WO2018066726A1 - 금속 분말 함유 조성물을 원료로 하는 3차원 프린팅 방법 - Google Patents

금속 분말 함유 조성물을 원료로 하는 3차원 프린팅 방법 Download PDF

Info

Publication number
WO2018066726A1
WO2018066726A1 PCT/KR2016/011158 KR2016011158W WO2018066726A1 WO 2018066726 A1 WO2018066726 A1 WO 2018066726A1 KR 2016011158 W KR2016011158 W KR 2016011158W WO 2018066726 A1 WO2018066726 A1 WO 2018066726A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal powder
raw material
containing composition
weight
semi
Prior art date
Application number
PCT/KR2016/011158
Other languages
English (en)
French (fr)
Inventor
이상규
Original Assignee
주식회사 쓰리디컨트롤즈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 쓰리디컨트롤즈 filed Critical 주식회사 쓰리디컨트롤즈
Priority to PCT/KR2016/011158 priority Critical patent/WO2018066726A1/ko
Publication of WO2018066726A1 publication Critical patent/WO2018066726A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten

Definitions

  • the present invention relates to a three-dimensional printing method using a metal powder-containing composition as a raw material, and more particularly, a metal product requiring high precision and high precision by using a raw material containing a metal powder as a feedstock for three-dimensional printing. It relates to a three-dimensional printing method using a metal powder-containing composition as a raw material that can be produced by a three-dimensional printing technique.
  • a three-dimensional (3D, 3-Dimension) printer is a device for forming a shape in three dimensions using the three-dimensional data on the object to be printed, to have the same or similar shape as the object.
  • Three-dimensional printing is spreading in various fields.
  • These 3D printers have been used in the past for modeling and sample production before mass production, but recently, as the technological basis can be used to form mass-produced products centered on small-volume products, many parts In addition to the automotive sector, many manufacturers use them to make various models such as medical human models and household products such as toothbrushes and razors.
  • the three-dimensional printer's product forming method is the so-called additive type, which is formed by melting and adhering while forming the object object in two-dimensional planar shape in three dimensions, and cutting by cutting like a piece of material.
  • an extrusion head is mounted on a three-dimensional transfer mechanism in which a wire or filament made of thermoplastic is supplied through a supply reel and a transfer roll, and the supplied filament is adjusted in three XYZ directions relative to a work table.
  • a filament melt-lamination molding method for molding a product having a three-dimensional shape of an object to be printed by repeatedly laminating a two-dimensional planar shape (print layer) on a plate by melting and discharging it from a nozzle.
  • thermopolymer a photocurable polymer material that hardens when light is received. This accounts for 56% of the total market.
  • the next most popular material is a solid thermoplastic that is free to melt and harden, accounting for 40% of the market.
  • Filament form is mainly used as a form of thermoplastic material, and existing filament materials include polylactic acid (PLA), acrylonitrile butadiene styrene (ABS), high density polyethylene (HDPE), and polycarbonate (polycarbonate). , PC) and the like are used.
  • the plastic material as described above has a problem of low hardness, and there is a limit that it is not bonded to form steel products such as metal parts requiring high strength and high precision.
  • An object of the present invention is to provide a three-dimensional printing method that can form a metal product having excellent mechanical properties and high precision by performing three-dimensional printing using a raw material containing a metal powder.
  • a metal powder-containing composition is prepared by kneading, pulverizing and granulating a metal powder and a polymer binder.
  • Raw material preparation step A raw material supplying step of supplying the metal powder-containing composition to an extrusion head of a three-dimensional printer; A laminating step of depositing a molten metal powder-containing composition through a nozzle of the extrusion head onto a surface of a plate to laminate a print layer on the plate; Forming a semi-finished product by repeatedly laminating the print layer in a three-dimensional shape of an object to be printed by repeatedly performing the laminating step; A degreasing step of removing the polymer binder from the semifinished product formed in the forming step; And sintering and cooling the semi-finished product from which the polymer binder is removed in the degreasing step to extract the final product into a final steel product having a three-dimensional shape of the object to be printed.
  • the metal powder and the polymer binder may be kneaded and granulated into pellets having a certain particle size to prepare a metal powder-containing composition.
  • the metal powder may correspond to an austenitic stainless metal powder having a steel composition of SUS-304L or SUS-316L.
  • the metal powder is C: 0.03% by weight or less, Si: 1.0% by weight or less, Mn: 1.0% by weight or less, Cr: 18-20% by weight, Ni: 10-12% by weight, Mo: 0.2% by weight or less, P: 0.03% by weight or less, S: 0.03% by weight or less, it may correspond to the austenitic stainless metal powder composed of the balance Fe and other unavoidable impurities.
  • the metal powder is C: 0.03% by weight or less, Si: 1.0% by weight or less, Mn: 1.5% by weight or less, Cr: 16-18% by weight, Ni: 11-14% by weight, Mo: 2-3% by weight , P: 0.03% by weight or less, S: 0.03% by weight or less, the balance may correspond to an austenitic stainless metal powder composed of Fe and other unavoidable impurities.
  • the raw material preparation step 90.0 to 94.0% by weight of the metal powder, 3.0 to 5.0% by weight of the binder, 2.5 to 3.5% by weight of the plasticizer, 0.5 to 1.5% by weight of the lubricant kneaded and ground and granulated To prepare the metal powder-containing composition.
  • the binder may be a polyethylene copolymer
  • the plasticizer may be a paraffin wax
  • the lubricant may correspond to stearic acid.
  • the metal powder and the polymer binder may be kneaded at a temperature of 170 °C or more.
  • the pellets in which the metal powder-containing composition is granulated may be melted, and then press-injected and supplied to the extrusion head of the three-dimensional printer.
  • the pellets granulated with the metal powder-containing composition may be supplied to an extrusion head of the three-dimensional printer, and may be melted by heat generated in the extrusion head.
  • the degreasing step the solvent degreasing step of removing the plasticizer and lubricant in the polymer binder by immersing the semi-finished product in a solvent; And a hot degreasing step of removing the binder from the polymer binder by heating the semi-finished product in the solvent degreasing step.
  • the semifinished product in the solvent degreasing step, may be immersed in a tetrahydrofuran or heptane solvent for 25 hours or more at 25 ° C. to 35 ° C. to remove the plasticizer and the lubricant.
  • the binder in the hot degreasing step, may be removed by heating the semi-finished product while gradually raising the temperature to 500 ° C. in a nitrogen (N 2 ) atmosphere.
  • the sintering step the general sintering step of heating the semi-finished product while gradually raising the temperature to 1,000 °C in a vacuum atmosphere;
  • Hot hydrostatic sintering step of heating the semi-finished product in an argon (Ar) atmosphere of 1,000 to 1,200 bar by gradually raising the temperature up to 1,350 ° C. and maintaining it at 1,350 ° C. for 1 to 3 hours;
  • it may include a cooling step of extracting the final steel product by cooling the semi-finished product to room temperature.
  • the three-dimensional printing method using the metal powder-containing composition according to the invention as a raw material before the sintering step, heating the semi-finished product from which the polymer binder is removed in the degreasing step while heating up stepwise to 900 °C in a vacuum atmosphere It may further comprise a pre-sintering step.
  • FIG. 1 is a view for explaining a three-dimensional printing system for performing three-dimensional printing using a metal powder-containing composition according to the present invention.
  • FIG. 2 is a flowchart for explaining a three-dimensional printing method using a metal powder-containing composition according to the present invention as a raw material.
  • FIG. 3 is a flow chart for explaining in more detail the steps of degreasing, sintering and sintering in the three-dimensional printing method using the metal powder-containing composition according to the present invention shown in FIG. 2 as a raw material.
  • Figure 4 is a graph showing the time versus temperature change in the degreasing, sintering and cooling interval of the three-dimensional printing method using the metal powder-containing composition according to the invention as a raw material.
  • 5 is a graph comparing the degree of shrinkage before and after sintering of a three-dimensional printed product according to the metal powder content.
  • the metal powder-containing composition 30 which is a raw material for three-dimensional printing, in the present invention is homogeneously heated to a high temperature through a kneading machine 100 through a metal powder 20a and a polymer binder 20b. It is prepared by kneading and granulating into pellets having a certain particle size by pulverization using a grinder or a pelletizer.
  • the metal powder-containing composition 30 thus prepared is laminated by a three-dimensional printing method in the three-dimensional printing system 10, and is used as a feedstock used for manufacturing steel products.
  • the extrusion head of the three-dimensional printer 300 ( 310).
  • the metal powder-containing composition 30 is melted and pressure-injected by the raw material feeder 200 and supplied to the extrusion head 310 so that the metal powder-containing composition 30 can be smoothly supplied to the extrusion head 310 of the three-dimensional printer 300. It is desirable to be.
  • the metal powder-containing composition 30 supplied to the extrusion head 310 is discharged to the surface of the plate 330 in a manner similar to a hot melt adhesive gun to continuously print layers in a three-dimensional shape of the object to be printed. As a result, a semi-finished product ( ⁇ , 40) is formed.
  • the semi-finished product 40 thus formed is removed from the polymer binder component by solvent and hot degreasing method in the degreasing machine 400, sintered at a high temperature in the sintering furnace 500, and cooled to room temperature to form a final steel as a high density metal sintered body. (Iii) The extraction process into the product 50 takes place.
  • a composition in which metal powder is agglomerated with a polymer binder is presented as a raw material for three-dimensional printing.
  • austenitic stainless steel having a steel composition of SUS-304L or SUS-316L is powdered as a metal powder in order to prepare such a composition.
  • Austenitic stainless steels are called Cr-Ni stainless steels, and Cr and Ni are added to Fe.
  • the main component of the austenitic stainless steel consists of Fe, Cr, and Ni, and there are various additives shown in Table 1 below.
  • Table 1 below shows preferred examples of the austenitic stainless steel that is a component of the metal powder used to prepare the metal powder-containing composition for three-dimensional printing, and embodiments of the present invention are not limited only to this example.
  • composition 1 0.03 or less 1.0 or less 1.0 or less 18-20 10 to 12 0.2 or less 0.03 or less 0.03 or less Balance Fe and other unavoidable impurities
  • Composition 2 0.03 or less 1.0 or less 1.5 or less 16-18 11 to 14 2 to 3 0.03 or less 0.03 or less Balance Fe and other unavoidable impurities
  • Carbon (C) reacts with chromium (Cr), which is added to improve corrosion resistance, and may cause corrosion resistance due to precipitation of chromium carbide in the grain boundary at grain boundaries. Therefore, the smaller the content of carbon (C) is, the better. If the carbon (C) is 0.03% by weight or less, the corrosion resistance is not significantly reduced. Therefore, the content of carbon (C) is preferably 0.03% by weight or less.
  • Silicon (Si) is an effective element for deoxidation and is added in the solvent stage. However, if excessively contained, the steel product extracted after degreasing and sintering may cause hardening of the stainless steel sheet, leading to decrease ductility. 1.0 weight% or less is preferable.
  • Manganese (Mn) combines with sulfur (S) inevitably incorporated, and has the effect of reducing sulfur (S) dissolved in stainless steel and suppressing grain boundary segregation of sulfur (S). of sulfur at the grain boundary, which is an effective element to prevent cracking of steel products extracted after degreasing and sintering (prevents cracking of the steel sheet during hot rolling).
  • S sulfur
  • S grain boundary segregation of sulfur
  • Nickel (Ni) is an element which stabilizes an austenite phase and is added when austenite stainless steels are produced. In that case, when content of nickel (Ni) exceeds 14 weight%, an excessive consumption of nickel (Ni) will raise cost. Therefore, the content of nickel (Ni) is preferably 14% by weight or less.
