WO2018079681A1 - Battery packaging material and method for manufacturing same, battery and method of manufacturing same - Google Patents

Battery packaging material and method for manufacturing same, battery and method of manufacturing same Download PDF

Info

Publication number
WO2018079681A1
WO2018079681A1 PCT/JP2017/038793 JP2017038793W WO2018079681A1 WO 2018079681 A1 WO2018079681 A1 WO 2018079681A1 JP 2017038793 W JP2017038793 W JP 2017038793W WO 2018079681 A1 WO2018079681 A1 WO 2018079681A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
packaging material
battery packaging
resin
battery
Prior art date
Application number
PCT/JP2017/038793
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 渡邉
俊介 植田
秀仁 畑中
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Priority to JP2018547764A priority Critical patent/JP6519715B2/en
Priority to CN201780055487.5A priority patent/CN109952664B/en
Publication of WO2018079681A1 publication Critical patent/WO2018079681A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery packaging material, a manufacturing method thereof, a battery, and a manufacturing method thereof.
  • a film-like structure in which a base layer / adhesive layer / barrier layer / heat-sealable resin layer are sequentially laminated.
  • a laminated body has been proposed (see, for example, Patent Document 1).
  • Such a film-shaped battery packaging material is formed so that the battery element can be sealed by causing the heat-fusible resin layers to face each other and heat-sealing the peripheral edge portion by heat sealing.
  • ink is printed on the surface of the base material layer to form barcodes, patterns, characters, etc., and then bonded onto the base material layer on the printed side
  • a method of printing on a packaging material by a method of laminating an agent and a metal foil is widely adopted.
  • the adhesion between the base material layer and the barrier layer is lowered, and delamination is likely to occur between the layers.
  • an adhesive and a metal layer are laminated on the base material layer on the printed side. This method is avoided in battery packaging materials. Therefore, conventionally, when printing a barcode or the like on a battery packaging material, a method of sticking a seal on which a print is formed on the surface of a base material layer is generally employed.
  • the present inventors considered a method of printing directly on the surface of the base material layer of the battery packaging material in consideration of the trend of further thinning and weight reduction for the battery packaging material in recent years. did.
  • Pad printing is a printing method as follows. First, ink is poured into a concave portion of a flat plate in which a pattern to be printed is etched. Next, the silicon pad is pressed from above the concave portion to transfer the ink to the silicon pad. Next, the ink transferred to the surface of the silicon pad is transferred to the object to be printed to form a print on the object to be printed. In such pad printing, the ink is transferred to the object to be printed using an elastic silicon pad or the like. Therefore, it is easy to print on the surface of the battery packaging material after molding, and the battery element is made of the battery packaging material. After sealing, the battery can be printed. In addition, ink jet printing has similar advantages.
  • the main object of the present invention is to provide a battery packaging material with excellent printability (first object), and in addition to excellent printability, excellent moldability. It is also an object (second object) to provide a battery packaging material provided with the above. Furthermore, another object of the present invention is to provide a method for producing the battery packaging material, a battery using the battery packaging material, and a method for producing the battery.
  • this invention provides the invention of the aspect hung up below.
  • Item 1 From the outside, a battery packaging material consisting of a laminate comprising at least a base material layer, a barrier layer, and a heat-fusible resin layer in this order, The battery packaging material has a print receiving layer on its outer surface, The printing receiving layer is a battery packaging material containing an amide-based additive.
  • Item 2. Item 4. The battery packaging material according to Item 1, wherein the amide-based additive is erucic acid amide.
  • Item 3. Item 3.
  • the battery packaging material according to Item 1 or 2 wherein the content of the amide-based additive in the print receiving layer is 0.3% by mass or more and 6.0% by mass or less.
  • Item 5. The battery packaging material according to any one of Items 1 to 4, further comprising a printing layer on an outer surface of the printing receiving layer.
  • Item 6. Item 6. The battery packaging material according to any one of Items 1 to 5, wherein the thickness of the print receiving layer is in the range of 0.001 ⁇ m to 50 ⁇ m.
  • Item 8. Item 8.
  • Item 9 A battery in which a battery element including at least a positive electrode, a negative electrode, and an electrolyte is accommodated in a package formed by the battery packaging material according to any one of Items 1 to 8.
  • a printing receiving layer From the outside, at least a printing receiving layer, a base material layer, a barrier layer, and a method for producing a battery packaging material comprising a laminate comprising a heat-fusible resin layer in this order, Comprising a laminating step of laminating the print receiving layer, the base material layer, the barrier layer, and the heat-fusible resin layer to obtain a laminate,
  • the printing receiving layer is provided on an outer surface of the battery packaging material, and the printing receiving layer contains an amide-based additive.
