WO2018066672A1 - Packaging material for battery, manufacturing method therefor, and battery - Google Patents
Packaging material for battery, manufacturing method therefor, and battery Download PDFInfo
- Publication number
- WO2018066672A1 WO2018066672A1 PCT/JP2017/036386 JP2017036386W WO2018066672A1 WO 2018066672 A1 WO2018066672 A1 WO 2018066672A1 JP 2017036386 W JP2017036386 W JP 2017036386W WO 2018066672 A1 WO2018066672 A1 WO 2018066672A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- probe
- resin layer
- packaging material
- layer
- battery packaging
- Prior art date
Links
- 239000005022 packaging material Substances 0.000 title claims abstract description 154
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 229920005989 resin Polymers 0.000 claims abstract description 239
- 239000011347 resin Substances 0.000 claims abstract description 239
- 239000000523 sample Substances 0.000 claims abstract description 137
- 230000004888 barrier function Effects 0.000 claims abstract description 78
- 238000006073 displacement reaction Methods 0.000 claims abstract description 30
- 238000004458 analytical method Methods 0.000 claims abstract description 27
- 230000000930 thermomechanical effect Effects 0.000 claims abstract description 26
- 238000005259 measurement Methods 0.000 claims abstract description 22
- 239000000463 material Substances 0.000 claims description 73
- -1 polypropylene Polymers 0.000 claims description 72
- 229920000098 polyolefin Polymers 0.000 claims description 64
- 239000003795 chemical substances by application Substances 0.000 claims description 24
- 150000001875 compounds Chemical class 0.000 claims description 24
- 239000003822 epoxy resin Substances 0.000 claims description 21
- 229920000647 polyepoxide Polymers 0.000 claims description 21
- 239000011342 resin composition Substances 0.000 claims description 21
- 239000004743 Polypropylene Substances 0.000 claims description 18
- 238000010438 heat treatment Methods 0.000 claims description 18
- 229920001155 polypropylene Polymers 0.000 claims description 18
- 125000003504 2-oxazolinyl group Chemical group O1C(=NCC1)* 0.000 claims description 16
- 229920002803 thermoplastic polyurethane Polymers 0.000 claims description 15
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 claims description 13
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 claims description 5
- 230000000630 rising effect Effects 0.000 claims description 5
- 150000002148 esters Chemical class 0.000 claims description 4
- 125000000623 heterocyclic group Chemical group 0.000 claims description 4
- 125000004430 oxygen atom Chemical group O* 0.000 claims description 3
- 239000000758 substrate Substances 0.000 abstract description 3
- 239000010410 layer Substances 0.000 description 361
- 239000002585 base Substances 0.000 description 60
- 238000000034 method Methods 0.000 description 60
- 238000011282 treatment Methods 0.000 description 42
- 239000002253 acid Substances 0.000 description 39
- 239000012790 adhesive layer Substances 0.000 description 34
- 238000009413 insulation Methods 0.000 description 34
- 239000011888 foil Substances 0.000 description 29
- 229910052782 aluminium Inorganic materials 0.000 description 27
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 27
- 229920001577 copolymer Polymers 0.000 description 25
- 239000000314 lubricant Substances 0.000 description 25
- NBIIXXVUZAFLBC-UHFFFAOYSA-N phosphoric acid Substances OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 22
- 239000000126 substance Substances 0.000 description 22
- 239000002345 surface coating layer Substances 0.000 description 22
- 239000000853 adhesive Substances 0.000 description 21
- 230000001070 adhesive effect Effects 0.000 description 21
- 238000006243 chemical reaction Methods 0.000 description 21
- 239000000049 pigment Substances 0.000 description 18
- 239000000203 mixture Substances 0.000 description 16
- 239000000654 additive Substances 0.000 description 14
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 14
- 229910052751 metal Inorganic materials 0.000 description 14
- 239000002184 metal Substances 0.000 description 14
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 13
- 238000000576 coating method Methods 0.000 description 13
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 12
- 238000010030 laminating Methods 0.000 description 12
- 229920001225 polyester resin Polymers 0.000 description 12
- 239000004645 polyester resin Substances 0.000 description 12
- 229910019142 PO4 Inorganic materials 0.000 description 11
- 125000004122 cyclic group Chemical group 0.000 description 11
- 235000021317 phosphate Nutrition 0.000 description 11
- 229920000642 polymer Polymers 0.000 description 11
- 238000007789 sealing Methods 0.000 description 11
- 238000012360 testing method Methods 0.000 description 11
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 10
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 10
- 230000000996 additive effect Effects 0.000 description 10
- 230000006870 function Effects 0.000 description 10
- 229910052757 nitrogen Inorganic materials 0.000 description 10
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 10
- 239000010452 phosphate Substances 0.000 description 10
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 10
- 229910001220 stainless steel Inorganic materials 0.000 description 10
- 238000004140 cleaning Methods 0.000 description 9
- 239000003086 colorant Substances 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 9
- 239000010935 stainless steel Substances 0.000 description 9
- 150000008065 acid anhydrides Chemical class 0.000 description 8
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 description 8
- 239000011248 coating agent Substances 0.000 description 8
- 238000002844 melting Methods 0.000 description 8
- 230000008018 melting Effects 0.000 description 8
- 229920006122 polyamide resin Polymers 0.000 description 8
- 238000004566 IR spectroscopy Methods 0.000 description 7
- 239000004698 Polyethylene Substances 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 230000004048 modification Effects 0.000 description 7
- 238000012986 modification Methods 0.000 description 7
- 229920000573 polyethylene Polymers 0.000 description 7
- 125000000217 alkyl group Chemical group 0.000 description 6
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 6
- 239000011651 chromium Substances 0.000 description 6
- 239000003431 cross linking reagent Substances 0.000 description 6
- 238000005238 degreasing Methods 0.000 description 6
- 239000003792 electrolyte Substances 0.000 description 6
- 238000005227 gel permeation chromatography Methods 0.000 description 6
- 239000000178 monomer Substances 0.000 description 6
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 6
- 229920000139 polyethylene terephthalate Polymers 0.000 description 6
- 239000005020 polyethylene terephthalate Substances 0.000 description 6
- 229920005862 polyol Polymers 0.000 description 6
- 229920002635 polyurethane Polymers 0.000 description 6
- 239000004814 polyurethane Substances 0.000 description 6
- 238000005011 time of flight secondary ion mass spectroscopy Methods 0.000 description 6
- 238000002042 time-of-flight secondary ion mass spectrometry Methods 0.000 description 6
- 229920000178 Acrylic resin Polymers 0.000 description 5
- 239000004925 Acrylic resin Substances 0.000 description 5
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 5
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 5
- 150000001336 alkenes Chemical class 0.000 description 5
- 150000001408 amides Chemical class 0.000 description 5
- 229910000963 austenitic stainless steel Inorganic materials 0.000 description 5
- 229920006317 cationic polymer Polymers 0.000 description 5
- 229910000420 cerium oxide Inorganic materials 0.000 description 5
- KRVSOGSZCMJSLX-UHFFFAOYSA-L chromic acid Chemical class O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 description 5
- 239000008151 electrolyte solution Substances 0.000 description 5
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 5
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 229910001416 lithium ion Inorganic materials 0.000 description 5
- 229910052759 nickel Inorganic materials 0.000 description 5
- 229920006284 nylon film Polymers 0.000 description 5
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 5
- 239000005011 phenolic resin Substances 0.000 description 5
- 229910052698 phosphorus Inorganic materials 0.000 description 5
- 150000003077 polyols Chemical class 0.000 description 5
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 5
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical group C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 4
- 239000005977 Ethylene Substances 0.000 description 4
- 239000004677 Nylon Substances 0.000 description 4
- 229920002292 Nylon 6 Polymers 0.000 description 4
- 239000004793 Polystyrene Substances 0.000 description 4
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 4
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- 239000004840 adhesive resin Substances 0.000 description 4
- 229920006223 adhesive resin Polymers 0.000 description 4
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 4
- 229910052804 chromium Inorganic materials 0.000 description 4
- 238000007334 copolymerization reaction Methods 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000007598 dipping method Methods 0.000 description 4
- 238000009820 dry lamination Methods 0.000 description 4
- 229920001038 ethylene copolymer Polymers 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 4
- 229910052809 inorganic oxide Inorganic materials 0.000 description 4
- 239000012948 isocyanate Substances 0.000 description 4
- 238000003475 lamination Methods 0.000 description 4
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 4
- 239000011976 maleic acid Substances 0.000 description 4
- FTQWRYSLUYAIRQ-UHFFFAOYSA-N n-[(octadecanoylamino)methyl]octadecanamide Chemical compound CCCCCCCCCCCCCCCCCC(=O)NCNC(=O)CCCCCCCCCCCCCCCCC FTQWRYSLUYAIRQ-UHFFFAOYSA-N 0.000 description 4
- 229920001778 nylon Polymers 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 150000002989 phenols Chemical class 0.000 description 4
- 239000011574 phosphorus Substances 0.000 description 4
- 229920006267 polyester film Polymers 0.000 description 4
- 229920005906 polyester polyol Polymers 0.000 description 4
- 229920002223 polystyrene Polymers 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 4
- 229920005604 random copolymer Polymers 0.000 description 4
- 150000004671 saturated fatty acids Chemical class 0.000 description 4
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 4
- FTBATIJJKIIOTP-UHFFFAOYSA-K trifluorochromium Chemical compound F[Cr](F)F FTBATIJJKIIOTP-UHFFFAOYSA-K 0.000 description 4
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 4
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 239000011701 zinc Substances 0.000 description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 3
- 229920002302 Nylon 6,6 Polymers 0.000 description 3
- 239000006087 Silane Coupling Agent Substances 0.000 description 3
- 239000003513 alkali Substances 0.000 description 3
- 229920006318 anionic polymer Polymers 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 229920001400 block copolymer Polymers 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 239000006229 carbon black Substances 0.000 description 3
- 229910021563 chromium fluoride Inorganic materials 0.000 description 3
- IKZBVTPSNGOVRJ-UHFFFAOYSA-K chromium(iii) phosphate Chemical compound [Cr+3].[O-]P([O-])([O-])=O IKZBVTPSNGOVRJ-UHFFFAOYSA-K 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 230000032798 delamination Effects 0.000 description 3
- 239000007772 electrode material Substances 0.000 description 3
- 125000003700 epoxy group Chemical group 0.000 description 3
- 230000001747 exhibiting effect Effects 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 239000012634 fragment Substances 0.000 description 3
- 238000010559 graft polymerization reaction Methods 0.000 description 3
- 238000007756 gravure coating Methods 0.000 description 3
- 238000002386 leaching Methods 0.000 description 3
- 244000144972 livestock Species 0.000 description 3
- 229910052755 nonmetal Inorganic materials 0.000 description 3
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 3
- 150000007519 polyprotic acids Polymers 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 229920003002 synthetic resin Polymers 0.000 description 3
- 239000000057 synthetic resin Substances 0.000 description 3
- FYGFTTWEWBXNMP-UHFFFAOYSA-N 10-amino-10-oxodecanoic acid Chemical compound NC(=O)CCCCCCCCC(O)=O FYGFTTWEWBXNMP-UHFFFAOYSA-N 0.000 description 2
- IRPGOXJVTQTAAN-UHFFFAOYSA-N 2,2,3,3,3-pentafluoropropanal Chemical compound FC(F)(F)C(F)(F)C=O IRPGOXJVTQTAAN-UHFFFAOYSA-N 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 2
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 2
- OFNISBHGPNMTMS-UHFFFAOYSA-N 3-methylideneoxolane-2,5-dione Chemical compound C=C1CC(=O)OC1=O OFNISBHGPNMTMS-UHFFFAOYSA-N 0.000 description 2
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 2
- GVNWZKBFMFUVNX-UHFFFAOYSA-N Adipamide Chemical compound NC(=O)CCCCC(N)=O GVNWZKBFMFUVNX-UHFFFAOYSA-N 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- 229910017119 AlPO Inorganic materials 0.000 description 2
- KLZUFWVZNOTSEM-UHFFFAOYSA-K Aluminum fluoride Inorganic materials F[Al](F)F KLZUFWVZNOTSEM-UHFFFAOYSA-K 0.000 description 2
- LCFVJGUPQDGYKZ-UHFFFAOYSA-N Bisphenol A diglycidyl ether Chemical compound C=1C=C(OCC2OC2)C=CC=1C(C)(C)C(C=C1)=CC=C1OCC1CO1 LCFVJGUPQDGYKZ-UHFFFAOYSA-N 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 229920001634 Copolyester Polymers 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 229920002873 Polyethylenimine Polymers 0.000 description 2
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 2
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical compound O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 description 2
- 150000008064 anhydrides Chemical class 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 150000001785 cerium compounds Chemical class 0.000 description 2
- 150000001845 chromium compounds Chemical class 0.000 description 2
- PHFQLYPOURZARY-UHFFFAOYSA-N chromium trinitrate Chemical compound [Cr+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O PHFQLYPOURZARY-UHFFFAOYSA-N 0.000 description 2
- 229910000151 chromium(III) phosphate Inorganic materials 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- LDHQCZJRKDOVOX-NSCUHMNNSA-N crotonic acid Chemical compound C\C=C\C(O)=O LDHQCZJRKDOVOX-NSCUHMNNSA-N 0.000 description 2
- MGNZXYYWBUKAII-UHFFFAOYSA-N cyclohexa-1,3-diene Chemical compound C1CC=CC=C1 MGNZXYYWBUKAII-UHFFFAOYSA-N 0.000 description 2
- ZSWFCLXCOIISFI-UHFFFAOYSA-N cyclopentadiene Chemical compound C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000000975 dye Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- UAUDZVJPLUQNMU-KTKRTIGZSA-N erucamide Chemical compound CCCCCCCC\C=C/CCCCCCCCCCCC(N)=O UAUDZVJPLUQNMU-KTKRTIGZSA-N 0.000 description 2
- 230000032050 esterification Effects 0.000 description 2
- 238000005886 esterification reaction Methods 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- AWJWCTOOIBYHON-UHFFFAOYSA-N furo[3,4-b]pyrazine-5,7-dione Chemical compound C1=CN=C2C(=O)OC(=O)C2=N1 AWJWCTOOIBYHON-UHFFFAOYSA-N 0.000 description 2
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 2
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 2
- 229920001519 homopolymer Polymers 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 150000002500 ions Chemical group 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 229910001463 metal phosphate Inorganic materials 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- XMYQHJDBLRZMLW-UHFFFAOYSA-N methanolamine Chemical compound NCO XMYQHJDBLRZMLW-UHFFFAOYSA-N 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- PLDDOISOJJCEMH-UHFFFAOYSA-N neodymium(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Nd+3].[Nd+3] PLDDOISOJJCEMH-UHFFFAOYSA-N 0.000 description 2
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 229920001568 phenolic resin Polymers 0.000 description 2
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 2
- 229920001707 polybutylene terephthalate Polymers 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 125000003367 polycyclic group Chemical group 0.000 description 2
- 239000011112 polyethylene naphthalate Substances 0.000 description 2
- 239000005056 polyisocyanate Substances 0.000 description 2
- 229920001228 polyisocyanate Polymers 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 229920005606 polypropylene copolymer Polymers 0.000 description 2
- 229920005629 polypropylene homopolymer Polymers 0.000 description 2
- 229920005749 polyurethane resin Polymers 0.000 description 2
- 150000003141 primary amines Chemical class 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- NDVLTYZPCACLMA-UHFFFAOYSA-N silver oxide Chemical compound [O-2].[Ag+].[Ag+] NDVLTYZPCACLMA-UHFFFAOYSA-N 0.000 description 2
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 2
- LDHQCZJRKDOVOX-UHFFFAOYSA-N trans-crotonic acid Natural products CC=CC(O)=O LDHQCZJRKDOVOX-UHFFFAOYSA-N 0.000 description 2
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- CPUBMKFFRRFXIP-YPAXQUSRSA-N (9z,33z)-dotetraconta-9,33-dienediamide Chemical compound NC(=O)CCCCCCC\C=C/CCCCCCCCCCCCCCCCCCCCCC\C=C/CCCCCCCC(N)=O CPUBMKFFRRFXIP-YPAXQUSRSA-N 0.000 description 1
- KVPQFVHBQUTWLQ-CVBJKYQLSA-N (z)-docos-13-enamide;ethene Chemical compound C=C.CCCCCCCC\C=C/CCCCCCCCCCCC(N)=O.CCCCCCCC\C=C/CCCCCCCCCCCC(N)=O KVPQFVHBQUTWLQ-CVBJKYQLSA-N 0.000 description 1
- VZGOTNLOZGRSJA-ZZEZOPTASA-N (z)-n-octadecyloctadec-9-enamide Chemical compound CCCCCCCCCCCCCCCCCCNC(=O)CCCCCCC\C=C/CCCCCCCC VZGOTNLOZGRSJA-ZZEZOPTASA-N 0.000 description 1
- 125000004066 1-hydroxyethyl group Chemical group [H]OC([H])([*])C([H])([H])[H] 0.000 description 1
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical compound C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 description 1
- RDYWHMBYTHVOKZ-UHFFFAOYSA-N 18-hydroxyoctadecanamide Chemical compound NC(=O)CCCCCCCCCCCCCCCCCO RDYWHMBYTHVOKZ-UHFFFAOYSA-N 0.000 description 1
- XHSVWKJCURCWFU-UHFFFAOYSA-N 19-[3-(19-amino-19-oxononadecyl)phenyl]nonadecanamide Chemical compound NC(=O)CCCCCCCCCCCCCCCCCCC1=CC=CC(CCCCCCCCCCCCCCCCCCC(N)=O)=C1 XHSVWKJCURCWFU-UHFFFAOYSA-N 0.000 description 1
- VESQWGARFWAICR-UHFFFAOYSA-N 2,2-dihydroxyoctadecanamide;ethene Chemical compound C=C.CCCCCCCCCCCCCCCCC(O)(O)C(N)=O VESQWGARFWAICR-UHFFFAOYSA-N 0.000 description 1
- CDAWCLOXVUBKRW-UHFFFAOYSA-N 2-aminophenol Chemical compound NC1=CC=CC=C1O CDAWCLOXVUBKRW-UHFFFAOYSA-N 0.000 description 1
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 1
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- FVUKYCZRWSQGAS-UHFFFAOYSA-N 3-carbamoylbenzoic acid Chemical compound NC(=O)C1=CC=CC(C(O)=O)=C1 FVUKYCZRWSQGAS-UHFFFAOYSA-N 0.000 description 1
- GZVHEAJQGPRDLQ-UHFFFAOYSA-N 6-phenyl-1,3,5-triazine-2,4-diamine Chemical compound NC1=NC(N)=NC(C=2C=CC=CC=2)=N1 GZVHEAJQGPRDLQ-UHFFFAOYSA-N 0.000 description 1
- CGLVZFOCZLHKOH-UHFFFAOYSA-N 8,18-dichloro-5,15-diethyl-5,15-dihydrodiindolo(3,2-b:3',2'-m)triphenodioxazine Chemical compound CCN1C2=CC=CC=C2C2=C1C=C1OC3=C(Cl)C4=NC(C=C5C6=CC=CC=C6N(C5=C5)CC)=C5OC4=C(Cl)C3=NC1=C2 CGLVZFOCZLHKOH-UHFFFAOYSA-N 0.000 description 1
- 241000270728 Alligator Species 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 239000004254 Ammonium phosphate Substances 0.000 description 1
- REEFSLKDEDEWAO-UHFFFAOYSA-N Chloraniformethan Chemical compound ClC1=CC=C(NC(NC=O)C(Cl)(Cl)Cl)C=C1Cl REEFSLKDEDEWAO-UHFFFAOYSA-N 0.000 description 1
- 229910021555 Chromium Chloride Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- ORAWFNKFUWGRJG-UHFFFAOYSA-N Docosanamide Chemical compound CCCCCCCCCCCCCCCCCCCCCC(N)=O ORAWFNKFUWGRJG-UHFFFAOYSA-N 0.000 description 1
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- 229910001200 Ferrotitanium Inorganic materials 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 101000576320 Homo sapiens Max-binding protein MNT Proteins 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- JHWNWJKBPDFINM-UHFFFAOYSA-N Laurolactam Chemical compound O=C1CCCCCCCCCCCN1 JHWNWJKBPDFINM-UHFFFAOYSA-N 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- 229920000459 Nitrile rubber Polymers 0.000 description 1
- 229920000299 Nylon 12 Polymers 0.000 description 1
- 229920000305 Nylon 6,10 Polymers 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-L Phosphate ion(2-) Chemical compound OP([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-L 0.000 description 1
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 229920011250 Polypropylene Block Copolymer Polymers 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- 229920006121 Polyxylylene adipamide Polymers 0.000 description 1
- NRCMAYZCPIVABH-UHFFFAOYSA-N Quinacridone Chemical compound N1C2=CC=CC=C2C(=O)C2=C1C=C1C(=O)C3=CC=CC=C3NC1=C2 NRCMAYZCPIVABH-UHFFFAOYSA-N 0.000 description 1
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- RJDOZRNNYVAULJ-UHFFFAOYSA-L [O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[F-].[F-].[Mg++].[Mg++].[Mg++].[Al+3].[Si+4].[Si+4].[Si+4].[K+] Chemical compound [O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[F-].[F-].[Mg++].[Mg++].[Mg++].[Al+3].[Si+4].[Si+4].[Si+4].[K+] RJDOZRNNYVAULJ-UHFFFAOYSA-L 0.000 description 1
- 125000005396 acrylic acid ester group Chemical group 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 229920003180 amino resin Polymers 0.000 description 1
- 229910000148 ammonium phosphate Inorganic materials 0.000 description 1
- 235000019289 ammonium phosphates Nutrition 0.000 description 1
- 238000007743 anodising Methods 0.000 description 1
- 229910000410 antimony oxide Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000007611 bar coating method Methods 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 239000002981 blocking agent Substances 0.000 description 1
- 238000012661 block copolymerization Methods 0.000 description 1
- 239000001055 blue pigment Substances 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 239000004301 calcium benzoate Substances 0.000 description 1
- 235000010237 calcium benzoate Nutrition 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- QXDMQSPYEZFLGF-UHFFFAOYSA-L calcium oxalate Chemical compound [Ca+2].[O-]C(=O)C([O-])=O QXDMQSPYEZFLGF-UHFFFAOYSA-L 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- HZQXCUSDXIKLGS-UHFFFAOYSA-L calcium;dibenzoate;trihydrate Chemical compound O.O.O.[Ca+2].[O-]C(=O)C1=CC=CC=C1.[O-]C(=O)C1=CC=CC=C1 HZQXCUSDXIKLGS-UHFFFAOYSA-L 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006757 chemical reactions by type Methods 0.000 description 1
- OIDPCXKPHYRNKH-UHFFFAOYSA-J chrome alum Chemical compound [K]OS(=O)(=O)O[Cr]1OS(=O)(=O)O1 OIDPCXKPHYRNKH-UHFFFAOYSA-J 0.000 description 1
- 150000001844 chromium Chemical class 0.000 description 1
- QSWDMMVNRMROPK-UHFFFAOYSA-K chromium(3+) trichloride Chemical compound [Cl-].[Cl-].[Cl-].[Cr+3] QSWDMMVNRMROPK-UHFFFAOYSA-K 0.000 description 1
- ABXXWVKOBZHNNF-UHFFFAOYSA-N chromium(3+);dioxido(dioxo)chromium Chemical compound [Cr+3].[Cr+3].[O-][Cr]([O-])(=O)=O.[O-][Cr]([O-])(=O)=O.[O-][Cr]([O-])(=O)=O ABXXWVKOBZHNNF-UHFFFAOYSA-N 0.000 description 1
- UBFMILMLANTYEU-UHFFFAOYSA-H chromium(3+);oxalate Chemical compound [Cr+3].[Cr+3].[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O UBFMILMLANTYEU-UHFFFAOYSA-H 0.000 description 1
- WYYQVWLEPYFFLP-UHFFFAOYSA-K chromium(3+);triacetate Chemical compound [Cr+3].CC([O-])=O.CC([O-])=O.CC([O-])=O WYYQVWLEPYFFLP-UHFFFAOYSA-K 0.000 description 1
- GRWVQDDAKZFPFI-UHFFFAOYSA-H chromium(III) sulfate Chemical compound [Cr+3].[Cr+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O GRWVQDDAKZFPFI-UHFFFAOYSA-H 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000003851 corona treatment Methods 0.000 description 1
- 238000005536 corrosion prevention Methods 0.000 description 1
- 229920003020 cross-linked polyethylene Polymers 0.000 description 1
- 239000004703 cross-linked polyethylene Substances 0.000 description 1
- GKAWAQNIMXHVNI-UHFFFAOYSA-N decanamide;ethene Chemical compound C=C.CCCCCCCCCC(N)=O.CCCCCCCCCC(N)=O GKAWAQNIMXHVNI-UHFFFAOYSA-N 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 1
- GDVKFRBCXAPAQJ-UHFFFAOYSA-A dialuminum;hexamagnesium;carbonate;hexadecahydroxide Chemical compound [OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Al+3].[Al+3].[O-]C([O-])=O GDVKFRBCXAPAQJ-UHFFFAOYSA-A 0.000 description 1
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 description 1
- 125000000664 diazo group Chemical group [N-]=[N+]=[*] 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 238000000113 differential scanning calorimetry Methods 0.000 description 1
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical compound C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 description 1
- KHEMNHQQEMAABL-UHFFFAOYSA-J dihydroxy(dioxo)chromium Chemical compound O[Cr](O)(=O)=O.O[Cr](O)(=O)=O KHEMNHQQEMAABL-UHFFFAOYSA-J 0.000 description 1
- WMYWOWFOOVUPFY-UHFFFAOYSA-L dihydroxy(dioxo)chromium;phosphoric acid Chemical compound OP(O)(O)=O.O[Cr](O)(=O)=O WMYWOWFOOVUPFY-UHFFFAOYSA-L 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- VJJBJJBTUXPNEO-UHFFFAOYSA-N docosanamide;ethene Chemical compound C=C.CCCCCCCCCCCCCCCCCCCCCC(N)=O.CCCCCCCCCCCCCCCCCCCCCC(N)=O VJJBJJBTUXPNEO-UHFFFAOYSA-N 0.000 description 1
- ILRSCQWREDREME-UHFFFAOYSA-N dodecanamide Chemical compound CCCCCCCCCCCC(N)=O ILRSCQWREDREME-UHFFFAOYSA-N 0.000 description 1
- GFQOFGWPGYRLAO-UHFFFAOYSA-N dodecanamide;ethene Chemical compound C=C.CCCCCCCCCCCC(N)=O.CCCCCCCCCCCC(N)=O GFQOFGWPGYRLAO-UHFFFAOYSA-N 0.000 description 1
- LJZKUDYOSCNJPU-UHFFFAOYSA-N dotetracontanediamide Chemical compound NC(=O)CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC(N)=O LJZKUDYOSCNJPU-UHFFFAOYSA-N 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 238000005430 electron energy loss spectroscopy Methods 0.000 description 1
- 238000004100 electronic packaging Methods 0.000 description 1
- 238000004049 embossing Methods 0.000 description 1
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- SWSBIGKFUOXRNJ-CVBJKYQLSA-N ethene;(z)-octadec-9-enamide Chemical compound C=C.CCCCCCCC\C=C/CCCCCCCC(N)=O.CCCCCCCC\C=C/CCCCCCCC(N)=O SWSBIGKFUOXRNJ-CVBJKYQLSA-N 0.000 description 1
- ZJOLCKGSXLIVAA-UHFFFAOYSA-N ethene;octadecanamide Chemical compound C=C.CCCCCCCCCCCCCCCCCC(N)=O.CCCCCCCCCCCCCCCCCC(N)=O ZJOLCKGSXLIVAA-UHFFFAOYSA-N 0.000 description 1
- PLYDMIIYRWUYBP-UHFFFAOYSA-N ethyl 4-[[2-chloro-4-[3-chloro-4-[(3-ethoxycarbonyl-5-oxo-1-phenyl-4h-pyrazol-4-yl)diazenyl]phenyl]phenyl]diazenyl]-5-oxo-1-phenyl-4h-pyrazole-3-carboxylate Chemical compound CCOC(=O)C1=NN(C=2C=CC=CC=2)C(=O)C1N=NC(C(=C1)Cl)=CC=C1C(C=C1Cl)=CC=C1N=NC(C(=N1)C(=O)OCC)C(=O)N1C1=CC=CC=C1 PLYDMIIYRWUYBP-UHFFFAOYSA-N 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000001056 green pigment Substances 0.000 description 1
- RBTKNAXYKSUFRK-UHFFFAOYSA-N heliogen blue Chemical compound [Cu].[N-]1C2=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=NC([N-]1)=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=N2 RBTKNAXYKSUFRK-UHFFFAOYSA-N 0.000 description 1
- HSEMFIZWXHQJAE-UHFFFAOYSA-N hexadecanamide Chemical compound CCCCCCCCCCCCCCCC(N)=O HSEMFIZWXHQJAE-UHFFFAOYSA-N 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 1
- CPSYWNLKRDURMG-UHFFFAOYSA-L hydron;manganese(2+);phosphate Chemical compound [Mn+2].OP([O-])([O-])=O CPSYWNLKRDURMG-UHFFFAOYSA-L 0.000 description 1
- 229960001545 hydrotalcite Drugs 0.000 description 1
- 229910001701 hydrotalcite Inorganic materials 0.000 description 1
- 125000004029 hydroxymethyl group Chemical group [H]OC([H])([H])* 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000001023 inorganic pigment Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229920000831 ionic polymer Polymers 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910000398 iron phosphate Inorganic materials 0.000 description 1
- WBJZTOZJJYAKHQ-UHFFFAOYSA-K iron(3+) phosphate Chemical compound [Fe+3].[O-]P([O-])([O-])=O WBJZTOZJJYAKHQ-UHFFFAOYSA-K 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical compound CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 229920000092 linear low density polyethylene Polymers 0.000 description 1
- 239000004707 linear low-density polyethylene Substances 0.000 description 1
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 1
- 229910052808 lithium carbonate Inorganic materials 0.000 description 1
- 229920001684 low density polyethylene Polymers 0.000 description 1
- 239000004702 low-density polyethylene Substances 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 239000006224 matting agent Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229920001179 medium density polyethylene Polymers 0.000 description 1
- 239000004701 medium-density polyethylene Substances 0.000 description 1
- NYGZLYXAPMMJTE-UHFFFAOYSA-M metanil yellow Chemical group [Na+].[O-]S(=O)(=O)C1=CC=CC(N=NC=2C=CC(NC=3C=CC=CC=3)=CC=2)=C1 NYGZLYXAPMMJTE-UHFFFAOYSA-M 0.000 description 1
- 125000005397 methacrylic acid ester group Chemical group 0.000 description 1
- 125000000896 monocarboxylic acid group Chemical group 0.000 description 1
- 229910052901 montmorillonite Inorganic materials 0.000 description 1
- JHOKTNSTUVKGJC-UHFFFAOYSA-N n-(hydroxymethyl)octadecanamide Chemical compound CCCCCCCCCCCCCCCCCC(=O)NCO JHOKTNSTUVKGJC-UHFFFAOYSA-N 0.000 description 1
- VMRGZRVLZQSNHC-ZCXUNETKSA-N n-[(z)-octadec-9-enyl]hexadecanamide Chemical compound CCCCCCCCCCCCCCCC(=O)NCCCCCCCC\C=C/CCCCCCCC VMRGZRVLZQSNHC-ZCXUNETKSA-N 0.000 description 1
- PECBPCUKEFYARY-ZPHPHTNESA-N n-[(z)-octadec-9-enyl]octadecanamide Chemical compound CCCCCCCCCCCCCCCCCC(=O)NCCCCCCCC\C=C/CCCCCCCC PECBPCUKEFYARY-ZPHPHTNESA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- DJWFNQUDPJTSAD-UHFFFAOYSA-N n-octadecyloctadecanamide Chemical compound CCCCCCCCCCCCCCCCCCNC(=O)CCCCCCCCCCCCCCCCC DJWFNQUDPJTSAD-UHFFFAOYSA-N 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 150000002843 nonmetals Chemical class 0.000 description 1
- SJYNFBVQFBRSIB-UHFFFAOYSA-N norbornadiene Chemical compound C1=CC2C=CC1C2 SJYNFBVQFBRSIB-UHFFFAOYSA-N 0.000 description 1
- 229920003986 novolac Polymers 0.000 description 1
- LYRFLYHAGKPMFH-UHFFFAOYSA-N octadecanamide Chemical compound CCCCCCCCCCCCCCCCCC(N)=O LYRFLYHAGKPMFH-UHFFFAOYSA-N 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- 229940065472 octyl acrylate Drugs 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- ANISOHQJBAQUQP-UHFFFAOYSA-N octyl prop-2-enoate Chemical compound CCCCCCCCOC(=O)C=C ANISOHQJBAQUQP-UHFFFAOYSA-N 0.000 description 1
- FATBGEAMYMYZAF-KTKRTIGZSA-N oleamide Chemical compound CCCCCCCC\C=C/CCCCCCCC(N)=O FATBGEAMYMYZAF-KTKRTIGZSA-N 0.000 description 1
- 239000012860 organic pigment Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- VTRUBDSFZJNXHI-UHFFFAOYSA-N oxoantimony Chemical compound [Sb]=O VTRUBDSFZJNXHI-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- WOQDVIVTFCTQCE-UHFFFAOYSA-N pentacontanediamide Chemical compound NC(=O)CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC(N)=O WOQDVIVTFCTQCE-UHFFFAOYSA-N 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 229920000083 poly(allylamine) Polymers 0.000 description 1
- 229920001084 poly(chloroprene) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920000137 polyphosphoric acid Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 229910000160 potassium phosphate Inorganic materials 0.000 description 1
- 235000011009 potassium phosphates Nutrition 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 229910001923 silver oxide Inorganic materials 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 235000011008 sodium phosphates Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 229920001897 terpolymer Polymers 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 150000003608 titanium Chemical class 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- GPTWCNIDKQZDFF-UHFFFAOYSA-H trizinc;diphosphate;hydrate Chemical compound O.[Zn+2].[Zn+2].[Zn+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O GPTWCNIDKQZDFF-UHFFFAOYSA-H 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
- 150000003751 zinc Chemical class 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- LRXTYHSAJDENHV-UHFFFAOYSA-H zinc phosphate Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O LRXTYHSAJDENHV-UHFFFAOYSA-H 0.000 description 1
- 229910000165 zinc phosphate Inorganic materials 0.000 description 1
- 150000003754 zirconium Chemical class 0.000 description 1
- 150000007934 α,β-unsaturated carboxylic acids Chemical class 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/102—Primary casings; Jackets or wrappings characterised by their shape or physical structure
- H01M50/105—Pouches or flexible bags
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a battery packaging material, a method for producing the same, and a battery.
- Patent Document 1 includes a base material layer, an adhesive layer, an aluminum foil layer provided with a corrosion prevention treatment layer, an adhesive resin layer, a sealant layer provided on the opposite side of the adhesive resin layer to the base material layer, and Are sequentially laminated, and an exterior material for a lithium ion battery in which an adhesive resin layer contains an acid-modified polyolefin resin and an elastomer is disclosed.
- minute foreign matters such as electrode active material and electrode tab fragments have electrical conductivity.
- the electrode tab and the heat-fusible resin layer if the foreign matter penetrates the heat-fusible resin layer due to heat and pressure during heat sealing, the electrode tab and battery
- the barrier layer of the packaging material may be electrically connected to cause a short circuit.
- the present invention has been made in view of these problems. That is, the main object of the present invention is to provide a battery packaging material having high insulation and durability.
- thermomechanical analysis in which the battery packaging material is constituted by a laminate including a base material layer, a barrier layer, a cured resin layer, and a heat-fusible resin layer in this order, and measures the displacement of the probe.
- a probe is set on the surface of the cured resin layer in the cross section of the battery packaging material (the laminate), the deflection setting value of the probe at the start of measurement is ⁇ 4 V, and the temperature rising rate is 5 ° C./min. It was found that when the probe was heated from 40 ° C. to 220 ° C. under the conditions, the position of the probe did not fall below the initial value, and thus a battery packaging material having high insulation and durability could be obtained.
- Item 1 It is composed of a laminate including at least a base material layer, a barrier layer, a cured resin layer, and a heat-fusible resin layer in this order, In the thermomechanical analysis for measuring the displacement of the probe, the probe is set on the surface of the cured resin layer in the cross section of the laminate, and the set value of the deflection of the probe at the start of the measurement is ⁇ 4 V, the heating rate is 5 A battery packaging material in which, when the probe is heated from 40 ° C. to 220 ° C. under the condition of ° C./min, the position of the probe does not fall below the initial value. Item 2.
