WO2018070031A1 - Compositional separation type carbonization system - Google Patents

Compositional separation type carbonization system Download PDF

Info

Publication number
WO2018070031A1
WO2018070031A1 PCT/JP2016/080473 JP2016080473W WO2018070031A1 WO 2018070031 A1 WO2018070031 A1 WO 2018070031A1 JP 2016080473 W JP2016080473 W JP 2016080473W WO 2018070031 A1 WO2018070031 A1 WO 2018070031A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
unit
decomposition
cooling
container
Prior art date
Application number
PCT/JP2016/080473
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木 利昭
Original Assignee
鈴木 利昭
渡辺 正弘
小西 正光
早瀬 新二
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 鈴木 利昭, 渡辺 正弘, 小西 正光, 早瀬 新二 filed Critical 鈴木 利昭
Priority to PCT/JP2016/080473 priority Critical patent/WO2018070031A1/en
Publication of WO2018070031A1 publication Critical patent/WO2018070031A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B47/00Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion
    • C10B47/28Other processes
    • C10B47/32Other processes in ovens with mechanical conveying means
    • C10B47/46Other processes in ovens with mechanical conveying means with trucks, containers, or trays

Definitions

  • This invention relates to a composition separation type carbonization system, and relates to a composition separation type carbonization system that separates and carbonizes the composition of raw materials.
  • a device for processing processed materials such as general waste and industrial waste
  • other materials are bonded to carbon-containing materials by using carbon-containing materials, carbon-containing materials mixed with inorganic materials, or adhesives.
  • a carbonization apparatus in which raw materials of a mixture consisting of wastes and the like are collectively put into a container and then separated and recovered for each composition and raw material so as not to be incinerated or melted.
  • a carbonization apparatus for example, as disclosed in Japanese Patent Application Laid-Open No. 2011-94138, a container into which raw materials are charged is continuously and automatically moved in each of a plurality of processing chambers. There are some which are separated and carbonized.
  • the present invention provides a composition separation type carbonization system that can suppress the generation of harmful substances such as carbon dioxide and unnecessary residues, improve the separation of the composition of raw materials, and increase the efficiency of the carbonization treatment.
  • the purpose is to do.
  • the present invention relates to a composition separation type carbonization system that separates and carbonizes the composition of the raw material, and removes the raw material by evaporating and removing the front standby preparation part for preventing internal odors and gases from leaking to the outside.
  • a water vapor evaporation unit, a polymer compound removal unit that thermally decomposes and removes the raw material polymer compound, a composition separation decomposition unit that decomposes and carbonizes the organic material of the raw material, and the composition separation decomposition unit A carbonized product cooling unit that cools the generated carbonized product, and a rear standby preparation unit that prevents internal odors and gases from leaking to the outside.
  • This invention can suppress the generation of harmful substances such as carbon dioxide and unnecessary residues, improve the separation of the composition of the raw materials, and increase the efficiency of the carbonization treatment.
  • FIG. 1 is a side view of a composition separation type carbonization system.
  • FIG. 2 is a plan view of the composition separation type carbonization system.
  • FIG. 3 is a cross-sectional view of the layered heat insulating structure forming the decomposition chamber.
  • FIG. 4 is an enlarged cross-sectional view of a heat insulating support structure that supports the drive shaft of FIG.
  • FIG. 5 is a control block diagram of the composition separation type carbonization system.
  • FIG. 6 is a flowchart of the composition separation type carbonization system.
  • FIG. 1 is a side view of a composition separation type carbonization system.
  • FIG. 2 is a plan view of the composition separation type carbonization system.
  • FIG. 3 is a cross-sectional view of the layered heat insulating structure forming the decomposition chamber.
  • FIG. 4 is an enlarged cross-sectional view of a heat insulating support structure that supports the drive shaft of FIG.
  • FIG. 5 is a control block diagram of the composition separation type
  • FIG. 7 is a schematic configuration diagram of a structure in which the container is returned to the front decomposition chamber in the composition separation and decomposition unit.
  • FIG. 8 is a schematic configuration diagram of a self-propelled composition separation type carbonization system.
  • the present invention realizes the purpose of suppressing the generation of harmful substances such as carbon dioxide and unnecessary residues, improving the separation of the composition of the raw materials and increasing the efficiency of the carbonization treatment without causing oxidative combustion. Is.
  • the composition separation type carbonization system 1 separates and carbonizes the composition of raw materials (processed materials: waste such as household electrical appliances / garbage, etc.) put together in the container 2. Is. In other words, the raw material is present in processed products such as general waste and industrial waste.
  • the composition separation type carbonization system 1 includes a container carry-in unit 3, a front standby preparation unit 4, a water evaporation unit 5, a polymer compound removal unit 6, a composition separation decomposition unit 7, and a carbonized product cooling unit 8.
  • the rear standby preparation unit 9 and the container unloading unit 10 are provided.
  • the container carry-in unit 3, the front standby preparation unit 4, the water evaporation unit 5, the polymer compound removal unit 6, the composition separation and decomposition unit 7, the carbonide cooling unit 8, the rear standby preparation unit 9, and the container carry-out unit 10 are arranged in series sequentially from the front in the process step direction X.
  • the front standby preparation unit 4, the water evaporation unit 5, the polymer compound removal unit 6, the composition separation / decomposition unit 7, the carbonized product cooling unit 8, and the rear standby preparation unit 9 are integrally configured.
  • the container carry-in unit 3 is composed of a roller conveyor or the like and is disposed in front of the front standby preparation unit 4 and carries the container 2 into the front standby preparation unit 4.
  • the container carry-out unit 10 is composed of a roller conveyor or the like and is arranged behind the rear standby preparation unit 9 and carries out the container 2 from the rear standby preparation unit 9.
  • the front standby preparation unit 4 is for preventing the internal odor and gas (gas) flowing backward when each of the rear chambers is opened from being leaked to the outside.
  • a preparation room 11-1 and a second front preparation room 11-2 are provided.
  • the front standby preparation unit 4 is not limited to two front preparation rooms, and the number of rooms can be increased or decreased.
  • the first front preparation chamber 11-1 is a frontmost chamber of the composition separation type carbonization system 1 and is at room temperature.
  • the first front preparation chamber 11-1 is provided with a first moving means (roller conveyor or the like) 12-1 for moving the container 2 and a first limit switch 13-1 for determining the position of the container 2. .
  • the first front preparation chamber 11-1 is connected with a first introduction pipe 14-1 for introducing nitrogen as a specific gas from the outside, and a first exhaust for exhausting internal air (oxygen) to the outside. Tube 15-1 is connected.
  • a nitrogen atmosphere as a gas atmosphere is obtained by filling the nitrogen and discharging the air.
  • the second front preparation room 11-2 is a room located behind the first front preparation room 11-1 and is at room temperature.
  • a second moving means 12-2 for moving the container 2 and a second limit switch 13-2 for determining the position of the container 2 are installed.
  • a second introduction pipe 14-2 for introducing nitrogen from the outside is connected to the second front preparation chamber 11-2, and a second discharge pipe 15-2 for discharging internal air to the outside is connected. .
  • a nitrogen atmosphere is obtained by filling the nitrogen and discharging the air.
  • the first introduction pipe 14-1 and the second introduction pipe 14-2 are connected to the gas generator 16, and nitrogen extracted from the atmosphere by the gas generator 16 is supplied to the first front preparation chamber 11-1 2 Leads to the front preparation room 11-2.
  • the gas generator 16 can also generate other types of gas instead of nitrogen.
  • the first exhaust pipe 15-1 and the second exhaust pipe 15-2 are connected to a first deodorizing and smoke eliminating device 17-1 for performing processing such as deodorizing and smoke eliminating with the discharged air as a high temperature atmosphere.
  • the first deodorizing and smoking device 17-1 discharges the purified air to the outside after performing processing such as deodorization and smoke removal.
  • the moisture evaporating unit 5 evaporates and removes moisture (for example, 90%) of the raw material, and includes, for example, a first evaporation chamber 11-3 and a second evaporation chamber 11-4 as processing chambers. Note that the moisture evaporation unit 5 is not limited to two evaporation chambers, and the number of chambers can be increased or decreased.
  • the first evaporation chamber 11-3 is a chamber located behind the second front preparation chamber 11-2.
  • the first evaporation chamber 11-3 includes a third moving unit 12-3 for moving the container 2, a third limit switch 13-3 for determining the position of the container 2, and a first temperature sensor 18- for measuring temperature. 1 is installed.
  • a first heating means for example, an electric heater
  • a predetermined temperature for example, 150 ° C.
  • a third introduction pipe 14-3 for introducing nitrogen from the outside is connected to the first evaporation chamber 11-3, and a third discharge pipe 15-3 for discharging water vapor generated inside is connected.
  • a nitrogen atmosphere is obtained by filling nitrogen and discharging water vapor.
  • the second evaporation chamber 11-4 is a chamber located behind the first evaporation chamber 11-3.
  • the second evaporation chamber 11-4 includes a fourth moving unit 12-4 for moving the container 2, a fourth limit switch 13-4 for determining the position of the container 2, and a second temperature sensor 18- for measuring temperature. 2 are installed.
  • a second heating means 19-2 for heating the raw material of the container 2 to a predetermined temperature (for example, 150 ° C.) is installed.
  • a fourth introduction pipe 14-4 for introducing nitrogen from the outside is connected to the second evaporation chamber 11-4, and a fourth discharge pipe 15-4 for discharging water vapor generated inside is connected.
  • a nitrogen atmosphere is obtained by filling nitrogen and discharging water vapor.
  • the third introduction pipe 14-3 and the fourth introduction pipe 14-4 are connected to the gas generation device 16, and nitrogen extracted from the atmosphere by the gas generation device 16 is supplied to the first evaporation chamber 11-3 and the second evaporation tube. It leads to the chamber 11-4.
  • the third discharge pipe 15-3 and the fourth discharge pipe 15-4 are connected to a steam processing apparatus 20 that cools and liquefies the discharged water vapor and processes (deodorizes and purifies) it.
  • Water from the steam processing apparatus 20 is stored in the cooling water tank 22 through the first communication pipe 21-1.
  • the cooling water stored in the cooling water tank 22 is circulated, for example, to cool the carbonized product and used for the first to third cooling means 25-1 to 25-3 as described later.
  • the first heating means 19-1 and the second heating means 19-2 have a structure that does not directly contact the water vapor in the first evaporation chamber 11-3 and the second evaporation chamber 11-4.
  • the polymer compound removing section 6 is for thermally decomposing and removing (dechlorinating) polymer compounds (chlorine components, petroleum components, etc.) mixed in the raw material plastics, etc.
  • Third removal chambers 11-5 to 11-7 are provided.
  • the polymer compound removal unit 6 is not limited to three removal chambers, and the number of chambers can be increased or decreased.
  • the first removal chamber 11-5 is a chamber located behind the second evaporation chamber 11-4.
  • fifth moving means 12-5 for moving the container 2 a fifth limit switch 13-5 for determining the position of the container 2, and a third temperature sensor 18- for measuring temperature are provided. 3 are installed.
  • third heating means 19-3 for heating the raw material of the container 2 to a predetermined temperature (for example, 300 ° C.) is installed.
  • a fifth introduction pipe 14-5 for introducing nitrogen from the outside is connected to the first removal chamber 11-5, and a fifth discharge pipe 15-5 for discharging a decomposition gas of the polymer compound generated inside is provided.
  • a nitrogen atmosphere is obtained by filling nitrogen and discharging the decomposition gas of the polymer compound.
  • the second removal chamber 11-6 is a chamber located behind the first removal chamber 11-5.
  • the second removal chamber 11-6 includes sixth moving means 12-6 for moving the container 2, a sixth limit switch 13-6 for determining the position of the container 2, and a fourth temperature sensor 18- for measuring temperature. 4 are installed.
  • fourth heating means 19-4 for heating the raw material of the container 2 to a predetermined temperature (for example, 300 ° C.) is installed.
  • a sixth introduction pipe 14-6 for introducing nitrogen from the outside is connected to the second removal chamber 11-6, and a sixth discharge pipe 15-6 for discharging a decomposition gas of the polymer compound generated inside is connected to the second removal chamber 11-6. Connected.
  • a nitrogen atmosphere is obtained by filling nitrogen and discharging the decomposition gas of the polymer compound.
  • the third removal chamber 11-7 is a chamber located behind the second removal chamber 11-6.
  • the third removal chamber 11-7 includes a seventh moving means 12-7 for moving the container 2, a seventh limit switch 13-7 for determining the position of the container 2, and a fifth temperature sensor 18- for measuring temperature. 5 are installed.
  • fifth heating means 19-5 for heating the raw material of the container 2 to a predetermined temperature (for example, 300 ° C.) is installed.
  • the third removal chamber 11-7 is connected with a seventh introduction pipe 14-7 for introducing nitrogen into the inside, and a seventh discharge pipe 15-7 for discharging a decomposition gas of the polymer compound generated inside. Connected.
  • a nitrogen atmosphere is obtained by filling nitrogen and discharging the decomposition gas of the polymer compound.
  • the fifth to seventh introduction pipes 14-5 to 14-7 are connected to the gas generator 16, and remove nitrogen extracted from the atmosphere by the gas generator 16 from the first to third removal chambers 11-5 to 11-11. It leads to -7.
  • the fifth to seventh discharge pipes 15-5 to 15-7 are connected to a first liquefaction processing device 23-1 that cools the decomposition gas of the polymer compound and performs processing such as liquefaction and deodorization.
  • the liquefied material processed by the first liquefaction processing device 23-1 is stored in the first liquefied material recovery tank 24-1 from the second communication pipe 21-2.
  • the liquefied material stored in the first liquefied material recovery tank 24-1 reacts with the remaining water by an external reaction device and is recovered as hydrochloric acid or salt. Thereby, generation
  • the remaining gas can be processed.
  • the third to fifth heating means 19-3 to 19-5 have a structure that is not in direct contact with the polymer compound decomposition gas in the first to third removal chambers 11-5 to 11-7.
  • the composition separation / decomposition unit 7 separates and carbonizes the composition of the organic material as the raw material, that is, performs a carbonization process for separating the organic material other than the polymer compound into a carbon material component and other components by composition separation. Is what you do.
  • the composition separation / decomposition unit 7 includes, for example, first to fifth decomposition chambers 11-8 to 11-12 as processing chambers.
  • the composition separation / decomposition unit 7 is not limited to five decomposition chambers, and the number of chambers can be increased or decreased.
  • the first decomposition chamber 11-8 is a chamber located behind the third removal chamber 11-7.
  • the first decomposition chamber 11-8 includes an eighth moving means 12-8 for moving the container 2, an eighth limit switch 13-8 for determining the position of the container 2, and a sixth temperature sensor 18- for measuring temperature. 6 are installed.
  • sixth heating means 19-6 for heating the raw material of the container 2 to a predetermined temperature (for example, 450 ° C.) is installed.
  • the first cracking chamber 11-8 is connected to an eighth introduction pipe 14-8 for introducing nitrogen from the outside, and an eighth carbonization treatment cracked gas (including oil) generated inside is discharged.
  • a discharge pipe 15-8 is connected.
  • a nitrogen atmosphere is obtained by filling the nitrogen and exhausting the decomposition gas of the carbonization treatment.
  • the second decomposition chamber 11-9 is a chamber located behind the first decomposition chamber 11-8.
  • the second decomposition chamber 11-9 includes a ninth moving means 12-9 for moving the container 2, a ninth limit switch 13-9 for determining the position of the container 2, and a seventh temperature sensor 18- for measuring temperature. 7 are installed.
  • a seventh heating means 19-7 for heating the raw material of the container 2 to a predetermined temperature (for example, 450 ° C.) is installed.
  • a ninth introduction pipe 14-9 for introducing nitrogen from the outside is connected to the second decomposition chamber 11-9, and a ninth discharge pipe 15-9 for discharging the decomposition gas generated by the carbonization treatment inside is provided. Connected.
  • the third decomposition chamber 11-10 is a chamber located behind the second decomposition chamber 11-9.
  • the third decomposition chamber 11-10 includes a tenth moving means 12-10 for moving the container 2, a tenth limit switch 13-10 for determining the position of the container 2, and an eighth temperature sensor 18- for measuring temperature. 8 are installed.
  • the third decomposition chamber 11-10 is provided with an eighth heating means 19-8 for heating the raw material of the container 2 to a predetermined temperature (for example, 450 ° C.).
  • the third decomposition chamber 11-10 is connected with a tenth introduction pipe 14-10 for introducing nitrogen from the outside, and a tenth discharge pipe 15-10 for discharging the decomposition gas generated in the carbonization treatment inside. Connected. In the third decomposition chamber 11-10, a nitrogen atmosphere is obtained by filling nitrogen and exhausting the decomposition gas for carbonization treatment.
  • the fourth decomposition chamber 11-11 is a chamber located behind the third decomposition chamber 11-10.
  • the fourth decomposition chamber 11-11 includes an eleventh moving means 12-11 for moving the container 2, an eleventh limit switch 13-11 for determining the position of the container 2, and a ninth temperature sensor 18- for measuring temperature. 9 are installed.
  • ninth heating means 19-9 for heating the raw material of the container 2 to a predetermined temperature (for example, 450 ° C.) is installed.
  • An eleventh introduction pipe 14-11 for introducing nitrogen from the outside is connected to the fourth decomposition chamber 11-11, and an eleventh discharge pipe 15-11 for discharging a decomposition gas generated in the carbonization treatment inside is connected to the fourth decomposition chamber 11-11.
  • a nitrogen atmosphere is obtained by filling the nitrogen and exhausting the decomposition gas for the carbonization treatment.
  • the fifth decomposition chamber 11-12 is a chamber located behind the fourth decomposition chamber 11-11.
  • the fifth decomposition chamber 11-12 includes a twelfth moving means 12-12 for moving the container 2, a twelfth limit switch 13-12 for determining the position of the container 2, and a tenth temperature sensor 18- for measuring temperature. 10 are installed.
  • a tenth heating means 19-10 for heating the raw material of the container 2 to a predetermined temperature (for example, 450 ° C.) is installed.
  • a twelfth introduction pipe 14-12 for introducing nitrogen into the interior is connected to the fifth decomposition chamber 11-12, and a twelfth exhaust pipe 15-12 for exhausting the carbonization treatment cracked gas generated therein is provided. Connected.
  • a nitrogen atmosphere is obtained by filling nitrogen and exhausting the decomposition gas of the carbonization treatment.
  • the eighth to twelfth introduction pipes 14-8 to 14-12 are connected to the gas generator 16, and remove nitrogen extracted from the atmosphere by the gas generator 16 from the first to fifth decomposition chambers 11-8 to 11-11.
  • the eighth to twelfth exhaust pipes 15-8 to 15-12 are connected to a second liquefaction processing apparatus 23-2 that liquefies the decomposition gas for carbonization and generates a liquefied product of oil.
  • the liquefied material processed by the second liquefaction processing device 23-2 is stored in the second liquefied material recovery tank 24-2 via the third communication pipe 21-3.
  • the sixth to tenth heating means 19-6 to 19-10 have a structure that is not in direct contact with the carbonization treatment cracked gas in the first to fifth cracking chambers 11-8 to 11-12. That is, in the composition separation / decomposition unit 7, the non-combustion method is oxygen-free, and the raw material is continuously moved in the first to fifth decomposition chambers 11-8 to 11-12 under a nitrogen atmosphere. The composition of the organic substance is separated and carbonized at a predetermined temperature (for example, 450 ° C.) or lower to produce a carbonized product.
  • a predetermined temperature for example, 450 ° C.
  • the composition separation / decomposition unit 7 has a predetermined temperature (for example, 450 ° C.) or less, and can prevent volatilization of noble metals, for example. That is, the composition of the raw material is separated under a control temperature corresponding to the characteristics of the raw material and the characteristics of the recovered material. Further, by using nitrogen in the air for carbonization of the raw material, it is possible to prevent the generation of carbon dioxide without oxidative combustion.
  • the carbonized product cooling unit 8 cools the carbonized product generated in the composition separation and decomposition unit 7 to a temperature at which combustion and evaporation do not occur (for example, 50 ° C. or less) (indirect cooling), and as a processing chamber, for example, first to third cooling chambers 11-13 to 11-15 are provided.
  • first to third cooling chambers 11-13 to 11-15 are provided.
  • the carbonized material cooling section 8 is not limited to three cooling chambers, and the number of chambers can be increased or decreased.
  • the first cooling chamber 11-13 is a chamber located behind the fifth decomposition chamber 11-12, cools the carbonized product generated in the composition separation / decomposition unit 6, and has a rapid volume of carbonized product. It has a function as a pressure regulation chamber for avoiding the expansion.
  • the first cooling chamber 11-13 includes a thirteenth moving means 12-13 for moving the container 2, a thirteenth limit switch 13-13 for determining the position of the container 2, and an eleventh temperature sensor 18- for measuring the temperature. 11 are installed.
  • a first cooling means for example, a water cooling type 25-1 for lowering the carbonized material to a predetermined temperature (for example, 50 ° C. or less) is installed.
  • a thirteenth introduction pipe 14-13 for introducing nitrogen from the outside, and a thirteenth discharge pipe 15-13 for discharging cracked gas present inside.
  • a nitrogen atmosphere is obtained by filling nitrogen and discharging the internal decomposition gas.
  • the second cooling chamber 11-14 is a chamber located behind the first cooling chamber 11-13.
  • the second cooling chamber 11-14 includes a fourteenth moving means 12-14 for moving the container 2, a fourteenth limit switch 13-14 for determining the position of the container 2, and a twelfth temperature sensor 18- for measuring temperature. 12 are installed.
  • the second cooling chamber 11-14 is provided with a second cooling means 25-2 for lowering the carbonized material to a predetermined temperature (for example, 50 ° C. or lower).
  • a 14th introduction pipe 14-14 for introducing nitrogen from the outside is connected to the second cooling chamber 11-14, and a 14th exhaust pipe 15-14 for discharging the internal decomposition gas is connected.
  • a nitrogen atmosphere is obtained by filling nitrogen and exhausting the internal decomposition gas.
  • the third cooling chamber 11-15 is a chamber located behind the second cooling chamber 11-14.
  • the third cooling chamber 11-15 includes a fifteenth moving means 12-15 for moving the container 2, a fifteenth limit switch 13-15 for determining the position of the container 2, and a thirteenth temperature sensor 18- for measuring the temperature. 13 are installed.
  • the third cooling chamber 11-15 is provided with third cooling means 25-3 for lowering the carbonized product to a predetermined temperature (for example, 50 ° C. or lower).
  • the third cooling chamber 11-15 is connected to a fifteenth introduction pipe 14-15 for introducing nitrogen from the outside, and is connected to a fifteenth discharge pipe 15-15 for discharging the internal decomposition gas.
  • a nitrogen atmosphere is obtained by filling nitrogen and discharging the internal decomposition gas.
  • the first to third cooling means 25-1 to 25-3 are, for example, water-cooled types using circulated water, and are not in direct contact with the internal cracked gas.
  • the so-called indirect cooling in which the carbonized materials in the chambers 11-13 to 11-15 are lowered to a temperature at which combustion or evaporation does not occur (for example, 50 ° C. or less).
  • the thirteenth to fifteenth introduction pipes 14-13 to 14-15 are connected to the gas generator 16, and nitrogen extracted from the atmosphere by the gas generator 16 is supplied to the first to third cooling chambers 11-13 to 11-11. To -15.
  • the thirteenth to fifteenth exhaust pipes 15-13 to 15-15 are connected to a third liquefaction processing device 23-3 that performs processing such as liquefaction and deodorization of the decomposition gas for carbonization.
  • the liquefied material processed by the third liquefaction processing device 23-3 is stored in the third liquid recovery tank 24-3 from the fourth communication pipe 21-4.
  • the third liquefaction processing device 23-3 can also process the remaining gas.
  • the rear standby preparation unit 9 is for preventing leakage of internal odors and gases that flow backward when the front chambers are opened.
  • the processing chamber for example, the first rear preparation chamber 11- 16 and a second rear preparation chamber 11-17.
  • the rear standby preparation unit 9 is not limited to two rear preparation rooms, and the number of rooms can be increased or decreased.
  • the first rear preparation chamber 11-16 is a room located behind the third cooling chamber 11-15 and is at room temperature. In the first rear preparation chamber 11-16, a sixteenth moving means 12-16 for moving the container 2 and a sixteenth limit switch 13-16 for determining the position of the container 2 are installed.
  • the first rear preparation chamber 11-16 is connected to a sixteenth introduction pipe 14-16 for introducing nitrogen from the outside, and a sixteenth discharge pipe 15-16 for discharging an internal decomposition gas and air (oxygen). Connected.
  • a nitrogen atmosphere is obtained by filling nitrogen and exhausting the decomposition gas and air.
  • the second rear preparation chamber 11-17 is located behind the first rear preparation chamber 11-16 and is the room located most rearward at room temperature.
  • a seventeenth moving means 12-17 for moving the container 2 and a seventeenth limit switch 13-17 for determining the position of the container 2 are installed.
  • the second rear preparation chamber 11-17 is connected with a seventeenth introduction pipe 14-17 for introducing nitrogen from the outside, and a seventeenth discharge pipe 15-17 for discharging internal decomposition gas and air. .
  • a nitrogen atmosphere is obtained by filling nitrogen and exhausting the decomposition gas and air.
  • the sixteenth introduction pipe 14-16 and the seventeenth introduction pipe 14-17 are connected to the gas generation device 16, and nitrogen extracted from the atmosphere by the gas generation device 16 is supplied to the first rear preparation chambers 11-16 and second. It leads to the rear preparation room 11-17.
  • the sixteenth exhaust pipe 15-16 and the seventeenth exhaust pipe 15-17 are second deodorant and smoke eliminating devices 17-2 for performing processing such as deodorization and smoke removal using the discharged decomposition gas and air as a high temperature atmosphere. Connected to.
  • the second deodorizing and smoking device 17-2 discharges purified air to the outside after deodorizing and smoking.
  • Each of the chambers 11-1 to 17-1 is configured to be able to communicate (open) in the carbonization process direction X.
  • the chambers 11-1 to 11-17 are individually closed by the partition doors 26-1 to 26-18.
  • a first partition door 26-1 is disposed on one end surface into which the container 2 is carried.
  • the first partition door 26-1 is operated by first opening / closing means (actuator) 27-1, and opens / closes the carry-in port 28 on one end face of the first front preparation chamber 11-1.
  • a second partition door 26-2 is disposed between the first front preparation chamber 11-1 and the second front preparation chamber 11-2.
  • the second partition door 26-2 is operated by the second opening / closing means 27-2 to open and close the other end surface of the first front preparation chamber 11-1 and one end surface of the second front preparation chamber 11-2.
  • a third partition door 26-3 is disposed between the second front preparation chamber 11-2 and the first evaporation chamber 11-3.
  • the third partition door 26-3 is operated by the third opening / closing means 27-3 to open and close the other end surface of the second front preparation chamber 11-2 and one end surface of the first evaporation chamber 11-3.
  • a fourth partition door 26-4 is disposed between the first evaporation chamber 11-3 and the second evaporation chamber 11-4.
  • the fourth partition door 26-4 is operated by the fourth opening / closing means 27-4 to open and close the other end surface of the first evaporation chamber 11-3 and the one end surface of the second evaporation chamber 11-4.
  • a fifth partition door 26-5 is disposed between the second evaporation chamber 11-4 and the first removal chamber 11-5.
  • the fifth partition door 26-5 is operated by the fifth opening / closing means 27-5 to open and close the other end surface of the second evaporation chamber 11-4 and one end surface of the first removal chamber 11-5.
  • a sixth partition door 26-6 is arranged between the first removal chamber 11-5 and the second removal chamber 11-6.
  • the sixth partition door 26-6 is operated by the sixth opening / closing means 27-6 to open and close the other end surface of the first removal chamber 11-5 and one end surface of the second removal chamber 11-6.
  • a seventh partition door 26-7 is disposed between the second removal chamber 11-6 and the third removal chamber 11-7.