  • Item 11 The method for producing a battery packaging material according to Item 10, further comprising a step of forming a printing layer on the surface of the printing receiving layer.
  • a method for producing a battery comprising a step of accommodating a battery element including at least a positive electrode, a negative electrode, and an electrolyte in a package formed of the battery packaging material according to any one of Items 1 to 8.
  • Item 13 Item 13.
  • a battery packaging material having excellent printability can be provided. Furthermore, according to this invention, the manufacturing method of the said packaging material for batteries, the battery using the said packaging material for batteries, and the manufacturing method of a battery can be provided.
  • the battery packaging material of the present invention comprises a laminate comprising at least a base material layer, a barrier layer, and a heat-fusible resin layer in this order from the outside, and a print receiving layer is provided on the outer surface of the battery packaging material.
  • the print receiving layer includes an amide-based additive.
  • the numerical range indicated by “to” means “above” or “below”.
  • the notation of 2 to 15 mm means 2 mm or more and 15 mm or less.
  • the battery packaging material of the present invention comprises, for example, a print receiving layer 6, a substrate layer 1, a barrier layer 3, and a heat-fusible resin layer 4 from the outside as shown in FIG. It consists of a laminated body provided in this order.
  • the print receiving layer 6 is the outermost layer
  • the heat-fusible resin layer 4 is the innermost layer. That is, when the battery is assembled, the battery element is sealed by heat-sealing the heat-fusible resin layers 4 positioned at the periphery of the battery element to seal the battery element.
  • the battery packaging material of the present invention has an adhesive layer 2 between the base material layer 1 and the barrier layer 3 for the purpose of enhancing the adhesion between them. It may be.
  • an adhesive layer 5 may be provided between the barrier layer 3 and the heat-fusible resin layer 4 as necessary for the purpose of enhancing the adhesion.
  • a surface coating layer (not shown) or the like may be provided on the outside of the base material layer 1 (on the side opposite to the heat-fusible resin layer 4) as necessary. When the surface coating layer is provided, the surface coating layer is located between the base material layer 1 and the print receiving layer 6.
  • the print receiving layer 6 may be formed on at least a part of the outer surface of the base material layer 1 (surface opposite to the barrier layer 3). That is, the print receiving layer 6 may be formed on the entire outer surface of the base material layer 1 or may be formed on a part thereof.
  • the dynamic friction coefficient of the base layer side surface is preferably about 0.50 or less, more preferably about 0.26 or less, and about 0.18. More preferably, it is more preferably about 0.13 or less.
  • the dynamic friction coefficient means a value measured by the following method.
  • the total thickness of the laminate constituting the battery packaging material of the present invention is not particularly limited, but is preferably about 160 ⁇ m from the viewpoint of exhibiting high moldability while reducing the total thickness of the laminate as much as possible. Hereinafter, it is more preferably about 35 to 155 ⁇ m, and further preferably about 45 to 155 ⁇ m. Even when the thickness of the laminate constituting the battery packaging material of the present invention is as thin as 160 ⁇ m or less, for example, the present invention can exhibit excellent moldability. For this reason, the packaging material for batteries of this invention can contribute to the improvement of the energy density of a battery.
  • each layer forming the battery packaging material [base material layer 1]
  • the base material layer 1 is positioned outside the barrier layer 3 and functions as a support for the battery packaging material.
  • the material for forming the base material layer 1 is not particularly limited as long as it has insulating properties.
  • Examples of the material for forming the base material layer 1 include polyester, polyamide, epoxy resin, acrylic resin, fluorine resin, polyurethane, silicon resin, phenol resin, polyetherimide, polyimide, and a mixture or copolymer thereof. Can be mentioned. Among these, polyester and polyamide are preferable from the viewpoint of exhibiting high moldability.
  • polyester examples include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polyethylene isophthalate, polycarbonate, copolymerized polyester mainly composed of ethylene terephthalate, butylene terephthalate as a repeating unit.
  • examples thereof include a copolymer polyester mainly used.
  • the copolymer polyester mainly composed of ethylene terephthalate is a copolymer polyester that polymerizes with ethylene isophthalate mainly composed of ethylene terephthalate (hereinafter, polyethylene (terephthalate / isophthalate)).
  • polyethylene terephthalate / isophthalate
  • polyethylene terephthalate / adipate
  • polyethylene terephthalate / sodium sulfoisophthalate
  • polyethylene terephthalate / sodium isophthalate
  • polyethylene terephthalate / phenyl-dicarboxylate
  • polyethylene terephthalate / decanedicarboxylate
  • polyester mainly composed of butylene terephthalate as a repeating unit
  • a copolymer polyester that polymerizes with butylene isophthalate having butylene terephthalate as a repeating unit hereinafter referred to as polybutylene (terephthalate / isophthalate).
