のフィルムでは高い耐久性を求められる。このように、透明で機械強度が高く、耐熱性の高いフィルムは多くの分野で期待されている。 In recent years, with the widespread use of smartphones and tablet terminals, technology for further reducing the weight and thickness of these has become necessary, and polymer substrates that replace glass substrates have been demanded. In particular, a transparent substrate used for the outermost surface of the display is required to have strong mechanical strength and chemical stability such as scratch resistance, flexibility, impact resistance, and light resistance. In addition, with the widespread use of organic electroluminescence (EL) displays, foldable displays have been developed, and such displays are required to be transparent and have excellent bending resistance. In addition, transparent and flexible printed boards are required to have high mechanical strength (bending strength, elastic modulus, etc.) and heat resistance. Furthermore, high durability is required for in-vehicle films. Thus, a transparent film with high mechanical strength and high heat resistance is expected in many fields.
 ポリイミドはその高い機械強度と耐熱性から近年ではガラス代替用フィルムとして開発が進んでいる。 Polyimide has been developed as a glass replacement film in recent years due to its high mechanical strength and heat resistance.
 ところが、芳香環により構成された従来のポリイミド(以下、「全芳香族ポリイミド」ともいう。)は機械強度、耐熱性ともに高いが、分子内や分子間で電荷移動錯体(以下「CT錯体」ともいう。)を形成するために黄色く着色したフィルムであり、ディスプレイ用のフィルムとして使用することはできない。そこで分子間CT錯体や分子内CT錯体の形成を抑制する分子設計が行われている。 However, conventional polyimides composed of aromatic rings (hereinafter also referred to as “totally aromatic polyimides”) have high mechanical strength and heat resistance, but charge transfer complexes (hereinafter also referred to as “CT complexes”) within and between molecules. The film is colored yellow to form a film, and cannot be used as a display film. Therefore, molecular design that suppresses the formation of intermolecular CT complexes and intramolecular CT complexes has been carried out.
 分子間CT錯体の抑制方法としては嵩高い置換基を導入することで分子鎖のパッキングを阻害する方法が開発されている。しかしこの方法では分子鎖間の相互作用が低くなるので機械強度が大幅に低下するために、求められる強度を付与することができない。 As a method for suppressing intermolecular CT complexes, a method for inhibiting packing of molecular chains by introducing bulky substituents has been developed. However, in this method, since the interaction between the molecular chains is lowered, the mechanical strength is greatly reduced, so that the required strength cannot be imparted.
 また、分子内CT錯体の発生を抑制する方法として、ポリイミドのドナー部位とアクセプター部位の構造を直交させることでCT錯体の発生を抑制する方法や、脂環式モノマーを導入する方法、全てを脂環式構造にする方法、フッ素系モノマーを利用する方法が開発されている。 In addition, as a method of suppressing the generation of intramolecular CT complex, a method of suppressing the generation of CT complex by orthogonalizing the structures of the polyimide donor site and the acceptor site, a method of introducing an alicyclic monomer, A method for forming a cyclic structure and a method using a fluorine-based monomer have been developed.
 しかし、いずれの方法も透明化には有効であるが、立体的又は電子的に分子間の相互作用を弱める設計であるため、求められる機械強度を得ることはいまだにできていない。 However, although any method is effective for transparency, it has not yet been able to obtain the required mechanical strength because it is designed to weaken the interaction between molecules sterically or electronically.
 また、上記方法で透明化したポリイミドの末端に熱架橋可能な置換基を導入することで機械強度を向上させる報告がある(例えば、特許文献1参照。)。 In addition, there is a report of improving the mechanical strength by introducing a heat-crosslinkable substituent at the end of the polyimide that has been made transparent by the above method (see, for example, Patent Document 1).
 しかし、この方法では求められる機械強度には不足することに加えて、架橋することで有機溶媒に不溶のポリイミドとなり、フィルム生産で発生するフィルム端部の切断品(返材)を再利用することが困難であった。すなわち、切断品(返材)を次のロットの製造において添加するポリイミド樹脂の一部として再利用し、有機溶媒に溶解してドープを調製する際に、有機溶媒に不溶のため再利用することができないため生産性が低いという問題があった。 However, in addition to insufficient mechanical strength required by this method, cross-linking results in polyimide that is insoluble in organic solvents, and reuses the cut film (returned material) at the end of the film that occurs during film production. It was difficult. That is, the cut product (returned material) is reused as part of the polyimide resin added in the production of the next lot, and when it is dissolved in an organic solvent to prepare a dope, it is reused because it is insoluble in the organic solvent. There was a problem that productivity was low because it was not possible.
 一方、一般的にポリマー末端は分子運動性が大きく、融点やガラス転移点、熱分解温度に影響する。例えば、ポリ乳酸の末端に芳香族骨格を導入することでその分子末端の運動性を芳香族骨格同士のπ-π相互作用により抑制して熱分解温度を改善する研究がおこなわれている(非特許文献1参照。)。耐熱性に加えて樹脂の機械強度を向上するには、ポリマー鎖全体の運動性を低下させることが有効であるため、ポリマー末端の運動性だけでなく主鎖の運動性も抑制する必要がある。 On the other hand, in general, the polymer terminal has a large molecular mobility and affects the melting point, glass transition point, and thermal decomposition temperature. For example, by introducing an aromatic skeleton at the end of polylactic acid, the mobility at the molecular end is suppressed by the π-π interaction between the aromatic skeletons to improve the thermal decomposition temperature (non- (See Patent Document 1). In order to improve the mechanical strength of the resin in addition to heat resistance, it is effective to reduce the mobility of the entire polymer chain, so it is necessary to suppress not only the mobility of the polymer end but also the mobility of the main chain .
 特許文献2には、ポリイミド合成の際にカルボン酸二無水物ユニットの量を多くして重合し、末端をカルボン酸無水物とすることで着色を抑制することが記載されている。しかし、この文献に記載されているカルボン酸無水物末端を持つ透明ポリイミドの弾性率は1.0~3.0GPaと記載されており、求められる機械強度には不十分であった。末端をカルボン酸無水物とするとアミンによる着色は抑制可能であるが、カルボン酸無水物が分解してジカルボン酸構造となるために末端の運動性が向上し、弾性率や耐熱性が向上していないと考えられる。 Patent Document 2 describes that during polyimide synthesis, the amount of carboxylic dianhydride units is increased and polymerized, and the terminal is made carboxylic anhydride to suppress coloring. However, the elastic modulus of the transparent polyimide having a carboxylic anhydride terminal described in this document is described as 1.0 to 3.0 GPa, which is insufficient for the required mechanical strength. If the terminal is a carboxylic acid anhydride, coloring by the amine can be suppressed, but since the carboxylic acid anhydride decomposes into a dicarboxylic acid structure, the terminal mobility is improved, and the elastic modulus and heat resistance are improved. It is not considered.
 特許文献3の実施例には透明ポリイミドのアミン末端に無水フタル酸を修飾することが記載されている。しかし、この特許文献には機械強度に対する末端修飾の効果について何ら記載も無く、実施例に記載の無水フタル酸により末端修飾したポリイミドでは求められる機械強度や耐熱性を付与することができなかった。 In the example of Patent Document 3, it is described that phthalic anhydride is modified at the amine terminal of a transparent polyimide. However, this patent document has no description about the effect of terminal modification on mechanical strength, and the mechanical strength and heat resistance required by the polyimide terminal-modified with phthalic anhydride described in Examples could not be imparted.
 したがって、透明であり、かつ機械強度や耐熱性の良いポリイミドを得ることが難しいという問題があった。 Therefore, there is a problem that it is difficult to obtain a transparent polyimide having good mechanical strength and heat resistance.
特開2011-074384号公報JP 2011-074384 A 特開2015-021022号公報Japanese Patent Laid-Open No. 2015-021022 特開2012-251080号公報JP 2012-251080 A
 本発明は上記問題・状況に鑑みてなされたものであり、その解決課題は、透明性が良く、かつ機械強度(折り曲げ耐性や弾性率など)に優れた透明ポリイミド樹脂を提供することにある。また、ポリイミド樹脂を用いた透明ポリイミド樹脂組成物、透明ポリイミド樹脂フィルム、赤外線吸収組成物及び赤外線カットフィルターを提供することである。さらに、透明ポリイミド樹脂フィルムの製造方法を提供することである。 The present invention has been made in view of the above-mentioned problems and situations, and a problem to be solved is to provide a transparent polyimide resin having good transparency and excellent mechanical strength (bending resistance, elastic modulus, etc.). Moreover, it is providing the transparent polyimide resin composition using a polyimide resin, a transparent polyimide resin film, an infrared rays absorption composition, and an infrared cut filter. Furthermore, it is providing the manufacturing method of a transparent polyimide resin film.
 本発明に係る上記課題を解決すべく、上記問題の原因等について検討する過程において、透明なポリイミド樹脂であっても、ポリイミドの末端に特定の芳香族性を有する置換基を導入することで、機械強度が向上することを見いだし本発明に至った。 In the process of examining the cause of the above-mentioned problems in order to solve the above-mentioned problems according to the present invention, even if it is a transparent polyimide resin, by introducing a substituent having a specific aromaticity at the end of the polyimide, The inventors have found that the mechanical strength is improved, and have reached the present invention.
 また、当該末端に芳香族性を有する透明ポリイミド樹脂は、溶剤に対する溶解性(以下、「再溶解性」ともいう。)も良く溶液流延法によるフィルム製造もしやすくなるため生産性にも優れることを見いだした。 In addition, the transparent polyimide resin having aromaticity at the terminal has excellent solubility in a solvent (hereinafter also referred to as “re-solubility”) and is easy to produce a film by a solution casting method, and thus is excellent in productivity. I found.
 すなわち、本発明に係る課題は、以下の手段により解決される。 That is, the problem according to the present invention is solved by the following means.
 1.芳香族部位を有するポリイミドを含有する透明ポリイミド樹脂であって、前記ポリイミドの末端の少なくとも一方に、NICS値が-15.0~-8.0の範囲内である芳香環を有する末端基、及びNICS値が、-15.0~-7.0の範囲内である芳香環を二つ以上有する末端基のいずれかの基を有することを特徴とする透明ポリイミド樹脂。 1. A transparent polyimide resin containing a polyimide having an aromatic moiety, wherein at least one of the ends of the polyimide has a terminal group having an aromatic ring having a NICS value in the range of -15.0 to -8.0, and A transparent polyimide resin having any group of terminal groups having two or more aromatic rings having a NICS value in the range of -15.0 to -7.0.
 2.前記ポリイミドが、芳香族ジカルボン酸無水物と、アミノ基のオルト位に立体障害性基を有する芳香族ジアミンとの重合体であることを特徴とする第1項に記載の透明ポリイミド樹脂。 2. 2. The transparent polyimide resin according to item 1, wherein the polyimide is a polymer of an aromatic dicarboxylic acid anhydride and an aromatic diamine having a sterically hindering group at the ortho position of the amino group.
 3.前記ポリイミドが、脂環式ジカルボン酸無水物と、芳香族ジアミンとの重合体であることを特徴とする第1項又は第2項に記載の透明ポリイミド樹脂。 3. 3. The transparent polyimide resin according to item 1 or 2, wherein the polyimide is a polymer of an alicyclic dicarboxylic acid anhydride and an aromatic diamine.
 4.前記末端基が、NICS値が-15.0~-10.0の範囲内である芳香環を一つ以上有する末端基であることを特徴とする第1項から第3項までのいずれか一項に記載の透明ポリイミド樹脂。 4. Any one of Items 1 to 3, wherein the terminal group is a terminal group having one or more aromatic rings having a NICS value in the range of -15.0 to -10.0. The transparent polyimide resin as described in the item.
 5.前記ポリイミドが、下記一般式(1)又は一般式(2)で表される構造を有することを特徴とする第1項から第4項までのいずれか一項に記載の透明ポリイミド樹脂。 5. The said polyimide has the structure represented by following General formula (1) or General formula (2), The transparent polyimide resin as described in any one of 1st term | claim to 4th term | claim characterized by the above-mentioned.
Figure JPOXMLDOC01-appb-C000006
(式中、A及びRはそれぞれ独立に芳香環、芳香族複素環、炭素数2~39の脂肪族炭化水素基、又は炭素数2~39の脂環式炭化水素基を表し、置換基を有していても良い。また、A及びRは、-O-、-SO-、-CO-、-CH-、-C(CH-、-OSi(CH-、-CO-、-S-、及び単なる結合手の少なくとも一つの連結基を介して複数の芳香族炭化水素環、芳香族複素環、炭素数2~39の脂肪族炭化水素基、又は脂環式炭化水素基が連結されていても良い。ただし、前記A又はRで表される構造中に、少なくとも一つの芳香族部位を有する。R~Rは、それぞれ独立にポリイミドの末端基を表す。ただしR~Rの少なくとも一つ、及びR~Rの少なくとも一つは、NICS値が-15.0~-8.0の範囲内である芳香環を一つ以上有する末端基、又はNICS値が、-15.0~-7.0の範囲内である芳香環を二つ以上有する末端基である。)
Figure JPOXMLDOC01-appb-C000006
(Wherein A and R each independently represents an aromatic ring, an aromatic heterocyclic ring, an aliphatic hydrocarbon group having 2 to 39 carbon atoms, or an alicyclic hydrocarbon group having 2 to 39 carbon atoms, A and R may be —O—, —SO 2 —, —CO—, —CH 2 —, —C (CH 3 ) 2 —, —OSi (CH 3 ) 2 —, A plurality of aromatic hydrocarbon rings, aromatic heterocycles, aliphatic hydrocarbon groups having 2 to 39 carbon atoms via at least one linking group of -C 2 H 4 O-, -S-, and a simple bond; Alternatively, an alicyclic hydrocarbon group may be linked, provided that at least one aromatic moiety is present in the structure represented by A or R. R 1 to R 8 are each independently a polyimide. Represents a terminal group, provided that at least one of R 1 to R 4 and at least one of R 5 to R 8 are N Two end groups having one or more aromatic rings having an ICS value in the range of -15.0 to -8.0, or two aromatic rings having an NICS value in the range of -15.0 to -7.0. It is a terminal group having two or more.)
 6.前記一般式(1)又は一般式(2)において、前記Aが、下記構造を表すことを特徴とする第5項に記載のポリイミド樹脂。
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
[上記構造は、*部分で一般式(1)及び一般式(2)におけるNと結合する。]
6). In said general formula (1) or general formula (2), said A represents the following structure, The polyimide resin of Claim 5 characterized by the above-mentioned.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
[The above structure is bonded to N in the general formula (1) and the general formula (2) in the * part. ]
 7.前記一般式(1)又は一般式(2)において、前記Rが、下記構造を表すことを特徴とする第5項又は第6項に記載のポリイミド樹脂。
Figure JPOXMLDOC01-appb-C000010
[上記構造は、*部分でイミド基中のカルボニル基と結合する。]
7). In said general formula (1) or general formula (2), said R represents the following structure, The polyimide resin of Claim 5 or 6 characterized by the above-mentioned.
Figure JPOXMLDOC01-appb-C000010
[The above structure is bonded to the carbonyl group in the imide group at the * moiety. ]
 8.第1項から第7項までのいずれか一項に記載の透明ポリイミド樹脂を含有することを特徴とする透明ポリイミド樹脂組成物。 8. A transparent polyimide resin composition comprising the transparent polyimide resin according to any one of items 1 to 7.
 9.第1項から第7項までのいずれか一項に記載の透明ポリイミド樹脂を含有することを特徴とする透明ポリイミド樹脂フィルム。 9. A transparent polyimide resin film comprising the transparent polyimide resin according to any one of items 1 to 7.
 10.第1項から第7項までのいずれか一項に記載の透明ポリイミド樹脂を含有することを特徴とする赤外線吸収組成物。 10. An infrared ray absorbing composition comprising the transparent polyimide resin according to any one of items 1 to 7.
 11.第1項から第7項までのいずれか一項に記載の透明ポリイミド樹脂を含有することを特徴とする赤外線カットフィルター。 11. An infrared cut filter comprising the transparent polyimide resin according to any one of items 1 to 7.
 12.第1項から第7項までのいずれか一項に記載の透明ポリイミド樹脂を有機溶剤に溶解して得られるドープを調製する工程、及び
 前記ドープを支持体上に流延して膜を形成する工程を含むことを特徴とする透明ポリイミド樹脂フィルムの製造方法。
12 A step of preparing a dope obtained by dissolving the transparent polyimide resin according to any one of items 1 to 7 in an organic solvent, and casting the dope on a support to form a film The manufacturing method of the transparent polyimide resin film characterized by including a process.
 本発明の上記手段により、透明性が良く、かつ機械強度に優れた透明ポリイミド樹脂を提供することができる。また、透明ポリイミド樹脂を用いた透明ポリイミド樹脂組成物、透明ポリイミド樹脂フィルム、赤外線吸収組成物及び赤外線カットフィルターを提供することができる。また、生産性に優れた当該透明ポリイミド樹脂フィルムの製造方法を提供することができる。 The above-mentioned means of the present invention can provide a transparent polyimide resin having good transparency and excellent mechanical strength. Moreover, the transparent polyimide resin composition using a transparent polyimide resin, a transparent polyimide resin film, an infrared rays absorption composition, and an infrared cut filter can be provided. Moreover, the manufacturing method of the said transparent polyimide resin film excellent in productivity can be provided.
 本発明の効果の発現機構ないし作用機構については、以下のように考えている。 The expression mechanism or action mechanism of the effect of the present invention is considered as follows.
 本発明者らは透明で機械強度が高く、再溶解可能な生産性に優れた透明ポリイミド樹脂フィルムを開発するために、ポリマー末端同士、及びポリマー末端と主鎖に強く相互作用可能な置換基を修飾することで、透明ポリイミド樹脂フィルムであっても機械強度を向上することが可能であると考えた。 In order to develop a transparent polyimide resin film that is transparent, high in mechanical strength, and excellent in re-dissolvable productivity, the present inventors have introduced substituents that can interact strongly between polymer ends and between the polymer ends and the main chain. It was thought that mechanical strength could be improved even if it was a transparent polyimide resin film by modifying.
 前述したように、透明ポリイミドはポリイミドのドナー部位とアクセプター部位の構造を直交させることでCT錯体の発生を抑制する方法や、脂環式モノマーを導入する方法、フッ素系モノマーを利用する方法などにより開発されている。透明ポリイミド樹脂の機械強度を向上するためにはそれらに末端同士及び末端と主鎖をつなぐ相互作用を付与する必要がある。本発明者らはその相互作用としてπ-π相互作用とCH-π相互作用に着目した。これらの相互作用を用いることのできる透明ポリイミドは主鎖に芳香族部位を含有するポリイミドであり、その末端に特定の芳香族性を有する置換基を導入することで機械強度を向上できると考えた。 As described above, the transparent polyimide is produced by a method of suppressing the generation of a CT complex by making the structure of the polyimide donor site and acceptor site orthogonal, a method of introducing an alicyclic monomer, a method of using a fluorine-based monomer, etc. Has been developed. In order to improve the mechanical strength of the transparent polyimide resin, it is necessary to give them an interaction that connects the ends and the ends and the main chain. The present inventors paid attention to π-π interaction and CH-π interaction as the interaction. The transparent polyimide that can use these interactions is a polyimide containing an aromatic moiety in the main chain, and it was thought that the mechanical strength could be improved by introducing a substituent having a specific aromaticity at the terminal. .
 本発明者らは上記思想に沿って透明ポリイミドの末端の検討を行ったところ、主鎖に芳香族骨格を含有する透明ポリイミドの末端に架橋基を持たない特定の芳香族性の置換基を導入することで透明で機械強度が高いポリイミド樹脂が得ることができた。 The present inventors examined the end of the transparent polyimide in accordance with the above idea, and introduced a specific aromatic substituent having no crosslinking group at the end of the transparent polyimide containing an aromatic skeleton in the main chain. As a result, a transparent polyimide resin having high mechanical strength could be obtained.
 また、末端が、架橋されているのではなく、π-π相互作用やCH-π相互作用により相互作用しているため、再溶解可能な生産性の高いフィルムが得られるものと考えている。 Also, since the ends are not cross-linked but interact by π-π interaction or CH-π interaction, it is considered that a highly productive film that can be re-dissolved can be obtained.
 なお、本発明においては、「ポリイミド」はポリイミド構造を有する化合物を示し、「ポリイミド樹脂」は前記ポリイミドを含有する樹脂を示し、「ポリイミド樹脂フィルム」は前記ポリイミド樹脂から作製されたフィルムを示す。 In the present invention, “polyimide” refers to a compound having a polyimide structure, “polyimide resin” refers to a resin containing the polyimide, and “polyimide resin film” refers to a film made from the polyimide resin.
本発明に好ましい溶液流延製膜方法のドープ調製工程、流延工程及び乾燥工程の一例を模式的に示した図The figure which showed typically an example of the dope preparation process, casting process, and drying process of the solution casting film forming method preferable for this invention
 本発明の透明ポリイミド樹脂は、ポリイミドの末端の少なくとも一方に、NICS値が-15.0~-8.0の範囲内である芳香環を有する末端基、及びNICS値が、-15.0~-7.0の範囲内である芳香環を二つ以上有する末端基のいずれかの基を有することを特徴とする。この特徴は各請求項に係る発明に共通する技術的特徴である。 The transparent polyimide resin of the present invention has a terminal group having an aromatic ring having a NICS value in the range of -15.0 to -8.0 at least one end of the polyimide, and a NICS value of -15.0 to It has any group of terminal groups having two or more aromatic rings in the range of −7.0. This feature is a technical feature common to the claimed invention.
 本発明の実施態様としては、前記ポリイミドが、芳香族ジカルボン酸無水物と、アミノ基のオルト位に立体障害性基を有する芳香族ジアミンとの重合体であることが、透明ポリイミド樹脂、及び透明ポリイミド樹脂フィルムの透明性に優れる観点から好ましい。 As an embodiment of the present invention, the polyimide is a polymer of an aromatic dicarboxylic acid anhydride and an aromatic diamine having a sterically hindered group at the ortho position of the amino group, a transparent polyimide resin, and a transparent It is preferable from the viewpoint of excellent transparency of the polyimide resin film.
 また、前記ポリイミドが、脂環式ジカルボン酸無水物と、芳香族ジアミンとの重合体であることが、透明ポリイミド樹脂、及び透明ポリイミド樹脂フィルムの透明性に優れる観点から好ましい。 The polyimide is preferably a polymer of an alicyclic dicarboxylic acid anhydride and an aromatic diamine from the viewpoint of excellent transparency of the transparent polyimide resin and the transparent polyimide resin film.
 さらに、前記末端基が、NICS値が-14.0~-10.0の範囲内である芳香環を一つ以上有する末端基であることが、透明ポリイミド樹脂フィルムの機械強度に優れる観点から好ましい。 Further, the terminal group is preferably a terminal group having one or more aromatic rings having a NICS value in the range of −14.0 to −10.0 from the viewpoint of excellent mechanical strength of the transparent polyimide resin film. .
 また、前記ポリイミドが、前記一般式(1)又は一般式(2)で表される構造を有することが、再溶解性に優れる観点から好ましく、溶液流延法による製造が可能になり、生産性に優れる。この効果は、ポリイミドの末端に架橋性基を有するポリイミド樹脂では得られない効果である。 Moreover, it is preferable that the polyimide has a structure represented by the general formula (1) or the general formula (2) from the viewpoint of excellent re-solubility, and production by a solution casting method is possible, thereby improving productivity. Excellent. This effect is an effect that cannot be obtained with a polyimide resin having a crosslinkable group at the end of the polyimide.
 本発明の透明ポリイミド樹脂組成物としては、本発明の透明ポリイミド樹脂を含有することが、透明性、機械強度及び耐熱性に優れる観点から好ましい。 The transparent polyimide resin composition of the present invention preferably contains the transparent polyimide resin of the present invention from the viewpoint of excellent transparency, mechanical strength, and heat resistance.
 本発明の透明ポリイミド樹脂フィルムとしては、本発明の透明ポリイミド樹脂を含有することが、透明ポリイミド樹脂フィルムの機械強度、耐熱性、及び生産性に優れる観点から好ましい。 The transparent polyimide resin film of the present invention preferably contains the transparent polyimide resin of the present invention from the viewpoint of excellent mechanical strength, heat resistance, and productivity of the transparent polyimide resin film.
 本発明の透明ポリイミド樹脂フィルムの製造方法としては、本発明の透明ポリイミド樹脂を有機溶剤に溶解して得られるドープを調製する工程、及び前記ドープを支持体上に流延して膜を形成する工程を含むことが、透明ポリイミド樹脂フィルムの生産性に優れる観点から好ましい。 The method for producing the transparent polyimide resin film of the present invention includes a step of preparing a dope obtained by dissolving the transparent polyimide resin of the present invention in an organic solvent, and casting the dope on a support to form a film. It is preferable from a viewpoint which is excellent in productivity of a transparent polyimide resin film to include a process.
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。 Hereinafter, the present invention, its components, and modes and modes for carrying out the present invention will be described in detail. In the present application, “˜” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
 <本発明の透明ポリイミド樹脂の概要>
 本発明の透明ポリイミド樹脂は、芳香族部位を有するポリイミドを含有する透明ポリイミド樹脂であって、前記ポリイミドの末端の少なくとも一方に、NICS値が-15.0~-8.0の範囲内である芳香環を有する末端基、及びNICS値が、-15.0~-7.0の範囲内である芳香環を二つ以上有する末端基のいずれかの基を有することを特徴とする。
<Outline of Transparent Polyimide Resin of the Present Invention>
The transparent polyimide resin of the present invention is a transparent polyimide resin containing a polyimide having an aromatic moiety, and has a NICS value in the range of −15.0 to −8.0 at at least one of the ends of the polyimide. It has a terminal group having an aromatic ring and any group of terminal groups having two or more aromatic rings having a NICS value in the range of -15.0 to -7.0.
 なお、従来の透明ポリイミド樹脂(例えば前記特許文献2に記載の透明ポリイミド樹脂)は、末端にベンゼン環を有するものであり、本発明に係る特定のNICS値である末端基には該当しない。 In addition, the conventional transparent polyimide resin (for example, the transparent polyimide resin described in Patent Document 2) has a benzene ring at the terminal, and does not correspond to the terminal group having a specific NICS value according to the present invention.
 <ポリイミド>
 本発明に係るポリイミドは、繰り返し単位にイミド結合を含む化合物であり、ジアミン又はその誘導体と酸無水物又はその誘導体とから形成されることが好ましい。
<Polyimide>
The polyimide according to the present invention is a compound containing an imide bond in a repeating unit, and is preferably formed from diamine or a derivative thereof and an acid anhydride or a derivative thereof.
 本発明に係るポリイミドは、ポリイミドの分子間や分子内のCT錯体を抑制する構造を含むことを特徴とする。これにより着色が改善されて透明性が向上する。分子間や分子内のCT錯体を抑制するためには、電子吸引性基を有する芳香族ジアミンや、オルト位に立体障害性基を有する芳香族ジアミン、高い立体障害性基を有するモノマー、脂環式モノマーなどを用いることが必要である。 The polyimide according to the present invention is characterized in that it includes a structure that suppresses the CT complex between and within the polyimide. Thereby, coloring is improved and transparency is improved. In order to suppress intermolecular and intramolecular CT complexes, an aromatic diamine having an electron-withdrawing group, an aromatic diamine having a sterically hindered group at the ortho position, a monomer having a highly sterically hindered group, an alicyclic ring It is necessary to use a formula monomer or the like.
 また、本発明に係るポリイミドは所望の性能を備えるために、主鎖に芳香族部位を有することを特徴とする。芳香族部位は少なくともジアミン又はその誘導体と酸無水物又はその誘導体のいずれか片方に導入されていればよく、両方の構造に導入されていてもよい。
 特に、本発明に係るポリイミドは、芳香族ジカルボン酸無水物と、アミノ基のオルト位に立体障害性基を有する芳香族ジアミンとの重合体であることが好ましい。また、前記ポリイミドが、脂環式ジカルボン酸無水物と、芳香族アミンとの重合体であることが好ましい。
In addition, the polyimide according to the present invention is characterized by having an aromatic moiety in the main chain in order to provide desired performance. The aromatic part should just be introduce | transduced into any one of diamine or its derivative (s), and an acid anhydride or its derivative (s), and may be introduce | transduced into both structures.
In particular, the polyimide according to the present invention is preferably a polymer of an aromatic dicarboxylic acid anhydride and an aromatic diamine having a sterically hindered group at the ortho position of the amino group. The polyimide is preferably a polymer of an alicyclic dicarboxylic acid anhydride and an aromatic amine.
 本発明に係るポリイミドの末端はNICS値-15.0~-8.0の芳香環を含有する構造により置換されているか、NICS値-15.0~-7.0の芳香環を二つ以上含有する構造で置換されていることを特徴とする。これにより樹脂末端同士、又は前述した主鎖に含まれる芳香族部位とπ-π相互作用やCH-π相互作用を形成することで樹脂の運動性が抑制されるため、機械強度や耐熱性が向上する。 The terminal of the polyimide according to the present invention is substituted with a structure containing an aromatic ring having a NICS value of -15.0 to -8.0, or two or more aromatic rings having a NICS value of -15.0 to -7.0 are present. It is characterized by being substituted with the structure it contains. This suppresses the mobility of the resin by forming π-π interaction or CH-π interaction between the resin ends or the aromatic moiety contained in the main chain described above, so that the mechanical strength and heat resistance are reduced. improves.
 本発明に係るポリイミドは、末端の少なくとも片方にNICS値-15.0~-8.0の芳香環を含有する構造により置換されているか、NICS値-15.0~-7.0の芳香環を二つ以上含有する構造で置換されていれば良く、両末端が置換されていることが好ましい。
 本発明におけるポリイミドの分子量は重量平均分子量が3万~50万の範囲内であることが好ましく、5万~30万の範囲内であることがさらに好ましく、7万~25万の範囲内であることが特に好ましい。分子量が3万以上であればポリマーとしての機械強度が向上し、50万以下であれば適性な粘度となるためポリイミド及びポリイミドフィルムの生産性に優れる。
The polyimide according to the present invention is substituted with a structure containing an aromatic ring having a NICS value of -15.0 to -8.0 on at least one of the terminals, or an aromatic ring having a NICS value of -15.0 to -7.0. As long as it is substituted with a structure containing 2 or more, and it is preferable that both ends are substituted.
The molecular weight of the polyimide in the present invention is preferably in the range of 30,000 to 500,000, more preferably in the range of 50,000 to 300,000, and in the range of 70,000 to 250,000. It is particularly preferred. If the molecular weight is 30,000 or more, the mechanical strength as a polymer is improved, and if it is 500,000 or less, the viscosity becomes an appropriate viscosity, so that the productivity of polyimide and polyimide film is excellent.
 <一般式(1)又は一般式(2)で表される構造を有するポリイミド>
 本発明に用いることのできるポリイミドとしては、特に、一般式(1)又は一般式(2)で表される繰り返し単位と末端構造を有するポリイミドが好ましい。
<Polyimide having a structure represented by General Formula (1) or General Formula (2)>
As the polyimide that can be used in the present invention, a polyimide having a repeating unit represented by the general formula (1) or the general formula (2) and a terminal structure is particularly preferable.
Figure JPOXMLDOC01-appb-C000011
(式中、A及びRはそれぞれ独立に芳香環、芳香族複素環、炭素数2~39の脂肪族炭化水素基、又は炭素数2~39の脂環式炭化水素基を表し、置換基を有していても良い。また、A及びRは、-O-、-SO-、-CO-、-CH-、-C(CH-、-OSi(CH-、-CO-、-S-、及び単なる結合手の少なくとも一つの連結基を介して複数の芳香族炭化水素環、芳香族複素環、炭素数2~39の脂肪族炭化水素基、又は脂環式炭化水素基が連結されていても良い。ただし、前記A又はRで表される構造中に、少なくとも一つの芳香族部位を有する。R~Rは、それぞれ独立にポリイミドの末端基を表す。ただしR~Rの少なくとも一つ、及びR~Rの少なくとも一つは、NICS値が-15.0~-8.0の範囲内である芳香環を一つ以上有する末端基、又はNICS値が、-15.0~-7.0の範囲内である芳香環を二つ以上有する末端基である。)
 前記A又はRは、構造中に少なくとも一つの芳香族部位を有し、かつ前述した分子間や分子内のCTを抑制する部分構造を有する。前記A又はRで表される構造中に分子間や分子内のCTを抑制する部分構造を有することにより、ポリイミド樹脂を透明にすることができる。なお、本発明において「芳香環を二つ以上有する」とは、5員環や6員環の個数が二つ以上あることを表し、縮合環はそれぞれの環を個別にカウントする。したがって本発明においては、ナフタレン環は、「芳香環が二つ」とする。
Figure JPOXMLDOC01-appb-C000011
(Wherein A and R each independently represents an aromatic ring, an aromatic heterocyclic ring, an aliphatic hydrocarbon group having 2 to 39 carbon atoms, or an alicyclic hydrocarbon group having 2 to 39 carbon atoms, A and R may be —O—, —SO 2 —, —CO—, —CH 2 —, —C (CH 3 ) 2 —, —OSi (CH 3 ) 2 —, A plurality of aromatic hydrocarbon rings, aromatic heterocycles, aliphatic hydrocarbon groups having 2 to 39 carbon atoms via at least one linking group of -C 2 H 4 O-, -S-, and a simple bond; Alternatively, an alicyclic hydrocarbon group may be linked, provided that at least one aromatic moiety is present in the structure represented by A or R. R 1 to R 8 are each independently a polyimide. Represents a terminal group, provided that at least one of R 1 to R 4 and at least one of R 5 to R 8 are N Two end groups having one or more aromatic rings having an ICS value in the range of -15.0 to -8.0, or two aromatic rings having an NICS value in the range of -15.0 to -7.0. It is a terminal group having two or more.)
The A or R has at least one aromatic moiety in the structure, and has a partial structure that suppresses the intermolecular or intramolecular CT described above. The polyimide resin can be made transparent by having a partial structure that suppresses intermolecular or intramolecular CT in the structure represented by A or R. In the present invention, “having two or more aromatic rings” means that there are two or more 5-membered rings or 6-membered rings, and the condensed ring counts each ring individually. Therefore, in the present invention, the naphthalene ring is “two aromatic rings”.
 A及びRで表される芳香族炭化水素環としては、例えば、ベンゼン環、ビフェニル環、ナフタレン環、アズレン環、フルオレン環、アントラセン環、フェナントレン環、ピレン環、クリセン環、ナフタセン環、トリフェニレン環、o-テルフェニル環、m-テルフェニル環、p-テルフェニル環、アセナフテン環、コロネン環、フルオラントレン環、ナフタセン環、ペンタセン環、ペリレン環、ペンタフェン環、ピセン環、ピレン環、ピラントレン環、アンスラアントレン環等が挙げられる。 As the aromatic hydrocarbon ring represented by A and R, for example, benzene ring, biphenyl ring, naphthalene ring, azulene ring, fluorene ring, anthracene ring, phenanthrene ring, pyrene ring, chrysene ring, naphthacene ring, triphenylene ring, o-terphenyl ring, m-terphenyl ring, p-terphenyl ring, acenaphthene ring, coronene ring, fluoranthrene ring, naphthacene ring, pentacene ring, perylene ring, pentaphen ring, picene ring, pyrene ring, pyranthrene ring, Anthraanthrene rings and the like can be mentioned.
 A及びRで表される芳香環としては、ベンゼン環、ビフェニル環、ナフタレン環、ピレン環が好ましく、ベンゼン環、ビフェニル環、ナフタレン環がさらに好ましい。これらの環を導入することで機械強度が向上する。 As the aromatic ring represented by A and R, a benzene ring, a biphenyl ring, a naphthalene ring and a pyrene ring are preferable, and a benzene ring, a biphenyl ring and a naphthalene ring are more preferable. By introducing these rings, the mechanical strength is improved.
 A及びRで表される芳香族複素環としては、例えば、シロール環、フラン環、チオフェン環、オキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、インドール環、ベンズイミダゾール環、ベンズチアゾール環、ベンズオキサゾール環、キノキサリン環、キナゾリン環、フタラジン環、チエノチオフェン環、カルバゾール環、アザカルバゾール環(カルバゾール環を構成する炭素原子の任意の一つ以上が窒素原子で置き換わったものを表す)、ジベンゾシロール環、ジベンゾフラン環、ジベンゾチオフェン環、ベンゾチオフェン環やジベンゾフラン環を構成する炭素原子の任意の一つ以上が窒素原子で置き換わった環、ベンゾジフラン環、ベンゾジチオフェン環、アクリジン環、ベンゾキノリン環、フェナジン環、フェナントリジン環、フェナントロリン環、サイクラジン環、キンドリン環、テペニジン環、キニンドリン環、トリフェノジチアジン環、トリフェノジオキサジン環、フェナントラジン環、アントラジン環、ペリミジン環、ナフトフラン環、ナフトチオフェン環、ナフトジフラン環、ナフトジチオフェン環、アントラフラン環、アントラジフラン環、アントラチオフェン環、アントラジチオフェン環、チアントレン環、フェノキサチイン環、ジベンゾカルバゾール環、インドロカルバゾール環、ジチエノベンゼン環等が挙げられる。 Examples of the aromatic heterocycle represented by A and R include a silole ring, a furan ring, a thiophene ring, an oxazole ring, a pyrrole ring, a pyridine ring, a pyridazine ring, a pyrimidine ring, a pyrazine ring, a triazine ring, and an oxadiazole ring. , Triazole ring, imidazole ring, pyrazole ring, thiazole ring, indole ring, benzimidazole ring, benzthiazole ring, benzoxazole ring, quinoxaline ring, quinazoline ring, phthalazine ring, thienothiophene ring, carbazole ring, azacarbazole ring (carbazole ring) Any one or more of the carbon atoms constituting the dibenzosilole ring, dibenzofuran ring, dibenzothiophene ring, benzothiophene ring or dibenzofuran ring. Is a nitrogen atom Substituted ring, benzodifuran ring, benzodithiophene ring, acridine ring, benzoquinoline ring, phenazine ring, phenanthridine ring, phenanthroline ring, cyclazine ring, quindrine ring, tepenidine ring, quinindrin ring, triphenodithiazine ring, triphene Nodioxazine ring, phenanthrazine ring, anthrazine ring, perimidine ring, naphthofuran ring, naphthothiophene ring, naphthodifuran ring, naphthodithiophene ring, anthrafuran ring, anthradifuran ring, anthrathiophene ring, anthradithiophene ring, thianthrene ring Phenoxathiin ring, dibenzocarbazole ring, indolocarbazole ring, dithienobenzene ring and the like.
 A及びRで表される芳香族複素環としてはピリジン環、ピリミジン環、トリアジン環、ベンズイミダゾール環、キナゾリン環が好ましく、ピリジン環、ピリミジン環、トリアジン環がさらに好ましい。これらの複素芳香族環を導入することで、機械強度、耐熱性、透明性が向上する。
 A及びRで表される炭素数4~39の脂肪族炭化水素基としては、例えば、ブタン、オクタン、デカン等の基が挙げられる。
As the aromatic heterocycle represented by A and R, a pyridine ring, a pyrimidine ring, a triazine ring, a benzimidazole ring and a quinazoline ring are preferable, and a pyridine ring, a pyrimidine ring and a triazine ring are more preferable. By introducing these heteroaromatic rings, mechanical strength, heat resistance, and transparency are improved.
Examples of the aliphatic hydrocarbon group having 4 to 39 carbon atoms represented by A and R include groups such as butane, octane and decane.
 また、A及びRで表される炭素数4~39の脂環式炭化水素基としては、例えば、シクロブタン、シクロペンタン、シクロヘキサン、ビシクロ[2.2.2]オクト-7-エン、ビシクロ[2.2.2]オクタン、ジシクロヘキシルメタン、3,6-ジメチルシクロヘキシルメタン、1,4-ジフェニルシクロヘキサン等の基が挙げられる。 Examples of the alicyclic hydrocarbon group having 4 to 39 carbon atoms represented by A and R include, for example, cyclobutane, cyclopentane, cyclohexane, bicyclo [2.2.2] oct-7-ene, bicyclo [2 2.2] groups such as octane, dicyclohexylmethane, 3,6-dimethylcyclohexylmethane, 1,4-diphenylcyclohexane and the like.
 A及びRで表される炭素数2~39の2価の脂肪族炭化水素基としては、直鎖又は分岐の炭素数2~39の脂肪族炭化水素基の他に、例えば、下記構造式で表される基が挙げられる。 Examples of the divalent aliphatic hydrocarbon group having 2 to 39 carbon atoms represented by A and R include, in addition to a linear or branched aliphatic hydrocarbon group having 2 to 39 carbon atoms, the following structural formula: And the group represented.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 上記構造式において、nは、繰り返し単位の数を表し、1~5が好ましく、1~3がより好ましい。また、Xは、炭素数1~3のアルカンジイル基、つまり、メチレン基、エチレン基、トリメチレン基、プロパン-1,2-ジイル基であり、メチレン基が好ましい。
 