- the probe In the thermomechanical analysis for measuring the displacement of the probe, the probe is set on the surface of the cured resin layer in the cross section of the laminate, and the set value of the deflection of the probe at the start of the measurement is ⁇ 4 V, the heating rate is 5
- the probe was heated from 40 ° C. to 220 ° C. under the condition of ° C./min, the amount of increase in the position of the probe when heated from 140 ° C. to 220 ° C. was when heated from 80 ° C. to 120 ° C.
- Item 2 The battery packaging material according to Item 1, wherein the battery packaging material is larger than the amount of increase in the position of the probe.
- the battery packaging material according to Item 1 or 2 wherein the cured resin layer is a cured product of a resin composition containing an acid-modified polyolefin.
- the acid-modified polyolefin of the cured resin layer is maleic anhydride-modified polypropylene, Item 4.
- Item 5. Item 5.
- the cured resin layer is a cured product of a resin composition containing at least one selected from the group consisting of a compound having an isocyanate group, a compound having an oxazoline group, an epoxy resin, and a urethane resin.
- the battery packaging material according to any one of the above.
- the cured resin layer is a cured product of a resin composition containing a curing agent having at least one selected from the group consisting of an oxygen atom, a heterocyclic ring, a C ⁇ N bond, and a C—O—C bond.
- the battery packaging material according to any one of 1 to 6.
- Item 9. Item 9. The battery packaging material according to any one of Items 1 to 8, wherein the thickness of the cured resin layer is 0.6 ⁇ m or more and 11 ⁇ m or less.
- Item 10. Item 10. The battery packaging material according to any one of Items 1 to 9, wherein a softening temperature of the cured resin layer is in a range of 180 ° C. or higher and 260 ° C. or lower.
- the probe is installed on the surface of the cured resin layer at the end of the laminate, and the deflection setting value of the probe at the start of measurement is ⁇ 4 V, the heating rate
- a battery packaging material having high insulation and durability can be provided. That is, by sealing the battery element with the battery packaging material of the present invention, the insulation and durability of the battery can be enhanced.
- FIG. 5 is an example of a cross-sectional structure of a battery packaging material, and is a diagram for illustrating a position where a probe is installed (an adhesive layer surface of a cross section of the battery packaging material) in a thermomechanical analysis for measuring a displacement amount of the probe. It is a conceptual diagram of the position change of the probe in the thermomechanical analysis which measures the displacement amount of a probe. It is a schematic diagram for demonstrating the method of "durability evaluation" in an Example.
- thermomechanical analysis which measures the displacement amount of a probe, it is a schematic perspective view for showing the position (5 places) where a probe is installed.
- the battery packaging material is composed of a laminate including at least a base material layer, a barrier layer, a cured resin layer, and a heat-fusible resin layer in this order.
- a probe is placed on the surface of the cured resin layer in the cross section of the laminate, and the probe deflection setting value at the start of measurement is -4V and the temperature rise rate is 5 ° C / min. It is characterized in that the position of the probe does not fall below the initial value when the is heated from 40 ° C. to 220 ° C.
- the battery packaging material of the present invention, the manufacturing method thereof, and the battery of the present invention in which the battery element is sealed with the battery packaging material of the present invention will be described in detail with reference to FIGS. 1 to 3.
- the numerical range indicated by “to” means “above” or “below”.
- the notation of 2 to 15 mm means 2 mm or more and 15 mm or less.
- the battery packaging material of the present invention comprises at least a base material layer 1, a barrier layer 3, a cured resin layer 4, and a heat-fusible resin layer 5 in this order. It consists of a provided laminate.
- the base material layer 1 is the outermost layer side
- the heat-fusible resin layer 5 is the innermost layer. That is, at the time of battery assembly, the heat sealing resin layers 5 positioned at the periphery of the battery element are thermally fused together to seal the battery element, thereby sealing the battery element.
- the battery packaging material of the present invention includes an adhesive layer 2 between the base material layer 1 and the barrier layer 3 as necessary for the purpose of enhancing the adhesiveness thereof. Also good.
- a surface coating layer 6 may be provided on the surface of the base material layer 1 opposite to the barrier layer 3.
- the thickness of the laminate constituting the battery packaging material of the present invention is not particularly limited, but preferably from the viewpoint of exhibiting high insulation and durability while reducing the thickness of the laminate as much as possible. 160 ⁇ m or less, more preferably about 35 to 155 ⁇ m, still more preferably about 45 to 120 ⁇ m. Even when the thickness of the laminate constituting the battery packaging material of the present invention is as thin as 160 ⁇ m or less, for example, the present invention can exhibit excellent insulation. For this reason, the packaging material for batteries of this invention can contribute to the improvement of the energy density of a battery.
- the base material layer 1 is a layer located on the outermost layer side.
- the material for forming the base material layer 1 is not particularly limited as long as it has insulating properties.
- the material for forming the base material layer 1 include resin films such as polyester resin, polyamide resin, epoxy resin, acrylic resin, fluorine resin, polyurethane resin, silicon resin, phenol resin, and mixtures and copolymers thereof. Can be mentioned. Moreover, you may form the base material layer 1 by apply
- polyester resin examples include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, copolyester, and polycarbonate.
- polyamide resin examples include nylon 6, nylon 66, a copolymer of nylon 6 and nylon 66, nylon 6,10, polymetaxylylene adipamide (MXD6), and the like.
- the base material layer 1 may be formed of a single resin film, but may be formed of two or more resin films in order to improve pinhole resistance and insulation. Specific examples include a multilayer structure in which a polyester film and a nylon film are laminated, a multilayer structure in which a plurality of nylon films are laminated, and a multilayer structure in which a plurality of polyester films are laminated.
- a multilayer structure a laminate of a biaxially stretched nylon film and a biaxially stretched polyester film, a laminate of a plurality of biaxially stretched nylon films, and a laminate of a plurality of biaxially stretched polyester films The body is preferred.
- the polyester resin and the polyester resin are laminated, the polyamide resin and the polyamide resin are laminated, or the polyester resin and the polyamide resin are laminated. It is preferable to use a structure in which polyethylene terephthalate and polyethylene terephthalate are laminated, a structure in which nylon and nylon are laminated, or a structure in which polyethylene terephthalate and nylon are laminated.
- the polyester resin is difficult to discolor when, for example, the electrolytic solution adheres to the surface, it is preferable to laminate the base material layer 1 so that the polyester resin is located in the outermost layer in the laminated configuration.
- the thickness of each layer is preferably about 2 to 25 ⁇ m.
- the base material layer 1 is formed of a multilayer resin film
- two or more resin films may be laminated via an adhesive component such as an adhesive or an adhesive resin, and the type and amount of the adhesive component used. Is the same as that of the adhesive layer 2 described later.
- an adhesive component such as an adhesive or an adhesive resin
- stacking two or more resin films A well-known method can be employ
- laminating by a dry laminating method it is preferable to use a polyurethane adhesive as the adhesive layer. At this time, the thickness of the adhesive layer is, for example, about 2 to 5 ⁇ m.
- a lubricant is present on the surface of the base material layer 1 from the viewpoint of improving the moldability of the battery packaging material.
- an amide type lubricant is mentioned.
- Specific examples of the amide-based lubricant include saturated fatty acid amide, unsaturated fatty acid amide, substituted amide, methylolamide, saturated fatty acid bisamide, unsaturated fatty acid bisamide, and the like.
- Specific examples of the saturated fatty acid amide include lauric acid amide, palmitic acid amide, stearic acid amide, behenic acid amide, hydroxy stearic acid amide and the like.
- the unsaturated fatty acid amide include oleic acid amide and erucic acid amide.
- substituted amide include N-oleyl palmitic acid amide, N-stearyl stearic acid amide, N-stearyl oleic acid amide, N-oleyl stearic acid amide, N-stearyl erucic acid amide and the like.
- methylolamide include methylol stearamide.
- saturated fatty acid bisamides include methylene bis stearamide, ethylene biscapric amide, ethylene bis lauric acid amide, ethylene bis stearic acid amide, ethylene bishydroxy stearic acid amide, ethylene bisbehenic acid amide, hexamethylene bis stearic acid amide.
- unsaturated fatty acid bisamides include ethylene bisoleic acid amide, ethylene biserucic acid amide, hexamethylene bisoleic acid amide, N, N′-dioleyl adipic acid amide, N, N′-dioleyl sebacic acid amide Etc.
- fatty acid ester amide include stearoamidoethyl stearate.
- aromatic bisamide include m-xylylene bis stearic acid amide, m-xylylene bishydroxy stearic acid amide, N, N′-distearyl isophthalic acid amide and the like.
- One type of lubricant may be used alone, or two or more types may be used in combination.
- the amount of the lubricant is not particularly limited, but is preferably about 3 mg / m 2 or more, more preferably 4 to 15 mg / m in an environment of a temperature of 24 ° C. and a humidity of 60%. About 2 , more preferably about 5 to 14 mg / m 2 .
- the base material layer 1 may contain a lubricant. Further, the lubricant present on the surface of the base material layer 1 may be obtained by leaching the lubricant contained in the resin constituting the base material layer 1 or by applying a lubricant to the surface of the base material layer 1. It may be.
- the thickness of the base material layer 1 is not particularly limited as long as it functions as a base material layer.
- the thickness is about 3 to 50 ⁇ m, preferably about 10 to 35 ⁇ m.
- the adhesive layer 2 is a layer provided between the base material layer 1 and the barrier layer 3 as necessary in order to firmly bond them.
- the adhesive layer 2 is formed of an adhesive capable of bonding the base material layer 1 and the barrier layer 3 together.
- the adhesive used for forming the adhesive layer 2 may be a two-component curable adhesive or a one-component curable adhesive. Further, the adhesive used for forming the adhesive layer 2 is not particularly limited, and may be any of a chemical reaction type, a solvent volatilization type, a heat melting type, a hot pressure type, and the like.
- adhesive components that can be used to form the adhesive layer 2 include polyester resins such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polyethylene isophthalate, and copolyester; polyethers Polyurethane adhesives; epoxy resins; phenolic resins; polyamide resins such as nylon 6, nylon 66, nylon 12, copolymer polyamides; polyolefins such as polyolefins, carboxylic acid modified polyolefins, metal modified polyolefins Resin, polyvinyl acetate resin; cellulosic adhesive; (meth) acrylic resin; polyimide resin; polycarbonate; amino resin such as urea resin and melamine resin; chloroprene rubber, nitrile rubber, - Len rubbers such as butadiene rubber, silicone-based resins.
- These adhesive components may be used individually by 1 type, and may be used in combination of 2 or more type.
- the polyurethane adhesive is, for example, a polyurethane adhesive containing a main component containing a polyol component (A) and a curing agent containing a polyisocyanate component (B), and the polyol component (A) is a polyester.
- Polyester polyol containing a polyol (A1) wherein the polyester polyol (A1) is composed of a polybasic acid component and a polyhydric alcohol component and having a number average molecular weight of 5,000 to 50,000, in 100 mol% of the polybasic acid component,
- the aromatic polybasic acid component is contained in an amount of 45 to 95 mol%, and the tensile stress at 100% elongation of the adhesive layer is 100 kg / cm 2 or more and 500 kg / cm 2 or less.
- a polyurethane adhesive for battery packaging materials containing a main agent and a polyisocyanate curing agent, wherein the main agent is a polyester polyol (A1) having a glass transition temperature of 40 ° C.
- Polyester polyol (A2) having a transition temperature of less than 40 ° C.
- a polyol component (A) containing 95 to 50% by weight and a silane coupling agent (B), and the total of hydroxyl groups and carboxyl groups derived from the polyol component (A) And an equivalent ratio [NCO] / ([OH] + [COOH]) of isocyanate groups contained in the curing agent to 1 to 30 may be mentioned.
- the adhesive layer 2 may contain a colorant.
- the battery packaging material can be colored.
- the colorant known ones such as pigments and dyes can be used.
- 1 type may be used for a coloring agent, and 2 or more types may be mixed and used for it.
- inorganic pigments preferably include carbon black and titanium oxide.
- organic pigments preferably include azo pigments, phthalocyanine pigments, and condensed polycyclic pigments.
- azo pigments include soluble pigments such as watching red and force-min 6C; insoluble azo pigments such as monoazo yellow, disazo yellow, pyrazolone orange, pyrazolone red, and permanent red, and phthalocyanine pigments include copper phthalocyanine pigments.
- blue pigments and green pigments as metal-free phthalocyanine pigments, and condensed polycyclic pigments include dioxazine violet and quinacridone violet.
- a pearl pigment, a fluorescent pigment, or the like can be used.
- carbon black is preferable in order to make the appearance of the battery packaging material black.
- the average particle diameter of the pigment is not particularly limited, and examples thereof include about 0.05 to 5 ⁇ m, preferably about 0.08 to 2 ⁇ m.
- the average particle diameter of a pigment be the median diameter measured with the laser diffraction / scattering type particle size distribution measuring apparatus.
- the content of the pigment in the adhesive layer 2 is not particularly limited as long as the battery packaging material is colored, and examples thereof include about 5 to 60% by mass.
- the thickness of the adhesive layer 2 is not particularly limited as long as it functions as a cured resin layer, and for example, it may be about 1 to 10 ⁇ m, preferably about 2 to 5 ⁇ m.
- the colored layer is a layer provided as necessary between the base material layer 1 and the adhesive layer 2 (illustration is omitted). By providing the colored layer, the battery packaging material can be colored.
- the colored layer can be formed, for example, by applying an ink containing a colorant to the surface of the base material layer 1 or the surface of the barrier layer 3.
- a colorant known ones such as pigments and dyes can be used.
- 1 type may be used for a coloring agent, and 2 or more types may be mixed and used for it.
- colorant contained in the colored layer are the same as those exemplified in the column of [Adhesive layer 2].
- the barrier layer 3 is a layer having a function of preventing water vapor, oxygen, light and the like from entering the battery, in addition to improving the strength of the battery packaging material.
- the barrier layer 3 can be formed of a metal foil, a metal vapor-deposited film, an inorganic oxide vapor-deposited film, a carbon-containing inorganic oxide vapor-deposited film, a film provided with these vapor-deposited layers, or the like, and is a layer formed of metal.
- the metal constituting the barrier layer 3 include aluminum, stainless steel, titanium steel, and preferably aluminum.
- the barrier layer 3 can be formed by, for example, a metal foil, a metal vapor-deposited film, an inorganic oxide vapor-deposited film, a carbon-containing inorganic oxide vapor-deposited film, a film provided with these vapor-deposited films, etc. It is more preferable to form with aluminum foil or stainless steel foil. From the viewpoint of preventing the generation of wrinkles and pinholes in the barrier layer 3 during the production of the battery packaging material, the barrier layer is made of, for example, annealed aluminum (JIS H4160: 1994 A8021H-O, JIS H4160: 1994 A8079H-O, JIS H4000: 2014 A8021P-O, JIS H4000: 2014 A8079P-O) and the like are more preferable.
- examples of the stainless steel foil include austenitic stainless steel foil and ferritic stainless steel foil.
- the stainless steel foil is preferably made of austenitic stainless steel.
- austenitic stainless steel constituting the stainless steel foil include SUS304, SUS301, SUS316L, and among these, SUS304 is particularly preferable.
- the thickness of the barrier layer 3 is not particularly limited as long as it functions as a barrier layer such as water vapor.
- the upper limit is preferably about 85 ⁇ m or less, more preferably about 50 ⁇ m or less, and still more preferably 40 ⁇ m or less.
- the lower limit is preferably about 10 ⁇ m or more, and the thickness range is about 10 to 80 ⁇ m, preferably about 10 to 50 ⁇ m.
- the thickness of the stainless steel foil is preferably about 85 ⁇ m or less, more preferably about 50 ⁇ m or less, still more preferably about 40 ⁇ m or less, and further preferably about 30 ⁇ m or less.
- Particularly preferred is about 25 ⁇ m or less, and the lower limit is about 10 ⁇ m or more, and the preferred thickness range is about 10 to 85 ⁇ m, about 10 to 50 ⁇ m, more preferably about 10 to 40 ⁇ m, more preferably About 10 to 30 ⁇ m, more preferably about 15 to 25 ⁇ m.
- the barrier layer 3 is preferably subjected to chemical conversion treatment on at least one side, preferably both sides, in order to stabilize adhesion, prevent dissolution and corrosion, and the like.
- the chemical conversion treatment refers to a treatment for forming an acid-resistant film on the surface of the barrier layer.
- the barrier layer 3 includes an acid resistant film.
- chromate chromate using chromic acid compounds such as chromium nitrate, chromium fluoride, chromium sulfate, chromium acetate, chromium oxalate, chromium biphosphate, chromic acetyl acetate, chromium chloride, potassium sulfate chromium, etc.
- X represents a hydrogen atom, a hydroxyl group, an alkyl group, a hydroxyalkyl group, an allyl group or a benzyl group.
- R 1 and R 2 are the same or different and each represents a hydroxyl group, an alkyl group, or a hydroxyalkyl group.
- examples of the alkyl group represented by X, R 1 and R 2 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, Examples thereof include a linear or branched alkyl group having 1 to 4 carbon atoms such as a tert-butyl group.
- Examples of the hydroxyalkyl group represented by X, R 1 and R 2 include a hydroxymethyl group, a 1-hydroxyethyl group, a 2-hydroxyethyl group, a 1-hydroxypropyl group, a 2-hydroxypropyl group, 3- C1-C4 straight or branched chain in which one hydroxyl group such as hydroxypropyl group, 1-hydroxybutyl group, 2-hydroxybutyl group, 3-hydroxybutyl group, 4-hydroxybutyl group is substituted
- An alkyl group is mentioned.
- the alkyl group and hydroxyalkyl group represented by X, R 1 and R 2 may be the same or different.
- X is preferably a hydrogen atom, a hydroxyl group or a hydroxyalkyl group.
- the number average molecular weight of the aminated phenol polymer having a repeating unit represented by the general formulas (1) to (4) is preferably about 500 to 1,000,000, for example, about 1,000 to 20,000. More preferred.
- a phosphoric acid is coated with a metal oxide such as aluminum oxide, titanium oxide, cerium oxide, tin oxide, or barium sulfate fine particles dispersed therein.
- a method of forming an acid-resistant film on the surface of the barrier layer 3 by performing a baking treatment at 150 ° C. or higher can be mentioned.
- a resin layer obtained by crosslinking a cationic polymer with a crosslinking agent may be further formed on the acid resistant film.
- examples of the cationic polymer include polyethyleneimine, an ionic polymer complex composed of a polymer having polyethyleneimine and a carboxylic acid, a primary amine graft acrylic resin obtained by graft polymerization of a primary amine on an acrylic main skeleton, and polyallylamine. Or the derivative, aminophenol, etc. are mentioned.
- these cationic polymers only one type may be used, or two or more types may be used in combination.
- examples of the crosslinking agent include a compound having at least one functional group selected from the group consisting of an isocyanate group, a glycidyl group, a carboxyl group, and an oxazoline group, and a silane coupling agent. As these crosslinking agents, only one type may be used, or two or more types may be used in combination.
- an acid-resistant film for example, as an example, at least the surface on the inner layer side of an aluminum foil (barrier layer) is first subjected to an alkali dipping method, electrolytic cleaning method, acid cleaning method, electrolytic A degreasing treatment is performed by a known treatment method such as an acid cleaning method or an acid activation method, and then a phosphoric acid Cr (chromium) salt, phosphoric acid Ti (titanium) salt, phosphoric acid Zr (zirconium) salt, phosphorus Treatment liquid (aqueous solution) mainly composed of a metal phosphate such as Zn (zinc) salt and a mixture of these metals, or a mixture of a non-metal phosphate and a mixture of these non-metals A treatment liquid (aqueous solution) or a mixture of these with a water-based synthetic resin such as an acrylic resin, a phenol resin, or a polyurethane resin.
- a water-based synthetic resin such as an acrylic resin, a phenol resin,
- the acid-resistant coating By coating in a known coating method of the immersion method, it is possible to form the acid-resistant coating.
- CrPO 4 chromium phosphate
- AlPO 4 aluminum phosphate
- Al 2 O 3 aluminum oxide
- Al (OH) x water Zn 2 PO 4 ⁇ 4H 2 O (zinc phosphate hydrate) when treated with an acid-resistant film made of aluminum oxide), AlF x (aluminum fluoride), etc.
- an acid-resistant film for example, at least the surface on the inner layer side of the aluminum foil, first, an alkali dipping method, an electrolytic cleaning method, an acid cleaning method, an electrolytic acid cleaning method, an acid activity
- An acid-resistant film can be formed by performing a degreasing process by a known processing method such as a chemical conversion method and then performing a known anodizing process on the degreasing surface.
- a film of a phosphorus compound (for example, phosphate-based) or a chromium compound (for example, chromic acid-based) can be given.
- a phosphorus compound for example, phosphate-based
- a chromium compound for example, chromic acid-based
- the phosphate system include zinc phosphate, iron phosphate, manganese phosphate, calcium phosphate, and chromium phosphate.
- the chromic acid system include chromium chromate.
- an acid-resistant film by forming an acid-resistant film such as a phosphorus compound (phosphate, etc.), a chromium compound (chromate, etc.), a fluoride, a triazine thiol compound, etc., during emboss molding
- an acid-resistant film such as a phosphorus compound (phosphate, etc.), a chromium compound (chromate, etc.), a fluoride, a triazine thiol compound, etc.
- an acid-resistant film such as a phosphorus compound (phosphate, etc.), a chromium compound (chromate, etc.), a fluoride, a triazine thiol compound, etc.
- an aqueous solution composed of three components of a phenolic resin, a chromium fluoride (3) compound, and phosphoric acid is applied to the aluminum surface, and the dry baking treatment is good.
- the acid-resistant film includes a layer having cerium oxide, phosphoric acid or phosphate, an anionic polymer, and a crosslinking agent that crosslinks the anionic polymer, and the phosphoric acid or phosphate is 1 to 100 parts by mass may be blended with 100 parts by mass of cerium oxide. It is preferable that the acid-resistant film has a multilayer structure further including a layer having a cationic polymer and a crosslinking agent for crosslinking the cationic polymer.
- the anionic polymer is poly (meth) acrylic acid or a salt thereof, or a copolymer containing (meth) acrylic acid or a salt thereof as a main component.
- the said crosslinking agent is at least 1 sort (s) chosen from the group which has a functional group in any one of an isocyanate group, a glycidyl group, a carboxyl group, and an oxazoline group, and a silane coupling agent.
- the phosphoric acid or phosphate is preferably condensed phosphoric acid or condensed phosphate.
- chemical conversion treatment only one type of chemical conversion treatment may be performed, or two or more types of chemical conversion processing may be performed in combination. Furthermore, these chemical conversion treatments may be carried out using one kind of compound alone, or may be carried out using a combination of two or more kinds of compounds.
- chemical conversion treatments chromic acid chromate treatment, chromate treatment combining a chromic acid compound, a phosphoric acid compound, and an aminated phenol polymer are preferable.
- the acid-resistant film include those containing at least one of phosphates, chromates, fluorides, and triazine thiol compounds.
- An acid resistant film containing a cerium compound is also preferable.
- cerium compound cerium oxide is preferable.
- the acid resistant film examples include a phosphate film, a chromate film, a fluoride film, and a triazine thiol compound film.
- a phosphate film examples include a phosphate film, a chromate film, a fluoride film, and a triazine thiol compound film.
- an acid-resistant film one of these may be used, or a plurality of combinations may be used.
- a treatment liquid composed of a mixture of a metal phosphate and an aqueous synthetic resin, or a mixture of a non-metal phosphate and an aqueous synthetic resin It may be formed with a treatment liquid.
- composition of the acid resistant film can be analyzed using, for example, time-of-flight secondary ion mass spectrometry.
- the amount of the acid-resistant film formed on the surface of the barrier layer 3 in the chemical conversion treatment is not particularly limited.
- the chromic acid compound is present per 1 m 2 of the surface of the barrier layer 3.
- the thickness of the acid-resistant film is not particularly limited, but is preferably about 1 nm to 20 ⁇ m, more preferably about 1 nm to 100 nm, from the viewpoint of the cohesive strength of the film and the adhesive strength with the barrier layer and the heat-fusible resin layer. More preferably, about 1 nm to 50 nm is mentioned.
- the thickness of the acid-resistant film can be measured by observation with a transmission electron microscope, or a combination of observation with a transmission electron microscope and energy dispersive X-ray spectroscopy or electron energy loss spectroscopy.
- At least one secondary ion composed of Ce, P and O for example, Ce 2 PO 4 + , CePO 4 ⁇ , etc.
- a peak derived from a secondary ion composed of Cr, P, and O for example, at least one kind of CrPO 2 + , CrPO 4 ⁇ , etc.
- a solution containing a compound used for forming an acid-resistant film is applied to the surface of the barrier layer by a bar coating method, a roll coating method, a gravure coating method, a dipping method, etc., and then the temperature of the barrier layer is 70. It is performed by heating to about 200 ° C.
- the barrier layer may be previously subjected to a degreasing treatment by an alkali dipping method, an electrolytic cleaning method, an acid cleaning method, an electrolytic acid cleaning method, or the like. By performing the degreasing process in this manner, it is possible to more efficiently perform the chemical conversion process on the surface of the barrier layer.
- the cured resin layer 4 is a layer provided between the barrier layer 3 and the heat-fusible resin layer 5 in order to enhance the insulation and durability of the battery packaging material.
- the cured resin layer 4 is provided with a probe on the surface of the cured resin layer in the cross section of the battery packaging material (laminate),
- the probe is heated from 40 ° C. to 220 ° C. under the conditions of the deflection set value of ⁇ 4 V and the heating rate of 5 ° C./min, the probe position is not lowered from the initial value.
- thermomechanical analysis apparatus is applied to the surface of the cured resin layer 4 in the cross section of the battery packaging material (laminate).
- the probe 10 is installed (measurement start A in FIG. 5).
- the cross section at this time is a portion where the cross section of the cured resin layer 4 obtained by cutting in the thickness direction so as to pass through the center of the battery packaging material is exposed. Cutting can be performed using a commercially available rotary microtome or the like.
- thermomechanical analysis device an atomic force microscope to which a cantilever with a heating mechanism can be attached can be used.
- a cantilever with a heating mechanism can be attached.
- an afm plus system manufactured by ANASIS INSTRUMENTS is used, and a cantilever ThermoLever AN2-200 (spring)
- a constant of 0.5-3 N / m) can be used.
- the tip radius of the probe 10 is 30 nm or less, the set value of the deflection of the probe 10 is ⁇ 4 V, and the temperature rising rate is 5 ° C./min.
- the surface of the cured resin layer 4 expands by the heat from the probe as shown in FIG.
- the probe 10 is pushed up, and the position of the probe 10 is set to the initial value (probe of the probe).
- the temperature rises more than the position when the temperature is 40 ° C.
- the cured resin layer 4 softens, and the probe 10 pierces the cured resin layer 4 as shown in FIG. 5C, and the position of the probe 10 decreases.
- thermomechanical analysis for measuring the displacement of the probe the battery packaging material to be measured is in a room temperature (25 ° C.) environment, and a probe heated to 40 ° C. is placed on the surface of the cured resin layer 4. Start the measurement.
- the displacement of the probe is measured by preparing a cross section along the thickness direction of the battery packaging material, measuring five sections of the cross section (see FIG.
- the thickness direction and the vertical direction of the cross section may be any direction (for example, TD), and the temperature at which the position of the probe is lower than the initial value in any direction may be 130 ° C. or lower. . Also, calibration is performed five times and an average value is adopted.
- the thermal behavior of only the adhesive layer can be measured in a state close to the state of use in a battery. That is, when the material for the adhesive layer is applied to a film substrate or the like, and the softening temperature or the like is measured from the surface by TMA or the like, the thickness required for the measurement is 10 times or more thicker than the actual thickness of the adhesive layer.
- the thermal behavior differs because the degree of curing and the bonding state when actually used as a battery packaging material are different. In this case, the influence of the thermal behavior of the film substrate or the like may overlap, and it cannot be said that the thermomechanical properties of only the adhesive layer are measured.
- the probe deflection setting value at the start of measurement is ⁇ 4 V, and the temperature rising rate is 5 ° C./min. Is heated from 40 ° C. to 220 ° C., the position of the probe 10 installed on the surface of the cured resin layer 4 is not lowered from the initial value (position when the probe temperature is 40 ° C.), and further 160 ° C. It is more preferable that the position of the probe 10 installed on the surface of the cured resin layer 4 is not lowered when heated to 200 ° C.
- the step of heat-sealing the heat-fusible resin layers of the battery packaging material to seal the battery element is usually performed by heating at about 160 ° C.
- the battery packaging material in which the position of the probe 10 placed on the surface of the cured resin layer 4 does not decrease can exhibit particularly high insulation and durability.
- the position of the probe 10 installed on the surface of the cured resin layer 4 does not decrease from the initial value, and further, 160 ° C. It is more preferable that the position of the probe 10 installed on the surface of the cured resin layer 4 is not lowered when heated to 200 ° C.
- the probe 10 is placed on the surface of the cured resin layer 4 in the cross section of the battery packaging material (laminate), and the probe is moved from 40 ° C. to 220 ° C. It is preferable that the amount of increase in the position of the probe 10 when heated from 140 ° C. to 220 ° C. is larger than the amount of increase in the position of the probe 10 when heated from 80 ° C. to 120 ° C. When the probe is heated from 40 ° C. to 250 ° C., the amount of increase in the position of the probe 10 when heated from 140 ° C. to 250 ° C. is greater than the amount of increase in the position of the probe 10 when heated from 80 ° C.
- the difference between the amount of increase in the position of the probe 10 when heated from 80 ° C. to 120 ° C. and the amount of increase in the position of the probe 10 when heated from 140 ° C. to 220 ° C. is preferably 0 V or more, 0 .05V or more, 0.1V or more.
- the battery packaging material of the present invention has the above-mentioned characteristics in the thermomechanical analysis for measuring the displacement amount of the probe 10. Insulation and durability of battery packaging materials even when minute foreign matter is present at the heat-sealed parts such as the interface between heat-sealable resin layers or between electrode tabs and heat-sealable resin layers sexuality is enhanced.
- the cured resin layer 4 only needs to be composed of a cured resin that exhibits the above characteristics.
- the cured resin layer 4 is a resin composition containing an acid-modified polyolefin.
- the cured product is preferably.
- the acid-modified polyolefin it is preferable to use a polyolefin modified with an unsaturated carboxylic acid or an acid anhydride thereof. Furthermore, the acid-modified polyolefin may be further modified with a (meth) acrylic acid ester.
- the modified polyolefin further modified with (meth) acrylic acid ester is obtained by acid-modifying polyolefin by using unsaturated carboxylic acid or its acid anhydride and (meth) acrylic acid ester in combination. is there.
- “(meth) acrylic acid ester” means “acrylic acid ester” or “methacrylic acid ester”.
- One type of acid-modified polyolefin may be used alone, or two or more types may be used in combination.
- the polyolefin to be acid-modified is not particularly limited as long as it is a resin containing an olefin as at least a monomer unit.
- the polyolefin can be composed of, for example, at least one of polyethylene and polypropylene, and is preferably composed of polypropylene.
- the polyethylene can be composed of, for example, at least one of homopolyethylene and ethylene copolymer.
- Polypropylene can be composed of, for example, at least one of homopolypropylene and propylene copolymer.
- propylene copolymer examples include copolymers of propylene and other olefins such as ethylene-propylene copolymer, propylene-butene copolymer, and ethylene-propylene-butene copolymer.
- the proportion of the propylene unit contained in the polypropylene is preferably about 50 to 100 mol%, more preferably about 80 to 100 mol%, from the viewpoint of further improving the insulation and durability of the battery packaging material.
- the proportion of the ethylene unit contained in the polyethylene is preferably about 50 to 100 mol%, more preferably about 80 to 100 mol%, from the viewpoint of further improving the insulation and durability of the battery packaging material. More preferred.
- Each of the ethylene copolymer and the propylene copolymer may be a random copolymer or a block copolymer.
- the ethylene copolymer and the propylene copolymer may each be crystalline or amorphous, and may be a copolymer or a mixture thereof.
- the polyolefin may be formed of one type of homopolymer or copolymer, or may be formed of two or more types of homopolymer or copolymer.
- maleic anhydride-modified polyolefin and further maleic anhydride-modified polypropylene are particularly preferable.
- the unsaturated carboxylic acid examples include acrylic acid, methacrylic acid, maleic acid, itaconic acid, fumaric acid, and crotonic acid.
- an acid anhydride the acid anhydride of the unsaturated carboxylic acid illustrated above is preferable, and maleic anhydride and itaconic anhydride are more preferable.
- the acid-modified polyolefin may be one modified with one type of unsaturated carboxylic acid or its acid anhydride, or one modified with two or more types of unsaturated carboxylic acid or its acid anhydride. Also good.
- Examples of (meth) acrylic acid esters include esterification products of (meth) acrylic acid and alcohols having 1 to 30 carbon atoms, preferably esterification products of (meth) acrylic acid and alcohols having 1 to 20 carbon atoms. Is mentioned. Specific examples of (meth) acrylic acid esters include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, hexyl (meth) acrylate, (meth) Examples include octyl acrylate, decyl (meth) acrylate, lauryl (meth) acrylate, octyl (meth) acrylate, dodecyl (meth) acrylate, stearyl (meth) acrylate, and the like. In modification of polyolefin, only one type of (meth) acrylic acid ester may be used, or two or more types may be used.
- the ratio of the unsaturated carboxylic acid or the acid anhydride thereof in the acid-modified polyolefin is preferably about 0.1 to 30% by mass, more preferably about 0.1 to 20% by mass. By setting it as such a range, the insulation and durability of the packaging material for batteries can be improved more.
- the ratio of (meth) acrylic acid ester in the acid-modified polyolefin is preferably about 0.1 to 40% by mass, and more preferably about 0.1 to 30% by mass. By setting it as such a range, the insulation and durability of the packaging material for batteries can be improved more.
- the weight average molecular weight of the acid-modified polyolefin is preferably about 6000 to 200000, and more preferably about 8000 to 150,000, respectively.
- the weight average molecular weight of the acid-modified polyolefin is a value measured by gel permeation chromatography (GPC) measured under conditions using polystyrene as a standard sample.
- GPC gel permeation chromatography
- the melting peak temperature of the acid-modified polyolefin is preferably about 50 to 120 ° C., more preferably about 50 to 100 ° C. In the present invention, the melting peak temperature of the acid-modified polyolefin refers to an endothermic peak temperature in differential scanning calorimetry.
- the method for modifying the polyolefin is not particularly limited, and for example, an unsaturated carboxylic acid or an acid anhydride thereof or a (meth) acrylic acid ester may be copolymerized with the polyolefin.
- examples of such copolymerization include random copolymerization, block copolymerization, graft copolymerization (graft modification), and the like, and preferably graft copolymerization.
- the cured resin layer 4 is a compound having an isocyanate group, It is preferably a cured product of a resin composition containing at least one selected from the group consisting of a compound having an oxazoline group, an epoxy resin, and a urethane resin, and a resin containing at least one of these and the acid-modified polyolefin More preferably, it is a cured product of the composition. That is, the resin constituting the cured resin layer 4 may or may not include a polyolefin skeleton, and preferably includes a polyolefin skeleton.
- the fact that the resin constituting the cured resin layer 4 contains a polyolefin skeleton can be analyzed by, for example, infrared spectroscopy, gas chromatography mass spectrometry, etc., and the analysis method is not particularly limited.
- infrared spectroscopy when measuring the infrared spectroscopy at a maleic anhydride-modified polyolefin, a peak derived from maleic acid is detected in the vicinity of the wave number of 1760 cm -1 and near the wave number 1780 cm -1.
- the peak may be small and may not be detected. In that case, it can be analyzed by nuclear magnetic resonance spectroscopy.
- the cured resin layer 4 preferably includes at least one selected from the group consisting of urethane resins, ester resins, and epoxy resins, and more preferably includes urethane resins and epoxy resins.
- ester resin for example, an amide ester resin is preferable.
- Amide ester resins are generally formed by the reaction of carboxyl groups and oxazoline groups.
- the cured resin layer 4 is more preferably a cured product of a resin composition containing at least one of these resins and the acid-modified polyolefin.
- the presence of the unreacted material is, for example, infrared spectroscopy. It can be confirmed by a method selected from Raman spectroscopy, time-of-flight secondary ion mass spectrometry (TOF-SIMS), and the like.
- the compound having an isocyanate group is not particularly limited, but a polyfunctional isocyanate compound is preferably used from the viewpoint of exhibiting high insulation and durability in the battery packaging material.
- the polyfunctional isocyanate compound is not particularly limited as long as it is a compound having two or more isocyanate groups.
- Specific examples of the polyfunctional isocyanate-based curing agent include isophorone diisocyanate (IPDI), hexamethylene diisocyanate (HDI), tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), those obtained by polymerizing or nurating these, Examples thereof include mixtures and copolymers with other polymers.