  • Molybdenum (Mo) is an effective element for suppressing local corrosion such as gap corrosion of stainless steel. Therefore, it is effective to add molybdenum (Mo) when steel products are used in harsh environments. However, when it adds more than 3 weight%, stainless steel may be embrittlement and productivity may fall, and excessive consumption of molybdenum (Mo) may raise the cost. Therefore, the content of molybdenum (Mo) is preferably 3% by weight or less.
  • the lower one is preferable because phosphorus (P) causes a decrease in ductility.
  • phosphorus (P) is 0.03% by weight or less, the ductility does not significantly decrease. Therefore, the content of phosphorus (P) is preferably 0.03% by weight or less.
  • S Sulfur
  • Mn manganese sulfide
  • S sulfur
  • MnS manganese sulfide
  • the lower one is preferable. If it is 0.03 weight% or less, corrosion resistance will not fall remarkably. Therefore, the content of sulfur (S) is preferably 0.03% by weight or less.
  • the balance is iron (Fe) and unavoidable impurities.
  • the austenitic stainless metal powder having the composition and the content ratio of the composition 1 or the composition 2 of Table 1 uses a metal powder having a particle diameter (D50) of 9.5 to 11 ⁇ m.
  • the surface area of the powder is small, to reduce the content of the polymer binder and to smooth degreasing, to maintain a uniform shrinkage during sintering, austenite
  • the system stainless metal powder it is preferable to use a metal powder powdered into a spherical shape.
  • the process for producing austenitic stainless metal powders involves scattering a liquidized (superheated) austenitic stainless metal stream into fine droplets and then spherical solid particles having a particle diameter (D50) of 9.5-11 ⁇ m. It can be produced by a spray process to cool with.
  • the austenitic stainless metal powder which is composed of the components 1 or 2 and the content ratio of the composition 1 or 2 and spherically powdered to a particle diameter (D50) of 9.5 to 11 ⁇ m, is kneaded with a polymer binder including a binder, a plasticizer and a lubricant.
  • the total weight of the metal powder-containing composition may include 90.0 to 94.0% by weight of the austenite-based stainless metal powder, and may include 6.0 to 10.0% by weight of the polymer binder.
  • austenite-based stainless metal powder is less than 90.0% by weight based on the total weight of the metal powder-containing composition, a large amount of the polymer binder is removed by a degreasing process described later, so that the shape of the semifinished product 40 is to be printed. If it is not maintained, but exceeds 94.0% by weight, a small amount of the polymer binder is added, it is difficult to secure the cohesive force as a feedstock for the three-dimensional printing.
  • the binder is a backbone binder added to secure cohesion necessary in the three-dimensional printing process due to the low binding strength between the spherical powdered austenitic stainless metal powder.
  • Polystyrene, polyethylene, and polypropylene Ethylene vinyl acetate (Ethylene-vinylacetate), ethylene ethyl acrylate (Ethylene-ethylacrylate), methyl methacrylate (Methal-methacrylate), at least one copolymer selected from the group consisting of butyl methacrylate (Butyl-methacrylate) It may include.
  • the binder added to the austenite-based stainless metal powder is preferably a polyethylene copolymer.
  • the polyethylene copolymer is removed at a high temperature while the steel product subjected to the hot degreasing process maintains its shape.
  • the polyethylene copolymer is preferably contained 3 to 5% by weight based on the total weight of the metal powder-containing composition.
  • Plasticizer is an organic substance that is added to the agglomerated composition by combining austenitic stainless metal powder and binder to facilitate the molding process during 3D printing.
  • Microcrystalline wax, paraffin wax, montan wax (Montan wax) and the like can be used.
  • the present invention adds a paraffin wax (Paraffin Wax) that can increase the ductility by lowering the bonding strength between the polymer binder at a relatively low temperature as a plasticizer.
  • the paraffin wax is preferably included 2.5 to 3.5% by weight relative to the total weight of the metal powder-containing composition.
  • the lubricant is added so that the metal powder-containing composition is melted in the raw material feeder, so that the surface sliding property is good at the time of press injection, so that the supply to the extrusion head 210 of the three-dimensional printer 200 via the feed guide pipe is made smooth.
  • stearic acid As the component to stearic acid (Stearic acid), oleic acid (Oleic acid), palmitic acid (Palmitic acid), linolenic acid (Linolenic acid) and the like can be used, in the present invention, stearic acid is added.
  • the stearic acid is preferably contained 0.5 to 1.5% by weight based on the total weight of the metal powder-containing composition.
  • FIG. 2 is a flowchart for explaining a three-dimensional printing method using a metal powder-containing composition according to the present invention as a raw material.
  • the three-dimensional printing method using the metal powder-containing composition according to the present invention as a raw material first kneading the metal powder and the polymer binder, and then pulverized and granulated the metal powder-containing composition
  • Prepare raw material preparation step; S100. It is preferable to use SUS-304L or SUS-316L austenitic stainless metal powder having a component and content ratio of the above-described composition 1 or composition 2 as the metal powder that is a raw material of the metal powder-containing composition in step S100.
  • the metal powder and the polymer binder are homogeneously kneaded, and then cooled to room temperature.
  • the kneading process is performed at a high temperature of 170 ° C. or higher, which is a temperature at which the polyethylene copolymer is completely melted, so that the polyethylene copolymer, which is a binder included in the polymer binder, is melted and homogeneously mixed with the metal powder.
  • the cooled mixture is pulverized by using a grinder or pelletizer, and granulated into pellets having a certain particle size, whereby the feedstock in the three-dimensional printing process described later is A metal powder containing composition is prepared.
  • the metal powder-containing composition prepared in the raw material preparation step (S100) is supplied to the extrusion head 310 of the three-dimensional printer 300 (raw material supply step; S200).
  • the metal powder-containing composition 30 is melted and pressure-injected by the raw material feeder 200 so as to be smoothly supplied to the extrusion head 310 of the three-dimensional printer 300 to extrude the head. It is preferably supplied to 310.
  • the extrusion head 310 of the three-dimensional printer 300 directly, without passing through the raw material feeder 200 for melting and pressing the pellets granulated with the metal powder-containing composition. And metal melt-containing composition pellets with heat generated in the extrusion head 310 itself.
  • the metal powder-containing composition in the molten state supplied in the raw material supply step (S200) is discharged to the plate 330 through the nozzle of the extrusion head 310 of the three-dimensional printer 300 to bait plate 330
  • the print layer is laminated on the layer (lamination step; S300).
  • the extrusion head 310 of the three-dimensional printer 300 moves in the X-axis and Y-axis with respect to the upper surface of the plate 330 and discharges the molten metal powder-containing composition. Stacking one print layer and raising one layer again on the Z axis, moving it on the X and Y axes as above, and stacking the next print layer and going up one layer on the Z axis again.
  • the semi-finished product 40 having a three-dimensional three-dimensional shape of the will be molded.
  • the debinding process in the degreasing step (S500) is a plasticizer that is included in the polymer binder by immersing the semi-finished product 40 formed by three-dimensional printing in a solvent, as shown in FIG.
  • solvent degreasing step; S510 Process for removing paraffin wax and stearic acid as a lubricant by solvent degreasing (solvent degreasing step; S510), and heating the semi-finished product 40 in which solvent degreasing is completed stepwise to degrease polyethylene copolymer which is a binder included in the polymer binder.
  • the step of removing in a manner is performed step by step.
  • the semifinished product 40 formed by three-dimensional printing is immersed in a tetrahydrofuran or heptane solvent to the semi-finished product 40.
  • Paraffin wax and stearic acid in the polymer binder are dissolved in a tetrahydrofuran or heptane solvent and then removed. At this time, the solvent temperature is 25 ⁇ 35 °C proceeds the solvent degreasing step for 24 hours or more. If the temperature of the solvent is less than 25 ° C, as the paraffin wax and stearic acid are rapidly removed from the semifinished product 40, cracks are likely to occur in the semifinished product 40.
  • the rate (removal rate) of removing paraffin wax and stearic acid from the semi-finished product 40 for a predetermined time becomes low, and as the paraffin wax and stearic acid remaining in the hot degreasing process described later are rapidly removed. Cracks are easily generated in the semi-finished product 40, and a problem arises in that a solvent degreasing process takes a long time to achieve a target removal rate.
  • the semi-finished product 40 is immersed in a solvent at a temperature of 25 to 35 ° C.
  • the rate (removal rate) of removing paraffin wax and stearic acid is low, so that the paraffin wax and stearic acid remaining during the hot degreasing process are rapidly removed. Accordingly, cracks may be generated in the semi-finished product 40.
  • the hot air degreasing step (S530) for heating the semi-finished product 40 is carried out to polyethylene polyethylene which is a binder component of the polymer binder not dissolved in tetrahydrofuran or heptane solvent Remove coalescing
  • the remaining amount of paraffin wax and stearic acid that are not removed in the solvent degreasing step (S510) and remain in the semifinished product 40 are also removed.
  • the heating rate in the hot degreasing step S530 for removing the polymer binder from the semifinished product 40 is important. Therefore, as shown in the degreasing section of the time vs. temperature graph shown in FIG.
  • the temperature is gradually increased to 500 ° C., and the temperature increase rate is kept low for the temperature section in which the paraffin wax, stearic acid, and the polyethylene copolymer are removed.
  • the long temperature holding time is set so that paraffin wax, stearic acid and polyethylene copolymer can be more reliably removed from the semi-finished product 40.
  • the total time required for the hot degreasing step (S530) is preferably 40 hours or more, and hot degreasing in an atmosphere of nitrogen (N 2 ) to prevent oxidization of the austenitic stainless metal contained in the semi-finished product 40 to the maximum. It is preferable to proceed.
  • pre-sintering step S600
  • the semi-finished product 40 from which the polymer binder is removed is heated and heated preliminarily to 900 ° C. in a vacuum atmosphere, and is preliminarily presintered.
  • the reason for performing the pre-sintering step (S600), the semi-finished product 40 immediately after the degreasing step (S500) because the unstable state in which all of the polymer binder is removed for the transfer to the sintering furnace 500 This is because handling is difficult.
  • the semi-finished product 40 primarily pre-sintered in the pre-sintering step (S600) is a fine volume shrinkage of about 0.5 to 1.0% shrinkage compared to the semi-finished product 40 immediately after the degreasing step (S500).
  • the presintering step S600 of preliminarily presintering the semifinished product 40 may be omitted.
  • the semi-finished product 40 from which the polymer binder is removed in the degreasing step (S500) is extracted into a final steel product 50 as a sintered body through a sintering process in the sintering furnace 500 (sintering step; S700).
  • sintering step any one of general sintering, pressure sintering and hot hydrostatic sintering, or a combination of these can be used.
  • the semi-finished product 40 is sintered by sequentially performing normal sintering and hot hydrostatic sintering.
  • Hot hydrostatic sintering step (S730) is a process to improve the physical and mechanical properties of the semi-finished product 40, the chromium (Cr) and nickel (Ni) component contained in the austenitic stainless steel of the semi-finished product 40 In order to prevent volatilization, isotropically pressurized and heated with an inert gas such as argon (Ar), a homogeneous and dense steel product 50 can be obtained.
  • an inert gas such as argon (Ar)
  • the semi-finished product 40 that has been sintered is cooled to room temperature and extracted as the final steel product 50 (cooling step; S750).
  • the cooling step (S750) in order to prevent the volatilization of chromium (Cr) and nickel (Ni) contained in the austenitic stainless steel of the semi-finished product 40, as in the hot hydrostatic sintering step (S730) previously (Ar) The cooling is performed in an atmosphere.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Powder Metallurgy (AREA)