  • the seventh partition door 26-7 is operated by the seventh opening / closing means 27-7 to open and close the other end surface of the second removal chamber 11-6 and one end surface of the third removal chamber 11-7.
  • An eighth partition door 26-8 is arranged between the third removal chamber 11-7 and the first decomposition chamber 11-8.
  • the eighth partition door 26-8 is operated by the eighth opening / closing means 27-8 to open and close the other end surface of the third removal chamber 11-7 and one end surface of the first decomposition chamber 11-8.
  • a ninth partition door 26-9 is arranged between the first decomposition chamber 11-8 and the second decomposition chamber 11-9.
  • the ninth partition door 26-9 is operated by the ninth opening / closing means 27-9 to open and close the other end surface of the first decomposition chamber 11-8 and one end surface of the second decomposition chamber 11-9.
  • a tenth partition door 26-10 is disposed between the second decomposition chamber 11-9 and the third decomposition chamber 11-10.
  • the tenth partition door 26-10 is operated by the tenth opening / closing means 27-10, and opens and closes the other end surface of the second decomposition chamber 11-9 and one end surface of the third decomposition chamber 11-10.
  • An eleventh partition door 26-11 is disposed between the third decomposition chamber 11-10 and the fourth decomposition chamber 11-11.
  • the eleventh partition door 26-11 is operated by the eleventh opening / closing means 27-11 to open and close the other end surface of the third decomposition chamber 11-10 and one end surface of the fourth decomposition chamber 11-11.
  • a twelfth partition door 26-12 is arranged between the fourth decomposition chamber 11-11 and the fifth decomposition chamber 11-12.
  • the twelfth partition door 26-12 is operated by the twelfth opening / closing means 27-12 and opens / closes the other end surface of the fourth decomposition chamber 11-11 and one end surface of the fifth decomposition chamber 11-12.
  • a thirteenth partition door 26-13 is disposed between the fifth decomposition chamber 11-12 and the first cooling chamber 11-13.
  • the thirteenth partition door 26-13 is operated by the thirteenth opening / closing means 27-13, and opens and closes the other end surface of the fifth decomposition chamber 11-12 and one end surface of the first cooling chamber 11-13.
  • a fourteenth partition door 26-14 is disposed between the first cooling chamber 11-13 and the second cooling chamber 11-14.
  • the fourteenth partition door 26-14 is operated by the fourteenth opening / closing means 27-14, and opens and closes the other end surface of the first cooling chamber 11-13 and one end surface of the second cooling chamber 11-14.
  • a fifteenth partition door 26-15 is disposed between the second cooling chamber 11-14 and the third cooling chamber 11-15.
  • the fifteenth partition door 26-15 is operated by the fifteenth opening / closing means 27-15 and opens / closes the other end face of the second cooling chamber 11-14 and one end face of the third cooling chamber 11-15.
  • a sixteenth partition door 26-16 is disposed between the third cooling chamber 11-15 and the first rear preparation chamber 11-16.
  • the sixteenth partition door 26-16 is operated by the sixteenth opening / closing means 27-16, and opens and closes the other end surface of the third cooling chamber 11-15 and one end surface of the first rear preparation chamber 11-16.
  • a seventeenth partition door 26-17 is disposed between the first rear preparation chamber 11-16 and the second rear preparation chamber 11-17.
  • the seventeenth partition door 26-17 is operated by the seventeenth opening / closing means 27-17, and opens and closes the other end surface of the first rear preparation chamber 11-16 and one end surface of the second rear preparation chamber 11-17.
  • an eighteenth partition door 26-18 is arranged on the other end surface where the container 2 is carried out.
  • the eighteenth partition door 26-18 is operated by the eighteenth opening / closing means 27-18 and opens / closes the outlet 29 on the other end surface of the second rear preparation chamber 11-17.
  • the first to eighteenth partition doors 26-1 to 26-18 are housed in, for example, a box.
  • the decomposition chambers 11-8 to 11-12 are formed of a layered heat insulating structure 30.
  • the layered heat insulating structure 30 is made of, for example, a glass wool material, and as a plurality of boards sequentially from the inside, two layers of hard boards 31-1 and 31-2 and two layers of soft boards 32-1 and 32- Two and one-layer hard boards 31-3 and one-layer soft boards 32-3 are superposed in six layers.
  • the layered heat insulating structure 30 is configured such that the inner wall surface 30A and the outer wall surface 30B of the chamber 11 are hardened by coating or the like, has an excellent heat insulating effect, and can be used continuously for a long time.
  • a plurality of protrusions 33 are formed on the inner wall surface 30 ⁇ / b> A of the layered heat insulating structure 30 such that, for example, the vertical wall surface in the vertical direction is an uneven surface.
  • stirring of the cracked gas hot gas
  • the chamber 11 is provided with a stirring fan 34 that promotes stirring of the cracked gas, for example, at the top.
  • the stirring fan 34 is driven by a fan motor 35, eliminates the temperature difference in the chamber 11, and cooperates with the protrusion 33 of the inner wall surface 30A to efficiently stir the decomposition gas.
  • a plurality of agitation fans 34 may be installed in two or more on the side surface as well as the ceiling.
  • the layered heat insulating structure 30 can be applied not only to the decomposition chamber but also to other chambers such as an evaporation chamber and a cooling chamber.
  • the chamber 11 has a drive shaft for operating the moving means 12-1 to 12-17 (hereinafter simply referred to as “moving means 12” in FIGS. 3 and 4).
  • 36 is installed.
  • the drive shaft 36 is connected at one end inside the chamber 11 to the moving means 12 and is connected to a prime mover (motor) 37 at the other end outside the chamber 11.
  • the drive shaft 36 is supported by a heat insulating support structure 39 fixed to the shaft mounting hole 38 of the layered heat insulating structure 30.
  • the heat insulating support structure 39 includes a first cover body 40, a second cover body 41, an inner closing plate 42, and an outer closing plate 43.
  • the first cover body 40 is formed of an annular body having a predetermined thickness, forms a first annular space 44 that opens outward in the axial direction, and is fitted to the drive shaft 36.
  • the second cover body 41 covers the first cover body 40 to form a second annular space 45, and the outer peripheral surface is fixed to the shaft attachment hole 38.
  • the inner closing plate 42 is located on the inner wall surface 30 ⁇ / b> A of the layered heat insulating structure 30 and covers the inner end face sides of the first cover body 40 and the second cover body 41.
  • the outer closing plate 43 is located on the outer wall surface 30 ⁇ / b> B of the layered heat insulating structure 30 and covers the outer end surface sides of the first cover body 40 and the second cover body 41.
  • the first annular space 44 is filled with nitrogen from a nitrogen supply device 46 via a nitrogen supply pipe 47.
  • the second annular space 45 is connected to an inlet pipe 48 and an outlet pipe 49 for guiding the cooling water, and the cooling water from the cooling water supply device 50 is circulated.
  • part of the drive shaft 36 can be improved, and the heat loss of the chamber 11 can be prevented.
  • a cooling water shaft hole 51 is formed on the drive shaft 36 on the axial center with a length from one end in the chamber 11 to the location of the heat insulating support structure 39. It is also possible to circulate cooling water from the cooling water supply device 50 in the shaft hole 51.
  • the heat insulation support structure 39 the heat insulation effect of the attachment site
  • the composition separation type carbonization system 1 includes an electronic control unit 52.
  • the electronic control unit 52 controls the gas generation device 16, the deodorization and smoke removal devices 17-1 and 17-2, the vapor cooling device 20, and the liquid processing devices 23-1 to 23-3.
  • the electronic control unit 52 controls the heating means 19-1 to 19-10 and the cooling means 25-1 to 25-3.
  • the electronic control unit 52 sets the temperatures of at least the evaporation chambers 11-3 and 11-4, the removal chambers 11-5 to 11-7, and the decomposition chambers 11-8 to 11-12 to a predetermined temperature (for example, 10
  • the heating means 19-1 to 19-10 are operated so as to be controlled each time.
  • the electronic control unit 52 receives the signals from the temperature sensors 18-1 to 18-13 and operates the heating means 19-1 to 19-10 and the cooling means 25-1 to 25-3.
  • the electronic control unit 52 receives the signals from the limit switches 13-1 to 13-17, controls the moving means 12-1 to 12-17, and moves the container 2 to a predetermined position.
  • the electronic control unit 52 controls the opening / closing means 27-1 to 27-18 to open / close the partition doors 26-1 to 26-18 at a predetermined timing.
  • the electronic control unit 52 controls the fan motor 35, the prime mover 37, the nitrogen supply device 46, and the cooling water supply device 50.
  • the composition separation type carbonization system 1 uses electric power as a heat source, strictly controls the temperature in order to improve the efficiency of the carbonization treatment, carbonizes the raw material at low temperature (450 ° C.) in an oxygen-free state, and produces carbon dioxide and dioxin. It suppresses the generation of harmful substances. In addition, since the composition separation type carbonization system 1 does not undergo oxidative combustion (thermal decomposition by high-temperature oxidation: oxidation reaction, reduction reaction), dust does not occur.
  • composition separation type carbonization system 1 according to this embodiment will be described with reference to the flowchart of FIG.
  • the container 2 into which the raw materials are charged all at once is carried into the respective chambers 11-1 to 11-17 every predetermined time (for example, every 40 minutes).
  • Container loading process In the container 2 into which the raw materials are charged all at once, the first partition door 26-1 is opened and the inlet 28 on one end face of the first front preparation chamber 11-1 is opened, so that 1 It is carried into the front preparation room 11-1.
  • Front standby preparation process (S102) When the container 2 is moved by the first moving means 12-1 and reaches a predetermined position in the first front preparation chamber 11-1, the first partition door 26-1 is closed and the second partition door 26-2 is moved. Since it is in the closed state, the first front preparation chamber 11-1 is closed. In the first front preparation chamber 11-1, nitrogen is introduced from the first introduction pipe 14-1, and at the same time, air is discharged from the first discharge pipe 15-1. The first front preparation chamber 11-1 is in a nitrogen atmosphere at room temperature.
  • the first moving means 12-1 The container 2 is moved from the first front preparation chamber 11-1 to the second front preparation chamber 11-2 by the second moving means 12-2.
  • the second partition door 26-2 is closed and the third partition door 26-3 is closed.
  • the preparation chamber 11-2 is closed.
  • nitrogen is introduced from the second introduction pipe 14-2, and at the same time, air is discharged from the second discharge pipe 15-2.
  • the first front preparation chamber 11-2 is in a nitrogen atmosphere at room temperature.
  • the air from the first exhaust pipe 15-1 and the second exhaust pipe 15-2 is deodorized and smoke eliminated by the first deodorizing and smoke eliminating device 17-1, purified and released to the atmosphere.
  • the first front preparation chamber 11-1 and the second front preparation chamber 11-2 are provided in series, so that when the rear chambers are opened, they flow backward inside Odor and gas are prevented from leaking to the outside, temperature control of the composition separation type carbonization system 1 for simultaneously performing composition separation and carbonization treatment of raw materials is performed, and heat loss is further suppressed. It is possible to contribute to energy saving.
  • the fourth partition door 26-4 opens and the first evaporation chamber 11-3 and the second evaporation chamber 11-4 are in communication with each other, the third moving means 12-3 and the fourth moving means 12-4 As a result, the container 2 is moved from the first evaporation chamber 11-3 to the second evaporation chamber 11-4.
  • the fourth partition door 26-4 is closed and the fifth partition door 26-5 is closed. 4 becomes blocked.
  • the raw material of the container 2 in the second evaporation chamber 11-4 is heated by the second heating means 19-2.
  • nitrogen is introduced from the fourth introduction pipe 14-4, and at the same time, water vapor is discharged from the fourth discharge pipe 15-4 to form a nitrogen atmosphere.
  • Water vapor from the third discharge pipe 15-3 and the fourth discharge pipe 15-4 is processed by the steam processing device 20 and stored in the cooling water tank 22.
  • the water evaporation unit 5 when the water in the raw material cannot be sufficiently removed in the first evaporation chamber 11-3, the remaining water can be removed in the second evaporation chamber 11-4. Can be efficiently removed up to a predetermined amount.
  • the electronic control unit 52 controls the first heating means 19-1 and the second heating means 19-2 individually and / or stepwise, and the first evaporation chamber 11-3 It is also possible to change the temperature of the second evaporation chamber 11-4 so as to be different. That is, by making the temperatures of the first evaporation chamber 11-3 and the second evaporation chamber 11-4 different according to the characteristics of the raw material, it is possible to appropriately remove the moisture of the raw material.
  • the decomposition gas of the polymer compound is discharged from the fifth discharge pipe 15-5 to be in a nitrogen atmosphere.
  • the sixth partition door 26-6 opens and the first removal chamber 11-5 and the second removal chamber 11-6 communicate with each other, the fifth moving means 12-5, the sixth moving means 12-6, As a result, the container 2 is moved from the first removal chamber 11-5 to the second removal chamber 11-6.
  • the sixth partition door 26-6 is closed and the seventh partition door 26-7 is closed. 6 becomes blocked.
  • the raw material of the container 2 in the second removal chamber 11-6 is heated by the fourth heating means 19-4.
  • the second removal chamber 11-6 nitrogen is introduced from the sixth introduction pipe 14-6, and at the same time, the decomposition gas of the polymer compound is discharged from the sixth discharge pipe 15-6 to form a nitrogen atmosphere.
  • the seventh partition door 26-7 is opened and the second removal chamber 11-6 and the third removal chamber 11-7 are in communication, the sixth moving means 12-6, the seventh moving means 12-7, As a result, the container 2 is moved from the second removal chamber 11-6 to the third removal chamber 11-7.
  • the seventh partition door 26-7 is closed and the eighth partition door 26-8 is closed, so that the third removal chamber 11- 7 becomes blocked.
  • the raw material of the container 2 in the third removal chamber 11-7 is heated by the fifth heating means 19-5.
  • the third removal chamber 11-7 nitrogen is introduced from the seventh introduction pipe 14-7, and at the same time, the decomposition gas of the polymer compound is discharged from the seventh discharge pipe 15-7 to be in a nitrogen atmosphere.
  • the polymer compound decomposition gas from the fifth to seventh discharge pipes 14-5 to 14-7 is all processed by the first liquefaction treatment device 23-1 to become a liquefied product, and the first liquefied product recovery tank 24- 1 is stored. As a result, the exhaust gas becomes zero (0).
  • the polymer compound removal unit 6 includes the first to third removal chambers 10-5 to 10-7, thereby efficiently removing the polymer compound and eliminating the cause of generation of harmful substances such as dioxins. It becomes possible.
  • the electronic control unit 52 controls the third to fifth heating means 19-3 to 19-5 individually and / or in stages, so that the first to third removal chambers 11 are controlled. It is also possible to change so that the temperature of ⁇ 5 to 11-7 is different. That is, by making the temperatures of the first to third removal chambers 11-5 to 11-7 different according to the characteristics of the raw material, the polymer compound can be reliably removed.
  • the ninth partition door 26-9 is opened and the first decomposition chamber 11-8 and the second decomposition chamber 11-9 are in communication with each other, the eighth moving means 12-8, the ninth moving means 12-9, As a result, the container 2 is moved from the first decomposition chamber 11-8 to the second decomposition chamber 11-9.
  • the ninth partition door 26-9 is closed and the tenth partition door 26-10 is closed. 9 is closed.
  • the raw material of the container 2 in the second decomposition chamber 11-9 is heated by the seventh heating means 19-7.
  • nitrogen is introduced from the ninth introduction pipe 14-9, and the decomposition gas for the carbonization treatment is discharged from the ninth discharge pipe 15-9 to form a nitrogen atmosphere.
  • the ninth moving means 12-9, the tenth moving means 12-10 As a result, the container 2 is moved from the second decomposition chamber 11-9 to the third decomposition chamber 11-10.
  • the tenth partition door 26-10 is closed, and the eleventh partition door 26-11 is in the closed state, so that the third decomposition chamber 11-10 is closed. Becomes blocked.
  • the raw material of the container 2 in the third decomposition chamber 11-10 is heated by the eighth heating means 19-8.
  • nitrogen is introduced from the tenth introduction pipe 14-10, and at the same time, the decomposition gas for the carbonization treatment is discharged from the tenth discharge pipe 15-10 to form a nitrogen atmosphere.
  • the eleventh partition door 26-11 opens and the third decomposition chamber 11-10 and the fourth decomposition chamber 11-11 communicate with each other, the tenth moving means 12-10, the eleventh moving means 12-11, As a result, the container 2 is moved from the third decomposition chamber 11-10 to the fourth decomposition chamber 11-11.
  • the eleventh partition door 26-11 is closed and the twelfth partition door 26-12 is closed. 11 becomes blocked.
  • the raw material of the container 2 in the fourth decomposition chamber 11-11 is heated by the ninth heating means 19-9.
  • the fourth decomposition chamber 11-11 nitrogen is introduced from the eleventh introduction pipe 14-11, and the decomposition gas for carbonization is discharged from the eleventh discharge pipe 15-11 to form a nitrogen atmosphere.
  • the eleventh moving means 12-11 the twelfth moving means 12-12
  • the container 2 is moved from the fourth decomposition chamber 11-11 to the fifth decomposition chamber 11-12.
  • the twelfth partition door 26-12 is closed and the thirteenth partition door 26-12 is closed. 12 becomes blocked.
  • the raw material of the container 2 in the fifth decomposition chamber 11-12 is heated by the tenth heating means 19-10.
  • nitrogen is introduced from the twelfth introduction pipe 14-12, and at the same time, the decomposition gas for carbonization is discharged from the twelfth discharge pipe 15-12 to form a nitrogen atmosphere.
  • All of the cracked gas from the eighth discharge pipe 15-8 to the twelfth discharge pipe 15-12 is processed by the second liquefaction processing device 23-2 to become a liquefied product and stored in the second liquefied product recovery tank 24-2. Is done. As a result, the exhaust gas becomes zero (0).
  • the composition separation / decomposition unit 7 includes the first to fifth decomposition chambers 11-8 to 11-12, thereby reliably heating the raw material to a predetermined temperature and efficiently performing the composition decomposition and carbonization of the organic material of the raw material. Thus, it becomes possible to produce a carbonized product. Further, since the composition separation / decomposition unit 7 is under a nitrogen atmosphere, oxidation combustion does not occur, and no harmful substances such as carbon dioxide are generated. In the composition separation / decomposition unit 7, the electronic control unit 52 controls the sixth to tenth heating means 19-6 to 19-10 individually and / or stepwise, and the first to fifth decomposition chambers 11- It is also possible to change the temperature of 8-11-12 to be different. In other words, it is possible to facilitate the separation of the composition of the raw material by the management temperature according to the characteristics of the raw material and the recovered material, making it easy to recover the various materials for each material and each composition from the turbid composition of the various materials. Become.
  • Carbonide cooling step (S106) When the thirteenth partition door 26-13 opens and the fifth decomposition chamber 11-12 and the first cooling chamber 11-13 communicate with each other, the twelfth moving means 12-12, the thirteenth moving means 12-13, As a result, the container 2 is moved from the fifth decomposition chamber 11-12 to the first cooling chamber 11-13. When the container 2 reaches a predetermined position in the first cooling chamber 11-13, the thirteenth partition door 26-13 is closed and the thirteenth partition door 26-14 is closed. 13 becomes blocked. In the first cooling chamber 11-13, the carbonized material in the container 2 is cooled by the first cooling means 25-1.
  • the fourteenth partition door 26-14 opens and the first cooling chamber 11-13 and the second cooling chamber 11-14 are in communication, the thirteenth moving means 12-13, the fourteenth moving means 12-14, As a result, the container 2 is moved from the first cooling chamber 11-13 to the second cooling chamber 11-14.
  • the fourteenth partition door 26-14 is closed and the fifteenth partition door 26-15 is in the closed state. 14 is closed.
  • the carbonized material in the container 2 is cooled by the second cooling means 25-2.
  • the fourteenth partition door 26-15 is opened and the second cooling chamber 11-14 and the third cooling chamber 11-15 are in communication with each other, the fourteenth moving means 12-14, the fifteenth moving means 12-15, As a result, the container 2 is moved from the second cooling chamber 11-14 to the third cooling chamber 11-15.
  • the fifteenth partition door 26-15 is closed and the sixteenth partition door 26-16 is in a closed state, so that the third cooling chamber 11-15 is closed. Becomes blocked.
  • the carbonized material in the container 2 is cooled by the third cooling means 25-3.
  • nitrogen is introduced from the fifteenth introduction pipe 13-15, and at the same time, the internal decomposition gas is discharged from the fifteenth discharge pipe 15-15 to form a nitrogen atmosphere.
  • All of the cracked gas from the thirteenth discharge pipe 15-13 to the fifteenth discharge pipe 15-15 is processed by the third liquid processing device 23-3 to become a liquefied product, and is stored in the third liquid recovery tank 24-3. The As a result, the exhaust gas becomes zero (0).
  • the carbonized product cooling section 8 adjusts the pressure in the first cooling chamber 11-13 so as to avoid a rapid expansion of the volume, and the first to third cooling chambers 11-13 to 11-15 give the carbonized product to a predetermined level. Indirect cooling to a temperature (50 ° C. or lower), that is, a temperature at which combustion and evaporation do not occur.
  • the electronic control unit 52 controls the first to third cooling means 25-1 to 25-3 individually and / or in stages, so that the first to third cooling chambers 11- It is also possible to change the temperature of 13 to 11-15 to be different. In other words, by making the temperatures of the first to third cooling chambers 11-13 to 11-15 different depending on the carbonized material, the carbonized product can be cooled appropriately.
  • Rear standby preparation step (S107) When the sixteenth partition door 26-16 opens and the third cooling chamber 11-15 and the first rear preparation chamber 11-16 communicate with each other, the fifteenth moving means 12-15 and the sixteenth moving means 12-16 The container 2 is moved from the third cooling chamber 11-15 to the first rear preparation chamber 11-16. When the container 2 reaches a predetermined position in the first rear preparation chamber 11-16, the sixteenth partition door 26-16 is closed and the seventeenth partition door 26-17 is closed. 11-16 becomes blocked. In the first rear preparation chamber 11-16, nitrogen is introduced from the sixteenth introduction pipe 14-16, and at the same time, the internal decomposition gas and air (oxygen) are discharged from the sixteenth discharge pipe 15-16 to form a nitrogen atmosphere. .
  • the seventeenth partition door 26-17 opens and the first rear preparation chamber 11-16 and the second rear preparation chamber 11-17 communicate with each other, the sixteenth moving means 12-16 and the seventeenth moving means 12- 17, the container 2 is moved from the first rear preparation chamber 11-16 to the second rear preparation chamber 11-17.
  • the seventeenth partition door 26-17 is closed and the eighteenth partition door 26-18 is closed. 11-17 becomes blocked.
  • nitrogen is introduced from the seventeenth introduction pipe 14-17, and at the same time, the internal decomposition gas and air are discharged from the seventeenth discharge pipe 15-17 to form a nitrogen atmosphere.
  • the cracked gas and air from the sixteenth exhaust pipe 15-16 and the seventeenth exhaust pipe 15-17 are deodorized and smoke eliminated by the second deodorant and smoke eliminating device 17-2, purified and released into the atmosphere.
  • the rear standby preparation unit 9 includes a first rear preparation chamber 11-16 and a second rear preparation chamber 11-17, so that internal odors and gases that flow backward when the front chambers are opened to the outside are externally provided.
  • the temperature control of the composition-separated carbonization system 1 can be made strict, and heat loss can be suppressed to contribute to energy saving.
  • Container unloading process (S108) When the eighteenth partition door 26-18 is opened and the carry-out port 29 on the other end surface of the second rear preparation chamber 11-17 is opened, the container 2 containing the carbonized material is moved by the seventeenth moving means 12-17. It is discharged from the second rear preparation chamber 11-17 to the outside, and is then carried out by the container carry-out unit 10.
  • the carbonized material in the container unloading unit 10 that has been unloaded has a different shape and size depending on the type, and is separately collected as metals or carbon material components.
  • earth and sand, iron, non-ferrous metal, glass material, or rare metal can be easily collected separately for each composition.
  • the separately collected materials are reused as industrial carbon materials.
  • the generation of harmful substances such as carbon dioxide and unnecessary residues is suppressed, and oxidation combustion (thermal decomposition by high-temperature oxidation: oxidation reaction, reduction reaction) does not occur.
  • oxidation combustion thermal decomposition by high-temperature oxidation: oxidation reaction, reduction reaction
  • the separation of the composition of the raw materials can be improved to increase the efficiency of the carbonization treatment, and there is no possibility that air pollution or water pollution will occur.
  • at least the decomposition chambers 11-8 to 11-12 are constituted by a layered heat insulating structure 30 in which a plurality of boards 31-1 to 31-3 and 32-1 to 32-3 are overlapped. Is formed.
  • the heat insulation effect of the decomposition chambers 11-8 to 11-12 is enhanced, and when the function of the inner wall surface 30A of the layered heat insulation structure 30 is deteriorated, only the inner hard board 31-1 is replaced. Good maintenance and inspection can be facilitated and inexpensive.
  • a plurality of protrusions 33 are formed on the inner wall surface 30 ⁇ / b> A of the layered heat insulating structure 30 so as to be an uneven surface.
  • the cracked gas impinges on the inner wall surface 30A on which the protrusions 33 are formed, so that the flow of the cracked gas is not linear and complicated, and the stirring of the cracked gas is promoted so that the cracked gas does not stay.
  • the raw material can be heated evenly, and the time for the carbonization treatment can be shortened. Also, as shown in FIG. 3, by driving the stirring fan 34, the cracked gas flows randomly and efficiently agitates in cooperation with the inner wall surface 30A on which the protrusions 30 are formed. The difference can be eliminated, the raw material can be heated uniformly, and the time for carbonization can be shortened. Furthermore, since the carbonized product cooling unit 8 indirectly cools the carbonized product to a temperature at which combustion and evaporation do not occur, the temperature of the carbonized product can be appropriately lowered and the generation of harmful substances can be suppressed.
  • FIG. 7 shows a first modification of the present invention.
  • the container 2 when the container 2 reaches the fifth decomposition chamber 11-12 in the composition separation / decomposition unit 7, the container 2 is moved to the front first to fourth decomposition chambers 11-8 to 11- Return movement means 61 for returning any of the 11 decomposition chambers was provided.
  • the return moving means 61 includes, for example, devices such as a roller conveyor and a direction changing machine.
  • the return moving means 61 is not limited to the composition separation / decomposition unit 7, but also in the front standby preparation unit 4, the water evaporation unit 5, the polymer compound removal unit 6, the carbonide cooling unit 8, and the rear standby preparation unit 9.
  • the provided structure is applicable.
  • FIG. 8 shows a second modification of the present invention.
  • the composition-separated carbonization system 1 is configured to be capable of self-running.
  • a front standby preparation unit, a water evaporation unit, a polymer compound removal unit, a composition separation decomposition unit, a carbonized product cooling unit, and a rear standby preparation unit are integrally assembled in a housing 62.
  • the plurality of wheels 63 as moving means at the bottom of the housing 62 can be moved to a place where the raw material G exists.
  • the housing 62 is provided with a raw material charging hopper 64 for charging the raw material and a take-out portion 65 for taking out the carbonized material.
  • the raw material G is charged into the raw material charging hopper 64 by a device 66 such as a heavy machine.
  • a device 66 such as a heavy machine.
  • the composition separation type carbonization system 1 is moved to the site where the raw material G exists, and the carbonization treatment becomes possible on the site, so there is no need to transport the raw material G to another building, etc.
  • the carbonization system 1 can be easily used.
  • composition separation type carbonization system according to the present invention can be applied to various processing systems.
  • Composition separation type carbonization system 2 containers 3 Container carry-in part 4 Front standby preparation department 5 Moisture evaporation part 6 Polymer compound removal section 7 Composition separation and decomposition part 8 Carbonide cooling section 9 Rear standby preparation department 10 Container unloading section 11-1 to 11-2 First to second front preparation rooms 11-3 to 11-4 First to second evaporation chambers 11-5 to 11-7 First to third removal chambers 11-8 to 11-12 First to fifth decomposition chambers 11-13 to 11-15 First to third cooling chambers 11-16 to 11-17 First and second rear preparation rooms 12-1 to 12-17 1st to 17th moving means 13-1 to 13-17 1st to 17th limit switches 14-1 to 14-17 1st to 17th introduction pipes 15-1 to 15-17 1st to 17th discharge pipes 16 Gas generator 17-1 to 17-2 First and second deodorant and smoke eliminating devices 18-1 to 18-13 First to thirteenth temperature sensors 19-1 to 19-10 1st to 10th heating means 20 Steam cooling device 23-1 to 23-3 First to third liquefaction processing apparatuses 25-1 to 25-3 First