- the content of the compound having an isocyanate group in the cured resin layer 4 is preferably in the range of 0.5 to 15% by mass in the resin composition constituting the cured resin layer 4, and is preferably 1 to 12% by mass. More preferably, it is in the range. Thereby, the insulation and durability of the battery packaging material can be further improved.
- the compound having an oxazoline group is not particularly limited as long as it is a compound having an oxazoline skeleton.
- Specific examples of the compound having an oxazoline group include those having a polystyrene main chain and those having an acrylic main chain.
- the Epocross series by Nippon Shokubai Co., Ltd. etc. are mentioned, for example.
- the ratio of the compound having an oxazoline group in the cured resin layer 4 is preferably in the range of 0.5 to 15% by mass in the resin composition constituting the cured resin layer 4, and in the range of 1 to 12% by mass. More preferably. Thereby, the insulation and durability of the battery packaging material can be further improved.
- the epoxy resin is not particularly limited as long as it is a resin capable of forming a crosslinked structure with an epoxy group present in the molecule, and a known epoxy resin can be used.
- the weight average molecular weight of the epoxy resin is preferably about 50 to 2000, more preferably about 100 to 1000, and still more preferably about 200 to 800.
- the weight average molecular weight of the epoxy resin is a value measured by gel permeation chromatography (GPC) measured under conditions using polystyrene as a standard sample.
- epoxy resin examples include bisphenol A diglycidyl ether, modified bisphenol A diglycidyl ether, novolac glycidyl ether, glycerin polyglycidyl ether, and polyglycerin polyglycidyl ether.
- An epoxy resin may be used individually by 1 type, and may be used in combination of 2 or more types.
- the ratio of the epoxy resin in the cured resin layer 4 is preferably in the range of 0.5 to 15% by mass, preferably in the range of 1 to 12% by mass in the resin composition constituting the cured resin layer 4. Is more preferable. Thereby, the insulation and durability of the battery packaging material can be further improved.
- the urethane resin is not particularly limited, and a known urethane resin can be used.
- the cured resin layer 4 may be, for example, a cured product of a two-component curable urethane resin.
- the ratio of the urethane resin in the cured resin layer 4 is preferably in the range of 0.5 to 20% by mass, preferably in the range of 1 to 15% by mass in the resin composition constituting the cured resin layer 4. Is more preferable. Thereby, the insulation and durability of the battery packaging material can be further improved.
- the cured resin layer 4 may be made of a urethane resin.
- the cured resin layer 4 is a resin composition comprising at least one selected from the group consisting of a compound having an isocyanate group, a compound having an oxazoline group, and an epoxy resin, and the acid-modified polyolefin.
- the acid-modified polyolefin functions as a main agent, and the compound having an isocyanate group, the compound having an oxazoline group, and the epoxy resin each function as a curing agent.
- a cured product of a resin composition containing a curing agent having at least one selected from the group consisting of C—O—C bonds examples include a curing agent having an oxazoline group and a curing agent having an epoxy group.
- the curing agent having a C ⁇ N bond examples include a curing agent having an oxazoline group and a curing agent having an isocyanate group.
- the curing agent having a C—O—C bond examples include a curing agent having an oxazoline group, a curing agent having an epoxy group, and a urethane resin.
- the cured resin layer 4 is a cured product of a resin composition containing these curing agents, for example, gas chromatography mass spectrometry (GCMS), infrared spectroscopy (IR), time-of-flight secondary ion mass spectrometry ( It can be confirmed by a method such as TOF-SIMS) or X-ray photoelectron spectroscopy (XPS).
- GCMS gas chromatography mass spectrometry
- IR infrared spectroscopy
- XPS X-ray photoelectron spectroscopy
- the cured resin layer 4 may contain an additive such as an anti-blocking agent (such as silica), and the additive may be contained in the resin composition.
- an anti-blocking agent such as silica
- the softening temperature of the cured resin layer 4 is preferably about 180 ° C. to 260 ° C., more preferably about 200 to 240 ° C.
- the softening temperature of the cured resin layer 4 is a value measured by a method in accordance with the provisions of JIS K7196: 2012 “Softening temperature test method by thermomechanical analysis of thermoplastic film and sheet”. These are values measured by the method described in the examples.
- the solid content of the cured resin layer 4 is not particularly limited, but is preferably about 0.5 to 10 g / m 2 , more preferably 0.8 to 5.2 g from the viewpoint of further improving the insulation and durability. / M 2 or so.
- the thickness of the cured resin layer 4 is preferably about 0.6 to 11 ⁇ m, more preferably about 0.9 to 5.8 ⁇ m.
- the thickness of the cured resin layer 4 may be measured with respect to a cross section obtained by cutting the laminate constituting the battery packaging material, or may be applied to the resin composition constituting the cured resin layer. It may be calculated from the amount and the density, and any one may be within these ranges.
- the heat-fusible resin layer 5 corresponds to the innermost layer, and is a layer that heat-fuses the heat-fusible resin layers together to seal the battery element when the battery is assembled.
- the resin component used in the heat-fusible resin layer 5 of the present invention is not particularly limited as long as it can be heat-sealed, and examples thereof include polyolefins and acid-modified polyolefins. That is, the resin constituting the heat-fusible resin layer 5 may or may not contain a polyolefin skeleton, and preferably contains a polyolefin skeleton. The fact that the resin constituting the heat-fusible resin layer 5 contains a polyolefin skeleton can be analyzed by, for example, infrared spectroscopy, gas chromatography mass spectrometry, etc., and the analysis method is not particularly limited.
- a peak derived from maleic acid is detected in the vicinity of the wave number of 1760 cm -1 and near the wave number 1780 cm -1.
- the peak may be small and may not be detected. In that case, it can be analyzed by nuclear magnetic resonance spectroscopy.
- polyolefins include polyethylenes such as low density polyethylene, medium density polyethylene, high density polyethylene, and linear low density polyethylene; homopolypropylene, polypropylene block copolymers (for example, block copolymers of propylene and ethylene), polypropylene Polypropylenes such as random copolymers (for example, random copolymers of propylene and ethylene); ethylene-butene-propylene terpolymers; and the like.
- polyethylene and polypropylene are preferable, and polypropylene is more preferable.
- the polyolefin may be a cyclic polyolefin.
- the cyclic polyolefin is a copolymer of an olefin and a cyclic monomer, and examples of the olefin that is a constituent monomer of the cyclic polyolefin include ethylene, propylene, 4-methyl-1-pentene, styrene, butadiene, and isoprene. It is done.
- examples of the cyclic monomer that is a constituent monomer of the cyclic polyolefin include cyclic alkenes such as norbornene; specifically, cyclic dienes such as cyclopentadiene, dicyclopentadiene, cyclohexadiene, norbornadiene, and the like.
- cyclic alkene is preferable, and norbornene is more preferable.
- the acid-modified polyolefin is a polymer obtained by modifying the above polyolefin by block polymerization or graft polymerization with carboxylic acid or the like.
- carboxylic acid used for modification include maleic acid, acrylic acid, itaconic acid, crotonic acid, maleic anhydride, itaconic anhydride and the like.
- the acid-modified polyolefin may be an acid-modified cyclic polyolefin.
- the acid-modified cyclic polyolefin is a copolymer obtained by copolymerizing a part of the monomer constituting the cyclic polyolefin in place of the ⁇ , ⁇ -unsaturated carboxylic acid or its anhydride, or ⁇ , ⁇ -unsaturated with respect to the cyclic polyolefin. It is a polymer obtained by block polymerization or graft polymerization of a saturated carboxylic acid or its anhydride.
- the cyclic polyolefin to be acid-modified is the same as described above.
- the carboxylic acid used for modification is the same as that used for modification of the acid-modified cycloolefin copolymer.
- polyolefins preferred are polyolefins, and more preferred are propylene copolymers.
- propylene copolymer include copolymers of propylene and other olefins such as ethylene-propylene copolymer, propylene-butene copolymer, and ethylene-propylene-butene copolymer.
- the proportion of the propylene unit contained in the polypropylene is preferably about 50 to 100 mol%, more preferably about 80 to 100 mol%, from the viewpoint of further improving the insulation and durability of the battery packaging material. .
- the proportion of the ethylene unit contained in the polyethylene is preferably about 50 to 100 mol%, more preferably about 80 to 100 mol%, from the viewpoint of further improving the insulation and durability of the battery packaging material. More preferred.
- Each of the ethylene copolymer and the propylene copolymer may be a random copolymer or a block copolymer, and a random propylene copolymer is preferred.
- the heat-fusible resin layer 5 of the present invention preferably has polypropylene, and preferably has a layer formed of polypropylene.
- the heat-fusible resin layer 5 may be formed of one kind of resin component alone or may be formed of a blend polymer in which two or more kinds of resin components are combined. Furthermore, the heat-fusible resin layer 5 may be formed of only one layer, but may be formed of two or more layers using the same or different resin components.
- the innermost layer (the side opposite to the barrier layer 3) of the heat-fusible resin layer 5 is formed by a dry laminating method or extrusion molding. It is preferable that it is a layer. Thereby, insulation and a moldability can be improved further.
- the heat-fusible resin layer 5 of the present invention preferably has fine irregularities on the surface (the innermost layer side surface). Thereby, a moldability can be improved further.
- a method of forming fine irregularities on the surface of the heat-fusible resin layer 5 a method of adding additives exemplified in the surface coating layer 6 described later to the heat-fusible resin layer 5, and irregularities on the surface. For example, a method may be used in which the cooling roll is brought into contact with the mold.
- the ten-point average roughness of the surface of the heat-fusible resin layer 5 is preferably about 0.3 to 35 ⁇ m, more preferably about 0.3 to 10 ⁇ m, and still more preferably 0.5 to About 2 ⁇ m may be mentioned.
- the ten-point average roughness is a value measured using a Keyence laser microscope VK-9710 under the measurement conditions of 50 times objective lens and no cutoff in a method in accordance with JIS B0601: 1994.
- a lubricant is preferably present on the surface of the heat-fusible resin layer 5 from the viewpoint of improving the moldability of the battery packaging material.
- the lubricant is not particularly limited, and a known lubricant can be used, and examples thereof include those exemplified in the base material layer 1 described above.
- One type of lubricant may be used alone, or two or more types may be used in combination.
- the amount of lubricant present on the surface of the heat-fusible resin layer 5 is not particularly limited. From the viewpoint of improving the moldability of the electronic packaging material, it is preferably 10 to 50 mg at a temperature of 24 ° C. and a humidity of 60%. / M 2 , more preferably about 15 to 40 mg / m 2 .
- the heat-fusible resin layer 5 may contain a lubricant. Further, the lubricant present on the surface of the heat-fusible resin layer 5 may be one obtained by leaching the lubricant contained in the resin constituting the heat-fusible resin layer 5, or the heat-fusible resin layer. 5 may be obtained by applying a lubricant to the surface.
- the thickness of the heat-fusible resin layer 5 of the present invention is not particularly limited as long as it exhibits the function as the heat-fusible resin layer. From the viewpoint of further improving the insulation and durability, for example, The thickness is about 10 to 40 ⁇ m, preferably about 15 to 40 ⁇ m.
- the base material layer 1 (barrier layer of the base material layer 1) is optionally formed. If necessary, a surface coating layer 6 may be provided on the side opposite to (3).
- the surface coating layer 6 is a layer located in the outermost layer when the battery is assembled.
- the surface coating layer 6 can be formed of, for example, polyvinylidene chloride, a polyester resin, a urethane resin, an acrylic resin, an epoxy resin, or the like. Of these, the surface coating layer 6 is preferably formed of a two-component curable resin. Examples of the two-component curable resin for forming the surface coating layer 6 include a two-component curable urethane resin, a two-component curable polyester resin, and a two-component curable epoxy resin. Moreover, you may mix
- the additive to be added may function as, for example, a matting agent, and the surface coating layer may function as a mat layer.
- Examples of the additive include fine particles having a particle size of about 0.5 nm to 5 ⁇ m.
- the material of the additive is not particularly limited, and examples thereof include metals, metal oxides, inorganic substances, and organic substances.
- the shape of the additive is not particularly limited, and examples thereof include a spherical shape, a fibrous shape, a plate shape, an indeterminate shape, and a balloon shape.
- Specific additives include talc, silica, graphite, kaolin, montmorilloid, montmorillonite, synthetic mica, hydrotalcite, silica gel, zeolite, aluminum hydroxide, magnesium hydroxide, zinc oxide, magnesium oxide, aluminum oxide, Neodymium oxide, antimony oxide, titanium oxide, cerium oxide, calcium sulfate, barium sulfate, calcium carbonate, calcium silicate, lithium carbonate, calcium benzoate, calcium oxalate, magnesium stearate, alumina, carbon black, carbon nanotubes, high Melting
- money, aluminum, copper, nickel etc. are mentioned.
- additives may be used individually by 1 type, and may be used in combination of 2 or more type.
- silica, barium sulfate, and titanium oxide are preferable from the viewpoint of dispersion stability and cost.
- the surface of the additive may be subjected to various surface treatments such as insulation treatment and high dispersibility treatment.
- the method for forming the surface coating layer 6 is not particularly limited, and examples thereof include a method in which a two-component curable resin for forming the surface coating layer 6 is applied to one surface of the base material layer 1.
- the additive may be added to the two-component curable resin, mixed, and then applied.
- the thickness of the surface coating layer 6 is not particularly limited as long as it exhibits the above function as the surface coating layer, and may be about 0.5 to 10 ⁇ m, preferably about 1 to 5 ⁇ m.
- the production method of the battery packaging material of the present invention is not particularly limited as long as a laminate in which layers of a predetermined composition are laminated is obtained, and at least a base material layer and a barrier layer
- the curing of the cross section of the laminate is provided.
- the probe is installed on the surface of the resin layer and the probe is heated from 40 ° C. to 220 ° C. under the conditions that the deflection setting of the probe at the start of measurement is ⁇ 4 V and the temperature rising rate is 5 ° C./min.
- a method in which a probe whose position of the probe does not fall below an initial value is used as the cured resin layer can be employed. That is, as the cured resin layer 4, the battery packaging material of the present invention can be manufactured by laminating each layer using the layer described in the section “2. Each layer forming the battery packaging material”. .
- a laminate including the base material layer 1, the adhesive layer 2, and the barrier layer 3 in this order (hereinafter also referred to as “laminate A”) is formed.
- the laminate A is formed by extruding an adhesive used for forming the adhesive layer 2 on the base material layer 1 or the barrier layer 3 whose surface is subjected to chemical conversion treatment, if necessary, by extrusion, gravure coating
- the barrier layer 3 or the base material layer 1 can be laminated and the adhesive layer 2 can be cured by a dry laminating method.
- the cured resin layer 4 and the heat-fusible resin layer 5 are laminated on the barrier layer 3 of the laminate A.
- the cured resin layer 4 and the heat-fusible resin layer 5 are laminated on the barrier layer 3, for example, (1) the cured resin layer 4 and the heat-fusible resin layer on the barrier layer 3 of the laminate A (2) Separately, a laminate in which the cured resin layer 4 and the heat-fusible resin layer 5 are laminated is formed, and this is used as a barrier for the laminate A.
- the heat-fusible resin layer is laminated and the cured resin layer 4 is cured, and (4) the barrier layer 3 of the laminate A and the heat previously formed into a sheet shape Pour the molten cured resin layer 4 between the fusible resin layer 5 While, and a method of bonding a laminate A and the heat-welding resin layer 5 via the cured resin layer 4 (sandwich lamination method).
- the method (3) is preferable.
- the above resin composition for forming the cured resin layer 4 is laminated on the barrier layer 3 and then dried at a temperature of about 60 to 120 ° C.
- the innermost layer of the heat-fusible resin layer 5 is preferably a layer formed by a dry lamination method or extrusion molding.
- the surface coating layer 6 When the surface coating layer 6 is provided, the surface coating layer 6 is laminated on the surface of the base material layer 1 opposite to the barrier layer 3.
- the surface coating layer 6 can be formed, for example, by applying the above-described resin for forming the surface coating layer 6 to the surface of the base material layer 1.
- the order of the step of laminating the barrier layer 3 on the surface of the base material layer 1 and the step of laminating the surface coating layer 6 on the surface of the base material layer 1 are not particularly limited.
- the barrier layer 3 may be formed on the surface of the base material layer 1 opposite to the surface coating layer 6.
- the method of causing the lubricant to be present on the surface of the base material layer 1 or the heat-fusible resin layer 5 is not particularly limited.
- a lubricant is blended with the resin constituting the base material layer 1 or the heat-fusible resin layer 5.
- a method of leaching the lubricant to the surface as necessary, a method of applying the lubricant to the surface of the base material layer 1 or the heat-fusible resin layer 5, and the like can be mentioned.
- a laminate comprising the heat-fusible resin layer 5 is formed in this order, but in order to strengthen the adhesiveness of the adhesive layer 2 and the cured resin layer 4 provided as necessary, further heat You may use for heat processing, such as a roll contact type, a hot air type, a near-infrared type, or a far-infrared type. Examples of such heat treatment conditions include a temperature of about 150 to 250 ° C. and a time of about 1 to 5 minutes.
- each layer constituting the laminate improves or stabilizes film forming properties, lamination processing, suitability for final processing (pouching, embossing), etc., as necessary. Therefore, surface activation treatment such as corona treatment, blast treatment, oxidation treatment, ozone treatment may be performed.
- the battery packaging material of the present invention is used as a packaging material for sealing and housing battery elements such as a positive electrode, a negative electrode, and an electrolyte.
- a battery element including at least a positive electrode, a negative electrode, and an electrolyte is formed using the battery packaging material of the present invention, with the metal terminals connected to each of the positive electrode and the negative electrode protruding outward.
- a flange portion region where the heat-fusible resin layers are in contact with each other
- heat-sealing the heat-fusible resin layers of the flange portion to seal the battery
- the battery packaging material of the present invention is used so that the heat-fusible resin portion is on the inner side (surface in contact with the battery element).
- the battery packaging material of the present invention may be used for either a primary battery or a secondary battery, but is preferably a secondary battery.
- the type of secondary battery to which the battery packaging material of the present invention is applied is not particularly limited.
- a lithium ion battery, a lithium ion polymer battery, a lead battery, a nickel / hydrogen battery, a nickel / cadmium battery , Nickel / iron livestock batteries, nickel / zinc livestock batteries, silver oxide / zinc livestock batteries, metal-air batteries, polyvalent cation batteries, capacitors, capacitors and the like are suitable applications for the battery packaging material of the present invention.
- the weight average molecular weight of the resin is a value measured by gel permeation chromatography (GPC) measured under conditions using polystyrene as a standard sample.
- GPC gel permeation chromatography
- the melting peak temperature of the main component of the cured resin layer was measured using a differential scanning calorimeter in accordance with the provisions of JIS K7121: 2012.
- the softening temperature of the cured film of the cured resin layer was calculated from the penetration temperature in the TMA penetration mode in accordance with the provisions of JIS K7196: 2012.
- EXSTAR6000 manufactured by Seiko Instruments Inc. was used.
- Examples 1 to 5 and Comparative Examples 1 to 3> On a nylon film (thickness 25 ⁇ m) as a base material layer, a barrier layer made of an aluminum foil (thickness 35 ⁇ m) subjected to chemical conversion treatment on both surfaces was laminated by a dry laminating method. Specifically, a two-component urethane adhesive (a polyol compound and an aromatic isocyanate compound) was applied to one surface of the aluminum foil, and an adhesive layer (thickness 3 ⁇ m) was formed on the barrier layer. Subsequently, after laminating the adhesive layer and the base material layer on the barrier layer, an aging treatment was carried out at 40 ° C.
- a two-component urethane adhesive a polyol compound and an aromatic isocyanate compound
- the chemical conversion treatment of the aluminum foil used as the barrier layer is performed by roll coating a treatment liquid composed of a phenol resin, a chromium fluoride compound, and phosphoric acid so that the coating amount of chromium is 10 mg / m 2 (dry mass).
- the coating was performed on both surfaces of the aluminum foil by the method and baked for 20 seconds under the condition that the film temperature was 180 ° C. or higher.
- the thickness of the acid-resistant film formed on both surfaces of the aluminum foil was 5 nm, respectively.
- the resin composition containing the main agent and the curing agent described in Table 1 was applied to the other surface of the barrier layer of the obtained laminate so that the application amount (dry mass) described in Table 1 was obtained. And dried at 80 ° C. for 60 seconds to form a cured resin layer.
- a polypropylene film (thickness 35 ⁇ m) was laminated by a dry lamination method to form a heat-fusible resin layer.
- a laminate including a base material layer, an adhesive layer, a barrier layer, a cured resin layer, and a heat-fusible resin layer was obtained in this order.
- erucic acid amide was present as a lubricant on the innermost layer side (the side opposite to the barrier layer) of the unstretched polypropylene film.
- each of the obtained laminates was aged in a 70 ° C. environment for 24 hours to obtain battery packaging materials of Examples 1 to 6 and Comparative Examples 1 to 4.
- Table 1 shows the thickness of the cured resin layer converted from the coating amount and density. MDI in Table 1 is diphenylmethane diisocyanate.
- Example 6 A battery packaging material was obtained in the same manner as in Example 1 except that stainless steel foil (austenitic stainless steel foil, thickness 20 ⁇ m) was used as the barrier layer instead of aluminum foil.
- stainless steel foil austenitic stainless steel foil, thickness 20 ⁇ m
- the ten-point average roughness was measured by a method in accordance with JIS B0601: 1994. The measurement was performed using a Keyence laser microscope VK-9710 under the measurement conditions of an objective lens 50 times and no cutoff. As a result, the ten-point average roughness was 1.1 ⁇ m in Examples 1, 2, and 4, and 1.2 ⁇ m in Examples 3, 5, and 6.
- probe displacement A probe is placed on the surface of the cured resin layer in the cross section of each battery packaging material obtained above (probe tip radius is 30 nm or less, probe deflection is set to -4V), and the probe is 40 ° C. To 250 ° C. (heating rate 5 ° C./min), and the displacement of the probe was measured. The results are shown in Table 1. Moreover, the graph which shows the relationship between heating temperature and the displacement of the position of a probe is shown in FIG. 8 (Example 3) and FIG. 9 (comparative example 3), respectively. Details of the measurement conditions are as follows.
- thermomechanical analysis apparatus An afm plus system manufactured by ANASIS INSTRUMENTS was used as a thermomechanical analysis apparatus, and a cantilever ThermoLever AN2-200 (spring constant 0.5-3 N / m) was used as a probe.
- a cantilever ThermoLever AN2-200 spring constant 0.5-3 N / m
- three types of attached samples polycaprolactam (melting peak temperature 55 ° C.), polyethylene (melting peak temperature 116 ° C.), polyethylene terephthalate (melting peak temperature 235 ° C.)
- the applied voltage was 0.1-10 V
- the speed was 0.2 V / sec, and the set value of the deflection was -4V.
- the displacement of the position represents the position (warp) of the probe tip, and the larger the value, the higher the probe tip is (the probe is warped upward).
- V the displacement of the position
- Each battery packaging material obtained above was cut into 60 mm (MD (Machine Direction)) ⁇ 150 mm (TD (Transverse Direction)) as shown in the schematic diagram of FIG. 6 (FIG. 6A). .
- the cut battery packaging material was folded in half so that the heat-fusible resin layers face each other in TD (FIG. 6B).
- one side E opposite to the TD and one side F of the MD were heat-sealed (the width of the heat-sealed portion S was 7 mm) to produce a bag-shaped battery packaging material in which one side of the TD opened. (FIG. 6 (c) opening G).
- the heat sealing conditions were a temperature of 190 ° C., a surface pressure of 1.0 MPa, and a heating / pressurization time of 3 seconds.
- 3 g of the electrolytic solution H was injected from the opening G.
- the opening G was 7 mm wide and heat-sealed under the same conditions as above (FIG. 6 (e)).
- the portion where the opening G of the battery packaging material was located was faced up (state shown in FIG.
- the rolling direction of the aluminum foil constituting the barrier layer is MD
- the direction perpendicular to the same plane as MD is TD.
- the rolling direction of the aluminum foil can be confirmed by the rolling trace of the aluminum foil.
- each battery packaging material is taken out from the thermostatic layer, and as shown in FIG. 6 (f), the side into which the electrolyte H has been injected is cut out (the position of the two-dot chain line in FIG. 6 (f)).
- the packaging material was opened and the electrolytic solution H was taken out (FIG. 6 (g)).
- a TD width W15 mm portion of the battery packaging material was cut into a strip shape (two-dot chain line portion in FIG. 6H) to obtain a test piece T (FIG. 6I).
- the obtained heat-sealable resin layer and the barrier layer of the test piece T were peeled off, and the heat-sealable resin layer and the barrier layer were separated by 50 mm using a tensile tester (trade name AGS-XPlus manufactured by Shimadzu Corporation).
- the sample was pulled at a rate of / min and the peel strength (N / 15 mm) of the test piece was measured (peel strength after the durability test).
- the 180-degree peel strength was measured in the same manner for the test piece T obtained by cutting the battery packaging materials obtained in Examples 1 to 6 and Comparative Examples 1 to 4 into a width of MD15 mm ⁇ TD40 mm (before the durability test). Peel strength).
- the results are shown in Table 1.
- the peel strength of the test piece was measured in an environment at a temperature of 25 ° C. and a relative humidity of 50%.
- the cured resin layer located between these layers is in a state of being laminated on either or both of the heat-fusible resin layer and the barrier layer. Become.
- each battery packaging material obtained above was cut into a size of 60 mm (TD) ⁇ 150 mm (MD) to obtain a test piece (FIG. 7A).
- this test piece was folded so that the short sides were opposed to each other, and the test pieces were arranged so that the surfaces of the heat-fusible resin layers of the test pieces faced each other.
- a wire M having a diameter of 25 ⁇ m was inserted between the surfaces of the heat-fusible resin layers facing each other (FIG. 7B).
- the heat-fusible resin layers are heat-sealed with a heat-sealing machine composed of a flat plate-like hot plate having a width of 7 mm in both the upper and lower directions in the direction perpendicular to the length direction of the battery packaging material (temperature 190 ° C., surface The pressure was 1.0 MPa, and the heating / pressurizing time was 3 seconds) (FIG. 7C, heat-sealed portion S).
- heat sealing was performed from above the portion where the wire M is located, and the heat-fusible resin layer was heat-sealed to the wire M.
- the positive electrode of the tester was connected to the wire M, and the negative electrode was connected to the battery packaging material on one side.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Sealing Battery Cases Or Jackets (AREA)
- Laminated Bodies (AREA)
Abstract
Provided is a packaging material for a battery, said packaging material being highly insulating and durable. A packaging material for a battery, said packaging material being composed from a layered body that comprises at least a substrate layer, a barrier layer, a curable resin layer, and a thermally fusible resin layer, in this order, wherein according to a thermomechanical analysis that measures the amount of displacement of a probe, where the probe is positioned on a surface of the curable resin layer in a cross-section of the layered body, the measured value of deflection of the probe at the start of measurement is -4V, and the temperature increase speed is 5°C/min, when the probe is heated under these conditions from 40°C to 220°C, the location of the probe does not fall below an initial value.
Description
本発明は、電池用包装材料、その製造方法及び電池に関する。
The present invention relates to a battery packaging material, a method for producing the same, and a battery.
従来、様々なタイプの電池が開発されている。これらの電池において、電極、電解質などにより構成される電池素子は、包装材料などにより封止される必要がある。電池用包装材料としては、金属製の包装材料が多用されている。
Conventionally, various types of batteries have been developed. In these batteries, a battery element composed of an electrode, an electrolyte and the like needs to be sealed with a packaging material or the like. Metal packaging materials are frequently used as battery packaging materials.
近年、電気自動車、ハイブリッド電気自動車、パーソナルコンピュータ、カメラ、携帯電話などの高性能化に伴い、多様な形状を有する電池が求められている。また、電池には、薄型化、軽量化なども求められている。しかしながら、従来多用されている金属製の包装材料では、電池形状の多様化に追従することが困難である。また、金属製であるため、包装材料の軽量化にも限界がある。
In recent years, batteries having various shapes have been demanded with the improvement in performance of electric vehicles, hybrid electric vehicles, personal computers, cameras, mobile phones and the like. The battery is also required to be thin and light. However, it is difficult to follow the diversification of battery shapes with metal packaging materials that have been widely used in the past. Further, since it is made of metal, there is a limit to reducing the weight of the packaging material.
そこで、多様な形状に加工が容易で、薄型化や軽量化を実現し得る電池用包装材料として、基材層/バリア層/熱融着性樹脂層が順次積層されたフィルム状の積層体が提案されている。
Therefore, as a battery packaging material that can be easily processed into various shapes and can be made thinner and lighter, there is a film-like laminate in which a base material layer / barrier layer / heat-sealable resin layer are sequentially laminated. Proposed.
特許文献1には、基材層、接着剤層、腐食防止処理層を設けたアルミニウム箔層、接着性樹脂層、接着性樹脂層の前記基材層との反対側に設けられたシーラント層とが順次積層され、接着性樹脂層が酸変性ポリオレフィン樹脂とエラストマーとを含んだリチウムイオン電池用外装材が開示されている。
Patent Document 1 includes a base material layer, an adhesive layer, an aluminum foil layer provided with a corrosion prevention treatment layer, an adhesive resin layer, a sealant layer provided on the opposite side of the adhesive resin layer to the base material layer, and Are sequentially laminated, and an exterior material for a lithium ion battery in which an adhesive resin layer contains an acid-modified polyolefin resin and an elastomer is disclosed.
しかしながら、本発明者が鋭意検討を重ねた結果、特許文献1に開示されたような電池用包装材料では、電池用包装材料を電池に適用した場合、絶縁性及び耐久性が低下する場合があるという課題が見出された。
However, as a result of intensive studies by the inventor, in the battery packaging material disclosed in Patent Document 1, when the battery packaging material is applied to a battery, the insulation and durability may be reduced. The problem was found.
そこで、本発明者がさらに鋭意検討を重ねた結果、電池の製造工程において、電極活物質や電極タブの破片などの微小な異物が、熱融着性樹脂層の表面に付着する場合があり、電池素子を電池用包装材料でヒートシールする際の熱と圧力によって、熱融着性樹脂層の異物が付着した部分が薄肉になる場合があることが明らかとなった。例えば、熱融着性樹脂層同士がヒートシールされる部分などにおいて、熱融着性樹脂層が薄肉になると、電池用包装材料の絶縁性及び耐久性が不十分となる場合があるという問題がある。
Therefore, as a result of further earnest studies by the present inventors, in the battery manufacturing process, there may be cases where minute foreign matters such as electrode active material and electrode tab fragments adhere to the surface of the heat-fusible resin layer, It has been clarified that the portion of the heat-fusible resin layer to which foreign matter has adhered may become thin depending on the heat and pressure when the battery element is heat-sealed with the battery packaging material. For example, there is a problem that the insulation and durability of the battery packaging material may be insufficient when the heat-fusible resin layer becomes thin in a portion where the heat-fusible resin layers are heat-sealed. is there.
さらに、電極活物質や電極タブの破片などの微小な異物は、導電性を有する。電極タブと熱融着性樹脂層との間に導電性の異物が存在する場合には、ヒートシール時の熱と圧力によって、異物が熱融着性樹脂層を貫通すると、電極タブと電池用包装材料のバリア層とが電気的に接続されて短絡するおそれがある。
Furthermore, minute foreign matters such as electrode active material and electrode tab fragments have electrical conductivity. When conductive foreign matter exists between the electrode tab and the heat-fusible resin layer, if the foreign matter penetrates the heat-fusible resin layer due to heat and pressure during heat sealing, the electrode tab and battery The barrier layer of the packaging material may be electrically connected to cause a short circuit.
本発明は、これらの問題に鑑みなされた発明である。すなわち、本発明は、高い絶縁性及び耐久性を有する電池用包装材料を提供することを主な目的とする。
The present invention has been made in view of these problems. That is, the main object of the present invention is to provide a battery packaging material having high insulation and durability.
本発明者は、上記のような課題を解決すべく鋭意検討を行った。その結果、電池用包装材料を、基材層と、バリア層と、硬化樹脂層と、熱融着性樹脂層とをこの順に備える積層体により構成し、プローブの変位量を測定する熱機械分析において、前記電池用包装材料(前記積層体)の断面の前記硬化樹脂層表面にプローブを設置し、測定開始時の前記プローブのディフレクションの設定値は-4V、昇温速度5℃/分の条件で、プローブを40℃から220℃まで加熱した際に、プローブの位置が初期値よりも低下しないことにより、絶縁性及び耐久性の高い電池用包装材料が得られることを見出した。
The present inventor has intensively studied to solve the above problems. As a result, a thermomechanical analysis in which the battery packaging material is constituted by a laminate including a base material layer, a barrier layer, a cured resin layer, and a heat-fusible resin layer in this order, and measures the displacement of the probe. In the above, a probe is set on the surface of the cured resin layer in the cross section of the battery packaging material (the laminate), the deflection setting value of the probe at the start of measurement is −4 V, and the temperature rising rate is 5 ° C./min. It was found that when the probe was heated from 40 ° C. to 220 ° C. under the conditions, the position of the probe did not fall below the initial value, and thus a battery packaging material having high insulation and durability could be obtained.
本発明は、これらの知見に基づいて、さらに検討を重ねることにより完成された発明である。すなわち、本発明は、下記に掲げる態様の発明を提供する。
項1. 少なくとも、基材層と、バリア層と、硬化樹脂層と、熱融着性樹脂層とをこの順に備える積層体から構成されており、
プローブの変位量を測定する熱機械分析において、前記積層体の断面の前記硬化樹脂層表面に前記プローブを設置し、測定開始時の前記プローブのディフレクションの設定値は-4V、昇温速度5℃/分の条件で、前記プローブを40℃から220℃まで加熱した際に、前記プローブの位置が初期値よりも低下しない、電池用包装材料。
項2. プローブの変位量を測定する熱機械分析において、前記積層体の断面の前記硬化樹脂層表面に前記プローブを設置し、測定開始時の前記プローブのディフレクションの設定値は-4V、昇温速度5℃/分の条件で、前記プローブを40℃から220℃まで加熱した際に、140℃から220℃まで加熱した際の前記プローブの位置の上昇量が、80℃から120℃まで加熱した際の前記プローブの位置の上昇量よりも大きい、項1に記載の電池用包装材料。
項3. 前記硬化樹脂層が、酸変性ポリオレフィンを含む樹脂組成物の硬化物である、項1または2に記載の電池用包装材料。
項4. 前記硬化樹脂層の前記酸変性ポリオレフィンが、無水マレイン酸変性ポリプロピレンであり、
前記熱融着性樹脂層が、ポリプロピレンを含む、項3に記載の電池用包装材料。
項5. 前記硬化樹脂層を構成する樹脂が、ポリオレフィン骨格を含んでいる、項1~4のいずれかに記載の電池用包装材料。
項6. 前記硬化樹脂層が、イソシアネート基を有する化合物、オキサゾリン基を有する化合物、エポキシ樹脂、及びウレタン樹脂からなる群より選択される少なくとも1種を含む樹脂組成物の硬化物である、項1~5のいずれかに記載の電池用包装材料。
項7. 前記硬化樹脂層が、酸素原子、複素環、C=N結合、及びC-O-C結合からなる群より選択される少なくとも1種を有する硬化剤を含む樹脂組成物の硬化物である、項1~6のいずれかに記載の電池用包装材料。
項8. 前記硬化樹脂層が、ウレタン樹脂、エステル樹脂、及びエポキシ樹脂からなる群より選択される少なくとも1種を含む、項1~6のいずれかに記載の電池用包装材料。
項9. 前記硬化樹脂層の厚みが、0.6μm以上11μm以下である、項1~8のいずれかに記載の電池用包装材料。
項10. 前記硬化樹脂層の軟化温度が、180℃以上260℃以下の範囲にある、項1~9のいずれかに記載の電池用包装材料。
項11. 前記熱融着性樹脂層の厚みが、10μm以上40μm以下の範囲にある、項1~10のいずれかに記載の電池用包装材料。
項12. 前記熱融着性樹脂層は、その表面に微細な凹凸を備えている、項1~11のいずれかに記載の電池用包装材料。
項13. 少なくとも、基材層と、バリア層と、硬化樹脂層と、熱融着性樹脂層とをこの順に備えた積層体を得る積層工程を備えており、
プローブの変位量を測定する熱機械分析において、前記積層体の端部の前記硬化樹脂層表面に前記プローブを設置し、測定開始時の前記プローブのディフレクションの設定値は-4V、昇温速度5℃/分の条件で、前記プローブを40℃から220℃まで加熱した際に、前記プローブの位置が初期値よりも低下しないものを前記硬化樹脂層として用いる、電池用包装材料の製造方法。 The present invention has been completed by further studies based on these findings. That is, this invention provides the invention of the aspect hung up below.