Abstract

본 발명은 금속 분말이 함유된 원료를 3차원 프린팅을 위한 공급 원료로 이용하여 고강도성과 함께 높은 정밀도를 요구하는 금속 제품을 3차원 프린팅 기술로 제조할 수 있도록 하는 금속 분말 함유 조성물을 원료로 하는 3차원 프린팅 방법에 관한 것이다.

Description

금속 분말 함유 조성물을 원료로 하는 3차원 프린팅 방법
본 발명은 금속 분말 함유 조성물을 원료로 하는 3차원 프린팅 방법에 관한 것으로, 더 상세하게는 금속 분말이 함유된 원료를 3차원 프린팅을 위한 공급 원료로 이용하여 고강도성과 함께 높은 정밀도를 요구하는 금속 제품을 3차원 프린팅 기술로 제조할 수 있도록 하는 금속 분말 함유 조성물을 원료로 하는 3차원 프린팅 방법에 관한 것이다.
3차원(3D, 3-Dimension) 프린터는 인쇄하고자 하는 대상에 대한 3차원 데이터를 이용하여, 그 대상과 동일 또는 유사한 형태를 갖도록 3차원으로 형상물을 성형하는 장비이다. 3차원 프린팅은 다양한 분야에서 사용이 확산되어 가고 있다. 이러한 3차원 프린터는 과거에는 대량생산 이전의 모델링이나 샘플 제작과 같은 용도로 활용되었으나, 최근에는 다품종 소량생산 제품을 중심으로 양산 가능한 제품의 성형에도 사용될 수 있는 기술적 기반이 조성됨에 따라, 다수의 부품으로 구성된 자동차 분야 외에도 의료용 인체모형이나 칫솔이나 면도기와 같은 가정용 제품 등의 다양한 모형을 만들기 위한 용도로 많은 제조 업체에서 사용하고 있다.
3차원 프린터의 제품성형 방식은 크게 대상 물체를 2차원의 평면형태로 성형한 것을 3차원으로 적층하면서 용융부착하여 형태를 만들어가는 이른바 첨가형과, 재료덩어리를 조각하듯이 절삭해서 형태를 만들어가는 절삭형이 있다. 그리고, 첨가형의 일종으로 열가소성 플라스틱으로 된 와이어 또는 필라멘트를 공급릴과 이송롤을 통해 공급하고, 공급된 필라멘트를 작업대에 대하여 상대적으로 XYZ 세 방향으로 위치가 조절되는 3차원 이송기구에 장착된 압출 헤드의 노즐에서 용융시켜 배출함으로써 2차원 평면형태(프린트 층)를 플레이트 상에 반복적으로 적층하여 인쇄하고자 하는 대상의 3차원 형상을 갖는 제품을 성형하는 필라멘트 용융 적층 성형방법이 있다.
현재 3D 프린팅에 가장 많이 쓰이는 소재는 빛을 받으면 굳는 광경화성 고분자 물질 '포토폴리머(photopolymer)'이다. 이는 전체 시장의 56%를 차지한다. 그 다음으로 인기 있는 소재는 녹고 굳는 것이 자유로운 고체 형태의 열가소성 플라스틱으로 시장의 40%를 점유하고 있다. 열가소성 플라스틱 소재의 형태로서 필라멘트(filament) 형태가 주로 이용되고 있는데, 현존하는 필라멘트 소재로는 폴리락트산(polylactic acid, PLA), ABS(acrylonitrile butadiene styrene), HDPE(high density polyethylene), 폴리카보네이트(polycarbonate, PC) 등이 사용되고 있다.
그러나, 상술한 바와 같은 플라스틱 소재는 경도가 낮은 문제로, 고강도성과 높은 정밀도를 요하는 금속 부품과 같은 강(鋼)제품을 성형하기에는 접합하지 아니하다는 한계가 존재한다.
본 발명의 목적은 금속 분말이 함유된 원료를 이용하여 3차원 프린팅을 수행함으로써, 기계적 물성이 우수하고 높은 정밀도를 요구하는 금속 제품을 성형할 수 있도록 하는 3차원 프린팅 방법을 제공하고자 함에 있다.
또한, 본 발명의 목적은 3차원 프린팅에 의해 성형된 금속 제품의 기계적 물성을 보장할 수 있도록 하는 금속 분말이 함유된 조성물을 원료로 하는 3차원 프린팅 방법을 제공하고자 함에 있다.
상기와 같은 목적을 달성하기 위하여 본 발명에 따른 금속 분말 함유 조성물을 원료로 하는 3차원 프린팅 방법은, 금속 분말과 고분자 바인더를 혼련하고 분쇄 및 조립화(造粒化)하여 금속 분말 함유 조성물을 준비하는 원료 준비 단계; 상기 금속 분말 함유 조성물을 3차원 프린터의 압출 헤드로 공급하는 원료 공급 단계; 상기 압출 헤드의 노즐을 통해 용융된 금속 분말 함유 조성물을 플레이트의 표면으로 토출하여 상기 플레이트 상에 프린트 층을 적층하는 적층 단계; 상기 적층 단계를 반복 수행하여 인쇄하고자 하는 대상의 3차원 형상으로 상기 프린트 층을 연속으로 적층하여 반제품을 성형하는 성형 단계; 상기 성형 단계에서 성형된 반제품에서 상기 고분자 바인더를 제거하는 탈지 단계; 및 상기 탈지 단계에서 고분자 바인더가 제거된 반제품을 소결 및 냉각하여 상기 인쇄하고자 하는 대상의 3차원 형상을 갖는 최종 강제품으로 추출하는 소결 단계를 포함하는 것을 특징으로 한다.
이때, 상기 원료 준비 단계에서는, 상기 금속 분말과 고분자 바인더를 혼련하고 일정 입도를 갖는 펠렛(Pellet)으로 조립화하여 금속 분말 함유 조성물을 준비할 수 있다.
이때, 상기 금속 분말은 SUS-304L 또는 SUS-316L의 강 조성을 갖는 오스테나이트계 스테인레스 금속 분말에 해당할 수 있다.
이때, 상기 금속 분말은 C: 0.03중량% 이하, Si: 1.0중량% 이하, Mn: 1.0중량% 이하, Cr: 18 ~ 20중량%, Ni: 10 ~ 12중량%, Mo: 0.2중량% 이하, P: 0.03중량% 이하, S: 0.03중량% 이하, 잔부 Fe 및 기타 불가피한 불순물로 조성되는 오스테나이트계 스테인레스 금속 분말에 해당할 수 있다.
이때, 상기 금속 분말은 C: 0.03중량% 이하, Si: 1.0중량% 이하, Mn: 1.5중량% 이하, Cr: 16 ~ 18중량%, Ni: 11 ~ 14중량%, Mo: 2 ~ 3중량%, P: 0.03중량% 이하, S: 0.03중량% 이하, 잔부 Fe 및 기타 불가피한 불순물로 조성되는 오스테나이트계 스테인레스 금속 분말에 해당할 수 있다.
이때, 상기 원료 준비 단계에서는, 상기 금속 분말을 90.0 ~ 94.0중량%, 상기 결합제를 3.0 ~ 5.0중량%, 상기 가소제를 2.5 ~ 3.5중량%, 상기 윤활제를 0.5 ~ 1.5중량%를 혼련하고 분쇄 및 조립화하여 상기 금속 분말 함유 조성물을 준비할 수 있다.
이때, 상기 결합제는 폴리에틸렌(Polyethylene) 공중합체이고, 상기 가소제는 파라핀 왁스(Paraffin wax)이며, 상기 윤활제는 스테아린산(Stearic acid)에 해당할 수 있다.
이때, 상기 원료 준비 단계에서는, 상기 금속 분말과 고분자 바인더를 170℃ 이상의 온도에서 혼련할 수 있다.
이때, 상기 원료 공급 단계에서는, 상기 금속 분말 함유 조성물을 조립화한 펠렛을 용융한 후, 가압 사출하여 상기 3차원 프린터의 압출 헤드로 공급할 수 있다.
이때, 상기 원료 공급 단계에서는, 상기 금속 분말 함유 조성물을 조립화한 펠렛을 상기 3차원 프린터의 압출 헤드로 공급하여, 상기 압출 헤드에서 발생되는 열로 용융시킬 수 있다.
이때, 상기 탈지 단계는, 상기 반제품을 용매에 침지시켜 상기 고분자 바인더 중 상기 가소제와 윤활제를 제거하는 용매 탈지 단계; 및 상기 용매 탈지 단계에서 반제품을 가열하여 상기 고분자 바인더 중 상기 결합제를 제거하는 열간 탈지 단계를 포함할 수 있다.
이때, 상기 용매 탈지 단계에서는, 상기 반제품을 25 ~ 35℃의 테트라히드로푸란(Tetrahydrofuran) 또는 헵탄(Heptane) 용매에 24시간 이상 침지시켜 상기 가소제와 윤활제를 제거할 수 있다.
이때, 상기 열간 탈지 단계에서는, 질소(N2) 분위기에서 500℃까지 단계적으로 승온하면서 상기 반제품을 가열하여 상기 결합제를 제거할 수 있다.
이때, 상기 소결 단계는, 진공 분위기에서 1,000℃까지 단계적으로 승온하면서 상기 반제품을 가열하는 일반 소결 단계; 1,000 내지 1,200bar의 아르곤(Ar) 분위기에서, 1,350℃까지 단계적으로 승온한 후 1,350℃에서 1 내지 3시간 동안 유지시켜 상기 반제품을 가열하는 열간 정수압 소결 단계; 및 상기 반제품을 상온까지 냉각하여 최종 강제품을 추출하는 냉각 단계를 포함할 수 있다.