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

This compositional separation type carbonization system (1) includes: a front standby preparation unit (4) for preventing inner odor and gas from leaking outside; a water evaporation unit (5) that causes water in the starting material to evaporate to remove the water; a polymer compound removal unit (6) that pyrolyzes and removes polymer compounds in the starting material; a composition separation degradation unit (7) that subjects the organic matter of the starting material to compositional degradation to carbonize the organic matter; a carbonized product cooling unit (8) that cools the carbonized product generated by the compositional separation degradation unit (7); and a rear standby preparation unit (9) for preventing inner odor and gas from leaking outside. Thus, the compositional separation type carbonization system is capable of suppressing the generation of carbon dioxide and unwanted residues and achieving improved compositional separation of the starting material such that carbonization efficiency is increased.

Description

組成分離式炭素化システムComposition separation type carbonization system
 この発明は、組成分離式炭素化システムに係り、原料の組成を分離して炭素化する組成分離式炭素化システムに関する。  This invention relates to a composition separation type carbonization system, and relates to a composition separation type carbonization system that separates and carbonizes the composition of raw materials.
 従来、一般廃棄物や産業廃棄物などの処理物を処理する装置としては、炭素含有物、炭素含有物に無機物が混在した物、あるいは、接着剤等によって炭素含有物に他の素材が接着された物等からなる混合物の原料を、コンテナに一括投入した上で、組成・素材毎に分離回収し、焼却や溶融を行わないようにする炭素化装置がある。
 このような炭素化装置としては、例えば、特開2011-94138号公報に開示されているように、原料が投入されたコンテナを、複数の各処理室中で連続的に自動で移動させ、原料の組成を分離して炭素化するものがある。
Conventionally, as a device for processing processed materials such as general waste and industrial waste, other materials are bonded to carbon-containing materials by using carbon-containing materials, carbon-containing materials mixed with inorganic materials, or adhesives. There is a carbonization apparatus in which raw materials of a mixture consisting of wastes and the like are collectively put into a container and then separated and recovered for each composition and raw material so as not to be incinerated or melted.
As such a carbonization apparatus, for example, as disclosed in Japanese Patent Application Laid-Open No. 2011-94138, a container into which raw materials are charged is continuously and automatically moved in each of a plurality of processing chambers. There are some which are separated and carbonized.
特開2011-94138号公報JP 2011-94138 A
 ところが、特開2011-94138号公報では、原料の組成を分離する際に、二酸化炭素の発生する原因となる酸化燃焼(高温酸化による熱分解:酸化反応、還元反応)が起こりやすく、このため、二酸化炭素などの有害物質が多く発生したり、また、不要な残渣(シュレッターダスト)が発生してしまうことから、改善が望まれていた。 However, in Japanese Patent Application Laid-Open No. 2011-94138, oxidative combustion (thermal decomposition by high-temperature oxidation: oxidation reaction, reduction reaction) that easily causes carbon dioxide to occur when the composition of the raw material is separated. Many harmful substances such as carbon dioxide are generated, and unnecessary residue (Schlitter dust) is generated, so improvement has been desired.
 そこで、この発明は、二酸化炭素などの有害物質や不要な残渣の発生を抑制し、原料の組成の分離を良くして炭素化処理の効率を高くすることができる組成分離式炭素化システムを提供することを目的とする。 Therefore, the present invention provides a composition separation type carbonization system that can suppress the generation of harmful substances such as carbon dioxide and unnecessary residues, improve the separation of the composition of raw materials, and increase the efficiency of the carbonization treatment. The purpose is to do.
 この発明は、原料の組成を分離して炭素化する組成分離式炭素化システムにおいて、内部の臭気や気体を外部に漏らさないための前部待機準備部と、前記原料の水分を蒸発して除去する水分蒸発部と、前記原料の高分子化合物を熱分解して除去する高分子化合物除去部と、前記原料の有機物を組成分解して炭素化する組成分離分解部と、前記組成分離分解部で生成された炭素化物を冷却する炭素化物冷却部と、内部の臭気や気体を外部に漏らさないための後部待機準備部とを備えることを特徴とする。 The present invention relates to a composition separation type carbonization system that separates and carbonizes the composition of the raw material, and removes the raw material by evaporating and removing the front standby preparation part for preventing internal odors and gases from leaking to the outside. A water vapor evaporation unit, a polymer compound removal unit that thermally decomposes and removes the raw material polymer compound, a composition separation decomposition unit that decomposes and carbonizes the organic material of the raw material, and the composition separation decomposition unit A carbonized product cooling unit that cools the generated carbonized product, and a rear standby preparation unit that prevents internal odors and gases from leaking to the outside.
 この発明は、二酸化炭素などの有害物質や不要な残渣の発生を抑制し、原料の組成の分離を良くして炭素化処理の効率を高くすることができる。 This invention can suppress the generation of harmful substances such as carbon dioxide and unnecessary residues, improve the separation of the composition of the raw materials, and increase the efficiency of the carbonization treatment.
図1は組成分離式炭素化システムの側面図である。(実施例)FIG. 1 is a side view of a composition separation type carbonization system. (Example) 図2は組成分離式炭素化システムの平面図である。(実施例)FIG. 2 is a plan view of the composition separation type carbonization system. (Example) 図3は分解室を形成する層状断熱構造体の断面図である。(実施例)FIG. 3 is a cross-sectional view of the layered heat insulating structure forming the decomposition chamber. (Example) 図4は図3の駆動シャフトを支持する断熱支持構造体の拡大断面図である。(実施例)FIG. 4 is an enlarged cross-sectional view of a heat insulating support structure that supports the drive shaft of FIG. (Example) 図5は組成分離式炭素化システムの制御ブロック図である。(実施例)FIG. 5 is a control block diagram of the composition separation type carbonization system. (Example) 図6は組成分離式炭素化システムのフローチャートである。(実施例)FIG. 6 is a flowchart of the composition separation type carbonization system. (Example) 図7は組成分離分解部においてコンテナを前方の分解室へ戻す構造の概略構成図である。(第1変形例)FIG. 7 is a schematic configuration diagram of a structure in which the container is returned to the front decomposition chamber in the composition separation and decomposition unit. (First modification) 図8は自走可能な組成分離式炭素化システムの概略構成図である。(第2変形例)FIG. 8 is a schematic configuration diagram of a self-propelled composition separation type carbonization system. (Second modification)
 この発明は、二酸化炭素などの有害物質や不要な残渣の発生を抑制し、原料の組成の分離を良くして炭素化処理の効率を高くする目的を、酸化燃焼が起こらないようにして実現するものである。 The present invention realizes the purpose of suppressing the generation of harmful substances such as carbon dioxide and unnecessary residues, improving the separation of the composition of the raw materials and increasing the efficiency of the carbonization treatment without causing oxidative combustion. Is.
 図1~図6は、この発明の実施例を示すものである。 
 図1、図2に示すように、組成分離式炭素化システム1は、コンテナ2に一括投入された原料(処理物:家電品などの廃棄物・ゴミなど)の組成を分離して炭素化するものである。つまり、原料は、一般廃棄物や産業廃棄物などの処理物に存在するものである。
 組成分離式炭素化システム1は、コンテナ搬入部3と、前部待機準備部4と、水分蒸発部5と、高分子化合物除去部6と、組成分離分解部7と、炭素化物冷却部8と、後部待機準備部9と、コンテナ搬出部10とを備える。
 コンテナ搬入部3と前部待機準備部4と水分蒸発部5と高分子化合物除去部6と組成分離分解部7と炭素化物冷却部8と後部待機準備部9とコンテナ搬出部10とは、炭素化工程方向Xの前方から順次に直列に並んで配置される。
1 to 6 show an embodiment of the present invention.
As shown in FIGS. 1 and 2, the composition separation type carbonization system 1 separates and carbonizes the composition of raw materials (processed materials: waste such as household electrical appliances / garbage, etc.) put together in the container 2. Is. In other words, the raw material is present in processed products such as general waste and industrial waste.
The composition separation type carbonization system 1 includes a container carry-in unit 3, a front standby preparation unit 4, a water evaporation unit 5, a polymer compound removal unit 6, a composition separation decomposition unit 7, and a carbonized product cooling unit 8. The rear standby preparation unit 9 and the container unloading unit 10 are provided.
The container carry-in unit 3, the front standby preparation unit 4, the water evaporation unit 5, the polymer compound removal unit 6, the composition separation and decomposition unit 7, the carbonide cooling unit 8, the rear standby preparation unit 9, and the container carry-out unit 10 Are arranged in series sequentially from the front in the process step direction X.
 前部待機準備部4と水分蒸発部5と高分子化合物除去部6と組成分離分解部7と炭素化物冷却部8と後部待機準備部9とは、一体的に構成される。
 コンテナ搬入部3は、ローラコンベヤ等からなり、前部待機準備部4の前方に配置され、コンテナ2を前部待機準備部4へ搬入する。
 コンテナ搬出部10は、ローラコンベヤ等からなり、後部待機準備部9の後方に配置され、後部待機準備部9からのコンテナ2を搬出する。
The front standby preparation unit 4, the water evaporation unit 5, the polymer compound removal unit 6, the composition separation / decomposition unit 7, the carbonized product cooling unit 8, and the rear standby preparation unit 9 are integrally configured.
The container carry-in unit 3 is composed of a roller conveyor or the like and is disposed in front of the front standby preparation unit 4 and carries the container 2 into the front standby preparation unit 4.
The container carry-out unit 10 is composed of a roller conveyor or the like and is arranged behind the rear standby preparation unit 9 and carries out the container 2 from the rear standby preparation unit 9.
 前部待機準備部4は、後方の各室が開放した際に逆流して来る内部の臭気や気体(ガス)を外部に漏らさないためのものであり、処理室として、例えば、第1前部準備室11-1と第2前部準備室11-2とを備える。なお、前部待機準備部4では、2つの前部準備室に限定されず、室数の増減が可能である。
 第1前部準備室11-1は、組成分離式炭素化システム1の最も前方に位置する室であって常温である。第1前部準備室11-1には、コンテナ2を移動する第1移動手段(ローラコンベヤ等)12-1と、コンテナ2の位置を決定する第1リミットスイッチ13-1とが設置される。第1前部準備室11-1には、特定の気体としての窒素を外部から導入する第1導入管14-1が接続され、また、内部の空気(酸素)を外部に排出する第1排出管15-1が接続される。第1前部準備室11-1では、窒素を充填して空気を排出することにより、気体雰囲気としての窒素雰囲気になる。
 第2前部準備室11-2は、第1前部準備室11-1よりも後方に位置する室であって常温である。第2前部準備室11-2には、コンテナ2を移動する第2移動手段12-2と、コンテナ2の位置を決定する第2リミットスイッチ13-2とが設置される。第2前部準備室11-2には、窒素を外部から導入する第2導入管14-2が接続され、また、内部の空気を外部に排出する第2排出管15-2が接続される。第2前部準備室11-2では、窒素を充填して空気を排出することにより、窒素雰囲気になる。
 第1導入管14-1・第2導入管14-2は、気体発生装置16に接続され、気体発生装置16で大気中から取り出された窒素を、第1前部準備室11-1・第2前部準備室11-2へ導くものである。なお、気体発生装置16では、窒素の代わりに、他種の気体を発生することも可能である。
 第1排出管15-1・第2排出管15-2は、排出された空気を高温雰囲気として消臭・消煙などの処理を行うための第1消臭消煙装置17-1に接続される。第1消臭消煙装置17-1は、消臭・消煙などの処理を行った後に、浄化された空気を外部に排出する。
The front standby preparation unit 4 is for preventing the internal odor and gas (gas) flowing backward when each of the rear chambers is opened from being leaked to the outside. A preparation room 11-1 and a second front preparation room 11-2 are provided. The front standby preparation unit 4 is not limited to two front preparation rooms, and the number of rooms can be increased or decreased.
The first front preparation chamber 11-1 is a frontmost chamber of the composition separation type carbonization system 1 and is at room temperature. The first front preparation chamber 11-1 is provided with a first moving means (roller conveyor or the like) 12-1 for moving the container 2 and a first limit switch 13-1 for determining the position of the container 2. . The first front preparation chamber 11-1 is connected with a first introduction pipe 14-1 for introducing nitrogen as a specific gas from the outside, and a first exhaust for exhausting internal air (oxygen) to the outside. Tube 15-1 is connected. In the first front preparation chamber 11-1, a nitrogen atmosphere as a gas atmosphere is obtained by filling the nitrogen and discharging the air.
The second front preparation room 11-2 is a room located behind the first front preparation room 11-1 and is at room temperature. In the second front preparation chamber 11-2, a second moving means 12-2 for moving the container 2 and a second limit switch 13-2 for determining the position of the container 2 are installed. A second introduction pipe 14-2 for introducing nitrogen from the outside is connected to the second front preparation chamber 11-2, and a second discharge pipe 15-2 for discharging internal air to the outside is connected. . In the second front preparation chamber 11-2, a nitrogen atmosphere is obtained by filling the nitrogen and discharging the air.
The first introduction pipe 14-1 and the second introduction pipe 14-2 are connected to the gas generator 16, and nitrogen extracted from the atmosphere by the gas generator 16 is supplied to the first front preparation chamber 11-1 2 Leads to the front preparation room 11-2. The gas generator 16 can also generate other types of gas instead of nitrogen.
The first exhaust pipe 15-1 and the second exhaust pipe 15-2 are connected to a first deodorizing and smoke eliminating device 17-1 for performing processing such as deodorizing and smoke eliminating with the discharged air as a high temperature atmosphere. The The first deodorizing and smoking device 17-1 discharges the purified air to the outside after performing processing such as deodorization and smoke removal.
 水分蒸発部5は、原料の水分を蒸発して除去(例えば、90%)するものであり、処理室として、例えば、第1蒸発室11-3と第2蒸発室11-4とを備える。なお、水分蒸発部5では、2つの蒸発室に限定されず、室数の増減が可能である。
 第1蒸発室11-3は、第2前部準備室11-2よりも後方に位置する室である。第1蒸発室11-3には、コンテナ2を移動する第3移動手段12-3と、コンテナ2の位置を決定する第3リミットスイッチ13-3と、温度を計測する第1温度センサ18-1とが設置される。第1蒸発室11-3には、コンテナ2の原料を所定の温度(例えば、150℃)まで加熱する第1加熱手段(例えば、電気ヒータなど)19-1が設置される。第1蒸発室11-3には、窒素を外部から導入する第3導入管14-3が接続され、また、内部で発生した水蒸気を排出する第3排出管15-3が接続される。第1蒸発室11-3では、窒素を充填して水蒸気を排出することにより、窒素雰囲気になる。
 第2蒸発室11-4は、第1蒸発室11-3よりも後方に位置する室である。第2蒸発室11-4には、コンテナ2を移動する第4移動手段12-4と、コンテナ2の位置を決定する第4リミットスイッチ13-4と、温度を計測する第2温度センサ18-2とが設置される。第2蒸発室11-4には、コンテナ2の原料を所定の温度(例えば、150℃)まで加熱する第2加熱手段19-2が設置される。第2蒸発室11-4には、窒素を外部から導入する第4導入管14-4が接続され、また、内部で発生した水蒸気を排出する第4排出管15-4が接続される。第2蒸発室11-4では、窒素を充填して水蒸気を排出することにより、窒素雰囲気になる。
 第3導入管14-3・第4導入管14-4は、気体発生装置16に接続され、気体発生装置16で大気中から取り出された窒素を、第1蒸発室11-3・第2蒸発室11-4へ導くものである。
 第3排出管15-3・第4排出管15-4は、排出された水蒸気を冷却して液化し且つ処理(脱臭・精製)する蒸気処理装置20に接続される。蒸気処理装置20からの水は、第1連絡管21-1を経て冷却水用タンク22に貯留される。冷却水用タンク22に貯留された冷却水は、例えば、後述するように、炭素化物を冷却するために循環され、第1~第3冷却手段25-1~25-3に利用される。
 第1加熱手段19-1・第2加熱手段19-2は、第1蒸発室11-3・第2蒸発室11-4の水蒸気と直接接触しない構造である。
The moisture evaporating unit 5 evaporates and removes moisture (for example, 90%) of the raw material, and includes, for example, a first evaporation chamber 11-3 and a second evaporation chamber 11-4 as processing chambers. Note that the moisture evaporation unit 5 is not limited to two evaporation chambers, and the number of chambers can be increased or decreased.
The first evaporation chamber 11-3 is a chamber located behind the second front preparation chamber 11-2. The first evaporation chamber 11-3 includes a third moving unit 12-3 for moving the container 2, a third limit switch 13-3 for determining the position of the container 2, and a first temperature sensor 18- for measuring temperature. 1 is installed. In the first evaporation chamber 11-3, a first heating means (for example, an electric heater) 19-1 for heating the raw material of the container 2 to a predetermined temperature (for example, 150 ° C.) is installed. A third introduction pipe 14-3 for introducing nitrogen from the outside is connected to the first evaporation chamber 11-3, and a third discharge pipe 15-3 for discharging water vapor generated inside is connected. In the first evaporation chamber 11-3, a nitrogen atmosphere is obtained by filling nitrogen and discharging water vapor.
The second evaporation chamber 11-4 is a chamber located behind the first evaporation chamber 11-3. The second evaporation chamber 11-4 includes a fourth moving unit 12-4 for moving the container 2, a fourth limit switch 13-4 for determining the position of the container 2, and a second temperature sensor 18- for measuring temperature. 2 are installed. In the second evaporation chamber 11-4, a second heating means 19-2 for heating the raw material of the container 2 to a predetermined temperature (for example, 150 ° C.) is installed. A fourth introduction pipe 14-4 for introducing nitrogen from the outside is connected to the second evaporation chamber 11-4, and a fourth discharge pipe 15-4 for discharging water vapor generated inside is connected. In the second evaporation chamber 11-4, a nitrogen atmosphere is obtained by filling nitrogen and discharging water vapor.
The third introduction pipe 14-3 and the fourth introduction pipe 14-4 are connected to the gas generation device 16, and nitrogen extracted from the atmosphere by the gas generation device 16 is supplied to the first evaporation chamber 11-3 and the second evaporation tube. It leads to the chamber 11-4.
The third discharge pipe 15-3 and the fourth discharge pipe 15-4 are connected to a steam processing apparatus 20 that cools and liquefies the discharged water vapor and processes (deodorizes and purifies) it. Water from the steam processing apparatus 20 is stored in the cooling water tank 22 through the first communication pipe 21-1. The cooling water stored in the cooling water tank 22 is circulated, for example, to cool the carbonized product and used for the first to third cooling means 25-1 to 25-3 as described later.
The first heating means 19-1 and the second heating means 19-2 have a structure that does not directly contact the water vapor in the first evaporation chamber 11-3 and the second evaporation chamber 11-4.
 高分子化合物除去部6は、原料のプラスチック等に混入する高分子化合物(塩素成分、石油成分など)を熱分解して除去(脱塩素)するものであり、処理室として、例えば、第1~第3除去室11-5~11-7を備える。なお、高分子化合物除去部6では、3つの除去室に限定されず、室数の増減が可能である。
 第1除去室11-5は、第2蒸発室11-4よりも後方に位置する室である。第1除去室11-5には、コンテナ2を移動する第5移動手段12-5と、コンテナ2の位置を決定する第5リミットスイッチ13-5と、温度を計測する第3温度センサ18-3とが設置される。第1除去室11-5には、コンテナ2の原料を所定の温度(例えば、300℃)まで加熱する第3加熱手段19-3が設置される。第1除去室11-5には、窒素を外部から導入する第5導入管14-5が接続され、また、内部で発生した高分子化合物の分解ガスを排出する第5排出管15-5が接続される。第1除去室11-5では、窒素を充填して高分子化合物の分解ガスを排出することにより、窒素雰囲気になる。
 第2除去室11-6は、第1除去室11-5よりも後方に位置する室である。第2除去室11-6には、コンテナ2を移動する第6移動手段12-6と、コンテナ2の位置を決定する第6リミットスイッチ13-6と、温度を計測する第4温度センサ18-4とが設置される。第2除去室11-6には、コンテナ2の原料を所定の温度(例えば、300℃)まで加熱する第4加熱手段19-4が設置される。第2除去室11-6には、窒素を外部から導入する第6導入管14-6が接続され、また、内部で発生した高分子化合物の分解ガスを排出する第6排出管15-6が接続される。第2除去室11-6では、窒素を充填して高分子化合物の分解ガスを排出することにより、窒素雰囲気になる。
 第3除去室11-7は、第2除去室11-6よりも後方に位置する室である。第3除去室11-7には、コンテナ2を移動する第7移動手段12-7と、コンテナ2の位置を決定する第7リミットスイッチ13-7と、温度を計測する第5温度センサ18-5とが設置される。第3除去室11-7には、コンテナ2の原料を所定の温度(例えば、300℃)まで加熱する第5加熱手段19-5が設置される。第3除去室11-7には、窒素を内部に導入する第7導入管14-7が接続され、また、内部で発生した高分子化合物の分解ガスを排出する第7排出管15-7が接続される。第3除去室11-7では、窒素を充填して高分子化合物の分解ガスを排出することにより、窒素雰囲気になる。
 第5~第7導入管14-5~14-7は、気体発生装置16に接続され、気体発生装置16で大気中から取り出された窒素を、第1~第3除去室11-5~11-7へ導くものである。
 第5~第7排出管15-5~15-7は、高分子化合物の分解ガスを冷却して液化・脱臭などの処理を行う第1液化処理装置23-1に接続される。第1液化処理装置23-1で処理された液化物は、第2連絡管21-2から第1液化物回収タンク24-1に貯留される。第1液化物回収タンク24-1に貯留された液化物は、例えば、塩素分の場合に、外部の反応装置により残存水分と反応して塩酸や塩分として回収される。これにより、塩素ガスの発生は、抑制される。なお、第1液化処理装置23-1では、残存ガスを処理することも可能である。
 第3~第5加熱手段19-3~19-5は、第1~第3除去室11-5~11-7の高分子化合物の分解ガスとは直接接触しない構造である。
The polymer compound removing section 6 is for thermally decomposing and removing (dechlorinating) polymer compounds (chlorine components, petroleum components, etc.) mixed in the raw material plastics, etc. Third removal chambers 11-5 to 11-7 are provided. The polymer compound removal unit 6 is not limited to three removal chambers, and the number of chambers can be increased or decreased.
The first removal chamber 11-5 is a chamber located behind the second evaporation chamber 11-4. In the first removal chamber 11-5, fifth moving means 12-5 for moving the container 2, a fifth limit switch 13-5 for determining the position of the container 2, and a third temperature sensor 18- for measuring temperature are provided. 3 are installed. In the first removal chamber 11-5, third heating means 19-3 for heating the raw material of the container 2 to a predetermined temperature (for example, 300 ° C.) is installed. A fifth introduction pipe 14-5 for introducing nitrogen from the outside is connected to the first removal chamber 11-5, and a fifth discharge pipe 15-5 for discharging a decomposition gas of the polymer compound generated inside is provided. Connected. In the first removal chamber 11-5, a nitrogen atmosphere is obtained by filling nitrogen and discharging the decomposition gas of the polymer compound.