Item 1. It is composed of a laminate including at least a base material layer, a barrier layer, a cured resin layer, and a heat-fusible resin layer in this order,
In the thermomechanical analysis for measuring the displacement of the probe, the probe is set on the surface of the cured resin layer in the cross section of the laminate, and the set value of the deflection of the probe at the start of the measurement is −4 V, the heating rate is 5 A battery packaging material in which, when the probe is heated from 40 ° C. to 220 ° C. under the condition of ° C./min, the position of the probe does not fall below the initial value.
Item 2. In the thermomechanical analysis for measuring the displacement of the probe, the probe is set on the surface of the cured resin layer in the cross section of the laminate, and the set value of the deflection of the probe at the start of the measurement is −4 V, the heating rate is 5 When the probe was heated from 40 ° C. to 220 ° C. under the condition of ° C./min, the amount of increase in the position of the probe when heated from 140 ° C. to 220 ° C. was when heated from 80 ° C. to 120 ° C. Item 2. The battery packaging material according to Item 1, wherein the battery packaging material is larger than the amount of increase in the position of the probe.
Item 3. Item 3. The battery packaging material according to Item 1 or 2, wherein the cured resin layer is a cured product of a resin composition containing an acid-modified polyolefin.
Item 4. The acid-modified polyolefin of the cured resin layer is maleic anhydride-modified polypropylene,
Item 4. The battery packaging material according to Item 3, wherein the heat-fusible resin layer contains polypropylene.
Item 5. Item 5. The battery packaging material according to any one of Items 1 to 4, wherein the resin constituting the cured resin layer contains a polyolefin skeleton.
Item 6. Item 5. The cured resin layer is a cured product of a resin composition containing at least one selected from the group consisting of a compound having an isocyanate group, a compound having an oxazoline group, an epoxy resin, and a urethane resin. The battery packaging material according to any one of the above.
Item 7. The cured resin layer is a cured product of a resin composition containing a curing agent having at least one selected from the group consisting of an oxygen atom, a heterocyclic ring, a C═N bond, and a C—O—C bond. The battery packaging material according to any one of 1 to 6.
Item 8.Item 7. The battery packaging material according to any one of Items 1 to 6, wherein the cured resin layer contains at least one selected from the group consisting of urethane resins, ester resins, and epoxy resins.
Item 9. Item 9. The battery packaging material according to any one ofItems 1 to 8, wherein the thickness of the cured resin layer is 0.6 μm or more and 11 μm or less.
Item 10. Item 10. The battery packaging material according to any one of Items 1 to 9, wherein a softening temperature of the cured resin layer is in a range of 180 ° C. or higher and 260 ° C. or lower.
Item 11. Item 11. The battery packaging material according to any one ofItems 1 to 10, wherein the thickness of the heat-fusible resin layer is in the range of 10 μm to 40 μm.
Item 12. Item 12. The battery packaging material according to any one ofItems 1 to 11, wherein the heat-fusible resin layer has fine irregularities on the surface thereof.
Item 13. At least a layering step of obtaining a laminate including a base material layer, a barrier layer, a cured resin layer, and a heat-fusible resin layer in this order;
In the thermomechanical analysis for measuring the displacement of the probe, the probe is installed on the surface of the cured resin layer at the end of the laminate, and the deflection setting value of the probe at the start of measurement is −4 V, the heating rate A method for producing a packaging material for a battery, wherein a material in which the position of the probe does not lower than an initial value when the probe is heated from 40 ° C. to 220 ° C. under a condition of 5 ° C./min is used as the cured resin layer.
項1. 少なくとも、基材層と、バリア層と、硬化樹脂層と、熱融着性樹脂層とをこの順に備える積層体から構成されており、
プローブの変位量を測定する熱機械分析において、前記積層体の断面の前記硬化樹脂層表面に前記プローブを設置し、測定開始時の前記プローブのディフレクションの設定値は-4V、昇温速度5℃/分の条件で、前記プローブを40℃から220℃まで加熱した際に、前記プローブの位置が初期値よりも低下しない、電池用包装材料。
項2. プローブの変位量を測定する熱機械分析において、前記積層体の断面の前記硬化樹脂層表面に前記プローブを設置し、測定開始時の前記プローブのディフレクションの設定値は-4V、昇温速度5℃/分の条件で、前記プローブを40℃から220℃まで加熱した際に、140℃から220℃まで加熱した際の前記プローブの位置の上昇量が、80℃から120℃まで加熱した際の前記プローブの位置の上昇量よりも大きい、項1に記載の電池用包装材料。
項3. 前記硬化樹脂層が、酸変性ポリオレフィンを含む樹脂組成物の硬化物である、項1または2に記載の電池用包装材料。
項4. 前記硬化樹脂層の前記酸変性ポリオレフィンが、無水マレイン酸変性ポリプロピレンであり、
前記熱融着性樹脂層が、ポリプロピレンを含む、項3に記載の電池用包装材料。
項5. 前記硬化樹脂層を構成する樹脂が、ポリオレフィン骨格を含んでいる、項1~4のいずれかに記載の電池用包装材料。
項6. 前記硬化樹脂層が、イソシアネート基を有する化合物、オキサゾリン基を有する化合物、エポキシ樹脂、及びウレタン樹脂からなる群より選択される少なくとも1種を含む樹脂組成物の硬化物である、項1~5のいずれかに記載の電池用包装材料。
項7. 前記硬化樹脂層が、酸素原子、複素環、C=N結合、及びC-O-C結合からなる群より選択される少なくとも1種を有する硬化剤を含む樹脂組成物の硬化物である、項1~6のいずれかに記載の電池用包装材料。
項8. 前記硬化樹脂層が、ウレタン樹脂、エステル樹脂、及びエポキシ樹脂からなる群より選択される少なくとも1種を含む、項1~6のいずれかに記載の電池用包装材料。
項9. 前記硬化樹脂層の厚みが、0.6μm以上11μm以下である、項1~8のいずれかに記載の電池用包装材料。
項10. 前記硬化樹脂層の軟化温度が、180℃以上260℃以下の範囲にある、項1~9のいずれかに記載の電池用包装材料。
項11. 前記熱融着性樹脂層の厚みが、10μm以上40μm以下の範囲にある、項1~10のいずれかに記載の電池用包装材料。
項12. 前記熱融着性樹脂層は、その表面に微細な凹凸を備えている、項1~11のいずれかに記載の電池用包装材料。
項13. 少なくとも、基材層と、バリア層と、硬化樹脂層と、熱融着性樹脂層とをこの順に備えた積層体を得る積層工程を備えており、
プローブの変位量を測定する熱機械分析において、前記積層体の端部の前記硬化樹脂層表面に前記プローブを設置し、測定開始時の前記プローブのディフレクションの設定値は-4V、昇温速度5℃/分の条件で、前記プローブを40℃から220℃まで加熱した際に、前記プローブの位置が初期値よりも低下しないものを前記硬化樹脂層として用いる、電池用包装材料の製造方法。 The present invention has been completed by further studies based on these findings. That is, this invention provides the invention of the aspect hung up below.
In the thermomechanical analysis for measuring the displacement of the probe, the probe is set on the surface of the cured resin layer in the cross section of the laminate, and the set value of the deflection of the probe at the start of the measurement is −4 V, the heating rate is 5 A battery packaging material in which, when the probe is heated from 40 ° C. to 220 ° C. under the condition of ° C./min, the position of the probe does not fall below the initial value.
Item 8.
Item 9. Item 9. The battery packaging material according to any one of
Item 11. Item 11. The battery packaging material according to any one of
Item 12. Item 12. The battery packaging material according to any one of
Item 13. At least a layering step of obtaining a laminate including a base material layer, a barrier layer, a cured resin layer, and a heat-fusible resin layer in this order;
In the thermomechanical analysis for measuring the displacement of the probe, the probe is installed on the surface of the cured resin layer at the end of the laminate, and the deflection setting value of the probe at the start of measurement is −4 V, the heating rate A method for producing a packaging material for a battery, wherein a material in which the position of the probe does not lower than an initial value when the probe is heated from 40 ° C. to 220 ° C. under a condition of 5 ° C./min is used as the cured resin layer.
本発明の電池用包装材料によれば、絶縁性及び耐久性が高い電池用包装材料を提供することができる。すなわち、本発明の電池用包装材料によって電池素子を封止することにより、電池の絶縁性及び耐久性を高めることができる。
According to the battery packaging material of the present invention, a battery packaging material having high insulation and durability can be provided. That is, by sealing the battery element with the battery packaging material of the present invention, the insulation and durability of the battery can be enhanced.
本発明において、電池用包装材料は、少なくとも、基材層と、バリア層と、硬化樹脂層と、熱融着性樹脂層とをこの順に備える積層体から構成されており、プローブの変位量を測定する熱機械分析において、積層体の断面の硬化樹脂層表面にプローブを設置し、測定開始時の前記プローブのディフレクションの設定値は-4V、昇温速度5℃/分の条件で、プローブを40℃から220℃まで加熱した際に、プローブの位置が初期値よりも低下しないことを特徴とする。以下、図1から図3を参照しながら、本発明の電池用包装材料、その製造方法、及び電池素子が本発明の電池用包装材料により封止された本発明の電池について詳述する。
In the present invention, the battery packaging material is composed of a laminate including at least a base material layer, a barrier layer, a cured resin layer, and a heat-fusible resin layer in this order. In the thermomechanical analysis to be measured, a probe is placed on the surface of the cured resin layer in the cross section of the laminate, and the probe deflection setting value at the start of measurement is -4V and the temperature rise rate is 5 ° C / min. It is characterized in that the position of the probe does not fall below the initial value when the is heated from 40 ° C. to 220 ° C. Hereinafter, the battery packaging material of the present invention, the manufacturing method thereof, and the battery of the present invention in which the battery element is sealed with the battery packaging material of the present invention will be described in detail with reference to FIGS. 1 to 3.
なお、本明細書において、数値範囲については、「~」で示される数値範囲は「以上」、「以下」を意味する。例えば、2~15mmとの表記は、2mm以上15mm以下を意味する。
In this specification, the numerical range indicated by “to” means “above” or “below”. For example, the notation of 2 to 15 mm means 2 mm or more and 15 mm or less.
1.電池用包装材料の積層構造
本発明の電池用包装材料は、図1に示すように、少なくとも、基材層1、バリア層3、硬化樹脂層4、及び熱融着性樹脂層5をこの順に備えた積層体からなる。本発明の電池用包装材料において、基材層1が最外層側になり、熱融着性樹脂層5は最内層になる。即ち、電池の組み立て時に、電池素子の周縁に位置する熱融着性樹脂層5同士が熱融着して電池素子を密封することにより、電池素子が封止される。 1. As shown in FIG. 1, the battery packaging material of the present invention comprises at least abase material layer 1, a barrier layer 3, a cured resin layer 4, and a heat-fusible resin layer 5 in this order. It consists of a provided laminate. In the battery packaging material of the present invention, the base material layer 1 is the outermost layer side, and the heat-fusible resin layer 5 is the innermost layer. That is, at the time of battery assembly, the heat sealing resin layers 5 positioned at the periphery of the battery element are thermally fused together to seal the battery element, thereby sealing the battery element.
本発明の電池用包装材料は、図1に示すように、少なくとも、基材層1、バリア層3、硬化樹脂層4、及び熱融着性樹脂層5をこの順に備えた積層体からなる。本発明の電池用包装材料において、基材層1が最外層側になり、熱融着性樹脂層5は最内層になる。即ち、電池の組み立て時に、電池素子の周縁に位置する熱融着性樹脂層5同士が熱融着して電池素子を密封することにより、電池素子が封止される。 1. As shown in FIG. 1, the battery packaging material of the present invention comprises at least a
本発明の電池用包装材料は、図2に示すように、基材層1とバリア層3との間に、これらの接着性を高める目的で、必要に応じて接着剤層2を備えていてもよい。また、図3に示すように、基材層1のバリア層3とは反対側の表面には、表面被覆層6を備えていてもよい。
As shown in FIG. 2, the battery packaging material of the present invention includes an adhesive layer 2 between the base material layer 1 and the barrier layer 3 as necessary for the purpose of enhancing the adhesiveness thereof. Also good. As shown in FIG. 3, a surface coating layer 6 may be provided on the surface of the base material layer 1 opposite to the barrier layer 3.
本発明の電池用包装材料を構成する積層体の厚みとしては、特に制限されないが、積層体の厚みを可能な限り薄くしつつ、高い絶縁性及び耐久性を発揮する観点からは、好ましくは約160μm以下、より好ましくは35~155μm程度、さらに好ましくは45~120μm程度が挙げられる。本発明の電池用包装材料を構成する積層体の厚みが、例えば160μm以下と薄い場合にも、本発明によれば、優れた絶縁性を発揮し得る。このため、本発明の電池用包装材料は、電池のエネルギー密度の向上に寄与することができる。
The thickness of the laminate constituting the battery packaging material of the present invention is not particularly limited, but preferably from the viewpoint of exhibiting high insulation and durability while reducing the thickness of the laminate as much as possible. 160 μm or less, more preferably about 35 to 155 μm, still more preferably about 45 to 120 μm. Even when the thickness of the laminate constituting the battery packaging material of the present invention is as thin as 160 μm or less, for example, the present invention can exhibit excellent insulation. For this reason, the packaging material for batteries of this invention can contribute to the improvement of the energy density of a battery.
2.電池用包装材料を形成する各層
[基材層1]
本発明の電池用包装材料において、基材層1は最外層側に位置する層である。基材層1を形成する素材については、絶縁性を備えるものであることを限度として特に制限されるものではない。基材層1を形成する素材としては、例えば、ポリエステル樹脂、ポリアミド樹脂、エポキシ樹脂、アクリル樹脂、フッ素樹脂、ポリウレタン樹脂、珪素樹脂、フェノール樹脂、及びこれらの混合物や共重合物等の樹脂フィルムが挙げられる。また、基材層1は、樹脂を塗布して形成してもよい。これらの中でも、好ましくはポリエステル樹脂、ポリアミド樹脂が挙げられ、より好ましくは2軸延伸ポリエステル樹脂、2軸延伸ポリアミド樹脂が挙げられる。ポリエステル樹脂としては、具体的には、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、共重合ポリエステル、ポリカーボネート等が挙げられる。また、ポリアミド樹脂としては、具体的には、ナイロン6、ナイロン66、ナイロン6とナイロン66との共重合体、ナイロン6,10、ポリメタキシリレンアジパミド(MXD6)等が挙げられる。 2. Each layer forming the battery packaging material [base material layer 1]
In the battery packaging material of the present invention, thebase material layer 1 is a layer located on the outermost layer side. The material for forming the base material layer 1 is not particularly limited as long as it has insulating properties. Examples of the material for forming the base material layer 1 include resin films such as polyester resin, polyamide resin, epoxy resin, acrylic resin, fluorine resin, polyurethane resin, silicon resin, phenol resin, and mixtures and copolymers thereof. Can be mentioned. Moreover, you may form the base material layer 1 by apply | coating resin. Among these, Preferably a polyester resin and a polyamide resin are mentioned, More preferably, a biaxially stretched polyester resin and a biaxially stretched polyamide resin are mentioned. Specific examples of the polyester resin include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, copolyester, and polycarbonate. Specific examples of the polyamide resin include nylon 6, nylon 66, a copolymer of nylon 6 and nylon 66, nylon 6,10, polymetaxylylene adipamide (MXD6), and the like.
[基材層1]
本発明の電池用包装材料において、基材層1は最外層側に位置する層である。基材層1を形成する素材については、絶縁性を備えるものであることを限度として特に制限されるものではない。基材層1を形成する素材としては、例えば、ポリエステル樹脂、ポリアミド樹脂、エポキシ樹脂、アクリル樹脂、フッ素樹脂、ポリウレタン樹脂、珪素樹脂、フェノール樹脂、及びこれらの混合物や共重合物等の樹脂フィルムが挙げられる。また、基材層1は、樹脂を塗布して形成してもよい。これらの中でも、好ましくはポリエステル樹脂、ポリアミド樹脂が挙げられ、より好ましくは2軸延伸ポリエステル樹脂、2軸延伸ポリアミド樹脂が挙げられる。ポリエステル樹脂としては、具体的には、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、共重合ポリエステル、ポリカーボネート等が挙げられる。また、ポリアミド樹脂としては、具体的には、ナイロン6、ナイロン66、ナイロン6とナイロン66との共重合体、ナイロン6,10、ポリメタキシリレンアジパミド(MXD6)等が挙げられる。 2. Each layer forming the battery packaging material [base material layer 1]
In the battery packaging material of the present invention, the
基材層1は、1層の樹脂フィルムから形成されていてもよいが、耐ピンホール性や絶縁性を向上させるために、2層以上の樹脂フィルムで形成されていてもよい。具体的には、ポリエステルフィルムとナイロンフィルムとを積層させた多層構造、ナイロンフィルムを複数積層させた多層構造、ポリエステルフィルムを複数積層させた多層構造などが挙げられる。基材層1が多層構造である場合、2軸延伸ナイロンフィルムと2軸延伸ポリエステルフィルムの積層体、2軸延伸ナイロンフィルムを複数積層させた積層体、2軸延伸ポリエステルフィルムを複数積層させた積層体が好ましい。例えば、基材層1を2層の樹脂フィルムから形成する場合、ポリエステル樹脂とポリエステル樹脂を積層する構成、ポリアミド樹脂とポリアミド樹脂を積層する構成、またはポリエステル樹脂とポリアミド樹脂を積層する構成にすることが好ましく、ポリエチレンテレフタレートとポリエチレンテレフタレートを積層する構成、ナイロンとナイロンを積層する構成、またはポリエチレンテレフタレートとナイロンを積層する構成にすることがより好ましい。また、ポリエステル樹脂は、例えば電解液が表面に付着した際に変色し難いことなどから、当該積層構成においては、ポリエステル樹脂が最外層に位置するように基材層1を積層することが好ましい。基材層1を多層構造とする場合、各層の厚みとして、好ましくは2~25μm程度が挙げられる。
The base material layer 1 may be formed of a single resin film, but may be formed of two or more resin films in order to improve pinhole resistance and insulation. Specific examples include a multilayer structure in which a polyester film and a nylon film are laminated, a multilayer structure in which a plurality of nylon films are laminated, and a multilayer structure in which a plurality of polyester films are laminated. When the base material layer 1 has a multilayer structure, a laminate of a biaxially stretched nylon film and a biaxially stretched polyester film, a laminate of a plurality of biaxially stretched nylon films, and a laminate of a plurality of biaxially stretched polyester films The body is preferred. For example, when the base material layer 1 is formed from two resin films, the polyester resin and the polyester resin are laminated, the polyamide resin and the polyamide resin are laminated, or the polyester resin and the polyamide resin are laminated. It is preferable to use a structure in which polyethylene terephthalate and polyethylene terephthalate are laminated, a structure in which nylon and nylon are laminated, or a structure in which polyethylene terephthalate and nylon are laminated. In addition, since the polyester resin is difficult to discolor when, for example, the electrolytic solution adheres to the surface, it is preferable to laminate the base material layer 1 so that the polyester resin is located in the outermost layer in the laminated configuration. When the base material layer 1 has a multilayer structure, the thickness of each layer is preferably about 2 to 25 μm.
基材層1を多層の樹脂フィルムで形成する場合、2以上の樹脂フィルムは、接着剤または接着性樹脂などの接着成分を介して積層させればよく、使用される接着成分の種類や量等については、後述する接着剤層2の場合と同様である。なお、2層以上の樹脂フィルムを積層させる方法としては、特に制限されず、公知方法が採用でき、例えばドライラミネート法、サンドイッチラミネート法などが挙げられ、好ましくはドライラミネート法が挙げられる。ドライラミネート法により積層させる場合には、接着層としてポリウレタン系接着剤を用いることが好ましい。このとき、接着層の厚みとしては、例えば2~5μm程度が挙げられる。
When the base material layer 1 is formed of a multilayer resin film, two or more resin films may be laminated via an adhesive component such as an adhesive or an adhesive resin, and the type and amount of the adhesive component used. Is the same as that of the adhesive layer 2 described later. In addition, it does not restrict | limit especially as a method of laminating | stacking two or more resin films, A well-known method can be employ | adopted, for example, a dry lamination method, a sandwich lamination method, etc. are mentioned, Preferably the dry lamination method is mentioned. When laminating by a dry laminating method, it is preferable to use a polyurethane adhesive as the adhesive layer. At this time, the thickness of the adhesive layer is, for example, about 2 to 5 μm.
本発明において、電池用包装材料の成形性を高める観点からは、基材層1の表面には、滑剤が存在していることが好ましい。滑剤としては、特に制限されないが、好ましくはアミド系滑剤が挙げられる。アミド系滑剤の具体例としては、例えば、飽和脂肪酸アミド、不飽和脂肪酸アミド、置換アミド、メチロールアミド、飽和脂肪酸ビスアミド、不飽和脂肪酸ビスアミドなどが挙げられる。飽和脂肪酸アミドの具体例としては、ラウリン酸アミド、パルミチン酸アミド、ステアリン酸アミド、ベヘン酸アミド、ヒドロキシステアリン酸アミドなどが挙げられる。不飽和脂肪酸アミドの具体例としては、オレイン酸アミド、エルカ酸アミドなどが挙げられる。置換アミドの具体例としては、N-オレイルパルミチン酸アミド、N-ステアリルステアリン酸アミド、N-ステアリルオレイン酸アミド、N-オレイルステアリン酸アミド、N-ステアリルエルカ酸アミドなどが挙げられる。また、メチロールアミドの具体例としては、メチロールステアリン酸アミドなどが挙げられる。飽和脂肪酸ビスアミドの具体例としては、メチレンビスステアリン酸アミド、エチレンビスカプリン酸アミド、エチレンビスラウリン酸アミド、エチレンビスステアリン酸アミド、エチレンビスヒドロキシステアリン酸アミド、エチレンビスベヘン酸アミド、ヘキサメチレンビスステアリン酸アミド、ヘキサメチレンビスベヘン酸アミド、ヘキサメチレンヒドロキシステアリン酸アミド、N,N’-ジステアリルアジピン酸アミド、N,N’-ジステアリルセバシン酸アミドなどが挙げられる。不飽和脂肪酸ビスアミドの具体例としては、エチレンビスオレイン酸アミド、エチレンビスエルカ酸アミド、ヘキサメチレンビスオレイン酸アミド、N,N’-ジオレイルアジピン酸アミド、N,N’-ジオレイルセバシン酸アミドなどが挙げられる。脂肪酸エステルアミドの具体例としては、ステアロアミドエチルステアレートなどが挙げられる。また、芳香族系ビスアミドの具体例としては、m-キシリレンビスステアリン酸アミド、m-キシリレンビスヒドロキシステアリン酸アミド、N,N’-ジステアリルイソフタル酸アミドなどが挙げられる。滑剤は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。
In the present invention, it is preferable that a lubricant is present on the surface of the base material layer 1 from the viewpoint of improving the moldability of the battery packaging material. Although it does not restrict | limit especially as a lubricant, Preferably an amide type lubricant is mentioned. Specific examples of the amide-based lubricant include saturated fatty acid amide, unsaturated fatty acid amide, substituted amide, methylolamide, saturated fatty acid bisamide, unsaturated fatty acid bisamide, and the like. Specific examples of the saturated fatty acid amide include lauric acid amide, palmitic acid amide, stearic acid amide, behenic acid amide, hydroxy stearic acid amide and the like. Specific examples of the unsaturated fatty acid amide include oleic acid amide and erucic acid amide. Specific examples of the substituted amide include N-oleyl palmitic acid amide, N-stearyl stearic acid amide, N-stearyl oleic acid amide, N-oleyl stearic acid amide, N-stearyl erucic acid amide and the like. Specific examples of methylolamide include methylol stearamide. Specific examples of saturated fatty acid bisamides include methylene bis stearamide, ethylene biscapric amide, ethylene bis lauric acid amide, ethylene bis stearic acid amide, ethylene bishydroxy stearic acid amide, ethylene bisbehenic acid amide, hexamethylene bis stearic acid amide. And acid amide, hexamethylene bisbehenic acid amide, hexamethylene hydroxystearic acid amide, N, N′-distearyl adipic acid amide, N, N′-distearyl sebacic acid amide, and the like. Specific examples of unsaturated fatty acid bisamides include ethylene bisoleic acid amide, ethylene biserucic acid amide, hexamethylene bisoleic acid amide, N, N′-dioleyl adipic acid amide, N, N′-dioleyl sebacic acid amide Etc. Specific examples of the fatty acid ester amide include stearoamidoethyl stearate. Specific examples of the aromatic bisamide include m-xylylene bis stearic acid amide, m-xylylene bishydroxy stearic acid amide, N, N′-distearyl isophthalic acid amide and the like. One type of lubricant may be used alone, or two or more types may be used in combination.
基材層1表面に滑剤が存在する場合、その存在量としては、特に制限されないが、温度24℃、湿度60%環境において、好ましくは約3mg/m2以上、より好ましくは4~15mg/m2程度、さらに好ましくは5~14mg/m2程度が挙げられる。
When a lubricant is present on the surface of the base material layer 1, the amount of the lubricant is not particularly limited, but is preferably about 3 mg / m 2 or more, more preferably 4 to 15 mg / m in an environment of a temperature of 24 ° C. and a humidity of 60%. About 2 , more preferably about 5 to 14 mg / m 2 .
基材層1には、滑剤が含まれていてもよい。また、基材層1の表面に存在する滑剤は、基材層1を構成する樹脂に含まれる滑剤を滲出させたものであってもよいし、基材層1の表面に滑剤を塗布したものであってもよい。
The base material layer 1 may contain a lubricant. Further, the lubricant present on the surface of the base material layer 1 may be obtained by leaching the lubricant contained in the resin constituting the base material layer 1 or by applying a lubricant to the surface of the base material layer 1. It may be.
基材層1の厚みについては、基材層としての機能を発揮すれば特に制限されないが、例えば、3~50μm程度、好ましくは10~35μm程度が挙げられる。
The thickness of the base material layer 1 is not particularly limited as long as it functions as a base material layer. For example, the thickness is about 3 to 50 μm, preferably about 10 to 35 μm.
[接着剤層2]
本発明の電池用包装材料において、接着剤層2は、基材層1とバリア層3を強固に接着させるために、必要に応じて、これらの間に設けられる層である。 [Adhesive layer 2]
In the battery packaging material of the present invention, theadhesive layer 2 is a layer provided between the base material layer 1 and the barrier layer 3 as necessary in order to firmly bond them.
本発明の電池用包装材料において、接着剤層2は、基材層1とバリア層3を強固に接着させるために、必要に応じて、これらの間に設けられる層である。 [Adhesive layer 2]
In the battery packaging material of the present invention, the
接着剤層2は、基材層1とバリア層3とを接着可能である接着剤によって形成される。接着剤層2の形成に使用される接着剤は、2液硬化型接着剤であってもよく、また1液硬化型接着剤であってもよい。更に、接着剤層2の形成に使用される接着剤についても、特に制限されず、化学反応型、溶剤揮発型、熱溶融型、熱圧型等のいずれであってもよい。
The adhesive layer 2 is formed of an adhesive capable of bonding the base material layer 1 and the barrier layer 3 together. The adhesive used for forming the adhesive layer 2 may be a two-component curable adhesive or a one-component curable adhesive. Further, the adhesive used for forming the adhesive layer 2 is not particularly limited, and may be any of a chemical reaction type, a solvent volatilization type, a heat melting type, a hot pressure type, and the like.
接着剤層2の形成に使用できる接着成分としては、具体的には、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリエチレンイソフタレート、共重合ポリエステル等のポリエステル系樹脂;ポリエーテル系接着剤;ポリウレタン系接着剤;エポキシ系樹脂;フェノール樹脂系樹脂;ナイロン6、ナイロン66、ナイロン12、共重合ポリアミド等のポリアミド系樹脂;ポリオレフィン、カルボン酸変性ポリオレフィン、金属変性ポリオレフィン等のポリオレフィン系樹脂、ポリ酢酸ビニル系樹脂;セルロース系接着剤;(メタ)アクリル系樹脂;ポリイミド系樹脂;ポリカーボネート;尿素樹脂、メラミン樹脂等のアミノ樹脂;クロロプレンゴム、ニトリルゴム、スチレン-ブタジエンゴム等のゴム;シリコーン系樹脂等が挙げられる。これらの接着成分は1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。これらの接着成分の中でも、好ましくはポリウレタン系接着剤が挙げられる。
Specific examples of adhesive components that can be used to form the adhesive layer 2 include polyester resins such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polyethylene isophthalate, and copolyester; polyethers Polyurethane adhesives; epoxy resins; phenolic resins; polyamide resins such as nylon 6, nylon 66, nylon 12, copolymer polyamides; polyolefins such as polyolefins, carboxylic acid modified polyolefins, metal modified polyolefins Resin, polyvinyl acetate resin; cellulosic adhesive; (meth) acrylic resin; polyimide resin; polycarbonate; amino resin such as urea resin and melamine resin; chloroprene rubber, nitrile rubber, - Len rubbers such as butadiene rubber, silicone-based resins. These adhesive components may be used individually by 1 type, and may be used in combination of 2 or more type. Among these adhesive components, a polyurethane adhesive is preferable.
ポリウレタン系接着剤としては、例えば、ポリオール成分(A)を含有する主剤と、ポリイソシアネート成分(B)を含有する硬化剤とを含有するポリウレタン系接着剤であって、ポリオール成分(A)がポリエステルポリオール(A1)を含有し、ポリエステルポリオール(A1)が多塩基酸成分と多価アルコール成分とから構成される数平均分子量5000~50000のポリエステルポリオールであって、多塩基酸成分100モル%中、芳香族多塩基酸成分を45~95モル%含み、接着剤層の100%伸び時の引張り応力が100kg/cm2以上、500kg/cm2以下となるものが挙げられる。また、例えば、主剤とポリイソシアネート硬化剤とを含有する電池用包装材用ポリウレタン系接着剤であって、主剤が、ガラス転移温度が40℃以上のポリエステルポリオール(A1)5~50重量%およびガラス転移温度が40℃未満のポリエステルポリオール(A2)95~50重量%を含むポリオール成分(A)とシランカップリング剤(B)とを含み、ポリオール成分(A)由来のヒドロキシル基とカルボキシル基の合計に対する硬化剤中に含まれるイソシアネート基の当量比[NCO]/([OH]+[COOH])が1~30であるものが挙げられる。
The polyurethane adhesive is, for example, a polyurethane adhesive containing a main component containing a polyol component (A) and a curing agent containing a polyisocyanate component (B), and the polyol component (A) is a polyester. Polyester polyol containing a polyol (A1), wherein the polyester polyol (A1) is composed of a polybasic acid component and a polyhydric alcohol component and having a number average molecular weight of 5,000 to 50,000, in 100 mol% of the polybasic acid component, The aromatic polybasic acid component is contained in an amount of 45 to 95 mol%, and the tensile stress at 100% elongation of the adhesive layer is 100 kg / cm 2 or more and 500 kg / cm 2 or less. Also, for example, a polyurethane adhesive for battery packaging materials containing a main agent and a polyisocyanate curing agent, wherein the main agent is a polyester polyol (A1) having a glass transition temperature of 40 ° C. or more and 5 to 50% by weight and glass. Polyester polyol (A2) having a transition temperature of less than 40 ° C. A polyol component (A) containing 95 to 50% by weight and a silane coupling agent (B), and the total of hydroxyl groups and carboxyl groups derived from the polyol component (A) And an equivalent ratio [NCO] / ([OH] + [COOH]) of isocyanate groups contained in the curing agent to 1 to 30 may be mentioned.
また、接着剤層2は、着色剤を含んでいてもよい。接着剤層2が着色剤を含んでいることにより、電池用包装材料を着色することができる。着色剤としては、顔料、染料などの公知のものが使用できる。また、着色剤は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。
Further, the adhesive layer 2 may contain a colorant. When the adhesive layer 2 includes a colorant, the battery packaging material can be colored. As the colorant, known ones such as pigments and dyes can be used. Moreover, only 1 type may be used for a coloring agent, and 2 or more types may be mixed and used for it.
例えば、無機系の顔料の具体例としては、好ましくはカーボンブラック、酸化チタンなどが挙げられる。また、有機系の顔料の具体例としては、好ましくはアゾ系顔料、フタロシアニン系顔料、縮合多環系顔料などが挙げられる。アゾ系顔料としては、ウォッチングレッド、力―ミン6Cなどの溶性顔料;モノアゾイエロー、ジスアゾイエロー、ピラゾロンオレンジ、ピラゾロンレッド、パーマネントレッド等の不溶性アゾ顔料が挙げられ、フタロシアニン系顔料としては、銅フタロシアニン顔料、無金属フタロシアニン顔料としての青系顔料や緑系顔料が挙げられ、縮合多環系顔料としては、ジオキサジンバイオレット、キナクリドンバイオレットなどが挙げられる。また、顔料としては、パール顔料や、蛍光顔料なども使用できる。
For example, specific examples of inorganic pigments preferably include carbon black and titanium oxide. Specific examples of organic pigments preferably include azo pigments, phthalocyanine pigments, and condensed polycyclic pigments. Examples of azo pigments include soluble pigments such as watching red and force-min 6C; insoluble azo pigments such as monoazo yellow, disazo yellow, pyrazolone orange, pyrazolone red, and permanent red, and phthalocyanine pigments include copper phthalocyanine pigments. And blue pigments and green pigments as metal-free phthalocyanine pigments, and condensed polycyclic pigments include dioxazine violet and quinacridone violet. As the pigment, a pearl pigment, a fluorescent pigment, or the like can be used.
着色剤の中でも、例えば電池用包装材料の外観を黒色とするためには、カーボンブラックが好ましい。
Among the colorants, for example, carbon black is preferable in order to make the appearance of the battery packaging material black.
顔料の平均粒子径としては、特に制限されず、例えば、0.05~5μm程度、好ましくは0.08~2μm程度が挙げられる。なお、顔料の平均粒子径は、レーザ回折/散乱式粒子径分布測定装置で測定されたメジアン径とする。
The average particle diameter of the pigment is not particularly limited, and examples thereof include about 0.05 to 5 μm, preferably about 0.08 to 2 μm. In addition, let the average particle diameter of a pigment be the median diameter measured with the laser diffraction / scattering type particle size distribution measuring apparatus.
接着剤層2における顔料の含有量としては、電池用包装材料が着色されれば特に制限されず、例えば5~60質量%程度が挙げられる。
The content of the pigment in the adhesive layer 2 is not particularly limited as long as the battery packaging material is colored, and examples thereof include about 5 to 60% by mass.
接着剤層2の厚みについては、硬化樹脂層としての機能を発揮すれば特に制限されないが、例えば、1~10μm程度、好ましくは2~5μm程度が挙げられる。
The thickness of the adhesive layer 2 is not particularly limited as long as it functions as a cured resin layer, and for example, it may be about 1 to 10 μm, preferably about 2 to 5 μm.
[着色層]
着色層は、基材層1と接着剤層2との間に必要に応じて設けられる層である(図示を省略する)。着色層を設けることにより、電池用包装材料を着色することができる。 [Colored layer]
The colored layer is a layer provided as necessary between thebase material layer 1 and the adhesive layer 2 (illustration is omitted). By providing the colored layer, the battery packaging material can be colored.
着色層は、基材層1と接着剤層2との間に必要に応じて設けられる層である(図示を省略する)。着色層を設けることにより、電池用包装材料を着色することができる。 [Colored layer]
The colored layer is a layer provided as necessary between the
着色層は、例えば、着色剤を含むインキを基材層1の表面、またはバリア層3の表面に塗布することにより形成することができる。着色剤としては、顔料、染料などの公知のものが使用できる。また、着色剤は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。
The colored layer can be formed, for example, by applying an ink containing a colorant to the surface of the base material layer 1 or the surface of the barrier layer 3. As the colorant, known ones such as pigments and dyes can be used. Moreover, only 1 type may be used for a coloring agent, and 2 or more types may be mixed and used for it.
着色層に含まれる着色剤の具体例としては、[接着剤層2]の欄で例示したものと同じものが例示される。
Specific examples of the colorant contained in the colored layer are the same as those exemplified in the column of [Adhesive layer 2].