In the above structural formula, n represents the number of repeating units, preferably 1 to 5, and more preferably 1 to 3. X is an alkanediyl group having 1 to 3 carbon atoms, that is, a methylene group, an ethylene group, a trimethylene group, or a propane-1,2-diyl group, and a methylene group is preferable.
 前記一般式(1)及び一般式(2)におけるAは下記の構造であることが好ましい。 In the general formulas (1) and (2), A preferably has the following structure.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 なお、上記構造は、*部分で一般式(1)及び一般式(2)におけるNと結合する。 In addition, the said structure couple | bonds with N in General formula (1) and General formula (2) in * part.
 中でも、A-4、A-7、A-8、A-9、A-11、A-15、A-13、A-17、A-18、A-21、A-22、A-23、A-24、A-25、AC-1、AC-3、AC-4、AC-7、AC-8、AC-9、AC-10、AC-11を含有することで透明性が向上するためさらに好ましい。 Among them, A-4, A-7, A-8, A-9, A-11, A-15, A-13, A-17, A-18, A-21, A-22, A-23, Transparency is improved by containing A-24, A-25, AC-1, AC-3, AC-4, AC-7, AC-8, AC-9, AC-10, AC-11. Further preferred.
 また、A-1、A-2、A-5、A-6、A-7、A-8、A-12、A-9、A-19、A-22、A-24、A-26、AC-3、AC-7、AC-10、AC-11は主鎖の剛直性が向上することにより機械強度が向上するため好ましい。 A-1, A-2, A-5, A-6, A-7, A-8, A-12, A-9, A-19, A-22, A-24, A-26, AC-3, AC-7, AC-10, and AC-11 are preferable because the mechanical strength is improved by improving the rigidity of the main chain.
 本発明における一般式(1)及び一般式(2)におけるRは下記の構造であることが好ましい。 In the general formula (1) and the general formula (2) in the present invention, R preferably has the following structure.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 なお、上記構造は、*部分でイミド基中のカルボニル基と結合する。 The above structure is bonded to the carbonyl group in the imide group at the * part.
 中でも、B-1、B-4、B-5、B-6、B-9、B-10、B-17は電子的な効果や立体障害性の影響により透明性が向上する観点からさらに好ましい。 Among these, B-1, B-4, B-5, B-6, B-9, B-10, and B-17 are more preferable from the viewpoint of improving transparency due to the effects of electronic effects and steric hindrance. .
 また、B-1、B-4、B-5、B-6、B-9、B-14、B-15、B-16、B-17は主鎖の剛直性が高く機械強度が向上するため好ましい。 B-1, B-4, B-5, B-6, B-9, B-14, B-15, B-16, and B-17 have high main chain rigidity and improved mechanical strength. Therefore, it is preferable.
 また、B-6、B-15、を含有すると紫外線に対する耐光性が向上する観点から好ましい。 In addition, it is preferable to contain B-6 and B-15 from the viewpoint of improving the light resistance to ultraviolet rays.
 A及びRに置換できる置換基としては特に制限はないが、例えば、水素原子、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子等)、アルキル基(メチル基、エチル基、n-プロピル基、イソプロピル基、tert-ブチル基、n-オクチル基、2-エチルヘキシル基等)、シクロアルキル基(シクロヘキシル基、シクロペンチル基、4-n-ドデシルシクロヘキシル基等)、アルケニル基(ビニル基、アリル基等)、シクロアルケニル基(2-シクロペンテン-1-イル、2-シクロヘキセン-1-イル基等)、アルキニル基(エチニル基、プロパルギル基等)、アリール基(フェニル基、p-トリル基、ナフチル基等)、ヘテロアリール基(2-ピロール基、2-フリル基、2-チエニル基、ピロール基、イミダゾリル基、オキサゾリル基、チアゾリル基、ベンゾイミダゾリル基、ベンゾオキサゾリル基、2-ベンゾチアゾリル基、ピラゾリノン基、ピリジル基、ピリジノン基、2-ピリミジニル基等)、シアノ基、ヒドロキシ基、ニトロ基、カルボキシ基、アルコキシ基(メトキシ基、エトキシ基、イソプロポキシ基、tert-ブトキシ基、n-オクチルオキシ基、2-メトキシエトキシ基等)、アリールオキシ基(フェノキシ基、2-メチルフェノキシ基、4-tert-ブチルフェノキシ基、3-ニトロフェノキシ基、2-テトラデカノイルアミノフェノキシ基等)、アシル基(アセチル基、ピバロイルベンゾイル基等)、アシルオキシ基(ホルミルオキシ基、アセチルオキシ基、ピバロイルオキシ基、ステアロイルオキシ基、ベンゾイルオキシ基、p-メトキシフェニルカルボニルオキシ基等)、アミノ基(アミノ基、メチルアミノ基、ジメチルアミノ基、アニリノ基、N-メチル-アニリノ基、ジフェニルアミノ基等)、アシルアミノ基(ホルミルアミノ基、アセチルアミノ基、ピバロイルアミノ基、ラウロイルアミノ基、ベンゾイルアミノ基等)、アルキル及びアリールスルホニルアミノ基(メチルスルホニルアミノ基、ブチルスルホニルアミノ基、フェニルスルホニルアミノ基、2,3,5-トリクロロフェニルスルホニルアミノ基、p-メチルフェニルスルホニルアミノ基等)、メルカプト基、アルキルチオ基(メチルチオ基、エチルチオ基、n-ヘキサデシルチオ基等)、アリールチオ基(フェニルチオ基、p-クロロフェニルチオ基、m-メトキシフェニルチオ基等)、スルファモイル基(N-エチルスルファモイル基、N-(3-ドデシルオキシプロピル)スルファモイル基、N,N-ジメチルスルファモイル基、N-アセチルスルファモイル基、N-ベンゾイルスルファモイル基、N-(N′フェニルカルバモイル)スルファモイル基等)、スルホ基、カルバモイル基(カルバモイル基、N-メチルカルバモイル基、N,N-ジメチルカルバモイル基、N,N-ジ-n-オクチルカルバモイル基、N-(メチルスルホニル)カルバモイル基等)などが含まれる。これらの基は、さらに同様の基で置換されていてもよい。 The substituent that can be substituted for A and R is not particularly limited, and examples thereof include a hydrogen atom, a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom, etc.), alkyl group (methyl group, ethyl group, n-propyl). Group, isopropyl group, tert-butyl group, n-octyl group, 2-ethylhexyl group, etc.), cycloalkyl group (cyclohexyl group, cyclopentyl group, 4-n-dodecylcyclohexyl group etc.), alkenyl group (vinyl group, allyl group) Etc.), cycloalkenyl groups (2-cyclopenten-1-yl, 2-cyclohexen-1-yl groups, etc.), alkynyl groups (ethynyl group, propargyl group, etc.), aryl groups (phenyl group, p-tolyl group, naphthyl group) Etc.), heteroaryl group (2-pyrrole group, 2-furyl group, 2-thienyl group, pyrrole group, imidazolyl group) Oxazolyl group, thiazolyl group, benzimidazolyl group, benzoxazolyl group, 2-benzothiazolyl group, pyrazolinone group, pyridyl group, pyridinone group, 2-pyrimidinyl group), cyano group, hydroxy group, nitro group, carboxy group, alkoxy group (Methoxy group, ethoxy group, isopropoxy group, tert-butoxy group, n-octyloxy group, 2-methoxyethoxy group, etc.), aryloxy group (phenoxy group, 2-methylphenoxy group, 4-tert-butylphenoxy group) , 3-nitrophenoxy group, 2-tetradecanoylaminophenoxy group, etc.), acyl group (acetyl group, pivaloylbenzoyl group, etc.), acyloxy group (formyloxy group, acetyloxy group, pivaloyloxy group, stearoyloxy group, Benzoyloxy group, p Methoxyphenylcarbonyloxy group, etc.), amino group (amino group, methylamino group, dimethylamino group, anilino group, N-methyl-anilino group, diphenylamino group, etc.), acylamino group (formylamino group, acetylamino group, pivaloylamino) Group, lauroylamino group, benzoylamino group, etc.), alkyl and arylsulfonylamino groups (methylsulfonylamino group, butylsulfonylamino group, phenylsulfonylamino group, 2,3,5-trichlorophenylsulfonylamino group, p-methylphenyl) Sulfonylamino group, etc.), mercapto group, alkylthio group (methylthio group, ethylthio group, n-hexadecylthio group, etc.), arylthio group (phenylthio group, p-chlorophenylthio group, m-methoxyphenylthio group, etc.), sulfa Moyl group (N-ethylsulfamoyl group, N- (3-dodecyloxypropyl) sulfamoyl group, N, N-dimethylsulfamoyl group, N-acetylsulfamoyl group, N-benzoylsulfamoyl group, N -(N'phenylcarbamoyl) sulfamoyl group, etc.), sulfo group, carbamoyl group (carbamoyl group, N-methylcarbamoyl group, N, N-dimethylcarbamoyl group, N, N-di-n-octylcarbamoyl group, N- ( Methylsulfonyl) carbamoyl group and the like. These groups may be further substituted with the same group.
 Aに置換する置換基として好ましくは、水素原子、ハロゲン原子、アルキル基、アルコキシ基、アシル基、アミド基、アリール基、パーフルオロアルキル基が好ましい。これらの基を含有することで透明性が向上する。 The substituent substituted with A is preferably a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group, an acyl group, an amide group, an aryl group, or a perfluoroalkyl group. Transparency improves by containing these groups.
 一般式(1)及び一般式(2)におけるR~Rのいずれか一つ、又は、R~Rのいずれか一つが、NICS値が-15.0~-8.0の範囲内である芳香環を一つ以上有する末端基、又はNICS値が、-15.0~-7.0の範囲内である芳香環を二つ以上有する末端基である場合には、当該芳香環を有さない他の基は一般式(1)及び一般式(2)におけるA及びRに置換できる置換基と同様の基を表す。NICS値が-15.0未満の芳香環を有する化合物は実質的に合成することが困難であるか、または置換基導入により煩雑な合成ルートとなるため生産性が著しく低い。 Any one of R 1 to R 4 or any one of R 5 to R 8 in the general formula (1) and the general formula (2) has a NICS value in the range of −15.0 to −8.0. A terminal group having one or more aromatic rings, or a terminal group having two or more aromatic rings having a NICS value in the range of -15.0 to -7.0, The other group which does not have represents the group similar to the substituent which can be substituted by A and R in General formula (1) and General formula (2). A compound having an aromatic ring having a NICS value of less than −15.0 is substantially difficult to synthesize, or has a very low productivity because it introduces a complicated synthesis route by introducing a substituent.
 一般式(1)におけるR~Rのいずれか一つ、及び一般式(2)におけるR~Rのいずれか一つがNICS値が-15.0~-8.0の範囲内である芳香環を一つ以上有する末端基であることがさらに好ましい。 Any one of R 1 to R 4 in the general formula (1) and any one of R 5 to R 8 in the general formula (2) is within a range of NICS values from −15.0 to −8.0. More preferably, it is a terminal group having one or more aromatic rings.
 一般式(1)におけるRとR及び一般式(2)におけるRとRが共にNICS値が-15.0~-8.0の範囲内である芳香環を一つ以上有する末端基、又はNICS値が、-15.0~-7.0の範囲内である芳香環を二つ以上有する末端基であることが好ましく、共にNICS値が-15.0~-8.0の範囲内である芳香環を一つ以上有する末端基であることがさらに好ましい。 R 1 and R 3 in the general formula (1) and R 5 and R 7 in the general formula (2) both have one or more aromatic rings having a NICS value in the range of -15.0 to -8.0. Or a terminal group having two or more aromatic rings having a NICS value in the range of -15.0 to -7.0, both having a NICS value of -15.0 to -8.0. More preferably, it is a terminal group having one or more aromatic rings within the range.
 一般式(1)及び一般式(2)における、R~Rで表される基のうち、NICS値が-15.0~-8.0の範囲内である芳香環を一つ以上有する末端基ではなく、かつNICS値が、-15.0~-7.0の範囲内である芳香環を二つ以上有する末端基でもない基は、特に制限はないが、一般式(1)及び一般式(2)におけるA及びRに置換できる置換基と同様の基である。また、RとR、RとR、RとR、RとRがそれぞれ縮合して環を形成してもよい。 Among the groups represented by R 1 to R 8 in the general formula (1) and the general formula (2), one or more aromatic rings having a NICS value in the range of −15.0 to −8.0 are included. A group that is not a terminal group and that is not a terminal group having two or more aromatic rings having a NICS value in the range of -15.0 to -7.0 is not particularly limited. This is the same group as the substituent that can be substituted for A and R in the general formula (2). R 1 and R 2 , R 3 and R 4 , R 5 and R 6 , and R 7 and R 8 may be condensed to form a ring.
 NICS値が-15.0~-8.0の範囲内である芳香環を一つ以上有する末端基、又はNICS値が、-15.0~-7.0の範囲内である芳香環を二つ以上有する末端基のNICS値としては-8.0以下が好ましく、-9.0以下がさらに好ましく、-10.0以下であることが特に好ましい。NICS値が上記の範囲であると末端と主鎖又は末端同士の相互作用が強くなることで機械強度が向上する。 Two end groups having one or more aromatic rings having a NICS value in the range of -15.0 to -8.0, or two aromatic rings having a NICS value in the range of -15.0 to -7.0. The NICS value of the terminal group having two or more is preferably −8.0 or less, more preferably −9.0 or less, and particularly preferably −10.0 or less. When the NICS value is in the above range, the mechanical strength is improved by strengthening the interaction between the terminal and the main chain or the terminals.
 一般式(1)及び一般式(2)におけるR~Rで表されるポリイミドの末端基は、下記構造であることが好ましい。 The end group of the polyimide represented by R 1 to R 8 in the general formula (1) and the general formula (2) preferably has the following structure.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 なお、上記構造は、*部分でポリイミドの主鎖部分と結合する。 In the above structure, the * part is bonded to the main chain part of the polyimide.
 例えば、水吸着性樹脂のCH基部分と添加剤のπ電子を用いてCH/π相互作用を形成する場合、当然、添加剤のπ性は強い方が良い。このπ性の強さを端的に表す例としてNICS(nucleus-independent chemical shift)値という指標がある。 For example, when the CH / π interaction is formed using the CH group portion of the water-adsorbing resin and the π electrons of the additive, it is naturally better that the additive has a stronger π property. There is an index called NICS (nucleus-independent chemical shift) value as an example that directly represents the strength of the π property.
 このNICS値は、磁気的性質による芳香族性の定量化に用いられる指標であり、環が芳香族であれば、その環電流効果によって環の中心が強く遮蔽化され、反芳香族なら逆に反遮蔽化される(J.Am.Chem.Soc.1996、118、6317)。NICS値の大小により、環電流の強さ、つまり環の芳香族性へのπ電子の寄与度を判断することができる。具体的には、環内部中心に直接配置した仮想リチウムイオンの化学シフト(計算値)を表し、この値が負に大きいほどπ性が強い。 This NICS value is an index used for quantification of aromaticity by magnetic properties. If the ring is aromatic, the ring current effect strongly shields the center of the ring, and conversely if it is antiaromatic. Anti-shielding (J. Am. Chem. Soc. 1996, 118, 6317). Depending on the magnitude of the NICS value, it is possible to determine the strength of the ring current, that is, the degree of contribution of π electrons to the aromaticity of the ring. Specifically, it represents the chemical shift (calculated value) of a virtual lithium ion arranged directly in the center of the ring, and the larger the value, the stronger the π property.
 NICS値の測定値に関していくつか報告されている。例えば、Canadian Journal of Chemistry.,2004,82,50-69や、The Journal of Organic Chemistry.,2000,67,1333-1338に測定値が報告されている。 Some reports have been made on the measured NICS values. For example, Canadian Journal of Chemistry. , 2004, 82, 50-69, and The Journal of Organic Chemistry. , 2000, 67, 1333-1338.
 本発明において、NICS値は、Gaussian09(Revision C.01、米ガウシアン社ソフトウェア)を用いて算出した。具体的には、まず、計算法にB3LYP(密度汎関数法)を、基底関数には6-31G*(スプリットバレンス基底系に分極関数を追加した関数)を用いて構造最適化した。続いて、最適化した構造を用い、NICS値を計算する環の中央にダミー原子を置き、分散関数を加えた基底関数6-311+G**でNMR遮蔽定数計算法(GIAO)により1点計算し、得られたダミー原子のNMR遮蔽定数に-1をかけた値をNICS値とした。 In the present invention, the NICS value was calculated using Gaussian 09 (Revision C.01, US Gaussian Software). Specifically, first, the structure was optimized using B3LYP (density functional method) as a calculation method and 6-31G * (a function obtained by adding a polarization function to a split valence basis set) as a basis function. Subsequently, using the optimized structure, a dummy atom is placed at the center of the ring for calculating the NICS value, and one point calculation is performed by the NMR shielding constant calculation method (GIAO) with the basis function 6-311 + G ** to which the dispersion function is added. A value obtained by multiplying the NMR shielding constant of the obtained dummy atom by -1 was defined as a NICS value.
 文献に記載の代表的な環構造におけるNICS値を、下記表1に示す。 Table 1 below shows the NICS values in typical ring structures described in the literature.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 上記表1に記載したように、ベンゼン環やナフタレン環のような芳香族炭化水素よりも、ピロール環、チオフェン環又はフラン環などの5員の芳香族複素環の方が、NICS値が大きくなり、このような芳香族5員環を用いることで、CH/π相互作用を強めることができるものと予測される。 As described in Table 1 above, a 5-membered aromatic heterocyclic ring such as a pyrrole ring, a thiophene ring, or a furan ring has a larger NICS value than an aromatic hydrocarbon such as a benzene ring or a naphthalene ring. The use of such an aromatic five-membered ring is expected to enhance the CH / π interaction.
 π電子が寄与する分子間力としては、CH/π相互作用の他にπ/π相互作用がある。π/π相互作用とは、二つの芳香環の間に働く分子間力であり、芳香環は分極率が大きいため分散力(ロンドン分散力)の寄与が大きい分子間力である。このため、π共役系の広い芳香環は分極率がより大きくなり、π/π相互作用しやすくなる。6π電子系であるベンゼンは、一つのベンゼン環にもう一つのベンゼン環が垂直に配置し、ベンゼン環と水素原子がCH/π相互作用する場合が最も安定な構造であるのに対し、π共役系の広いナフタレン(10π電子)やアントラセン(14π電子)は芳香環同士がπ/π相互作用によって積み重なった場合が最も安定であることからも、π共役系の広い芳香環のπ/π相互作用が強いことが分かる。 The intermolecular force contributed by π electrons includes π / π interaction in addition to CH / π interaction. The π / π interaction is an intermolecular force that acts between two aromatic rings. Since an aromatic ring has a high polarizability, it is an intermolecular force that greatly contributes to dispersion force (London dispersion force). For this reason, an aromatic ring having a wide π-conjugated system has a higher polarizability and is likely to interact with π / π. Benzene, which is a 6π-electron system, has the most stable structure when one benzene ring is placed perpendicular to one benzene ring and a benzene ring and a hydrogen atom interact with each other. Naphthalene (10π electrons) and anthracene (14π electrons) with a wide system are most stable when the aromatic rings are stacked by π / π interaction. Is strong.
 また、環に置換する置換基でのNICS値の制御も可能であり、電子供与性基が置換するとNICS値は負に大きくなり、電子吸引性基が置換すると正に大きくなる傾向にある。 Also, the NICS value can be controlled by a substituent substituted on the ring, and when the electron donating group is substituted, the NICS value becomes negative and when the electron withdrawing group is substituted, the NICS value tends to become positive.
 芳香族、脂肪族若しくは脂環式テトラカルボン酸又はその誘導体は、1種を単独で使用しても良いし、2種以上を併用しても良い。また、ポリイミドの溶剤可溶性、透明ポリイミド樹脂フィルムのフレキシビリティ、熱圧着性、透明性を損なわない範囲で、他のテトラカルボン酸又はその誘導体(特に二無水物)を併用しても良い。 Aromatic, aliphatic or alicyclic tetracarboxylic acids or their derivatives may be used alone or in combination of two or more. Further, other tetracarboxylic acids or derivatives thereof (particularly dianhydrides) may be used in combination as long as they do not impair the solvent solubility of polyimide, the flexibility of the transparent polyimide resin film, the thermocompression bonding property, and the transparency.
 かかる他のテトラカルボン酸又はその誘導体としては、例えば、ピロメリット酸、3,3′,4,4′-ビフェニルテトラカルボン酸、2,3,3′,4′-ビフェニルテトラカルボン酸、2,2-ビス(3,4-ジカルボキシフェニル)プロパン、2,2-ビス(2,3-ジカルボキシフェニル)プロパン、2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス(2,3-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、ビス(3,4-ジカルボキシフェニル)スルホン、ビス(3,4-ジカルボキシフェニル)エーテル、ビス(2,3-ジカルボキシフェニル)エーテル、3,3′,4,4′-ベンゾフェノンテトラカルボン酸、2,2′,3,3′-ベンゾフェノンテトラカルボン酸、4,4-(p-フェニレンジオキシ)ジフタル酸、4,4-(m-フェニレンジオキシ)ジフタル酸、1,1-ビス(2,3-ジカルボキシフェニル)エタン、ビス(2,3-ジカルボキシフェニル)メタン、ビス(3,4-ジカルボキシフェニル)メタン等の芳香族系テトラカルボン酸及びこれらの誘導体(特に二無水物);エチレンテトラカルボン酸等の炭素数1~3の脂肪族テトラカルボン酸及びこれらの誘導体(特に二無水物)等が挙げられる。 Examples of such other tetracarboxylic acids or derivatives thereof include pyromellitic acid, 3,3 ′, 4,4′-biphenyltetracarboxylic acid, 2,3,3 ′, 4′-biphenyltetracarboxylic acid, 2, 2-bis (3,4-dicarboxyphenyl) propane, 2,2-bis (2,3-dicarboxyphenyl) propane, 2,2-bis (3,4-dicarboxyphenyl) -1,1,1 , 3,3,3-hexafluoropropane, 2,2-bis (2,3-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropane, bis (3,4-dicarboxy) Phenyl) sulfone, bis (3,4-dicarboxyphenyl) ether, bis (2,3-dicarboxyphenyl) ether, 3,3 ′, 4,4′-benzophenonetetracarboxylic acid, 2,2 ′ 3,3′-benzophenonetetracarboxylic acid, 4,4- (p-phenylenedioxy) diphthalic acid, 4,4- (m-phenylenedioxy) diphthalic acid, 1,1-bis (2,3-dicarboxyl) Aromatic tetracarboxylic acids such as phenyl) ethane, bis (2,3-dicarboxyphenyl) methane, bis (3,4-dicarboxyphenyl) methane and their derivatives (especially dianhydrides); ethylenetetracarboxylic acid Examples thereof include aliphatic tetracarboxylic acids having 1 to 3 carbon atoms and derivatives thereof (particularly dianhydrides).
 酸二無水物としては、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパンジアンヒドリド又はビフェニルテトラカルボン酸二無水物であることが、透明性に優れる点、及び熱収縮による熱矯正をしやすい観点で好ましい。 As the acid dianhydride, 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride or biphenyltetracarboxylic dianhydride is excellent in transparency and heat due to heat shrinkage. This is preferable from the viewpoint of easy correction.
 前記式(1.1)で表される繰り返し単位は、全ての繰り返し単位に対して好ましくは10~100モル%、より好ましくは50~100モル%、更に好ましくは80~100モル%、特に好ましくは90~100モル%である。また、ポリイミド(A)1分子中の式(1.1)の繰り返し単位の個数は、10~2000、好ましくは20~200であり、この範囲において、更にガラス転移温度が230~350℃であることが好ましく、250~330℃であることがより好ましい。 The repeating unit represented by the formula (1.1) is preferably 10 to 100 mol%, more preferably 50 to 100 mol%, still more preferably 80 to 100 mol%, particularly preferably all the repeating units. Is 90 to 100 mol%. The number of repeating units of formula (1.1) in one molecule of polyimide (A) is 10 to 2000, preferably 20 to 200, and further within this range, the glass transition temperature is 230 to 350 ° C. The temperature is preferably 250 to 330 ° C.
 次に、本発明に係るポリイミドの合成方法について記載する。 Next, the polyimide synthesis method according to the present invention will be described.
 <ポリアミド酸の合成法及びイミド化>
 (ポリアミド酸の合成)
 ポリアミド酸は、適当な溶剤中で、前記テトラカルボン酸類の少なくとも1種類と、前記ジアミン類の少なくとも1種類を重合反応させることにより得られる。
<Polyamide acid synthesis method and imidization>
(Synthesis of polyamic acid)
The polyamic acid can be obtained by polymerizing at least one of the tetracarboxylic acids and at least one of the diamines in a suitable solvent.
 また、ポリアミド酸エステルは、前記テトラカルボン酸二無水物を、メタノール、エタノール、イソプロパノール、n-プロパノール等のアルコールを用いて開環することによりジエステル化し、得られたジエステルを適当な溶剤中で前記ジアミン化合物と反応させることにより得ることができる。更に、ポリアミド酸エステルは、上記のように得られたポリアミド酸のカルボン酸基を、上記のようなアルコールと反応させることによりエステル化することによっても得ることができる。 The polyamic acid ester is diesterified by ring-opening the tetracarboxylic dianhydride with an alcohol such as methanol, ethanol, isopropanol, or n-propanol, and the obtained diester is converted into the above-mentioned diester in an appropriate solvent. It can be obtained by reacting with a diamine compound. Furthermore, the polyamic acid ester can also be obtained by esterification by reacting the carboxylic acid group of the polyamic acid obtained as described above with an alcohol as described above.
 前記テトラカルボン酸二無水物と、前記ジアミン化合物との反応は、従来知られている条件で行うことができる。テトラカルボン酸二無水物とジアミン化合物の添加順序や添加方法には特に限定はない。例えば、溶剤にテトラカルボン酸二無水物とジアミン化合物とを順に投入し、適切な温度で撹拌することにより、ポリアミド酸を得ることができる。 The reaction between the tetracarboxylic dianhydride and the diamine compound can be carried out under conventionally known conditions. There are no particular limitations on the order of addition or addition method of the tetracarboxylic dianhydride and the diamine compound. For example, a polycarboxylic acid can be obtained by sequentially adding a tetracarboxylic dianhydride and a diamine compound to a solvent and stirring at an appropriate temperature.
 ジアミン化合物の量は、テトラカルボン酸二無水物1モルに対して、通常0.8モル以上、好ましくは1モル以上である。一方、通常1.2モル以下、好ましくは1.1モル以下である。ジアミン化合物の量をこのような範囲とすることにより、得られるポリアミド酸の収率が向上し得る。 The amount of the diamine compound is usually 0.8 mol or more, preferably 1 mol or more with respect to 1 mol of tetracarboxylic dianhydride. On the other hand, it is 1.2 mol or less normally, Preferably it is 1.1 mol or less. The yield of the polyamic acid obtained can be improved by making the quantity of a diamine compound into such a range.
 溶剤中のテトラカルボン酸二無水物及びジアミン化合物の濃度は、反応条件やポリアミド酸溶液の粘度に応じて適宜設定する。例えば、テトラカルボン酸二無水物とジアミン化合物との合計の質量は、特段の制限はないが、全溶液量に対し、通常1質量%以上、好ましくは5質量%以上であり、一方、通常70質量%以下、好ましくは30質量%以下である。反応基質の量をこのような範囲とすることにより、低コストで収率良くポリアミド酸を得ることができる。 The concentration of tetracarboxylic dianhydride and diamine compound in the solvent is appropriately set according to the reaction conditions and the viscosity of the polyamic acid solution. For example, the total mass of the tetracarboxylic dianhydride and the diamine compound is not particularly limited, but is usually 1% by mass or more, preferably 5% by mass or more with respect to the total amount of the solution, while usually 70%. It is not more than mass%, preferably not more than 30 mass%. By setting the amount of the reaction substrate in such a range, the polyamic acid can be obtained at a low cost and in a high yield.
 反応温度は、特段の制限はないが、通常0℃以上、好ましくは20℃以上であり、一方、通常100℃以下、好ましくは80℃以下である。反応時間は、特段の制限はないが、通常1時間以上、好ましくは2時間以上であり、一方、通常100時間以下、好ましくは24時間以下である。このような条件で反応を行うことにより、低コストで収率良くポリアミド酸を得ることができる。 The reaction temperature is not particularly limited, but is usually 0 ° C. or higher, preferably 20 ° C. or higher, and is usually 100 ° C. or lower, preferably 80 ° C. or lower. The reaction time is not particularly limited but is usually 1 hour or longer, preferably 2 hours or longer, and is usually 100 hours or shorter, preferably 24 hours or shorter. By performing the reaction under such conditions, the polyamic acid can be obtained at a low cost and in a high yield.
 この反応で用いられる重合溶剤としては、例えば、ヘキサン、シクロヘキサン、ヘプタン、ベンゼン、トルエン、キシレン及びメシチレン等の炭化水素系溶剤;四塩化炭素、ジクロロメタン、クロロホルム、1,2-ジクロロエタン、クロロベンゼン、ジクロロベンゼン及びフルオロベンゼン等のハロゲン化炭化水素溶剤;ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサン及びメトキシベンゼン等のエーテル系溶剤;アセトン及びメチルエチルケトン等のケトン系溶剤;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド及びN-メチル-2-ピロリドン等のアミド系溶剤;ジメチルスルホキシド、γ-ブチロラクトン等の非プロトン系極性溶剤;ピリジン、ピコリン、ルチジン、キノリン及びイソキノリン等の複素環系溶剤;フェノール及びクレゾールのようなフェノール系溶剤、等が挙げられるが、特に限定されるものではない。重合溶剤としては、1種のみを用いることもできるし、2種類以上の溶剤を混合して用いることもできる。 Examples of the polymerization solvent used in this reaction include hydrocarbon solvents such as hexane, cyclohexane, heptane, benzene, toluene, xylene and mesitylene; carbon tetrachloride, dichloromethane, chloroform, 1,2-dichloroethane, chlorobenzene and dichlorobenzene. And halogenated hydrocarbon solvents such as fluorobenzene; ether solvents such as diethyl ether, tetrahydrofuran, 1,4-dioxane and methoxybenzene; ketone solvents such as acetone and methyl ethyl ketone; N, N-dimethylformamide, N, N— Amide solvents such as dimethylacetamide and N-methyl-2-pyrrolidone; aprotic polar solvents such as dimethyl sulfoxide and γ-butyrolactone; pyridine, picoline, lutidine, quinoline and isoquinoline Ring-based solvents; phenols and phenolic solvents such as cresol, but and the like, but is not particularly limited. As a polymerization solvent, only 1 type can also be used and 2 or more types of solvents can also be mixed and used.
 ポリアミド酸の末端基は、重合反応時のテトラカルボン酸二無水物とジアミン化合物のいずれか一方を過剰に用いることによって、酸無水物基とアミノ基を任意に選ぶことができる。 As the terminal group of the polyamic acid, an acid anhydride group or an amino group can be arbitrarily selected by using either one of a tetracarboxylic dianhydride and a diamine compound in excess during the polymerization reaction.
 末端基を酸無水物末端とした場合には、単官能のアミン化合物又はイソシアネート化合物を用いて末端を封止しても良い。ここで用いるアミン化合物又はイソシアネート化合物としては、単官能の第一級アミン化合物又はイソシアネート化合物であれば、特に制限はなく用いることができる。例えば、アニリン、メチルアニリン、ジメチルアニリン、トリメチルアニリン、エチルアニリン、ジエチルアニリン、トリエチルアニリン、アミノフェノール、メトキシアニリン、アミノ安息香酸、ビフェニルアミン、ナフチルアミン、シクロヘキシルアミン、フェニルイソシアナート、キシリレンイソシアネート、シクロヘキシルイソシアネート、メチルフェニルイソシアネート、トリフルオロメチルフェニルイソシアネート等を挙げることができる。 When the terminal group is an acid anhydride terminal, the terminal may be sealed with a monofunctional amine compound or isocyanate compound. The amine compound or isocyanate compound used here is not particularly limited as long as it is a monofunctional primary amine compound or isocyanate compound. For example, aniline, methylaniline, dimethylaniline, trimethylaniline, ethylaniline, diethylaniline, triethylaniline, aminophenol, methoxyaniline, aminobenzoic acid, biphenylamine, naphthylamine, cyclohexylamine, phenyl isocyanate, xylylene isocyanate, cyclohexyl isocyanate , Methylphenyl isocyanate, trifluoromethylphenyl isocyanate, and the like.
 また、末端基をアミン末端とした場合には、例えば、4-エチニルフタル酸無水物、メチルフタル酸無水物、ジメチルフタル酸無水物、トリメリット酸無水物、ナフタレンジカルボン酸無水物、等を挙げることができる。また、モノカルボン酸無水物や酸塩化物との反応でアミドを形成してもよく、p-メトキシ安息香酸無水物、ナフタレンカルボン酸クロライド、4-アセトキシ安息香酸クロライド、チオフェン-2-カルボニルクロライド等を上げることができる。 Further, when the terminal group is an amine terminal, for example, 4-ethynylphthalic anhydride, methylphthalic anhydride, dimethylphthalic anhydride, trimellitic anhydride, naphthalenedicarboxylic anhydride, etc. Can do. Also, amides may be formed by reaction with monocarboxylic acid anhydrides or acid chlorides, such as p-methoxybenzoic anhydride, naphthalenecarboxylic acid chloride, 4-acetoxybenzoic acid chloride, thiophene-2-carbonyl chloride, etc. Can be raised.
 (イミド化法)
 ここで、ポリイミドは、ポリアミド酸溶液を加熱してポリアミド酸をイミド化させる方法(熱イミド化法)、又は、ポリアミド酸溶液に閉環触媒(イミド化触媒)を添加してポリアミド酸をイミド化させる方法(化学イミド化法)により得ることができる。
(Imidation method)
Here, the polyimide is a method in which the polyamic acid solution is heated to imidize the polyamic acid (thermal imidization method), or a polycyclic acid (imidation catalyst) is added to the polyamic acid solution to imidize the polyamic acid. It can be obtained by a method (chemical imidization method).
 また、ポリアミド酸溶液を加熱してポリアミド酸をイミド化させる方法(熱イミド化法)、又は、ポリアミド酸溶液に閉環触媒(イミド化触媒)を添加してポリアミド酸をイミド化させる方法(化学イミド化法)については、酸無水物とジアミンからポリアミド酸を重合する反応釜をそのまま継続して反応釜中でイミド化させてもよい。 Also, a method of imidizing polyamic acid by heating the polyamic acid solution (thermal imidization method), or a method of imidizing polyamic acid by adding a ring-closing catalyst (imidation catalyst) to the polyamic acid solution (chemical imide) As for the conversion method), a reaction vessel for polymerizing polyamic acid from an acid anhydride and a diamine may be continued as it is and imidized in the reaction vessel.
 反応釜中での熱イミド化法においては、上記重合溶剤中のポリアミド酸を、例えば80~300℃の温度範囲で0.1~200時間加熱処理してイミド化を進行させる。また、上記温度範囲を150~200℃とすることが好ましく、150℃以上とすることにより、イミド化を確実に進行させて完了させることができ、一方、200℃以下とすることにより、溶剤や未反応原材料の酸化、溶剤の揮発による樹脂濃度の上昇を防止することができる。 In the thermal imidization method in the reaction kettle, the polyamic acid in the polymerization solvent is heated for, for example, 80 to 300 ° C. for 0.1 to 200 hours to advance imidization. Further, the temperature range is preferably 150 to 200 ° C., and by setting the temperature range to 150 ° C. or higher, imidization can be reliably progressed and completed. It is possible to prevent an increase in the resin concentration due to oxidation of unreacted raw materials and volatilization of the solvent.
 更に、熱イミド化法においては、イミド化反応により生成する水を効率良く除去するために、上記重合溶剤に共沸溶剤を加えることができる。共沸溶剤としては、例えば、トルエン、キシレン、ソルベントナフサ等の芳香族炭化水素や、シクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサン等の脂環族炭化水素等を用いることができる。共沸溶剤を使用する場合は、その添加量は、全有機溶剤量中の1~30質量%程度、好ましくは5~20質量%である。 Further, in the thermal imidization method, an azeotropic solvent can be added to the polymerization solvent in order to efficiently remove water generated by the imidization reaction. As the azeotropic solvent, for example, aromatic hydrocarbons such as toluene, xylene and solvent naphtha, and alicyclic hydrocarbons such as cyclohexane, methylcyclohexane and dimethylcyclohexane can be used. When an azeotropic solvent is used, the amount added is about 1 to 30% by mass, preferably 5 to 20% by mass, based on the total amount of organic solvent.