The second removal chamber 11-6 is a chamber located behind the first removal chamber 11-5. The second removal chamber 11-6 includes sixth moving means 12-6 for moving the container 2, a sixth limit switch 13-6 for determining the position of the container 2, and a fourth temperature sensor 18- for measuring temperature. 4 are installed. In the second removal chamber 11-6, fourth heating means 19-4 for heating the raw material of the container 2 to a predetermined temperature (for example, 300 ° C.) is installed. A sixth introduction pipe 14-6 for introducing nitrogen from the outside is connected to the second removal chamber 11-6, and a sixth discharge pipe 15-6 for discharging a decomposition gas of the polymer compound generated inside is connected to the second removal chamber 11-6. Connected. In the second removal chamber 11-6, a nitrogen atmosphere is obtained by filling nitrogen and discharging the decomposition gas of the polymer compound.
The third removal chamber 11-7 is a chamber located behind the second removal chamber 11-6. The third removal chamber 11-7 includes a seventh moving means 12-7 for moving the container 2, a seventh limit switch 13-7 for determining the position of the container 2, and a fifth temperature sensor 18- for measuring temperature. 5 are installed. In the third removal chamber 11-7, fifth heating means 19-5 for heating the raw material of the container 2 to a predetermined temperature (for example, 300 ° C.) is installed. The third removal chamber 11-7 is connected with a seventh introduction pipe 14-7 for introducing nitrogen into the inside, and a seventh discharge pipe 15-7 for discharging a decomposition gas of the polymer compound generated inside. Connected. In the third removal chamber 11-7, a nitrogen atmosphere is obtained by filling nitrogen and discharging the decomposition gas of the polymer compound.
The fifth to seventh introduction pipes 14-5 to 14-7 are connected to the gas generator 16, and remove nitrogen extracted from the atmosphere by the gas generator 16 from the first to third removal chambers 11-5 to 11-11. It leads to -7.
The fifth to seventh discharge pipes 15-5 to 15-7 are connected to a first liquefaction processing device 23-1 that cools the decomposition gas of the polymer compound and performs processing such as liquefaction and deodorization. The liquefied material processed by the first liquefaction processing device 23-1 is stored in the first liquefied material recovery tank 24-1 from the second communication pipe 21-2. For example, in the case of the chlorine content, the liquefied material stored in the first liquefied material recovery tank 24-1 reacts with the remaining water by an external reaction device and is recovered as hydrochloric acid or salt. Thereby, generation | occurrence | production of chlorine gas is suppressed. In the first liquefaction processing apparatus 23-1, the remaining gas can be processed.
The third to fifth heating means 19-3 to 19-5 have a structure that is not in direct contact with the polymer compound decomposition gas in the first to third removal chambers 11-5 to 11-7.
 組成分離分解部7は、原料の有機物の組成の分離及び炭素化を行うものであり、つまり、高分子化合物以外の有機物を組成分離により炭素素材分とその他の成分とに分離する炭素化処理を行うものである。
 組成分離分解部7は、処理室として、例えば、第1~第5分解室11-8~11-12を備える。なお、組成分離分解部7では、5つの分解室に限定されず、室数の増減が可能である。
 第1分解室11-8は、第3除去室11-7よりも後方に位置する室である。第1分解室11-8には、コンテナ2を移動する第8移動手段12-8と、コンテナ2の位置を決定する第8リミットスイッチ13-8と、温度を計測する第6温度センサ18-6とが設置される。第1分解室11-8には、コンテナ2の原料を所定の温度(例えば、450℃)まで加熱する第6加熱手段19-6が設置される。第1分解室11-8には、窒素を外部から導入する第8導入管14-8が接続され、また、内部で発生した炭素化処理の分解ガス(油分などを含む)を排出する第8排出管15-8が接続される。第1分解室11-8では、窒素を充填して炭素化処理の分解ガスを排出することにより、窒素雰囲気になる。
 第2分解室11-9は、第1分解室11-8よりも後方に位置する室である。第2分解室11-9には、コンテナ2を移動する第9移動手段12-9と、コンテナ2の位置を決定する第9リミットスイッチ13-9と、温度を計測する第7温度センサ18-7とが設置される。第2分解室11-9には、コンテナ2の原料を所定の温度(例えば、450℃)まで加熱する第7加熱手段19-7が設置される。第2分解室11-9には、窒素を外部から導入する第9導入管14-9が接続され、また、内部で発生した炭素化処理の分解ガスを排出する第9排出管15-9が接続される。第2分解室11-9では、窒素を充填して炭素化処理の分解ガスを排出することにより、窒素雰囲気になる。
 第3分解室11-10は、第2分解室11-9よりも後方に位置する室である。第3分解室11-10には、コンテナ2を移動する第10移動手段12-10と、コンテナ2の位置を決定する第10リミットスイッチ13-10と、温度を計測する第8温度センサ18-8とが設置される。第3分解室11-10には、コンテナ2の原料を所定の温度(例えば、450℃)まで加熱する第8加熱手段19-8が設置される。第3分解室11-10には、窒素を外部から導入する第10導入管14-10が接続され、また、内部で発生した炭素化処理の分解ガスを排出する第10排出管15-10が接続される。第3分解室11-10では、窒素を充填して炭素化処理の分解ガスを排出することにより、窒素雰囲気になる。
 第4分解室11-11は、第3分解室11-10よりも後方に位置する室である。第4分解室11-11には、コンテナ2を移動する第11移動手段12-11と、コンテナ2の位置を決定する第11リミットスイッチ13-11と、温度を計測する第9温度センサ18-9とが設置される。第4分解室11-11には、コンテナ2の原料を所定の温度(例えば、450℃)まで加熱する第9加熱手段19-9が設置される。第4分解室11-11には、窒素を外部から導入する第11導入管14-11が接続され、また、内部で発生した炭素化処理の分解ガスを排出する第11排出管15-11が接続される。第4分解室11-11では、窒素を充填して炭素化処理の分解ガスを排出することにより、窒素雰囲気になる。
 第5分解室11-12は、第4分解室11-11よりも後方に位置する室である。第5分解室11-12には、コンテナ2を移動する第12移動手段12-12と、コンテナ2の位置を決定する第12リミットスイッチ13-12と、温度を計測する第10温度センサ18-10とが設置される。第5分解室11-12には、コンテナ2の原料を所定の温度(例えば、450℃)まで加熱する第10加熱手段19-10が設置される。第5分解室11-12には、窒素を内部に導入する第12導入管14-12が接続され、また、内部で発生した炭素化処理の分解ガスを排出する第12排出管15-12が接続される。第5分解室11-12では、窒素を充填して炭素化処理の分解ガスを排出することにより、窒素雰囲気になる。
 第8~第12導入管14-8~14-12は、気体発生装置16に接続され、気体発生装置16で大気中から取り出された窒素を、第1~第5分解室11-8~11-12へ導くものである。
 第8~第12排出管15-8~15-12は、炭素化処理の分解ガスを液化して油分の液化物を生成する第2液化処理装置23-2に接続される。第2液化処理装置23-2で処理された液化物は、第3連絡管21-3を経て第2液化物回収タンク24-2に貯留される。なお、第2液化処理装置23-2では、残存ガスなどの処理することも可能である。
 第6~第10加熱手段19-6~19-10は、第1~第5分解室11-8~11-12の炭素化処理の分解ガスとは直接接触しない構造である。
 即ち、組成分離分解部7においては、非燃焼方式で無酸素とし、窒素雰囲気の下で、原料を、第1~第5分解室11-8~11-12の中を連続的に移動させ、所定の温度(例えば、450℃)以下で有機物の組成を分離して炭素化し、炭素化物を生成する。この場合、組成分離分解部7では、所定の温度(例えば、450℃)以下であり、例えば、貴金属の揮散を防止できる。つまり、原料は、その原料の特性及び回収素材の特性に応じた管理温度の下で、その組成が分離される。また、原料の炭素化のために、空気中の窒素を用いることにより、酸化燃焼をせず、二酸化炭素の発生を防止できる。
The composition separation / decomposition unit 7 separates and carbonizes the composition of the organic material as the raw material, that is, performs a carbonization process for separating the organic material other than the polymer compound into a carbon material component and other components by composition separation. Is what you do.
The composition separation / decomposition unit 7 includes, for example, first to fifth decomposition chambers 11-8 to 11-12 as processing chambers. The composition separation / decomposition unit 7 is not limited to five decomposition chambers, and the number of chambers can be increased or decreased.
The first decomposition chamber 11-8 is a chamber located behind the third removal chamber 11-7. The first decomposition chamber 11-8 includes an eighth moving means 12-8 for moving the container 2, an eighth limit switch 13-8 for determining the position of the container 2, and a sixth temperature sensor 18- for measuring temperature. 6 are installed. In the first decomposition chamber 11-8, sixth heating means 19-6 for heating the raw material of the container 2 to a predetermined temperature (for example, 450 ° C.) is installed. The first cracking chamber 11-8 is connected to an eighth introduction pipe 14-8 for introducing nitrogen from the outside, and an eighth carbonization treatment cracked gas (including oil) generated inside is discharged. A discharge pipe 15-8 is connected. In the first decomposition chamber 11-8, a nitrogen atmosphere is obtained by filling the nitrogen and exhausting the decomposition gas of the carbonization treatment.
The second decomposition chamber 11-9 is a chamber located behind the first decomposition chamber 11-8. The second decomposition chamber 11-9 includes a ninth moving means 12-9 for moving the container 2, a ninth limit switch 13-9 for determining the position of the container 2, and a seventh temperature sensor 18- for measuring temperature. 7 are installed. In the second decomposition chamber 11-9, a seventh heating means 19-7 for heating the raw material of the container 2 to a predetermined temperature (for example, 450 ° C.) is installed. A ninth introduction pipe 14-9 for introducing nitrogen from the outside is connected to the second decomposition chamber 11-9, and a ninth discharge pipe 15-9 for discharging the decomposition gas generated by the carbonization treatment inside is provided. Connected. In the second decomposition chamber 11-9, a nitrogen atmosphere is obtained by filling the nitrogen and discharging the decomposition gas of the carbonization treatment.
The third decomposition chamber 11-10 is a chamber located behind the second decomposition chamber 11-9. The third decomposition chamber 11-10 includes a tenth moving means 12-10 for moving the container 2, a tenth limit switch 13-10 for determining the position of the container 2, and an eighth temperature sensor 18- for measuring temperature. 8 are installed. The third decomposition chamber 11-10 is provided with an eighth heating means 19-8 for heating the raw material of the container 2 to a predetermined temperature (for example, 450 ° C.). The third decomposition chamber 11-10 is connected with a tenth introduction pipe 14-10 for introducing nitrogen from the outside, and a tenth discharge pipe 15-10 for discharging the decomposition gas generated in the carbonization treatment inside. Connected. In the third decomposition chamber 11-10, a nitrogen atmosphere is obtained by filling nitrogen and exhausting the decomposition gas for carbonization treatment.
The fourth decomposition chamber 11-11 is a chamber located behind the third decomposition chamber 11-10. The fourth decomposition chamber 11-11 includes an eleventh moving means 12-11 for moving the container 2, an eleventh limit switch 13-11 for determining the position of the container 2, and a ninth temperature sensor 18- for measuring temperature. 9 are installed. In the fourth decomposition chamber 11-11, ninth heating means 19-9 for heating the raw material of the container 2 to a predetermined temperature (for example, 450 ° C.) is installed. An eleventh introduction pipe 14-11 for introducing nitrogen from the outside is connected to the fourth decomposition chamber 11-11, and an eleventh discharge pipe 15-11 for discharging a decomposition gas generated in the carbonization treatment inside is connected to the fourth decomposition chamber 11-11. Connected. In the fourth decomposition chamber 11-11, a nitrogen atmosphere is obtained by filling the nitrogen and exhausting the decomposition gas for the carbonization treatment.
The fifth decomposition chamber 11-12 is a chamber located behind the fourth decomposition chamber 11-11. The fifth decomposition chamber 11-12 includes a twelfth moving means 12-12 for moving the container 2, a twelfth limit switch 13-12 for determining the position of the container 2, and a tenth temperature sensor 18- for measuring temperature. 10 are installed. In the fifth decomposition chamber 11-12, a tenth heating means 19-10 for heating the raw material of the container 2 to a predetermined temperature (for example, 450 ° C.) is installed. A twelfth introduction pipe 14-12 for introducing nitrogen into the interior is connected to the fifth decomposition chamber 11-12, and a twelfth exhaust pipe 15-12 for exhausting the carbonization treatment cracked gas generated therein is provided. Connected. In the fifth decomposition chamber 11-12, a nitrogen atmosphere is obtained by filling nitrogen and exhausting the decomposition gas of the carbonization treatment.
The eighth to twelfth introduction pipes 14-8 to 14-12 are connected to the gas generator 16, and remove nitrogen extracted from the atmosphere by the gas generator 16 from the first to fifth decomposition chambers 11-8 to 11-11. To -12.
The eighth to twelfth exhaust pipes 15-8 to 15-12 are connected to a second liquefaction processing apparatus 23-2 that liquefies the decomposition gas for carbonization and generates a liquefied product of oil. The liquefied material processed by the second liquefaction processing device 23-2 is stored in the second liquefied material recovery tank 24-2 via the third communication pipe 21-3. In the second liquefaction processing apparatus 23-2, it is also possible to process residual gas and the like.
The sixth to tenth heating means 19-6 to 19-10 have a structure that is not in direct contact with the carbonization treatment cracked gas in the first to fifth cracking chambers 11-8 to 11-12.
That is, in the composition separation / decomposition unit 7, the non-combustion method is oxygen-free, and the raw material is continuously moved in the first to fifth decomposition chambers 11-8 to 11-12 under a nitrogen atmosphere. The composition of the organic substance is separated and carbonized at a predetermined temperature (for example, 450 ° C.) or lower to produce a carbonized product. In this case, the composition separation / decomposition unit 7 has a predetermined temperature (for example, 450 ° C.) or less, and can prevent volatilization of noble metals, for example. That is, the composition of the raw material is separated under a control temperature corresponding to the characteristics of the raw material and the characteristics of the recovered material. Further, by using nitrogen in the air for carbonization of the raw material, it is possible to prevent the generation of carbon dioxide without oxidative combustion.
 炭素化物冷却部8は、組成分離分解部7で生成された炭素化物を、燃焼や蒸発の起きない温度(例えば、50℃以下)まで冷却するものであって(間接冷却)、処理室として、例えば、第1~第3冷却室11-13~11-15を備える。なお、炭素化物冷却部8では、3つの冷却室に限定されず、室数の増減が可能である。
 第1冷却室11-13は、第5分解室11-12よりも後方に位置する室であって、組成分離分解部6で生成された炭素化物を冷却し、また、炭素化物の急激な体積の膨張を回避させるための調圧室としての機能を備える。第1冷却室11-13には、コンテナ2を移動する第13移動手段12-13と、コンテナ2の位置を決定する第13リミットスイッチ13-13と、温度を計測する第11温度センサ18-11とが設置される。第1冷却室11-13には、炭素化物を所定の温度(例えば、50℃以下)まで低下する第1冷却手段(例えば、水冷式など)25-1が設置される。第1冷却室11-13には、窒素を外部から導入する第13導入管14-13が接続され、また、内部に存在する分解ガスを排出する第13排出管15-13が接続される。第1冷却室11-13では、窒素を充填して内部の分解ガスを排出することにより、窒素雰囲気になる。
 第2冷却室11-14は、第1冷却室11-13よりも後方に位置する室である。第2冷却室11-14には、コンテナ2を移動する第14移動手段12-14と、コンテナ2の位置を決定する第14リミットスイッチ13-14と、温度を計測する第12温度センサ18-12とが設置される。第2冷却室11-14には、炭素化物を所定の温度(例えば、50℃以下)まで低下する第2冷却手段25-2が設置される。第2冷却室11-14には、窒素を外部から導入する第14導入管14-14が接続され、また、内部の分解ガスを排出する第14排出管15-14が接続される。第2冷却室11-14では、窒素を充填して内部の分解ガスを排出することにより、窒素雰囲気になる。
 第3冷却室11-15は、第2冷却室11-14よりも後方に位置する室である。第3冷却室11-15には、コンテナ2を移動する第15移動手段12-15と、コンテナ2の位置を決定する第15リミットスイッチ13-15と、温度を計測する第13温度センサ18-13とが設置される。第3冷却室11-15には、炭素化物を所定の温度(例えば、50℃以下)まで低下する第3冷却手段25-3が設置される。第3冷却室11-15には、窒素を外部から導入する第15導入管14-15が接続され、また、内部の分解ガスを排出する第15排出管15-15が接続される。第3冷却室11-15では、窒素を充填して内部の分解ガスを排出することにより、窒素雰囲気になる。
 第1~第3冷却手段25-1~25-3は、例えば、循環される水を利用した水冷式であって、内部の分解ガスとは直接接触するものではなく、第1~第3冷却室11-13~11-15の炭素化物を、燃焼や蒸発の起こらない温度(例えば、50℃以下)まで低下する、いわゆる間接冷却するものである。これにより、第1~第3冷却室11-13~11-15の温度差で回収される炭素化物は、細かく分類される。
 第13~第15導入管14-13~14-15は、気体発生装置16に接続され、気体発生装置16で大気中から取り出された窒素を、第1~第3冷却室11-13~11-15へ導くものである。
 第13~第15排出管15-13~15-15は、炭素化処理の分解ガスを液化・脱臭などの処理を行う第3液化処理装置23-3に接続される。第3液化処理装置23-3で処理された液化物は、第4連絡管21-4から第3液体回収タンク24-3に貯留される。なお、第3液化処理装置23-3では、残存ガスを処理することも可能である。
The carbonized product cooling unit 8 cools the carbonized product generated in the composition separation and decomposition unit 7 to a temperature at which combustion and evaporation do not occur (for example, 50 ° C. or less) (indirect cooling), and as a processing chamber, For example, first to third cooling chambers 11-13 to 11-15 are provided. Note that the carbonized material cooling section 8 is not limited to three cooling chambers, and the number of chambers can be increased or decreased.
The first cooling chamber 11-13 is a chamber located behind the fifth decomposition chamber 11-12, cools the carbonized product generated in the composition separation / decomposition unit 6, and has a rapid volume of carbonized product. It has a function as a pressure regulation chamber for avoiding the expansion. The first cooling chamber 11-13 includes a thirteenth moving means 12-13 for moving the container 2, a thirteenth limit switch 13-13 for determining the position of the container 2, and an eleventh temperature sensor 18- for measuring the temperature. 11 are installed. In the first cooling chamber 11-13, a first cooling means (for example, a water cooling type) 25-1 for lowering the carbonized material to a predetermined temperature (for example, 50 ° C. or less) is installed. Connected to the first cooling chamber 11-13 is a thirteenth introduction pipe 14-13 for introducing nitrogen from the outside, and a thirteenth discharge pipe 15-13 for discharging cracked gas present inside. In the first cooling chamber 11-13, a nitrogen atmosphere is obtained by filling nitrogen and discharging the internal decomposition gas.
The second cooling chamber 11-14 is a chamber located behind the first cooling chamber 11-13. The second cooling chamber 11-14 includes a fourteenth moving means 12-14 for moving the container 2, a fourteenth limit switch 13-14 for determining the position of the container 2, and a twelfth temperature sensor 18- for measuring temperature. 12 are installed. The second cooling chamber 11-14 is provided with a second cooling means 25-2 for lowering the carbonized material to a predetermined temperature (for example, 50 ° C. or lower). A 14th introduction pipe 14-14 for introducing nitrogen from the outside is connected to the second cooling chamber 11-14, and a 14th exhaust pipe 15-14 for discharging the internal decomposition gas is connected. In the second cooling chamber 11-14, a nitrogen atmosphere is obtained by filling nitrogen and exhausting the internal decomposition gas.
The third cooling chamber 11-15 is a chamber located behind the second cooling chamber 11-14. The third cooling chamber 11-15 includes a fifteenth moving means 12-15 for moving the container 2, a fifteenth limit switch 13-15 for determining the position of the container 2, and a thirteenth temperature sensor 18- for measuring the temperature. 13 are installed. The third cooling chamber 11-15 is provided with third cooling means 25-3 for lowering the carbonized product to a predetermined temperature (for example, 50 ° C. or lower). The third cooling chamber 11-15 is connected to a fifteenth introduction pipe 14-15 for introducing nitrogen from the outside, and is connected to a fifteenth discharge pipe 15-15 for discharging the internal decomposition gas. In the third cooling chamber 11-15, a nitrogen atmosphere is obtained by filling nitrogen and discharging the internal decomposition gas.
The first to third cooling means 25-1 to 25-3 are, for example, water-cooled types using circulated water, and are not in direct contact with the internal cracked gas. The so-called indirect cooling in which the carbonized materials in the chambers 11-13 to 11-15 are lowered to a temperature at which combustion or evaporation does not occur (for example, 50 ° C. or less). As a result, the carbonized materials recovered by the temperature difference between the first to third cooling chambers 11-13 to 11-15 are finely classified.
The thirteenth to fifteenth introduction pipes 14-13 to 14-15 are connected to the gas generator 16, and nitrogen extracted from the atmosphere by the gas generator 16 is supplied to the first to third cooling chambers 11-13 to 11-11. To -15.
The thirteenth to fifteenth exhaust pipes 15-13 to 15-15 are connected to a third liquefaction processing device 23-3 that performs processing such as liquefaction and deodorization of the decomposition gas for carbonization. The liquefied material processed by the third liquefaction processing device 23-3 is stored in the third liquid recovery tank 24-3 from the fourth communication pipe 21-4. The third liquefaction processing device 23-3 can also process the remaining gas.
 後部待機準備部9は、前方の各室を開放した際に逆流して来る内部の臭気やガスを外部に漏らさないためのものであって、処理室として、例えば、第1後部準備室11-16と第2後部準備室11-17とを備える。なお、後部待機準備部9では、2つの後部準備室に限定されず、室数の増減が可能である。
 第1後部準備室11-16は、第3冷却室11-15の後方に位置する室であって常温である。第1後部準備室11-16には、コンテナ2を移動する第16移動手段12-16と、コンテナ2の位置を決定する第16リミットスイッチ13-16とが設置される。第1後部準備室11-16には、窒素を外部から導入する第16導入管14-16が接続され、また、内部の分解ガス及び空気(酸素)を排出する第16排出管15-16が接続される。第1後部準備室11-16では、窒素を充填して分解ガス及び空気を排出することにより、窒素雰囲気になる。
 第2後部準備室11-17は、第1後部準備室11-16よりも後方に位置し、最も後方に位置する室であって常温である。第2後部準備室11-17には、コンテナ2を移動する第17移動手段12-17と、コンテナ2の位置を決定する第17リミットスイッチ13-17とが設置される。第2後部準備室11-17には、窒素を外部から導入する第17導入管14-17が接続され、また、内部の分解ガス及び空気を排出する第17排出管15-17が接続される。第2後部準備室11-17では、窒素を充填して分解ガス及び空気を排出することにより、窒素雰囲気になる。
 第16導入管14-16・第17導入管14-17は、気体発生装置16に接続され、気体発生装置16で大気中から取り出された窒素を、第1後部準備室11-16・第2後部準備室11-17へ導くものである。
 第16排出管15-16・第17排出管15-17は、排出された分解ガス及び空気を高温雰囲気として消臭・消煙などの処理を行うための第2消臭消煙装置17-2に接続される。第2消臭消煙装置17-2は、消臭・消煙などを行った後に、浄化された空気を外部に排出する。
 なお、第1消臭消煙装置17-1と第2消臭消煙装置17-2とを一体化し、一つの消臭消煙装置にすることも可能である。 