[バリア層3]
電池用包装材料において、バリア層3は、電池用包装材料の強度向上の他、電池内部に水蒸気、酸素、光などが侵入することを防止する機能を有する層である。バリア層3は、金属箔、金属蒸着膜、無機酸化物蒸着膜、炭素含有無機酸化物蒸着膜、これらの蒸着層を設けたフィルムなどにより形成することができ、金属で形成されている層であることが好ましい。バリア層3を構成する金属としては、具体的には、アルミニウム、ステンレス鋼、チタン鋼などが挙げられ、好ましくはアルミニウムが挙げられる。バリア層3は、例えば、金属箔や金属蒸着膜、無機酸化物蒸着膜、炭素含有無機酸化物蒸着膜、これらの蒸着膜を設けたフィルムなどにより形成することができ、金属箔により形成することが好ましく、アルミニウム箔又はステンレス鋼箔により形成することがさらに好ましい。電池用包装材料の製造時に、バリア層3にしわやピンホールが発生することを防止する観点からは、バリア層は、例えば、焼きなまし処理済みのアルミニウム(JIS H4160:1994 A8021H-O、JIS H4160:1994 A8079H-O、JIS H4000:2014 A8021P-O、JIS H4000:2014 A8079P-O)など軟質アルミニウム箔により形成することがより好ましい。 [Barrier layer 3]
In the battery packaging material, thebarrier layer 3 is a layer having a function of preventing water vapor, oxygen, light and the like from entering the battery, in addition to improving the strength of the battery packaging material. The barrier layer 3 can be formed of a metal foil, a metal vapor-deposited film, an inorganic oxide vapor-deposited film, a carbon-containing inorganic oxide vapor-deposited film, a film provided with these vapor-deposited layers, or the like, and is a layer formed of metal. Preferably there is. Specific examples of the metal constituting the barrier layer 3 include aluminum, stainless steel, titanium steel, and preferably aluminum. The barrier layer 3 can be formed by, for example, a metal foil, a metal vapor-deposited film, an inorganic oxide vapor-deposited film, a carbon-containing inorganic oxide vapor-deposited film, a film provided with these vapor-deposited films, etc. It is more preferable to form with aluminum foil or stainless steel foil. From the viewpoint of preventing the generation of wrinkles and pinholes in the barrier layer 3 during the production of the battery packaging material, the barrier layer is made of, for example, annealed aluminum (JIS H4160: 1994 A8021H-O, JIS H4160: 1994 A8079H-O, JIS H4000: 2014 A8021P-O, JIS H4000: 2014 A8079P-O) and the like are more preferable.
電池用包装材料において、バリア層3は、電池用包装材料の強度向上の他、電池内部に水蒸気、酸素、光などが侵入することを防止する機能を有する層である。バリア層3は、金属箔、金属蒸着膜、無機酸化物蒸着膜、炭素含有無機酸化物蒸着膜、これらの蒸着層を設けたフィルムなどにより形成することができ、金属で形成されている層であることが好ましい。バリア層3を構成する金属としては、具体的には、アルミニウム、ステンレス鋼、チタン鋼などが挙げられ、好ましくはアルミニウムが挙げられる。バリア層3は、例えば、金属箔や金属蒸着膜、無機酸化物蒸着膜、炭素含有無機酸化物蒸着膜、これらの蒸着膜を設けたフィルムなどにより形成することができ、金属箔により形成することが好ましく、アルミニウム箔又はステンレス鋼箔により形成することがさらに好ましい。電池用包装材料の製造時に、バリア層3にしわやピンホールが発生することを防止する観点からは、バリア層は、例えば、焼きなまし処理済みのアルミニウム(JIS H4160:1994 A8021H-O、JIS H4160:1994 A8079H-O、JIS H4000:2014 A8021P-O、JIS H4000:2014 A8079P-O)など軟質アルミニウム箔により形成することがより好ましい。 [Barrier layer 3]
In the battery packaging material, the
また、ステンレス鋼箔としては、オーステナイト系のステンレス鋼箔、フェライト系のステンレス鋼箔などが挙げられる。ステンレス鋼箔は、オーステナイト系のステンレス鋼により構成されていることが好ましい。
Also, examples of the stainless steel foil include austenitic stainless steel foil and ferritic stainless steel foil. The stainless steel foil is preferably made of austenitic stainless steel.
ステンレス鋼箔を構成するオーステナイト系のステンレス鋼の具体例としては、SUS304、SUS301、SUS316Lなどが挙げられ、これら中でも、SUS304が特に好ましい。
Specific examples of the austenitic stainless steel constituting the stainless steel foil include SUS304, SUS301, SUS316L, and among these, SUS304 is particularly preferable.
バリア層3の厚みは、水蒸気などのバリア層としての機能を発揮すれば特に制限されないが、例えば、上限としては、好ましくは約85μm以下、より好ましくは約50μm以下、さらに好ましくは40μm以下が挙げられ、下限としては、好ましくは約10μm以上が挙げられ、当該厚みの範囲としては、10~80μm程度、好ましくは10~50μm程度とすることができる。なお、バリア層3がステンレス鋼箔により構成されている場合、ステンレス鋼箔の厚みとしては、好ましくは約85μm以下、より好ましくは約50μm以下、さらに好ましくは約40μm以下、さらに好ましくは約30μm以下、特に好ましくは約25μm以下が挙げられ、下限としては、約10μm以上が挙げられ、好ましい厚みの範囲としては、10~85μm程度、10~50μm程度、より好ましくは10~40μm程度、より好ましくは10~30μm程度、さらに好ましくは15~25μm程度が挙げられる。
The thickness of the barrier layer 3 is not particularly limited as long as it functions as a barrier layer such as water vapor. For example, the upper limit is preferably about 85 μm or less, more preferably about 50 μm or less, and still more preferably 40 μm or less. The lower limit is preferably about 10 μm or more, and the thickness range is about 10 to 80 μm, preferably about 10 to 50 μm. When the barrier layer 3 is made of stainless steel foil, the thickness of the stainless steel foil is preferably about 85 μm or less, more preferably about 50 μm or less, still more preferably about 40 μm or less, and further preferably about 30 μm or less. Particularly preferred is about 25 μm or less, and the lower limit is about 10 μm or more, and the preferred thickness range is about 10 to 85 μm, about 10 to 50 μm, more preferably about 10 to 40 μm, more preferably About 10 to 30 μm, more preferably about 15 to 25 μm.
また、バリア層3は、接着の安定化、溶解や腐食の防止などのために、少なくとも一方の面、好ましくは両面が化成処理されていることが好ましい。ここで、化成処理とは、バリア層の表面に耐酸性皮膜を形成する処理をいう。本発明のバリア層3の表面に耐酸性皮膜が形成されている場合、バリア層3には耐酸性皮膜が含まれる。化成処理としては、例えば、硝酸クロム、フッ化クロム、硫酸クロム、酢酸クロム、蓚酸クロム、重リン酸クロム、クロム酸アセチルアセテート、塩化クロム、硫酸カリウムクロムなどのクロム酸化合物を用いたクロム酸クロメート処理;リン酸ナトリウム、リン酸カリウム、リン酸アンモニウム、ポリリン酸などのリン酸化合物を用いたリン酸クロメート処理;下記一般式(1)~(4)で表される繰り返し単位を有するアミノ化フェノール重合体を用いたクロメート処理などが挙げられる。なお、当該アミノ化フェノール重合体において、下記一般式(1)~(4)で表される繰り返し単位は、1種類単独で含まれていてもよいし、2種類以上の任意の組み合わせであってもよい。
The barrier layer 3 is preferably subjected to chemical conversion treatment on at least one side, preferably both sides, in order to stabilize adhesion, prevent dissolution and corrosion, and the like. Here, the chemical conversion treatment refers to a treatment for forming an acid-resistant film on the surface of the barrier layer. When an acid resistant film is formed on the surface of the barrier layer 3 of the present invention, the barrier layer 3 includes an acid resistant film. As the chemical conversion treatment, for example, chromate chromate using chromic acid compounds such as chromium nitrate, chromium fluoride, chromium sulfate, chromium acetate, chromium oxalate, chromium biphosphate, chromic acetyl acetate, chromium chloride, potassium sulfate chromium, etc. Treatment: Phosphoric acid chromate treatment using a phosphoric acid compound such as sodium phosphate, potassium phosphate, ammonium phosphate, polyphosphoric acid; aminated phenol having a repeating unit represented by the following general formulas (1) to (4) Examples include chromate treatment using a polymer. In the aminated phenol polymer, the repeating units represented by the following general formulas (1) to (4) may be contained singly or in any combination of two or more. Also good.
一般式(1)~(4)中、Xは、水素原子、ヒドロキシル基、アルキル基、ヒドロキシアルキル基、アリル基またはベンジル基を示す。また、R1及びR2は、それぞれ同一または異なって、ヒドロキシル基、アルキル基、またはヒドロキシアルキル基を示す。一般式(1)~(4)において、X、R1及びR2で示されるアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基などの炭素数1~4の直鎖または分枝鎖状アルキル基が挙げられる。また、X、R1及びR2で示されるヒドロキシアルキル基としては、例えば、ヒドロキシメチル基、1-ヒドロキシエチル基、2-ヒドロキシエチル基、1-ヒドロキシプロピル基、2-ヒドロキシプロピル基、3-ヒドロキシプロピル基、1-ヒドロキシブチル基、2-ヒドロキシブチル基、3-ヒドロキシブチル基、4-ヒドロキシブチル基などのヒドロキシル基が1個置換された炭素数1~4の直鎖または分枝鎖状アルキル基が挙げられる。一般式(1)~(4)において、X、R1及びR2で示されるアルキル基及びヒドロキシアルキル基は、それぞれ同一であってもよいし、異なっていてもよい。一般式(1)~(4)において、Xは、水素原子、ヒドロキシル基またはヒドロキシアルキル基であることが好ましい。一般式(1)~(4)で表される繰り返し単位を有するアミノ化フェノール重合体の数平均分子量は、例えば、500~100万程度であることが好ましく、1000~2万程度であることがより好ましい。
In the general formulas (1) to (4), X represents a hydrogen atom, a hydroxyl group, an alkyl group, a hydroxyalkyl group, an allyl group or a benzyl group. R 1 and R 2 are the same or different and each represents a hydroxyl group, an alkyl group, or a hydroxyalkyl group. In the general formulas (1) to (4), examples of the alkyl group represented by X, R 1 and R 2 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, Examples thereof include a linear or branched alkyl group having 1 to 4 carbon atoms such as a tert-butyl group. Examples of the hydroxyalkyl group represented by X, R 1 and R 2 include a hydroxymethyl group, a 1-hydroxyethyl group, a 2-hydroxyethyl group, a 1-hydroxypropyl group, a 2-hydroxypropyl group, 3- C1-C4 straight or branched chain in which one hydroxyl group such as hydroxypropyl group, 1-hydroxybutyl group, 2-hydroxybutyl group, 3-hydroxybutyl group, 4-hydroxybutyl group is substituted An alkyl group is mentioned. In the general formulas (1) to (4), the alkyl group and hydroxyalkyl group represented by X, R 1 and R 2 may be the same or different. In the general formulas (1) to (4), X is preferably a hydrogen atom, a hydroxyl group or a hydroxyalkyl group. The number average molecular weight of the aminated phenol polymer having a repeating unit represented by the general formulas (1) to (4) is preferably about 500 to 1,000,000, for example, about 1,000 to 20,000. More preferred.
また、バリア層3に耐食性を付与する化成処理方法として、リン酸中に、酸化アルミニウム、酸化チタン、酸化セリウム、酸化スズなどの金属酸化物や硫酸バリウムの微粒子を分散させたものをコーティングし、150℃以上で焼付け処理を行うことにより、バリア層3の表面に耐酸性皮膜を形成する方法が挙げられる。また、耐酸性皮膜の上には、カチオン性ポリマーを架橋剤で架橋させた樹脂層をさらに形成してもよい。ここで、カチオン性ポリマーとしては、例えば、ポリエチレンイミン、ポリエチレンイミンとカルボン酸を有するポリマーからなるイオン高分子錯体、アクリル主骨格に1級アミンをグラフト重合させた1級アミングラフトアクリル樹脂、ポリアリルアミンまたはその誘導体、アミノフェノールなどが挙げられる。これらのカチオン性ポリマーとしては、1種類のみを用いてもよいし、2種類以上を組み合わせて用いてもよい。また、架橋剤としては、例えば、イソシアネート基、グリシジル基、カルボキシル基、及びオキサゾリン基よりなる群から選ばれた少なくとも1種の官能基を有する化合物、シランカップリング剤などが挙げられる。これらの架橋剤としては、1種類のみを用いてもよいし、2種類以上を組み合わせて用いてもよい。
Further, as a chemical conversion treatment method for imparting corrosion resistance to the barrier layer 3, a phosphoric acid is coated with a metal oxide such as aluminum oxide, titanium oxide, cerium oxide, tin oxide, or barium sulfate fine particles dispersed therein. A method of forming an acid-resistant film on the surface of the barrier layer 3 by performing a baking treatment at 150 ° C. or higher can be mentioned. Further, a resin layer obtained by crosslinking a cationic polymer with a crosslinking agent may be further formed on the acid resistant film. Here, examples of the cationic polymer include polyethyleneimine, an ionic polymer complex composed of a polymer having polyethyleneimine and a carboxylic acid, a primary amine graft acrylic resin obtained by graft polymerization of a primary amine on an acrylic main skeleton, and polyallylamine. Or the derivative, aminophenol, etc. are mentioned. As these cationic polymers, only one type may be used, or two or more types may be used in combination. Examples of the crosslinking agent include a compound having at least one functional group selected from the group consisting of an isocyanate group, a glycidyl group, a carboxyl group, and an oxazoline group, and a silane coupling agent. As these crosslinking agents, only one type may be used, or two or more types may be used in combination.
また、耐酸性皮膜を具体的に設ける方法としては、たとえば、一つの例として、少なくともアルミニウム箔(バリア層)の内層側の面を、まず、アルカリ浸漬法、電解洗浄法、酸洗浄法、電解酸洗浄法、酸活性化法等の周知の処理方法で脱脂処理を行い、その後脱脂処理面にリン酸Cr(クロム)塩、リン酸Ti(チタン)塩、リン酸Zr(ジルコニウム)塩、リン酸Zn(亜鉛)塩などのリン酸金属塩およびこれらの金属塩の混合体を主成分とする処理液(水溶液)、あるいは、リン酸非金属塩およびこれらの非金属塩の混合体を主成分とする処理液(水溶液)、あるいは、これらとアクリル系樹脂ないしフェノール系樹脂ないしポリウレタン系樹脂等の水系合成樹脂との混合物からなる処理液(水溶液)をロールコート法、グラビア印刷法、浸漬法等の周知の塗工法で塗工することにより、耐酸性皮膜を形成することができる。たとえば、リン酸Cr(クロム)塩系処理液で処理した場合は、CrPO4(リン酸クロム)、AlPO4(リン酸アルミニウム)、Al2O3(酸化アルミニウム)、Al(OH)x(水酸化アルミニウム)、AlFx(フッ化アルミニウム)などからなる耐酸性皮膜となり、リン酸Zn(亜鉛)塩系処理液で処理した場合は、Zn2PO4・4H2O(リン酸亜鉛水和物)、AlPO4(リン酸アルミニウム)、Al2O3(酸化アルミニウム)、Al(OH)x(水酸化アルミニウム)、AlFx(フッ化アルミニウム)などからなる耐酸性皮膜となる。
As a specific method of providing an acid-resistant film, for example, as an example, at least the surface on the inner layer side of an aluminum foil (barrier layer) is first subjected to an alkali dipping method, electrolytic cleaning method, acid cleaning method, electrolytic A degreasing treatment is performed by a known treatment method such as an acid cleaning method or an acid activation method, and then a phosphoric acid Cr (chromium) salt, phosphoric acid Ti (titanium) salt, phosphoric acid Zr (zirconium) salt, phosphorus Treatment liquid (aqueous solution) mainly composed of a metal phosphate such as Zn (zinc) salt and a mixture of these metals, or a mixture of a non-metal phosphate and a mixture of these non-metals A treatment liquid (aqueous solution) or a mixture of these with a water-based synthetic resin such as an acrylic resin, a phenol resin, or a polyurethane resin. By coating in a known coating method of the immersion method, it is possible to form the acid-resistant coating. For example, when treated with a Cr (chromium) phosphate-based treatment solution, CrPO 4 (chromium phosphate), AlPO 4 (aluminum phosphate), Al 2 O 3 (aluminum oxide), Al (OH) x (water Zn 2 PO 4 · 4H 2 O (zinc phosphate hydrate) when treated with an acid-resistant film made of aluminum oxide), AlF x (aluminum fluoride), etc. ), AlPO 4 (aluminum phosphate), Al 2 O 3 (aluminum oxide), Al (OH) x (aluminum hydroxide), AlF x (aluminum fluoride), and the like.
また、耐酸性皮膜を設ける具体的方法の他の例としては、たとえば、少なくともアルミニウム箔の内層側の面を、まず、アルカリ浸漬法、電解洗浄法、酸洗浄法、電解酸洗浄法、酸活性化法等の周知の処理方法で脱脂処理を行い、その後脱脂処理面に周知の陽極酸化処理を施すことにより、耐酸性皮膜を形成することができる。
In addition, as another example of a specific method for providing an acid-resistant film, for example, at least the surface on the inner layer side of the aluminum foil, first, an alkali dipping method, an electrolytic cleaning method, an acid cleaning method, an electrolytic acid cleaning method, an acid activity An acid-resistant film can be formed by performing a degreasing process by a known processing method such as a chemical conversion method and then performing a known anodizing process on the degreasing surface.
また、耐酸性皮膜の他の一例としては、リン化合物(例えば、リン酸塩系)、クロム化合物(例えば、クロム酸系)の皮膜が挙げられる。リン酸塩系としては、リン酸亜鉛、リン酸鉄、リン酸マンガン、リン酸カルシウム、リン酸クロムなどが挙げられ、クロム酸系としては、クロム酸クロムなどが挙げられる。
As another example of the acid-resistant film, a film of a phosphorus compound (for example, phosphate-based) or a chromium compound (for example, chromic acid-based) can be given. Examples of the phosphate system include zinc phosphate, iron phosphate, manganese phosphate, calcium phosphate, and chromium phosphate. Examples of the chromic acid system include chromium chromate.
また、耐酸性皮膜の他の一例としては、リン化合物(リン酸塩など)、クロム化合物(クロム酸塩など)、フッ化物、トリアジンチオール化合物等の耐酸性皮膜を形成することによって、エンボス成形時のアルミニウムと基材層との間のデラミネーション防止、電解質と水分とによる反応で生成するフッ化水素により、アルミニウム表面の溶解、腐食、特にアルミニウムの表面に存在する酸化アルミニウムが溶解、腐食することを防止し、かつ、アルミニウム表面の接着性(濡れ性)を向上させ、ヒートシール時の基材層とアルミニウムとのデラミネーション防止、エンボスタイプにおいてはプレス成形時の基材層とアルミニウムとのデラミネーション防止の効果を示す。耐酸性皮膜を形成する物質のなかでも、フェノール系樹脂、フッ化クロム(3)化合物、リン酸の3成分から構成された水溶液をアルミニウム表面に塗布し、乾燥焼付けの処理が良好である。
In addition, as another example of an acid-resistant film, by forming an acid-resistant film such as a phosphorus compound (phosphate, etc.), a chromium compound (chromate, etc.), a fluoride, a triazine thiol compound, etc., during emboss molding Prevention of delamination between aluminum and base material layer, and dissolution and corrosion of aluminum surface, especially aluminum oxide existing on the surface of aluminum, due to hydrogen fluoride generated by reaction between electrolyte and moisture In addition, the adhesion (wetting) of the aluminum surface is improved, the delamination between the base material layer and aluminum during heat sealing is prevented, and in the embossed type, the delamination between the base material layer and aluminum during press molding is performed. Shows the effect of preventing lamination. Among substances that form an acid-resistant film, an aqueous solution composed of three components of a phenolic resin, a chromium fluoride (3) compound, and phosphoric acid is applied to the aluminum surface, and the dry baking treatment is good.
また、耐酸性皮膜は、酸化セリウムと、リン酸またはリン酸塩と、アニオン性ポリマーと、該アニオン性ポリマーを架橋させる架橋剤とを有する層を含み、前記リン酸またはリン酸塩が、前記酸化セリウム100質量部に対して、1~100質量部配合されていてもよい。耐酸性皮膜が、カチオン性ポリマーおよび該カチオン性ポリマーを架橋させる架橋剤を有する層をさらに含む多層構造であることが好ましい。
The acid-resistant film includes a layer having cerium oxide, phosphoric acid or phosphate, an anionic polymer, and a crosslinking agent that crosslinks the anionic polymer, and the phosphoric acid or phosphate is 1 to 100 parts by mass may be blended with 100 parts by mass of cerium oxide. It is preferable that the acid-resistant film has a multilayer structure further including a layer having a cationic polymer and a crosslinking agent for crosslinking the cationic polymer.
さらに、前記アニオン性ポリマーが、ポリ(メタ)アクリル酸またはその塩、あるいは(メタ)アクリル酸またはその塩を主成分とする共重合体であることが好ましい。また、前記架橋剤が、イソシアネート基、グリシジル基、カルボキシル基、オキサゾリン基のいずれかの官能基を有する化合物とシランカップリング剤よりなる群から選ばれる少なくとも1種であることが好ましい。
Furthermore, it is preferable that the anionic polymer is poly (meth) acrylic acid or a salt thereof, or a copolymer containing (meth) acrylic acid or a salt thereof as a main component. Moreover, it is preferable that the said crosslinking agent is at least 1 sort (s) chosen from the group which has a functional group in any one of an isocyanate group, a glycidyl group, a carboxyl group, and an oxazoline group, and a silane coupling agent.
また、前記リン酸またはリン酸塩が、縮合リン酸または縮合リン酸塩であることが好ましい。
The phosphoric acid or phosphate is preferably condensed phosphoric acid or condensed phosphate.
化成処理は、1種類の化成処理のみを行ってもよいし、2種類以上の化成処理を組み合わせて行ってもよい。さらに、これらの化成処理は、1種の化合物を単独で使用して行ってもよく、また2種以上の化合物を組み合わせて使用して行ってもよい。化成処理の中でも、クロム酸クロメート処理や、クロム酸化合物、リン酸化合物、及びアミノ化フェノール重合体を組み合わせたクロメート処理などが好ましい。
As the chemical conversion treatment, only one type of chemical conversion treatment may be performed, or two or more types of chemical conversion processing may be performed in combination. Furthermore, these chemical conversion treatments may be carried out using one kind of compound alone, or may be carried out using a combination of two or more kinds of compounds. Among the chemical conversion treatments, chromic acid chromate treatment, chromate treatment combining a chromic acid compound, a phosphoric acid compound, and an aminated phenol polymer are preferable.
耐酸性皮膜の具体例としては、リン酸塩、クロム酸塩、フッ化物、及びトリアジンチオール化合物のうち少なくとも1種を含むものが挙げられる。また、セリウム化合物を含む耐酸性皮膜も好ましい。セリウム化合物としては、酸化セリウムが好ましい。
Specific examples of the acid-resistant film include those containing at least one of phosphates, chromates, fluorides, and triazine thiol compounds. An acid resistant film containing a cerium compound is also preferable. As the cerium compound, cerium oxide is preferable.
また、耐酸性皮膜の具体例としては、リン酸塩系皮膜、クロム酸塩系皮膜、フッ化物系皮膜、トリアジンチオール化合物皮膜なども挙げられる。耐酸性皮膜としては、これらのうち1種類であってもよいし、複数種類の組み合わせであってもよい。さらに、耐酸性皮膜としては、バリア層の化成処理面を脱脂処理した後に、リン酸金属塩と水系合成樹脂との混合物からなる処理液、またはリン酸非金属塩と水系合成樹脂との混合物からなる処理液で形成されたものであってもよい。
Specific examples of the acid resistant film include a phosphate film, a chromate film, a fluoride film, and a triazine thiol compound film. As an acid-resistant film, one of these may be used, or a plurality of combinations may be used. Furthermore, as an acid-resistant film, after degreasing the chemical conversion treatment surface of the barrier layer, from a treatment liquid composed of a mixture of a metal phosphate and an aqueous synthetic resin, or a mixture of a non-metal phosphate and an aqueous synthetic resin It may be formed with a treatment liquid.
なお、耐酸性皮膜の組成の分析は、例えば、飛行時間型2次イオン質量分析法を用いて行うことができる。
The composition of the acid resistant film can be analyzed using, for example, time-of-flight secondary ion mass spectrometry.
化成処理においてバリア層3の表面に形成させる耐酸性皮膜の量については、特に制限されないが、例えば、上記のクロメート処理を行う場合であれば、バリア層3の表面1m2当たり、クロム酸化合物がクロム換算で0.5~50mg程度、好ましくは1.0~40mg程度、リン化合物がリン換算で0.5~50mg程度、好ましくは1.0~40mg程度、及びアミノ化フェノール重合体が1.0~200mg程度、好ましくは5.0~150mg程度の割合で含有されていることが望ましい。
The amount of the acid-resistant film formed on the surface of the barrier layer 3 in the chemical conversion treatment is not particularly limited. For example, if the above chromate treatment is performed, the chromic acid compound is present per 1 m 2 of the surface of the barrier layer 3. About 0.5 to 50 mg, preferably about 1.0 to 40 mg in terms of chromium, about 0.5 to 50 mg, preferably about 1.0 to 40 mg in terms of phosphorus, and 1. It is desirable that it is contained in a proportion of about 0 to 200 mg, preferably about 5.0 to 150 mg.
耐酸性皮膜の厚みとしては、特に制限されないが、皮膜の凝集力や、バリア層や熱融着性樹脂層との密着力の観点から、好ましくは1nm~20μm程度、より好ましくは1nm~100nm程度、さらに好ましくは1nm~50nm程度が挙げられる。なお、耐酸性皮膜の厚みは、透過電子顕微鏡による観察、または、透過電子顕微鏡による観察と、エネルギー分散型X線分光法もしくは電子線エネルギー損失分光法との組み合わせによって測定することができる。飛行時間型2次イオン質量分析法を用いた耐酸性皮膜の組成の分析により、例えば、CeとPとOからなる2次イオン(例えば、Ce2PO4
+、CePO4
-などの少なくとも1種)や、例えば、CrとPとOからなる2次イオン(例えば、CrPO2
+、CrPO4
-などの少なくとも1種)に由来するピークが検出される。
The thickness of the acid-resistant film is not particularly limited, but is preferably about 1 nm to 20 μm, more preferably about 1 nm to 100 nm, from the viewpoint of the cohesive strength of the film and the adhesive strength with the barrier layer and the heat-fusible resin layer. More preferably, about 1 nm to 50 nm is mentioned. The thickness of the acid-resistant film can be measured by observation with a transmission electron microscope, or a combination of observation with a transmission electron microscope and energy dispersive X-ray spectroscopy or electron energy loss spectroscopy. By analyzing the composition of the acid-resistant film using time-of-flight secondary ion mass spectrometry, for example, at least one secondary ion composed of Ce, P and O (for example, Ce 2 PO 4 + , CePO 4 −, etc.) ) Or a peak derived from a secondary ion composed of Cr, P, and O (for example, at least one kind of CrPO 2 + , CrPO 4 −, etc.) is detected.
化成処理は、耐酸性皮膜の形成に使用する化合物を含む溶液を、バーコート法、ロールコート法、グラビアコート法、浸漬法などによって、バリア層の表面に塗布した後に、バリア層の温度が70~200℃程度になるように加熱することにより行われる。また、バリア層に化成処理を施す前に、予めバリア層を、アルカリ浸漬法、電解洗浄法、酸洗浄法、電解酸洗浄法などによる脱脂処理に供してもよい。このように脱脂処理を行うことにより、バリア層の表面の化成処理をより効率的に行うことが可能となる。
In the chemical conversion treatment, a solution containing a compound used for forming an acid-resistant film is applied to the surface of the barrier layer by a bar coating method, a roll coating method, a gravure coating method, a dipping method, etc., and then the temperature of the barrier layer is 70. It is performed by heating to about 200 ° C. In addition, before the chemical conversion treatment is performed on the barrier layer, the barrier layer may be previously subjected to a degreasing treatment by an alkali dipping method, an electrolytic cleaning method, an acid cleaning method, an electrolytic acid cleaning method, or the like. By performing the degreasing process in this manner, it is possible to more efficiently perform the chemical conversion process on the surface of the barrier layer.
[硬化樹脂層4]
本発明において、硬化樹脂層4は、電池用包装材料の絶縁性及び耐久性を高めるために、バリア層3と熱融着性樹脂層5との間に設けられる層である。 [Curing resin layer 4]
In the present invention, the curedresin layer 4 is a layer provided between the barrier layer 3 and the heat-fusible resin layer 5 in order to enhance the insulation and durability of the battery packaging material.
本発明において、硬化樹脂層4は、電池用包装材料の絶縁性及び耐久性を高めるために、バリア層3と熱融着性樹脂層5との間に設けられる層である。 [Curing resin layer 4]
In the present invention, the cured
本発明において、硬化樹脂層4は、プローブの変位量を測定する熱機械分析において、電池用包装材料(積層体)の断面の硬化樹脂層表面にプローブを設置し、測定開始時の前記プローブのディフレクションの設定値は-4V、昇温速度5℃/分の条件で、プローブを40℃から220℃まで加熱した際に、プローブの位置が初期値よりも低下しないことを特徴としている。
In the present invention, in the thermomechanical analysis for measuring the displacement of the probe, the cured resin layer 4 is provided with a probe on the surface of the cured resin layer in the cross section of the battery packaging material (laminate), When the probe is heated from 40 ° C. to 220 ° C. under the conditions of the deflection set value of −4 V and the heating rate of 5 ° C./min, the probe position is not lowered from the initial value.
プローブの変位量を測定する熱機械分析においては、例えば図5の概念図に示すように、まず、電池用包装材料(積層体)の断面の硬化樹脂層4の表面に熱機械分析の装置のプローブ10を設置する(図5の測定開始A)。このときの断面は、電池用包装材料の中心部を通るように厚み方向に切断して得られた、硬化樹脂層4の断面が露出した部分である。切断は、市販品の回転式ミクロトームなどを用いて行うことができる。なお、電解質などが封入された電池に使用されている電池用包装材料について、変位量測定を行う場合には、電池用包装材料の熱融着性樹脂層が互いに熱融着されている部分について、測定を行う。熱機械分析の装置としては、加熱機構付きのカンチレバーを取り付けられる原子間力顕微鏡を使用することができ、例えば、ANASIS INSTRUMENTS社製のafm plusシステムを用い、プローブとしてはカンチレバーThermaLever AN2-200(ばね定数0.5~3N/m)を使用することができる。プローブ10の先端半径は30nm以下、プローブ10のディフレクション(Deflection)の設定値は-4V、昇温速度5℃/分とする。次に、この状態でプローブを加熱すると、プローブからの熱により図5のBのように、硬化樹脂層4表面が膨張して、プローブ10が押し上げられ、プローブ10の位置が初期値(プローブの温度が40℃である時の位置)よりも上昇する。さらに温度が上昇すると、硬化樹脂層4が軟化し、図5のCのように、プローブ10が硬化樹脂層4に突き刺さり、プローブ10の位置が下がる。なお、プローブの変位量を測定する熱機械分析においては、測定対象となる電池用包装材料は室温(25℃)環境にあり、40℃に加熱されたプローブを硬化樹脂層4表面に設置して、測定を開始する。プローブの変位量測定は、電池用包装材料について、厚み方向に沿った断面を作製し、断面の5箇所について測定し(図10を参照)、平均値を測定値として採用する。なお、断面の厚み方向と垂直方向については、いずれの方向(例えばTDが挙げられる)でもよく、いずれかの方向において、プローブの位置が初期値よりも低下する温度が130℃以下となればよい。また、キャリブレーションについても、5回行い、平均値を採用する。
In the thermomechanical analysis for measuring the displacement of the probe, for example, as shown in the conceptual diagram of FIG. 5, first, the thermomechanical analysis apparatus is applied to the surface of the cured resin layer 4 in the cross section of the battery packaging material (laminate). The probe 10 is installed (measurement start A in FIG. 5). The cross section at this time is a portion where the cross section of the cured resin layer 4 obtained by cutting in the thickness direction so as to pass through the center of the battery packaging material is exposed. Cutting can be performed using a commercially available rotary microtome or the like. When the amount of displacement is measured for battery packaging materials used in batteries encapsulating electrolytes, etc., the portions where the heat-fusible resin layers of the battery packaging materials are heat-sealed together. , Measure. As a thermomechanical analysis device, an atomic force microscope to which a cantilever with a heating mechanism can be attached can be used. For example, an afm plus system manufactured by ANASIS INSTRUMENTS is used, and a cantilever ThermoLever AN2-200 (spring) A constant of 0.5-3 N / m) can be used. The tip radius of the probe 10 is 30 nm or less, the set value of the deflection of the probe 10 is −4 V, and the temperature rising rate is 5 ° C./min. Next, when the probe is heated in this state, the surface of the cured resin layer 4 expands by the heat from the probe as shown in FIG. 5B, the probe 10 is pushed up, and the position of the probe 10 is set to the initial value (probe of the probe). The temperature rises more than the position when the temperature is 40 ° C. When the temperature further increases, the cured resin layer 4 softens, and the probe 10 pierces the cured resin layer 4 as shown in FIG. 5C, and the position of the probe 10 decreases. In thermomechanical analysis for measuring the displacement of the probe, the battery packaging material to be measured is in a room temperature (25 ° C.) environment, and a probe heated to 40 ° C. is placed on the surface of the cured resin layer 4. Start the measurement. The displacement of the probe is measured by preparing a cross section along the thickness direction of the battery packaging material, measuring five sections of the cross section (see FIG. 10), and adopting the average value as the measurement value. Note that the thickness direction and the vertical direction of the cross section may be any direction (for example, TD), and the temperature at which the position of the probe is lower than the initial value in any direction may be 130 ° C. or lower. . Also, calibration is performed five times and an average value is adopted.
なお、本発明においては、プローブの変位量の測定を、電池用包装材料の積層体の断面から行うため、接着層を形成する材料(電池用包装材料となる前)の表面から測定する場合に比べて、電池での使用状態に近い状態で、接着層のみの熱挙動を測定できる。つまり、接着層の材料をフィルム基材等に塗布して、その表面からTMA等により軟化温度等を測定した場合、測定に必要な厚みが、実際の接着層の厚みよりも10倍以上厚いため、実際に電池用包装材料として使用された場合での硬化度や結合状態が異なるため熱挙動が異なる。また、この場合、フィルム基材等の熱挙動の影響が重なる場合があり、接着層のみの熱機械物性を測定しているとは言い切れない。
In the present invention, since the displacement of the probe is measured from the cross section of the laminate of the battery packaging material, when measuring from the surface of the material forming the adhesive layer (before becoming the battery packaging material) In comparison, the thermal behavior of only the adhesive layer can be measured in a state close to the state of use in a battery. That is, when the material for the adhesive layer is applied to a film substrate or the like, and the softening temperature or the like is measured from the surface by TMA or the like, the thickness required for the measurement is 10 times or more thicker than the actual thickness of the adhesive layer. The thermal behavior differs because the degree of curing and the bonding state when actually used as a battery packaging material are different. In this case, the influence of the thermal behavior of the film substrate or the like may overlap, and it cannot be said that the thermomechanical properties of only the adhesive layer are measured.
本発明の電池用包装材料においては、絶縁性及び耐久性をより一層高める観点から、測定開始時の前記プローブのディフレクションの設定値は-4V、昇温速度5℃/分の条件で、プローブを40℃から220℃まで加熱した際に、硬化樹脂層4表面に設置したプローブ10の位置が初期値(プローブの温度が40℃である時の位置)よりも低下せず、さらに、160℃から200℃まで加熱した際に、硬化樹脂層4表面に設置したプローブ10の位置が低下しないことがより好ましい。電池用包装材料の熱融着性樹脂層同士をヒートシールして電池素子を封止する工程は、通常、160℃から200℃程度に加熱して行われる。このため、プローブを160℃から200℃まで加熱した際に、硬化樹脂層4表面に設置したプローブ10の位置が低下しない電池用包装材料は、特に高い絶縁性及び耐久性を発揮することができる。絶縁性及び耐久性をより一層高める観点から、プローブを40℃から250℃まで加熱した際に、硬化樹脂層4表面に設置したプローブ10の位置が初期値よりも低下せず、さらに、160℃から200℃まで加熱した際に、硬化樹脂層4表面に設置したプローブ10の位置が低下しないことがさらに好ましい。
In the battery packaging material of the present invention, from the viewpoint of further improving the insulation and durability, the probe deflection setting value at the start of measurement is −4 V, and the temperature rising rate is 5 ° C./min. Is heated from 40 ° C. to 220 ° C., the position of the probe 10 installed on the surface of the cured resin layer 4 is not lowered from the initial value (position when the probe temperature is 40 ° C.), and further 160 ° C. It is more preferable that the position of the probe 10 installed on the surface of the cured resin layer 4 is not lowered when heated to 200 ° C. The step of heat-sealing the heat-fusible resin layers of the battery packaging material to seal the battery element is usually performed by heating at about 160 ° C. to 200 ° C. For this reason, when the probe is heated from 160 ° C. to 200 ° C., the battery packaging material in which the position of the probe 10 placed on the surface of the cured resin layer 4 does not decrease can exhibit particularly high insulation and durability. . From the viewpoint of further increasing the insulation and durability, when the probe is heated from 40 ° C. to 250 ° C., the position of the probe 10 installed on the surface of the cured resin layer 4 does not decrease from the initial value, and further, 160 ° C. It is more preferable that the position of the probe 10 installed on the surface of the cured resin layer 4 is not lowered when heated to 200 ° C.