 一方、化学イミド化法においては、上記重合溶剤中のポリアミド酸に対し、公知の閉環触媒を添加してイミド化を進行させる。閉環触媒の具体例としては、トリメチルアミン、トリエチレンジアミン等の脂肪族第3級アミン及びイソキノリン、ピリジン、ピコリン等の複素環式第3級アミン等が挙げられるが、これ以外にも例えば、置換若しくは非置換の含窒素複素環化合物、含窒素複素環化合物のN-オキシド化合物、置換若しくは非置換のアミノ酸化合物、ヒドロキシ基を有する芳香族炭化水素化合物又は芳香族複素環状化合物が挙げられ、特に1,2-ジメチルイミダゾール、N-メチルイミダゾール、N-ベンジル-2-メチルイミダゾール、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、5-メチルベンズイミダゾール等の低級アルキルイミダゾール、N-ベンジル-2-メチルイミダゾール等のイミダゾール誘導体、イソキノリン、3,5-ジメチルピリジン、3,4-ジメチルピリジン、2,5-ジメチルピリジン、2,4-ジメチルピリジン、4-n-プロピルピリジン等の置換ピリジン、p-トルエンスルホン酸等を好適に使用することができる。閉環触媒の添加量は、ポリアミド酸のアミド酸単位に対して0.01~2倍当量、特に0.02~1倍当量程度であることが好ましい。閉環触媒を使用することによって、得られるポリイミドの物性、特に伸びや破断抵抗が向上する場合がある。 On the other hand, in the chemical imidization method, a known ring closure catalyst is added to the polyamic acid in the polymerization solvent to advance imidization. Specific examples of the ring-closing catalyst include aliphatic tertiary amines such as trimethylamine and triethylenediamine, and heterocyclic tertiary amines such as isoquinoline, pyridine and picoline. Examples thereof include substituted nitrogen-containing heterocyclic compounds, N-oxide compounds of nitrogen-containing heterocyclic compounds, substituted or unsubstituted amino acid compounds, aromatic hydrocarbon compounds having an hydroxy group, or aromatic heterocyclic compounds. -Lower alkyl imidazole such as dimethylimidazole, N-methylimidazole, N-benzyl-2-methylimidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 5-methylbenzimidazole, N-benzyl-2-methyl Imidazole derivatives such as imidazole, isoquinoline, 3 A substituted pyridine such as 5-dimethylpyridine, 3,4-dimethylpyridine, 2,5-dimethylpyridine, 2,4-dimethylpyridine, 4-n-propylpyridine, p-toluenesulfonic acid, etc. can be preferably used. it can. The addition amount of the ring closure catalyst is preferably about 0.01 to 2 times equivalent, particularly about 0.02 to 1 time equivalent to the amic acid unit of the polyamic acid. By using a ring-closing catalyst, the properties of the resulting polyimide, particularly elongation and breaking resistance, may be improved.
 また、上記熱イミド化法又は化学イミド化法においては、ポリアミド酸溶液中に脱水剤を添加しても良く、そのような脱水剤としては、例えば、無水酢酸等の脂肪族酸無水物、フタル酸無水物等の芳香族酸無水物等が挙げられ、これらを単独又は混合して使用することができる。また、脱水剤を用いると、低温で反応を進めることができ好ましい。なお、ポリアミド酸溶液に対し脱水剤を添加するのみでもポリアミド酸をイミド化させることが可能ではあるが、反応速度が遅いため、上記したように加熱又は閉環触媒の添加によりイミド化させることが好ましい。 In the thermal imidization method or chemical imidization method, a dehydrating agent may be added to the polyamic acid solution. Examples of such a dehydrating agent include aliphatic acid anhydrides such as acetic anhydride, phthalates, and the like. Examples thereof include aromatic acid anhydrides such as acid anhydrides, and these can be used alone or in combination. In addition, it is preferable to use a dehydrating agent because the reaction can proceed at a low temperature. Although it is possible to imidize polyamic acid only by adding a dehydrating agent to the polyamic acid solution, it is preferable to imidize by heating or addition of a ring-closing catalyst as described above because the reaction rate is slow. .
 このように反応釜中でイミド化させたポリイミド溶液は、ポリイミド溶液と比較して経時による加水分解による分子量低下が起き難いので有利である。
また、あらかじめイミド化反応が進んでいるため例えば、イミド化率100%のポリイミドの場合は、流延膜上でのイミド化が不要となり乾燥温度を下げることができる。
Thus, the polyimide solution imidized in the reaction kettle is advantageous because it is less likely to cause a decrease in molecular weight due to hydrolysis over time than the polyimide solution.
Further, since the imidization reaction has progressed in advance, for example, in the case of a polyimide having an imidization rate of 100%, imidization on the cast film is unnecessary, and the drying temperature can be lowered.
 また、閉環したポリイミドを、貧溶剤などを用いて再沈殿、精製して固体にしてから溶剤に溶解し流延乾燥して製膜を行っても良い。 Alternatively, the ring-closed polyimide may be reprecipitated using a poor solvent or the like, purified to a solid, dissolved in a solvent, and cast and dried to form a film.
 この方法によれば、重合溶剤と流延する溶剤とを異なる種類とすることが可能となり、それぞれに最適な溶剤を選択することで、透明ポリイミド樹脂フィルムの性能をより引き出すことが可能になる。 According to this method, it is possible to make the polymerization solvent and the solvent to be cast different from each other, and it is possible to draw out the performance of the transparent polyimide resin film by selecting an optimum solvent for each.
 例えば、ポリアミド酸を高分子量化させるためにジメチルアセドアミドを用いて重合、閉環し、メタノールを用いて固体化、乾燥したのちにジクロロメタンで添加剤を入れた溶液化してから流延、乾燥することで、高分子量化と低温乾燥が可能となる。 For example, in order to increase the molecular weight of polyamic acid, it is polymerized and cyclized with dimethylacetamide, solidified with methanol, dried, then made into a solution containing an additive with dichloromethane, then cast and dried. Thus, high molecular weight and low temperature drying are possible.
 また、溶剤としてジクロロメタンを使う場合、他の溶剤と組み合わせて使用することができる。テトラヒドロフラン(THF)、ジオキソラン、シクロヘキサノン、シクロペンタノン、γブチロラクトン、エタノール、メタノール、ブタノール、イロプロパノールなど、適宜補助溶剤を使用することもできる。 Also, when dichloromethane is used as a solvent, it can be used in combination with other solvents. A co-solvent such as tetrahydrofuran (THF), dioxolane, cyclohexanone, cyclopentanone, γ-butyrolactone, ethanol, methanol, butanol, ilopropanol can be used as appropriate.
 イミド化率は高いほど好ましく上限は100%である。上記ポリアミドイミド樹脂は、通常の方法で合成することができる。例えば、イソシアネート法、アミン法(酸クロリド法、低温溶液重合法、室温溶液重合法等)などであるが、本発明で用いるポリアミドイミド樹脂は有機溶剤に可溶なものが好ましく、前記のとおり、ピール強度(接着強度)の信頼性確保などの理由から、イソシアネート法による製造が好ましい。また、工業的にも、重合時の溶液がそのまま塗布できるため好ましい。 The higher the imidization rate, the more preferable upper limit is 100%. The polyamideimide resin can be synthesized by a usual method. For example, an isocyanate method, an amine method (acid chloride method, low temperature solution polymerization method, room temperature solution polymerization method, etc.), etc., but the polyamideimide resin used in the present invention is preferably soluble in an organic solvent, as described above. For reasons such as ensuring the reliability of peel strength (adhesive strength), production by the isocyanate method is preferred. Also, industrially, it is preferable because the solution at the time of polymerization can be applied as it is.
 <透明ポリイミド樹脂の物性>
 (全光線透過率)
 本発明のポリイミド樹脂は、透明ポリイミド樹脂である。本発明において、透明ポリイミド樹脂とは、当該ポリイミド樹脂で厚さ40μmのポリイミドフィルムを作製した場合の、全光線透過率が80%以上であるポリイミド樹脂のことを表す。
<Physical properties of transparent polyimide resin>
(Total light transmittance)
The polyimide resin of the present invention is a transparent polyimide resin. In the present invention, the transparent polyimide resin means a polyimide resin having a total light transmittance of 80% or more when a polyimide film having a thickness of 40 μm is produced from the polyimide resin.
 全光線透過率は、85%以上であることがより好ましく、90%以上であることが更に好ましい。全光線透過率は高いほど透明性が高くなるので好ましい。全光線透過率が80%以上という数値の記載は、その好ましい範囲を示したものである。 The total light transmittance is more preferably 85% or more, and still more preferably 90% or more. A higher total light transmittance is preferable because transparency increases. The description of the numerical value that the total light transmittance is 80% or more shows the preferable range.
 透明ポリイミド樹脂フィルムの全光線透過率は、23℃・55%RHの空調室で24時間調湿した透明ポリイミド樹脂フィルム試料1枚をJIS K 7375-2008に従って測定できる。測定は(株)日立ハイテクノロジーズ製の分光光度計U-3300を用いて可視光領域(400~700nmの範囲)の透過率を測定することができる。 The total light transmittance of the transparent polyimide resin film can be measured according to JIS K 7375-2008 for one transparent polyimide resin film sample conditioned for 24 hours in an air conditioning room at 23 ° C. and 55% RH. The measurement can measure the transmittance in the visible light region (range of 400 to 700 nm) using a spectrophotometer U-3300 manufactured by Hitachi High-Technologies Corporation.
 全光線透過率を80%以上とするには、上記ポリイミドの種類を選択することで調整できる。 全 To make the total light transmittance 80% or more, it can be adjusted by selecting the type of polyimide.
 (イエローインデックス値(YI値))
 本発明の透明ポリイミド樹脂は、無色の透明ポリイミド樹脂であることが好ましい。無色である目安としては、当該透明ポリイミド樹脂で厚さ40μmの透明ポリイミド樹脂フィルムを作製した場合の、イエローインデックス値(YI値)が、5.0以下であることが好ましい。より好ましくは0.3~2.0の範囲内であり、特に好ましくは0.3~1.6の範囲内である。イエローインデックス値(YI値)は小さいほど着色が少ないので好ましい。イエローインデックス値(YI値)が5.0以下という数値の記載は、その好ましい範囲を示したものである。
(Yellow index value (YI value))
The transparent polyimide resin of the present invention is preferably a colorless transparent polyimide resin. As a measure of being colorless, it is preferable that a yellow index value (YI value) when a transparent polyimide resin film having a thickness of 40 μm is made of the transparent polyimide resin is 5.0 or less. More preferably, it is in the range of 0.3 to 2.0, and particularly preferably in the range of 0.3 to 1.6. A smaller yellow index value (YI value) is preferable because coloring is less. The description of the numerical value that the yellow index value (YI value) is 5.0 or less indicates the preferable range.
 前記YI値の値は、上記ポリイミドの種類を選択することで調整することができる。 The YI value can be adjusted by selecting the type of polyimide.
 イエローインデックス値は、JIS K 7103に定められているフィルムのYI(イエローインデックス:黄色味の指数)に従って求めることができる。 The yellow index value can be obtained according to the YI (yellow index: yellowness index) of the film defined in JIS K 7103.
 イエローインデックス値の測定方法としては、フィルムのサンプルを作製し、(株)日立ハイテクノロジーズの分光光度計U-3300と附属の彩度計算プログラム等を用いて、JIS Z 8701に定められている光源色の三刺激値X、Y、Zを求め、下式の定義に従ってイエローインデックス値を求める。 The yellow index value is measured by preparing a film sample and using a spectrophotometer U-3300 manufactured by Hitachi High-Technologies Corporation and the attached saturation calculation program, etc., as a light source specified in JIS Z 8701. The tristimulus values X, Y and Z of the color are obtained, and the yellow index value is obtained according to the definition of the following formula.
  イエローインデックス(YI)=100(1.28X-1.06Z)/Y
 (透明ポリイミド樹脂のジクロロメタンへの溶解度)
 本発明の透明ポリイミド樹脂は、25℃においてジクロロメタン100gに対し溶解する限界量(溶解度)が1~50gであることが、溶液流延法により生産性良くフィルムを製造できる観点から好ましい。溶解度が1g以上であれば、溶液流延法により製造できやすくなる。溶解度が50g以上であると、溶液流延時に膜を形成できにくく製膜が困難となる。
Yellow index (YI) = 100 (1.28X-1.06Z) / Y
(Solubility of transparent polyimide resin in dichloromethane)
The transparent polyimide resin of the present invention preferably has a limit amount (solubility) that dissolves in 100 g of dichloromethane at 25 ° C. from the viewpoint of producing a film with high productivity by the solution casting method. If the solubility is 1 g or more, it can be easily produced by the solution casting method. When the solubility is 50 g or more, it is difficult to form a film at the time of casting the solution, and film formation becomes difficult.
 本発明に係るポリイミドの溶解度は、前記本発明に用いられるポリイミドの種類を選択することにより調整することができる。 The solubility of the polyimide according to the present invention can be adjusted by selecting the type of polyimide used in the present invention.
 ポリイミドは可溶性にするためには、ポリイミドの分子骨格の平面性を高める方向に働くイミド基、及び芳香族炭化水素の構造の割合を低減させることが有効である。また、構造異性体、屈曲基の導入、芳香族基の代わりに脂肪族基や脂環式基の導入、フッ素原子やフルオレンなどの嵩高い骨格の導入することも有効である。 In order to make polyimides soluble, it is effective to reduce the ratio of the structure of imide groups and aromatic hydrocarbons that work in the direction of increasing the planarity of the molecular skeleton of polyimide. It is also effective to introduce structural isomers, bending groups, aliphatic groups or alicyclic groups instead of aromatic groups, and bulky skeletons such as fluorine atoms and fluorenes.
 化合物例としては、脂環式、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、1,2,3,4,5-シクロヘキサンテトラカルボン酸二無水物、2,3,5-トリカルボキシシクロペンチル酢酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、(ビシクロ[4.2.0]オクタン-3,4,7,8-テトラカルボン酸2無水物)ビシクロ[2.2.1]ヘプタンジメタンアミン、屈曲基を持つ構造としては、2,3′,3,4′-ビフェニルテトラカルボン酸二無水物、3,4′-オキシジフタル酸無水物、4,4′オキシジフタル酸無水物、3,3′,4,4′-ベンゾフェノンテトラカルボン酸二無水物、3,3′,4,4′-ジフェニルスルホンテトラカルボン酸二無水物、2,2-ビス(4-(3,4-ジカルボキシフェノキシ)フェニル)プロパン二無水物、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、ビス(3-アミノフェニル)スルホン、3,3′-ジアミノベンゾフェノン、3,4′-ジアミノジフェニルエーテル、が挙げられる。 Examples of compounds include alicyclic, 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, 1,2,3,4, 5-cyclohexanetetracarboxylic dianhydride, 2,3,5-tricarboxycyclopentylacetic acid dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, (bicyclo [4.2.0] octane -3,4,7,8-tetracarboxylic dianhydride) bicyclo [2.2.1] heptanedimethanamine, the structure having a bending group is 2,3 ', 3,4'-biphenyltetracarboxylic Acid dianhydride, 3,4'-oxydiphthalic anhydride, 4,4 'oxydiphthalic anhydride, 3,3', 4,4'-benzophenone tetracarboxylic dianhydride, 3,3 ', 4,4 ′ -Difeni Sulfonetetracarboxylic dianhydride, 2,2-bis (4- (3,4-dicarboxyphenoxy) phenyl) propane dianhydride, bis [4- (4-aminophenoxy) phenyl] sulfone, 2,2- Bis [4- (4-aminophenoxy) phenyl] propane, 1,3-bis (3-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) ) Benzene, bis (3-aminophenyl) sulfone, 3,3'-diaminobenzophenone, 3,4'-diaminodiphenyl ether.
 また、フッ素原子を含有する化合物としては、4,4′-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、2,2′-ビス(トリフルオロメチル)ベンジジン 2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、フルオレン基を含有する化合物としては、9,9-ビス(4-アミノ-3-フルオロフェニル)フルオレン、9,9-ビス[4-(3,4-ジカルボキシフェノキシ)-フェニル]フルオレン無水物、9,9-ビス[4-(3,4-ジカルボキシフェノキシ)-フェニル]フルオレン無水物、9,9-Bis(3,4-dicarboxyphenyl)fluorene Pilot fluorene Dianhydrideが挙げられる。 Examples of the compound containing a fluorine atom include 4,4 '-(hexafluoroisopropylidene) diphthalic anhydride, 2,2'-bis (trifluoromethyl) benzidine, 2,2-bis (3-amino-4 -Hydroxyphenyl) hexafluoropropane, compounds containing a fluorene group include 9,9-bis (4-amino-3-fluorophenyl) fluorene, 9,9-bis [4- (3,4-dicarboxyphenoxy) ) -Phenyl] fluorene anhydride, 9,9-bis [4- (3,4-dicarboxyphenoxy) -phenyl] fluorene anhydride, 9,9-Bis (3,4-dicboxyphenyl) fluorene Pilot fluorene Dianhydride It is done.
 <透明ポリイミド樹脂組成物>
 前述の本発明の透明ポリイミド樹脂に種々の樹脂、添加剤や溶剤を混合して、透明ポリイミド樹脂組成物を得ることができる。本発明の透明ポリイミド樹脂組成物の好ましい途としては、下記の透明ポリイミド樹脂フィルムなどの製造材料に用いる他、樹脂成型品などの材料として使用することができる。
<Transparent polyimide resin composition>
Various resins, additives and solvents can be mixed into the transparent polyimide resin of the present invention to obtain a transparent polyimide resin composition. As a preferable course of the transparent polyimide resin composition of the present invention, it can be used as a material for a resin molded product or the like, in addition to a manufacturing material such as a transparent polyimide resin film described below.
 <透明ポリイミド樹脂フィルム>
 前述の、本発明の透明ポリイミド樹脂及び透明ポリイミド樹脂組成物を用いて、透明ポリイミド樹脂フィルムを得ることができる。
<Transparent polyimide resin film>
A transparent polyimide resin film can be obtained using the above-described transparent polyimide resin and transparent polyimide resin composition of the present invention.
 (添加剤)
 本発明の透明ポリイミド樹脂フィルムには、下記の添加剤が混合されていることが好ましい。
(Additive)
It is preferable that the following additives are mixed in the transparent polyimide resin film of the present invention.
 (機械強度調整剤)
 本発明の透明ポリイミド樹脂フィルムは機械強度を向上させるために機械強度調整剤を添加することができる。本発明における透明ポリイミド樹脂は主鎖に芳香環を含有し、高分子末端には特定のNICS値を有する芳香環を有することから、芳香環を有する化合物が機械強度向上の観点から好ましく、芳香環を二つ以上含有する化合物や複素芳香族環を含有する化合物を添加することがさらに好ましく、芳香環を二つ以上含有する化合物や含窒素芳香族複素環化合物が特に好ましい。
(Mechanical strength modifier)
In order to improve the mechanical strength, the transparent polyimide resin film of the present invention can contain a mechanical strength modifier. Since the transparent polyimide resin in the present invention contains an aromatic ring in the main chain and has an aromatic ring having a specific NICS value at the polymer terminal, a compound having an aromatic ring is preferable from the viewpoint of improving mechanical strength. It is more preferable to add a compound containing two or more compounds or a compound containing a heteroaromatic ring, and a compound containing two or more aromatic rings or a nitrogen-containing aromatic heterocyclic compound is particularly preferable.
 上記好ましい化合物としては、例えば、国際公開第2014/109350号に記載の一般式(1)及び一般式(2)で表される化合物、1,3,5-トリアジン骨格を含有する化合物、1,3-ピリミジン骨格を含有する化合物、特開2013-232005号公報の段落[0040]に記載の芳香環を含有するポリエステルなどが挙げられる。 Examples of the preferable compound include compounds represented by general formula (1) and general formula (2) described in International Publication No. 2014/109350, compounds containing a 1,3,5-triazine skeleton, Examples thereof include compounds containing a 3-pyrimidine skeleton and polyesters containing an aromatic ring described in paragraph [0040] of JP2013-232005.
 (マット剤)
 本発明の透明ポリイミド樹脂フィルムには、取扱性を向上させるため、例えば二酸化ケイ素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、カオリン、タルク、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム、リン酸カルシウム等の無機微粒子や架橋高分子などのマット剤を含有させることが好ましい。中でも二酸化ケイ素がフィルムのヘイズを小さくできるため、好ましい。
(Matting agent)
In order to improve the handleability, the transparent polyimide resin film of the present invention has, for example, silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, kaolin, talc, calcined calcium silicate, hydrated calcium silicate, silicic acid. It is preferable to include a matting agent such as inorganic fine particles such as aluminum, magnesium silicate and calcium phosphate, and a crosslinked polymer. Of these, silicon dioxide is preferable because it can reduce the haze of the film.
 微粒子の1次平均粒子径としては、20nm以下が好ましく、更に好ましくは、5~16nmであり、特に好ましくは、5~12nmである。 The primary average particle diameter of the fine particles is preferably 20 nm or less, more preferably 5 to 16 nm, and particularly preferably 5 to 12 nm.
 これらの微粒子は0.1~5μmの粒径の2次粒子を形成してポリイミドに含まれることが好ましく、好ましい平均粒径は0.1~2μmであり、更に好ましくは0.2~0.6μmである。これにより、フィルム表面に高さ0.1~1.0μm程度の凹凸を形成し、これによってフィルム表面に適切な滑り性を与えることができる。 These fine particles preferably form secondary particles having a particle size of 0.1 to 5 μm and are contained in the polyimide. A preferable average particle size is 0.1 to 2 μm, and more preferably 0.2 to 0.00. 6 μm. As a result, irregularities having a height of about 0.1 to 1.0 μm are formed on the film surface, thereby providing appropriate slipperiness to the film surface.
 本発明に用いられる微粒子の1次平均粒子径の測定は、透過型電子顕微鏡(倍率50万~200万倍)で粒子の観察を行い、粒子100個を観察し、粒子径を測定しその平均値をもって、1次平均粒子径とする。 The primary average particle diameter of the fine particles used in the present invention is measured by observing the particles with a transmission electron microscope (magnification of 500,000 to 2,000,000 times), observing 100 particles, measuring the particle diameter, and measuring the average. Let the value be the primary average particle size.
 (紫外線吸収剤)
 本発明の透明ポリイミド樹脂フィルムは、紫外線吸収剤を含有することが耐光性を向上する観点から好ましい。紫外線吸収剤は400nm以下の紫外線を吸収することで、耐光性を向上させることを目的としており、特に波長370nmでの透過率が、0.1~30%の範囲であることが好ましく、より好ましくは1~20%の範囲、更に好ましくは2~10%の範囲である。
(UV absorber)
The transparent polyimide resin film of the present invention preferably contains an ultraviolet absorber from the viewpoint of improving light resistance. The ultraviolet absorber is intended to improve light resistance by absorbing ultraviolet rays of 400 nm or less, and the transmittance at a wavelength of 370 nm is preferably in the range of 0.1 to 30%, more preferably. Is in the range of 1-20%, more preferably in the range of 2-10%.
 本発明で好ましく用いられる紫外線吸収剤は、ベンゾトリアゾール系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、トリアジン系紫外線吸収剤であり、特に好ましくはベンゾトリアゾール系紫外線吸収剤及びベンゾフェノン系紫外線吸収剤である。 The UV absorbers preferably used in the present invention are benzotriazole UV absorbers, benzophenone UV absorbers, and triazine UV absorbers, and particularly preferably benzotriazole UV absorbers and benzophenone UV absorbers.
 例えば、5-クロロ-2-(3,5-ジ-sec-ブチル-2-ヒドロキシルフェニル)-2H-ベンゾトリアゾール、(2-2H-ベンゾトリアゾール-2-イル)-6-(直鎖及び側鎖ドデシル)-4-メチルフェノール、2-ヒドロキシ-4-ベンジルオキシベンゾフェノン、2,4-ベンジルオキシベンゾフェノン等があり、また、チヌビン109、チヌビン171、チヌビン234、チヌビン326、チヌビン327、チヌビン328、チヌビン928等のチヌビン類(登録商標)があり、これらはいずれもBASFジャパン(株)製の市販品であり好ましく使用できる。この中ではハロゲンフリーのものが好ましい。 For example, 5-chloro-2- (3,5-di-sec-butyl-2-hydroxylphenyl) -2H-benzotriazole, (2-2H-benzotriazol-2-yl) -6- (linear and side Chain dodecyl) -4-methylphenol, 2-hydroxy-4-benzyloxybenzophenone, 2,4-benzyloxybenzophenone, etc., and tinuvin 109, tinuvin 171, tinuvin 234, tinuvin 326, tinuvin 327, tinuvin 328, There are tinuvins (registered trademark) such as tinuvin 928, and these are all commercially available products manufactured by BASF Japan Ltd. and can be preferably used. Of these, halogen-free ones are preferred.
 このほか、1,3,5-トリアジン環を有する化合物等の円盤状化合物も紫外線吸収剤として好ましく用いられる。 In addition, a discotic compound such as a compound having a 1,3,5-triazine ring is also preferably used as the ultraviolet absorber.
 本発明の透明ポリイミド樹脂フィルムは、紫外線吸収剤を2種以上含有することが好ましい。 The transparent polyimide resin film of the present invention preferably contains two or more kinds of ultraviolet absorbers.
 また、紫外線吸収剤としては高分子紫外線吸収剤も好ましく用いることができ、特に特開平6-148430号記載のポリマータイプの紫外線吸収剤が好ましく用いられる。また、紫外線吸収剤は、ハロゲン基を有していないことが好ましい。 Also, as the ultraviolet absorber, a polymeric ultraviolet absorber can be preferably used, and in particular, a polymer type ultraviolet absorber described in JP-A-6-148430 is preferably used. Moreover, it is preferable that the ultraviolet absorber does not have a halogen group.
 紫外線吸収剤の添加方法は、メタノール、エタノール、ブタノール等のアルコールやジクロロメタン、酢酸メチル、アセトン、ジオキソラン等の有機溶媒又はこれらの混合溶媒に紫外線吸収剤を溶解してからドープに添加するか、又は直接ドープ組成中に添加してもよい。 The method of adding the UV absorber is to add the dope after dissolving the UV absorber in an alcohol such as methanol, ethanol, butanol, an organic solvent such as dichloromethane, methyl acetate, acetone, dioxolane, or a mixed solvent thereof, or You may add directly in dope composition.
 無機粉体のように有機溶媒に溶解しないものは、有機溶媒と透明ポリイミド樹脂フィルム中にディゾルバーやサンドミルを使用し、分散してからドープに添加する。 For inorganic powders that do not dissolve in organic solvents, use a dissolver or sand mill in the organic solvent and transparent polyimide resin film to disperse them before adding them to the dope.
 紫外線吸収剤の使用量は、紫外線吸収剤の種類、使用条件等により一様ではないが、透明ポリイミド樹脂フィルムの乾燥膜厚が15~50μmの場合は、透明ポリイミド樹脂フィルムに対して0.5~10質量%の範囲が好ましく、0.6~4質量%の範囲が更に好ましい。 The amount of UV absorber used is not uniform depending on the type of UV absorber, usage conditions, etc., but when the dry film thickness of the transparent polyimide resin film is 15 to 50 μm, it is 0.5% relative to the transparent polyimide resin film. The range of ˜10% by mass is preferred, and the range of 0.6˜4% by mass is more preferred.
 (酸化防止剤)
 酸化防止剤は劣化防止剤ともいわれる。高湿高温の状態に電子デバイスなどが置かれた場合には、透明ポリイミド樹脂フィルムの劣化が起こる場合がある。
(Antioxidant)
Antioxidants are also referred to as deterioration inhibitors. When an electronic device or the like is placed in a high humidity and high temperature state, the transparent polyimide resin film may be deteriorated.
 酸化防止剤は、例えば、透明ポリイミド樹脂フィルム中の残留溶媒量のハロゲンやリン酸系可塑剤のリン酸等により透明ポリイミド樹脂フィルムが分解するのを遅らせたり、防いだりする役割を有するので、本発明の透明ポリイミド樹脂フィルム中に含有させるのが好ましい。 The antioxidant has a role of delaying or preventing the transparent polyimide resin film from being decomposed by, for example, the residual solvent amount of halogen in the transparent polyimide resin film or phosphoric acid of the phosphoric acid plasticizer. It is preferable to make it contain in the transparent polyimide resin film of invention.
 このような酸化防止剤としては、ヒンダードフェノール系の化合物が好ましく用いられ、例えば、2,6-ジ-t-ブチル-p-クレゾール、ペンタエリスリチル-テトラキス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、トリエチレングリコール-ビス〔3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート〕、1,6-ヘキサンジオール-ビス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、2,4-ビス-(n-オクチルチオ)-6-(4-ヒドロキシ-3,5-ジ-t-ブチルアニリノ)-1,3,5-トリアジン、2,2-チオ-ジエチレンビス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、N,N′-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロシンナマミド)、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、トリス-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-イソシアヌレート等を挙げることができる。 As such an antioxidant, a hindered phenol compound is preferably used. For example, 2,6-di-t-butyl-p-cresol, pentaerythrityl-tetrakis [3- (3,5-di- -T-butyl-4-hydroxyphenyl) propionate], triethylene glycol-bis [3- (3-t-butyl-5-methyl-4-hydroxyphenyl) propionate], 1,6-hexanediol-bis [3 -(3,5-di-t-butyl-4-hydroxyphenyl) propionate], 2,4-bis- (n-octylthio) -6- (4-hydroxy-3,5-di-t-butylanilino)- 1,3,5-triazine, 2,2-thio-diethylenebis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], oct Decyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, N, N'-hexamethylenebis (3,5-di-t-butyl-4-hydroxy-hydrocinnamamide) 1,3,5-trimethyl-2,4,6-tris (3,5-di-t-butyl-4-hydroxybenzyl) benzene, tris- (3,5-di-t-butyl-4-hydroxy Benzyl) -isocyanurate and the like.
 特に、2,6-ジ-t-ブチル-p-クレゾール、ペンタエリスリチル-テトラキス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、トリエチレングリコール-ビス〔3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート〕が好ましい。また、例えば、N,N′-ビス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニル〕ヒドラジン等のヒドラジン系の金属不活性剤やトリス(2,4-ジ-t-ブチルフェニル)ホスファイト等のリン系加工安定剤を併用してもよい。 In particular, 2,6-di-t-butyl-p-cresol, pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], triethylene glycol-bis [3 -(3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate] is preferred. Further, for example, hydrazine-based metal deactivators such as N, N′-bis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyl] hydrazine and tris (2,4-di- A phosphorus processing stabilizer such as t-butylphenyl) phosphite may be used in combination.
 これらの化合物の添加量は、透明ポリイミド樹脂フィルムに対して質量割合で1ppm~1.0%の範囲が好ましく、10~1000ppmの範囲が更に好ましい。 The amount of these compounds added is preferably in the range of 1 ppm to 1.0% by mass relative to the transparent polyimide resin film, and more preferably in the range of 10 to 1000 ppm.
 (位相差制御剤)
 液晶表示装置等の画像表示装置の表示品質の向上のため、透明ポリイミド樹脂フィルム中に位相差制御剤を添加するか、配向膜を形成して液晶層を設け、偏光板保護フィルムと液晶層由来の位相差を複合化することにより、透明ポリイミド樹脂フィルムに光学補償能を付与することができる。
(Phase difference control agent)
In order to improve the display quality of image display devices such as liquid crystal display devices, a retardation control agent is added to the transparent polyimide resin film, or an alignment film is formed to provide a liquid crystal layer, derived from a polarizing plate protective film and a liquid crystal layer By compounding the above phase difference, optical compensation ability can be imparted to the transparent polyimide resin film.
 位相差制御剤としては、欧州特許911656A2号明細書に記載されているような、2以上の芳香環を有する芳香族化合物、特開2006-2025号公報に記載の棒状化合物等が挙げられる。また、2種類以上の芳香族化合物を併用してもよい。この芳香族化合物の芳香環には、芳香族炭化水素環に加えて、芳香族性ヘテロ環を含む芳香族性ヘテロ環であることが好ましい。芳香族性ヘテロ環は、一般に不飽和ヘテロ環である。なかでも、特開2006-2026号公報に記載の1,3,5-トリアジン環が好ましい。 Examples of the retardation control agent include aromatic compounds having two or more aromatic rings as described in European Patent No. 91656A2, and rod-like compounds described in JP-A-2006-2025. Two or more aromatic compounds may be used in combination. The aromatic ring of the aromatic compound is preferably an aromatic heterocyclic ring including an aromatic heterocyclic ring in addition to the aromatic hydrocarbon ring. The aromatic heterocycle is generally an unsaturated heterocycle. Of these, the 1,3,5-triazine ring described in JP-A-2006-2026 is preferable.
 なお、一般式(A1)で表される構造を有する化合物は、位相差制御剤としても機能する。このため、一般式(A1)で表される構造を有する化合物は、一つの化合物で位相差制御と温湿度環境変動に対する光学値変動抑制の両方の機能を付与することができる。 In addition, the compound having the structure represented by the general formula (A1) also functions as a phase difference controlling agent. For this reason, the compound which has a structure represented by general formula (A1) can provide both the function of both phase difference control and optical value fluctuation | variation suppression with respect to temperature / humidity environmental fluctuation | variation with one compound.
 これらの位相差制御剤の添加量は、透明ポリイミド樹脂フィルム系樹脂100質量%に対して、0.5~20質量%の範囲内であることが好ましく、1~10質量%の範囲内であることがより好ましい。 The amount of these retardation control agents added is preferably in the range of 0.5 to 20% by mass, preferably in the range of 1 to 10% by mass with respect to 100% by mass of the transparent polyimide resin film resin. It is more preferable.
 (剥離促進剤)
 透明ポリイミド樹脂フィルムの剥離抵抗を小さくする添加剤としては界面活性剤に効果の顕著なものが多く、好ましい剥離剤としてはリン酸エステル系の界面活性剤、カルボン酸又はカルボン酸塩系の界面活性剤、スルホン酸又はスルホン酸塩系の界面活性剤、硫酸エステル系の界面活性剤が効果的である。また上記界面活性剤の炭化水素鎖に結合している水素原子の一部をフッ素原子に置換したフッ素系界面活性剤も有効である。以下に剥離剤を例示する。
RZ-1 C17O-P(=O)-(OH)
RZ-2 C1225O-P(=O)-(OK)
RZ-3 C1225OCHCHO-P(=O)-(OK)
RZ-4 C1531(OCHCHO-P(=O)-(OK)
RZ-5 {C1225O(CHCHO)-P(=O)-OH