The rear standby preparation unit 9 is for preventing leakage of internal odors and gases that flow backward when the front chambers are opened. As the processing chamber, for example, the first rear preparation chamber 11- 16 and a second rear preparation chamber 11-17. The rear standby preparation unit 9 is not limited to two rear preparation rooms, and the number of rooms can be increased or decreased.
The first rear preparation chamber 11-16 is a room located behind the third cooling chamber 11-15 and is at room temperature. In the first rear preparation chamber 11-16, a sixteenth moving means 12-16 for moving the container 2 and a sixteenth limit switch 13-16 for determining the position of the container 2 are installed. The first rear preparation chamber 11-16 is connected to a sixteenth introduction pipe 14-16 for introducing nitrogen from the outside, and a sixteenth discharge pipe 15-16 for discharging an internal decomposition gas and air (oxygen). Connected. In the first rear preparation chamber 11-16, a nitrogen atmosphere is obtained by filling nitrogen and exhausting the decomposition gas and air.
The second rear preparation chamber 11-17 is located behind the first rear preparation chamber 11-16 and is the room located most rearward at room temperature. In the second rear preparation chamber 11-17, a seventeenth moving means 12-17 for moving the container 2 and a seventeenth limit switch 13-17 for determining the position of the container 2 are installed. The second rear preparation chamber 11-17 is connected with a seventeenth introduction pipe 14-17 for introducing nitrogen from the outside, and a seventeenth discharge pipe 15-17 for discharging internal decomposition gas and air. . In the second rear preparation chamber 11-17, a nitrogen atmosphere is obtained by filling nitrogen and exhausting the decomposition gas and air.
The sixteenth introduction pipe 14-16 and the seventeenth introduction pipe 14-17 are connected to the gas generation device 16, and nitrogen extracted from the atmosphere by the gas generation device 16 is supplied to the first rear preparation chambers 11-16 and second. It leads to the rear preparation room 11-17.
The sixteenth exhaust pipe 15-16 and the seventeenth exhaust pipe 15-17 are second deodorant and smoke eliminating devices 17-2 for performing processing such as deodorization and smoke removal using the discharged decomposition gas and air as a high temperature atmosphere. Connected to. The second deodorizing and smoking device 17-2 discharges purified air to the outside after deodorizing and smoking.
In addition, it is possible to integrate the first and second deodorizing and smoking devices 17-1 and 17-2 into one odor eliminating and smoking device.
 各室11-1~17-1は、炭素化工程方向Xにおいて、それぞれ連通可能(開放可能)に構成される。  Each of the chambers 11-1 to 17-1 is configured to be able to communicate (open) in the carbonization process direction X.
 各室11-1~11-17は、各隔壁扉26-1~26-18によってそれぞれ独立して閉塞状態になる。 
 第1前部準備室11-1には、コンテナ2を搬入させる一端面で第1隔壁扉26-1が配置される。第1隔壁扉26-1は、第1開閉手段(アクチュエータ)27-1によって動作され、第1前部準備室11-1の一端面の搬入口28を開閉する。第1前部準備室11-1と第2前部準備室11-2との間には、第2隔壁扉26-2が配置される。第2隔壁扉26-2は、第2開閉手段27-2によって動作され、第1前部準備室11-1の他端面と第2前部準備室11-2の一端面とを開閉する。
 第2前部準備室11-2と第1蒸発室11-3との間には、第3隔壁扉26-3が配置される。第3隔壁扉26-3は、第3開閉手段27-3によって動作され、第2前部準備室11-2の他端面と第1蒸発室11-3の一端面とを開閉する。第1蒸発室11-3と第2蒸発室11-4との間には、第4隔壁扉26-4が配置される。第4隔壁扉26-4は、第4開閉手段27-4によって動作され、第1蒸発室11-3の他端面と第2蒸発室11-4の一端面とを開閉する。
 第2蒸発室11-4と第1除去室11-5との間には、第5隔壁扉26-5が配置される。第5隔壁扉26-5は、第5開閉手段27-5によって動作され、第2蒸発室11-4の他端面と第1除去室11-5の一端面とを開閉する。第1除去室11-5と第2除去室11-6との間には、第6隔壁扉26-6が配置される。第6隔壁扉26-6は、第6開閉手段27-6によって動作され、第1除去室11-5の他端面と第2除去室11-6の一端面とを開閉する。第2除去室11-6と第3除去室11-7との間には、第7隔壁扉26-7が配置される。第7隔壁扉26-7は、第7開閉手段27-7によって動作され、第2除去室11-6の他端面と第3除去室11-7の一端面とを開閉する。
 第3除去室11-7と第1分解室11-8との間には、第8隔壁扉26-8が配置される。第8隔壁扉26-8は、第8開閉手段27-8によって動作され、第3除去室11-7の他端面と第1分解室11-8の一端面とを開閉する。第1分解室11-8と第2分解室11-9との間には、第9隔壁扉26-9が配置される。第9隔壁扉26-9は、第9開閉手段27-9によって動作され、第1分解室11-8の他端面と第2分解室11-9の一端面とを開閉する。第2分解室11-9と第3分解室11-10との間には、第10隔壁扉26-10が配置される。第10隔壁扉26-10は、第10開閉手段27-10によって動作され、第2分解室11-9の他端面と第3分解室11-10の一端面とを開閉する。第3分解室11-10と第4分解室11-11との間には、第11隔壁扉26-11が配置される。第11隔壁扉26-11は、第11開閉手段27-11によって動作され、第3分解室11-10の他端面と第4分解室11-11の一端面とを開閉する。第4分解室11-11と第5分解室11-12との間には、第12隔壁扉26-12が配置される。第12隔壁扉26-12は、第12開閉手段27-12によって動作され、第4分解室11-11の他端面と第5分解室11-12の一端面とを開閉する。
 第5分解室11-12と第1冷却室11-13との間には、第13隔壁扉26-13が配置される。第13隔壁扉26-13は、第13開閉手段27-13によって動作され、第5分解室11-12の他端面と第1冷却室11-13の一端面とを開閉する。第1冷却室11-13と第2冷却室11-14との間には、第14隔壁扉26-14が配置される。第14隔壁扉26-14は、第14開閉手段27-14によって動作され、第1冷却室11-13の他端面と第2冷却室11-14の一端面とを開閉する。第2冷却室11-14と第3冷却室11-15との間には、第15隔壁扉26-15が配置される。第15隔壁扉26-15は、第15開閉手段27-15によって動作され、第2冷却室11-14の他端面と第3冷却室11-15の一端面とを開閉する。
 第3冷却室11-15と第1後部準備室11-16との間には、第16隔壁扉26-16が配置される。第16隔壁扉26-16は、第16開閉手段27-16によって動作され、第3冷却室11-15の他端面と第1後部準備室11-16の一端面とを開閉する。第1後部準備室11-16と第2後部準備室11-17との間には、第17隔壁扉26-17が配置される。第17隔壁扉26-17は、第17開閉手段27-17によって動作され、第1後部準備室11-16の他端面と第2後部準備室11-17の一端面とを開閉する。
 第2後部準備室11-17には、コンテナ2を搬出させる他端面で第18隔壁扉26-18が配置される。第18隔壁扉26-18は、第18開閉手段27-18によって動作され、第2後部準備室11-17の他端面の搬出口29を開閉する。
 第1~第18隔壁扉26-1~26-18は、例えば、ボックス内に収納される。 
The chambers 11-1 to 11-17 are individually closed by the partition doors 26-1 to 26-18.
In the first front preparation chamber 11-1, a first partition door 26-1 is disposed on one end surface into which the container 2 is carried. The first partition door 26-1 is operated by first opening / closing means (actuator) 27-1, and opens / closes the carry-in port 28 on one end face of the first front preparation chamber 11-1. A second partition door 26-2 is disposed between the first front preparation chamber 11-1 and the second front preparation chamber 11-2. The second partition door 26-2 is operated by the second opening / closing means 27-2 to open and close the other end surface of the first front preparation chamber 11-1 and one end surface of the second front preparation chamber 11-2.
A third partition door 26-3 is disposed between the second front preparation chamber 11-2 and the first evaporation chamber 11-3. The third partition door 26-3 is operated by the third opening / closing means 27-3 to open and close the other end surface of the second front preparation chamber 11-2 and one end surface of the first evaporation chamber 11-3. A fourth partition door 26-4 is disposed between the first evaporation chamber 11-3 and the second evaporation chamber 11-4. The fourth partition door 26-4 is operated by the fourth opening / closing means 27-4 to open and close the other end surface of the first evaporation chamber 11-3 and the one end surface of the second evaporation chamber 11-4.
A fifth partition door 26-5 is disposed between the second evaporation chamber 11-4 and the first removal chamber 11-5. The fifth partition door 26-5 is operated by the fifth opening / closing means 27-5 to open and close the other end surface of the second evaporation chamber 11-4 and one end surface of the first removal chamber 11-5. A sixth partition door 26-6 is arranged between the first removal chamber 11-5 and the second removal chamber 11-6. The sixth partition door 26-6 is operated by the sixth opening / closing means 27-6 to open and close the other end surface of the first removal chamber 11-5 and one end surface of the second removal chamber 11-6. A seventh partition door 26-7 is disposed between the second removal chamber 11-6 and the third removal chamber 11-7. The seventh partition door 26-7 is operated by the seventh opening / closing means 27-7 to open and close the other end surface of the second removal chamber 11-6 and one end surface of the third removal chamber 11-7.
An eighth partition door 26-8 is arranged between the third removal chamber 11-7 and the first decomposition chamber 11-8. The eighth partition door 26-8 is operated by the eighth opening / closing means 27-8 to open and close the other end surface of the third removal chamber 11-7 and one end surface of the first decomposition chamber 11-8. A ninth partition door 26-9 is arranged between the first decomposition chamber 11-8 and the second decomposition chamber 11-9. The ninth partition door 26-9 is operated by the ninth opening / closing means 27-9 to open and close the other end surface of the first decomposition chamber 11-8 and one end surface of the second decomposition chamber 11-9. A tenth partition door 26-10 is disposed between the second decomposition chamber 11-9 and the third decomposition chamber 11-10. The tenth partition door 26-10 is operated by the tenth opening / closing means 27-10, and opens and closes the other end surface of the second decomposition chamber 11-9 and one end surface of the third decomposition chamber 11-10. An eleventh partition door 26-11 is disposed between the third decomposition chamber 11-10 and the fourth decomposition chamber 11-11. The eleventh partition door 26-11 is operated by the eleventh opening / closing means 27-11 to open and close the other end surface of the third decomposition chamber 11-10 and one end surface of the fourth decomposition chamber 11-11. A twelfth partition door 26-12 is arranged between the fourth decomposition chamber 11-11 and the fifth decomposition chamber 11-12. The twelfth partition door 26-12 is operated by the twelfth opening / closing means 27-12 and opens / closes the other end surface of the fourth decomposition chamber 11-11 and one end surface of the fifth decomposition chamber 11-12.
A thirteenth partition door 26-13 is disposed between the fifth decomposition chamber 11-12 and the first cooling chamber 11-13. The thirteenth partition door 26-13 is operated by the thirteenth opening / closing means 27-13, and opens and closes the other end surface of the fifth decomposition chamber 11-12 and one end surface of the first cooling chamber 11-13. A fourteenth partition door 26-14 is disposed between the first cooling chamber 11-13 and the second cooling chamber 11-14. The fourteenth partition door 26-14 is operated by the fourteenth opening / closing means 27-14, and opens and closes the other end surface of the first cooling chamber 11-13 and one end surface of the second cooling chamber 11-14. A fifteenth partition door 26-15 is disposed between the second cooling chamber 11-14 and the third cooling chamber 11-15. The fifteenth partition door 26-15 is operated by the fifteenth opening / closing means 27-15 and opens / closes the other end face of the second cooling chamber 11-14 and one end face of the third cooling chamber 11-15.
A sixteenth partition door 26-16 is disposed between the third cooling chamber 11-15 and the first rear preparation chamber 11-16. The sixteenth partition door 26-16 is operated by the sixteenth opening / closing means 27-16, and opens and closes the other end surface of the third cooling chamber 11-15 and one end surface of the first rear preparation chamber 11-16. A seventeenth partition door 26-17 is disposed between the first rear preparation chamber 11-16 and the second rear preparation chamber 11-17. The seventeenth partition door 26-17 is operated by the seventeenth opening / closing means 27-17, and opens and closes the other end surface of the first rear preparation chamber 11-16 and one end surface of the second rear preparation chamber 11-17.
In the second rear preparation chamber 11-17, an eighteenth partition door 26-18 is arranged on the other end surface where the container 2 is carried out. The eighteenth partition door 26-18 is operated by the eighteenth opening / closing means 27-18 and opens / closes the outlet 29 on the other end surface of the second rear preparation chamber 11-17.
The first to eighteenth partition doors 26-1 to 26-18 are housed in, for example, a box.
 図3に示すように、少なくとも分解室11-8~11-12(以下、図3では単に「室11」と記す)は、層状断熱構造体30で形成される。層状断熱構造体30は、例えば、グラスウールの材質からなり、内側から順次に、複数枚のボードとして、2層のハードボード31-1・31-2と2層のソフトボード32-1・32-2と1層のハードボード31-3と1層のソフトボード32-3とが6層に重ね合わせて構成される。層状断熱構造体30は、室11の内壁面30A及び外壁面30Bがコーティング等で固められられて硬くなって構成され、断熱効果に優れ、また、長期継続使用が可能である。また、層状断熱構造体30の内壁面30Aに機能劣化が発生した場合に、最も内側のハードボード31-1のみを交換すれば良く、保守点検を容易とし、また、廉価にする。
 また、層状断熱構造体30の内壁面30Aには、例えば、上下方向の縦壁面が凹凸面となるように、複数個の突部33が形成される。これにより、室11内で分解ガス(熱気体)の攪拌が促進され、分解ガスの滞留を防止して原料に対して均等な加熱を行わせ、炭素化処理の時間を短縮させることができる。
 更に、室11には、例えば、上部で、分解ガスの攪拌を助長する攪拌用ファン34が設置される。攪拌用ファン34は、ファンモータ35で駆動され、室11内の温度差をなくし、内壁面30Aの突部33と共働して分解ガスの攪拌を効率良く行わせる。なお、攪拌用ファン34は、天井のみならず他の側面などで、2つ以上で複数個設置することも可能である。
 なお、層状断熱構造体30は、分解室のみならず、蒸発室や冷却室などの他の室に対しても適用可能である。 
As shown in FIG. 3, at least the decomposition chambers 11-8 to 11-12 (hereinafter simply referred to as “chamber 11” in FIG. 3) are formed of a layered heat insulating structure 30. The layered heat insulating structure 30 is made of, for example, a glass wool material, and as a plurality of boards sequentially from the inside, two layers of hard boards 31-1 and 31-2 and two layers of soft boards 32-1 and 32- Two and one-layer hard boards 31-3 and one-layer soft boards 32-3 are superposed in six layers. The layered heat insulating structure 30 is configured such that the inner wall surface 30A and the outer wall surface 30B of the chamber 11 are hardened by coating or the like, has an excellent heat insulating effect, and can be used continuously for a long time. In addition, when functional deterioration occurs on the inner wall surface 30A of the layered heat insulation structure 30, only the innermost hard board 31-1 needs to be replaced, facilitating maintenance and cost reduction.
In addition, a plurality of protrusions 33 are formed on the inner wall surface 30 </ b> A of the layered heat insulating structure 30 such that, for example, the vertical wall surface in the vertical direction is an uneven surface. As a result, stirring of the cracked gas (hot gas) is promoted in the chamber 11, and retention of the cracked gas is prevented, and the raw material is heated evenly, thereby shortening the time for the carbonization treatment.
Furthermore, the chamber 11 is provided with a stirring fan 34 that promotes stirring of the cracked gas, for example, at the top. The stirring fan 34 is driven by a fan motor 35, eliminates the temperature difference in the chamber 11, and cooperates with the protrusion 33 of the inner wall surface 30A to efficiently stir the decomposition gas. A plurality of agitation fans 34 may be installed in two or more on the side surface as well as the ceiling.
The layered heat insulating structure 30 can be applied not only to the decomposition chamber but also to other chambers such as an evaporation chamber and a cooling chamber.
 図3、図4に示すように、室11には、各移動手段12-1~12-17(以下、図3、図4では単に「移動手段12」と記す)を作動するための駆動シャフト36が設置される。駆動シャフト36は、室11の内部の一端部が移動手段12に接続され、室11の外部の他端部に原動機(モータ)37に連結される。駆動シャフト36は、層状断熱構造体30のシャフト取付孔部38に固定された断熱支持構造体39で支持される。
 断熱支持構造体39は、第1カバー体40と第2カバー体41と内側閉塞板42と外側閉塞板43とを備える。 
 第1カバー体40は、所定の厚みがある環状体からなり、軸心方向で外方へ開口する第1環状空間44を形成し、駆動シャフト36に嵌装される。第2カバー体41は、第1カバー体40を覆って第2環状空間45を形成し且つ外周面がシャフト取付孔部38に固定される。内側閉塞板42は、層状断熱構造体30の内壁面30Aに位置して第1カバー体40・第2カバー体41の内端面側を覆うものである。外側閉塞板43は、層状断熱構造体30の外壁面30Bに位置して第1カバー体40・第2カバー体41の外端面側を覆うものである。
 第1環状空間44には、窒素供給装置46からの窒素が窒素供給管47を介して充填される。また、第2環状空間45には、冷却水を導くためのインレットパイプ48及びアウトレットパイプ49が接続され、冷却水供給装置50からの冷却水が循環される。これにより、駆動シャフト36の取付部位の断熱効果を高め、室11の熱損失を防止することができる。
 なお、図4に示すように、駆動シャフト36には、軸心上に室11内の一端部から断熱支持構造体39の箇所までの長さで冷却水用軸穴51を形成し、冷却水用軸穴51には冷却水供給装置50からの冷却水を循環させることも可能である。これにより、断熱支持構造体39では、駆動シャフト36の取付部位の断熱効果をさらに高め、放熱損失をなくして室11の熱損失を防止し、また、室11内の熱が外部に伝達するのを防止して火災などの原因になることを回避でき、さらに、室11内の分解ガスが外部に漏れるのを防止できる。
As shown in FIGS. 3 and 4, the chamber 11 has a drive shaft for operating the moving means 12-1 to 12-17 (hereinafter simply referred to as “moving means 12” in FIGS. 3 and 4). 36 is installed. The drive shaft 36 is connected at one end inside the chamber 11 to the moving means 12 and is connected to a prime mover (motor) 37 at the other end outside the chamber 11. The drive shaft 36 is supported by a heat insulating support structure 39 fixed to the shaft mounting hole 38 of the layered heat insulating structure 30.
The heat insulating support structure 39 includes a first cover body 40, a second cover body 41, an inner closing plate 42, and an outer closing plate 43.
The first cover body 40 is formed of an annular body having a predetermined thickness, forms a first annular space 44 that opens outward in the axial direction, and is fitted to the drive shaft 36. The second cover body 41 covers the first cover body 40 to form a second annular space 45, and the outer peripheral surface is fixed to the shaft attachment hole 38. The inner closing plate 42 is located on the inner wall surface 30 </ b> A of the layered heat insulating structure 30 and covers the inner end face sides of the first cover body 40 and the second cover body 41. The outer closing plate 43 is located on the outer wall surface 30 </ b> B of the layered heat insulating structure 30 and covers the outer end surface sides of the first cover body 40 and the second cover body 41.
The first annular space 44 is filled with nitrogen from a nitrogen supply device 46 via a nitrogen supply pipe 47. The second annular space 45 is connected to an inlet pipe 48 and an outlet pipe 49 for guiding the cooling water, and the cooling water from the cooling water supply device 50 is circulated. Thereby, the heat insulation effect of the attachment site | part of the drive shaft 36 can be improved, and the heat loss of the chamber 11 can be prevented.
As shown in FIG. 4, a cooling water shaft hole 51 is formed on the drive shaft 36 on the axial center with a length from one end in the chamber 11 to the location of the heat insulating support structure 39. It is also possible to circulate cooling water from the cooling water supply device 50 in the shaft hole 51. Thereby, in the heat insulation support structure 39, the heat insulation effect of the attachment site | part of the drive shaft 36 is improved further, heat loss is eliminated, the heat loss of the chamber 11 is prevented, and the heat in the chamber 11 is transmitted outside. It is possible to prevent the occurrence of fire and the like, and to prevent the decomposition gas in the chamber 11 from leaking to the outside.
 図5に示すように、組成分離式炭素化システム1は、電子制御ユニット52を備える。 
 電子制御ユニット52は、気体発生装置16と、消臭消煙装置17-1・17-2と、蒸気冷却装置20と、液体処理装置23-1~23-3とを制御する。
 電子制御ユニット52は、加熱手段19-1~19-10と、冷却手段25-1~25-3とを制御する。この場合、電子制御ユニット52は、少なくとも蒸発室11-3・11-4と除去室11-5~11-7と分解室11-8~11-12との温度を、所定温度(例えば、10℃)毎にそれぞれ制御するように、加熱手段19-1~19-10を作動する。電子制御ユニット52は、温度センサ18-1~18-13からの信号を受けて、加熱手段19-1~19-10及び冷却手段25-1~25-3を作動する。
 電子制御ユニット52は、リミットスイッチ13-1~13-17からの信号を受けて移動手段12-1~12-17を制御し、コンテナ2を所定に位置まで移動させる。
 電子制御ユニット52は、開閉手段27-1~27-18を制御し、所定のタイミングで隔壁扉26-1~26-18を開閉動作させる。
 電子制御ユニット52は、ファンモータ35と原動機37と窒素供給装置46と冷却水供給装置50とを制御する。 
As shown in FIG. 5, the composition separation type carbonization system 1 includes an electronic control unit 52.
The electronic control unit 52 controls the gas generation device 16, the deodorization and smoke removal devices 17-1 and 17-2, the vapor cooling device 20, and the liquid processing devices 23-1 to 23-3.
The electronic control unit 52 controls the heating means 19-1 to 19-10 and the cooling means 25-1 to 25-3. In this case, the electronic control unit 52 sets the temperatures of at least the evaporation chambers 11-3 and 11-4, the removal chambers 11-5 to 11-7, and the decomposition chambers 11-8 to 11-12 to a predetermined temperature (for example, 10 The heating means 19-1 to 19-10 are operated so as to be controlled each time. The electronic control unit 52 receives the signals from the temperature sensors 18-1 to 18-13 and operates the heating means 19-1 to 19-10 and the cooling means 25-1 to 25-3.
The electronic control unit 52 receives the signals from the limit switches 13-1 to 13-17, controls the moving means 12-1 to 12-17, and moves the container 2 to a predetermined position.
The electronic control unit 52 controls the opening / closing means 27-1 to 27-18 to open / close the partition doors 26-1 to 26-18 at a predetermined timing.