また、同様の観点から、プローブ10の変位量を測定する熱機械分析において、電池用包装材料(積層体)の断面の硬化樹脂層4の表面にプローブ10を設置し、プローブを40℃から220℃まで加熱した際に、140℃から220℃まで加熱した際のプローブ10の位置の上昇量が、80℃から120℃まで加熱した際のプローブ10の位置の上昇量よりも大きいことが好ましく、プローブを40℃から250℃まで加熱した際に、140℃から250℃まで加熱した際のプローブ10の位置の上昇量が、80℃から120℃まで加熱した際のプローブ10の位置の上昇量よりも大きいことがより好ましい。さらに、80℃から120℃まで加熱した際のプローブ10の位置の上昇量と、140℃から220℃まで加熱した際のプローブ10の位置の上昇量の差としては、好ましくは、0V以上、0.05V以上、0.1V以上が挙げられる。
From the same viewpoint, in thermomechanical analysis for measuring the displacement of the probe 10, the probe 10 is placed on the surface of the cured resin layer 4 in the cross section of the battery packaging material (laminate), and the probe is moved from 40 ° C. to 220 ° C. It is preferable that the amount of increase in the position of the probe 10 when heated from 140 ° C. to 220 ° C. is larger than the amount of increase in the position of the probe 10 when heated from 80 ° C. to 120 ° C. When the probe is heated from 40 ° C. to 250 ° C., the amount of increase in the position of the probe 10 when heated from 140 ° C. to 250 ° C. is greater than the amount of increase in the position of the probe 10 when heated from 80 ° C. to 120 ° C. Is preferably larger. Further, the difference between the amount of increase in the position of the probe 10 when heated from 80 ° C. to 120 ° C. and the amount of increase in the position of the probe 10 when heated from 140 ° C. to 220 ° C. is preferably 0 V or more, 0 .05V or more, 0.1V or more.
前述の通り、電池の製造工程において、電極活物質や電極タブの破片などの微小な異物が、熱融着性樹脂層の表面に付着する場合があり、これによって、熱融着性樹脂層に薄肉部分や貫通孔が生じ、絶縁性が低下する虞がある。これに対して、本発明の電池用包装材料においては、プローブ10の変位量を測定する熱機械分析において、上記の特性を有しているため、例えば、電極活物質や電極タブの破片などの微小な異物が、熱融着性樹脂層同士の界面や電極タブと熱融着性樹脂層との間などのヒートシールされる部分に存在する場合にも、電池用包装材料の絶縁性や耐久性が高められている。
As described above, in the battery manufacturing process, minute foreign matters such as electrode active material and electrode tab fragments may adhere to the surface of the heat-fusible resin layer. A thin part and a through-hole are produced, and there exists a possibility that insulation may fall. On the other hand, the battery packaging material of the present invention has the above-mentioned characteristics in the thermomechanical analysis for measuring the displacement amount of the probe 10. Insulation and durability of battery packaging materials even when minute foreign matter is present at the heat-sealed parts such as the interface between heat-sealable resin layers or between electrode tabs and heat-sealable resin layers Sexuality is enhanced.
本発明において、硬化樹脂層4は、上記の特性を発揮する硬化樹脂により構成されていればよい。バリア層3と熱融着性樹脂層5とを強固に接着し、電池用包装材料に高い絶縁性及び耐久性を発揮させる観点からは、硬化樹脂層4は、酸変性ポリオレフィンを含む樹脂組成物の硬化物であることが好ましい。
In the present invention, the cured resin layer 4 only needs to be composed of a cured resin that exhibits the above characteristics. From the viewpoint of firmly bonding the barrier layer 3 and the heat-fusible resin layer 5 to exhibit high insulation and durability in the battery packaging material, the cured resin layer 4 is a resin composition containing an acid-modified polyolefin. The cured product is preferably.
本発明において、酸変性ポリオレフィンとしては、不飽和カルボン酸またはその酸無水物で変性されたポリオレフィンを用いることが好ましい。さらに、酸変性ポリオレフィンは、(メタ)アクリル酸エステルでさらに変性されていてもよい。なお、(メタ)アクリル酸エステルでさらに変性された変性ポリオレフィンは、不飽和カルボン酸またはその酸無水物と(メタ)アクリル酸エステルとを併用して、ポリオレフィンを酸変性することにより得られるものである。本発明において、「(メタ)アクリル酸エステル」とは、「アクリル酸エステル」または「メタクリル酸エステル」を意味する。酸変性ポリオレフィンは、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。
In the present invention, as the acid-modified polyolefin, it is preferable to use a polyolefin modified with an unsaturated carboxylic acid or an acid anhydride thereof. Furthermore, the acid-modified polyolefin may be further modified with a (meth) acrylic acid ester. The modified polyolefin further modified with (meth) acrylic acid ester is obtained by acid-modifying polyolefin by using unsaturated carboxylic acid or its acid anhydride and (meth) acrylic acid ester in combination. is there. In the present invention, “(meth) acrylic acid ester” means “acrylic acid ester” or “methacrylic acid ester”. One type of acid-modified polyolefin may be used alone, or two or more types may be used in combination.
酸変性されるポリオレフィンは、少なくともモノマー単位としてオレフィンを含む樹脂であれば特に限定されない。ポリオレフィンは、例えば、ポリエチレン及びポリプロピレンの少なくとも一方により構成することができ、ポリプロピレンにより構成することが好ましい。ポリエチレンは、例えば、ホモポリエチレン及びエチレンコポリマーの少なくとも一方により構成することができる。ポリプロピレンは、例えば、ホモポリプロピレン及びプロピレンコポリマーの少なくとも一方により構成することができる。プロピレンコポリマーとしては、エチレン-プロピレンコポリマー、プロピレン-ブテンコポリマー、エチレン-プロピレン-ブテンコポリマーなどのプロピレンと他のオレフィンとのコポリマーなどが挙げられる。ポリプロピレンに含まれるプロピレン単位の割合は、電池用包装材料の絶縁性や耐久性をより高める観点から、50~100モル%程度とすることが好ましく、80~100モル%程度とすることがより好ましい。また、ポリエチレンに含まれるエチレン単位の割合は、電池用包装材料の絶縁性や耐久性をより高める観点から、50~100モル%程度とすることが好ましく、80~100モル%程度とすることがより好ましい。エチレンコポリマー及びプロピレンコポリマーは、それぞれ、ランダムコポリマー、ブロックコポリマーのいずれであってもよい。また、エチレンコポリマー及びプロピレンコポリマーは、それぞれ、結晶性、非晶性のいずれであってもよく、これらの共重合物または混合物であってもよい。ポリオレフィンは、1種類のホモポリマーまたはコポリマーにより形成されていてもよいし、2種類以上のホモポリマーまたはコポリマーにより形成されていてもよい。
The polyolefin to be acid-modified is not particularly limited as long as it is a resin containing an olefin as at least a monomer unit. The polyolefin can be composed of, for example, at least one of polyethylene and polypropylene, and is preferably composed of polypropylene. The polyethylene can be composed of, for example, at least one of homopolyethylene and ethylene copolymer. Polypropylene can be composed of, for example, at least one of homopolypropylene and propylene copolymer. Examples of the propylene copolymer include copolymers of propylene and other olefins such as ethylene-propylene copolymer, propylene-butene copolymer, and ethylene-propylene-butene copolymer. The proportion of the propylene unit contained in the polypropylene is preferably about 50 to 100 mol%, more preferably about 80 to 100 mol%, from the viewpoint of further improving the insulation and durability of the battery packaging material. . Further, the proportion of the ethylene unit contained in the polyethylene is preferably about 50 to 100 mol%, more preferably about 80 to 100 mol%, from the viewpoint of further improving the insulation and durability of the battery packaging material. More preferred. Each of the ethylene copolymer and the propylene copolymer may be a random copolymer or a block copolymer. In addition, the ethylene copolymer and the propylene copolymer may each be crystalline or amorphous, and may be a copolymer or a mixture thereof. The polyolefin may be formed of one type of homopolymer or copolymer, or may be formed of two or more types of homopolymer or copolymer.
硬化樹脂層4において、酸変性ポリオレフィンの中でも、特に無水マレイン酸変性ポリオレフィン、さらには無水マレイン酸変性ポリプロピレンが好ましい。
In the cured resin layer 4, among the acid-modified polyolefins, maleic anhydride-modified polyolefin, and further maleic anhydride-modified polypropylene are particularly preferable.
不飽和カルボン酸としては、例えば、アクリル酸、メタクリル酸、マレイン酸、イタコン酸、フマル酸、クロトン酸などが挙げられる。また、酸無水物としては、上記例示した不飽和カルボン酸の酸無水物が好ましく、無水マレイン酸および無水イタコン酸がより好ましい。酸変性ポリオレフィンは、1種類の不飽和カルボン酸またはその酸無水物で変性されたものであってもよいし、2種類以上の不飽和カルボン酸またはその酸無水物で変性されたものであってもよい。
Examples of the unsaturated carboxylic acid include acrylic acid, methacrylic acid, maleic acid, itaconic acid, fumaric acid, and crotonic acid. Moreover, as an acid anhydride, the acid anhydride of the unsaturated carboxylic acid illustrated above is preferable, and maleic anhydride and itaconic anhydride are more preferable. The acid-modified polyolefin may be one modified with one type of unsaturated carboxylic acid or its acid anhydride, or one modified with two or more types of unsaturated carboxylic acid or its acid anhydride. Also good.
(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸と炭素数が1~30のアルコールとのエステル化物、好ましくは(メタ)アクリル酸と炭素数が1~20のアルコールとのエステル化物が挙げられる。(メタ)アクリル酸エステルの具体例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸デシル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸オクチル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸ステアリルなどが挙げられる。ポリオレフィンの変性において、(メタ)アクリル酸エステルは1種類のみを用いてもよいし、2種類以上を用いてもよい。
Examples of (meth) acrylic acid esters include esterification products of (meth) acrylic acid and alcohols having 1 to 30 carbon atoms, preferably esterification products of (meth) acrylic acid and alcohols having 1 to 20 carbon atoms. Is mentioned. Specific examples of (meth) acrylic acid esters include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, hexyl (meth) acrylate, (meth) Examples include octyl acrylate, decyl (meth) acrylate, lauryl (meth) acrylate, octyl (meth) acrylate, dodecyl (meth) acrylate, stearyl (meth) acrylate, and the like. In modification of polyolefin, only one type of (meth) acrylic acid ester may be used, or two or more types may be used.
酸変性ポリオレフィン中における不飽和カルボン酸またはその酸無水物の割合は、それぞれ、0.1~30質量%程度であることが好ましく、0.1~20質量%程度であることがより好ましい。このような範囲とすることにより、電池用包装材料の絶縁性や耐久性をより高め得る。
The ratio of the unsaturated carboxylic acid or the acid anhydride thereof in the acid-modified polyolefin is preferably about 0.1 to 30% by mass, more preferably about 0.1 to 20% by mass. By setting it as such a range, the insulation and durability of the packaging material for batteries can be improved more.
また、酸変性ポリオレフィン中における(メタ)アクリル酸エステルの割合は、0.1~40質量%程度であることが好ましく、0.1~30質量%程度であることがより好ましい。このような範囲とすることにより、電池用包装材料の絶縁性や耐久性をより高め得る。
Further, the ratio of (meth) acrylic acid ester in the acid-modified polyolefin is preferably about 0.1 to 40% by mass, and more preferably about 0.1 to 30% by mass. By setting it as such a range, the insulation and durability of the packaging material for batteries can be improved more.
酸変性ポリオレフィンの重量平均分子量は、それぞれ、6000~200000程度であることが好ましく、8000~150000程度であることがより好ましい。なお、本発明において、酸変性ポリオレフィンの重量平均分子量は、標準サンプルとしてポリスチレンを用いた条件で測定された、ゲル浸透クロマトグラフィ(GPC)により測定された値である。また、酸変性ポリオレフィンの融解ピーク温度は、50~120℃程度であることが好ましく、50~100℃程度であることがより好ましい。なお、本発明において、酸変性ポリオレフィンの融解ピーク温度とは、示差走査熱量測定における吸熱ピーク温度をいう。
The weight average molecular weight of the acid-modified polyolefin is preferably about 6000 to 200000, and more preferably about 8000 to 150,000, respectively. In the present invention, the weight average molecular weight of the acid-modified polyolefin is a value measured by gel permeation chromatography (GPC) measured under conditions using polystyrene as a standard sample. The melting peak temperature of the acid-modified polyolefin is preferably about 50 to 120 ° C., more preferably about 50 to 100 ° C. In the present invention, the melting peak temperature of the acid-modified polyolefin refers to an endothermic peak temperature in differential scanning calorimetry.
酸変性ポリオレフィンにおいて、ポリオレフィンの変性方法は、特に限定されず、例えば不飽和カルボン酸またはその酸無水物や、(メタ)アクリル酸エステルがポリオレフィンと共重合されていればよい。このような共重合としては、ランダム共重合、ブロック共重合、グラフト共重合(グラフト変性)などが挙げられ、好ましくはグラフト共重合が挙げられる。
In the acid-modified polyolefin, the method for modifying the polyolefin is not particularly limited, and for example, an unsaturated carboxylic acid or an acid anhydride thereof or a (meth) acrylic acid ester may be copolymerized with the polyolefin. Examples of such copolymerization include random copolymerization, block copolymerization, graft copolymerization (graft modification), and the like, and preferably graft copolymerization.
また、バリア層3と熱融着性樹脂層5とを強固に接着し、電池用包装材料に高い絶縁性及び耐久性を発揮させる観点からは、硬化樹脂層4は、イソシアネート基を有する化合物、オキサゾリン基を有する化合物、エポキシ樹脂、及びウレタン樹脂からなる群より選択される少なくとも1種を含む樹脂組成物の硬化物であることが好ましく、これらのうち少なくとも1種と前記酸変性ポリオレフィンを含む樹脂組成物の硬化物であることがより好ましい。すなわち、硬化樹脂層4を構成する樹脂は、ポリオレフィン骨格を含んでいても含んでいなくてもよく、ポリオレフィン骨格を含んでいることが好ましい。硬化樹脂層4を構成する樹脂がポリオレフィン骨格を含むことは、例えば、赤外分光法、ガスクロマトグラフィー質量分析法などにより分析可能であり、分析方法は特に問わない。例えば、赤外分光法にて無水マレイン酸変性ポリオレフィンを測定すると、波数1760cm-1付近と波数1780cm-1付近に無水マレイン酸由来のピークが検出される。ただし、酸変性度が低いとピークが小さくなり検出されない場合がある。その場合は核磁気共鳴分光法にて分析可能である。硬化樹脂層4は、ウレタン樹脂、エステル樹脂、及びエポキシ樹脂からなる群より選択される少なくとも1種を含むことが好ましく、ウレタン樹脂及びエポキシ樹脂を含むことがより好ましい。エステル樹脂としては、例えばアミドエステル樹脂が好ましい。アミドエステル樹脂は、一般的にカルボキシル基とオキサゾリン基の反応で生成する。硬化樹脂層4は、これらの樹脂のうち少なくとも1種と前記酸変性ポリオレフィンを含む樹脂組成物の硬化物であることがより好ましい。なお、硬化樹脂層4に、イソシアネート基を有する化合物、オキサゾリン基を有する化合物、エポキシ樹脂などの硬化剤の未反応物が残存している場合、未反応物の存在は、例えば、赤外分光法、ラマン分光法、飛行時間型二次イオン質量分析法(TOF-SIMS)などから選択される方法で確認することが可能である。
Further, from the viewpoint of firmly bonding the barrier layer 3 and the heat-fusible resin layer 5 and exhibiting high insulation and durability in the battery packaging material, the cured resin layer 4 is a compound having an isocyanate group, It is preferably a cured product of a resin composition containing at least one selected from the group consisting of a compound having an oxazoline group, an epoxy resin, and a urethane resin, and a resin containing at least one of these and the acid-modified polyolefin More preferably, it is a cured product of the composition. That is, the resin constituting the cured resin layer 4 may or may not include a polyolefin skeleton, and preferably includes a polyolefin skeleton. The fact that the resin constituting the cured resin layer 4 contains a polyolefin skeleton can be analyzed by, for example, infrared spectroscopy, gas chromatography mass spectrometry, etc., and the analysis method is not particularly limited. For example, when measuring the infrared spectroscopy at a maleic anhydride-modified polyolefin, a peak derived from maleic acid is detected in the vicinity of the wave number of 1760 cm -1 and near the wave number 1780 cm -1. However, if the acid modification degree is low, the peak may be small and may not be detected. In that case, it can be analyzed by nuclear magnetic resonance spectroscopy. The cured resin layer 4 preferably includes at least one selected from the group consisting of urethane resins, ester resins, and epoxy resins, and more preferably includes urethane resins and epoxy resins. As the ester resin, for example, an amide ester resin is preferable. Amide ester resins are generally formed by the reaction of carboxyl groups and oxazoline groups. The cured resin layer 4 is more preferably a cured product of a resin composition containing at least one of these resins and the acid-modified polyolefin. In the case where an unreacted product of a curing agent such as a compound having an isocyanate group, a compound having an oxazoline group, or an epoxy resin remains in the cured resin layer 4, the presence of the unreacted material is, for example, infrared spectroscopy. It can be confirmed by a method selected from Raman spectroscopy, time-of-flight secondary ion mass spectrometry (TOF-SIMS), and the like.
イソシアネート基を有する化合物としては、特に制限されないが、電池用包装材料に高い絶縁性及び耐久性を発揮させる観点からは、好ましくは多官能イソシアネート化合物が挙げられる。多官能イソシアネート化合物は、2つ以上のイソシアネート基を有する化合物であれば、特に限定されない。多官能イソシアネート系硬化剤の具体例としては、イソホロンジイソシアネート(IPDI)、ヘキサメチレンジイソシアネート(HDI)、トリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、これらをポリマー化やヌレート化したもの、これらの混合物や他ポリマーとの共重合物などが挙げられる。
The compound having an isocyanate group is not particularly limited, but a polyfunctional isocyanate compound is preferably used from the viewpoint of exhibiting high insulation and durability in the battery packaging material. The polyfunctional isocyanate compound is not particularly limited as long as it is a compound having two or more isocyanate groups. Specific examples of the polyfunctional isocyanate-based curing agent include isophorone diisocyanate (IPDI), hexamethylene diisocyanate (HDI), tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), those obtained by polymerizing or nurating these, Examples thereof include mixtures and copolymers with other polymers.
硬化樹脂層4における、イソシアネート基を有する化合物の含有量としては、硬化樹脂層4を構成する樹脂組成物中、0.5~15質量%の範囲にあることが好ましく、1~12質量%の範囲にあることがより好ましい。これにより、電池用包装材料の絶縁性や耐久性をより高め得る。
The content of the compound having an isocyanate group in the cured resin layer 4 is preferably in the range of 0.5 to 15% by mass in the resin composition constituting the cured resin layer 4, and is preferably 1 to 12% by mass. More preferably, it is in the range. Thereby, the insulation and durability of the battery packaging material can be further improved.
オキサゾリン基を有する化合物は、オキサゾリン骨格を備える化合物であれば、特に限定されない。オキサゾリン基を有する化合物の具体例としては、ポリスチレン主鎖を有するもの、アクリル主鎖を有するものなどが挙げられる。また、市販品としては、例えば、日本触媒社製のエポクロスシリーズなどが挙げられる。
The compound having an oxazoline group is not particularly limited as long as it is a compound having an oxazoline skeleton. Specific examples of the compound having an oxazoline group include those having a polystyrene main chain and those having an acrylic main chain. Moreover, as a commercial item, the Epocross series by Nippon Shokubai Co., Ltd. etc. are mentioned, for example.
硬化樹脂層4における、オキサゾリン基を有する化合物の割合としては、硬化樹脂層4を構成する樹脂組成物中、0.5~15質量%の範囲にあることが好ましく、1~12質量%の範囲にあることがより好ましい。これにより、電池用包装材料の絶縁性や耐久性をより高め得る。
The ratio of the compound having an oxazoline group in the cured resin layer 4 is preferably in the range of 0.5 to 15% by mass in the resin composition constituting the cured resin layer 4, and in the range of 1 to 12% by mass. More preferably. Thereby, the insulation and durability of the battery packaging material can be further improved.
エポキシ樹脂としては、分子内に存在するエポキシ基によって架橋構造を形成することが可能な樹脂であれば、特に制限されず、公知のエポキシ樹脂を用いることができる。エポキシ樹脂の重量平均分子量としては、好ましくは50~2000程度、より好ましくは100~1000程度、さらに好ましくは200~800程度が挙げられる。なお、本発明において、エポキシ樹脂の重量平均分子量は、標準サンプルとしてポリスチレンを用いた条件で測定された、ゲル浸透クロマトグラフィ(GPC)により測定された値である。
The epoxy resin is not particularly limited as long as it is a resin capable of forming a crosslinked structure with an epoxy group present in the molecule, and a known epoxy resin can be used. The weight average molecular weight of the epoxy resin is preferably about 50 to 2000, more preferably about 100 to 1000, and still more preferably about 200 to 800. In the present invention, the weight average molecular weight of the epoxy resin is a value measured by gel permeation chromatography (GPC) measured under conditions using polystyrene as a standard sample.
エポキシ樹脂の具体例としては、ビスフェノールAジグリシジルエーテル、変性ビスフェノールAジグリシジルエーテル、ノボラックグリシジルエーテル、グリセリンポリグリシジルエーテル、ポリグリセリンポリグリシジルエーテルなどが挙げられる。エポキシ樹脂は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。
Specific examples of the epoxy resin include bisphenol A diglycidyl ether, modified bisphenol A diglycidyl ether, novolac glycidyl ether, glycerin polyglycidyl ether, and polyglycerin polyglycidyl ether. An epoxy resin may be used individually by 1 type, and may be used in combination of 2 or more types.
硬化樹脂層4における、エポキシ樹脂の割合としては、硬化樹脂層4を構成する樹脂組成物中、0.5~15質量%の範囲にあることが好ましく、1~12質量%の範囲にあることがより好ましい。これにより、電池用包装材料の絶縁性や耐久性をより高め得る。
The ratio of the epoxy resin in the cured resin layer 4 is preferably in the range of 0.5 to 15% by mass, preferably in the range of 1 to 12% by mass in the resin composition constituting the cured resin layer 4. Is more preferable. Thereby, the insulation and durability of the battery packaging material can be further improved.
ウレタン樹脂としては、特に制限されず、公知のウレタン樹脂を使用することができる。硬化樹脂層4は、例えば、2液硬化型ウレタン樹脂の硬化物であってもよい。
The urethane resin is not particularly limited, and a known urethane resin can be used. The cured resin layer 4 may be, for example, a cured product of a two-component curable urethane resin.
硬化樹脂層4における、ウレタン樹脂の割合としては、硬化樹脂層4を構成する樹脂組成物中、0.5~20質量%の範囲にあることが好ましく、1~15質量%の範囲にあることがより好ましい。これにより、電池用包装材料の絶縁性や耐久性をより高め得る。なお、硬化樹脂層4は、ウレタン樹脂によって構成されていてもよい。
The ratio of the urethane resin in the cured resin layer 4 is preferably in the range of 0.5 to 20% by mass, preferably in the range of 1 to 15% by mass in the resin composition constituting the cured resin layer 4. Is more preferable. Thereby, the insulation and durability of the battery packaging material can be further improved. The cured resin layer 4 may be made of a urethane resin.
なお、本発明において、硬化樹脂層4が、イソシアネート基を有する化合物、オキサゾリン基を有する化合物、及びエポキシ樹脂からなる群より選択される少なくとも1種と、前記酸変性ポリオレフィンとを含む樹脂組成物の硬化物である場合、酸変性ポリオレフィンが主剤として機能し、イソシアネート基を有する化合物、オキサゾリン基を有する化合物、及びエポキシ樹脂は、それぞれ、硬化剤として機能する。
In the present invention, the cured resin layer 4 is a resin composition comprising at least one selected from the group consisting of a compound having an isocyanate group, a compound having an oxazoline group, and an epoxy resin, and the acid-modified polyolefin. In the case of a cured product, the acid-modified polyolefin functions as a main agent, and the compound having an isocyanate group, the compound having an oxazoline group, and the epoxy resin each function as a curing agent.
また、バリア層3(又は耐酸性皮膜)と熱融着性樹脂層5と硬化樹脂層4との密着性をより高める観点から、硬化樹脂層4は、酸素原子、複素環、C=N結合、及びC-O-C結合からなる群より選択される少なくとも1種を有する硬化剤を含む樹脂組成物の硬化物であることが好ましい。複素環を有する硬化剤としては、例えば、オキサゾリン基を有する硬化剤、エポキシ基を有する硬化剤などが挙げられる。また、C=N結合を有する硬化剤としては、オキサゾリン基を有する硬化剤、イソシアネート基を有する硬化剤などが挙げられる。また、C-O-C結合を有する硬化剤としては、オキサゾリン基を有する硬化剤、エポキシ基を有する硬化剤、ウレタン樹脂などが挙げられる。硬化樹脂層4がこれらの硬化剤を含む樹脂組成物の硬化物であることは、例えば、ガスクロマトグラフ質量分析(GCMS)、赤外分光法(IR)、飛行時間型二次イオン質量分析法(TOF-SIMS)、X線光電子分光法(XPS)などの方法で確認することができる。
Further, from the viewpoint of further improving the adhesion between the barrier layer 3 (or acid-resistant film), the heat-fusible resin layer 5 and the cured resin layer 4, the cured resin layer 4 has an oxygen atom, a heterocyclic ring, and a C = N bond. And a cured product of a resin composition containing a curing agent having at least one selected from the group consisting of C—O—C bonds. Examples of the curing agent having a heterocyclic ring include a curing agent having an oxazoline group and a curing agent having an epoxy group. Examples of the curing agent having a C═N bond include a curing agent having an oxazoline group and a curing agent having an isocyanate group. Examples of the curing agent having a C—O—C bond include a curing agent having an oxazoline group, a curing agent having an epoxy group, and a urethane resin. The cured resin layer 4 is a cured product of a resin composition containing these curing agents, for example, gas chromatography mass spectrometry (GCMS), infrared spectroscopy (IR), time-of-flight secondary ion mass spectrometry ( It can be confirmed by a method such as TOF-SIMS) or X-ray photoelectron spectroscopy (XPS).
硬化樹脂層4は、アンチブロッキング剤(シリカなど)などの添加剤を含んでいてもよく、添加剤等は、樹脂組成物に含まれていてもよい。
The cured resin layer 4 may contain an additive such as an anti-blocking agent (such as silica), and the additive may be contained in the resin composition.
また、硬化樹脂層4の軟化温度としては、好ましくは180℃~260℃程度、より好ましくは200~240℃程度が挙げられる。なお、硬化樹脂層4の軟化温度は、JIS K7196:2012「熱可塑性プラスチックフィルム及びシートの熱機械分析による軟化温度試験方法」の規定に準拠した方法で測定された値であり、具体的には、実施例に記載の方法で測定された値である。
The softening temperature of the cured resin layer 4 is preferably about 180 ° C. to 260 ° C., more preferably about 200 to 240 ° C. The softening temperature of the cured resin layer 4 is a value measured by a method in accordance with the provisions of JIS K7196: 2012 “Softening temperature test method by thermomechanical analysis of thermoplastic film and sheet”. These are values measured by the method described in the examples.
硬化樹脂層4の固形分量としては、特に制限されないが、絶縁性及び耐久性をより一層高める観点からは、好ましくは0.5~10g/m2程度、より好ましくは0.8~5.2g/m2程度が挙げられる。また、同様の観点から、硬化樹脂層4の厚みとしては、好ましくは0.6~11μm程度、より好ましくは0.9~5.8μm程度が挙げられる。なお、硬化樹脂層4の厚みは、電池用包装材料を構成している積層体を切断して得た断面について測定したものであってもよいし、硬化樹脂層を構成する樹脂組成物の塗布量と密度から算出したものであってもよく、いずれかがこれらの範囲となればよい。
The solid content of the cured resin layer 4 is not particularly limited, but is preferably about 0.5 to 10 g / m 2 , more preferably 0.8 to 5.2 g from the viewpoint of further improving the insulation and durability. / M 2 or so. From the same viewpoint, the thickness of the cured resin layer 4 is preferably about 0.6 to 11 μm, more preferably about 0.9 to 5.8 μm. In addition, the thickness of the cured resin layer 4 may be measured with respect to a cross section obtained by cutting the laminate constituting the battery packaging material, or may be applied to the resin composition constituting the cured resin layer. It may be calculated from the amount and the density, and any one may be within these ranges.
[熱融着性樹脂層5]
本発明の電池用包装材料において、熱融着性樹脂層5は、最内層に該当し、電池の組み立て時に熱融着性樹脂層同士が熱融着して電池素子を密封する層である。 [Heat-fusion resin layer 5]
In the battery packaging material of the present invention, the heat-fusible resin layer 5 corresponds to the innermost layer, and is a layer that heat-fuses the heat-fusible resin layers together to seal the battery element when the battery is assembled.
本発明の電池用包装材料において、熱融着性樹脂層5は、最内層に該当し、電池の組み立て時に熱融着性樹脂層同士が熱融着して電池素子を密封する層である。 [Heat-fusion resin layer 5]
In the battery packaging material of the present invention, the heat-
本発明の熱融着性樹脂層5に使用される樹脂成分については、熱融着可能であることを限度として特に制限されないが、例えば、ポリオレフィン、酸変性ポリオレフィンなどが挙げられる。すなわち、熱融着性樹脂層5を構成する樹脂は、ポリオレフィン骨格を含んでいても含んでいなくてもよく、ポリオレフィン骨格を含んでいることが好ましい。熱融着性樹脂層5を構成する樹脂がポリオレフィン骨格を含むことは、例えば、赤外分光法、ガスクロマトグラフィー質量分析法などにより分析可能であり、分析方法は特に問わない。例えば、赤外分光法にて無水マレイン酸変性ポリオレフィンを測定すると、波数1760cm-1付近と波数1780cm-1付近に無水マレイン酸由来のピークが検出される。ただし、酸変性度が低いとピークが小さくなり検出されない場合がある。その場合は核磁気共鳴分光法にて分析可能である。
The resin component used in the heat-fusible resin layer 5 of the present invention is not particularly limited as long as it can be heat-sealed, and examples thereof include polyolefins and acid-modified polyolefins. That is, the resin constituting the heat-fusible resin layer 5 may or may not contain a polyolefin skeleton, and preferably contains a polyolefin skeleton. The fact that the resin constituting the heat-fusible resin layer 5 contains a polyolefin skeleton can be analyzed by, for example, infrared spectroscopy, gas chromatography mass spectrometry, etc., and the analysis method is not particularly limited. For example, when measuring the infrared spectroscopy at a maleic anhydride-modified polyolefin, a peak derived from maleic acid is detected in the vicinity of the wave number of 1760 cm -1 and near the wave number 1780 cm -1. However, if the acid modification degree is low, the peak may be small and may not be detected. In that case, it can be analyzed by nuclear magnetic resonance spectroscopy.
ポリオレフィンとしては、具体的には、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、線状低密度ポリエチレン等のポリエチレン;ホモポリプロピレン、ポリプロピレンのブロックコポリマー(例えば、プロピレンとエチレンのブロックコポリマー)、ポリプロピレンのランダムコポリマー(例えば、プロピレンとエチレンのランダムコポリマー)等のポリプロピレン;エチレン-ブテン-プロピレンのターポリマー;等が挙げられる。これらのポリオレフィンの中でも、好ましくはポリエチレン及びポリプロピレンが挙げられ、より好ましくはポリプロピレンが挙げられる。
Specific examples of polyolefins include polyethylenes such as low density polyethylene, medium density polyethylene, high density polyethylene, and linear low density polyethylene; homopolypropylene, polypropylene block copolymers (for example, block copolymers of propylene and ethylene), polypropylene Polypropylenes such as random copolymers (for example, random copolymers of propylene and ethylene); ethylene-butene-propylene terpolymers; and the like. Among these polyolefins, polyethylene and polypropylene are preferable, and polypropylene is more preferable.
ポリオレフィンは、環状ポリオレフィンであってもよい。環状ポリオレフィンは、オレフィンと環状モノマーとの共重合体であり、環状ポリオレフィンの構成モノマーであるオレフィンとしては、例えば、エチレン、プロピレン、4-メチル-1-ペンテン、スチレン、ブタジエン、イソプレン、等が挙げられる。また、環状ポリオレフィンの構成モノマーである環状モノマーとしては、例えば、ノルボルネン等の環状アルケン;具体的には、シクロペンタジエン、ジシクロペンタジエン、シクロヘキサジエン、ノルボルナジエン等の環状ジエン等が挙げられる。これらのポリオレフィンの中でも、好ましくは環状アルケン、更に好ましくはノルボルネンが挙げられる。
The polyolefin may be a cyclic polyolefin. The cyclic polyolefin is a copolymer of an olefin and a cyclic monomer, and examples of the olefin that is a constituent monomer of the cyclic polyolefin include ethylene, propylene, 4-methyl-1-pentene, styrene, butadiene, and isoprene. It is done. In addition, examples of the cyclic monomer that is a constituent monomer of the cyclic polyolefin include cyclic alkenes such as norbornene; specifically, cyclic dienes such as cyclopentadiene, dicyclopentadiene, cyclohexadiene, norbornadiene, and the like. Among these polyolefins, cyclic alkene is preferable, and norbornene is more preferable.
酸変性ポリオレフィンとは、上記のポリオレフィンをカルボン酸等でブロック重合又はグラフト重合することにより変性したポリマーである。変性に使用されるカルボン酸としては、例えば、マレイン酸、アクリル酸、イタコン酸、クロトン酸、無水マレイン酸、無水イタコン酸等が挙げられる。
The acid-modified polyolefin is a polymer obtained by modifying the above polyolefin by block polymerization or graft polymerization with carboxylic acid or the like. Examples of the carboxylic acid used for modification include maleic acid, acrylic acid, itaconic acid, crotonic acid, maleic anhydride, itaconic anhydride and the like.
酸変性ポリオレフィンは、酸変性環状ポリオレフィンであってもよい。酸変性環状ポリオレフィンとは、環状ポリオレフィンを構成するモノマーの一部を、α,β-不飽和カルボン酸又はその無水物に代えて共重合することにより、或いは環状ポリオレフィンに対してα,β-不飽和カルボン酸又はその無水物をブロック重合又はグラフト重合することにより得られるポリマーである。酸変性される環状ポリオレフィンについては、前記と同様である。また、変性に使用されるカルボン酸としては、酸変性シクロオレフィンコポリマーの変性に使用されるものと同様である。
The acid-modified polyolefin may be an acid-modified cyclic polyolefin. The acid-modified cyclic polyolefin is a copolymer obtained by copolymerizing a part of the monomer constituting the cyclic polyolefin in place of the α, β-unsaturated carboxylic acid or its anhydride, or α, β-unsaturated with respect to the cyclic polyolefin. It is a polymer obtained by block polymerization or graft polymerization of a saturated carboxylic acid or its anhydride. The cyclic polyolefin to be acid-modified is the same as described above. The carboxylic acid used for modification is the same as that used for modification of the acid-modified cycloolefin copolymer.
これらの樹脂成分の中でも、好ましくはポリオレフィン;更に好ましくはプロピレンコポリマーが挙げられる。プロピレンコポリマーとしては、エチレン-プロピレンコポリマー、プロピレン-ブテンコポリマー、エチレン-プロピレン-ブテンコポリマーなどのプロピレンと他のオレフィンとのコポリマーなどが挙げられる。ポリプロピレンに含まれるプロピレン単位の割合は、電池用包装材料の絶縁性や耐久性をより高める観点から、50~100モル%程度とすることが好ましく、80~100モル%程度とすることがより好ましい。また、ポリエチレンに含まれるエチレン単位の割合は、電池用包装材料の絶縁性や耐久性をより高める観点から、50~100モル%程度とすることが好ましく、80~100モル%程度とすることがより好ましい。エチレンコポリマー及びプロピレンコポリマーは、それぞれ、ランダムコポリマー、ブロックコポリマーのいずれであってもよく、ランダムプロピレンコポリマーが好ましい。
Among these resin components, preferred are polyolefins, and more preferred are propylene copolymers. Examples of the propylene copolymer include copolymers of propylene and other olefins such as ethylene-propylene copolymer, propylene-butene copolymer, and ethylene-propylene-butene copolymer. The proportion of the propylene unit contained in the polypropylene is preferably about 50 to 100 mol%, more preferably about 80 to 100 mol%, from the viewpoint of further improving the insulation and durability of the battery packaging material. . Further, the proportion of the ethylene unit contained in the polyethylene is preferably about 50 to 100 mol%, more preferably about 80 to 100 mol%, from the viewpoint of further improving the insulation and durability of the battery packaging material. More preferred. Each of the ethylene copolymer and the propylene copolymer may be a random copolymer or a block copolymer, and a random propylene copolymer is preferred.