RZ-6 {C1835(OCHCHO}-P(=O)-ONH
RZ-7 (t-C-C-OCHCHO-P(=O)-(OK)RZ-8 (iso-C19-C-O-(CHCHO)-P(=O)-(OK)(OH)
RZ-9 C1225SONa
RZ-10 C1225OSONa
RZ-11 C1733COOH
RZ-12 C1733COOH・N(CHCHOH)
RZ-13 iso-C17-C-O-(CHCHO)-(CHSONa
RZ-14 (iso-C19-C-O-(CHCHO)-(CHSONa
RZ-15 トリイソプロピルナフタレンスルフォン酸ナトリウム
RZ-16 トリ-t-ブチルナフタレンスルフォン酸ナトリウム
RZ-17 C1733CON(CH)CHCHSONa
RZ-18 C1225-CSO・NH
 剥離促進剤の添加量は環状ポリイミドに対して0.05~5質量%が好ましく、0.1~2質量%が更に好ましく、0.1~0.5質量%が最も好ましい。
(Peeling accelerator)
As additives for reducing the peeling resistance of transparent polyimide resin films, there are many remarkable effects on surfactants, and preferable release agents include phosphate ester type surfactants, carboxylic acid or carboxylate type surfactants. Agents, sulfonic acid or sulfonate surfactants, and sulfate ester surfactants are effective. A fluorine-based surfactant in which part of the hydrogen atoms bonded to the hydrocarbon chain of the surfactant is substituted with fluorine atoms is also effective. Examples of the release agent are given below.
RZ-1 C 8 H 17 O—P (═O) — (OH) 2
RZ-2 C 12 H 25 O—P (═O) — (OK) 2
RZ-3 C 12 H 25 OCH 2 CH 2 O—P (═O) — (OK) 2
RZ-4 C 15 H 31 (OCH 2 CH 2 ) 5 O—P (═O) — (OK) 2
RZ-5 {C 12 H 25 O (CH 2 CH 2 O) 5} 2 -P (= O) -OH
RZ-6 {C 18 H 35 (OCH 2 CH 2 ) 8 O} 2 —P (═O) —ONH 4
RZ-7 (tC 4 H 9 ) 3 —C 6 H 2 —OCH 2 CH 2 O—P (═O) — (OK) 2 RZ-8 (iso-C 9 H 19 —C 6 H 4 — O— (CH 2 CH 2 O) 5 —P (═O) — (OK) (OH)
RZ-9 C 12 H 25 SO 3 Na
RZ-10 C 12 H 25 OSO 3 Na
RZ-11 C 17 H 33 COOH
RZ-12 C 17 H 33 COOH · N (CH 2 CH 2 OH) 3
RZ-13 iso-C 8 H 17 —C 6 H 4 —O— (CH 2 CH 2 O) 3 — (CH 2 ) 2 SO 3 Na
RZ-14 (iso-C 9 H 19) 2 -C 6 H 3 -O- (CH 2 CH 2 O) 3 - (CH 2) 4 SO 3 Na
RZ-15 sodium triisopropyl naphthalene sulfonate RZ-16 sodium tri-t-butyl naphthalene sulfonate RZ-17 C 17 H 33 CON (CH 3 ) CH 2 CH 2 SO 3 Na
RZ-18 C 12 H 25 -C 6 H 4 SO 3 .NH 4
The addition amount of the peeling accelerator is preferably 0.05 to 5% by mass, more preferably 0.1 to 2% by mass, and most preferably 0.1 to 0.5% by mass with respect to the cyclic polyimide.
 なお、本発明の透明ポリイミド樹脂フィルムに含有される添加剤は、上記微粒子に限られるものではない。 The additive contained in the transparent polyimide resin film of the present invention is not limited to the fine particles.
 本発明の透明ポリイミド樹脂組成物及び透明ポリイミド樹脂フィルムは、可視~赤外に吸収を持つ色素を含有することができる。可視域に吸収を有する色素を添加することで、例えばディスプレイ光源の波長を制御し、色域を拡大することができる特定波長カットフィルム等に使用できる。また、赤外域に吸収を持つ色素は、例えばセンサー用の赤外線カットフィルムに用いることができる。これらの色素を添加することで所望の透過率に調整することが可能となる。
 可視~赤外に吸収を持つ色素としては特に制限は無く、有機色素や無機色素を用いることができる。有機色素としては、例えばフタロシアニン系色素、アゾ系色素、オキソカーボン系色素、シアニン系色素、Ni錯体系色素等が挙げられる。
 耐熱性と吸収の先鋭性の観点から有機色素として好ましくは、フタロシアニン系色素、オキソカーボン系色素、シアニン系色素、Ni錯体系色素であり、オキソカーボン系色素がさらに好ましい。無機色素としては、金属酸化物微粒子や銅錯体化合物が挙げられる。
 無機色素として、好ましくは酸化タングステン系微粒子、酸化インジウム系微粒子、ホスホン酸を配位子とした銅錯体系微粒子が挙げられ、ホスホン酸を配位子とした銅錯体系微粒子がさらに好ましい。
 本発明に用いられる銅錯体系微粒子としては、特開2002-006101号公報に記載のホスホン酸と銅イオンを含有する銅錯体系微粒子が好ましく、炭素数が2~6のアルキルホスホン酸と銅イオンを含有する銅錯体系微粒子であることが特に好ましい。
 本発明の透明ポリイミド樹脂組成物及び透明ポリイミド樹脂フィルムに用いられる可視~赤外に吸収を持つ色素は樹脂中に溶解していても、微粒子として分散していても良い。
 本発明の透明ポリイミド樹脂組成物及び透明ポリイミド樹脂フィルムに用いられる可視~赤外に吸収を持つ色素の添加量は特に制限はないが、0.01~80質量%の範囲内が好ましく、0.05~50質量%の範囲内がさらに好ましく、0.1~30質量%の範囲内が特に好ましい。これらの範囲に調整することで所望の透過率に調整することができる。0.01質量%以上の添加で透過率の制御が可能となり、35質量%以内とすることでブリードアウトや色素の凝集、微粒子凝集が抑制されて透明性が向上する。
The transparent polyimide resin composition and transparent polyimide resin film of the present invention can contain a dye having absorption in the visible to infrared. By adding a dye having absorption in the visible range, for example, it can be used for a specific wavelength cut film or the like that can control the wavelength of the display light source and expand the color range. Moreover, the pigment | dye which has absorption in an infrared region can be used for the infrared cut film for sensors, for example. By adding these dyes, it becomes possible to adjust to a desired transmittance.
There is no particular limitation on the dye having absorption in the visible to infrared, and an organic dye or an inorganic dye can be used. Examples of organic dyes include phthalocyanine dyes, azo dyes, oxocarbon dyes, cyanine dyes, Ni complex dyes, and the like.
From the viewpoint of heat resistance and sharpness of absorption, the organic dye is preferably a phthalocyanine dye, an oxocarbon dye, a cyanine dye, or a Ni complex dye, and more preferably an oxocarbon dye. Examples of the inorganic dye include metal oxide fine particles and copper complex compounds.
Preferred inorganic dyes include tungsten oxide fine particles, indium oxide fine particles, and copper complex fine particles having phosphonic acid as a ligand, and copper complex fine particles having phosphonic acid as a ligand are more preferable.
The copper complex fine particles used in the present invention are preferably copper complex fine particles containing phosphonic acid and copper ions described in JP-A-2002-006101, and alkylphosphonic acids having 2 to 6 carbon atoms and copper ions. Particularly preferred are copper complex-based fine particles containing.
The dye having visible to infrared absorption used in the transparent polyimide resin composition and transparent polyimide resin film of the present invention may be dissolved in the resin or dispersed as fine particles.
The addition amount of the dye having absorption in the visible to infrared region used in the transparent polyimide resin composition and the transparent polyimide resin film of the present invention is not particularly limited, but is preferably in the range of 0.01 to 80% by mass. A range of 05 to 50% by mass is further preferable, and a range of 0.1 to 30% by mass is particularly preferable. It can adjust to a desired transmittance | permeability by adjusting to these ranges. The addition of 0.01% by mass or more makes it possible to control the transmittance. By setting the content within 35% by mass, bleeding out, dye aggregation, and fine particle aggregation are suppressed, and transparency is improved.
 (透明ポリイミド樹脂フィルムの物性)
 本発明の透明ポリイミド樹脂フィルムは、前述の全光線透過率やYI値を有することが好ましいが、その他の好ましい物性値としては、下記の物性値が挙げられる。
(Physical properties of transparent polyimide resin film)
The transparent polyimide resin film of the present invention preferably has the above-described total light transmittance and YI value, but other preferable physical property values include the following physical property values.
 (弾性率)
 引張弾性率の測定は、JIS K7127に準拠して以下の方法で測定されうる。
1)フィルムを100mm(MD方向)×10mm(TD軸)のサイズに切り出して、試験片とする。この試験片を、オリエンテック社製テンシロンRTC-1225Aを用いて、チャック間距離を50mmとし、試験片の長手方向(MD方向)に引っ張り、MD方向の引張弾性率を測定する。測定は、23℃55%RH下で行うことができる。
2)同様にして、フィルムを100mm(TD方向)×10mm(MD方向)のサイズに切り出して試験片とする。この試験片を、前述と同様にして長さ方向(TD方向)に引っ張り、TD方向の引張弾性率を測定する。
3)前記1)と2)で得られたMD方向とTD方向の引張弾性率の平均値を算出する。
(Elastic modulus)
The tensile modulus can be measured by the following method according to JIS K7127.
1) A film is cut out to a size of 100 mm (MD direction) × 10 mm (TD axis) to obtain a test piece. Using a Tensilon RTC-1225A manufactured by Orientec Co., the distance between chucks is 50 mm, the test piece is pulled in the longitudinal direction (MD direction) of the test piece, and the tensile elastic modulus in the MD direction is measured. The measurement can be performed at 23 ° C. and 55% RH.
2) Similarly, the film is cut into a size of 100 mm (TD direction) × 10 mm (MD direction) to obtain a test piece. The test piece is pulled in the length direction (TD direction) in the same manner as described above, and the tensile elastic modulus in the TD direction is measured.
3) The average value of the tensile elastic modulus in the MD direction and the TD direction obtained in 1) and 2) is calculated.
 透明ポリイミド樹脂フィルムの引張弾性率は、透明ポリイミド樹脂フィルムの機械強度の観点から、4GPa以上が好ましく、5GPa以上がより好ましい。 From the viewpoint of the mechanical strength of the transparent polyimide resin film, the tensile elastic modulus of the transparent polyimide resin film is preferably 4 GPa or more, and more preferably 5 GPa or more.
 (ヘイズ値)
 本発明では、熱処理後のロール体の透明ポリイミド樹脂フィルムについて、ヘイズ値が4%以下であることが、透明ポリイミド樹脂フィルムの透明性が高いという観点から好ましい。
(Haze value)
In this invention, about the transparent polyimide resin film of the roll body after heat processing, it is preferable from a viewpoint that the transparency of a transparent polyimide resin film is that a haze value is 4% or less.
 ヘイズの測定は、JIS K 7136に準拠して、ヘイズメーターNDH-2000(日本電色工業株式会社製)にてヘイズ(全ヘイズ)を測定できる。23℃・55%RHの条件下で測定し、ヘイズメーターの光源は、5V9Wのハロゲン球とし、受光部は、シリコンフォトセル(比視感度フィルター付き)とする。 The haze can be measured according to JIS K 7136 using a haze meter NDH-2000 (manufactured by Nippon Denshoku Industries Co., Ltd.). Measured under the conditions of 23 ° C. and 55% RH, the light source of the haze meter is a halogen bulb of 5V9W, and the light receiving part is a silicon photocell (with a relative visibility filter).
 <透明ポリイミド樹脂フィルムの製造方法>
 上記透明ポリイミド樹脂フィルムの製造方法の具体例について以下説明する。
<Method for producing transparent polyimide resin film>
The specific example of the manufacturing method of the said transparent polyimide resin film is demonstrated below.
 本発明の透明ポリイミド樹脂フィルムの製造方法は、本発明の透明ポリイミド樹脂を有機溶剤に溶解して得られるドープを調製する工程、及び前記ドープを支持体上に流延して膜を形成する工程を含む。 The method for producing a transparent polyimide resin film of the present invention includes a step of preparing a dope obtained by dissolving the transparent polyimide resin of the present invention in an organic solvent, and a step of casting the dope on a support to form a film. including.
 本発明の透明ポリイミド樹脂フィルムの製造方法としては、本発明の透明ポリイミド樹脂を有機溶剤に溶解して得られるドープを調製する工程(ドープ調製工程)、及び前記ドープを支持体上に流延して膜を形成する工程(流延膜形成工程)、前記膜を支持体から剥離する工程(剥離工程)、得られた流延膜を乾燥させてフィルムを得る工程(第1乾燥工程)、乾燥されたフィルムを延伸する工程(延伸工程)、延伸後のフィルムを更に乾燥させる工程(第2乾燥工程)、得られた透明ポリイミド樹脂フィルムを巻き取る工程(巻取り工程)、更に必要であればフィルムを加熱処理してイミド化させる工程(加熱工程)等を含むことがより好ましい。 The method for producing the transparent polyimide resin film of the present invention includes a step of preparing a dope obtained by dissolving the transparent polyimide resin of the present invention in an organic solvent (dope preparation step), and casting the dope on a support. Forming a film (casting film forming process), peeling the film from the support (peeling process), drying the obtained cast film to obtain a film (first drying process), drying A step of stretching the formed film (stretching step), a step of further drying the stretched film (second drying step), a step of winding up the obtained transparent polyimide resin film (winding step), and if necessary It is more preferable to include a step of heating the film to imidize (heating step) and the like.
 以上の工程を図をもって説明する。 The above process will be described with reference to the drawings.
 図1は、本発明に好ましい溶液流延製膜方法のドープ調製工程、流延工程、乾燥工程及び巻取り工程の一例を模式的に示した図である。 FIG. 1 is a diagram schematically showing an example of a dope preparation step, a casting step, a drying step, and a winding step of a solution casting film forming method preferable for the present invention.
 分散機によって溶媒とマット剤を分散させた微粒子分散液は仕込み釜141から濾過器144を通過しストック釜142にストックされる。一方主ドープであるシクロオレフィン樹脂は溶媒とともに溶解釜101にて溶解され、適宜ストック釜142に保管されているマット剤が添加されて混合され主ドープを形成する。得られた主ドープは、濾過器103、ストック釜104から濾過器106によって濾過され、合流管120によって添加剤が添加されて、混合機121で混合されて加圧ダイ130に液送される。 The fine particle dispersion in which the solvent and the matting agent are dispersed by the disperser passes from the charging tank 141 through the filter 144 and is stocked in the stock tank 142. On the other hand, the cycloolefin resin as the main dope is dissolved in the dissolving pot 101 together with the solvent, and a matting agent stored in the stock pot 142 is appropriately added and mixed to form the main dope. The obtained main dope is filtered from the filter 103 and the stock kettle 104 by the filter 106, the additive is added by the merge pipe 120, mixed by the mixer 121, and fed to the pressure die 130.
 一方、添加剤(例えば紫外線吸収剤、酸化防止剤など)は、溶媒に溶解され、添加剤仕込釜110から濾過器112を通過してストック釜113にストックされる。その後、濾過器115を通して導管116を経由して合流管120、混合機121によって主ドープと混合される。 On the other hand, additives (for example, UV absorbers, antioxidants, etc.) are dissolved in a solvent, passed from the additive charging pot 110 through the filter 112 and stocked in the stock pot 113. After that, the main dope is mixed by the merging pipe 120 and the mixer 121 through the filter 115 and the conduit 116.
 加圧ダイ130に液送された主ドープは、金属ベルト状の支持体131上に流延されてウェブ132を形成し、所定の乾燥後剥離位置133で剥離されフィルムを得る。剥離されたウェブ132は、第1乾燥装置134にて多数の搬送ローラーに通しながら、所定の残留溶媒量になるまで乾燥された後、延伸装置135によって長手方向又は幅手方向に延伸される。延伸後、第2乾燥装置136によって所定の残留溶媒量になるまで、搬送ローラー137に通しながら乾燥し、巻取り装置138によって、ロール状に巻取られる。 The main dope fed to the pressure die 130 is cast on a metal belt-like support 131 to form a web 132, and peeled at a peeling position 133 after predetermined drying to obtain a film. The peeled web 132 is dried until it reaches a predetermined residual solvent amount while passing through a large number of conveying rollers in the first drying device 134 and then stretched in the longitudinal direction or the width direction by the stretching device 135. After stretching, the film is dried while being passed through the transport roller 137 until it reaches a predetermined residual solvent amount by the second drying device 136, and is wound into a roll by the winding device 138.
 以下、各工程について具体的に説明する。 Hereinafter, each process will be described in detail.
 (ドープ調製工程)
 本発明の透明ポリイミド樹脂フィルムの製造方法は、透明ポリイミド樹脂を、溶剤に溶解してドープを調製し、当該ドープを用いて溶液流延製膜方法によって製膜することが好ましい。
(Dope preparation process)
In the method for producing the transparent polyimide resin film of the present invention, it is preferable that a dope is prepared by dissolving a transparent polyimide resin in a solvent, and the dope is used to form a film by a solution casting film forming method.
 溶剤は、沸点80℃以下の低沸点溶剤を主溶剤として用いることが、フィルムの製造プロセス温度(特に乾燥温度)を低減でき、熱収縮率を低減できるので好ましい。ここで「主溶剤として用いる」とは、混合溶剤であれば、溶剤全体量に対して55質量%以上を用いることをいい、好ましくは70質量%以上、より好ましくは80質量%以上、特に好ましくは90質量%以上用いることである。もちろん単独使用であれば100質量%となる。 As the solvent, it is preferable to use a low-boiling solvent having a boiling point of 80 ° C. or lower as the main solvent because the film production process temperature (particularly the drying temperature) can be reduced and the thermal shrinkage can be reduced. Here, “used as a main solvent” means that if it is a mixed solvent, 55% by mass or more is used with respect to the total amount of the solvent, preferably 70% by mass or more, more preferably 80% by mass or more, and particularly preferably. Is 90% by mass or more. Of course, if it is used alone, it becomes 100% by mass.
 低沸点溶剤は、ポリイミド、及びその他の添加剤を同時に溶解するものであれば良く、例えば、塩素系溶剤としては、ジクロロメタン、非塩素系溶剤としては、酢酸メチル、酢酸エチル、酢酸アミル、アセトン、メチルエチルケトン、テトラヒドロフラン、1,3-ジオキソラン、1,4-ジオキサン、シクロヘキサノン、ギ酸エチル、2,2,2-トリフルオロエタノール、2,2,3,3-ヘキサフルオロ-1-プロパノール、1,3-ジフルオロ-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-メチル-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール、2,2,3,3,3-ペンタフルオロ-1-プロパノール、ニトロエタン、メタノール、エタノール、n-プロパノール、iso-プロパノール、n-ブタノール、sec-ブタノール、tert-ブタノール等を挙げることができる。 The low boiling point solvent only needs to dissolve polyimide and other additives at the same time. For example, as the chlorinated solvent, dichloromethane, as the non-chlorinated solvent, methyl acetate, ethyl acetate, amyl acetate, acetone, Methyl ethyl ketone, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, cyclohexanone, ethyl formate, 2,2,2-trifluoroethanol, 2,2,3,3-hexafluoro-1-propanol, 1,3- Difluoro-2-propanol, 1,1,1,3,3,3-hexafluoro-2-methyl-2-propanol, 1,1,1,3,3,3-hexafluoro-2-propanol, 2, 2,3,3,3-pentafluoro-1-propanol, nitroethane, methanol, ethanol, n-propanol, so- propanol, n- butanol, sec- butanol, tert- butanol and the like.
 中でも沸点80℃以下の低沸点溶剤としては、上記溶剤の中で、ジクロロメタン(40℃)、酢酸エチル(77℃)、メチルエチルケトン(79℃)、テトラヒドロフラン(66℃)、アセトン(56.5℃)、及び1,3-ジオキソラン(75℃)の中から選択される少なくとも1種を主溶剤として含有することが好ましい(括弧内はそれぞれ沸点を表す。)。 Among them, as the low boiling point solvent having a boiling point of 80 ° C. or less, among the above solvents, dichloromethane (40 ° C.), ethyl acetate (77 ° C.), methyl ethyl ketone (79 ° C.), tetrahydrofuran (66 ° C.), acetone (56.5 ° C.) And at least one selected from 1,3-dioxolane (75 ° C.) as a main solvent (the parentheses each represent a boiling point).
 また、混合溶剤の場合に含有される溶剤としては、本発明の透明ポリイミド樹脂を溶解し得るものであれば、本発明の効果を阻害しない範囲で用いることができ、上記したもの以外の溶剤として、例えばN-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N-メチルカプロラクタム、ヘキサメチルホスホルアミド、テトラメチレンスルホン、ジメチルスルホキシド、m-クレゾール、フェノール、p-クロルフェノール、2-クロル-4-ヒドロキシトルエン、ジグライム、トリグライム、テトラグライム、ジオキサン、γ-ブチロラクトン、ジオキソラン、シクロペンタノン、イプシロンカプロラクタム、クロロホルム等が使用可能であり、2種以上を併用しても良い。また、これらの溶剤と併せて、ヘキサン、ヘプタン、ベンゼン、トルエン、キシレン、クロロベンゼン、o-ジクロロベンゼン等の貧溶剤を、本発明に係るポリイミド及びカルボニル基を有する有機化合物が析出しない程度に使用しても良い。 Moreover, as a solvent contained in the case of a mixed solvent, as long as it can dissolve the transparent polyimide resin of the present invention, it can be used as long as the effect of the present invention is not hindered. For example, N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-diethylacetamide, N, N-dimethylformamide, N, N-diethylformamide, N-methylcaprolactam, hexamethylphosphoramide, tetra Methylene sulfone, dimethyl sulfoxide, m-cresol, phenol, p-chlorophenol, 2-chloro-4-hydroxytoluene, diglyme, triglyme, tetraglyme, dioxane, γ-butyrolactone, dioxolane, cyclopentanone, epsilon caprolactam, chloroform, etc. But Is capable of use, it may be used in combination of two or more thereof. In addition to these solvents, a poor solvent such as hexane, heptane, benzene, toluene, xylene, chlorobenzene, or o-dichlorobenzene is used to such an extent that the polyimide and the organic compound having a carbonyl group according to the present invention do not precipitate. May be.
 また、アルコール系溶剤を用いることもできる。当該アルコール系溶剤が、メタノール、エタノール及びブタノールから選択されることが、剥離性を改善し、高速度流延を可能にする観点から好ましい。中でもメタノール又はエタノールを用いることが好ましい。ドープ中のアルコールの比率が高くなるとウェブがゲル化し、金属支持体からの剥離が容易になる。 Alcohol solvents can also be used. The alcohol solvent is preferably selected from methanol, ethanol, and butanol from the viewpoint of improving peelability and enabling high-speed casting. Of these, methanol or ethanol is preferably used. When the ratio of the alcohol in the dope increases, the web gels and peeling from the metal support becomes easy.
 ポリイミド、その他の添加剤の溶解には、常圧で行う方法、主溶剤の沸点以下で行う方法、主溶剤の沸点以上で加圧して行う方法、特開平9-95544号公報、特開平9-95557号公報、又は特開平9-95538号公報に記載の冷却溶解法で行う方法、特開平11-21379号公報に記載の高圧で行う方法等、種々の溶解方法を用いることができる。 For dissolving polyimide and other additives, a method carried out at normal pressure, a method carried out below the boiling point of the main solvent, a method carried out under pressure above the boiling point of the main solvent, JP-A-9-95544, JP-A-9- Various dissolution methods can be used, such as a method using the cooling dissolution method described in JP-A-95557 or JP-A-9-95538, and a method using high pressure described in JP-A-11-21379.
 調製したドープは、送液ポンプ等により濾過器に導いて濾過する。例えば、ドープの主たる溶剤がジクロロメタンの場合、当該ジクロロメタンの1気圧における沸点+5℃以上の温度で当該ドープを濾過することにより、ドープ中のゲル状異物を取り除くことができる。好ましい温度範囲は45~120℃であり、45~70℃がより好ましく、45~55℃の範囲内であることが更に好ましい。 The prepared dope is guided to a filter by a liquid feed pump or the like and filtered. For example, when the main solvent of the dope is dichloromethane, the gel-like foreign matter in the dope can be removed by filtering the dope at a temperature of boiling point at 1 atm of the dichloromethane + 5 ° C. or more. A preferred temperature range is 45 to 120 ° C, more preferably 45 to 70 ° C, and even more preferably within a range of 45 to 55 ° C.
 また、ドープ調製に用いられる樹脂の原料としては、あらかじめポリイミド及びその他の化合物などをペレット化したものも、好ましく用いることができる。 Further, as a raw material for the resin used for preparing the dope, a material obtained by pelletizing polyimide and other compounds in advance can be preferably used.
 (流延膜形成工程)
 調製したドープを、送液ポンプ(例えば、加圧型定量ギヤポンプ)を通してダイスに送液し、無限に移送する無端の支持体、例えば、ステンレスベルト又は回転する金属ドラム等の金属支持体上の流延位置に、ダイスからドープを流延する。
(Casting film forming process)
The prepared dope is fed to a die through a feed pump (for example, a pressurized metering gear pump), and cast on an endless support that moves indefinitely, such as a stainless steel belt or a metal support such as a rotating metal drum. Cast the dope from the die into position.
 流延(キャスト)における金属支持体は、表面を鏡面仕上げしたものが好ましく、支持体としては、ステンレススティールベルト又は鋳物で表面をめっき仕上げしたドラム、又はステンレスベルト若しくはステンレス鋼ベルト等の金属支持体が好ましく用いられる。キャストの幅は1~4mの範囲、好ましくは1.5~3mの範囲、更に好ましくは2~2.8mの範囲とすることができる。なお、支持体は、金属製でなくとも良く、例えば、ポリエチレンテレフタレート(PET)フィルム、ポリエチレンナフタレート(PEN)フィルム、ポリブチレンテレフタレート(PBT)フィルム、ナイロン6フィルム、ナイロン6,6フィルム、ポリプロピレンフィルム、ポリテトラフルオロエチレン等のベルト等を用いることができる。フレキシブル基板としてポリイミドを用いる場合、ポリイミドを流延した金属支持体ごと透明ポリイミド樹脂フィルムを巻き取っても良い。 The metal support in casting (cast) is preferably a mirror-finished surface, and the support is a stainless steel belt or a drum whose surface is plated with a casting, or a metal support such as a stainless steel belt or a stainless steel belt. Is preferably used. The cast width can be in the range of 1 to 4 m, preferably in the range of 1.5 to 3 m, more preferably in the range of 2 to 2.8 m. The support may not be made of metal, for example, polyethylene terephthalate (PET) film, polyethylene naphthalate (PEN) film, polybutylene terephthalate (PBT) film, nylon 6 film, nylon 6,6 film, polypropylene film. A belt made of polytetrafluoroethylene or the like can be used. When using a polyimide as a flexible substrate, you may wind up a transparent polyimide resin film with the metal support body which cast the polyimide.
 金属支持体の走行速度は特に制限されないが、通常は5m/分以上であり、好ましくは10~180m/分、特に好ましくは80~150m/分の範囲内である。金属支持体の走行速度は、高速であるほど、同伴ガスが発生しやすくなり、外乱による膜厚ムラの発生が顕著になる。 The traveling speed of the metal support is not particularly limited, but is usually 5 m / min or more, preferably 10 to 180 m / min, particularly preferably 80 to 150 m / min. As the traveling speed of the metal support increases, entrained gas is more likely to be generated, and the occurrence of film thickness unevenness due to disturbance is more pronounced.
 金属支持体の走行速度は、金属支持体外表面の移動速度である。 The traveling speed of the metal support is the moving speed of the outer surface of the metal support.
 ダイスは、幅方向に対する垂直断面において、吐出口に向かうに従い次第に細くなる形状を有している。ダイスは通常、具体的には、下部の走行方向で下流側と上流側とにテーパー面を有し、当該テーパー面の間に吐出口がスリット形状で形成されている。ダイスは金属からなるものが好ましく使用され、具体例として、例えば、ステンレス、チタン等が挙げられる。本発明において、厚さが異なるフィルムを製造するとき、スリット間隙の異なるダイスに変更する必要はない。 The die has a shape that becomes gradually narrower toward the discharge port in the vertical cross section with respect to the width direction. In general, the die usually has tapered surfaces on the downstream side and the upstream side in the lower traveling direction, and a discharge port is formed in a slit shape between the tapered surfaces. A die made of metal is preferably used, and specific examples include stainless steel, titanium, and the like. In the present invention, when manufacturing films having different thicknesses, it is not necessary to change to dies having different slit gaps.
 ダイの口金部分のスリット形状を調整でき、膜厚を均一にしやすい加圧ダイを用いることが好ましい。加圧ダイには、コートハンガーダイやTダイ等があり、いずれも好ましく用いられる。厚さが異なるフィルムを連続的に製造する場合であっても、ダイスの吐出量は略一定の値に維持されるので、加圧ダイを用いる場合、押し出し圧力、せん断速度等の条件もまた略一定の値に維持される。また、製膜速度を上げるために加圧ダイを金属支持体上に2基以上設け、ドープ量を分割して積層しても良い。 ¡It is preferable to use a pressure die that can adjust the slit shape of the die base and easily make the film thickness uniform. Examples of the pressure die include a coat hanger die and a T die, and any of them is preferably used. Even when films with different thicknesses are continuously manufactured, the discharge rate of the dies is maintained at a substantially constant value. Therefore, when a pressure die is used, conditions such as extrusion pressure and shear rate are also substantially reduced. Maintained at a constant value. In order to increase the film forming speed, two or more pressure dies may be provided on the metal support, and the dope amount may be divided and laminated.
 (溶剤蒸発工程)
 溶剤蒸発工程は、金属支持体上で行われ、流延膜を金属支持体上で加熱し、溶剤を蒸発させる予備乾燥工程である。
(Solvent evaporation process)
The solvent evaporation step is a pre-drying step which is performed on a metal support and the cast film is heated on the metal support to evaporate the solvent.
 溶剤を蒸発させるには、例えば、乾燥機により流延膜側及び金属支持体裏側から加熱風を吹き付ける方法、金属支持体の裏面から加熱液体により伝熱させる方法、輻射熱により表裏から伝熱する方法等を挙げることができる。それらを適宜選択して組み合わせる方法も好ましい。金属支持体の表面温度は全体が同じであっても良いし、位置によって異なっていても良い。加熱風の温度は10~220℃の範囲内が好ましい。 To evaporate the solvent, for example, a method of blowing heated air from the casting membrane side and the back side of the metal support by a dryer, a method of transferring heat from the back side of the metal support by a heating liquid, a method of transferring heat from the front and back by radiant heat Etc. A method of appropriately selecting and combining them is also preferable. The surface temperature of the metal support may be the same as a whole or may vary depending on the position. The temperature of the heating air is preferably in the range of 10 to 220 ° C.
 加熱風の温度(乾燥温度)は、200℃以下であることが好ましく、140℃以下であることがより好ましく、120℃以下であることがさらに好ましい。 The temperature of the heating air (drying temperature) is preferably 200 ° C. or lower, more preferably 140 ° C. or lower, and further preferably 120 ° C. or lower.
 溶剤蒸発工程においては、流延膜の剥離性及び剥離後の搬送性の観点から、残留溶剤量が10~150質量%の範囲内になるまで、流延膜を乾燥することが好ましい。 In the solvent evaporation step, it is preferable to dry the cast film until the residual solvent amount is in the range of 10 to 150% by mass from the viewpoint of the peelability of the cast film and the transportability after peeling.
 本発明において、残留溶剤量は下記の式で表すことができる。 In the present invention, the amount of residual solvent can be expressed by the following formula.
  残留溶剤量(質量%)={(M-N)/N}×100
 ここで、Mは流延膜(フィルム)の所定の時点での質量、NはMのものを200℃で3時間乾燥させた時の質量である。特に、溶剤蒸発工程において達成された残留溶剤量を算出するときのMは剥離工程直前の流延膜の質量である。
Residual solvent amount (% by mass) = {(MN) / N} × 100
Here, M is the mass at a predetermined point of the casting membrane (film), and N is the mass when M is dried at 200 ° C. for 3 hours. In particular, M when calculating the amount of residual solvent achieved in the solvent evaporation step is the mass of the cast film immediately before the peeling step.
 (剥離工程)
 金属支持体上で溶剤が蒸発した流延膜を、剥離位置で剥離する。
(Peeling process)
The cast film from which the solvent has evaporated on the metal support is peeled off at the peeling position.
 金属支持体と流延膜とを剥離する際の剥離張力は、通常、60~400N/mの範囲内であるが、剥離の際に皺が入りやすい場合、190N/m以下の張力で剥離することが好ましい。 The peeling tension when peeling the metal support from the casting film is usually in the range of 60 to 400 N / m. However, if wrinkles are likely to occur during peeling, peeling is performed with a tension of 190 N / m or less. It is preferable.
 本発明においては、当該金属支持体上の剥離位置における温度を-50~60℃の範囲内とするのが好ましく、10~40℃の範囲内がより好ましく、15~40℃の範囲内とするのが最も好ましい。 In the present invention, the temperature at the peeling position on the metal support is preferably in the range of −50 to 60 ° C., more preferably in the range of 10 to 40 ° C., and in the range of 15 to 40 ° C. Is most preferred.
 剥離されたフィルムは、延伸工程に直接送られても良いし、所望の残留溶剤量を達成するように第1乾燥工程に送られた後に延伸工程に送られても良い。本発明においては、延伸工程での安定搬送の観点から、剥離工程後、フィルムは、第1乾燥工程及び延伸工程に順次送られることが好ましい。 The peeled film may be sent directly to the stretching process, or may be sent to the stretching process after being sent to the first drying process so as to achieve a desired residual solvent amount. In the present invention, from the viewpoint of stable conveyance in the stretching step, it is preferable that the film is sequentially sent to the first drying step and the stretching step after the peeling step.
 (第1乾燥工程)
 第1乾燥工程は、フィルムを加熱し、溶剤を更に蒸発させる乾燥工程である。乾燥手段は特に制限されず、例えば、熱風、赤外線、加熱ローラー、マイクロ波等を用いることができる。簡便さの観点からは、千鳥状に配置したローラーでフィルムを搬送しながら、熱風等で乾燥を行うことが好ましい。乾燥温度は、残留溶剤量及び搬送における伸縮率等を考慮して、30~200℃の範囲が好ましい。
(First drying step)
The first drying step is a drying step in which the film is heated and the solvent is further evaporated. The drying means is not particularly limited, and for example, hot air, infrared rays, a heating roller, microwaves and the like can be used. From the viewpoint of simplicity, it is preferable to dry with hot air or the like while transporting the film with rollers arranged in a staggered manner. The drying temperature is preferably in the range of 30 to 200 ° C., taking into account the amount of residual solvent and the stretching ratio during conveyance.
 乾燥温度は、200℃以下であることが好ましく、140℃以下であることがより好ましく、120℃以下であることがさらに好ましい。 The drying temperature is preferably 200 ° C. or lower, more preferably 140 ° C. or lower, and further preferably 120 ° C. or lower.