The electronic control unit 52 controls the fan motor 35, the prime mover 37, the nitrogen supply device 46, and the cooling water supply device 50.
 組成分離式炭素化システム1は、熱源を電力とし、炭素化処理の効率化を図るために温度管理を厳格にし、原料を低温度(450℃)で無酸素状態で炭素化し、二酸化炭素やダイオキシンなどの有害物質の発生を抑制するものである。 
 また、組成分離式炭素化システム1は、酸化燃焼(高温酸化による熱分解:酸化反応、還元反応)をすることがないので、煤塵が発生することがないものである。
The composition separation type carbonization system 1 uses electric power as a heat source, strictly controls the temperature in order to improve the efficiency of the carbonization treatment, carbonizes the raw material at low temperature (450 ° C.) in an oxygen-free state, and produces carbon dioxide and dioxin. It suppresses the generation of harmful substances.
In addition, since the composition separation type carbonization system 1 does not undergo oxidative combustion (thermal decomposition by high-temperature oxidation: oxidation reaction, reduction reaction), dust does not occur.
 次いで、この実施例に係る組成分離式炭素化システム1について、図6のフローチャートに沿って説明する。 
 組成分離式炭素化システム1においては、原料を一括投入したコンテナ2が、所定時間毎(例えば、40分毎)に各室11-1~11-17へ搬入される。
Next, the composition separation type carbonization system 1 according to this embodiment will be described with reference to the flowchart of FIG.
In the composition separation type carbonization system 1, the container 2 into which the raw materials are charged all at once is carried into the respective chambers 11-1 to 11-17 every predetermined time (for example, every 40 minutes).
 コンテナ搬入工程(S101) 
 原料を一括投入したコンテナ2は、第1隔壁扉26-1が開動作し、第1前部準備室11-1の一端面の搬入口28が開放されることにより、コンテナ搬入部3から第1前部準備室11-1へ搬入される。
Container loading process (S101)
In the container 2 into which the raw materials are charged all at once, the first partition door 26-1 is opened and the inlet 28 on one end face of the first front preparation chamber 11-1 is opened, so that 1 It is carried into the front preparation room 11-1.
 前部待機準備工程(S102) 
 コンテナ2が第1移動手段12-1によって移動されて第1前部準備室11-1の所定位置に至ると、第1隔壁扉26-1が閉動作し、第2隔壁扉26-2が閉状態であることから、第1前部準備室11-1が閉塞状態になる。第1前部準備室11-1では、第1導入管14-1から窒素が導入され、同時に、第1排出管15-1から空気が排出される。第1前部準備室11-1は、常温で、窒素雰囲気になる。
 第2隔壁扉26-2が開動作して第1前部準備室11-1と第2前部準備室11-2とが連通状態(開放状態)になると、第1移動手段12-1と第2移動手段12-2とによってコンテナ2が第1前部準備室11-1から第2前部準備室11-2へ移動される。コンテナ2が第2前部準備室11-2の所定位置に至ると、第2隔壁扉26-2が閉動作し、第3隔壁扉26-3が閉状態であることから、第2前部準備室11-2が閉塞状態になる。第2前部準備室11-2では、第2導入管14-2から窒素が導入され、同時に、第2排出管15-2から空気が排出される。第1前部準備室11-2は、常温で、窒素雰囲気になる。
 第1排出管15-1・第2排出管15-2からの空気は、第1消臭消煙装置17-1で消臭・消煙され、浄化されて大気へ放出される。
 前部待機準備部4では、第1前部準備室11-1と第2前部準備室11-2とを直列に備えることにより、後方の各室が開放した際に逆流して来る内部の臭気やガスを外部に漏れるのを防止し、また、原料の組成分離と炭素化処理とを同時に行うための組成分離式炭素化システム1の温度管理を厳格にし、更に、熱損失を抑制して省エネルギに貢献することが可能となる。
Front standby preparation process (S102)
When the container 2 is moved by the first moving means 12-1 and reaches a predetermined position in the first front preparation chamber 11-1, the first partition door 26-1 is closed and the second partition door 26-2 is moved. Since it is in the closed state, the first front preparation chamber 11-1 is closed. In the first front preparation chamber 11-1, nitrogen is introduced from the first introduction pipe 14-1, and at the same time, air is discharged from the first discharge pipe 15-1. The first front preparation chamber 11-1 is in a nitrogen atmosphere at room temperature.
When the second partition door 26-2 opens and the first front preparation chamber 11-1 and the second front preparation chamber 11-2 are in communication (open state), the first moving means 12-1 The container 2 is moved from the first front preparation chamber 11-1 to the second front preparation chamber 11-2 by the second moving means 12-2. When the container 2 reaches a predetermined position in the second front preparation chamber 11-2, the second partition door 26-2 is closed and the third partition door 26-3 is closed. The preparation chamber 11-2 is closed. In the second front preparation chamber 11-2, nitrogen is introduced from the second introduction pipe 14-2, and at the same time, air is discharged from the second discharge pipe 15-2. The first front preparation chamber 11-2 is in a nitrogen atmosphere at room temperature.
The air from the first exhaust pipe 15-1 and the second exhaust pipe 15-2 is deodorized and smoke eliminated by the first deodorizing and smoke eliminating device 17-1, purified and released to the atmosphere.
In the front standby preparation section 4, the first front preparation chamber 11-1 and the second front preparation chamber 11-2 are provided in series, so that when the rear chambers are opened, they flow backward inside Odor and gas are prevented from leaking to the outside, temperature control of the composition separation type carbonization system 1 for simultaneously performing composition separation and carbonization treatment of raw materials is performed, and heat loss is further suppressed. It is possible to contribute to energy saving.
 水分蒸発工程(S103) 
 第3隔壁扉26-3が開動作して第2前部準備室11-2と第1蒸発室11-3とが連通状態になると、第2移動手段12-2と第3移動手段12-3とによってコンテナ2が第2前部準備室11-2から第1蒸発室11-3へ移動される。コンテナ2が第1蒸発室11-3の所定位置に至ると、第3隔壁扉26-3が閉動作し、第4隔壁扉26-4が閉状態であることから、第1蒸発室11-3が閉塞状態になる。第1蒸発室11-3のコンテナ2の原料は、第1加熱手段19-1で加熱される。第1蒸発室11-3では、第3導入管14-3から窒素が導入され、同時に、水蒸気が第3排出管15-3から排出され、窒素雰囲気になる。
 第4隔壁扉26-4が開動作して第1蒸発室11-3と第2蒸発室11-4とが連通状態になると、第3移動手段12-3と第4移動手段12-4とによってコンテナ2が第1蒸発室11-3から第2蒸発室11-4へ移動される。コンテナ2が第2蒸発室11-4の所定位置に至ると、第4隔壁扉26-4が閉動作し、第5隔壁扉26-5が閉状態であることから、第2蒸発室11-4が閉塞状態になる。第2蒸発室11-4のコンテナ2の原料は、第2加熱手段19-2で加熱される。第2蒸発室11-4では、第4導入管14-4から窒素が導入され、同時に、水蒸気が第4排出管15-4から排出され、窒素雰囲気になる。
 第3排出管15-3・第4排出管15-4からの水蒸気は、蒸気処理装置20で処理されて冷却水用タンク22に貯留される。 
 水分蒸発部5では、第1蒸発室11-3で原料の水分を十分に除去することができない場合に、第2蒸発室11-4で残りの水分を除去することができるので、原料の水分を所定量まで効率良く除去することが可能となる。
 なお、水分蒸発部5において、電子制御ユニット52は、第1加熱手段19-1と第2加熱手段19-2とをそれぞれ個別及び/又は段階的に制御し、第1蒸発室11-3と第2蒸発室11-4との温度が異なるように変更することも可能である。つまり、原料の特性に応じて第1蒸発室11-3と第2蒸発室11-4とのそれぞれの温度が異なるようにすることで、原料の水分を適正に除去することが可能になる。
Moisture evaporation step (S103)
When the third partition door 26-3 opens and the second front preparation chamber 11-2 and the first evaporation chamber 11-3 are in communication with each other, the second moving means 12-2 and the third moving means 12- 3 moves the container 2 from the second front preparation chamber 11-2 to the first evaporation chamber 11-3. When the container 2 reaches a predetermined position in the first evaporation chamber 11-3, the third partition door 26-3 is closed and the fourth partition door 26-4 is closed. 3 becomes blocked. The raw material of the container 2 in the first evaporation chamber 11-3 is heated by the first heating means 19-1. In the first evaporation chamber 11-3, nitrogen is introduced from the third introduction pipe 14-3, and at the same time, water vapor is discharged from the third discharge pipe 15-3 to form a nitrogen atmosphere.
When the fourth partition door 26-4 opens and the first evaporation chamber 11-3 and the second evaporation chamber 11-4 are in communication with each other, the third moving means 12-3 and the fourth moving means 12-4 As a result, the container 2 is moved from the first evaporation chamber 11-3 to the second evaporation chamber 11-4. When the container 2 reaches a predetermined position in the second evaporation chamber 11-4, the fourth partition door 26-4 is closed and the fifth partition door 26-5 is closed. 4 becomes blocked. The raw material of the container 2 in the second evaporation chamber 11-4 is heated by the second heating means 19-2. In the second evaporation chamber 11-4, nitrogen is introduced from the fourth introduction pipe 14-4, and at the same time, water vapor is discharged from the fourth discharge pipe 15-4 to form a nitrogen atmosphere.
Water vapor from the third discharge pipe 15-3 and the fourth discharge pipe 15-4 is processed by the steam processing device 20 and stored in the cooling water tank 22.
In the water evaporation unit 5, when the water in the raw material cannot be sufficiently removed in the first evaporation chamber 11-3, the remaining water can be removed in the second evaporation chamber 11-4. Can be efficiently removed up to a predetermined amount.
In the moisture evaporation section 5, the electronic control unit 52 controls the first heating means 19-1 and the second heating means 19-2 individually and / or stepwise, and the first evaporation chamber 11-3 It is also possible to change the temperature of the second evaporation chamber 11-4 so as to be different. That is, by making the temperatures of the first evaporation chamber 11-3 and the second evaporation chamber 11-4 different according to the characteristics of the raw material, it is possible to appropriately remove the moisture of the raw material.
 高分子化合物除去工程(S104) 
 第5隔壁扉26-5が開動作して第2蒸発室11-4と第1除去室11-5とが連通状態になると、第4移動手段12-4と第5移動手段12-5とによってコンテナ2が第2蒸発室11-4から第1除去室11-5へ移動される。コンテナ2が第1除去室11-5の所定位置に至ると、第5隔壁扉26-5が閉動作し、第6隔壁扉26-6が閉状態であることから、第1除去室11-5が閉塞状態になる。第1除去室11-5のコンテナ2の原料は、第3加熱手段19-3で加熱される。第1除去室11-5では、第5導入管14-5から窒素が導入され、同時に、高分子化合物の分解ガスが第5排出管15-5から排出され、窒素雰囲気になる。
 第6隔壁扉26-6が開動作して第1除去室11-5と第2除去室11-6とが連通状態になると、第5移動手段12-5と第6移動手段12-6とによってコンテナ2が第1除去室11-5から第2除去室11-6へと移動される。コンテナ2が第2除去室11-6の所定位置に至ると、第6隔壁扉26-6が閉動作し、第7隔壁扉26-7が閉状態であることから、第2除去室11-6が閉塞状態になる。第2除去室11-6のコンテナ2の原料は、第4加熱手段19-4で加熱される。第2除去室11-6では、第6導入管14-6から窒素が導入され、同時に、高分子化合物の分解ガスが第6排出管15-6から排出され、窒素雰囲気になる。
 第7隔壁扉26-7が開動作して第2除去室11-6と第3除去室11-7とが連通状態になると、第6移動手段12-6と第7移動手段12-7とによってコンテナ2が第2除去室11-6から第3除去室11-7へ移動される。コンテナ2が第3除去室11-7の所定位置に至ると、第7隔壁扉26-7が閉動作し、第8隔壁扉26-8が閉状態であることから、第3除去室11-7が閉塞状態になる。第3除去室11-7のコンテナ2の原料は、第5加熱手段19-5で加熱される。第3除去室11-7では、第7導入管14-7から窒素が導入され、同時に、高分子化合物の分解ガスが第7排出管15-7から排出され、窒素雰囲気になる。
 第5~第7排出管14-5~14-7からの高分子化合物の分解ガスは、全てが第1液化処理装置23-1で処理されて液化物となり、第1液化物回収タンク24-1に貯留される。これにより、排気ガスが零(0)になる。
 高分子化合物除去部6では、第1~第3除去室10-5~10-7を備えることにより、高分子化合物を効率良く除去し、ダイオキシン等の有害物質の発生の要因を無くすることが可能となる。
 なお、高分子化合物除去部6において、電子制御ユニット52は、第3~第5加熱手段19-3~19-5をそれぞれ個別及び/又は段階的に制御し、第1~第3除去室11-5~11-7の温度が異なるように変更することも可能である。つまり、原料の特性に応じて第1~第3除去室11-5~11-7のそれぞれの温度が異なるようにすることで、高分子化合物を確実に除去することが可能になる。
Polymer compound removal step (S104)
When the fifth partition door 26-5 opens and the second evaporation chamber 11-4 and the first removal chamber 11-5 are in communication with each other, the fourth moving means 12-4 and the fifth moving means 12-5 As a result, the container 2 is moved from the second evaporation chamber 11-4 to the first removal chamber 11-5. When the container 2 reaches the predetermined position in the first removal chamber 11-5, the fifth partition door 26-5 is closed and the sixth partition door 26-6 is closed. 5 is closed. The raw material of the container 2 in the first removal chamber 11-5 is heated by the third heating means 19-3. In the first removal chamber 11-5, nitrogen is introduced from the fifth introduction pipe 14-5, and at the same time, the decomposition gas of the polymer compound is discharged from the fifth discharge pipe 15-5 to be in a nitrogen atmosphere.
When the sixth partition door 26-6 opens and the first removal chamber 11-5 and the second removal chamber 11-6 communicate with each other, the fifth moving means 12-5, the sixth moving means 12-6, As a result, the container 2 is moved from the first removal chamber 11-5 to the second removal chamber 11-6. When the container 2 reaches a predetermined position in the second removal chamber 11-6, the sixth partition door 26-6 is closed and the seventh partition door 26-7 is closed. 6 becomes blocked. The raw material of the container 2 in the second removal chamber 11-6 is heated by the fourth heating means 19-4. In the second removal chamber 11-6, nitrogen is introduced from the sixth introduction pipe 14-6, and at the same time, the decomposition gas of the polymer compound is discharged from the sixth discharge pipe 15-6 to form a nitrogen atmosphere.
When the seventh partition door 26-7 is opened and the second removal chamber 11-6 and the third removal chamber 11-7 are in communication, the sixth moving means 12-6, the seventh moving means 12-7, As a result, the container 2 is moved from the second removal chamber 11-6 to the third removal chamber 11-7. When the container 2 reaches a predetermined position in the third removal chamber 11-7, the seventh partition door 26-7 is closed and the eighth partition door 26-8 is closed, so that the third removal chamber 11- 7 becomes blocked. The raw material of the container 2 in the third removal chamber 11-7 is heated by the fifth heating means 19-5. In the third removal chamber 11-7, nitrogen is introduced from the seventh introduction pipe 14-7, and at the same time, the decomposition gas of the polymer compound is discharged from the seventh discharge pipe 15-7 to be in a nitrogen atmosphere.
The polymer compound decomposition gas from the fifth to seventh discharge pipes 14-5 to 14-7 is all processed by the first liquefaction treatment device 23-1 to become a liquefied product, and the first liquefied product recovery tank 24- 1 is stored. As a result, the exhaust gas becomes zero (0).
The polymer compound removal unit 6 includes the first to third removal chambers 10-5 to 10-7, thereby efficiently removing the polymer compound and eliminating the cause of generation of harmful substances such as dioxins. It becomes possible.
In the polymer compound removing unit 6, the electronic control unit 52 controls the third to fifth heating means 19-3 to 19-5 individually and / or in stages, so that the first to third removal chambers 11 are controlled. It is also possible to change so that the temperature of −5 to 11-7 is different. That is, by making the temperatures of the first to third removal chambers 11-5 to 11-7 different according to the characteristics of the raw material, the polymer compound can be reliably removed.
 組成分離分解工程(S105) 
 第8隔壁扉26-8が開動作して第3除去室11-7と第1分解室11-8とが連通状態になると、第7移動手段12-7と第8移動手段12-8とによってコンテナ2が第3除去室11-7から第1分解室11-8へ移動される。コンテナ2が第1分解室11-8の所定位置に至ると、第8隔壁扉26-8が閉動作し、第9隔壁扉26-9が閉状態であることから、第1分解室11-8が閉塞状態になる。第1分解室11-8のコンテナ2の原料は、第6加熱手段19-6で加熱される。第1分解室11-8では、第8導入管14-8から窒素が導入され、炭素化処理の分解ガスが第8排出管15-8から排出され、窒素雰囲気になる。
 第9隔壁扉26-9が開動作して第1分解室11-8と第2分解室11-9とが連通状態になると、第8移動手段12-8と第9移動手段12-9とによってコンテナ2が第1分解室11-8から第2分解室11-9へ移動される。コンテナ2が第2分解室11-9の所定位置に至ると、第9隔壁扉26-9が閉動作し、第10隔壁扉26-10が閉状態であることから、第2分解室11-9が閉塞状態になる。第2分解室11-9のコンテナ2の原料は、第7加熱手段19-7で加熱される。第2分解室11-9では、第9導入管14-9から窒素が導入され、炭素化処理の分解ガスが第9排出管15-9から排出され、窒素雰囲気になる。
 第10隔壁扉26-10が開動作して第2分解室11-9と第3分解室11-10とが連通状態になると、第9移動手段12-9と第10移動手段12-10とによってコンテナ2が第2分解室11-9から第3分解室11-10へ移動される。コンテナ2が第3分解室11-10の所定位置に至ると、第10隔壁扉26-10が閉動作し、第11隔壁扉26-11が閉状態であることから第3分解室11-10が閉塞状態になる。第3分解室11-10のコンテナ2の原料は、第8加熱手段19-8で加熱される。第3分解室11-10では、第10導入管14-10から窒素が導入され、同時に、炭素化処理の分解ガスが第10排出管15-10から排出され、窒素雰囲気になる。
 第11隔壁扉26-11が開動作して第3分解室11-10と第4分解室11-11とが連通状態になると、第10移動手段12-10と第11移動手段12-11とによってコンテナ2が第3分解室11-10から第4分解室11-11へ移動される。コンテナ2が第4分解室11-11の所定位置に至ると、第11隔壁扉26-11が閉動作し、第12隔壁扉26-12が閉状態であることから、第4分解室11-11が閉塞状態になる。第4分解室11-11のコンテナ2の原料は、第9加熱手段19-9で加熱される。第4分解室11-11では、第11導入管14-11から窒素が導入され、また、炭素化処理の分解ガスが第11排出管15-11から排出され、窒素雰囲気になる。
 第12隔壁扉26-12が開動作して第4分解室11-11と第5分解室11-12とが連通状態になると、第11移動手段12-11と第12移動手段12-12とによってコンテナ2が第4分解室11-11から第5分解室11-12へ移動される。コンテナ2が第5分解室11-12の所定位置に至ると、第12隔壁扉26-12が閉動作し、第13隔壁扉26-12が閉状態であることから、第5分解室11-12が閉塞状態になる。第5分解室11-12のコンテナ2の原料は、第10加熱手段19-10で加熱される。第5分解室11-12では、第12導入管14-12から窒素が導入され、同時に、炭素化処理の分解ガスが第12排出管15-12から排出され、窒素雰囲気になる。
 第8排出管15-8~第12排出管15-12からの分解ガスは、全てが第2液化処理装置23-2で処理されて液化物となり、第2液化物回収タンク24-2に貯留される。これにより、排気ガスが零(0)になる。
 組成分離分解部7では、第1~第5分解室11-8~11-12を備えることにより、原料を所定の温度まで確実に加熱し、原料の有機物の組成分解及び炭素化を効率良く行って炭素化物を生成することが可能となる。
 また、組成分離分解部7では、窒素雰囲気の下なので、酸化燃焼が起きることがなく、二酸化炭素などの有害物質を発生することがない。
 なお、組成分離分解部7において、電子制御ユニット52は、第6~第10加熱手段19-6~19-10をそれぞれ個別及び/又は段階的に制御し、第1~第5分解室11-8~11-12の温度が異なるように変更することも可能である。つまり、原料の特性及び回収素材に応じた管理温度によって原料の組成の分離を促進させ、各種素材の組成が混濁したものから素材毎、組成毎に各種の素材を回収できやすくすることが可能となる。
Composition separation and decomposition process (S105)
When the eighth partition door 26-8 opens and the third removal chamber 11-7 and the first decomposition chamber 11-8 are in communication with each other, the seventh moving means 12-7, the eighth moving means 12-8, As a result, the container 2 is moved from the third removal chamber 11-7 to the first decomposition chamber 11-8. When the container 2 reaches a predetermined position in the first decomposition chamber 11-8, the eighth partition door 26-8 is closed and the ninth partition door 26-9 is closed, so that the first decomposition chamber 11- 8 is closed. The raw material of the container 2 in the first decomposition chamber 11-8 is heated by the sixth heating means 19-6. In the first decomposition chamber 11-8, nitrogen is introduced from the eighth introduction pipe 14-8, and the decomposition gas for the carbonization treatment is discharged from the eighth discharge pipe 15-8 to become a nitrogen atmosphere.
When the ninth partition door 26-9 is opened and the first decomposition chamber 11-8 and the second decomposition chamber 11-9 are in communication with each other, the eighth moving means 12-8, the ninth moving means 12-9, As a result, the container 2 is moved from the first decomposition chamber 11-8 to the second decomposition chamber 11-9. When the container 2 reaches the predetermined position in the second decomposition chamber 11-9, the ninth partition door 26-9 is closed and the tenth partition door 26-10 is closed. 9 is closed. The raw material of the container 2 in the second decomposition chamber 11-9 is heated by the seventh heating means 19-7. In the second decomposition chamber 11-9, nitrogen is introduced from the ninth introduction pipe 14-9, and the decomposition gas for the carbonization treatment is discharged from the ninth discharge pipe 15-9 to form a nitrogen atmosphere.
When the tenth partition door 26-10 opens and the second decomposition chamber 11-9 and the third decomposition chamber 11-10 are in communication, the ninth moving means 12-9, the tenth moving means 12-10, As a result, the container 2 is moved from the second decomposition chamber 11-9 to the third decomposition chamber 11-10. When the container 2 reaches a predetermined position in the third decomposition chamber 11-10, the tenth partition door 26-10 is closed, and the eleventh partition door 26-11 is in the closed state, so that the third decomposition chamber 11-10 is closed. Becomes blocked. The raw material of the container 2 in the third decomposition chamber 11-10 is heated by the eighth heating means 19-8. In the third decomposition chamber 11-10, nitrogen is introduced from the tenth introduction pipe 14-10, and at the same time, the decomposition gas for the carbonization treatment is discharged from the tenth discharge pipe 15-10 to form a nitrogen atmosphere.
When the eleventh partition door 26-11 opens and the third decomposition chamber 11-10 and the fourth decomposition chamber 11-11 communicate with each other, the tenth moving means 12-10, the eleventh moving means 12-11, As a result, the container 2 is moved from the third decomposition chamber 11-10 to the fourth decomposition chamber 11-11. When the container 2 reaches a predetermined position in the fourth decomposition chamber 11-11, the eleventh partition door 26-11 is closed and the twelfth partition door 26-12 is closed. 11 becomes blocked. The raw material of the container 2 in the fourth decomposition chamber 11-11 is heated by the ninth heating means 19-9. In the fourth decomposition chamber 11-11, nitrogen is introduced from the eleventh introduction pipe 14-11, and the decomposition gas for carbonization is discharged from the eleventh discharge pipe 15-11 to form a nitrogen atmosphere.
When the twelfth partition door 26-12 opens and the fourth decomposition chamber 11-11 and the fifth decomposition chamber 11-12 communicate with each other, the eleventh moving means 12-11, the twelfth moving means 12-12, As a result, the container 2 is moved from the fourth decomposition chamber 11-11 to the fifth decomposition chamber 11-12. When the container 2 reaches a predetermined position in the fifth decomposition chamber 11-12, the twelfth partition door 26-12 is closed and the thirteenth partition door 26-12 is closed. 12 becomes blocked. The raw material of the container 2 in the fifth decomposition chamber 11-12 is heated by the tenth heating means 19-10. In the fifth decomposition chamber 11-12, nitrogen is introduced from the twelfth introduction pipe 14-12, and at the same time, the decomposition gas for carbonization is discharged from the twelfth discharge pipe 15-12 to form a nitrogen atmosphere.