本発明の熱融着性樹脂層5は、ポリプロピレンを有することが好ましく、ポリプロピレンにより形成された層を有することが好ましい。熱融着性樹脂層5は、1種の樹脂成分単独で形成してもよく、また2種以上の樹脂成分を組み合わせたブレンドポリマーにより形成してもよい。更に、熱融着性樹脂層5は、1層のみで成されていてもよいが、同一又は異なる樹脂成分によって2層以上で形成されていてもよい。
The heat-fusible resin layer 5 of the present invention preferably has polypropylene, and preferably has a layer formed of polypropylene. The heat-fusible resin layer 5 may be formed of one kind of resin component alone or may be formed of a blend polymer in which two or more kinds of resin components are combined. Furthermore, the heat-fusible resin layer 5 may be formed of only one layer, but may be formed of two or more layers using the same or different resin components.
本発明の熱融着性樹脂層5が複数層により形成されている場合、熱融着性樹脂層5の最内層(バリア層3とは反対側)は、ドライラミネート法または押出成形により形成された層であることが好ましい。これにより、絶縁性及び成形性をより一層向上させることができる。
When the heat-fusible resin layer 5 of the present invention is formed of a plurality of layers, the innermost layer (the side opposite to the barrier layer 3) of the heat-fusible resin layer 5 is formed by a dry laminating method or extrusion molding. It is preferable that it is a layer. Thereby, insulation and a moldability can be improved further.
本発明の熱融着性樹脂層5は、その表面(最内層側の表面)に微細な凹凸を備えていることが好ましい。これにより、成形性をより一層向上させることができる。なお、熱融着性樹脂層5の表面に微細な凹凸を形成する方法としては、後述の表面被覆層6で例示する添加剤を熱融着性樹脂層5に添加する方法、表面に凹凸を有する冷却ロールを当接させ賦型する方法などが挙げられる。微細な凹凸としては、好ましくは、熱融着性樹脂層5の表面の十点平均粗さが、0.3~35μm程度、より好ましくは0.3~10μm程度、さらに好ましくは0.5~2μm程度が挙げられる。なお、十点平均粗さは、JIS B0601:1994の規定に準拠した方法において、キーエンス製レーザー顕微鏡VK-9710を用い、対物レンズ50倍、カットオフなしの測定条件で測定した値である。
The heat-fusible resin layer 5 of the present invention preferably has fine irregularities on the surface (the innermost layer side surface). Thereby, a moldability can be improved further. In addition, as a method of forming fine irregularities on the surface of the heat-fusible resin layer 5, a method of adding additives exemplified in the surface coating layer 6 described later to the heat-fusible resin layer 5, and irregularities on the surface. For example, a method may be used in which the cooling roll is brought into contact with the mold. As the fine irregularities, the ten-point average roughness of the surface of the heat-fusible resin layer 5 is preferably about 0.3 to 35 μm, more preferably about 0.3 to 10 μm, and still more preferably 0.5 to About 2 μm may be mentioned. The ten-point average roughness is a value measured using a Keyence laser microscope VK-9710 under the measurement conditions of 50 times objective lens and no cutoff in a method in accordance with JIS B0601: 1994.
本発明において、電池用包装材料の成形性を向上させる観点から、熱融着性樹脂層5の表面には、滑剤が存在していることが好ましい。滑剤としては、特に制限されず、公知の滑剤を用いることができ、例えば、上記の基材層1で例示したものなどが挙げられる。滑剤は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。熱融着性樹脂層5の表面における滑剤の存在量としては、特に制限されず、電子包装用材料の成形性を高める観点からは、温度24℃、湿度60%環境において、好ましくは10~50mg/m2程度、さらに好ましくは15~40mg/m2程度が挙げられる。
In the present invention, a lubricant is preferably present on the surface of the heat-fusible resin layer 5 from the viewpoint of improving the moldability of the battery packaging material. The lubricant is not particularly limited, and a known lubricant can be used, and examples thereof include those exemplified in the base material layer 1 described above. One type of lubricant may be used alone, or two or more types may be used in combination. The amount of lubricant present on the surface of the heat-fusible resin layer 5 is not particularly limited. From the viewpoint of improving the moldability of the electronic packaging material, it is preferably 10 to 50 mg at a temperature of 24 ° C. and a humidity of 60%. / M 2 , more preferably about 15 to 40 mg / m 2 .
熱融着性樹脂層5には、滑剤が含まれていてもよい。また、熱融着性樹脂層5の表面に存在する滑剤は、熱融着性樹脂層5を構成する樹脂に含まれる滑剤を滲出させたものであってもよいし、熱融着性樹脂層5の表面に滑剤を塗布したものであってもよい。
The heat-fusible resin layer 5 may contain a lubricant. Further, the lubricant present on the surface of the heat-fusible resin layer 5 may be one obtained by leaching the lubricant contained in the resin constituting the heat-fusible resin layer 5, or the heat-fusible resin layer. 5 may be obtained by applying a lubricant to the surface.
また、本発明の熱融着性樹脂層5の厚みとしては、熱融着性樹脂層としての機能を発揮すれば特に制限されないが、絶縁性及び耐久性をより一層高める観点からは、例えば、10~40μm程度、好ましくは15~40μm程度が挙げられる。
In addition, the thickness of the heat-fusible resin layer 5 of the present invention is not particularly limited as long as it exhibits the function as the heat-fusible resin layer. From the viewpoint of further improving the insulation and durability, for example, The thickness is about 10 to 40 μm, preferably about 15 to 40 μm.
[表面被覆層6]
本発明の電池用包装材料においては、意匠性、耐電解液性、耐擦過性、成形性の向上などを目的として、必要に応じて、基材層1の上(基材層1のバリア層3とは反対側)に、必要に応じて、表面被覆層6を設けてもよい。表面被覆層6は、電池を組み立てた時に、最外層に位置する層である。 [Surface coating layer 6]
In the battery packaging material of the present invention, for the purpose of improving design properties, electrolytic solution resistance, scratch resistance, moldability, etc., the base material layer 1 (barrier layer of the base material layer 1) is optionally formed. If necessary, asurface coating layer 6 may be provided on the side opposite to (3). The surface coating layer 6 is a layer located in the outermost layer when the battery is assembled.
本発明の電池用包装材料においては、意匠性、耐電解液性、耐擦過性、成形性の向上などを目的として、必要に応じて、基材層1の上(基材層1のバリア層3とは反対側)に、必要に応じて、表面被覆層6を設けてもよい。表面被覆層6は、電池を組み立てた時に、最外層に位置する層である。 [Surface coating layer 6]
In the battery packaging material of the present invention, for the purpose of improving design properties, electrolytic solution resistance, scratch resistance, moldability, etc., the base material layer 1 (barrier layer of the base material layer 1) is optionally formed. If necessary, a
表面被覆層6は、例えば、ポリ塩化ビニリデン、ポリエステル系樹脂、ウレタン樹脂、アクリル系樹脂、エポキシ系樹脂などにより形成することができる。表面被覆層6は、これらの中でも、2液硬化型樹脂により形成することが好ましい。表面被覆層6を形成する2液硬化型樹脂としては、例えば、2液硬化型ウレタン樹脂、2液硬化型ポリエステル系樹脂、2液硬化型エポキシ系樹脂などが挙げられる。また、表面被覆層6には、添加剤を配合してもよい。添加する添加剤は、例えばマット化剤として機能してもよく、表面被覆層はマット層として機能してもよい。
The surface coating layer 6 can be formed of, for example, polyvinylidene chloride, a polyester resin, a urethane resin, an acrylic resin, an epoxy resin, or the like. Of these, the surface coating layer 6 is preferably formed of a two-component curable resin. Examples of the two-component curable resin for forming the surface coating layer 6 include a two-component curable urethane resin, a two-component curable polyester resin, and a two-component curable epoxy resin. Moreover, you may mix | blend an additive with the surface coating layer 6. FIG. The additive to be added may function as, for example, a matting agent, and the surface coating layer may function as a mat layer.
添加剤としては、例えば、粒径が0.5nm~5μm程度の微粒子が挙げられる。添加剤の材質については、特に制限されないが、例えば、金属、金属酸化物、無機物、有機物等が挙げられる。また、添加剤の形状についても、特に制限されないが、例えば、球状、繊維状、板状、不定形、バルーン状等が挙げられる。添加剤として、具体的には、タルク,シリカ,グラファイト、カオリン、モンモリロイド、モンモリロナイト、合成マイカ、ハイドロタルサイト、シリカゲル、ゼオライト、水酸化アルミニウム、水酸化マグネシウム、酸化亜鉛,酸化マグネシウム,酸化アルミニウム,酸化ネオジウム,酸化アンチモン、酸化チタン、酸化セリウム、硫酸カルシウム,硫酸バリウム、炭酸カルシウム,ケイ酸カルシウム、炭酸リチウム、安息香酸カルシウム,シュウ酸カルシウム,ステアリン酸マグネシウム、アルミナ、カーボンブラック、カーボンナノチューブ類、高融点ナイロン、架橋アクリル、架橋スチレン、架橋ポリエチレン、ベンゾグアナミン、金、アルミニウム、銅、ニッケル等が挙げられる。これらの添加剤は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。これらの添加剤の中でも、分散安定性やコスト等の観点から、好ましくはりシリカ、硫酸バリウム、酸化チタンが挙げられる。また、添加剤には、表面に絶縁処理、高分散性処理等の各種表面処理を施しておいてもよい。
Examples of the additive include fine particles having a particle size of about 0.5 nm to 5 μm. The material of the additive is not particularly limited, and examples thereof include metals, metal oxides, inorganic substances, and organic substances. Further, the shape of the additive is not particularly limited, and examples thereof include a spherical shape, a fibrous shape, a plate shape, an indeterminate shape, and a balloon shape. Specific additives include talc, silica, graphite, kaolin, montmorilloid, montmorillonite, synthetic mica, hydrotalcite, silica gel, zeolite, aluminum hydroxide, magnesium hydroxide, zinc oxide, magnesium oxide, aluminum oxide, Neodymium oxide, antimony oxide, titanium oxide, cerium oxide, calcium sulfate, barium sulfate, calcium carbonate, calcium silicate, lithium carbonate, calcium benzoate, calcium oxalate, magnesium stearate, alumina, carbon black, carbon nanotubes, high Melting | fusing point nylon, crosslinked acrylic, crosslinked styrene, crosslinked polyethylene, benzoguanamine, gold | metal | money, aluminum, copper, nickel etc. are mentioned. These additives may be used individually by 1 type, and may be used in combination of 2 or more type. Among these additives, silica, barium sulfate, and titanium oxide are preferable from the viewpoint of dispersion stability and cost. In addition, the surface of the additive may be subjected to various surface treatments such as insulation treatment and high dispersibility treatment.
表面被覆層6を形成する方法としては、特に制限されないが、例えば、表面被覆層6を形成する2液硬化型樹脂を基材層1の一方の表面に塗布する方法が挙げられる。添加剤を配合する場合には、2液硬化型樹脂に添加剤を添加して混合した後、塗布すればよい。
The method for forming the surface coating layer 6 is not particularly limited, and examples thereof include a method in which a two-component curable resin for forming the surface coating layer 6 is applied to one surface of the base material layer 1. When blending the additive, the additive may be added to the two-component curable resin, mixed, and then applied.
表面被覆層6の厚みとしては、表面被覆層としての上記の機能を発揮すれば特に制限されないが、例えば、0.5~10μm程度、好ましくは1~5μm程度が挙げられる。
The thickness of the surface coating layer 6 is not particularly limited as long as it exhibits the above function as the surface coating layer, and may be about 0.5 to 10 μm, preferably about 1 to 5 μm.
3.電池用包装材料の製造方法
本発明の電池用包装材料の製造方法については、所定の組成の各層を積層させた積層体が得られる限り、特に制限されず、少なくとも、基材層と、バリア層と、硬化樹脂層と、熱融着性樹脂層とがこの順に備えた積層体を得る積層工程を備えており、プローブの変位量を測定する熱機械分析において、前記積層体の断面の前記硬化樹脂層表面に前記プローブを設置し、測定開始時の前記プローブのディフレクションの設定値は-4V、昇温速度5℃/分の条件で、前記プローブを40℃から220℃まで加熱した際に、前記プローブの位置が初期値よりも低下しないものを前記硬化樹脂層として用いる方法を採用することができる。すなわち、硬化樹脂層4として、「2.電池用包装材料を形成する各層」の欄で説明したものを用いて、各層を積層することにより、本発明の電池用包装材料を製造することができる。 3. Production method of battery packaging material The production method of the battery packaging material of the present invention is not particularly limited as long as a laminate in which layers of a predetermined composition are laminated is obtained, and at least a base material layer and a barrier layer In the thermomechanical analysis for measuring the amount of displacement of the probe, the curing of the cross section of the laminate is provided. When the probe is installed on the surface of the resin layer and the probe is heated from 40 ° C. to 220 ° C. under the conditions that the deflection setting of the probe at the start of measurement is −4 V and the temperature rising rate is 5 ° C./min. A method in which a probe whose position of the probe does not fall below an initial value is used as the cured resin layer can be employed. That is, as the curedresin layer 4, the battery packaging material of the present invention can be manufactured by laminating each layer using the layer described in the section “2. Each layer forming the battery packaging material”. .
本発明の電池用包装材料の製造方法については、所定の組成の各層を積層させた積層体が得られる限り、特に制限されず、少なくとも、基材層と、バリア層と、硬化樹脂層と、熱融着性樹脂層とがこの順に備えた積層体を得る積層工程を備えており、プローブの変位量を測定する熱機械分析において、前記積層体の断面の前記硬化樹脂層表面に前記プローブを設置し、測定開始時の前記プローブのディフレクションの設定値は-4V、昇温速度5℃/分の条件で、前記プローブを40℃から220℃まで加熱した際に、前記プローブの位置が初期値よりも低下しないものを前記硬化樹脂層として用いる方法を採用することができる。すなわち、硬化樹脂層4として、「2.電池用包装材料を形成する各層」の欄で説明したものを用いて、各層を積層することにより、本発明の電池用包装材料を製造することができる。 3. Production method of battery packaging material The production method of the battery packaging material of the present invention is not particularly limited as long as a laminate in which layers of a predetermined composition are laminated is obtained, and at least a base material layer and a barrier layer In the thermomechanical analysis for measuring the amount of displacement of the probe, the curing of the cross section of the laminate is provided. When the probe is installed on the surface of the resin layer and the probe is heated from 40 ° C. to 220 ° C. under the conditions that the deflection setting of the probe at the start of measurement is −4 V and the temperature rising rate is 5 ° C./min. A method in which a probe whose position of the probe does not fall below an initial value is used as the cured resin layer can be employed. That is, as the cured
本発明の電池用包装材料の製造方法の一例としては、以下の通りである。まず、基材層1、接着剤層2、バリア層3をこの順に備えた積層体(以下、「積層体A」と表記することもある)を形成する。積層体Aの形成は、具体的には、基材層1又は必要に応じて表面が化成処理されたバリア層3に接着剤層2の形成に使用される接着剤を、押出し法、グラビアコート法、ロールコート法等の塗布方法で塗布・乾燥した後に、当該バリア層3又は基材層1を積層させて接着剤層2を硬化させるドライラミネート法によって行うことができる。
An example of the method for producing the battery packaging material of the present invention is as follows. First, a laminate including the base material layer 1, the adhesive layer 2, and the barrier layer 3 in this order (hereinafter also referred to as “laminate A”) is formed. Specifically, the laminate A is formed by extruding an adhesive used for forming the adhesive layer 2 on the base material layer 1 or the barrier layer 3 whose surface is subjected to chemical conversion treatment, if necessary, by extrusion, gravure coating After applying and drying by a coating method such as a method or a roll coating method, the barrier layer 3 or the base material layer 1 can be laminated and the adhesive layer 2 can be cured by a dry laminating method.
次いで、積層体Aのバリア層3上に、硬化樹脂層4と熱融着性樹脂層5を積層させる。バリア層3上に硬化樹脂層4と熱融着性樹脂層5を積層させる場合には、例えば、(1)積層体Aのバリア層3上に、硬化樹脂層4及び熱融着性樹脂層5を共押出しすることにより積層する方法(共押出しラミネート法)、(2)別途、硬化樹脂層4と熱融着性樹脂層5が積層した積層体を形成し、これを積層体Aのバリア層3上にサーマルラミネート法により積層する方法、(3)積層体Aのバリア層3上に、硬化樹脂層4を形成させるための上記樹脂組成物を、グラビアコート法、ロールコート法等の塗布方法で塗布・乾燥した後に、当該熱融着性樹脂層を積層させて硬化樹脂層4を硬化させるドライラミネート法、(4)積層体Aのバリア層3と、予めシート状に製膜した熱融着性樹脂層5との間に、溶融させた硬化樹脂層4を流し込みながら、硬化樹脂層4を介して積層体Aと熱融着性樹脂層5を貼り合せる方法(サンドイッチラミネート法)等が挙げられる。これらの方法のなかでも、(3)の方法が好ましい。(3)の方法を採用する場合、硬化樹脂層4を形成する上記の樹脂組成物をバリア層3の上に積層した後、60~120℃程度の温度で乾燥させることが好ましい。熱融着性樹脂層5を複数層とする場合、当該熱融着性樹脂層5の最内層を、ドライラミネート法または押出成形により形成された層とすることが好ましい。
Next, the cured resin layer 4 and the heat-fusible resin layer 5 are laminated on the barrier layer 3 of the laminate A. When the cured resin layer 4 and the heat-fusible resin layer 5 are laminated on the barrier layer 3, for example, (1) the cured resin layer 4 and the heat-fusible resin layer on the barrier layer 3 of the laminate A (2) Separately, a laminate in which the cured resin layer 4 and the heat-fusible resin layer 5 are laminated is formed, and this is used as a barrier for the laminate A. A method of laminating on the layer 3 by a thermal laminating method; (3) applying the above resin composition for forming the cured resin layer 4 on the barrier layer 3 of the laminate A by a gravure coating method, a roll coating method or the like. After the coating and drying by the method, the heat-fusible resin layer is laminated and the cured resin layer 4 is cured, and (4) the barrier layer 3 of the laminate A and the heat previously formed into a sheet shape Pour the molten cured resin layer 4 between the fusible resin layer 5 While, and a method of bonding a laminate A and the heat-welding resin layer 5 via the cured resin layer 4 (sandwich lamination method). Among these methods, the method (3) is preferable. When the method (3) is employed, it is preferable that the above resin composition for forming the cured resin layer 4 is laminated on the barrier layer 3 and then dried at a temperature of about 60 to 120 ° C. When the heat-fusible resin layer 5 is a plurality of layers, the innermost layer of the heat-fusible resin layer 5 is preferably a layer formed by a dry lamination method or extrusion molding.
表面被覆層6を設ける場合には、基材層1のバリア層3とは反対側の表面に、表面被覆層6を積層する。表面被覆層6は、例えば表面被覆層6を形成する上記の樹脂を基材層1の表面に塗布することで形成することができる。なお、基材層1の表面にバリア層3を積層する工程と、基材層1の表面に表面被覆層6を積層する工程の順番は、特に制限されない。例えば、基材層1の表面に表面被覆層6を形成した後、基材層1の表面被覆層6とは反対側の表面にバリア層3を形成してもよい。
When the surface coating layer 6 is provided, the surface coating layer 6 is laminated on the surface of the base material layer 1 opposite to the barrier layer 3. The surface coating layer 6 can be formed, for example, by applying the above-described resin for forming the surface coating layer 6 to the surface of the base material layer 1. The order of the step of laminating the barrier layer 3 on the surface of the base material layer 1 and the step of laminating the surface coating layer 6 on the surface of the base material layer 1 are not particularly limited. For example, after forming the surface coating layer 6 on the surface of the base material layer 1, the barrier layer 3 may be formed on the surface of the base material layer 1 opposite to the surface coating layer 6.
基材層1または熱融着性樹脂層5の表面に滑剤を存在させる方法としては、特に制限されず、例えば、基材層1または熱融着性樹脂層5を構成する樹脂に滑剤を配合し、必要に応じて滑剤を表面に滲出させる方法や、基材層1または熱融着性樹脂層5の表面に滑剤を塗布する方法などが挙げられる。
The method of causing the lubricant to be present on the surface of the base material layer 1 or the heat-fusible resin layer 5 is not particularly limited. For example, a lubricant is blended with the resin constituting the base material layer 1 or the heat-fusible resin layer 5. In addition, a method of leaching the lubricant to the surface as necessary, a method of applying the lubricant to the surface of the base material layer 1 or the heat-fusible resin layer 5, and the like can be mentioned.
上記のようにして、必要に応じて設けられる表面被覆層6、基材層1、必要に応じて設けられる接着剤層2、必要に応じて表面が化成処理されたバリア層3、硬化樹脂層4、熱融着性樹脂層5をこの順に備えた積層体が形成されるが、接着剤層2及び必要に応じて設けられる硬化樹脂層4の接着性を強固にするために、更に、熱ロール接触式、熱風式、近赤外線式又は遠赤外線式等の加熱処理に供してもよい。このような加熱処理の条件としては、例えば150~250℃程度で1~5分間程度が挙げられる。
As described above, the surface coating layer 6, the base material layer 1, the adhesive layer 2 provided if necessary, the barrier layer 3 whose surface is subjected to chemical conversion treatment if necessary, the cured resin layer 4. A laminate comprising the heat-fusible resin layer 5 is formed in this order, but in order to strengthen the adhesiveness of the adhesive layer 2 and the cured resin layer 4 provided as necessary, further heat You may use for heat processing, such as a roll contact type, a hot air type, a near-infrared type, or a far-infrared type. Examples of such heat treatment conditions include a temperature of about 150 to 250 ° C. and a time of about 1 to 5 minutes.
本発明の電池用包装材料において、積層体を構成する各層は、必要に応じて、製膜性、積層化加工、最終製品2次加工(パウチ化、エンボス成形)適性等を向上又は安定化するために、コロナ処理、ブラスト処理、酸化処理、オゾン処理等の表面活性化処理を施していてもよい。
In the battery packaging material of the present invention, each layer constituting the laminate improves or stabilizes film forming properties, lamination processing, suitability for final processing (pouching, embossing), etc., as necessary. Therefore, surface activation treatment such as corona treatment, blast treatment, oxidation treatment, ozone treatment may be performed.
4.電池用包装材料の用途
本発明の電池用包装材料は、正極、負極、電解質等の電池素子を密封して収容するための包装材料として使用される。 4). Application of Battery Packaging Material The battery packaging material of the present invention is used as a packaging material for sealing and housing battery elements such as a positive electrode, a negative electrode, and an electrolyte.
本発明の電池用包装材料は、正極、負極、電解質等の電池素子を密封して収容するための包装材料として使用される。 4). Application of Battery Packaging Material The battery packaging material of the present invention is used as a packaging material for sealing and housing battery elements such as a positive electrode, a negative electrode, and an electrolyte.
具体的には、少なくとも正極、負極、及び電解質を備えた電池素子を、本発明の電池用包装材料で、前記正極及び負極の各々に接続された金属端子が外側に突出させた状態で、電池素子の周縁にフランジ部(熱融着性樹脂層同士が接触する領域)が形成できるようにして被覆し、前記フランジ部の熱融着性樹脂層同士をヒートシールして密封させることによって、電池用包装材料を使用した電池が提供される。なお、本発明の電池用包装材料を用いて電池素子を収容する場合、本発明の電池用包装材料の熱融着性樹脂部分が内側(電池素子と接する面)になるようにして用いられる。
Specifically, a battery element including at least a positive electrode, a negative electrode, and an electrolyte is formed using the battery packaging material of the present invention, with the metal terminals connected to each of the positive electrode and the negative electrode protruding outward. By covering the periphery of the element so that a flange portion (region where the heat-fusible resin layers are in contact with each other) can be formed, and heat-sealing the heat-fusible resin layers of the flange portion to seal the battery A battery using the packaging material is provided. In addition, when accommodating a battery element using the battery packaging material of the present invention, the battery packaging material of the present invention is used so that the heat-fusible resin portion is on the inner side (surface in contact with the battery element).
本発明の電池用包装材料は、一次電池、二次電池のいずれに使用してもよいが、好ましくは二次電池である。本発明の電池用包装材料が適用される二次電池の種類については、特に制限されず、例えば、リチウムイオン電池、リチウムイオンポリマー電池、鉛畜電池、ニッケル・水素畜電池、ニッケル・カドミウム畜電池、ニッケル・鉄畜電池、ニッケル・亜鉛畜電池、酸化銀・亜鉛畜電池、金属空気電池、多価カチオン電池、コンデンサー、キャパシター等が挙げられる。これらの二次電池の中でも、本発明の電池用包装材料の好適な適用対象として、リチウムイオン電池及びリチウムイオンポリマー電池が挙げられる。
The battery packaging material of the present invention may be used for either a primary battery or a secondary battery, but is preferably a secondary battery. The type of secondary battery to which the battery packaging material of the present invention is applied is not particularly limited. For example, a lithium ion battery, a lithium ion polymer battery, a lead battery, a nickel / hydrogen battery, a nickel / cadmium battery , Nickel / iron livestock batteries, nickel / zinc livestock batteries, silver oxide / zinc livestock batteries, metal-air batteries, polyvalent cation batteries, capacitors, capacitors and the like. Among these secondary batteries, lithium ion batteries and lithium ion polymer batteries are suitable applications for the battery packaging material of the present invention.
以下に、実施例及び比較例を示して本発明を詳細に説明する。ただし、本発明は、実施例に限定されない。
Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples. However, the present invention is not limited to the examples.
なお、樹脂の重量平均分子量は、標準サンプルとしてポリスチレンを用いた条件で測定された、ゲル浸透クロマトグラフィ(GPC)により測定された値である。また、硬化樹脂層の主剤の融解ピーク温度は、JIS K7121:2012の規定に準拠し、示差走査熱量計を用いて測定した。硬化樹脂層の硬化膜の軟化温度は、JIS K7196:2012の規定に準拠したTMAの針入モードによる針入温度から算出した。装置として、セイコーインスツルメンツ社製のEXSTAR6000を用いた。
The weight average molecular weight of the resin is a value measured by gel permeation chromatography (GPC) measured under conditions using polystyrene as a standard sample. Moreover, the melting peak temperature of the main component of the cured resin layer was measured using a differential scanning calorimeter in accordance with the provisions of JIS K7121: 2012. The softening temperature of the cured film of the cured resin layer was calculated from the penetration temperature in the TMA penetration mode in accordance with the provisions of JIS K7196: 2012. As an apparatus, EXSTAR6000 manufactured by Seiko Instruments Inc. was used.
<実施例1~5及び比較例1~3>
基材層としてのナイロンフィルム(厚み25μm)の上に、両面に化成処理を施したアルミニウム箔(厚み35μm)からなるバリア層をドライラミネート法により積層させた。具体的には、アルミニウム箔の一方面に、2液型ウレタン接着剤(ポリオール化合物と芳香族イソシアネート系化合物)を塗布し、バリア層上に接着剤層(厚み3μm)を形成した。次いで、バリア層上の接着剤層と基材層を積層した後、40℃で24時間のエージング処理を実施することにより、基材層と接着剤層とバリア層の積層体を作成した。なお、バリア層として使用したアルミニウム箔の化成処理は、フェノール樹脂、フッ化クロム化合物、及びリン酸からなる処理液をクロムの塗布量が10mg/m2(乾燥質量)となるように、ロールコート法によりアルミニウム箔の両面に塗布し、皮膜温度が180℃以上となる条件で20秒間焼付けすることにより行った。アルミニウム箔の両面に形成された耐酸性皮膜の厚みは、それぞれ、5nmであった。 <Examples 1 to 5 and Comparative Examples 1 to 3>
On a nylon film (thickness 25 μm) as a base material layer, a barrier layer made of an aluminum foil (thickness 35 μm) subjected to chemical conversion treatment on both surfaces was laminated by a dry laminating method. Specifically, a two-component urethane adhesive (a polyol compound and an aromatic isocyanate compound) was applied to one surface of the aluminum foil, and an adhesive layer (thickness 3 μm) was formed on the barrier layer. Subsequently, after laminating the adhesive layer and the base material layer on the barrier layer, an aging treatment was carried out at 40 ° C. for 24 hours to prepare a laminate of the base material layer, the adhesive layer, and the barrier layer. In addition, the chemical conversion treatment of the aluminum foil used as the barrier layer is performed by roll coating a treatment liquid composed of a phenol resin, a chromium fluoride compound, and phosphoric acid so that the coating amount of chromium is 10 mg / m 2 (dry mass). The coating was performed on both surfaces of the aluminum foil by the method and baked for 20 seconds under the condition that the film temperature was 180 ° C. or higher. The thickness of the acid-resistant film formed on both surfaces of the aluminum foil was 5 nm, respectively.
基材層としてのナイロンフィルム(厚み25μm)の上に、両面に化成処理を施したアルミニウム箔(厚み35μm)からなるバリア層をドライラミネート法により積層させた。具体的には、アルミニウム箔の一方面に、2液型ウレタン接着剤(ポリオール化合物と芳香族イソシアネート系化合物)を塗布し、バリア層上に接着剤層(厚み3μm)を形成した。次いで、バリア層上の接着剤層と基材層を積層した後、40℃で24時間のエージング処理を実施することにより、基材層と接着剤層とバリア層の積層体を作成した。なお、バリア層として使用したアルミニウム箔の化成処理は、フェノール樹脂、フッ化クロム化合物、及びリン酸からなる処理液をクロムの塗布量が10mg/m2(乾燥質量)となるように、ロールコート法によりアルミニウム箔の両面に塗布し、皮膜温度が180℃以上となる条件で20秒間焼付けすることにより行った。アルミニウム箔の両面に形成された耐酸性皮膜の厚みは、それぞれ、5nmであった。 <Examples 1 to 5 and Comparative Examples 1 to 3>
On a nylon film (thickness 25 μm) as a base material layer, a barrier layer made of an aluminum foil (thickness 35 μm) subjected to chemical conversion treatment on both surfaces was laminated by a dry laminating method. Specifically, a two-component urethane adhesive (a polyol compound and an aromatic isocyanate compound) was applied to one surface of the aluminum foil, and an adhesive layer (
次に、得られた積層体のバリア層の他方の面に、表1に記載の主剤と硬化剤を含む樹脂組成物を、表1に記載の塗布量(乾燥質量)となるように塗布し、80℃で60秒乾燥させて硬化樹脂層を形成した。次に、硬化樹脂層の上から、ポリプロピレンフィルム(厚み35μm)をドライラミネート法により積層し、熱融着性樹脂層を形成した。以上の工程により、基材層、接着剤層、バリア層、硬化樹脂層、熱融着性樹脂層をこの順に備えた積層体を得た。なお、電池用包装材料の成形性を高める観点から、無延伸ポリプロピレンフィルムの最内層側(バリア層とは反対側)の表面には、滑剤としてエルカ酸アミドを存在させた。次に、得られた各積層体を、それぞれ70℃環境で24時間エージングして、実施例1~6及び比較例1~4の電池用包装材料を得た。なお、塗布量と密度から換算した硬化樹脂層の厚みを表1に示す。表1中のMDIは、ジフェニルメタンジイソシアネートである。
Next, the resin composition containing the main agent and the curing agent described in Table 1 was applied to the other surface of the barrier layer of the obtained laminate so that the application amount (dry mass) described in Table 1 was obtained. And dried at 80 ° C. for 60 seconds to form a cured resin layer. Next, from above the cured resin layer, a polypropylene film (thickness 35 μm) was laminated by a dry lamination method to form a heat-fusible resin layer. Through the above steps, a laminate including a base material layer, an adhesive layer, a barrier layer, a cured resin layer, and a heat-fusible resin layer was obtained in this order. In addition, from the viewpoint of improving the moldability of the battery packaging material, erucic acid amide was present as a lubricant on the innermost layer side (the side opposite to the barrier layer) of the unstretched polypropylene film. Next, each of the obtained laminates was aged in a 70 ° C. environment for 24 hours to obtain battery packaging materials of Examples 1 to 6 and Comparative Examples 1 to 4. In addition, Table 1 shows the thickness of the cured resin layer converted from the coating amount and density. MDI in Table 1 is diphenylmethane diisocyanate.
<実施例6>
アルミニウム箔の代わりに、ステンレス鋼箔(オーステナイト系のステンレス鋼箔、厚さ20μm)をバリア層として用いたこと以外は、実施例1と同様にして、電池用包装材料を得た。 <Example 6>
A battery packaging material was obtained in the same manner as in Example 1 except that stainless steel foil (austenitic stainless steel foil, thickness 20 μm) was used as the barrier layer instead of aluminum foil.
アルミニウム箔の代わりに、ステンレス鋼箔(オーステナイト系のステンレス鋼箔、厚さ20μm)をバリア層として用いたこと以外は、実施例1と同様にして、電池用包装材料を得た。 <Example 6>
A battery packaging material was obtained in the same manner as in Example 1 except that stainless steel foil (austenitic stainless steel foil, thickness 20 μm) was used as the barrier layer instead of aluminum foil.
<比較例4>
アルミニウム箔の代わりに、ステンレス鋼箔(オーステナイト系のステンレス鋼箔、厚さ20μm)をバリア層として用いたこと以外は、比較例1と同様にして、電池用包装材料を得た。 <Comparative example 4>
A battery packaging material was obtained in the same manner as in Comparative Example 1 except that stainless steel foil (austenitic stainless steel foil, thickness 20 μm) was used as the barrier layer instead of aluminum foil.
アルミニウム箔の代わりに、ステンレス鋼箔(オーステナイト系のステンレス鋼箔、厚さ20μm)をバリア層として用いたこと以外は、比較例1と同様にして、電池用包装材料を得た。 <Comparative example 4>
A battery packaging material was obtained in the same manner as in Comparative Example 1 except that stainless steel foil (austenitic stainless steel foil, thickness 20 μm) was used as the barrier layer instead of aluminum foil.
<熱融着性樹脂層の表面の十点平均粗さ>
実施例1~6で得られた各電池用包装材料の熱融着性樹脂層の表面について、JIS B0601:1994の規定に準拠した方法によって、十点平均粗さを測定した。測定にはキーエンス製レーザー顕微鏡VK-9710を用い、対物レンズ50倍、カットオフなしの測定条件で測定した。その結果、十点平均粗さは、実施例1,2,4では1.1μm、実施例3,5,6では1.2μmであった。 <10-point average roughness of the surface of the heat-fusible resin layer>
With respect to the surface of the heat-fusible resin layer of each battery packaging material obtained in Examples 1 to 6, the ten-point average roughness was measured by a method in accordance with JIS B0601: 1994. The measurement was performed using a Keyence laser microscope VK-9710 under the measurement conditions of anobjective lens 50 times and no cutoff. As a result, the ten-point average roughness was 1.1 μm in Examples 1, 2, and 4, and 1.2 μm in Examples 3, 5, and 6.