 乾燥温度を低温にすることで、フィルムの熱収縮率を大きくすることができる。 ¡By reducing the drying temperature, the heat shrinkage rate of the film can be increased.
 (延伸工程)
 金属支持体から剥離されたフィルムを延伸することで、フィルムの膜厚や平坦性、配向性等を制御することができる。
(Stretching process)
By stretching the film peeled from the metal support, the film thickness, flatness, orientation and the like of the film can be controlled.
 本発明のフィルムの製造方法においては、長手方向又は幅手方向に延伸することが好ましい。 In the film production method of the present invention, it is preferable to stretch in the longitudinal direction or the width direction.
 延伸操作は多段階に分割して実施しても良い。また、二軸延伸を行う場合には同時二軸延伸を行っても良いし、段階的に実施しても良い。この場合、段階的とは、例えば、延伸方向の異なる延伸を順次行うことも可能であるし、同一方向の延伸を多段階に分割し、かつ異なる方向の延伸をそのいずれかの段階に加えることも可能である。 The stretching operation may be performed in multiple stages. Moreover, when performing biaxial stretching, simultaneous biaxial stretching may be performed and you may implement in steps. In this case, stepwise means that, for example, stretching in different stretching directions can be sequentially performed, stretching in the same direction is divided into multiple stages, and stretching in different directions is added to any one of the stages. Is also possible.
 すなわち、例えば、次のような延伸ステップも可能である:
 ・長手方向に延伸→幅手方向に延伸→長手方向に延伸→長手方向に延伸
 ・幅手方向に延伸→幅手方向に延伸→長手方向に延伸→長手方向に延伸
 また、同時二軸延伸には、一方向に延伸し、もう一方を、張力を緩和して収縮する場合も含まれる。同時二軸延伸の好ましい延伸倍率は幅手方向、長手方向ともに×1.01倍~×1.5倍の範囲でとることができる。
Thus, for example, the following stretching steps are possible:
-Stretch in the longitudinal direction-> Stretch in the width direction-> Stretch in the longitudinal direction-> Stretch in the longitudinal direction-Stretch in the width direction-> Stretch in the width direction-> Stretch in the longitudinal direction-> Stretch in the longitudinal direction Includes stretching in one direction and contracting the other while relaxing the tension. The preferred draw ratio for simultaneous biaxial stretching can be in the range of x1.01 to x1.5 in both the width direction and the longitudinal direction.
 延伸開始時の残留溶剤量は0.1~200質量%の範囲内であることが好ましい。 The amount of residual solvent at the start of stretching is preferably in the range of 0.1 to 200% by mass.
 当該残留溶剤量は、0.1質量%以上であれば、延伸による平面性向上の効果が得られ、200%以下であると延伸しやすい。 If the amount of the residual solvent is 0.1% by mass or more, the effect of improving the flatness by stretching is obtained, and if it is 200% or less, stretching is easy.
 本発明の透明ポリイミド樹脂フィルムの製造方法においては、延伸後の膜厚が所望の範囲になるように長手方向又は幅手方向に、好ましくは幅手方向に延伸しても良い。透明ポリイミド樹脂フィルムのガラス転移温度(Tg)に対して、(Tg-200)~(Tg+100)℃の温度範囲で延伸することが好ましい。上記温度範囲で延伸すると、延伸応力を低下できるのでヘイズが低くなる。また、破断の発生を抑制し、平面性、透明ポリイミド樹脂フィルム自身の着色性に優れた透明ポリイミド樹脂フィルムが得られる。延伸温度は、(TgL-150)~(TgH+50)℃の範囲で行うことがより好ましい。 In the method for producing a transparent polyimide resin film of the present invention, the film may be stretched in the longitudinal direction or the width direction, preferably in the width direction, so that the film thickness after stretching is in a desired range. The transparent polyimide resin film is preferably stretched in a temperature range of (Tg−200) to (Tg + 100) ° C. with respect to the glass transition temperature (Tg). If it extends in the said temperature range, since a extending | stretching stress can be reduced, a haze will become low. Moreover, generation | occurrence | production of a fracture | rupture is suppressed and the transparent polyimide resin film excellent in planarity and the coloring property of transparent polyimide resin film itself is obtained. The stretching temperature is more preferably in the range of (TgL−150) to (TgH + 50) ° C.
 本発明に係る透明ポリイミド樹脂フィルムの製造方法では、支持体から剥離された自己支持性を有するフィルムを、延伸ローラーで走行速度を規制することにより長手方向に延伸することができる。 In the method for producing a transparent polyimide resin film according to the present invention, the self-supporting film peeled from the support can be stretched in the longitudinal direction by regulating the running speed with a stretching roller.
 幅手方向に延伸するには、例えば、特開昭62-46625号公報に示されているような乾燥全処理又は一部の処理を幅方向にクリップ又はピンでフィルムの幅両端を幅保持しつつ乾燥させる方法(テンター方式と呼ばれる。)、中でも、クリップを用いるテンター方式が好ましく用いられる。 In order to stretch the film in the width direction, for example, the entire width of the film is held with clips or pins in the width direction in the entire drying process or a part of the process as disclosed in JP-A-62-46625. A method of drying while drying (referred to as a tenter method), among which a tenter method using a clip is preferably used.
 長手方向に延伸されたフィルム又は未延伸のフィルムは、クリップに幅方向両端部を把持された状態にてテンターへ導入され、テンタークリップとともに走行しながら、幅方向へ延伸されることが好ましい。 The film stretched in the longitudinal direction or the unstretched film is preferably introduced into the tenter in a state where both ends in the width direction are held by the clip, and stretched in the width direction while running with the tenter clip.
 幅手方向への延伸に際し、フィルム幅手方向に50~1000%/minの範囲内の延伸速度で延伸することが、フィルムの平面性を向上する観点から、好ましい。 When stretching in the width direction, stretching in the width direction of the film at a stretching speed in the range of 50 to 1000% / min is preferable from the viewpoint of improving the flatness of the film.
 延伸速度は50%/min以上であれば、平面性が向上し、またフィルムを高速で処理することができるため、生産適性の観点で好ましく、1000%/min以内であれば、フィルムが破断することなく処理することができ、好ましい。 If the stretching speed is 50% / min or more, the planarity is improved and the film can be processed at high speed, which is preferable from the viewpoint of production aptitude, and if it is within 1000% / min, the film is broken. Can be processed without any problem.
 より好ましい延伸速度は、100~500%/minの範囲内である。延伸速度は下記式によって定義される。 More preferable stretching speed is in the range of 100 to 500% / min. The stretching speed is defined by the following formula.
  延伸速度(%/min)=[(d/d)-1]×100(%)/t
 (上記式において、dは延伸後の樹脂フィルムの延伸方向の幅寸法であり、dは延伸前の樹脂フィルムの延伸方向の幅寸法であり、tは延伸に要する時間(min)である。)
 延伸工程では、通常、延伸した後、保持・緩和が行われる。すなわち、本工程は、フィルムを延伸する延伸段階、フィルムを延伸状態で保持する保持段階及びフィルムを延伸した方向に緩和する緩和段階をこれらの順序で行うことが好ましい。保持段階では、延伸段階で達成された延伸倍率での延伸を、延伸段階における延伸温度で保持する。緩和段階では、延伸段階における延伸を保持段階で保持した後、延伸のための張力を解除することによって、延伸を緩和する。緩和段階は、延伸段階における延伸温度以下で行えば良い。
Stretching speed (% / min) = [(d 1 / d 2 ) −1] × 100 (%) / t
(In the above formula, d 1 is the width dimension in the stretching direction of the resin film after stretching, d 2 is the width dimension in the stretching direction of the resin film before stretching, and t is the time (min) required for stretching. .)
In the stretching step, usually, after stretching, holding and relaxation are performed. That is, in this step, it is preferable to perform a stretching step for stretching the film, a holding step for holding the film in a stretched state, and a relaxation step for relaxing the film in the stretched direction in this order. In the holding step, the drawing at the draw ratio achieved in the drawing step is held at the drawing temperature in the drawing step. In the relaxation stage, the stretching in the stretching stage is held in the holding stage, and then the stretching is relaxed by releasing the tension for stretching. The relaxation step may be performed at a temperature lower than the stretching temperature in the stretching step.
 (第2乾燥工程)
 次いで、延伸後のフィルムを加熱して乾燥させる。熱風等によりフィルムを加熱する場合、使用済みの熱風(溶剤を含んだエアーや濡れ込みエアー)を排気できるノズルを設置して、使用済み熱風の混入を防ぐ手段も好ましく用いられる。熱風温度は、40~350℃の範囲がより好ましい。また、乾燥時間は5秒~30分程度が好ましく、10秒~15分がより好ましい。
(Second drying step)
Next, the stretched film is heated and dried. In the case of heating the film with hot air or the like, a means for preventing the mixing of used hot air by installing a nozzle capable of exhausting used hot air (air containing solvent or wet air) is also preferably used. The hot air temperature is more preferably in the range of 40 to 350 ° C. The drying time is preferably about 5 seconds to 30 minutes, more preferably 10 seconds to 15 minutes.
 また、加熱乾燥手段は熱風に制限されず、例えば、赤外線、加熱ローラー、マイクロ波等を用いることができる。簡便さの観点からは、千鳥状に配置したローラーでフィルムを搬送しながら、熱風等で乾燥を行うことが好ましい。乾燥温度は、40~150℃の範囲であることが加熱収縮が大きくなりやすい観点から好ましい。さらに40~120℃であることがより好ましい。 Further, the heating and drying means is not limited to hot air, and for example, infrared rays, heating rollers, microwaves, etc. can be used. From the viewpoint of simplicity, it is preferable to dry with hot air or the like while transporting the film with rollers arranged in a staggered manner. The drying temperature is preferably in the range of 40 to 150 ° C. from the viewpoint of easy heating shrinkage. More preferably, it is 40 to 120 ° C.
 第2乾燥工程においては、残留溶剤量が0.5質量%以下になるまで、フィルムを乾燥することが好ましい。 In the second drying step, it is preferable to dry the film until the residual solvent amount is 0.5% by mass or less.
 (巻取り工程)
 巻取り工程は、得られた透明ポリイミド樹脂フィルムを巻き取って室温まで冷却する工程である。巻取り機は、一般的に使用されているもので良く、例えば、定テンション法、定トルク法、テーパーテンション法、内部応力一定のプログラムテンションコントロール法等の巻取り方法で巻き取ることができる。
(Winding process)
A winding process is a process of winding up the obtained transparent polyimide resin film, and cooling to room temperature. The winding machine may be a commonly used one, and can be wound by a winding method such as a constant tension method, a constant torque method, a taper tension method, a program tension control method with a constant internal stress, or the like.
 透明ポリイミド樹脂フィルムの厚さは特に制限されず、例えば、1~200μm、特に1~100μmの範囲内であることが好ましい。 The thickness of the transparent polyimide resin film is not particularly limited, and is preferably in the range of 1 to 200 μm, particularly 1 to 100 μm, for example.
 巻取り工程においては、延伸搬送したときにテンタークリップ等で挟み込んだ透明ポリイミド樹脂フィルムの両端をスリット加工しても良い。スリットした透明ポリイミド樹脂フィルム端部は、1~30mm幅の範囲内に細かく断裁された後、溶剤に溶解させて返材として再利用することが好ましい。 In the winding process, both ends of the transparent polyimide resin film sandwiched between tenter clips when stretched and conveyed may be slit. The slit end portion of the transparent polyimide resin film is preferably cut into a width of 1 to 30 mm, then dissolved in a solvent and reused as a recycled material.
 上述した溶剤蒸発工程から巻取り工程までの各工程は、空気雰囲気下で行っても良いし、窒素ガス等の不活性ガス雰囲気下で行っても良い。また、各工程、特に乾燥工程や延伸工程は、雰囲気における溶剤の爆発限界濃度を考慮して行う。 Each process from the solvent evaporation process to the winding process described above may be performed in an air atmosphere or an inert gas atmosphere such as nitrogen gas. Moreover, each process, especially a drying process and a extending process, are performed in consideration of the explosion limit concentration of the solvent in the atmosphere.
 (加熱工程)
 上記巻取り工程後に、ポリマー鎖分子内及びポリマー鎖分子間でのイミド化を進行させて機械的特性を向上させるべく、上記第2乾燥工程で乾燥した透明ポリイミド樹脂フィルムを更に熱処理する加熱工程を行っても良い。
(Heating process)
After the winding step, a heating step of further heat-treating the transparent polyimide resin film dried in the second drying step in order to improve imidization in the polymer chain molecules and between the polymer chain molecules to improve mechanical properties. You can go.
 なお、上記第2乾燥工程が、加熱工程を兼ねるものであっても良い。 In addition, the said 2nd drying process may serve as a heating process.
 加熱手段は、例えば、熱風、電気ヒーター、マイクロ波等の公知の手段を用いて行われる。電気ヒーターとしては、上記した赤外線ヒーターを用いることができる。 The heating means is performed using a known means such as hot air, an electric heater, or a microwave. As the electric heater, the above-described infrared heater can be used.
 加熱工程において、透明ポリイミド樹脂フィルムを急激に加熱すると表面欠点が増加する等の不具合が生じるため、加熱方法は適宜選択することが好ましい。また、加熱工程は、低酸素雰囲気下で行うことが好ましい。 In the heating step, if the transparent polyimide resin film is heated rapidly, problems such as an increase in surface defects occur, and therefore it is preferable to select a heating method as appropriate. The heating step is preferably performed in a low oxygen atmosphere.
 第二乾燥工程及び加熱工程における加熱温度は450℃を超えると、加熱に必要なエネルギーが非常に大きくなることから製造コストが高くなり、更に、環境負荷が増大するため、当該加熱温度は450℃以下にすることが好適である。 When the heating temperature in the second drying step and the heating step exceeds 450 ° C., the energy required for heating becomes very large, resulting in an increase in manufacturing cost and an increase in environmental load. The following is preferable.
 なお、巻取り工程後であって、加熱工程の前又は後に、透明ポリイミド樹脂フィルムの幅方向端部をスリットする工程や、透明ポリイミド樹脂フィルムが帯電していた場合にはこれを除電する工程等を更に行うものとしても良い。 In addition, after the winding process, before or after the heating process, the process of slitting the width direction end of the transparent polyimide resin film, the process of neutralizing this when the transparent polyimide resin film is charged, etc. May be further performed.
 <透明ポリイミド樹脂フィルムの形状>
 本発明の透明ポリイミド樹脂フィルムは、長尺であることが好ましく、具体的には、100~10000m程度の範囲内の長さであることが好ましく、ロール状に巻き取られる。また、本発明の透明ポリイミド樹脂フィルムの幅は1m以上であることが好ましく、更に好ましくは1.4m以上であり、特に1.4~4mであることが好ましい。
<Shape of transparent polyimide resin film>
The transparent polyimide resin film of the present invention is preferably long, specifically, preferably has a length in the range of about 100 to 10,000 m, and is wound into a roll. Further, the width of the transparent polyimide resin film of the present invention is preferably 1 m or more, more preferably 1.4 m or more, and particularly preferably 1.4 to 4 m.
 本発明の透明ポリイミド樹脂フィルムは、前述したような単独フィルムとして用いる以外にも塗布フィルムとしても使用できる。例えばイメージセンサー用のシリコンウェハやカラーフィルター上に、赤外線吸収性化合物を含有する本発明の透明ポリイミド樹脂組成物(赤外線吸収組成物)を赤外線吸収層として塗布して乾燥することでフィルム化し、剥離せずにそのまま用いることや、素ガラスや佛リン酸硝子に透明ポリイミド樹脂組成物を赤外線吸収層として塗布して乾燥することでフィルム化し、剥離せずに用いることもできる。 The transparent polyimide resin film of the present invention can be used as a coating film in addition to the single film as described above. For example, a transparent polyimide resin composition (infrared absorbing composition) of the present invention containing an infrared absorbing compound is applied as an infrared absorbing layer on a silicon wafer or a color filter for an image sensor and dried to form a film. The film can be used as it is without being peeled off, or can be used without being peeled off by applying a transparent polyimide resin composition as an infrared absorbing layer to an elemental glass or phosphoric acid glass and drying it.
 赤外線吸収層は、近赤外線吸収層であることが好ましい。
 赤外線吸収層の膜厚としては、樹脂フィルムの場合、通常20~200μm、好ましくは50~100μmの範囲内である。スピンコートやダイコートでコーティングする場合には、通常0.1~100μmであり、好ましくは0.5~10μmの範囲内である。
 膜厚が上記範囲内にあると、赤外線吸収能、430~580nmの範囲における透過率および強度に優れた赤外線吸収層を得ることができる。
The infrared absorbing layer is preferably a near infrared absorbing layer.
In the case of a resin film, the film thickness of the infrared absorbing layer is usually 20 to 200 μm, preferably 50 to 100 μm. In the case of coating by spin coating or die coating, it is usually 0.1 to 100 μm, preferably 0.5 to 10 μm.
When the film thickness is in the above range, an infrared absorption layer having excellent infrared absorption ability and transmittance and strength in the range of 430 to 580 nm can be obtained.
 <基板>
 本発明の透明ポリイミド樹脂フィルムは基板上に形成されていても良く、ガラス、プラスチック等の種類には特に限定はなく、また透明であっても不透明であってもよい。
 支持基板側から光を取り出す場合には、支持基板は透明であることが好ましい。
 好ましく用いられる透明な支持基板としては、ガラス、石英、ITO等の透明電極、透明樹脂フィルムを挙げることができる。樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート(TAC)、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート、セルロースナイトレート等のセルロースエステル類又はそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリル又はポリアリレート類、アートン(商品名JSR社製)又はアペル(商品名三井化学社製)といったシクロオレフィン系樹脂等を挙げられる。
 ガラス基板としては、主成分として、珪酸塩を含むガラス基板であれば、特に限定されるものではなく、結晶構造を有する石英ガラス基板等が挙げることができる。他に、フツリン酸塩系ガラスやリン酸塩系ガラス等にCuO等を添加した吸収型ガラス基板、ホウ珪酸ガラス基板、ソーダガラス基板、色ガラス基板、無アルカリガラス基板、石英ガラス基板等を用いることができるが、とりわけ、無アルカリガラス基板、低α線ガラス基板等のガラス基板が好ましい。
<Board>
The transparent polyimide resin film of the present invention may be formed on a substrate, and there is no particular limitation on the type of glass, plastic and the like, and it may be transparent or opaque.
When extracting light from the support substrate side, the support substrate is preferably transparent.
Examples of the transparent support substrate preferably used include glass, quartz, transparent electrodes such as ITO, and transparent resin films. Examples of the resin film include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (TAC), cellulose acetate butyrate, cellulose acetate propionate ( CAP), cellulose esters such as cellulose acetate phthalate, cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide , Polyethersulfone (PES), polyphenylene sulfide, polysulfones, Cycloolefin resins such as polyether imide, polyether ketone imide, polyamide, fluororesin, nylon, polymethyl methacrylate, acrylic or polyarylate, Arton (trade name, manufactured by JSR) or Appel (trade name, manufactured by Mitsui Chemicals) Can be mentioned.
The glass substrate is not particularly limited as long as it is a glass substrate containing silicate as a main component, and examples thereof include a quartz glass substrate having a crystal structure. In addition, an absorption glass substrate in which CuO or the like is added to fluorophosphate glass or phosphate glass, a borosilicate glass substrate, a soda glass substrate, a colored glass substrate, an alkali-free glass substrate, a quartz glass substrate, or the like is used. In particular, glass substrates such as alkali-free glass substrates and low α-ray glass substrates are preferred.
 <その他の構成層>
 本実施形態の一つとして、イメージセンサーを構成するその他の構成層としては、特に限定されるものではないが、例えば撮像素子支持基板、受光部、混在型偏光フィルター、混在型カラーフィルター、マイクロレンズ、誘電体多層膜、反射防止層、ハードコート層などが挙げられる。
<Other constituent layers>
As one of the embodiments, the other constituent layers constituting the image sensor are not particularly limited. For example, the imaging element support substrate, the light receiving unit, the mixed polarization filter, the mixed color filter, and the microlens. A dielectric multilayer film, an antireflection layer, a hard coat layer, and the like.
 誘電体多層膜は、低屈折率の誘電体膜と高屈折率の誘電体膜とを交互に積層し構成される。ここで、低屈折率と高屈折率とは、隣接する層の屈折率に対して低い屈折率と高い屈折率を有することを意味する。
 高屈折率の誘電体膜は、好ましくは、屈折率(nd)が1.6以上であり、より好ましくは2.2~2.5の範囲内である。
 高屈折率の誘電体膜材料としては、例えばTa、TiO、Nb等が挙げられる。これらのうち、成膜性、屈折率等における再現性、安定性の観点から、TiOが好ましい。
 一方、低屈折率の誘電体膜は、好ましくは、屈折率(nd)が1.6未満であり、より好ましくは1.45以上1.55未満であり、より一層好ましくは1.45~1.47の範囲内である。低屈折率の誘電体材料としては、例えばSiO等が挙げられる、成膜の再現性、安定性、経済性等の点から、SiOが望ましい。
 誘電体多層膜は、例えばCVD法、スパッタリング法、真空蒸着法等の真空成膜プロセスや、スプレー法、ディップ法等の湿式成膜プロセス等を使用できる。
 本発明に用いる誘電多層膜は、入射角0°の分光透過率曲線において、波長430~620nmの光の平均透過率は90%以上が好ましく、92%以上がより好ましく、95%以上がさらに好ましい。また、入射角0°の分光透過率曲線において、波長710~1100nmの光の平均透過率は、10%以下が好ましく、8%以下がより好ましく、5%以下がさらに好ましい。さらに、入射角0°の分光透過率曲線において、波長350~430nmに透過率50%となる波長を有し、波長650~750nmに透過率50%となる波長を有するとよい。
 この目的のためには、誘電体多層膜は、低屈折率の誘電体層と高屈折率の誘電体層との合計積層数として15層以上が好ましく、25層以上がより好ましく、30層以上がさらに好ましい。ただし、合計積層数が多くなると、誘電体多層膜の反り等が大きくなり、また全体の膜厚が増加するため、100層以下が好ましく、75層以下がより好ましく、60層以下がさらに好ましい。膜厚としては、好ましい席層数を満たしたうえで、光学フィルターの薄膜化の観点から薄いほうが好ましい。
 このような誘電体多層膜の膜厚としては、2~10μmの範囲内が好ましい。
The dielectric multilayer film is configured by alternately laminating a low refractive index dielectric film and a high refractive index dielectric film. Here, the low refractive index and the high refractive index mean having a low refractive index and a high refractive index with respect to the refractive index of the adjacent layer.
The high refractive index dielectric film preferably has a refractive index (nd) of 1.6 or more, more preferably in the range of 2.2 to 2.5.
Examples of the high refractive index dielectric film material include Ta 2 O 5 , TiO 2 , and Nb 2 O 5 . Of these, TiO 2 is preferable from the viewpoints of film formability, reproducibility in refractive index, and stability.
On the other hand, the low refractive index dielectric film preferably has a refractive index (nd) of less than 1.6, more preferably 1.45 or more and less than 1.55, and even more preferably 1.45 to 1. Within the range of .47. Examples of the low refractive index dielectric material include SiO x N y . SiO 2 is desirable from the viewpoints of film reproducibility, stability, economy, and the like.
For the dielectric multilayer film, for example, a vacuum film formation process such as a CVD method, a sputtering method, or a vacuum deposition method, or a wet film formation process such as a spray method or a dip method can be used.
In the dielectric multilayer film used in the present invention, the average transmittance of light having a wavelength of 430 to 620 nm is preferably 90% or more, more preferably 92% or more, and further preferably 95% or more in the spectral transmittance curve at an incident angle of 0 °. . In the spectral transmittance curve at an incident angle of 0 °, the average transmittance of light having a wavelength of 710 to 1100 nm is preferably 10% or less, more preferably 8% or less, and further preferably 5% or less. Further, in the spectral transmittance curve at an incident angle of 0 °, it is preferable to have a wavelength at which the transmittance is 50% at a wavelength of 350 to 430 nm and a wavelength at which the transmittance is 50% at a wavelength of 650 to 750 nm.
For this purpose, the dielectric multilayer film is preferably 15 or more, more preferably 25 or more, more preferably 30 or more as the total number of laminated layers of the low refractive index dielectric layer and the high refractive index dielectric layer. Is more preferable. However, when the total number of laminated layers increases, the warp of the dielectric multilayer film increases, and the total film thickness increases. Therefore, 100 layers or less is preferable, 75 layers or less are more preferable, and 60 layers or less are more preferable. The film thickness is preferably thin from the viewpoint of reducing the thickness of the optical filter after satisfying the preferred number of seat layers.
The film thickness of such a dielectric multilayer film is preferably in the range of 2 to 10 μm.
 <透明ポリイミド樹脂フィルムの用途>
 本発明の透明ポリイミド樹脂フィルムは、透明FPC、車載用のフィルム、画像表示装置のフィルム部材、センサー用フィルムとして好ましく使用できる。適用されるデバイスは、特に限定されないが、例えば、有機エレクトロルミネッセンス(EL)画像表示装置、液晶画像表示装置(LCD)、有機光電変換デバイス、タッチパネル、偏光板、位相差フィルム、透明FPCフィルム、イメージセンサー用赤外線カットフィルム、虹彩認証用赤外線カットフィルム等を挙げることができる。
<Use of transparent polyimide resin film>
The transparent polyimide resin film of the present invention can be preferably used as a transparent FPC, an in-vehicle film, a film member of an image display device, and a sensor film. The device to be applied is not particularly limited. For example, an organic electroluminescence (EL) image display device, a liquid crystal image display device (LCD), an organic photoelectric conversion device, a touch panel, a polarizing plate, a retardation film, a transparent FPC film, an image Examples include an infrared cut film for sensors, an infrared cut film for iris authentication, and the like.
 (タッチパネル)
 本発明のポリイミド樹脂フィルムは、透明導電層をフィルムに具備することでタッチパネル用の透明導電フィルムとして使用することができる。透明導電層のパターンの形状はタッチパネル(例えば、静電容量方式タッチパネル)として良好に動作するパターンであれば特に限定はされないが、例えば、特表2011-511357号公報、特開2010-164938号公報、特開2008-310550号公報、特表2003-511799号公報、特表2010-541109号公報に記載のパターンが挙げられる。
(Touch panel)
The polyimide resin film of the present invention can be used as a transparent conductive film for a touch panel by providing the film with a transparent conductive layer. The shape of the pattern of the transparent conductive layer is not particularly limited as long as it is a pattern that works well as a touch panel (for example, a capacitive touch panel). For example, JP 2011-511357 A, JP 2010-164938 A JP-A-2008-310550, JP-T-2003-511799, JP-T-2010-541109, and the like.
 x軸にパターン化された透明導電フィルムと、y軸にパターン化された透明導電フィルムを、粘着フィルムを用いて積層させ、最表面にカバーガラスを設けることでタッチパネルを作製でき、前記タッチパネルを液晶表示装置と組み合わせることで、タッチパネル表示装置が作製できる。 A touch panel can be produced by laminating a transparent conductive film patterned on the x-axis and a transparent conductive film patterned on the y-axis using an adhesive film and providing a cover glass on the outermost surface. A touch panel display device can be manufactured by combining with a display device.
 (LED照明装置)
 本発明の透明ポリイミド樹脂フィルムをLED用基板として用いてLED証明装置とすることもできる。例えば、両面基板やアルミ板との複合基板が挙げられる。LEDの高輝度化に伴い、より放熱性が要求される場合には、アルミ板と複合化することにより放熱性を向上させることが可能である。有機材料を用いた有機エレクトロルミネッセンス照明装置に適用することもできる。
(LED lighting device)
The transparent polyimide resin film of the present invention can be used as an LED substrate to provide an LED certification device. For example, a composite substrate with a double-sided substrate or an aluminum plate can be used. In the case where heat dissipation is required as the brightness of the LED increases, it is possible to improve the heat dissipation by combining with an aluminum plate. The present invention can also be applied to an organic electroluminescence lighting device using an organic material.
 (フレキシブルディスプレイ用前面部材)
 本発明の透明ポリイミド樹脂フィルムをフレキシブルディスプレイ用前面部材として用いることもできる。
(Front member for flexible display)
The transparent polyimide resin film of the present invention can also be used as a front member for a flexible display.
 フレキシブルディスプレイ用前面部材が搭載されるフレキシブルディスプレイとしては、例えば、基板上に発光層等の有機機能層が積層されてなる有機ELデバイス、ガスバリアーフィルム、フィルムカラーフィルター、片面又は両面に偏光板保護フィルムを備える偏光板、フィルム型タッチセンサー等がこの順に積層されて構成される。フレキシブルディスプレイ用前面部材は、例えば、上記のように構成されるフレキシブルディスプレイのフィルム型タッチセンサー上に積層される。 As a flexible display on which a front member for flexible display is mounted, for example, an organic EL device in which an organic functional layer such as a light emitting layer is laminated on a substrate, a gas barrier film, a film color filter, polarizing plate protection on one side or both sides A polarizing plate including a film, a film-type touch sensor, and the like are laminated in this order. The front member for flexible display is laminated | stacked on the film type touch sensor of the flexible display comprised as mentioned above, for example.
 なお、本発明の透明ポリイミド樹脂フィルムは、上記フレキシブルディスプレイを構成する有機ELデバイスの基板に用いられても良いし、上記フレキシブルディスプレイを構成する偏光板の偏光板保護フィルムに用いられても良い。 In addition, the transparent polyimide resin film of this invention may be used for the board | substrate of the organic EL device which comprises the said flexible display, and may be used for the polarizing plate protective film of the polarizing plate which comprises the said flexible display.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」又は「%」の表示を用いるが、特に断りがない限り「質量部」又は「質量%」を表す。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "part" or "%" is used in an Example, unless otherwise indicated, "mass part" or "mass%" is represented.
 ポリイミドの合成に用いたジカルボン酸無水物やジアミンは再結晶やカラムクロマトグラフィーにより精製したサンプルを用いた。 Dicarboxylic acid anhydrides and diamines used for the synthesis of polyimide were samples purified by recrystallization or column chromatography.
 〔実施例1〕
 <ポリイミド樹脂フィルム1の作製>
 乾燥窒素ガス導入管、冷却器、トルエンを満たしたDean-Stark凝集器、撹拌機を備えた4口フラスコに、2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物(ダイキン工業株式会社製)44.4g(0.10mol)をN,N-ジメチルアセトアミド(400g)に加え、窒素気流下、室温で撹拌した。
[Example 1]
<Preparation of polyimide resin film 1>
To a 4-neck flask equipped with a dry nitrogen gas inlet tube, a condenser, a Dean-Stark agglomerator filled with toluene, and a stirrer, 2,2-bis (3,4-dicarboxyphenyl) -1,1,1, 4,4.4 g (0.10 mol) of 3,3,3-hexafluoropropane dianhydride (manufactured by Daikin Industries, Ltd.) was added to N, N-dimethylacetamide (400 g), and the mixture was stirred at room temperature under a nitrogen stream.
 それに2,4-ジエチル-6-メチル-1,3-フェニレンジアミン18.8g(0.11mol)を加え、40℃で10時間加熱撹拌した。この反応液に安息香酸無水物を0.2g添加して3時間加熱撹拌した。反応液を温度40℃、150mm幅でステンレスベルト支持体上に均一に流延した。ステンレスベルトの温度は40℃に制御した。次にステンレスベルトを50℃の減圧オーブンに投入して0.1kPaまで減圧して30分減圧化で加熱した。その後、減圧度を保ったまま1分で1℃ずつ220℃まで昇温した後に6時間減圧下で加熱を行った。オーブンを冷却してステンレスベルトからフィルムを剥離することで膜厚40μmのポリイミド樹脂フィルム1を得た。 Then, 18.8 g (0.11 mol) of 2,4-diethyl-6-methyl-1,3-phenylenediamine was added, and the mixture was heated and stirred at 40 ° C. for 10 hours. 0.2g of benzoic anhydride was added to this reaction liquid, and it heated and stirred for 3 hours. The reaction solution was uniformly cast on a stainless steel belt support at a temperature of 40 ° C. and a width of 150 mm. The temperature of the stainless steel belt was controlled at 40 ° C. Next, the stainless steel belt was put into a reduced pressure oven at 50 ° C., the pressure was reduced to 0.1 kPa, and heating was performed at a reduced pressure for 30 minutes. Thereafter, the temperature was raised to 220 ° C. by 1 ° C. in 1 minute while maintaining the reduced pressure, and then heated under reduced pressure for 6 hours. The oven was cooled and the film was peeled from the stainless steel belt to obtain a polyimide resin film 1 having a thickness of 40 μm.
 日本分光株式会社製のFT/IR-670Plusを用いて赤外吸収分析(IR)測定を行い、IRイミド基(1375CM-1付近)の吸光度)/(IRベンゼン環(1500cm-1付近)の吸光度)の比率から95%以上のイミド化率であることを確認した。
 