All of the cracked gas from the eighth discharge pipe 15-8 to the twelfth discharge pipe 15-12 is processed by the second liquefaction processing device 23-2 to become a liquefied product and stored in the second liquefied product recovery tank 24-2. Is done. As a result, the exhaust gas becomes zero (0).
The composition separation / decomposition unit 7 includes the first to fifth decomposition chambers 11-8 to 11-12, thereby reliably heating the raw material to a predetermined temperature and efficiently performing the composition decomposition and carbonization of the organic material of the raw material. Thus, it becomes possible to produce a carbonized product.
Further, since the composition separation / decomposition unit 7 is under a nitrogen atmosphere, oxidation combustion does not occur, and no harmful substances such as carbon dioxide are generated.
In the composition separation / decomposition unit 7, the electronic control unit 52 controls the sixth to tenth heating means 19-6 to 19-10 individually and / or stepwise, and the first to fifth decomposition chambers 11- It is also possible to change the temperature of 8-11-12 to be different. In other words, it is possible to facilitate the separation of the composition of the raw material by the management temperature according to the characteristics of the raw material and the recovered material, making it easy to recover the various materials for each material and each composition from the turbid composition of the various materials. Become.
 炭素化物冷却工程(S106) 
 第13隔壁扉26-13が開動作して第5分解室11-12と第1冷却室11-13とが連通状態になると、第12移動手段12-12と第13移動手段12-13とによってコンテナ2が第5分解室11-12から第1冷却室11-13へ移動される。コンテナ2が第1冷却室11-13の所定位置に至ると、第13隔壁扉26-13が閉動作し、第13隔壁扉26-14が閉状態であることから、第1冷却室11-13が閉塞状態になる。第1冷却室11-13では、コンテナ2の炭素化物が第1冷却手段25-1によって冷却される。第1冷却室11-13では、第13導入管14-13から窒素が導入され、同時に、内部の分解ガスが第13排出管15-13から排出され、窒素雰囲気になる。
 第14隔壁扉26-14が開動作して第1冷却室11-13と第2冷却室11-14とが連通状態になると、第13移動手段12-13と第14移動手段12-14とによってコンテナ2が第1冷却室11-13から第2冷却室11-14へ移動される。コンテナ2が第2冷却室11-14の所定位置に至ると、第14隔壁扉26-14が閉動作し、第15隔壁扉26-15が閉状態であることから、第2冷却室11-14が閉塞状態になる。第2冷却室11-14では、コンテナ2の炭素化物が第2冷却手段25-2によって冷却される。第2冷却室11-14では、第14導入管14-14から窒素が導入され、同時に、内部の分解ガスが第14排出管15-14から排出され、窒素雰囲気になる。
 第15隔壁扉26-15が開動作して第2冷却室11-14と第3冷却室11-15とが連通状態になると、第14移動手段12-14と第15移動手段12-15とによってコンテナ2が第2冷却室11-14から第3冷却室11-15へ移動される。コンテナ2が第3冷却室11-15の所定位置に至ると、第15隔壁扉26-15が閉動作し、第16隔壁扉26-16が閉状態であることから第3冷却室11-15が閉塞状態になる。第3冷却室11-15では、コンテナ2の炭素化物が第3冷却手段25-3によって冷却される。第3冷却室11-15では、第15導入管13-15から窒素が導入され、同時に、内部の分解ガスが第15排出管15-15から排出され、窒素雰囲気になる。
 第13排出管15-13~第15排出管15-15からの分解ガスは、全てが第3液体処理装置23-3で処理されて液化物となり、第3液体回収タンク24-3に貯留される。これにより、排気ガスが零(0)になる。
 炭素化物冷却部8では、第1冷却室11-13において急激な体積の膨張を回避するように調圧し、また、第1~第3冷却室11-13~11-15によって炭素化物を所定の温度(50℃以下)、つまり、燃焼や蒸発の起きない温度まで間接冷却する。 
 なお、炭素化物冷却部8において、電子制御ユニット52は、第1~第3冷却手段25-1~25-3をそれぞれ個別及び/又は段階的に制御し、第1~第3冷却室11-13~11-15の温度が異なるように変更することも可能である。つまり、炭素化物の素材に応じて第1~第3冷却室11-13~11-15のそれぞれの温度が異なるようにすることで、炭素化物を適正に冷却することが可能になる。
Carbonide cooling step (S106)
When the thirteenth partition door 26-13 opens and the fifth decomposition chamber 11-12 and the first cooling chamber 11-13 communicate with each other, the twelfth moving means 12-12, the thirteenth moving means 12-13, As a result, the container 2 is moved from the fifth decomposition chamber 11-12 to the first cooling chamber 11-13. When the container 2 reaches a predetermined position in the first cooling chamber 11-13, the thirteenth partition door 26-13 is closed and the thirteenth partition door 26-14 is closed. 13 becomes blocked. In the first cooling chamber 11-13, the carbonized material in the container 2 is cooled by the first cooling means 25-1. In the first cooling chamber 11-13, nitrogen is introduced from the thirteenth introduction pipe 14-13, and at the same time, the internal decomposition gas is exhausted from the thirteenth discharge pipe 15-13 to form a nitrogen atmosphere.
When the fourteenth partition door 26-14 opens and the first cooling chamber 11-13 and the second cooling chamber 11-14 are in communication, the thirteenth moving means 12-13, the fourteenth moving means 12-14, As a result, the container 2 is moved from the first cooling chamber 11-13 to the second cooling chamber 11-14. When the container 2 reaches a predetermined position in the second cooling chamber 11-14, the fourteenth partition door 26-14 is closed and the fifteenth partition door 26-15 is in the closed state. 14 is closed. In the second cooling chamber 11-14, the carbonized material in the container 2 is cooled by the second cooling means 25-2. In the second cooling chamber 11-14, nitrogen is introduced from the fourteenth introduction pipe 14-14, and at the same time, the internal decomposition gas is discharged from the fourteenth discharge pipe 15-14 to form a nitrogen atmosphere.
When the fifteenth partition door 26-15 is opened and the second cooling chamber 11-14 and the third cooling chamber 11-15 are in communication with each other, the fourteenth moving means 12-14, the fifteenth moving means 12-15, As a result, the container 2 is moved from the second cooling chamber 11-14 to the third cooling chamber 11-15. When the container 2 reaches a predetermined position in the third cooling chamber 11-15, the fifteenth partition door 26-15 is closed and the sixteenth partition door 26-16 is in a closed state, so that the third cooling chamber 11-15 is closed. Becomes blocked. In the third cooling chamber 11-15, the carbonized material in the container 2 is cooled by the third cooling means 25-3. In the third cooling chamber 11-15, nitrogen is introduced from the fifteenth introduction pipe 13-15, and at the same time, the internal decomposition gas is discharged from the fifteenth discharge pipe 15-15 to form a nitrogen atmosphere.
All of the cracked gas from the thirteenth discharge pipe 15-13 to the fifteenth discharge pipe 15-15 is processed by the third liquid processing device 23-3 to become a liquefied product, and is stored in the third liquid recovery tank 24-3. The As a result, the exhaust gas becomes zero (0).
The carbonized product cooling section 8 adjusts the pressure in the first cooling chamber 11-13 so as to avoid a rapid expansion of the volume, and the first to third cooling chambers 11-13 to 11-15 give the carbonized product to a predetermined level. Indirect cooling to a temperature (50 ° C. or lower), that is, a temperature at which combustion and evaporation do not occur.
In the carbonized material cooling section 8, the electronic control unit 52 controls the first to third cooling means 25-1 to 25-3 individually and / or in stages, so that the first to third cooling chambers 11- It is also possible to change the temperature of 13 to 11-15 to be different. In other words, by making the temperatures of the first to third cooling chambers 11-13 to 11-15 different depending on the carbonized material, the carbonized product can be cooled appropriately.
 後部待機準備工程(S107) 
 第16隔壁扉26-16が開動作して第3冷却室11-15と第1後部準備室11-16とが連通状態になると、第15移動手段12-15と第16移動手段12-16とによってコンテナ2が第3冷却室11-15から第1後部準備室11-16へ移動される。コンテナ2が第1後部準備室11-16の所定位置に至ると、第16隔壁扉26-16が閉動作し、第17隔壁扉26-17が閉状態であることから、第1後部準備室11-16が閉塞状態になる。第1後部準備室11-16では、第16導入管14-16から窒素が導入され、同時に、内部の分解ガス及び空気(酸素)が第16排出管15-16から排出され、窒素雰囲気になる。
 第17隔壁扉26-17が開動作して第1後部準備室11-16と第2後部準備室11-17とが連通状態になると、第16移動手段12-16と第17移動手段12-17とによってコンテナ2が第1後部準備室11-16から第2後部準備室11-17へ移動される。コンテナ2が第2後部準備室11-17の所定位置に至ると、第17隔壁扉26-17が閉動作し、第18隔壁扉26-18が閉状態であることから、第2後部準備室11-17が閉塞状態になる。第2後部準備室11-17では、第17導入管14-17から窒素が導入され、同時に、内部の分解ガス及び空気が第17排出管15-17から排出され、窒素雰囲気になる。
 第16排出管15-16・第17排出管15-17からの分解ガス及び空気は、第2消臭消煙装置17-2で消臭・消煙され、浄化されて大気中へ放出される。
 後部待機準備部9では、第1後部準備室11-16と第2後部準備室11-17とを備えることにより、前方の各室が開放した際に逆流して来る内部の臭気やガスを外部に漏れるのを防止し、また、組成分離式炭素化システム1の温度管理を厳格にし、熱損失を抑制して省エネルギに貢献することが可能となる。
Rear standby preparation step (S107)
When the sixteenth partition door 26-16 opens and the third cooling chamber 11-15 and the first rear preparation chamber 11-16 communicate with each other, the fifteenth moving means 12-15 and the sixteenth moving means 12-16 The container 2 is moved from the third cooling chamber 11-15 to the first rear preparation chamber 11-16. When the container 2 reaches a predetermined position in the first rear preparation chamber 11-16, the sixteenth partition door 26-16 is closed and the seventeenth partition door 26-17 is closed. 11-16 becomes blocked. In the first rear preparation chamber 11-16, nitrogen is introduced from the sixteenth introduction pipe 14-16, and at the same time, the internal decomposition gas and air (oxygen) are discharged from the sixteenth discharge pipe 15-16 to form a nitrogen atmosphere. .
When the seventeenth partition door 26-17 opens and the first rear preparation chamber 11-16 and the second rear preparation chamber 11-17 communicate with each other, the sixteenth moving means 12-16 and the seventeenth moving means 12- 17, the container 2 is moved from the first rear preparation chamber 11-16 to the second rear preparation chamber 11-17. When the container 2 reaches a predetermined position in the second rear preparation chamber 11-17, the seventeenth partition door 26-17 is closed and the eighteenth partition door 26-18 is closed. 11-17 becomes blocked. In the second rear preparation chamber 11-17, nitrogen is introduced from the seventeenth introduction pipe 14-17, and at the same time, the internal decomposition gas and air are discharged from the seventeenth discharge pipe 15-17 to form a nitrogen atmosphere.
The cracked gas and air from the sixteenth exhaust pipe 15-16 and the seventeenth exhaust pipe 15-17 are deodorized and smoke eliminated by the second deodorant and smoke eliminating device 17-2, purified and released into the atmosphere. .
The rear standby preparation unit 9 includes a first rear preparation chamber 11-16 and a second rear preparation chamber 11-17, so that internal odors and gases that flow backward when the front chambers are opened to the outside are externally provided. In addition, the temperature control of the composition-separated carbonization system 1 can be made strict, and heat loss can be suppressed to contribute to energy saving.
 コンテナ搬出工程(S108) 
 第18隔壁扉26-18が開動作して第2後部準備室11-17の他端面の搬出口29が開放されると、第17移動手段12-17によって炭素化物の入ったコンテナ2が、第2後部準備室11-17から外部へ排出され、そして、コンテナ搬出部10で搬出される。
Container unloading process (S108)
When the eighteenth partition door 26-18 is opened and the carry-out port 29 on the other end surface of the second rear preparation chamber 11-17 is opened, the container 2 containing the carbonized material is moved by the seventeenth moving means 12-17. It is discharged from the second rear preparation chamber 11-17 to the outside, and is then carried out by the container carry-out unit 10.
 その後、搬出されたコンテナ搬出部10の炭素化物は、種類毎で形状や大きさなどが異なり、金属類や炭素素材成分などとして分別回収される。この場合、同時に、土砂、鉄、非鉄金属、ガラス素材、あるいはレアメタルなどを、組成毎に別々に回収しやすい状態にすることができる。
 そして、分別回収された素材は、それぞれ工業用炭素原料として再度利用される。 
Thereafter, the carbonized material in the container unloading unit 10 that has been unloaded has a different shape and size depending on the type, and is separately collected as metals or carbon material components. In this case, at the same time, earth and sand, iron, non-ferrous metal, glass material, or rare metal can be easily collected separately for each composition.
The separately collected materials are reused as industrial carbon materials.
 この結果、この実施例においては、二酸化炭素などの有害物質や不要な残渣(シュレッターダスト)などの発生を抑制し、また、酸化燃焼(高温酸化による熱分解:酸化反応、還元反応)が起こらないようにして、原料の組成の分離を良くして炭素化処理の効率を高くすることができ、さらに、大気汚染や水質汚染が発生するおそれがない。
 また、図3に示すように、少なくとも分解室11-8~11-12は、複数枚のボード31-1~31-3・32-1~32-3を重ね合わせた層状断熱構造体30によって形成されている。これにより、分解室11-8~11-12の断熱効果を高くするとともに、層状断熱構造体30の内壁面30Aの機能が劣化した場合に、内側のハードボード31-1のみを交換するだけで良く、保守点検を容易にし、また、廉価とすることができる。
 更に、図3に示すように、層状断熱構造体30の内壁面30Aには、凹凸面となるように、複数個の突部33が形成されている。これにより、突部33が形成された内壁面30Aに分解ガスが衝接することで、分解ガスの流れが直線的でなく複雑になり、分解ガスの攪拌を促進させて分解ガスが滞留しないようにし、原料に対して均等な加熱を行わせ、炭素化処理の時間を短縮することができる。
 また、図3に示すように、攪拌用ファン34を駆動することにより、突部30が形成された内壁面30Aと共働して、分解ガスがランダムに流動して効率良く攪拌され、室内温度差を無くし、原料を均等に加熱し、さらに、炭素化処理の時間を短縮することができる。
 更にまた、炭素化物冷却部8では、炭素化物を燃焼や蒸発の起きない温度まで間接冷却することから、炭素化物の温度を適正に低下させ、また、有害物質の発生を抑制することができる。
As a result, in this embodiment, the generation of harmful substances such as carbon dioxide and unnecessary residues (Schlitter dust) is suppressed, and oxidation combustion (thermal decomposition by high-temperature oxidation: oxidation reaction, reduction reaction) does not occur. In this way, the separation of the composition of the raw materials can be improved to increase the efficiency of the carbonization treatment, and there is no possibility that air pollution or water pollution will occur.
Further, as shown in FIG. 3, at least the decomposition chambers 11-8 to 11-12 are constituted by a layered heat insulating structure 30 in which a plurality of boards 31-1 to 31-3 and 32-1 to 32-3 are overlapped. Is formed. As a result, the heat insulation effect of the decomposition chambers 11-8 to 11-12 is enhanced, and when the function of the inner wall surface 30A of the layered heat insulation structure 30 is deteriorated, only the inner hard board 31-1 is replaced. Good maintenance and inspection can be facilitated and inexpensive.
Further, as shown in FIG. 3, a plurality of protrusions 33 are formed on the inner wall surface 30 </ b> A of the layered heat insulating structure 30 so as to be an uneven surface. As a result, the cracked gas impinges on the inner wall surface 30A on which the protrusions 33 are formed, so that the flow of the cracked gas is not linear and complicated, and the stirring of the cracked gas is promoted so that the cracked gas does not stay. The raw material can be heated evenly, and the time for the carbonization treatment can be shortened.
Also, as shown in FIG. 3, by driving the stirring fan 34, the cracked gas flows randomly and efficiently agitates in cooperation with the inner wall surface 30A on which the protrusions 30 are formed. The difference can be eliminated, the raw material can be heated uniformly, and the time for carbonization can be shortened.
Furthermore, since the carbonized product cooling unit 8 indirectly cools the carbonized product to a temperature at which combustion and evaporation do not occur, the temperature of the carbonized product can be appropriately lowered and the generation of harmful substances can be suppressed.
 図7は、この発明の第1変形例を示すものである。 
 図7に示すように、例えば、組成分離分解部7において、コンテナ2が第5分解室11-12に至った際に、コンテナ2を前方の第1~第4分解室11-8~11-11のいずれかの分解室の戻すためのリターン移動手段61を備えた。この場合、リターン移動手段61は、例えば、ローラコンベアや方向転換機などの各機器からなる。
 これにより、コンテナ2の原料の炭素化が第5分解室11-12に至っても不十分の場合に、コンテナ2を、前方の室として、第1~第4分解室11-8~11-1のいずれかの室へ戻し、さらに炭素化を図ることにより、炭素化処理を確実に行うことができる。
 なお、組成分離分解部7に限られず、前部待機準備部4、水分蒸発部5、高分子化合物除去部6、炭素化物冷却部8、及び後部待機準備部9においても、リターン移動手段61を備えた構造を適用可能である。
FIG. 7 shows a first modification of the present invention.
As shown in FIG. 7, for example, when the container 2 reaches the fifth decomposition chamber 11-12 in the composition separation / decomposition unit 7, the container 2 is moved to the front first to fourth decomposition chambers 11-8 to 11- Return movement means 61 for returning any of the 11 decomposition chambers was provided. In this case, the return moving means 61 includes, for example, devices such as a roller conveyor and a direction changing machine.
As a result, when the carbonization of the raw material of the container 2 is insufficient even when it reaches the fifth decomposition chamber 11-12, the container 2 is used as the front chamber, and the first to fourth decomposition chambers 11-8 to 11-1 are used. By returning to any one of the chambers and further carbonizing, the carbonization treatment can be performed reliably.
The return moving means 61 is not limited to the composition separation / decomposition unit 7, but also in the front standby preparation unit 4, the water evaporation unit 5, the polymer compound removal unit 6, the carbonide cooling unit 8, and the rear standby preparation unit 9. The provided structure is applicable.
 図8は、この発明の第2変形例を示すものである。 
 図8に示すように、組成分離式炭素化システム1は、自走可能に構成される。組成分離式炭素化システム1は、筺体62内に前部待機準備部と水分蒸発部と高分子化合物除去部と組成分離分解部と炭素化物冷却部と後部待機準備部とが一体的に組み付けられ、筺体62の底部の移動手段としての複数個の車輪63によって原料Gの存在する箇所まで移動可能である。筺体62には、原料を投入する原料投入ホッパ部64と、炭素化物を取り出す取出部65とが備えられる。原料投入ホッパ部64には、重機などの機器66によって原料Gが投入される。
 これにより、組成分離式炭素化システム1を原料Gが存在する現場へ移動し、現場で炭素化処理が可能となることから、原料Gを他の建物などへ搬送する必要が無くなり、組成分離式炭素化システム1を簡便に利用することができる。
FIG. 8 shows a second modification of the present invention.
As shown in FIG. 8, the composition-separated carbonization system 1 is configured to be capable of self-running. In the composition separation type carbonization system 1, a front standby preparation unit, a water evaporation unit, a polymer compound removal unit, a composition separation decomposition unit, a carbonized product cooling unit, and a rear standby preparation unit are integrally assembled in a housing 62. The plurality of wheels 63 as moving means at the bottom of the housing 62 can be moved to a place where the raw material G exists. The housing 62 is provided with a raw material charging hopper 64 for charging the raw material and a take-out portion 65 for taking out the carbonized material. The raw material G is charged into the raw material charging hopper 64 by a device 66 such as a heavy machine.
As a result, the composition separation type carbonization system 1 is moved to the site where the raw material G exists, and the carbonization treatment becomes possible on the site, so there is no need to transport the raw material G to another building, etc. The carbonization system 1 can be easily used.
 この発明に係る組成分離式炭素化システムは、各種の処理システムに適用可能である。  The composition separation type carbonization system according to the present invention can be applied to various processing systems.
 1 組成分離式炭素化システム 
 2 コンテナ 
 3 コンテナ搬入部 
 4 前部待機準備部 
 5 水分蒸発部 
 6 高分子化合物除去部 
 7 組成分離分解部 
 8 炭素化物冷却部 
 9 後部待機準備部 
 10 コンテナ搬出部 
 11-1~11-2 第1~第2前部準備室 
 11-3~11-4 第1~第2蒸発室 
 11-5~11-7 第1~第3除去室 
 11-8~11-12 第1~第5分解室 
 11-13~11-15 第1~第3冷却室 
 11-16~11-17 第1~第2後部準備室 
 12-1~12-17 第1~第17移動手段 
 13-1~13-17 第1~第17リミットスイッチ 
 14-1~14-17 第1~第17導入管 
 15-1~15-17 第1~第17排出管 
 16 気体発生装置 
 17-1~17-2 第1~第2消臭消煙装置 
 18-1~18-13 第1~第13温度センサ 
 19-1~19-10 第1~第10加熱手段 
 20 蒸気冷却装置 
 23-1~23-3 第1~第3液化処理装置 
 25-1~25-3 第1~第3冷却手段 
 26-1~26-18 第1~第18隔壁扉 
 27-1~27-18 第1~第18開閉手段 
 30 層状断熱構造体 
 33 突部 
 36 駆動シャフト 
 39 断熱支持構造体 
 52 電子制御ユニット 
1 Composition separation type carbonization system
2 containers
3 Container carry-in part
4 Front standby preparation department
5 Moisture evaporation part
6 Polymer compound removal section
7 Composition separation and decomposition part
8 Carbonide cooling section
9 Rear standby preparation department
10 Container unloading section
11-1 to 11-2 First to second front preparation rooms
11-3 to 11-4 First to second evaporation chambers
11-5 to 11-7 First to third removal chambers
11-8 to 11-12 First to fifth decomposition chambers
11-13 to 11-15 First to third cooling chambers
11-16 to 11-17 First and second rear preparation rooms
12-1 to 12-17 1st to 17th moving means
13-1 to 13-17 1st to 17th limit switches
14-1 to 14-17 1st to 17th introduction pipes
15-1 to 15-17 1st to 17th discharge pipes
16 Gas generator
17-1 to 17-2 First and second deodorant and smoke eliminating devices
18-1 to 18-13 First to thirteenth temperature sensors
19-1 to 19-10 1st to 10th heating means
20 Steam cooling device
23-1 to 23-3 First to third liquefaction processing apparatuses
25-1 to 25-3 First to third cooling means
26-1 to 26-18 1st to 18th partition doors
27-1 to 27-18 1st to 18th opening / closing means
30 Layered heat insulation structure
33 Projection
36 Drive shaft
39 Thermal insulation support structure
52 Electronic control unit