이때, 본 발명에 따른 금속 분말 함유 조성물을 원료로 하는 3차원 프린팅 방법은, 상기 소결 단계 이전에, 상기 탈지 단계에서 상기 고분자 바인더가 제거된 반제품을 진공 분위기에서 900℃까지 단계적으로 승온하면서 가열하는 가소결 단계를 더 포함할 수 있다.
본 발명에 따르면, 금속 분말이 함유된 원료를 이용하여 3차원 프린팅을 수행함으로써, 기계적 물성이 우수하고 높은 정밀도를 요구하는 금속 제품을 성형할 수 있는 효과가 있다.
또한, 본 발명에 따르면, 3차원 프린팅에 의해 성형된 금속 제품의 기계적 물성을 보장할 수 있도록 하는 금속 분말이 함유된 원료를 이용한 3차원 프린팅 방법을 제공할 수 있는 효과가 있다.
도 1은 본 발명에 따른 금속 분말 함유 조성물을 이용하여 3차원 프린팅을 수행하는 3차원 프린팅 시스템을 설명하기 위한 도면이다.
도 2는 본 발명에 따른 금속 분말 함유 조성물을 원료로 하는 3차원 프린팅 방법을 설명하기 위한 흐름도이다.
도 3은 도 2에 도시된 본 발명에 따른 금속 분말 함유 조성물을 원료로 하는 3차원 프린팅 방법에서 탈지, 가소결 및 소결 단계를 보다 구체적으로 설명하기 위한 흐름도이다.
도 4는 본 발명에 따른 금속 분말 함유 조성물을 원료로 하는 3차원 프린팅 방법의 탈지, 소결 및 냉각 구간에서의 시간 대 온도 변화를 나타낸 그래프이다.
도 5는 금속 분말 함유량에 따른 3차원 프린팅 제품의 소결 전/후에 있어서 수축 정도를 비교한 그래프이다.
본 발명의 바람직한 실시 예를 첨부된 도면에 의하여 상세히 설명하면 다음과 같다. 본 발명의 상세한 설명에 앞서, 이하에서 설명되는 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니된다. 따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
도 1은 본 발명에 따른 금속 분말 함유 조성물을 원료로 하여 3차원 프린팅을 수행하는 시스템(10)을 나타낸다. 도 1을 참조하면, 본 발명에서 3차원 프린팅의 원료가 되는 금속 분말 함유 조성물(30)은 금속 분말(20a)와 고분자 바인더(20b)를 혼련기(Kneading machine, 100)를 통해 고온으로 균질하게 혼련하고 분쇄기 또는 펠렛타이저를 이용하여 분쇄 및 일정 입도를 갖는 펠렛(Pellet)으로 조립화(造粒化)하여 제조한다. 이렇게 제조된 금속 분말 함유 조성물(30)은 3차원 프린팅 시스템(10)에서 3차원 인쇄 방식으로 적층되어 강(鋼)제품을 제조하기 위해 사용되는 공급 원료로서 3차원 프린터(300)의 압출 헤드(310)로 공급된다. 여기서, 금속 분말 함유 조성물(30)은 3차원 프린터(300)의 압출 헤드(310)에 원할하게 공급될 수 있도록, 원료 공급기(200)에 의해 용융 및 가압 사출되어 상기 압출 헤드(310)로 공급되는 것이 바람직하다. 압출 헤드(310)로 공급된 금속 분말 함유 조성물(30)은 핫멜트 접착제 건(gun)과 유사한 방식으로 플레이트(330)의 표면으로 토출되어 인쇄하고자 하는 대상의 3차원 형상으로 프린트 층이 연속적으로 적층됨으로써 반제품(半製品, 40)을 형성하게 된다. 이렇게 성형된 반제품(40)은 탈지기(400)에서 용매 및 열간 탈지 방식에 의해 고분자 바인더 성분이 제거되고, 소결로(500)에서 고온으로 소결된 후 상온까지 냉각되어 고밀도의 금속 소결체인 최종 강(製)제품(50)으로 추출되는 과정이 이루어진다.
3차원 프린팅 방식으로 고강도의 강(製)제품을 성형하기 위해서, 본 발명에서는 상술한 바와 같이 3차원 프린팅의 원료로서, 금속 분말을 고분자 바인더로 응집시킨 조성물이 제시한다. 특히, 이러한 조성물을 제조하기 위해 본 발명에서는 금속 분말로서 SUS-304L 또는 SUS-316L의 강(鋼) 조성을 갖는 오스테나이트계 스테인레스강이 분체화(粉體化)된 금속 분말을 이용한다.
오스테나이트계 스테인레스강은 별명 Cr-Ni계 스테인레스강으로 불리고, Fe에 Cr과 Ni을 첨가한 것이다. 오스테나이트계 스테인레스강의 주성분은 Fe, Cr, Ni로 이루어지고, 그 외에는 다음의 표 1에 나타내는 각종의 첨가물이 있다.
다음의 표 1은 3차원 프린팅용 금속 분말 함유 조성물을 제조하기 위해 사용되는 금속 분말의 성분인 오스테나이트계 스테인레스강의 바람직한 예를 나타낸 것이고, 본 발명의 실시의 형태는 이 예만으로 한정하는 것은 아니다.
성분 C Si Mn Cr Ni Mo P S 기타
조성 1(질량%) 0.03이하 1.0이하 1.0이하 18 ~ 20 10 ~ 12 0.2이하 0.03이하 0.03이하 잔부 Fe 및기타 불가피한 불순물
조성 2(질량%) 0.03이하 1.0이하 1.5이하 16 ~ 18 11 ~ 14 2 ~ 3 0.03이하 0.03이하 잔부 Fe 및기타 불가피한 불순물
탄소(C) : 0.03중량% 이하
탄소(C)는 내식성을 개선하기 위해 첨가되는 크롬(Cr)과 반응하여, 입계에 크롬(Cr) 탄화물로서 석출하기(precipitate chromium carbide in the grain boundary) 때문에 내식성의 저하를 초래하는 경우가 있다. 따라서, 탄소(C)의 함유량은 적을수록 바람직하고, 탄소(C)가 0.03중량% 이하이면, 내식성을 현저하게 저하시키는 일은 없다. 따라서, 탄소(C)의 함유량은0.03중량% 이하가 바람직하다.
규소( Si ) : 1.0중량% 이하
규소(Si)는 탈산을 위해 유효한 원소이며, 용제(溶製) 단계에서 첨가된다. 그러나 과잉하게 함유시키면 탈지 및 소결 후 추출된 강(鋼)제품이 경질화(causes hardening of the stainless steel sheet)하여, 연성이 저하되는(decrease ductility) 경우가 있기 때문에, 규소(Si)의 함유량은 1.0중량% 이하가 바람직하다.
망간(Mn) : 1.5중량% 이하
망간(Mn)은 불가피적으로 혼입된 황(S)과 결합하여, 스테인리스강에 고용(固溶)한 황(S)을 저감하는 효과를 갖고, 황(S)의 입계편석을 억제(suppresses segregation of sulfur at the grain boundary)하여, 탈지 및 소결 후 추출된 강(鋼)제품의 균열을 방지하는 데에(prevents cracking of the steel sheet during hot rolling) 유효한 원소이다. 그러나, 1.5중량%를 초과하여 첨가해도 첨가하는 효과의 증가는 거의 없다. 오히려, 과잉하게 첨가함으로써 비용의 상승을 초래한다. 따라서, 망간(Mn)의 함유량은 1.5중량% 이하가 바람직하다.
니켈( Ni ) : 10 ~ 14중량%
니켈(Ni)은 오스테나이트상을 안정화시키는 원소이며, 오스테나이트계 스테인리스를 제조하는 경우에 첨가한다. 그 때, 니켈(Ni)의 함유량이 14중량%를 초과하면, 니켈(Ni)을 과잉하게 소비함으로써 비용의 상승을 초래한다. 따라서, 니켈(Ni)의 함유량은 14중량% 이하가 바람직하다.
몰리브덴( Mo ) : 3중량% 이하
몰리브덴(Mo)은 스테인리스강의 틈 부식 등의 국부 부식을 억제하는 데에 유효한 원소이다. 따라서, 강(鋼)제품이 가혹한 환경에서 사용되는 경우에는 몰리브덴(Mo)을 첨가하는 것이 유효하다. 그러나, 3중량%를 초과하여 첨가하면, 스테인리스강이 취화(embrittlement)되어 생산성이 저하되는 경우가 있고, 몰리브덴(Mo)을 과잉하게 소비함으로써 비용의 상승을 초래한다. 따라서, 몰리브덴(Mo)의 함유량은 3중량% 이하가 바람직하다.
인(P) : 0.03중량% 이하
인(P)은 연성의 저하를 초래하기 때문에 낮은 쪽이 바람직하지만, 0.03중량% 이하이면 연성을 현저하게 저하시키는 일은 없다. 따라서, 인(P)의 함유량은 0.03중량% 이하가 바람직하다.
황(S) : 0.03중량% 이하