Infrared absorption analysis (IR) measurement was performed using FT / IR-670Plus manufactured by JASCO Corporation. Absorbance of IR imide group (near 1375CM -1 ) / (absorbance of IR benzene ring (near 1500 cm -1 )) )), It was confirmed that the imidation ratio was 95% or more.
 <ポリイミド樹脂フィルム2~60の作製>
 用いるモノマーと末端封止化合物を表2に記載に示される部分構造が得られる化合物に変更した以外はポリイミド樹脂フィルム1と同様のモル比、合成方法でポリイミド樹脂フィルム2~60を得た。なお、各ポリイミドを合成する場合に、ジカルボン酸無水物を複数用いる場合は複数種のジカルボン酸無水物を同時に溶解し、ジアミン化合物を複数種用いる場合には同時にN,N-ジメチルアセトアミドに溶解した後に反応液に滴下した。使用するジカルボン酸の総量、ジアミン化合物の総量、及び末端封止剤の総量は、ポリイミド樹脂フィルム1を構成する材料と同モル量となるように添加した。また、ジカルボン酸又はジアミン化合物を2種類併用する場合は、2種類の化合物の混合比率は1:1の等モル量で添加した。
<Preparation of polyimide resin films 2 to 60>
Polyimide resin films 2 to 60 were obtained by the same molar ratio and synthesis method as those of polyimide resin film 1 except that the monomers used and the end-capping compounds were changed to compounds capable of obtaining the partial structure shown in Table 2. When synthesizing each polyimide, when a plurality of dicarboxylic acid anhydrides are used, a plurality of types of dicarboxylic acid anhydrides are dissolved simultaneously, and when a plurality of diamine compounds are used, they are simultaneously dissolved in N, N-dimethylacetamide. It was added dropwise to the reaction solution later. The total amount of the dicarboxylic acid to be used, the total amount of the diamine compound, and the total amount of the end-capping agent were added so as to have the same molar amount as the material constituting the polyimide resin film 1. Moreover, when using together 2 types of dicarboxylic acid or a diamine compound, the mixing ratio of 2 types of compounds was added by equimolar amount of 1: 1.
 得られたポリイミド樹脂フィルム2~60については、ポリイミド樹脂フィルム1と同様の方法でイミド化率を測定し、イミド化率が95%以上であることを確認した。 For the obtained polyimide resin films 2 to 60, the imidization rate was measured by the same method as for the polyimide resin film 1, and it was confirmed that the imidization rate was 95% or more.
 (ポリイミド樹脂フィルム61の作製)
 乾燥窒素ガス導入管、冷却器、撹拌機を備えた4口フラスコに、2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物(ダイキン工業社製)48.1g(0.11mol)をN,N-ジメチルアセトアミド(400g)に加え、窒素気流下、室温で撹拌した。
(Preparation of polyimide resin film 61)
To a four-necked flask equipped with a dry nitrogen gas inlet tube, a cooler, and a stirrer, 2,2-bis (3,4-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropane 48.1 g (0.11 mol) of anhydride (manufactured by Daikin Industries) was added to N, N-dimethylacetamide (400 g), and the mixture was stirred at room temperature under a nitrogen stream.
 それに2,2′-ビス(トリフルオロメチル)ベンジジン32.0g(0.10mol)を加え、40℃で10時間加熱撹拌した。反応液を温度40℃、150mm幅でステンレスベルト支持体上に均一に流延した。ステンレスベルトの温度は40℃に制御した。 2,2′-bis (trifluoromethyl) benzidine (32.0 g, 0.10 mol) was added thereto, and the mixture was heated and stirred at 40 ° C. for 10 hours. The reaction solution was uniformly cast on a stainless steel belt support at a temperature of 40 ° C. and a width of 150 mm. The temperature of the stainless steel belt was controlled at 40 ° C.
 次にステンレスベルトを50℃の減圧オーブンに投入して0.1kPaまで減圧して1時間加熱乾燥した。その後温度を220℃にして6時間加熱乾燥を行った。オーブンを冷却してステンレスベルトからフィルムを剥離することで膜厚40μmのポリイミド樹脂フィルム61を得た。
ポリイミド樹脂フィルム1と同様の方法でイミド化率が95%以上であることを確認した。
Next, the stainless steel belt was put into a 50 ° C. vacuum oven and the pressure was reduced to 0.1 kPa, followed by heat drying for 1 hour. Thereafter, the temperature was set to 220 ° C., and heat drying was performed for 6 hours. The oven was cooled and the film was peeled from the stainless steel belt to obtain a polyimide resin film 61 having a thickness of 40 μm.
It was confirmed that the imidation ratio was 95% or more by the same method as for the polyimide resin film 1.
 (ポリイミド樹脂フィルム62~64の作製)
 用いるモノマーと末端封止化合物を表2に記載に示される部分構造が得られる化合物に変更した以外はポリイミド樹脂フィルム61と同様のモル比、合成方法でポリイミド樹脂フィルム62~64を得た。ポリイミド樹脂フィルム1と同様の方法でイミド化率を測定し、イミド化率が95%以上であることを確認した。
(Preparation of polyimide resin films 62 to 64)
Polyimide resin films 62 to 64 were obtained by the same molar ratio and synthesis method as those of the polyimide resin film 61 except that the monomers used and the end-capping compounds were changed to compounds that give the partial structures shown in Table 2. The imidization rate was measured by the same method as that for the polyimide resin film 1, and it was confirmed that the imidization rate was 95% or more.
 (ポリイミド樹脂フィルム65~73の作製)
 用いるモノマーと末端封止化合物を表2に記載の部分構造が得られる化合物に変更した以外はポリイミド樹脂フィルム1と同様のモル比、合成方法でポリイミド樹脂フィルム65~73を得た。ポリイミド樹脂フィルム1と同様の方法でイミド化率が95%以上であることを確認した。
(Preparation of polyimide resin films 65-73)
Polyimide resin films 65 to 73 were obtained by the same molar ratio and synthesis method as those of the polyimide resin film 1 except that the monomers used and the end-capping compounds were changed to compounds capable of obtaining the partial structures shown in Table 2. It was confirmed that the imidation ratio was 95% or more by the same method as for the polyimide resin film 1.
 (ポリイミド樹脂フィルム74(比較例)の作製)
 特開2012-251080号公報の段落[0094]~[0096]に記載されている方法と同様の方法で末端が無水フタル酸で封止されたポリイミド樹脂を作製した。得られた樹脂を温度40℃、150mm幅でステンレスベルト支持体上に乾燥後の膜厚が40μとなる厚さになるように均一に流延した。ステンレスベルトの温度は40℃に制御した。次にステンレスベルトを50℃の減圧オーブンに投入して0.1kPaまで減圧して30分減圧化で加熱した。その後、減圧度を保ったまま1分で1℃ずつ200℃まで昇温した後に4時間減圧下で加熱を行った。オーブンを冷却してステンレスベルトからフィルムを剥離することで膜厚40μmのポリイミド樹脂フィルム74を得た。
(Preparation of polyimide resin film 74 (comparative example))
A polyimide resin having a terminal sealed with phthalic anhydride was prepared in the same manner as described in paragraphs [0094] to [0096] of JP2012-251080A. The obtained resin was uniformly cast on a stainless steel belt support at a temperature of 40 ° C. and a width of 150 mm so that the thickness after drying was 40 μm. The temperature of the stainless steel belt was controlled at 40 ° C. Next, the stainless steel belt was put into a reduced pressure oven at 50 ° C., the pressure was reduced to 0.1 kPa, and heating was performed at a reduced pressure for 30 minutes. Thereafter, the temperature was raised to 200 ° C. by 1 ° C. in 1 minute while maintaining the reduced pressure, and then heated under reduced pressure for 4 hours. The oven was cooled and the film was peeled from the stainless steel belt to obtain a polyimide resin film 74 having a thickness of 40 μm.
 ポリイミド樹脂フィルム1と同様の方法でイミド化率が95%以上であることを確認した。 It was confirmed that the imidation ratio was 95% or more by the same method as for the polyimide resin film 1.
 なお、合成した比較化合物の末端基は、下記の部分構造となるようにした。 The terminal group of the synthesized comparative compound was made to have the following partial structure.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 なお、上記構造は、*部分でポリイミドの主鎖部分と結合する。 In the above structure, the * part is bonded to the main chain part of the polyimide.
 上記のようにして作製したポリイミド樹脂フィルム1~74に対して、下記のようにして弾性率、折り曲げ耐性、YI値を評価した。なお、ポリイミド樹脂フィルム1~74の重量平均分子量はすべて10万~25万の範囲内であった。 The elastic modulus, bending resistance, and YI value of the polyimide resin films 1 to 74 produced as described above were evaluated as follows. The weight average molecular weights of the polyimide resin films 1 to 74 were all in the range of 100,000 to 250,000.
 (弾性率)
 作製したポリイミド樹脂フィルムを23℃、55%RHの環境下で24時間保存した。その後、23℃、55%RHの環境下で、JIS K7127に記載の方法に準じて弾性率を測定した。引っ張り試験器は株式会社オリエンテック製のテンシロンRTA-100を使用し、試験片の形状は1号形試験片、試験速度は10mm/分の条件で測定した。得られた弾性率の数値に基づき下記基準で評価した。
A 5.0GPa以上
B 4.0GPa以上 5.0GPa未満
C 4.0GPa未満
 (折り曲げ耐性)
 作製したポリイミド樹脂フィルムに対して、屈曲疲労試験機による耐屈曲性試験(摺動屈曲試験)を行った。荷重500G、屈折角135°、屈折サイクル175cpm、屈折部局率半径0.38mmの条件下、目視により折り曲げ部が白濁するまで評価を継続した。本発明のポリイミド樹脂フィルムは、5000回以上の折り曲げ回数でも折り曲げ部の白濁発生がなく、かつ折り曲げ試験後のカール発生も小さく、優れたポリイミド樹脂フィルムであった。
A:1万回以上
B:6千回以上1万回未満
C:6千回未満
 (YI値)
 イエローインデックス値の測定方法としては、上記厚さ40μmのサンプルを作製し、(株)日立ハイテクノロジーズ製の分光光度計U-3300と附属の彩度計算プログラム等を用いて、JIS Z8701に定められている光源色の三刺激値X、Y、Zを求め、下式に従ってイエローインデックス値を求めた。
(Elastic modulus)
The prepared polyimide resin film was stored for 24 hours in an environment of 23 ° C. and 55% RH. Thereafter, the elastic modulus was measured according to the method described in JIS K7127 under the environment of 23 ° C. and 55% RH. Tensilon RTA-100 manufactured by Orientec Co., Ltd. was used as the tensile tester. The shape of the test piece was No. 1 type test piece, and the test speed was 10 mm / min. Based on the numerical value of the obtained elastic modulus, it was evaluated according to the following criteria.
A 5.0 GPa or more B 4.0 GPa or more and less than 5.0 GPa C less than 4.0 GPa (bending resistance)
The prepared polyimide resin film was subjected to a bending resistance test (sliding bending test) using a bending fatigue tester. Evaluation was continued under the conditions of a load of 500 G, a refraction angle of 135 °, a refraction cycle of 175 cpm, and a refractive portion locality radius of 0.38 mm until the bent portion became cloudy by visual observation. The polyimide resin film of the present invention was an excellent polyimide resin film with no white turbidity at the bent portion even when the number of folding times was 5000 times or more, and little curling after the bending test.
A: 10,000 times or more B: 6,000 times or more and less than 10,000 times C: Less than 6,000 times (YI value)
The yellow index value is measured according to JIS Z8701 using the spectrophotometer U-3300 manufactured by Hitachi High-Technologies Corporation and the attached saturation calculation program. The tristimulus values X, Y, and Z of the light source color being obtained were obtained, and the yellow index value was obtained according to the following formula.
 YI値をポリイミド樹脂フィルムの透明性の目安として評価した。 The YI value was evaluated as a measure of the transparency of the polyimide resin film.
 イエローインデックス(YI)=100(1.28X-1.06Z)/Y
A:2.0未満
B:2.0以上4.0未満
C:4.0以上5.0未満
D:5.0以上6.0未満
 以上の評価結果と、ポリイミド樹脂の構成をまとめて、表2及び表3に示した。
Yellow index (YI) = 100 (1.28X-1.06Z) / Y
A: Less than 2.0 B: 2.0 or more and less than 4.0 C: 4.0 or more and less than 5.0 D: 5.0 or more and less than 6.0 The above evaluation results and the composition of the polyimide resin are summarized. The results are shown in Table 2 and Table 3.
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
 なお、表中のNICS値は、Gaussian03(Revision B.03、米ガウシアン社ソフトウェア)を用いて算出した。具体的には、計算法にB3LYP(密度汎関数法)を、基底関数には6-31+G(スプリットバレンス基底系に拡散ガウス関数を追加した関数)を用いて最適化した構造から、NMR遮蔽定数計算法(GIAO)により計算したものである。 The NICS values in the table were calculated using Gaussian 03 (Revision B.03, US Gaussian software). Specifically, from the structure optimized using B3LYP (density functional method) as the calculation method and 6-31 + G (function in which the diffusion gauss function is added to the split valence basis set) as the basis function, the NMR shielding constant It is calculated by a calculation method (GIAO).
 その際に、例示化合物、比較化合物の部分構造の*部分を飽和炭化水素に置き換えてNICS値の計算を行った。 At that time, the NICS value was calculated by substituting the * part of the partial structure of the exemplified compound and the comparative compound with a saturated hydrocarbon.
 また表中、評価1は、芳香環の中でNICS値が一番大きい環の値であり、下記の基準で分類した。
A:芳香環の中でNICS値が一番大きい環の値が、-15.0以上-10.0以下
B:芳香環の中でNICS値が一番大きい環の値が、-10.0より大きく-9.0以下C:芳香環の中でNICS値が一番大きい環の値が、-9.0より大きく-8.0以下
D:芳香環の中でNICS値が一番大きい環の値が、-8.0より大きい
E:芳香環を有さない
また表中、評価2は、芳香環が二つ以上の場合であり、下記の基準で分類した。
A:NICS値が-15.0以上-8.0以下である芳香環を二つ以上有する
B:NICS値が-8.0より大きく-7.0以下である芳香環を一つ以上と、NICS値が-15.0以上-8.0以下である芳香環を一つ有する
C:NICS値が-8.0より大きく-7.0以下である芳香環を二つ以上有する
D:A~Cに該当しない
 表2及び表3から明らかなように、本発明の透明ポリイミド樹脂フィルムは、弾性率、折り曲げ耐性、YI値とも良好であった。
In the table, evaluation 1 is the value of the ring with the largest NICS value among the aromatic rings, and was classified according to the following criteria.
A: The value of the ring with the largest NICS value among aromatic rings is -15.0 or more and -10.0 or less B: The value of the ring with the largest NICS value among aromatic rings is -10.0 Greater than -9.0 C: The value of the ring with the largest NICS value among the aromatic rings is greater than -9.0 and less than -8.0 D: The ring with the largest NICS value among the aromatic rings The value of is greater than −8.0 E: No aromatic ring In the table, the evaluation 2 is the case where there are two or more aromatic rings, and was classified according to the following criteria.
A: having two or more aromatic rings having a NICS value of −15.0 or more and −8.0 or less B: one or more aromatic rings having a NICS value of greater than −8.0 and −7.0 or less, C having one aromatic ring having a NICS value of -15.0 or more and -8.0 or less C: having two or more aromatic rings having a NICS value of greater than −8.0 and −7.0 or less D: A˜ As is clear from Tables 2 and 3 that do not fall under C, the transparent polyimide resin film of the present invention had good elastic modulus, bending resistance, and YI value.
 [実施例2]
 実施例1で作製したポリイミド樹脂フィルムのうち、ポリイミド樹脂フィルム番号1、6、30、43~57、66、69、70、72について、ジクロロメタンとエタノールの混合溶媒に再溶解し、またフィルム番号24、33についてはシクロヘキサノンに再溶解し、下記の方法で各ポリイミド樹脂フィルムを作製した。
[Example 2]
Of the polyimide resin films prepared in Example 1, polyimide resin film numbers 1, 6, 30, 43 to 57, 66, 69, 70, 72 were redissolved in a mixed solvent of dichloromethane and ethanol, and film number 24 , 33 were redissolved in cyclohexanone, and each polyimide resin film was prepared by the following method.
 <ポリイミド樹脂フィルムC1の作製>
 実施例1で作製したポリイミド樹脂フィルム1を30g、ジクロロメタン200g、エタノール5gに溶解して25℃のガラス基板上で製膜し、剥離後に120℃のオーブンで20分加熱乾燥することで40μのポリイミド樹脂フィルムC1を得た。
<Preparation of polyimide resin film C1>
The polyimide resin film 1 produced in Example 1 was dissolved in 30 g, 200 g of dichloromethane, and 5 g of ethanol, formed on a glass substrate at 25 ° C., and then peeled and dried by heating in an oven at 120 ° C. for 20 minutes for 40 μm polyimide. Resin film C1 was obtained.
 <ポリイミド樹脂フィルムC2の作製>
 再溶解するポリイミド樹脂フィルムを実施例1のポリイミド樹脂フィルム6に変更した以外はポリイミド樹脂フィルムC1の作製と同様の方法でポリイミド樹脂フィルムC2を作製した。
<Preparation of polyimide resin film C2>
A polyimide resin film C2 was produced in the same manner as the production of the polyimide resin film C1, except that the polyimide resin film to be re-dissolved was changed to the polyimide resin film 6 of Example 1.
 <ポリイミド樹脂フィルムC3及びC4の作製>
 ポリイミド樹脂フィルム24及びポリイミド樹脂フィルム33に変更し、溶媒をシクロヘキサノン200gに変更した以外はポリイミド樹脂フィルムC1の作製と同様の方法でポリイミド樹脂フィルムC3及びC4を作製した。
<Preparation of polyimide resin films C3 and C4>
Polyimide resin films C3 and C4 were produced in the same manner as the production of the polyimide resin film C1, except that the polyimide resin film 24 and the polyimide resin film 33 were changed and the solvent was changed to 200 g of cyclohexanone.
 <ポリイミド樹脂フィルムC5~C24の作製>
 ポリイミド樹脂フィルム1を表に記載の樹脂組成のフィルムに変更した以外はポリイミド樹脂フィルムC1の作製と同様の方法でポリイミド樹脂フィルムC5~C24を作製した。
<Preparation of polyimide resin films C5 to C24>
Polyimide resin films C5 to C24 were produced in the same manner as the production of the polyimide resin film C1, except that the polyimide resin film 1 was changed to a film having the resin composition shown in the table.
 得られたポリイミド樹脂フィルムC1~C25について、弾性率、折り曲げ耐性、YI値を実施例1と同様の方法で評価を行った。 For the obtained polyimide resin films C1 to C25, the elastic modulus, bending resistance, and YI value were evaluated in the same manner as in Example 1.
 以上の評価結果と、ポリイミド樹脂の構成をまとめて、表4に示した。 The above evaluation results and the composition of the polyimide resin are summarized in Table 4.
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
 表4からわかるように、本発明の透明ポリイミド樹脂フィルムは、弾性率、折り曲げ耐性、YI値とも良好であった。 As can be seen from Table 4, the transparent polyimide resin film of the present invention had good elastic modulus, bending resistance, and YI value.
 [実施例3]
 実施例2で得られたポリイミド樹脂フィルムC1~C24に下記添加剤をポリイミド樹脂に対して5質量%の割合で添加して実施例2と同様の方法でポリイミド樹脂フィルムD1~D24を作製した。得られた各ポリイミド樹脂フィルムに対して実施例2と同様の評価を行った。
[Example 3]
The following additives were added to the polyimide resin films C1 to C24 obtained in Example 2 at a ratio of 5% by mass with respect to the polyimide resin to prepare polyimide resin films D1 to D24 in the same manner as in Example 2. Evaluation similar to Example 2 was performed with respect to each obtained polyimide resin film.
 以上の評価結果と、ポリイミド樹脂の構成をまとめて、表5に示した。 The above evaluation results and the composition of the polyimide resin are summarized in Table 5.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 添加剤4としては、特開2013-232005号公報の段落[0243]に記載のエステル化合物1と同様の方法で合成した化合物を用いた。 As additive 4, a compound synthesized by the same method as that for ester compound 1 described in paragraph [0243] of JP2013-232005A was used.
 添加剤5としては、特開2013-232005号公報の段落[0245]に記載のエステル化合物4と同様の方法で合成した化合物を用いた。 As additive 5, a compound synthesized by the same method as that for ester compound 4 described in paragraph [0245] of JP2013-232005A was used.
 得られたポリイミド樹脂フィルムD1~D24について、弾性率、折り曲げ耐性、YI値を実施例2と同様の方法で評価を行った。 For the obtained polyimide resin films D1 to D24, the elastic modulus, bending resistance, and YI value were evaluated in the same manner as in Example 2.
 以上の評価結果と、ポリイミド樹脂の構成をまとめて、表5に示した。 The above evaluation results and the composition of the polyimide resin are summarized in Table 5.
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
 表5からわかるように、本発明の透明ポリイミド樹脂フィルムは、弾性率、折り曲げ耐性、YI値とも良好であった。また、60℃、90%RH環境下に500時間保存した際の湿熱による寸法安定性も向上することが明らかになった。 As can be seen from Table 5, the transparent polyimide resin film of the present invention had good elastic modulus, bending resistance, and YI value. In addition, it has been clarified that the dimensional stability due to wet heat is improved when stored in an environment of 60 ° C. and 90% RH for 500 hours.
[実施例4]
 <ポリイミド樹脂フィルムE1の作製>
 実施例1で作製したポリイミド樹脂フィルム11を30g、ジクロロメタン200g、エタノール5g、下記の赤外線吸収性の有機色素1を30mg加えて溶解し、25℃のガラス基板上で製膜し、剥離後に120℃のオーブンで20分加熱乾燥することで40μmのポリイミド樹脂フィルムE1を得た。
[Example 4]
<Preparation of polyimide resin film E1>
30 g of the polyimide resin film 11 prepared in Example 1, 200 g of dichloromethane, 5 g of ethanol, and 30 mg of the following infrared-absorbing organic dye 1 were added and dissolved, formed on a glass substrate at 25 ° C., and 120 ° C. after peeling. Was dried in an oven for 20 minutes to obtain a 40 μm polyimide resin film E1.
 <ポリイミド樹脂フィルムE2の作製>
 実施例1で作製したポリイミド樹脂フィルム44を30g、ジクロロメタン200g、エタノール5g、下記の有機色素1を30mg加えて溶解し、25℃のガラス基板上で製膜し、剥離後に120℃のオーブンで20分加熱乾燥することで40μmのポリイミド樹脂フィルムE2を得た。
<Preparation of polyimide resin film E2>
30 g of the polyimide resin film 44 prepared in Example 1, 200 g of dichloromethane, 5 g of ethanol, and 30 mg of the following organic dye 1 were added and dissolved, and the film was formed on a glass substrate at 25 ° C. A 40 μm polyimide resin film E <b> 2 was obtained by heat drying for a few minutes.
 <ポリイミド樹脂フィルムE3の作製>
 実施例1で作製したポリイミド樹脂フィルム59を30g、ジクロロメタン200g、エタノール5g、下記の有機色素1を30mg加えて溶解し、25℃のガラス基板上で製膜し、剥離後に120℃のオーブンで20分加熱乾燥することで40μmのポリイミド樹脂フィルムE3を得た。
<Preparation of polyimide resin film E3>
30 g of the polyimide resin film 59 produced in Example 1, 200 g of dichloromethane, 5 g of ethanol, and 30 mg of the following organic dye 1 were added and dissolved, formed on a glass substrate at 25 ° C., and peeled off in a 120 ° C. oven. A 40 μm polyimide resin film E3 was obtained by heat drying for a few minutes.
 <ポリイミド樹脂フィルムE4の作製>
 実施例1で作製したポリイミド樹脂フィルム61を30g、ジクロロメタン200g、エタノール5g、下記の有機色素1を30mg加えて溶解し、25℃のガラス基板上で製膜し、剥離後に120℃のオーブンで20分加熱乾燥することで40μmのポリイミド樹脂フィルムE4を得た。
<Preparation of polyimide resin film E4>
30 g of the polyimide resin film 61 prepared in Example 1, 200 g of dichloromethane, 5 g of ethanol, and 30 mg of the following organic dye 1 were added and dissolved, and the film was formed on a glass substrate at 25 ° C. A 40 μm polyimide resin film E4 was obtained by heat drying for minutes.
 <ポリイミド樹脂フィルムE5の作製>
 実施例1で作製したポリイミド樹脂フィルム62を30g、ジクロロメタン200g、エタノール5g、下記の有機色素1を30mg加えて溶解し、25℃のガラス基板上で製膜し、剥離後に120℃のオーブンで20分加熱乾燥することで40μmのポリイミド樹脂フィルムE5を得た。
<Preparation of polyimide resin film E5>
30 g of the polyimide resin film 62 produced in Example 1, 200 g of dichloromethane, 5 g of ethanol, and 30 mg of the following organic dye 1 were added and dissolved, formed on a glass substrate at 25 ° C., and after peeling, 20 in a 120 ° C. oven. A 40 μm polyimide resin film E5 was obtained by heat drying for a few minutes.
 <ポリイミド樹脂フィルムE6~E10の作製>
 ポリイミド樹脂フィルムE1~E5の有機色素を有機色素2に変更した以外は同様の方法でポリイミド樹脂フィルムE6~E10を作製した。
<Preparation of polyimide resin films E6 to E10>
Polyimide resin films E6 to E10 were produced in the same manner except that the organic dye of the polyimide resin films E1 to E5 was changed to the organic dye 2.
<ポリイミド樹脂フィルムE11~E15の作製>
 ポリイミド樹脂フィルムE1~E5の有機色素を有機色素3に変更した以外は同様の方法でポリイミド樹脂フィルムE11~E15を作製した。
<Preparation of polyimide resin films E11 to E15>
Polyimide resin films E11 to E15 were produced in the same manner except that the organic dye of the polyimide resin films E1 to E5 was changed to the organic dye 3.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 <耐熱性評価>
 上記ポリイミド樹脂フィルムE1~E5を250℃のホットプレートで10分間加熱後の吸光度を測定した。
 ポリイミド樹脂フィルムE1~E3、E6~E8の極大吸収波長の吸光度は1~5%以内の変動であり、E11~E13は6~10%以内の変動だったが、ポリイミド樹脂フィルムE4~E5、E9~E10、E14~E15は20%以上変動した。
 このことから本発明のポリイミド樹脂に有機色素を添加して得られたフィルム中の色素の耐熱性が向上していることが明らかになった。推定ではあるが、本発明のポリイミド樹脂の末端が相互作用することで振動を抑制することで色素の分解を抑制していると考えられる。
<Heat resistance evaluation>
The absorbance after heating the polyimide resin films E1 to E5 on a hot plate at 250 ° C. for 10 minutes was measured.
The absorbances at the maximum absorption wavelengths of the polyimide resin films E1 to E3 and E6 to E8 varied within 1 to 5%, while E11 to E13 varied within 6 to 10%, but the polyimide resin films E4 to E5, E9 ~ E10 and E14 ~ E15 fluctuated 20% or more.
From this, it became clear that the heat resistance of the dye in the film obtained by adding an organic dye to the polyimide resin of the present invention has been improved. Although it is presumed, it is thought that decomposition | disassembly of a pigment | dye is suppressed by suppressing a vibration because the terminal of the polyimide resin of this invention interacts.
 <誘電体多層膜の作製>
 下記方法で上記ポリイミド樹脂フィルムE1~E15に誘電体多層膜を製膜することで、IRカットフィルターを作製した。
<Production of dielectric multilayer film>
An IR cut filter was produced by forming a dielectric multilayer film on the polyimide resin films E1 to E15 by the following method.
 (第一の誘電体多層膜としての近赤外線反射性の誘電体多層膜の成膜)
 上記ポリイミド樹脂フィルムの一方の主面上に、IAD真空蒸着装置を用いて、高屈折率膜からはじめて、高屈折率膜と低屈折率膜を交互に製膜して合計40層(合計層厚さ:5920nm)の、第1の誘電体多層膜としての金赤外線反射性の誘電体多層膜(以下、誘電体多層膜R)という。)を製膜した。なお、高屈折率材料としてTiOを、低屈折率材料としてSiOを用いた。
 (誘電体層の成膜)
 上記で得られた誘電体多層膜Rを有する側とは反対の面に、真空蒸着装置を用いて、Alからなる30nmの層とSiOからなる165nmの層の2層からなる誘電体層を、この順に成膜した。製膜したAlからなる層の屈折率は1.60、製膜したSiOからなる層の屈折率は1.45であった。
(Deposition of near-infrared reflective dielectric multilayer film as the first dielectric multilayer film)
On one main surface of the polyimide resin film, using an IAD vacuum vapor deposition apparatus, starting with a high refractive index film, a high refractive index film and a low refractive index film are alternately formed for a total of 40 layers (total layer thickness) And 5920 nm) as a first dielectric multilayer film and a gold infrared reflective dielectric multilayer film (hereinafter referred to as dielectric multilayer film R). ) Was formed. Note that TiO 2 was used as the high refractive index material, and SiO 2 was used as the low refractive index material.
(Deposition of dielectric layer)
On the surface opposite to the side having the dielectric multilayer film R obtained above, using a vacuum deposition apparatus, a dielectric composed of two layers of a 30 nm layer made of Al 2 O 3 and a 165 nm layer made of SiO 2 is used. The body layer was formed in this order. The refractive index of the layer made of Al 2 O 3 formed was 1.60, and the refractive index of the layer made of SiO 2 formed was 1.45.
 特開2016-72266号公報を参考に前記組成物を混在型カラーフィルターに用いて撮像素子を作製したところ、ポリイミド樹脂フィルムE1~E3、E6~E8、E11~E13を用いたCMOSセンサー、CCDセンサーは良好な性能を示した。一方、ポリイミド樹脂フィルムE4~E5、E9~E10、E14~E15は十分な性能を満たさなかった。推定ではあるがポリイミド樹脂フィルムE4~E5、E9~E10、E14~E15は誘電体多層膜の作製プロセスやセンサー作製の際にかかる熱や応力により有機色素の分解が進んだためと考えられる。 An image sensor was prepared using the composition as a mixed color filter with reference to Japanese Patent Application Laid-Open No. 2016-72266. CMOS sensors and CCD sensors using polyimide resin films E1 to E3, E6 to E8, and E11 to E13 Showed good performance. On the other hand, polyimide resin films E4 to E5, E9 to E10, and E14 to E15 did not satisfy sufficient performance. Presumably, the polyimide resin films E4 to E5, E9 to E10, and E14 to E15 are considered to be due to the progress of decomposition of the organic dye due to the heat and stress applied during the dielectric multilayer film fabrication process and sensor fabrication.
[実施例5]
 下記方法でガラス基板上に誘電体多層膜と色素を添加したポリイミド薄膜を製膜することで、IRカットフィルターを作製した。
[Example 5]
An IR cut filter was prepared by forming a polyimide thin film to which a dielectric multilayer film and a dye were added on a glass substrate by the following method.
 (第一の誘電体多層膜としての近赤外線反射性の誘電体多層膜の成膜)
 76mm×76mm×0.214mmの旭硝子製フツリン酸ガラス基板NF-50TX(以下、ガラス基板Aという。)を旭硝子製ハイドロフルオロエーテル系溶剤アサヒクリン(登録商標)AE3000(商品名)を用いて、超音波洗浄機で10分間洗浄した。
 上記で得られた洗浄したガラス基板Aの一方の主面上に、IAD真空蒸着装置を用いて、高屈折率膜からはじめて、高屈折率膜と低屈折率膜を交互に製膜して合計40層(合計層厚さ:5950nm)の、第1の誘電体多層膜としての近赤外線反射性の誘電体多層膜(以下、誘電体多層膜R)という。)を製膜した。なお、高屈折率材料としてTiOを、低屈折率材料としてSiOを用いた。
(Deposition of near-infrared reflective dielectric multilayer film as the first dielectric multilayer film)
Asahi Glass fluorophosphate glass substrate NF-50TX (hereinafter referred to as “glass substrate A”) having a size of 76 mm × 76 mm × 0.214 mm is obtained by using Asahi Glass hydrofluoroether solvent Asahiklin (registered trademark) AE3000 (trade name). Washed for 10 minutes with a sonic cleaner.
A high refractive index film and a low refractive index film are alternately formed on one main surface of the cleaned glass substrate A obtained above using an IAD vacuum vapor deposition apparatus, and then totaled. It is referred to as a near-infrared reflective dielectric multilayer film (hereinafter, dielectric multilayer film R) as a first dielectric multilayer film having 40 layers (total layer thickness: 5950 nm). ) Was formed. Note that TiO 2 was used as the high refractive index material, and SiO 2 was used as the low refractive index material.
 (誘電体層の成膜)
 上記で得られた誘電体多層膜Rを有するガラス基板Aを、再び旭硝子製ハイドロフルオロエーテル系溶剤アサヒクリン(登録商標)AE3000を用いて、超音波洗浄機で20分間洗浄した。上記で得られた洗浄したガラス基板Aの誘電体多層膜Rを有する側とは反対の面に、真空蒸着装置を用いて、Alからなる30nmの層とSiOからなる170nmの層の2層からなる誘電体層を、この順に成膜した。製膜したAlからなる層の屈折率は1.60、製膜したSiOからなる層の屈折率は1.45であった。
(Deposition of dielectric layer)
The glass substrate A having the dielectric multilayer film R obtained above was washed again with an ultrasonic cleaner for 20 minutes using the Asahi Glass hydrofluoroether solvent Asahiklin (registered trademark) AE3000. On the surface opposite to the side having the dielectric multilayer film R of the cleaned glass substrate A obtained above, a 30 nm layer made of Al 2 O 3 and a 170 nm layer made of SiO 2 were formed using a vacuum deposition apparatus. These two dielectric layers were formed in this order. The refractive index of the layer made of Al 2 O 3 formed was 1.60, and the refractive index of the layer made of SiO 2 formed was 1.45.
 (近赤外線吸収層の成膜)
 実施例1で作製したポリイミド樹脂フィルム11を30g、ジクロロメタン400g、エタノール10g、実施例4で使用した有機色素1を1.2g加えて室温にて撹拌・溶解することで塗工液を得た。
 得られた塗工液を、上記で得られた両主面に誘電体多層膜R及び誘電体層を有するガラス基板Aの誘電体層上にスピンコーターにより塗布し、100℃で5分間加熱乾燥させ、膜厚1μmの近赤外線吸収層の順に積層された積層体1を得た。
 同様の方法で実施例1のポリイミドフィルム44、59、61、62を用いて積層体2~5を得た。また、色素1を色素2に変更することで積層体6~10を、色素3に変更することで積層体11~15を得た。
(Near infrared absorption layer deposition)
30 g of polyimide resin film 11 produced in Example 1, 400 g of dichloromethane, 10 g of ethanol, and 1.2 g of organic dye 1 used in Example 4 were added and stirred and dissolved at room temperature to obtain a coating solution.
The obtained coating solution is applied onto the dielectric layer of the glass substrate A having the dielectric multilayer film R and the dielectric layer on both main surfaces obtained above by a spin coater, and dried by heating at 100 ° C. for 5 minutes. Thus, a laminate 1 was obtained in which a near-infrared absorbing layer having a thickness of 1 μm was laminated in this order.
In the same manner, laminates 2 to 5 were obtained using polyimide films 44, 59, 61 and 62 of Example 1. Further, by changing the dye 1 to the dye 2, the laminates 6 to 10 were changed to the dye 3, and the laminates 11 to 15 were obtained.
 特開2016-72266号公報を参考に前記組成物を混在型カラーフィルターに用いて撮像素子を作製したところ、上記積層体1~3、6~8、11~13を用いたCMOSセンサー、CCDセンサーは良好な性能を示した。一方、上記積層体4、5、9、10、14、15は十分な性能を満たさなかった。推定ではあるが積層体4、5、9、10、14、15は誘電体多層膜の作製プロセスやセンサー作製の際にかかる熱や応力により有機色素の分解が進んだためと考えられる。 An image pickup device was manufactured using the composition as a mixed color filter with reference to Japanese Patent Application Laid-Open No. 2016-72266. As a result, a CMOS sensor and a CCD sensor using the laminates 1 to 3, 6 to 8, and 11 to 13 were used. Showed good performance. On the other hand, the laminates 4, 5, 9, 10, 14, and 15 did not satisfy sufficient performance. Presumably, the laminates 4, 5, 9, 10, 14, and 15 are considered to have been caused by the decomposition of the organic dye due to heat and stress applied during the dielectric multilayer film production process and sensor production.
 本発明は、フィルムの透明性が良く、機械強度に優れた透明ポリイミド樹脂フィルム、透明ポリイミド樹脂組成物、透明ポリイミド樹脂フィルム、赤外線吸収組成物、赤外線カットフィルター及び透明ポリイミド樹脂フィルムの製造方法に利用することができる。 The present invention is used for a transparent polyimide resin film, a transparent polyimide resin composition, a transparent polyimide resin film, an infrared absorbing composition, an infrared cut filter, and a method for producing a transparent polyimide resin film, which have good film transparency and excellent mechanical strength. can do.
101 溶解釜
103、106、112、115 濾過器
104、113 ストック釜
102、105、111、114 送液ポンプ
108、116 導管
110 添加剤仕込釜
120 合流管
121 混合機
130 加圧ダイ
131 金属ベルト
132 ウェブ
133 剥離位置
134 第1乾燥装置
135 延伸装置
136 第2乾燥装置
137 搬送ローラー
138 巻取り装置
141 仕込釜
142 ストック釜
143 ポンプ
144 濾過器
101 Melting pot 103, 106, 112, 115 Filter 104, 113 Stock pot 102, 105, 111, 114 Liquid feed pump 108, 116 Conduit 110 Additive charging pot 120 Merge pipe 121 Mixer 130 Pressure die 131 Metal belt 132 Web 133 Peeling position 134 First drying device 135 Stretching device 136 Second drying device 137 Conveying roller 138 Winding device 141 Loading kettle 142 Stock kettle 143 Pump 144 Filter