実施例1~6で得られた各電池用包装材料の熱融着性樹脂層の表面について、JIS B0601:1994の規定に準拠した方法によって、十点平均粗さを測定した。測定にはキーエンス製レーザー顕微鏡VK-9710を用い、対物レンズ50倍、カットオフなしの測定条件で測定した。その結果、十点平均粗さは、実施例1,2,4では1.1μm、実施例3,5,6では1.2μmであった。 <10-point average roughness of the surface of the heat-fusible resin layer>
With respect to the surface of the heat-fusible resin layer of each battery packaging material obtained in Examples 1 to 6, the ten-point average roughness was measured by a method in accordance with JIS B0601: 1994. The measurement was performed using a Keyence laser microscope VK-9710 under the measurement conditions of an
<プローブの変位量を測定する熱機械分析>
上記で得られた各電池用包装材料の断面の硬化樹脂層表面にプローブを設置(プローブの先端半径は30nm以下、プローブのディフレクション(Deflection)の設定値は-4V)し、プローブを40℃から250℃まで加熱(昇温速度5℃/分)して、プローブの変位量を測定した。結果を表1に示す。また、加熱温度とプローブの位置の変位との関係を示すグラフをそれぞれ、図8(実施例3)、図9(比較例3)に示す。測定条件の詳細は以下の通りである。熱機械分析の装置としては、ANASIS INSTRUMENTS社製のafm plusシステムを用い、プローブとしてはカンチレバーThermaLever AN2-200(ばね定数0.5~3N/m)を用いた。キャリブレーションには、付属の試料3種(ポリカプロラクタム(融解ピーク温度55℃)、ポリエチレン(融解ピーク温度116℃)、ポリエチレンテレフタレート(融解ピーク温度235℃))を用い、印加電圧0.1~10V、速度0.2V/秒、ディフレクション(Deflection)の設定値は-4Vとした。なお、位置の変位(Deflection(V))はプローブ先端の位置(反り)を表しており、値が大きいほどプローブ先端が上にある(プローブが上向きに反っている)状態を意味している。プローブの変位量測定は、電池用包装材料について、TD及び厚み方向に沿った断面を作製し、断面の5箇所について測定し(図10を参照)、平均値を採用した。また、キャリブレーションについても、5回行い、平均値を採用した。 <Thermo-mechanical analysis to measure probe displacement>
A probe is placed on the surface of the cured resin layer in the cross section of each battery packaging material obtained above (probe tip radius is 30 nm or less, probe deflection is set to -4V), and the probe is 40 ° C. To 250 ° C. (heating rate 5 ° C./min), and the displacement of the probe was measured. The results are shown in Table 1. Moreover, the graph which shows the relationship between heating temperature and the displacement of the position of a probe is shown in FIG. 8 (Example 3) and FIG. 9 (comparative example 3), respectively. Details of the measurement conditions are as follows. An afm plus system manufactured by ANASIS INSTRUMENTS was used as a thermomechanical analysis apparatus, and a cantilever ThermoLever AN2-200 (spring constant 0.5-3 N / m) was used as a probe. For calibration, three types of attached samples (polycaprolactam (melting peak temperature 55 ° C.), polyethylene (melting peak temperature 116 ° C.), polyethylene terephthalate (melting peak temperature 235 ° C.)) were used, and the applied voltage was 0.1-10 V The speed was 0.2 V / sec, and the set value of the deflection was -4V. The displacement of the position (Defection (V)) represents the position (warp) of the probe tip, and the larger the value, the higher the probe tip is (the probe is warped upward). For the probe displacement measurement, cross sections along the TD and the thickness direction were prepared for the battery packaging material, and measurements were taken at five locations on the cross section (see FIG. 10), and an average value was adopted. In addition, calibration was performed 5 times, and an average value was adopted.
上記で得られた各電池用包装材料の断面の硬化樹脂層表面にプローブを設置(プローブの先端半径は30nm以下、プローブのディフレクション(Deflection)の設定値は-4V)し、プローブを40℃から250℃まで加熱(昇温速度5℃/分)して、プローブの変位量を測定した。結果を表1に示す。また、加熱温度とプローブの位置の変位との関係を示すグラフをそれぞれ、図8(実施例3)、図9(比較例3)に示す。測定条件の詳細は以下の通りである。熱機械分析の装置としては、ANASIS INSTRUMENTS社製のafm plusシステムを用い、プローブとしてはカンチレバーThermaLever AN2-200(ばね定数0.5~3N/m)を用いた。キャリブレーションには、付属の試料3種(ポリカプロラクタム(融解ピーク温度55℃)、ポリエチレン(融解ピーク温度116℃)、ポリエチレンテレフタレート(融解ピーク温度235℃))を用い、印加電圧0.1~10V、速度0.2V/秒、ディフレクション(Deflection)の設定値は-4Vとした。なお、位置の変位(Deflection(V))はプローブ先端の位置(反り)を表しており、値が大きいほどプローブ先端が上にある(プローブが上向きに反っている)状態を意味している。プローブの変位量測定は、電池用包装材料について、TD及び厚み方向に沿った断面を作製し、断面の5箇所について測定し(図10を参照)、平均値を採用した。また、キャリブレーションについても、5回行い、平均値を採用した。 <Thermo-mechanical analysis to measure probe displacement>
A probe is placed on the surface of the cured resin layer in the cross section of each battery packaging material obtained above (probe tip radius is 30 nm or less, probe deflection is set to -4V), and the probe is 40 ° C. To 250 ° C. (
また、各電池用包装材料について、140℃から220℃まで加熱した際のプローブの位置の上昇量(Deflection (V))と、80℃から120℃まで加熱した際のプローブの位置の上昇量(Deflection (V))を表2に示す。
In addition, for each battery packaging material, the amount of increase in the probe position when heating from 140 ° C. to 220 ° C. (Defection (V)) and the amount of increase in the position of the probe when heated from 80 ° C. to 120 ° C. ( Definition (V)) is shown in Table 2.
<耐久性評価>
上記で得られた各電池用包装材料をそれぞれ、図6の模式図に示すように、60mm(MD(Machine Direction))×150mm(TD(Transverse Direction))に裁断した(図6(a))。次に、裁断した電池用包装材料をTDにおいて熱融着性樹脂層同士が対向するようにして2つ折りにした(図6(b))。次に、TDの対向する1辺Eと、MDの1辺Fを熱融着(熱融着部分Sの幅7mm)し、TDの1辺が開口する袋状の電池用包装材料を作製した(図6(c)開口部G)。なお、熱融着の条件は、温度190℃、面圧1.0MPa、加熱・加圧時間3秒とした。次に、図6(d)のように、開口部Gから3gの電解液Hを注入した。次に、開口部Gを7mm幅で、上記と同じ条件で熱融着した(図6(e))。なお、電解液Hは、エチレンカーボネート:ジエチルカーボネート:ジメチルカーボネート=1:1:1の容積比で混合した溶液に6フッ化リン酸リチウムを混合して得られたものである。次に、電池用包装材料の開口部Gが位置していた部分を上向きにして(図6(e)の状態)、85℃の恒温層内に24時間静置した。電池用包装材料のMD、TDについては、例えばバリア層を構成しているアルミニウム箔の圧延方向がMDとなり、MDに同一平面垂直方向がTDとなる。アルミニウム箔の圧延方向は、アルミニウム箔の圧延痕によって確認することができる。 <Durability evaluation>
Each battery packaging material obtained above was cut into 60 mm (MD (Machine Direction)) × 150 mm (TD (Transverse Direction)) as shown in the schematic diagram of FIG. 6 (FIG. 6A). . Next, the cut battery packaging material was folded in half so that the heat-fusible resin layers face each other in TD (FIG. 6B). Next, one side E opposite to the TD and one side F of the MD were heat-sealed (the width of the heat-sealed portion S was 7 mm) to produce a bag-shaped battery packaging material in which one side of the TD opened. (FIG. 6 (c) opening G). The heat sealing conditions were a temperature of 190 ° C., a surface pressure of 1.0 MPa, and a heating / pressurization time of 3 seconds. Next, as shown in FIG. 6D, 3 g of the electrolytic solution H was injected from the opening G. Next, the opening G was 7 mm wide and heat-sealed under the same conditions as above (FIG. 6 (e)). The electrolytic solution H was obtained by mixing lithium hexafluorophosphate with a solution mixed at a volume ratio of ethylene carbonate: diethyl carbonate: dimethyl carbonate = 1: 1: 1. Next, the portion where the opening G of the battery packaging material was located was faced up (state shown in FIG. 6 (e)) and left in a constant temperature layer at 85 ° C. for 24 hours. For the MD and TD of the battery packaging material, for example, the rolling direction of the aluminum foil constituting the barrier layer is MD, and the direction perpendicular to the same plane as MD is TD. The rolling direction of the aluminum foil can be confirmed by the rolling trace of the aluminum foil.
上記で得られた各電池用包装材料をそれぞれ、図6の模式図に示すように、60mm(MD(Machine Direction))×150mm(TD(Transverse Direction))に裁断した(図6(a))。次に、裁断した電池用包装材料をTDにおいて熱融着性樹脂層同士が対向するようにして2つ折りにした(図6(b))。次に、TDの対向する1辺Eと、MDの1辺Fを熱融着(熱融着部分Sの幅7mm)し、TDの1辺が開口する袋状の電池用包装材料を作製した(図6(c)開口部G)。なお、熱融着の条件は、温度190℃、面圧1.0MPa、加熱・加圧時間3秒とした。次に、図6(d)のように、開口部Gから3gの電解液Hを注入した。次に、開口部Gを7mm幅で、上記と同じ条件で熱融着した(図6(e))。なお、電解液Hは、エチレンカーボネート:ジエチルカーボネート:ジメチルカーボネート=1:1:1の容積比で混合した溶液に6フッ化リン酸リチウムを混合して得られたものである。次に、電池用包装材料の開口部Gが位置していた部分を上向きにして(図6(e)の状態)、85℃の恒温層内に24時間静置した。電池用包装材料のMD、TDについては、例えばバリア層を構成しているアルミニウム箔の圧延方向がMDとなり、MDに同一平面垂直方向がTDとなる。アルミニウム箔の圧延方向は、アルミニウム箔の圧延痕によって確認することができる。 <Durability evaluation>
Each battery packaging material obtained above was cut into 60 mm (MD (Machine Direction)) × 150 mm (TD (Transverse Direction)) as shown in the schematic diagram of FIG. 6 (FIG. 6A). . Next, the cut battery packaging material was folded in half so that the heat-fusible resin layers face each other in TD (FIG. 6B). Next, one side E opposite to the TD and one side F of the MD were heat-sealed (the width of the heat-sealed portion S was 7 mm) to produce a bag-shaped battery packaging material in which one side of the TD opened. (FIG. 6 (c) opening G). The heat sealing conditions were a temperature of 190 ° C., a surface pressure of 1.0 MPa, and a heating / pressurization time of 3 seconds. Next, as shown in FIG. 6D, 3 g of the electrolytic solution H was injected from the opening G. Next, the opening G was 7 mm wide and heat-sealed under the same conditions as above (FIG. 6 (e)). The electrolytic solution H was obtained by mixing lithium hexafluorophosphate with a solution mixed at a volume ratio of ethylene carbonate: diethyl carbonate: dimethyl carbonate = 1: 1: 1. Next, the portion where the opening G of the battery packaging material was located was faced up (state shown in FIG. 6 (e)) and left in a constant temperature layer at 85 ° C. for 24 hours. For the MD and TD of the battery packaging material, for example, the rolling direction of the aluminum foil constituting the barrier layer is MD, and the direction perpendicular to the same plane as MD is TD. The rolling direction of the aluminum foil can be confirmed by the rolling trace of the aluminum foil.
次に、各電池用包装材料を恒温層から取り出して、図6(f)に示すように、電解液Hを注入した側を切り取り(図6(f)の二点鎖線の位置)、電池用包装材料を開封して電解液Hを取り出した(図6(g))。次に、電池用包装材料のTDの幅W15mmの部分を短冊状に切り取り(図6(h)の二点鎖線部)、試験片Tを得た(図6(I))。得られた試験片Tの熱融着性樹脂層とバリア層間を剥離させ、熱融着性樹脂層とバリア層とを引張試験機(島津製作所製の商品名AGS-XPlus)を用いて、50mm/分の速度で引張り、試験片の剥離強度(N/15mm)を測定した(耐久性試験後の剥離強度)。一方、実施例1~6及び比較例1~4で得られた電池用包装材料をMD15mm×TD40mm幅に切り取った試験片Tについて、同様にして180度剥離強度を測定した(耐久性試験前の剥離強度)。結果を表1に示す。なお、測定値は、N=3の平均値である。また、試験片の剥離強度の測定は、温度25℃、相対湿度50%の環境で行った。熱融着性樹脂層とバリア層間を剥離させた際、これらの層の間に位置する硬化樹脂層は、熱融着性樹脂層とバリア層のいずれか一方又は両層に積層された状態となる。
Next, each battery packaging material is taken out from the thermostatic layer, and as shown in FIG. 6 (f), the side into which the electrolyte H has been injected is cut out (the position of the two-dot chain line in FIG. 6 (f)). The packaging material was opened and the electrolytic solution H was taken out (FIG. 6 (g)). Next, a TD width W15 mm portion of the battery packaging material was cut into a strip shape (two-dot chain line portion in FIG. 6H) to obtain a test piece T (FIG. 6I). The obtained heat-sealable resin layer and the barrier layer of the test piece T were peeled off, and the heat-sealable resin layer and the barrier layer were separated by 50 mm using a tensile tester (trade name AGS-XPlus manufactured by Shimadzu Corporation). The sample was pulled at a rate of / min and the peel strength (N / 15 mm) of the test piece was measured (peel strength after the durability test). On the other hand, the 180-degree peel strength was measured in the same manner for the test piece T obtained by cutting the battery packaging materials obtained in Examples 1 to 6 and Comparative Examples 1 to 4 into a width of MD15 mm × TD40 mm (before the durability test). Peel strength). The results are shown in Table 1. The measured value is an average value of N = 3. The peel strength of the test piece was measured in an environment at a temperature of 25 ° C. and a relative humidity of 50%. When the heat-fusible resin layer and the barrier layer are peeled off, the cured resin layer located between these layers is in a state of being laminated on either or both of the heat-fusible resin layer and the barrier layer. Become.
<異物噛み込みに対する絶縁性評価>
図7の模式図に示すように、上記で得られた各電池用包装材料を60mm(TD)×150mm(MD)のサイズに切り取り試験片を得た(図7(a))。次に、この試験片を短辺同士が対向するように折り返し、試験片の熱融着性樹脂層の表面が互いに対向するように配置した。次に、互いに対向する熱融着性樹脂層の表面の間に25μmφのワイヤーMを挿入した(図7(b))。次に、この状態で電池用包装材料の長さ方向に直交する方向に上下共に7mm幅の平板状熱板からなるヒートシール機で熱融着性樹脂層同士をヒートシール(温度190℃、面圧1.0MPa、加熱・加圧時間3秒)した(図7(c)、熱融着部分S)。このとき、ワイヤーMが位置している部分の上からヒートシールを行い、熱融着性樹脂層をワイヤーMに熱融着させた。次に、テスターのプラス極をワイヤーMに、マイナス極を片側の電池用包装材料にそれぞれ接続した。このとき、テスターのマイナス極については、ワニ口クリップを電気用包装材料の基材層側からアルミニウム層に到達するように挟み込み、テスターのマイナス極とアルミニウム箔とを電気的に接続させた。次に、テスター間に100Vの電圧をかけ、短絡するまでの時間(秒)を測定した。結果を表1に示す。 <Insulation evaluation against foreign object biting>
As shown in the schematic diagram of FIG. 7, each battery packaging material obtained above was cut into a size of 60 mm (TD) × 150 mm (MD) to obtain a test piece (FIG. 7A). Next, this test piece was folded so that the short sides were opposed to each other, and the test pieces were arranged so that the surfaces of the heat-fusible resin layers of the test pieces faced each other. Next, a wire M having a diameter of 25 μm was inserted between the surfaces of the heat-fusible resin layers facing each other (FIG. 7B). Next, in this state, the heat-fusible resin layers are heat-sealed with a heat-sealing machine composed of a flat plate-like hot plate having a width of 7 mm in both the upper and lower directions in the direction perpendicular to the length direction of the battery packaging material (temperature 190 ° C., surface The pressure was 1.0 MPa, and the heating / pressurizing time was 3 seconds) (FIG. 7C, heat-sealed portion S). At this time, heat sealing was performed from above the portion where the wire M is located, and the heat-fusible resin layer was heat-sealed to the wire M. Next, the positive electrode of the tester was connected to the wire M, and the negative electrode was connected to the battery packaging material on one side. At this time, for the negative pole of the tester, the alligator clip was sandwiched so as to reach the aluminum layer from the base material layer side of the electrical packaging material, and the negative pole of the tester and the aluminum foil were electrically connected. Next, a voltage of 100 V was applied between the testers, and the time (seconds) until short-circuiting was measured. The results are shown in Table 1.
図7の模式図に示すように、上記で得られた各電池用包装材料を60mm(TD)×150mm(MD)のサイズに切り取り試験片を得た(図7(a))。次に、この試験片を短辺同士が対向するように折り返し、試験片の熱融着性樹脂層の表面が互いに対向するように配置した。次に、互いに対向する熱融着性樹脂層の表面の間に25μmφのワイヤーMを挿入した(図7(b))。次に、この状態で電池用包装材料の長さ方向に直交する方向に上下共に7mm幅の平板状熱板からなるヒートシール機で熱融着性樹脂層同士をヒートシール(温度190℃、面圧1.0MPa、加熱・加圧時間3秒)した(図7(c)、熱融着部分S)。このとき、ワイヤーMが位置している部分の上からヒートシールを行い、熱融着性樹脂層をワイヤーMに熱融着させた。次に、テスターのプラス極をワイヤーMに、マイナス極を片側の電池用包装材料にそれぞれ接続した。このとき、テスターのマイナス極については、ワニ口クリップを電気用包装材料の基材層側からアルミニウム層に到達するように挟み込み、テスターのマイナス極とアルミニウム箔とを電気的に接続させた。次に、テスター間に100Vの電圧をかけ、短絡するまでの時間(秒)を測定した。結果を表1に示す。 <Insulation evaluation against foreign object biting>
As shown in the schematic diagram of FIG. 7, each battery packaging material obtained above was cut into a size of 60 mm (TD) × 150 mm (MD) to obtain a test piece (FIG. 7A). Next, this test piece was folded so that the short sides were opposed to each other, and the test pieces were arranged so that the surfaces of the heat-fusible resin layers of the test pieces faced each other. Next, a wire M having a diameter of 25 μm was inserted between the surfaces of the heat-fusible resin layers facing each other (FIG. 7B). Next, in this state, the heat-fusible resin layers are heat-sealed with a heat-sealing machine composed of a flat plate-like hot plate having a width of 7 mm in both the upper and lower directions in the direction perpendicular to the length direction of the battery packaging material (temperature 190 ° C., surface The pressure was 1.0 MPa, and the heating / pressurizing time was 3 seconds) (FIG. 7C, heat-sealed portion S). At this time, heat sealing was performed from above the portion where the wire M is located, and the heat-fusible resin layer was heat-sealed to the wire M. Next, the positive electrode of the tester was connected to the wire M, and the negative electrode was connected to the battery packaging material on one side. At this time, for the negative pole of the tester, the alligator clip was sandwiched so as to reach the aluminum layer from the base material layer side of the electrical packaging material, and the negative pole of the tester and the aluminum foil were electrically connected. Next, a voltage of 100 V was applied between the testers, and the time (seconds) until short-circuiting was measured. The results are shown in Table 1.
表1において、当該プローブの変位量測定において、プローブを40℃から220℃まで加熱した際に、プローブの位置が初期値よりも低下しなかった場合をA、低下した場合をCと表記した。
In Table 1, when measuring the displacement amount of the probe, when the probe was heated from 40 ° C. to 220 ° C., the case where the probe position did not decrease from the initial value was indicated as A, and the case where the probe position was reduced was expressed as C.
表1に示すように、実施例1~6で得られた電池用包装材料では、硬化樹脂層のプローブの変位量を測定する熱機械分析において、測定開始時の前記プローブのディフレクションの設定値は-4V、昇温速度5℃/分の条件で、プローブを40℃から220℃まで加熱した際に、プローブの位置が初期値よりも低下していなかった。一方、比較例1~4で得られた電池用包装材料では、プローブの変位量を測定する熱機械分析において、プローブを40℃から220℃まで加熱した際に、プローブの位置が初期値よりも低下していた。
As shown in Table 1, in the battery packaging materials obtained in Examples 1 to 6, in the thermomechanical analysis for measuring the displacement amount of the probe of the cured resin layer, the set value of the deflection of the probe at the start of the measurement When the probe was heated from 40 ° C. to 220 ° C. under the conditions of −4 V and a temperature increase rate of 5 ° C./min, the position of the probe was not lowered from the initial value. On the other hand, in the battery packaging materials obtained in Comparative Examples 1 to 4, in the thermomechanical analysis for measuring the displacement of the probe, when the probe was heated from 40 ° C. to 220 ° C., the probe position was higher than the initial value. It was falling.
*1:プローブの位置が、120℃以下の温度で80℃の時よりも低下する。
*2:プローブの位置が、220℃以下の温度で140℃の時よりも低下する。 * 1: The probe position is lower than that at 80 ° C. at a temperature of 120 ° C. or lower.
* 2: The position of the probe is lower at a temperature of 220 ° C. or lower than at 140 ° C.
*2:プローブの位置が、220℃以下の温度で140℃の時よりも低下する。 * 1: The probe position is lower than that at 80 ° C. at a temperature of 120 ° C. or lower.
* 2: The position of the probe is lower at a temperature of 220 ° C. or lower than at 140 ° C.
1…基材層
2…接着剤層
3…バリア層
4…硬化樹脂層
4a プローブの設置位置
5…熱融着性樹脂層
10…プローブ DESCRIPTION OFSYMBOLS 1 ... Base material layer 2 ... Adhesive layer 3 ... Barrier layer 4 ... Hardened resin layer 4a Probe installation position 5 ... Thermal-fusion-bonding resin layer 10 ... Probe
2…接着剤層
3…バリア層
4…硬化樹脂層
4a プローブの設置位置
5…熱融着性樹脂層
10…プローブ DESCRIPTION OF
Claims (13)
- 少なくとも、基材層と、バリア層と、硬化樹脂層と、熱融着性樹脂層とをこの順に備える積層体から構成されており、
プローブの変位量を測定する熱機械分析において、前記積層体の断面の前記硬化樹脂層表面に前記プローブを設置し、測定開始時の前記プローブのディフレクションの設定値は-4V、昇温速度5℃/分の条件で、前記プローブを40℃から220℃まで加熱した際に、前記プローブの位置が初期値よりも低下しない、電池用包装材料。 It is composed of a laminate including at least a base material layer, a barrier layer, a cured resin layer, and a heat-fusible resin layer in this order,
In the thermomechanical analysis for measuring the displacement of the probe, the probe is set on the surface of the cured resin layer in the cross section of the laminate, and the set value of the deflection of the probe at the start of the measurement is −4 V, the heating rate is 5 A battery packaging material in which, when the probe is heated from 40 ° C. to 220 ° C. under the condition of ° C./min, the position of the probe does not fall below the initial value. - プローブの変位量を測定する熱機械分析において、前記積層体の断面の前記硬化樹脂層表面に前記プローブを設置し、測定開始時の前記プローブのディフレクションの設定値は-4V、昇温速度5℃/分の条件で、前記プローブを40℃から220℃まで加熱した際に、140℃から220℃まで加熱した際の前記プローブの位置の上昇量が、80℃から120℃まで加熱した際の前記プローブの位置の上昇量よりも大きい、請求項1に記載の電池用包装材料。 In the thermomechanical analysis for measuring the displacement of the probe, the probe is set on the surface of the cured resin layer in the cross section of the laminate, and the set value of the deflection of the probe at the start of the measurement is −4 V, the heating rate is 5 When the probe was heated from 40 ° C. to 220 ° C. under the condition of ° C./min, the amount of increase in the position of the probe when heated from 140 ° C. to 220 ° C. was when heated from 80 ° C. to 120 ° C. The battery packaging material according to claim 1, wherein the battery packaging material is larger than a rising amount of the position of the probe.
- 前記硬化樹脂層が、酸変性ポリオレフィンを含む樹脂組成物の硬化物である、請求項1または2に記載の電池用包装材料。 The battery packaging material according to claim 1 or 2, wherein the cured resin layer is a cured product of a resin composition containing an acid-modified polyolefin.
- 前記硬化樹脂層の前記酸変性ポリオレフィンが、無水マレイン酸変性ポリプロピレンであり、
前記熱融着性樹脂層が、ポリプロピレンを含む、請求項3に記載の電池用包装材料。 The acid-modified polyolefin of the cured resin layer is maleic anhydride-modified polypropylene,
The battery packaging material according to claim 3, wherein the heat-fusible resin layer contains polypropylene. - 前記硬化樹脂層を構成する樹脂が、ポリオレフィン骨格を含んでいる、請求項1~4のいずれかに記載の電池用包装材料。 The battery packaging material according to any one of claims 1 to 4, wherein the resin constituting the cured resin layer includes a polyolefin skeleton.
- 前記硬化樹脂層が、イソシアネート基を有する化合物、オキサゾリン基を有する化合物、エポキシ樹脂、及びウレタン樹脂からなる群より選択される少なくとも1種を含む樹脂組成物の硬化物である、請求項1~5のいずれかに記載の電池用包装材料。 The cured resin layer is a cured product of a resin composition containing at least one selected from the group consisting of a compound having an isocyanate group, a compound having an oxazoline group, an epoxy resin, and a urethane resin. The battery packaging material according to any one of the above.
- 前記硬化樹脂層が、酸素原子、複素環、C=N結合、及びC-O-C結合からなる群より選択される少なくとも1種を有する硬化剤を含む樹脂組成物の硬化物である、請求項1~6のいずれかに記載の電池用包装材料。 The cured resin layer is a cured product of a resin composition containing a curing agent having at least one selected from the group consisting of an oxygen atom, a heterocyclic ring, a C═N bond, and a C—O—C bond. Item 7. The battery packaging material according to any one of Items 1 to 6.
- 前記硬化樹脂層が、ウレタン樹脂、エステル樹脂、及びエポキシ樹脂からなる群より選択される少なくとも1種を含む、請求項1~6のいずれかに記載の電池用包装材料。 The battery packaging material according to any one of claims 1 to 6, wherein the cured resin layer contains at least one selected from the group consisting of urethane resins, ester resins, and epoxy resins.
- 前記硬化樹脂層の厚みが、0.6μm以上11μm以下である、請求項1~8のいずれかに記載の電池用包装材料。 The battery packaging material according to any one of claims 1 to 8, wherein the thickness of the cured resin layer is 0.6 µm or more and 11 µm or less.
- 前記硬化樹脂層の軟化温度が、180℃以上260℃以下の範囲にある、請求項1~9のいずれかに記載の電池用包装材料。 The battery packaging material according to any one of claims 1 to 9, wherein a softening temperature of the cured resin layer is in a range of 180 ° C or higher and 260 ° C or lower.
- 前記熱融着性樹脂層の厚みが、10μm以上40μm以下の範囲にある、請求項1~10のいずれかに記載の電池用包装材料。 The battery packaging material according to any one of claims 1 to 10, wherein the heat-fusible resin layer has a thickness in the range of 10 µm to 40 µm.
- 前記熱融着性樹脂層は、その表面に微細な凹凸を備えている、請求項1~11のいずれかに記載の電池用包装材料。 The battery packaging material according to any one of claims 1 to 11, wherein the heat-fusible resin layer has fine irregularities on a surface thereof.
- 少なくとも、基材層と、バリア層と、硬化樹脂層と、熱融着性樹脂層とをこの順に備えた積層体を得る積層工程を備えており、
プローブの変位量を測定する熱機械分析において、前記積層体の端部の前記硬化樹脂層表面に前記プローブを設置し、測定開始時の前記プローブのディフレクションの設定値は-4V、昇温速度5℃/分の条件で、前記プローブを40℃から220℃まで加熱した際に、前記プローブの位置が初期値よりも低下しないものを前記硬化樹脂層として用いる、電池用包装材料の製造方法。 At least a layering step of obtaining a laminate including a base material layer, a barrier layer, a cured resin layer, and a heat-fusible resin layer in this order;
In the thermomechanical analysis for measuring the displacement of the probe, the probe is installed on the surface of the cured resin layer at the end of the laminate, and the deflection setting value of the probe at the start of measurement is −4 V, the heating rate A method for producing a packaging material for a battery, wherein a material in which the position of the probe does not lower than an initial value when the probe is heated from 40 ° C. to 220 ° C. under a condition of 5 ° C./min is used as the cured resin layer.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018543976A JP7151484B2 (en) | 2016-10-05 | 2017-10-05 | BATTERY PACKAGING MATERIAL, MANUFACTURING METHOD THEREOF, AND BATTERY |
CN201780061437.8A CN109964333B (en) | 2016-10-05 | 2017-10-05 | Battery packaging material, method for producing same, and battery |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-197632 | 2016-10-05 | ||
JP2016197632 | 2016-10-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018066672A1 true WO2018066672A1 (en) | 2018-04-12 |
Family
ID=61831025
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/036386 WO2018066672A1 (en) | 2016-10-05 | 2017-10-05 | Packaging material for battery, manufacturing method therefor, and battery |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7151484B2 (en) |
CN (1) | CN109964333B (en) |
WO (1) | WO2018066672A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112913070A (en) * | 2018-10-24 | 2021-06-04 | 大日本印刷株式会社 | Exterior material for electricity storage device, method for producing same, and electricity storage device |
CN112912982A (en) * | 2018-10-24 | 2021-06-04 | 大日本印刷株式会社 | Exterior material for electricity storage device, method for producing same, and electricity storage device |
WO2022059665A1 (en) * | 2020-09-16 | 2022-03-24 | 昭和電工パッケージング株式会社 | Exterior material for power storage device, power storage device, and method for manufacturing exterior material for power storage device |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112563632B (en) * | 2020-12-07 | 2021-08-10 | 江西睿捷新材料科技有限公司 | Metal composite film and electrochemical device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007273398A (en) * | 2006-03-31 | 2007-10-18 | Dainippon Printing Co Ltd | Packaging material for battery |
JP2014241307A (en) * | 2014-10-02 | 2014-12-25 | 大日本印刷株式会社 | Packaging material for electrochemical cell |
JP2015213064A (en) * | 2015-04-24 | 2015-11-26 | 大日本印刷株式会社 | Battery-packaging material |
JP2016042476A (en) * | 2015-11-05 | 2016-03-31 | 凸版印刷株式会社 | Outer-covering material for electricity storage device |
WO2016159190A1 (en) * | 2015-03-30 | 2016-10-06 | 大日本印刷株式会社 | Cell packaging material, method for manufacturing same, and cell |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4899235B2 (en) * | 1999-12-17 | 2012-03-21 | 大日本印刷株式会社 | Polymer battery packaging material and method for producing the same |
JP2002110111A (en) * | 2000-09-29 | 2002-04-12 | Toppan Printing Co Ltd | Case material for lithium ion cell |
JP2003007267A (en) * | 2001-06-20 | 2003-01-10 | Dainippon Printing Co Ltd | Packaging material for battery |
JP2004111069A (en) * | 2002-09-13 | 2004-04-08 | Toppan Printing Co Ltd | Lithium ion battery sheathing material |
JP5521660B2 (en) * | 2010-03-10 | 2014-06-18 | 凸版印刷株式会社 | Exterior materials for lithium-ion batteries |
JP5525938B2 (en) * | 2010-07-02 | 2014-06-18 | 昭和電工パッケージング株式会社 | Molding packaging material and manufacturing method thereof |
JP6015194B2 (en) * | 2012-07-25 | 2016-10-26 | 油化電子株式会社 | Battery exterior laminate film and method for producing the same |
JP6065570B2 (en) * | 2012-12-14 | 2017-01-25 | 東洋インキScホールディングス株式会社 | Non-aqueous electrolyte secondary battery container laminate, manufacturing method thereof, non-aqueous electrolyte secondary battery, and adhesive composition |
JP2014157727A (en) * | 2013-02-15 | 2014-08-28 | Yuka Denshi Co Ltd | Laminate film for battery outer packaging and method for manufacturing the same |
KR102207486B1 (en) * | 2013-02-18 | 2021-01-26 | 다이니폰 인사츠 가부시키가이샤 | Power-cell packaging material |
JP5914380B2 (en) * | 2013-02-18 | 2016-05-11 | 大日本印刷株式会社 | Battery packaging materials |
JP6096540B2 (en) * | 2013-03-11 | 2017-03-15 | 藤森工業株式会社 | Manufacturing method of laminated body for battery exterior |
JP6412323B2 (en) * | 2014-03-24 | 2018-10-24 | 昭和電工パッケージング株式会社 | Exterior material for electrochemical device and electrochemical device |
JP6592933B2 (en) * | 2014-09-30 | 2019-10-23 | 大日本印刷株式会社 | Battery packaging materials |
-
2017
- 2017-10-05 CN CN201780061437.8A patent/CN109964333B/en active Active
- 2017-10-05 JP JP2018543976A patent/JP7151484B2/en active Active
- 2017-10-05 WO PCT/JP2017/036386 patent/WO2018066672A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007273398A (en) * | 2006-03-31 | 2007-10-18 | Dainippon Printing Co Ltd | Packaging material for battery |
JP2014241307A (en) * | 2014-10-02 | 2014-12-25 | 大日本印刷株式会社 | Packaging material for electrochemical cell |
WO2016159190A1 (en) * | 2015-03-30 | 2016-10-06 | 大日本印刷株式会社 | Cell packaging material, method for manufacturing same, and cell |
JP2015213064A (en) * | 2015-04-24 | 2015-11-26 | 大日本印刷株式会社 | Battery-packaging material |
JP2016042476A (en) * | 2015-11-05 | 2016-03-31 | 凸版印刷株式会社 | Outer-covering material for electricity storage device |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112913070A (en) * | 2018-10-24 | 2021-06-04 | 大日本印刷株式会社 | Exterior material for electricity storage device, method for producing same, and electricity storage device |
CN112912982A (en) * | 2018-10-24 | 2021-06-04 | 大日本印刷株式会社 | Exterior material for electricity storage device, method for producing same, and electricity storage device |
JPWO2020085462A1 (en) * | 2018-10-24 | 2021-09-24 | 大日本印刷株式会社 | Exterior materials for power storage devices, their manufacturing methods, and power storage devices |
CN112913070B (en) * | 2018-10-24 | 2023-06-30 | 大日本印刷株式会社 | Exterior material for power storage device, method for producing same, and power storage device |
US11990629B2 (en) | 2018-10-24 | 2024-05-21 | Dai Nippon Printing Co., Ltd. | Casing material for power storage device, production method therefor, and power storage device |
WO2022059665A1 (en) * | 2020-09-16 | 2022-03-24 | 昭和電工パッケージング株式会社 | Exterior material for power storage device, power storage device, and method for manufacturing exterior material for power storage device |
KR20230009968A (en) * | 2020-09-16 | 2023-01-17 | 쇼와 덴코 패키징 가부시키가이샤 | Manufacturing method of packaging material for electrical storage device, electrical storage device, and packaging material for electrical storage device |
CN116096572A (en) * | 2020-09-16 | 2023-05-09 | 株式会社乐索纳克包装 | Outer packaging material for power storage device, and method for manufacturing outer packaging material for power storage device |
KR102577356B1 (en) | 2020-09-16 | 2023-09-13 | 가부시키가이샤 레조낙·패키징 | Exterior material for power storage device, power storage device and method of manufacturing exterior material for power storage device |
Also Published As
Publication number | Publication date |
---|---|
JPWO2018066672A1 (en) | 2019-07-25 |
JP7151484B2 (en) | 2022-10-12 |
CN109964333B (en) | 2022-10-04 |
CN109964333A (en) | 2019-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7283093B2 (en) | BATTERY PACKAGING MATERIAL, MANUFACTURING METHOD THEREOF, AND BATTERY | |
JP7238403B2 (en) | BATTERY PACKAGING MATERIAL, MANUFACTURING METHOD THEREOF, AND BATTERY | |
WO2018066672A1 (en) | Packaging material for battery, manufacturing method therefor, and battery | |
JP7163922B2 (en) | BATTERY PACKAGING MATERIAL, BATTERY, MANUFACTURING METHOD THEREOF, AND METHOD FOR IMPROVING BATTERY PACKAGING MATERIAL WITH INK PRINTABILITY | |
JP7136108B2 (en) | Battery packaging materials and batteries | |
WO2018079681A1 (en) | Battery packaging material and method for manufacturing same, battery and method of manufacturing same | |
JP6686587B2 (en) | Battery packaging material, manufacturing method thereof, and battery | |
JP7367645B2 (en) | Exterior material for power storage device, manufacturing method thereof, and power storage device | |
JP7414004B2 (en) | Exterior material for power storage device, manufacturing method thereof, and power storage device | |
JP7225832B2 (en) | Exterior material for power storage device, method for manufacturing exterior material for power storage device, and power storage device | |
WO2016159190A1 (en) | Cell packaging material, method for manufacturing same, and cell | |
WO2020085462A1 (en) | Casing material for power storage device, production method therefor, and power storage device | |
JP6555454B1 (en) | Battery packaging material, manufacturing method thereof, battery and aluminum alloy foil | |
JP7367646B2 (en) | Exterior material for power storage device, manufacturing method thereof, and power storage device | |
JP7294132B2 (en) | Battery packaging materials and batteries | |
WO2019078284A1 (en) | Battery packaging material and battery | |
JPWO2017188445A1 (en) | Battery packaging material and battery | |
JP2020092094A (en) | Battery packaging material, manufacturing method of the same, and battery | |
JP2020129543A (en) | Power storage device exterior material, manufacturing method of the same, and power storage device | |
JP7225833B2 (en) | Exterior material for power storage device, method for manufacturing exterior material for power storage device, and power storage device | |
JP2023012724A (en) | Sheath material for power storage device, method for manufacturing the same, and power storage device | |
KR102722924B1 (en) | Battery packaging material, method for producing the same, and battery | |
JP7447797B2 (en) | Exterior material for power storage device, manufacturing method thereof, and power storage device | |
WO2020153459A1 (en) | Exterior material for power storage device, method for manufacturing exterior material for power storage device, and power storage device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17858508 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018543976 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17858508 Country of ref document: EP Kind code of ref document: A1 |