황(S)은 망간(Mn)과 결합하여 황화망간(MnS)을 형성함으로써 내식성을 저하시키는 원소이며 낮은 쪽이 바람직하다. 0.03중량% 이하이면 내식성을 현저하게 저하시키는 일은 없다. 따라서, 황(S)의 함유량은 0.03중량% 이하가 바람직하다.
잔부는 철(Fe) 및 불가피적 불순물이다.
본 발명에서, 표 1의 조성 1 또는 조성 2의 성분 및 함량비를 갖는 오스테나이트계 스테인레스 금속 분말은 입자직경(D50) 9.5 ~ 11㎛의 크기를 갖는 금속 분말을 이용하는 것이 바람직하다. 또한, 최종 완성품인 강(製)제품의 밀도를 높이고, 분말의 표면적이 작아 고분자 바인더 함량을 줄일 수 있으며 탈지가 원할하게 이루어질 수 있을 뿐만 아니라, 소결 시 균일한 수축을 유지하도록 하기 위해서, 오스테나이트계 스테인레스 금속 분말은 구(球)형으로 분체화(粉體化)된 금속 분말을 이용하는 것이 바람직하다. 오스테나이트계 스테인레스 금속 분말을 제조하는 방식은 액체화된(과열된) 오스테나이트계 스테인레스 금속 스트림을 미세한 액적(droplet)으로 비산(飛散)시키고 그 다음 입자직경(D50) 9.5 ~ 11㎛의 구형 고체입자로 냉각하는 분무 공정에 의해 제조될 수 있다.
조성 1 또는 조성 2의 성분 및 함량비로 조성되고 9.5 ~ 11㎛의 입자직경(D50)으로 구형 분체화된 오스테나이트계 스테인레스 금속 분말은 결합제, 가소제 및 윤활제를 포함하는 고분자 바인더와 혼련된다. 이때, 금속 분말 함유 조성물의 전체 중량에 대해 오스나이트계 스테인레스 금속 분말이 90.0 ~ 94.0중량%로 포함되고, 고분자 바인더가 6.0 ~ 10.0중량%로 포함될 수 있다. 오스나이트계 스테인레스 금속 분말이 금속 분말 함유 조성물의 전체 중량에 대해 90.0 중량% 미만이면, 후술하는 탈지 공정에 의해 다량의 고분자 바인더가 제거되어 반제품(40)의 형상이 인쇄하고자 하는 대상의 3차원 형상으로 유지되지 아니하고, 94.0 중량%를 초과하게 되면, 고분자 바인더가 소량으로 첨가되어 3차원 프린팅을 진행하기 위한 공급 원료로서의 응집력을 확보하기 어렵다.
결합제는 구형 분체화된 오스테나이트계 스테인레스 금속 분말 간의 결합력이 낮아 3차원 프린팅 과정에서 필요한 응집력을 확보하기 위해 첨가되는 주쇄(backbone) 바인더로서, 폴리스틸렌(Polystyrene), 폴리에틸렌(Polyethylene), 폴리프로필렌(polypropylene), 에틸렌비닐아세테이트(Ethylene-vinylacetate), 에틸렌에틸아크릴레이트(Ethylene-ethylacrylate), 메틸메타아크릴레이트(Methal-methacrylate), 부틸메타아크릴레이트(Butyl-methacrylate)으로 이루어진 그룹에서 선택된 1종 이상의 공중합체가 포함할 수 있다. 특히, 오스나이트계 스테인레스 금속 분말에 첨가되는 결합제로는 폴리에틸렌 공중합체인 것이 바람직한데, 폴리에틸렌 공중합체는 고온에서 제거되는 한편, 열간 탈지 공정을 거친 강(鋼)제품이 형상을 유지시킨다. 상기 폴리에틸렌 공중합체는 금속 분말 함유 조성물 전체 중량에 대해 3 내지 5중량%가 포함되는 것이 바람직하다.
가소제는 오스테나이트계 스테인레스 금속 분말과 결합제의 결합으로 응집된 조성물에 첨가되어 3D 프린팅 시 성형 가공을 용이하게 하는 유기물질로서, 마이크로크리스탈라인 왁스(Microcrystalline wax), 파라핀 왁스(Paraffin wax), 몬탄 왁스(Montan wax) 등이 이용될 수 있다. 특히, 본 발명에서는 가소제로서 비교적 저온에서도 고분자 바인더 간의 결합력을 낮춰 연성을 높일 수 있는 파라핀 왁스(Paraffin Wax)를 첨가한다. 상기 파라핀 왁스는 금속 분말 함유 조성물 전체 중량에 대해 2.5 내지 3.5중량%가 포함되는 것이 바람직하다.
윤활제는 금속 분말 함유 조성물이 원료 공급기 내에서 용융된 후 가압 사출 시에 표면 미끄럼성을 좋게 하여 공급 유도관을 경유하는 3차원 프린터(200)의 압출 헤드(210)로의 공급이 원할하게 이루지도록 첨가하는 성분으로서, 스테아린산(Stearic acid), 오레인산(Oleic acid), 팔미틴산(Palmitic acid), 리노레인산(Linolenic acid) 등이 이용될 수 있으나, 본 발명에서는 스테아린산을 첨가한다. 상기 스테아린산은 금속 분말 함유 조성물 전체 중량에 대해 0.5 내지 1.5중량%가 포함되는 것이 바람직하다.
이하에서는 상술한 금속 분말 함유 조성물을 원료로 하여 3차원 프린팅 방식으로 강(鋼)제품을 제조하는 방법에 대하여 구체적으로 설명하도록 한다.
도 2는 본 발명에 따른 금속 분말 함유 조성물을 원료로 하는 3차원 프린팅 방법을 설명하기 위한 흐름도이다.
도 2를 참조하면, 본 발명에 따른 금속 분말 함유 조성물을 원료로 하는 3차원 프린팅 방법은, 먼저 금속 분말과 고분자 바인더를 혼련한 후, 이를 분쇄 및 조립화(造粒化)하여 금속 분말 함유 조성물을 준비한다(원료 준비 단계; S100). 상기 S100 단계에서 금속 분말 함유 조성물의 원료가 되는 금속 분말은 상술한 조성 1 또는 조성 2의 성분 및 함량비를 갖는 SUS-304L 또는 SUS-316L 오스테나이트계 스테인레스 금속 분말을 이용하는 것이 바람직하다. 상기 원료 준비 단계(S100)에서는 금속 분말과 고분자 바인더를 균질하게 혼련한 후, 이를 상온까지 냉각한다. 이때, 고분자 바인더에 포함된 결합제인 폴리에틸렌 공중합체가 용융되어 금속 분말과 균질하게 혼련될 수 있도록, 폴리에틸렌 공중합체가 완전히 용융되는 온도인 170℃ 이상의 고온에서 1시간 동안 혼련 공정이 진행된다. 이렇게 가열 혼련된 후 냉각된 혼합물을 분쇄기 또는 펠렛타이저를 이용하여 분쇄하는 한편, 일정 입도를 갖는 펠렛(Pellet)으로 조립화(造粒化)함으로써, 후술하는 3차원 프린팅 공정에서의 공급 원료가 되는 금속 분말 함유 조성물을 제조된다.
그리고, 원료 준비 단계(S100)에서 준비된 금속 분말 함유 조성물을 3차원 프린터(300)의 압출 헤드(310)로 공급한다(원료 공급 단계; S200). 상기 원료 공급 단계(S200)에서 금속 분말 함유 조성물(30)은 3차원 프린터(300)의 압출 헤드(310)로 원할하게 공급될 수 있도록, 원료 공급기(200)에 의해 용융 및 가압 사출되어 압출 헤드(310)로 공급되는 것이 바람직하다. 그러나, 경우에 따라 상기 원료 공급 단계(S200)에서는 금속 분말 함유 조성물을 조립화한 펠렛을 용융 및 가압 사출하는 원료 공급기(200)를 거치지 않고, 직접 3차원 프린터(300)의 압출 헤드(310)로 공급하는 한편, 압출 헤드(310) 자체에서 발생되는 열로 금속 분말 함유 조성물 펠렛을 용융시키도록 구성할 수 있다.
그 다음으로, 3차원 프린터(300)의 압출 헤드(310)의 노즐을 통해 원료 공급 단계(S200)에서 공급된 용융된 상태의 금속 분말 함유 조성물을 플레이트(330)로 토출하여 베이트 플레이트(330) 상에 프린트 층을 적층한다(적층 단계; S300). 이러한 적층 단계(S300)를 반복적으로 수행하여 인쇄하고자 하는 대상의 3차원 형상을 갖도록 프린트 층을 연속으로 적층함으로써 반제품(40)을 성형한다(성형 단계; S400). 상기 적층 단계(S300) 및 성형 단계(S400)에서는 3차원 프린터(300)의 압출 헤드(310)가 플레이트(330)의 상면에 대해 X축 및 Y축으로 움직이며 용융된 금속 분말 함유 조성물을 토출하여 하나의 프린트 층을 쌓고 다시 Z축으로 한 층을 올린 뒤 상기와 같이 X축과 Y축으로 움직이며 다음 프린트 층을 쌓고 다시 Z축으로 한 층이 올라가며 연속적으로 프린팅하는 방식으로 인쇄하고자 하는 대상의 입체적인 3차원 형상을 갖는 반제품(40)을 성형하게 된다.