Claims (12)

  1.  芳香族部位を有するポリイミドを含有する透明ポリイミド樹脂であって、
     前記ポリイミドの末端の少なくとも一方に、NICS値が-15.0~-8.0の範囲内である芳香環を有する末端基、及びNICS値が、-15.0~-7.0の範囲内である芳香環を二つ以上有する末端基のいずれかの基を有することを特徴とする透明ポリイミド樹脂。
    A transparent polyimide resin containing a polyimide having an aromatic moiety,
    At least one end of the polyimide has an end group having an aromatic ring with a NICS value in the range of -15.0 to -8.0, and a NICS value in the range of -15.0 to -7.0. A transparent polyimide resin having any one of terminal groups having two or more aromatic rings.
  2.  前記ポリイミドが、芳香族ジカルボン酸無水物と、アミノ基のオルト位に立体障害性基を有する芳香族ジアミンとの重合体であることを特徴とする請求項1に記載の透明ポリイミド樹脂。 2. The transparent polyimide resin according to claim 1, wherein the polyimide is a polymer of an aromatic dicarboxylic acid anhydride and an aromatic diamine having a sterically hindering group at the ortho position of the amino group.
  3.  前記ポリイミドが、脂環式ジカルボン酸無水物と、芳香族ジアミンとの重合体であることを特徴とする請求項1又は請求項2に記載の透明ポリイミド樹脂。 The transparent polyimide resin according to claim 1 or 2, wherein the polyimide is a polymer of an alicyclic dicarboxylic acid anhydride and an aromatic diamine.
  4.  前記末端基が、NICS値が-15.0~-10.0の範囲内である芳香環を一つ以上有する末端基であることを特徴とする請求項1から請求項3までのいずれか一項に記載の透明ポリイミド樹脂。 4. The terminal group according to claim 1, wherein the terminal group is a terminal group having one or more aromatic rings having a NICS value in the range of -15.0 to -10.0. The transparent polyimide resin as described in the item.
  5.  前記ポリイミドが、下記一般式(1)又は一般式(2)で表される構造を有することを特徴とする請求項1から請求項4までのいずれか一項に記載の透明ポリイミド樹脂。
    Figure JPOXMLDOC01-appb-C000001
    (式中、A及びRはそれぞれ独立に芳香環、芳香族複素環、炭素数2~39の脂肪族炭化水素基、又は炭素数2~39の脂環式炭化水素基を表し、置換基を有していても良い。また、A及びRは、-O-、-SO-、-CO-、-CH-、-C(CH-、-OSi(CH-、-CO-、-S-、及び単なる結合手の少なくとも一つの連結基を介して複数の芳香族炭化水素環、芳香族複素環、炭素数2~39の脂肪族炭化水素基、又は脂環式炭化水素基が連結されていても良い。ただし、前記A又はRで表される構造中に、少なくとも一つの芳香族部位を有する。R~Rは、それぞれ独立にポリイミドの末端基を表す。ただしR~Rの少なくとも一つ、及びR~Rの少なくとも一つは、NICS値が-15.0~-8.0の範囲内である芳香環を一つ以上有する末端基、又はNICS値が、-15.0~-7.0の範囲内である芳香環を二つ以上有する末端基である。)
    The said polyimide has the structure represented by following General formula (1) or General formula (2), The transparent polyimide resin as described in any one of Claim 1- Claim 4 characterized by the above-mentioned.
    Figure JPOXMLDOC01-appb-C000001
    (Wherein A and R each independently represents an aromatic ring, an aromatic heterocyclic ring, an aliphatic hydrocarbon group having 2 to 39 carbon atoms, or an alicyclic hydrocarbon group having 2 to 39 carbon atoms, A and R may be —O—, —SO 2 —, —CO—, —CH 2 —, —C (CH 3 ) 2 —, —OSi (CH 3 ) 2 —, A plurality of aromatic hydrocarbon rings, aromatic heterocycles, aliphatic hydrocarbon groups having 2 to 39 carbon atoms via at least one linking group of -C 2 H 4 O-, -S-, and a simple bond; Alternatively, an alicyclic hydrocarbon group may be linked, provided that at least one aromatic moiety is present in the structure represented by A or R. R 1 to R 8 are each independently a polyimide. Represents a terminal group, provided that at least one of R 1 to R 4 and at least one of R 5 to R 8 are N Two end groups having one or more aromatic rings having an ICS value in the range of -15.0 to -8.0, or two aromatic rings having an NICS value in the range of -15.0 to -7.0. It is a terminal group having two or more.)
  6.  前記一般式(1)又は一般式(2)において、前記Aが、下記構造を表すことを特徴とする請求項5に記載のポリイミド樹脂。
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    [上記構造は、*部分で一般式(1)及び一般式(2)におけるNと結合する。]
    In the said General formula (1) or General formula (2), said A represents the following structure, The polyimide resin of Claim 5 characterized by the above-mentioned.
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    [The above structure is bonded to N in the general formula (1) and the general formula (2) in the * part. ]
  7.  前記一般式(1)又は一般式(2)において、前記Rが、下記構造を表すことを特徴とする請求項5又は請求項6に記載のポリイミド樹脂。
    Figure JPOXMLDOC01-appb-C000005
    [上記構造は、*部分でイミド基中のカルボニル基と結合する。]
    In the said General formula (1) or General formula (2), said R represents the following structure, The polyimide resin of Claim 5 or Claim 6 characterized by the above-mentioned.
    Figure JPOXMLDOC01-appb-C000005
    [The above structure is bonded to the carbonyl group in the imide group at the * moiety. ]
  8.  請求項1から請求項7までのいずれか一項に記載の透明ポリイミド樹脂を含有することを特徴とする透明ポリイミド樹脂組成物。 A transparent polyimide resin composition comprising the transparent polyimide resin according to any one of claims 1 to 7.
  9.  請求項1から請求項7までのいずれか一項に記載の透明ポリイミド樹脂を含有することを特徴とする透明ポリイミド樹脂フィルム。 A transparent polyimide resin film comprising the transparent polyimide resin according to any one of claims 1 to 7.
  10.  請求項1から請求項7までのいずれか一項に記載の透明ポリイミド樹脂を含有することを特徴とする赤外線吸収組成物。 An infrared-absorbing composition comprising the transparent polyimide resin according to any one of claims 1 to 7.
  11.  請求項1から請求項7までのいずれか一項に記載の透明ポリイミド樹脂を含有することを特徴とする赤外線カットフィルター。 An infrared cut filter comprising the transparent polyimide resin according to any one of claims 1 to 7.
  12.  請求項1から請求項7までのいずれか一項に記載の透明ポリイミド樹脂を有機溶剤に溶解して得られるドープを調製する工程、及び
     前記ドープを支持体上に流延して膜を形成する工程を含むことを特徴とする透明ポリイミド樹脂フィルムの製造方法。
    A step of preparing a dope obtained by dissolving the transparent polyimide resin according to any one of claims 1 to 7 in an organic solvent, and casting the dope on a support to form a film The manufacturing method of the transparent polyimide resin film characterized by including a process.
PCT/JP2017/036735 2016-10-12 2017-10-11 Transparent polyimide resin, transparent polyimide resin composition, transparent polyimide resin film, infrared absorbing composition, infrared cut filter, and production method for transparent polyimide resin film WO2018070398A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018545010A JP7036021B2 (en) 2016-10-12 2017-10-11 Method for manufacturing transparent polyimide resin, transparent polyimide resin composition, transparent polyimide resin film, infrared absorbing composition, infrared cut filter and transparent polyimide resin film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016200572 2016-10-12
JP2016-200572 2016-10-12