Claims (6)

  1.  原料の組成を分離して炭素化する組成分離式炭素化システムにおいて、内部の臭気や気体を外部に漏らさないための前部待機準備部と、前記原料の水分を蒸発して除去する水分蒸発部と、前記原料の高分子化合物を熱分解して除去する高分子化合物除去部と、前記原料の有機物を組成分解して炭素化する組成分離分解部と、前記組成分離分解部で生成された炭素化物を冷却する炭素化物冷却部と、内部の臭気や気体を外部に漏らさないための後部待機準備部とを備えることを特徴とする組成分離式炭素化システム。 In a composition separation type carbonization system that separates and carbonizes the composition of the raw material, a front standby preparation unit for preventing internal odors and gases from leaking to the outside, and a water evaporation unit for evaporating and removing the water of the raw material A polymer compound removing unit that thermally decomposes and removes the raw material polymer compound, a composition separation and decomposition unit that compositionally decomposes and carbonizes the organic material of the raw material, and carbon generated by the composition separation and decomposition unit A composition-separated carbonization system comprising: a carbonide cooling unit that cools a chemical; and a rear standby preparation unit that prevents internal odors and gases from leaking outside.
  2.  前記前部待機準備部の前部準備室と前記水分蒸発部の蒸発室と前記高分子化合物除去部の除去室と前記組成分離分解部の分解室と前記炭素化物冷却部の冷却室と前記後部待機準備室の後部準備室とは、各隔壁扉によってそれぞれ閉塞状態となり、特定の気体が充填されることで気体雰囲気になることを特徴とする請求項1に記載の組成分離式炭素化システム。 A front preparation chamber of the front standby preparation unit, an evaporation chamber of the water evaporation unit, a removal chamber of the polymer compound removal unit, a decomposition chamber of the composition separation decomposition unit, a cooling chamber of the carbonide cooling unit, and the rear unit The composition separation type carbonization system according to claim 1, wherein the rear preparation chamber of the standby preparation chamber is closed by each partition door, and is filled with a specific gas to form a gas atmosphere.
  3.  少なくとも前記分解室は、ボードを複数枚重ね合わせた層状断熱構造体によって形成されたことを特徴とする請求項2に記載の組成分離式炭素化システム。 3. The composition separation type carbonization system according to claim 2, wherein at least the decomposition chamber is formed of a layered heat insulating structure in which a plurality of boards are stacked.
  4.  前記層状断熱構造体の内壁面には、複数個の突部が形成されたことを特徴とする請求項3に記載の組成分離式炭素化システム。  The composition separation type carbonization system according to claim 3, wherein a plurality of protrusions are formed on an inner wall surface of the layered heat insulating structure.
  5.  少なくとも前記蒸発室と前記除去室と前記分解室との温度は、電子制御ユニットによってそれぞれ所定温度毎に制御されることを特徴とする請求項2に記載の組成分離式炭素化システム。 3. The composition separation type carbonization system according to claim 2, wherein at least the temperatures of the evaporation chamber, the removal chamber, and the decomposition chamber are respectively controlled by the electronic control unit for each predetermined temperature.
  6.  前記電子制御ユニットは、前記組成分離分解部で生成された炭素化物を燃焼や蒸発の起きない温度まで冷却する間接冷却を実行するように、前記炭素化物冷却部の冷却手段を制御することを特徴とする請求項5に記載の組成分離式炭素化システム。 The electronic control unit controls the cooling means of the carbonized product cooling unit so as to perform indirect cooling for cooling the carbonized product generated in the composition separation and decomposition unit to a temperature at which combustion and evaporation do not occur. The composition-separated carbonization system according to claim 5.
PCT/JP2016/080473 2016-10-14 2016-10-14 Compositional separation type carbonization system WO2018070031A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/080473 WO2018070031A1 (en) 2016-10-14 2016-10-14 Compositional separation type carbonization system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/080473 WO2018070031A1 (en) 2016-10-14 2016-10-14 Compositional separation type carbonization system

Publications (1)

Publication Number Publication Date
WO2018070031A1 true WO2018070031A1 (en) 2018-04-19

Family

ID=61905364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/080473 WO2018070031A1 (en) 2016-10-14 2016-10-14 Compositional separation type carbonization system

Country Status (1)

Country Link
WO (1) WO2018070031A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10130007A (en) * 1996-10-25 1998-05-19 Yamada Emi Production of carbon material and device therefor
JPH11124582A (en) * 1997-10-24 1999-05-11 Miike Tekkosho Kk High-capacity carbonization equipment
JP2002275476A (en) * 2001-03-22 2002-09-25 Sohachi Kosugi Method and apparatus for charcoal production
JP2003105340A (en) * 2001-09-27 2003-04-09 Een Machinery:Kk Continuous carbon raw material production device
JP2008222901A (en) * 2007-03-14 2008-09-25 Kayaba System Machinery Kk Carbonization apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10130007A (en) * 1996-10-25 1998-05-19 Yamada Emi Production of carbon material and device therefor
JPH11124582A (en) * 1997-10-24 1999-05-11 Miike Tekkosho Kk High-capacity carbonization equipment
JP2002275476A (en) * 2001-03-22 2002-09-25 Sohachi Kosugi Method and apparatus for charcoal production
JP2003105340A (en) * 2001-09-27 2003-04-09 Een Machinery:Kk Continuous carbon raw material production device
JP2008222901A (en) * 2007-03-14 2008-09-25 Kayaba System Machinery Kk Carbonization apparatus

Similar Documents

Publication Publication Date Title
JP5704427B2 (en) Thermal decomposition apparatus, dechlorination treatment apparatus, thermal decomposition method and dechlorination method
JP2000246085A (en) Method and apparatus for treatment, and method for improving soil
JP2008272534A (en) Heat treatment method and heat treatment apparatus of waste containing organic halogen compound utilizing psa type nitrogen gas generator
JP3395148B2 (en) Soil production method, soil treatment device, treatment method and treatment device
JP2010106133A (en) Process and apparatus for making waste into fuel
JP2018002808A (en) Carbide manufacturing device, carbide manufacturing method and carbide manufacturing system
WO2018070031A1 (en) Compositional separation type carbonization system
JP5232212B2 (en) Infectious waste treatment equipment
JP4675804B2 (en) Polychlorinated biphenyl contaminant treatment facility
CN109266365B (en) Component separation type carbonization system
JP2013043149A (en) Waste treatment equipment
CN101637777A (en) Method and device for destroying electronic storage medium and destroying device thereof
JP2000061443A (en) Device for separating and removing harmful material
JP2006299085A (en) Carbonization apparatus
JP2020175347A (en) Organic matter decomposer
JP3023479B1 (en) Processing apparatus, processing method, and soil processing method
JP5519240B2 (en) Continuous processing method of reduced-pressure oxygen-free pyrolysis processor and unit type apparatus used in the method
JP6276723B2 (en) Hazardous polystyrene foam waste disposal method and hazardous foam polystyrene waste disposal equipment
JP3818936B2 (en) Processing equipment
JP3458822B2 (en) Waste treatment method and treatment equipment
JP3080306B2 (en) Combustion equipment
JP2003175372A (en) Soil manufacturing method, soil treatment apparatus, treatment method and treatment apparatus
GB2289324A (en) Waste disposal unit
JP2005058979A (en) Detoxifying apparatus of injurious substance
JP2002331273A (en) Treatment method and treatment apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16918554

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 22/07/2019)

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 16918554

Country of ref document: EP

Kind code of ref document: A1