그리고, 상기 성형 단계(S400)에서 3차원 프린팅에 의해 성형이 완료된 반제품(40)을 탈지기(400)로 이송하고, 탈지기(400) 내에서 열을 가하여 반제품(40) 내에 함유되어 있는 고분자 바인더 성분을 제거한다(탈지 단계; S500). 보다 구체적으로, 상기 탈지 단계(S500)에서의 탈지(Debinding) 공정은 도 3에 도시된 바와 같이, 3차원 프린팅에 의해 성형된 반제품(40)을 용매에 침지시켜 고분자 바인더에 포함되어 있던 가소제인 파라핀 왁스와 윤활제인 스테아린산을 용매 탈지 방식으로 제거하는 공정(용매 탈지 단계; S510)과, 용매 탈지가 완료된 반제품(40)을 단계적으로 가열하여 고분자 바인더에 포함되어 있던 결합제인 폴리에틸렌 공중합체를 열간 탈지 방식으로 제거하는 공정(열간 탈지 단계; S530)이 단계적으로 수행된다. 먼저, 탈랍(Dewaxing) 공정에 해당하는 용매 탈지 단계(S510)에서 테트라히드로푸란(Tetrahydrofuran) 또는 헵탄(Heptane) 용매에 3차원 프린팅에 의해 성형이 완료된 반제품(40)을 침지시켜 반제품(40)에 함유되어 있는 고분자 바인더 중 파라핀 왁스와 스테아린산을 테트라히드로푸란(Tetrahydrofuran) 또는 헵탄(Heptane) 용매에 용해시켜 1차적으로 제거한다. 이때, 용매의 온도는 25 ~ 35℃로 24시간 이상 용매 탈지 공정을 진행한다. 용매의 온도가 25℃ 미만이면 반제품(40)으로부터 파라핀 왁스와 스테아린산이 급격하게 제거됨에 따라 반제품(40)에 크랙(Crack)이 발생되기 쉽다. 용매의 온도가 35℃를 초과하면 일정 시간 동안에 반제품(40)으로부터 파라핀 왁스와 스테아린산이 제거되는 속도(제거율)가 낮게 되어, 후술하는 열간 탈지 공정 중에 잔류하는 파라핀 왁스와 스테아린산이 급격하게 제거됨에 따라 반제품(40)에 크랙(Crack)이 발생되기 쉽고, 목표하는 제거율을 달성하기 위해서 용매 탈지 공정이 장시간 소요되는 문제가 발생한다. 또한, 25 ~ 35℃ 온도의 용매에 24시간 미만으로 반제품(40)을 침지시키면 파라핀 왁스와 스테아린산이 제거되는 속도(제거율)가 낮게 되어 열간 탈지 공정 중에 잔류하는 파라핀 왁스와 스테아린산이 급격하게 제거됨에 따라 반제품(40)에 크랙(Crack)이 발생될 수 있다.
용매 탈지 단계(S510)가 완료된 후, 반제품(40)을 가열하는 열간 탈지 단계(S530)를 진행하여 테트라히드로푸란(Tetrahydrofuran) 또는 헵탄(Heptane) 용매에 용해되지 않은 고분자 바인더의 결합제 성분인 폴리에틸렌 공중합체를 제거한다. 상기 열간 탈지 단계(S530)에서는, 용매 탈지 단계(S510)에서 제거되지 않고 반제품(40)에 남아 있는 잔량의 파라핀 왁스와 스테아린산도 함께 제거된다. 반제품(40)으로부터 고분자 바인더의 제거하기 위한 열간 탈지 단계(S530)에서의 가열 과정은 승온 속도가 중요하다. 따라서, 도 4에 도시된 시간 대 온도 그래프의 탈지 구간에 나타낸 바와 같이, 500℃까지 단계적으로 승온하고, 파라핀 왁스, 스테아린산, 폴리에틸렌 공중합체 각각이 제거되는 온도 구간에 대하여 승온 속도를 낮게 유지하고, 온도 유지시간을 길게 설정하여 반제품(40)에서 파라핀 왁스, 스테아린산 및 폴리에틸렌 공중합체가 보다 확실하게 제거될 수 있도록 한다. 열간 탈지 단계(S530)를 진행하는 총 소요 시간은 40시간 이상이 바람직하며, 반제품(40)에 함유된 오스테나이트계 스테인레스 금속이 산화되는 것을 최대한 방지하기 위해 질소(N2) 분위기에서 열간 탈지를 진행하는 것이 바람직하다.
후술하는 소결 단계(S700)를 진행하기 위해 탈지 단계(S500)를 거친 반제품(40)을 소결로(500)로 이송하기에 앞서, 가소결하는 단계(가소결 단계; S600)를 진행할 수 있다. 가소결 단계(S600)에서는 진공 분위기에서 900℃까지 단계적으로 승온하면서 고분자 바인더가 제거된 반제품(40)을 가열하여 1차적으로 가소결한다. 본격적인 소결에 앞서, 가소결 단계(S600)를 수행하는 이유는, 탈지 단계(S500)를 거친 직후의 반제품(40)의 경우 고분자 바인더가 모두 제거된 불안정한 상태이므로 소결로(500)로의 이송을 위한 취급이 어렵기 때문이다. 가소결 단계(S600)에서 1차로 가소결된 반제품(40)은 탈지 단계(S500)를 거친 직후의 반제품(40)에 비해 수축률 약 0.5 내지 1.0%의 미세한 부피 수축이 발생한다. 반제품(40)의 이송 없이 탈지 단계(S500)와 소결 단계(S600)가 하나의 장소에서 진행되는 경우, 반제품(40)을 1차적으로 가소결하는 가소결 단계(S600)는 생략될 수 있다.
탈지 단계(S500)에서 고분자 바인더가 제거된 반제품(40)은 소결로(500)에서 소결(Sintering) 공정을 거쳐 소결체로서의 최종적인 강(鋼)제품(50)으로 추출된다(소결 단계; S700). 소결 공정에서는 일반 소결, 가압 소결, 열간 정수압 소결 중 어느 하나의 소결방식이나, 이들을 조합한 소결 방식을 이용할 수 있다. 구체적으로, 본 발명에서는 도 3에 도시된 바와 같이 일반 소결과 열간 정수압 소결을 순차적으로 진행하여 반제품(40)을 소결한다. 먼저, 탈지 단계(S500) 또는 가소결 단계(S600)를 거친 반제품(40)에 대하여 진공 분위기에서 1,000℃까지 단계적으로 승온 가열하면서 일반 소결을 진행한다(일반 소결 단계; S710). 1,000℃까지 일반 소결이 진행된 이후, 1,000 내지 1,200bar의 압력 하에 아르곤(Ar) 분위기에서 1,350℃까지 단계적으로 승온 가열하면서 열간 정수압 소결을 진행한다(열간 정수압 소결 단계; S730). 특히, 열간 정수압 소결 단계(S730)에서는 아르곤(Ar) 분위기에서 1,350℃까지 승온한 후 1,350℃ 온도에서 1 내지 3시간 동안 유지시켜 소결 과정을 진행한다. 열간 정수압 소결 단계(S730)는 반제품(40)의 물리적, 기계적 특성을 향상시키기 위해 실시하는 공정으로서, 반제품(40)의 오스테나이트계 스테인레스강에 포함되어 있는 크롬(Cr)과 니켈(Ni) 성분의 휘발을 방지하기 위해서 아르곤(Ar)과 같은 불활성 기체에 의해 등방적으로 가압 및 가열함으로써, 균질하고 밀도가 높은 강(鋼)제품(50)을 얻을 수 있다.
열간 정수압 소결 단계(S730)에서 소결이 완료된 반제품(40)은 상온까지 냉각되어 최종적인 강(鋼)제품(50)으로서 추출된다(냉각 단계; S750). 상기 냉각 단계(S750)에서는 앞서 진행되는 열간 정수압 소결 단계(S730)과 마찬가지로 반제품(40)의 오스테나이트계 스테인레스강에 포함되어 있는 크롬(Cr)과 니켈(Ni) 성분의 휘발을 방지하기 위해서 아르곤(Ar) 분위기에서 냉각을 진행한다.
조성 1(SUS-304L) 또는 조성 2(SUS-316L)에 따른 오스나이트계 스테인레스 금속 분말을 금속 분말 함유 조성물 전체 중량에 대해 90.0 ~ 94.0중량%로 함유시킨 경우에 있어서, 본 발명에 따라 3차원 프린팅 공정 직후 성형된 반제품(40) 대비 소결/냉각 공정이 완료된 후 추출된 강(鋼)제품(50)의 수축률은 도 5에 도시된 바와 같다. 도 5를 참조하면, 조성 1(SUS-304L) 또는 조성 2(SUS-316L)에 따른 오스나이트계 스테인레스 금속 분말이 금속 분말 함유 조성물 전체 중량에 대해 90.0중량%로 함유된 경우에는 약 20 내지 20.5%의 수축률을 보이며, 94.0중량%로 함유된 경우에는 약 15.5 내지 16중량%의 수축률을 보인다. 조성 1(SUS-304L) 또는 조성 2(SUS-316L)에 따른 오스나이트계 스테인레스 금속 분말의 함유량이 금속 분말 함유 조성물 전체 중량 대비 90.0 ~ 94.0중량%로 함유된 구간에서 수축률은 금속 분말 함유량이 높아질수록 선형적으로 감소됨을 확인할 수 있다.
이상에서와 같이 도면과 명세서에서 최적의 실시예가 개시되었다. 본 발명은 상기한 실시 예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 다양한 변경과 수정이 가능할 것이며, 본 발명의 진정한 기술적 보호범위는 첨부된 청구범위의 기술적 사상에 의해 정해져야 할 것이다.