Publications (1)

Publication Number Publication Date
WO2018070398A1 true WO2018070398A1 (en) 2018-04-19

Family

ID=61906247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/036735 WO2018070398A1 (en) 2016-10-12 2017-10-11 Transparent polyimide resin, transparent polyimide resin composition, transparent polyimide resin film, infrared absorbing composition, infrared cut filter, and production method for transparent polyimide resin film

Country Status (2)

Country Link
JP (1) JP7036021B2 (en)
WO (1) WO2018070398A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020026534A (en) * 2018-08-16 2020-02-20 長興材料工業股▲ふん▼有限公司Eternal Materials Co.,Ltd. Process for preparing polyimides
WO2020159183A1 (en) * 2019-02-01 2020-08-06 주식회사 엘지화학 Polyimide-based polymer film, and substrate for display device and optical device, each using same
KR20210038248A (en) * 2019-09-30 2021-04-07 주식회사 엘지화학 Polyimide-based polymer film, substrate for display device, and optical device using the same
KR20210038249A (en) * 2019-09-30 2021-04-07 주식회사 엘지화학 Polyimide-based polymer film, substrate for display device, and optical device using the same
KR20210038274A (en) * 2019-09-30 2021-04-07 주식회사 엘지화학 Polyimide-based polymer film, substrate for display device, and optical device using the same

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002012926A1 (en) * 2000-08-09 2002-02-14 Mitsui Chemicals, Inc. Optical members made of polyimide resins
JP2002202422A (en) * 2000-12-28 2002-07-19 Mitsui Chemicals Inc Polymer optical waveguide
JP2004083885A (en) * 2002-07-01 2004-03-18 Du Pont Toray Co Ltd Polyamic acid mixture, polyimide, polyimide film and use of the same
JP2006104440A (en) * 2004-09-08 2006-04-20 Japan Aerospace Exploration Agency Soluble terminal-modified imide oligomer and varnish and cured product thereof
JP2007099969A (en) * 2005-10-06 2007-04-19 Japan Aerospace Exploration Agency Soluble terminal-modified imide oligomer and varnish and cured product thereof
WO2008013210A1 (en) * 2006-07-25 2008-01-31 Ube Industries, Ltd. Terminally modified hyperbranched polyimide, metal-plated terminally modified hyperbranched polyimide, and method for producing the same
WO2008013285A1 (en) * 2006-07-28 2008-01-31 Nissan Chemical Industries, Ltd. Liquid crystal aligning agent and liquid crystal displays made by using the same
JP2009185190A (en) * 2008-02-07 2009-08-20 Japan Aerospace Exploration Agency Soluble terminal-modified imide oligomer and varnish and cured product thereof
JP2010155987A (en) * 2008-12-31 2010-07-15 Eternal Chemical Co Ltd Precursor composition for polyimide and use thereof
JP2013120207A (en) * 2011-12-06 2013-06-17 Nissan Chem Ind Ltd Novel dicarboxylic acid anhydride and method of producing the same, liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element using the same
US20150240027A1 (en) * 2008-03-26 2015-08-27 Yeda Research And Development Co., Ltd. Supramolecular polymers derived from perylene-diimides
JP2016058205A (en) * 2014-09-09 2016-04-21 コニカミノルタ株式会社 Transparent electrode, electronic device and organic electroluminescent element
JP2016071323A (en) * 2014-09-29 2016-05-09 株式会社日本触媒 Near-infrared cut filter

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002012926A1 (en) * 2000-08-09 2002-02-14 Mitsui Chemicals, Inc. Optical members made of polyimide resins
JP2002202422A (en) * 2000-12-28 2002-07-19 Mitsui Chemicals Inc Polymer optical waveguide
JP2004083885A (en) * 2002-07-01 2004-03-18 Du Pont Toray Co Ltd Polyamic acid mixture, polyimide, polyimide film and use of the same
JP2006104440A (en) * 2004-09-08 2006-04-20 Japan Aerospace Exploration Agency Soluble terminal-modified imide oligomer and varnish and cured product thereof
JP2007099969A (en) * 2005-10-06 2007-04-19 Japan Aerospace Exploration Agency Soluble terminal-modified imide oligomer and varnish and cured product thereof
WO2008013210A1 (en) * 2006-07-25 2008-01-31 Ube Industries, Ltd. Terminally modified hyperbranched polyimide, metal-plated terminally modified hyperbranched polyimide, and method for producing the same
WO2008013285A1 (en) * 2006-07-28 2008-01-31 Nissan Chemical Industries, Ltd. Liquid crystal aligning agent and liquid crystal displays made by using the same
JP2009185190A (en) * 2008-02-07 2009-08-20 Japan Aerospace Exploration Agency Soluble terminal-modified imide oligomer and varnish and cured product thereof
US20150240027A1 (en) * 2008-03-26 2015-08-27 Yeda Research And Development Co., Ltd. Supramolecular polymers derived from perylene-diimides
JP2010155987A (en) * 2008-12-31 2010-07-15 Eternal Chemical Co Ltd Precursor composition for polyimide and use thereof
JP2013120207A (en) * 2011-12-06 2013-06-17 Nissan Chem Ind Ltd Novel dicarboxylic acid anhydride and method of producing the same, liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element using the same
JP2016058205A (en) * 2014-09-09 2016-04-21 コニカミノルタ株式会社 Transparent electrode, electronic device and organic electroluminescent element
JP2016071323A (en) * 2014-09-29 2016-05-09 株式会社日本触媒 Near-infrared cut filter

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020026534A (en) * 2018-08-16 2020-02-20 長興材料工業股▲ふん▼有限公司Eternal Materials Co.,Ltd. Process for preparing polyimides
WO2020159183A1 (en) * 2019-02-01 2020-08-06 주식회사 엘지화학 Polyimide-based polymer film, and substrate for display device and optical device, each using same
KR20210038248A (en) * 2019-09-30 2021-04-07 주식회사 엘지화학 Polyimide-based polymer film, substrate for display device, and optical device using the same
KR20210038249A (en) * 2019-09-30 2021-04-07 주식회사 엘지화학 Polyimide-based polymer film, substrate for display device, and optical device using the same
KR20210038274A (en) * 2019-09-30 2021-04-07 주식회사 엘지화학 Polyimide-based polymer film, substrate for display device, and optical device using the same
KR102427759B1 (en) 2019-09-30 2022-07-29 주식회사 엘지화학 Polyimide-based polymer film, substrate for display device, and optical device using the same
KR102427758B1 (en) 2019-09-30 2022-07-29 주식회사 엘지화학 Polyimide-based polymer film, substrate for display device, and optical device using the same
KR102427760B1 (en) 2019-09-30 2022-08-01 주식회사 엘지화학 Polyimide-based polymer film, substrate for display device, and optical device using the same

Also Published As

Publication number Publication date
JPWO2018070398A1 (en) 2019-07-25
JP7036021B2 (en) 2022-03-15

Similar Documents

Publication Publication Date Title
WO2018070398A1 (en) Transparent polyimide resin, transparent polyimide resin composition, transparent polyimide resin film, infrared absorbing composition, infrared cut filter, and production method for transparent polyimide resin film
JP6801648B2 (en) Polyimide film, polyimide film manufacturing method, flexible printed circuit board, flexible display board, flexible display front plate, LED lighting device and organic electroluminescence display device
JP6915251B2 (en) Polyimide resin composition, method for producing polyimide resin composition, transparent substrate and display film
JP6806141B2 (en) Method of manufacturing polyimide film
WO2017099041A1 (en) Polyimide film, flexible printed board, led lighting device etc.
JP6747023B2 (en) Optical film manufacturing method and manufacturing apparatus
JP6874759B2 (en) Polyimide film and its manufacturing method
WO2017169306A1 (en) Method for manufacturing optical film
JP6834440B2 (en) Polyimide film and display device using the film
KR101838333B1 (en) Polyimide-based film and mehtod for preparing same
KR101787807B1 (en) Polyimide-based film and mehtod for preparing same
KR101797806B1 (en) Polyimide-based solution and polyimide-based film prepared by using same
TW202208512A (en) Optical film
TWI748180B (en) Polymer blend composition and polymer film
WO2017057247A1 (en) Polyimide film, flexible printed board, substrate for led lighting and front plate for flexible display
JP6772519B2 (en) Polyimide film, its manufacturing method, transparent conductive film and touch panel
TW202239818A (en) Optical film and flexible display device provided with optical film
TWI826669B (en) Method for producing colorless transparent resin film
TW202212509A (en) Method for manufacturing optical film containing polyimide-based resin
CN113429609A (en) Optical film and flexible display device
KR102184070B1 (en) Optical film manufacturing method
JP2022013625A (en) Optical film
KR20200000362A (en) Method for producing transparent resin film
WO2020195819A1 (en) Method for manufacturing optical film and optical film
KR102184072B1 (en) Optical film manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17861046

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018545010

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17861046

Country of ref document: EP

Kind code of ref document: A1