Claims (15)

  1. 금속 분말과 고분자 바인더를 혼련하고 분쇄 및 조립화(造粒化)하여 금속 분말 함유 조성물을 준비하는 원료 준비 단계;
    상기 금속 분말 함유 조성물을 3차원 프린터의 압출 헤드로 공급하는 원료 공급 단계;
    상기 압출 헤드의 노즐을 통해 용융된 금속 분말 함유 조성물을 플레이트의 표면으로 토출하여 상기 플레이트 상에 프린트 층을 적층하는 적층 단계;
    상기 적층 단계를 반복 수행하여 인쇄하고자 하는 대상의 3차원 형상으로 상기 프린트 층을 연속으로 적층하여 반제품을 성형하는 성형 단계;
    상기 성형 단계에서 성형된 반제품에서 상기 고분자 바인더를 제거하는 탈지 단계; 및
    상기 탈지 단계에서 고분자 바인더가 제거된 반제품을 소결 및 냉각하여 상기 인쇄하고자 하는 대상의 3차원 형상을 갖는 최종 강제품으로 추출하는 소결 단계를 포함하는 것을 특징으로 하는, 금속 분말 함유 조성물을 원료로 하는 3차원 프린팅 방법.
  2. 청구항 1에 있어서,
    상기 원료 준비 단계는,
    상기 금속 분말과 고분자 바인더를 혼련하고 일정 입도를 갖는 펠렛(Pellet)으로 조립화하여 금속 분말 함유 조성물을 준비하는 것을 특징으로 하는, 금속 분말 함유 조성물을 원료로 하는 3차원 프린팅 방법.
  3. 청구항 2에 있어서,
    상기 금속 분말은 SUS-304L 또는 SUS-316L의 강 조성을 갖는 오스테나이트계 스테인레스 금속 분말인 것을 특징으로 하는, 금속 분말 함유 조성물을 원료로 하는 3차원 프린팅 방법.
  4. 청구항 3에 있어서,
    상기 금속 분말은 C: 0.03중량% 이하, Si: 1.0중량% 이하, Mn: 1.0중량% 이하, Cr: 18 ~ 20중량%, Ni: 10 ~ 12중량%, Mo: 0.2중량% 이하, P: 0.03중량% 이하, S: 0.03중량% 이하, 잔부 Fe 및 기타 불가피한 불순물로 조성되는 오스테나이트계 스테인레스 금속 분말인 것을 특징으로 하는, 금속 분말 함유 조성물을 원료로 하는 3차원 프린팅 방법.
  5. 청구항 3에 있어서,
    상기 금속 분말은 C: 0.03중량% 이하, Si: 1.0중량% 이하, Mn: 1.5중량% 이하, Cr: 16 ~ 18중량%, Ni: 11 ~ 14중량%, Mo: 2 ~ 3중량%, P: 0.03중량% 이하, S: 0.03중량% 이하, 잔부 Fe 및 기타 불가피한 불순물로 조성되는 오스테나이트계 스테인레스 금속 분말인 것을 특징으로 하는, 금속 분말 함유 조성물을 원료로 하는 3차원 프린팅 방법.
  6. 청구항 4 또는 청구항 5에 있어서,
    상기 원료 준비 단계는,
    상기 금속 분말을 90.0 ~ 94.0중량%, 상기 결합제를 3.0 ~ 5.0중량%, 상기 가소제를 2.5 ~ 3.5중량%, 상기 윤활제를 0.5 ~ 1.5중량%를 혼련하고 분쇄 및 조립화하여 상기 금속 분말 함유 조성물을 준비하는 것을 특징으로 하는, 금속 분말 함유 조성물을 원료로 하는 3차원 프린팅 방법.
  7. 청구항 6에 있어서,
    상기 결합제는 폴리에틸렌(Polyethylene) 공중합체이고, 상기 가소제는 파라핀 왁스(Paraffin wax)이며, 상기 윤활제는 스테아린산(Stearic acid)인 것을 특징으로 하는, 금속 분말 함유 조성물을 원료로 하는 3차원 프린팅 방법.
  8. 청구항 7에 있어서,
    상기 원료 준비 단계는,
    상기 금속 분말과 고분자 바인더를 170℃ 이상의 온도에서 혼련하는 것을 특징으로 하는, 금속 분말 함유 조성물을 원료로 하는 3차원 프린팅 방법.
  9. 청구항 2에 있어서,
    상기 원료 공급 단계는,
    상기 금속 분말 함유 조성물을 조립화한 펠렛을 용융한 후, 가압 사출하여 상기 3차원 프린터의 압출 헤드로 공급하는 것을 특징으로 하는, 금속 분말 함유 조성물을 원료로 하는 3차원 프린팅 방법.
  10. 청구항 2에 있어서,
    상기 원료 공급 단계는,
    상기 금속 분말 함유 조성물을 조립화한 펠렛을 상기 3차원 프린터의 압출 헤드로 공급하여, 상기 압출 헤드에서 발생되는 열로 용융시키는 것을 특징으로 하는, 금속 분말 함유 조성물을 원료로 하는 3차원 프린팅 방법.
  11. 청구항 2에 있어서,
    상기 탈지 단계는,
    상기 반제품을 용매에 침지시켜 상기 고분자 바인더 중 상기 가소제와 윤활제를 제거하는 용매 탈지 단계; 및
    상기 용매 탈지 단계에서 반제품을 가열하여 상기 고분자 바인더 중 상기 결합제를 제거하는 열간 탈지 단계를 포함하는 것을 특징으로 하는, 금속 분말 함유 조성물을 원료로 하는 3차원 프린팅 방법.
  12. 청구항 11에 있어서,
    상기 용매 탈지 단계는,
    상기 반제품을 25 ~ 35℃의 테트라히드로푸란(Tetrahydrofuran) 또는 헵탄(Heptane) 용매에 24시간 이상 침지시켜 상기 가소제와 윤활제를 제거하는 것을 특징으로 하는, 금속 분말 함유 조성물을 원료로 하는 3차원 프린팅 방법.
  13. 청구항 11에 있어서,
    열간 탈지 단계는,
    질소(N2) 분위기에서 500℃까지 단계적으로 승온하면서 상기 반제품을 가열하여 상기 결합제를 제거하는 것을 특징으로 하는, 금속 분말 함유 조성물을 원료로 하는 3차원 프린팅 방법.
  14. 청구항 2에 있어서,
    상기 소결 단계는,
    진공 분위기에서 1,000℃까지 단계적으로 승온하면서 상기 반제품을 가열하는 일반 소결 단계;
    1,000 내지 1,200bar의 아르곤(Ar) 분위기에서, 1,350℃까지 단계적으로 승온한 후 1,350℃에서 1 내지 3시간 동안 유지시켜 상기 반제품을 가열하는 열간 정수압 소결 단계; 및
    상기 반제품을 상온까지 냉각하여 최종 강제품을 추출하는 냉각 단계를 포함하는 것을 특징으로 하는, 금속 분말 함유 조성물을 원료로 하는 3차원 프린팅 방법.
  15. 청구항 14에 있어서,
    상기 소결 단계 이전에,
    상기 탈지 단계에서 상기 고분자 바인더가 제거된 반제품을 진공 분위기에서 900℃까지 단계적으로 승온하면서 가열하는 가소결 단계를 더 포함하는 것을 특징으로 하는, 금속 분말 함유 조성물을 원료로 하는 3차원 프린팅 방법.
PCT/KR2016/011158 2016-10-06 2016-10-06 금속 분말 함유 조성물을 원료로 하는 3차원 프린팅 방법 WO2018066726A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2016/011158 WO2018066726A1 (ko) 2016-10-06 2016-10-06 금속 분말 함유 조성물을 원료로 하는 3차원 프린팅 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2016/011158 WO2018066726A1 (ko) 2016-10-06 2016-10-06 금속 분말 함유 조성물을 원료로 하는 3차원 프린팅 방법

Publications (1)

Publication Number Publication Date
WO2018066726A1 true WO2018066726A1 (ko) 2018-04-12

Family

ID=61831143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/011158 WO2018066726A1 (ko) 2016-10-06 2016-10-06 금속 분말 함유 조성물을 원료로 하는 3차원 프린팅 방법

Country Status (1)

Country Link
WO (1) WO2018066726A1 (ko)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110613474A (zh) * 2018-06-20 2019-12-27 西门子医疗有限公司 栅格状光束准直器及其制造方法、辐射探测器和成像设备
WO2020222695A1 (en) * 2019-04-30 2020-11-05 Shen Zhijian James Process for producing a steel workpiece by additive powder bed fusion manufacturing, and steel workpiece obtained therefrom
CN111906308A (zh) * 2020-08-10 2020-11-10 广东中发摩丹科技有限公司 铍铝合金航空航天构件的粉末增塑增材制造烧结成形方法
CN113751720A (zh) * 2021-07-28 2021-12-07 湘潭大学 一种制备复杂形状b2相强化铁基合金的零件方法
CN113798507A (zh) * 2021-08-10 2021-12-17 西安理工大学 一种难熔合金的低温3d打印成形方法
CN113909490A (zh) * 2021-09-10 2022-01-11 华中科技大学 一种金属零件及其近净成形方法
CN115055674A (zh) * 2022-06-29 2022-09-16 中南大学 一种适用于增材制造钨钴硬质合金零部件的喂料及其制备方法和应用
CN115055674B (zh) * 2022-06-29 2024-06-04 中南大学 一种适用于增材制造钨钴硬质合金零部件的喂料及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07242903A (ja) * 1994-01-12 1995-09-19 Daido Steel Co Ltd 焼結用ステンレス鋼粉末
KR20110043073A (ko) * 2009-10-21 2011-04-27 주식회사 기노리 인서트 사출성형을 이용한 원 벌브형 세라믹 아크튜브 제조방법
US20150125334A1 (en) * 2013-11-01 2015-05-07 American Hakko Products, Inc. Materials and Process Using a Three Dimensional Printer to Fabricate Sintered Powder Metal Components
KR20150141203A (ko) * 2014-06-09 2015-12-18 한국생산기술연구원 나노 입자 및 바인더를 함유한 잉크 조성물 및 이를 이용한 3차원 물품의 제조방법
KR20160011693A (ko) * 2013-05-07 2016-02-01 코마도 쏘시에떼 아노님 믹서, 분말 야금용 원료의 혼합 방법 및 사출성형 조성물용 바인더

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07242903A (ja) * 1994-01-12 1995-09-19 Daido Steel Co Ltd 焼結用ステンレス鋼粉末
KR20110043073A (ko) * 2009-10-21 2011-04-27 주식회사 기노리 인서트 사출성형을 이용한 원 벌브형 세라믹 아크튜브 제조방법
KR20160011693A (ko) * 2013-05-07 2016-02-01 코마도 쏘시에떼 아노님 믹서, 분말 야금용 원료의 혼합 방법 및 사출성형 조성물용 바인더
US20150125334A1 (en) * 2013-11-01 2015-05-07 American Hakko Products, Inc. Materials and Process Using a Three Dimensional Printer to Fabricate Sintered Powder Metal Components
KR20150141203A (ko) * 2014-06-09 2015-12-18 한국생산기술연구원 나노 입자 및 바인더를 함유한 잉크 조성물 및 이를 이용한 3차원 물품의 제조방법

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110613474A (zh) * 2018-06-20 2019-12-27 西门子医疗有限公司 栅格状光束准直器及其制造方法、辐射探测器和成像设备
CN110613474B (zh) * 2018-06-20 2023-10-27 西门子医疗有限公司 栅格状光束准直器及其制造方法、辐射探测器和成像设备
WO2020222695A1 (en) * 2019-04-30 2020-11-05 Shen Zhijian James Process for producing a steel workpiece by additive powder bed fusion manufacturing, and steel workpiece obtained therefrom
CN111906308A (zh) * 2020-08-10 2020-11-10 广东中发摩丹科技有限公司 铍铝合金航空航天构件的粉末增塑增材制造烧结成形方法
CN113751720A (zh) * 2021-07-28 2021-12-07 湘潭大学 一种制备复杂形状b2相强化铁基合金的零件方法
CN113798507A (zh) * 2021-08-10 2021-12-17 西安理工大学 一种难熔合金的低温3d打印成形方法
CN113798507B (zh) * 2021-08-10 2024-01-12 西安理工大学 一种难熔合金的低温3d打印成形方法
CN113909490A (zh) * 2021-09-10 2022-01-11 华中科技大学 一种金属零件及其近净成形方法
CN115055674A (zh) * 2022-06-29 2022-09-16 中南大学 一种适用于增材制造钨钴硬质合金零部件的喂料及其制备方法和应用
CN115055674B (zh) * 2022-06-29 2024-06-04 中南大学 一种适用于增材制造钨钴硬质合金零部件的喂料及其制备方法和应用

Similar Documents

Publication Publication Date Title
WO2018066726A1 (ko) 금속 분말 함유 조성물을 원료로 하는 3차원 프린팅 방법
KR101806252B1 (ko) 금속 분말 함유 조성물을 원료로 하는 3차원 프린팅 방법
US4721599A (en) Method for producing metal or alloy articles
EP1536027B1 (en) Raw or granulated powder for sintering, and sintered compacts therefrom
KR101761649B1 (ko) 3차원 프린팅용 금속 분말 함유 조성물
CN101594954A (zh) 金属注射成型法
KR102074268B1 (ko) 3차원 프린팅 장치의 듀얼 노즐 리프팅 구조
JP2018083959A (ja) 積層造形法による粉末冶金焼結体の製造方法
CN111876642A (zh) 用于增材制造的硬质碳化物粉末
WO2020200426A1 (en) Sinterable feedstock for use in 3d printing devices
US9403212B2 (en) Process for producing components by powder injection molding
KR102271127B1 (ko) 유무기혼련조성물을 원료로 하는 산화물 분산강화 합금 제조 방법
CN116855810A (zh) 一种高比重钨合金复杂结构的增材制造方法
KR100516081B1 (ko) 금속산화물을함유하는금속성형물제조용사출성형조성물
WO2020032777A1 (ko) 유무기혼련조성물을 원료로 하는 산화물 분산강화 합금 제조 방법
KR102188274B1 (ko) 스틱형 금속 및 세라믹 재료를 이용한 3차원 프린팅 장치 및 그의 정밀 압출 제어 방법
KR100629323B1 (ko) 복합층 재료 및 그 제조방법
KR102438636B1 (ko) 스틱형 세라믹 재료를 이용한 3차원 프린팅 장치의 제어 방법
KR102516735B1 (ko) 세라믹 재료를 이용한 3차원 프린팅 장치
KR100678590B1 (ko) 복합층 재료 및 그 제조방법
KR102569196B1 (ko) 금속분말 사출성형을 이용한 전기자동차용 구리 커넥터의 제조방법
CN115055674B (zh) 一种适用于增材制造钨钴硬质合金零部件的喂料及其制备方法和应用
WO2021132854A1 (ko) 금속분말 사출 성형용 결합제 조성물
CN108637259A (zh) 一种粉末冶金锯片上下压板及其生产方法
CN115806433A (zh) 一种激光3d打印碳化硅复合陶瓷制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16918347

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16918347

Country of ref document: EP

Kind code of ref document: A1