  • polybutylene (terephthalate / adipate) polybutylene (terephthalate / sebacate), polybutylene (terephthalate / decanedicarboxylate), polybutylene naphthalate and the like.
  • These polyesters may be used individually by 1 type, and may be used in combination of 2 or more type.
  • Polyester has the advantage of being excellent in electrolytic solution resistance and less likely to cause whitening due to the adhesion of the electrolytic solution, and is suitably used as a material for forming the base material layer 1.
  • polyamides include aliphatic polyamides such as nylon 6, nylon 66, nylon 610, nylon 12, nylon 46, and a copolymer of nylon 6 and nylon 66; terephthalic acid and / or isophthalic acid Nylon 6I, Nylon 6T, Nylon 6IT, Nylon 6I6T (I represents isophthalic acid, T represents terephthalic acid) and the like, and polymetaxylylene azide Polyamide containing aromatics such as Pamide (MXD6); Alicyclic polyamides such as Polyaminomethylcyclohexyl Adipamide (PACM6); and Lactam components and isocyanate components such as 4,4′-diphenylmethane-diisocyanate are copolymerized Polyamide, co-weight Polyester amide copolymer and polyether ester amide copolymer is a copolymer of polyamide and polyester and polyalkylene ether glycol; copolymers thereof, and the like.
  • MXD6 Polya
  • polyamides may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the stretched polyamide film is excellent in stretchability, can prevent whitening due to resin cracking of the base material layer 1 during molding, and is suitably used as a material for forming the base material layer 1.
  • the base material layer 1 may be formed of a uniaxial or biaxially stretched resin film, or may be formed of an unstretched resin film. Among them, a uniaxially or biaxially stretched resin film, in particular, a biaxially stretched resin film has improved heat resistance by orientation crystallization, and thus is suitably used as the base material layer 1. Moreover, the base material layer 1 may be formed by coating the above-mentioned material on the barrier layer 3.
  • nylon As a resin film for forming the base material layer 1, nylon, polyester, more preferably biaxially stretched nylon, biaxially stretched polyester, and particularly preferably biaxially stretched nylon are used from the viewpoint of exhibiting high moldability. Can be mentioned.
  • the base material layer 1 can be laminated with at least one of resin films and coatings of different materials in order to improve pinhole resistance and insulation when used as a battery package.
  • resin films and coatings of different materials include a multilayer structure in which a polyester film and a nylon film are laminated, and a multilayer structure in which a biaxially stretched polyester and a biaxially stretched nylon are laminated.
  • each resin film may be adhere
  • a method of bonding in a hot-melt state such as a co-extrusion lamination method, a sandwich lamination method, or a thermal lamination method can be mentioned.
  • the adhesive agent to be used may be a two-component curable adhesive, or a one-component curable adhesive.
  • the bonding mechanism of the adhesive is not particularly limited, and any of a chemical reaction type, a solvent volatilization type, a heat melting type, a hot pressure type, an ionizing radiation curable type such as an ultraviolet ray (UV) or an electron beam (EB), etc. There may be.
  • polyester resin polyether resin, polyurethane resin, epoxy resin, phenol resin resin, polyamide resin, polyolefin resin, polyvinyl acetate resin, cellulose resin, (meth) acrylic resin Resins, polyimide resins, amino resins, rubbers, and silicon resins can be used.
  • the water repellent when the water repellent is contained in the base material layer, heat is applied in the baking process after the battery element such as the electrolyte is sealed in the battery packaging material, so that the water repellent is applied to the surface of the base material layer.
  • ink is printed on the surface of the base material layer by bleed-out and pad printing or the like, the ink is repelled on the surface of the base material layer, making it difficult to fix the ink, and a problem that a missing portion where no ink is formed is likely to occur. .
  • the battery packaging material of the present invention since the print receiving layer 6 is provided on the surface of the base material layer 1, the battery packaging material can be used even when the base material layer 1 contains a water repellent.
  • the outer surface of the material can exhibit excellent ink printability.
  • the content of the water repellent contained in the base material layer 1 is not particularly limited, but is preferably about 200 to 1500 ppm, more preferably about 300 to 1200 ppm.
  • the content of the water repellent contained in the base material layer 1 is the water repellent (such as ethylene bis stearamide, ethylene bis oleate amide, etc.) present in the base layer. Amide).
  • the content of the water repellent contained in the base material layer 1 of the battery packaging material is determined by removing the base material layer 1 from the battery packaging material, dissolving the base material layer 1 in hexafluoroisopropyl alcohol, and then adding dimethylethane. In addition, solvent precipitation is performed, the resin component is separated to prepare an extraction solution of a water repellent, and the extraction solution can be quantified by GC-MS analysis.
  • the thickness of the base material layer 1 is, for example, about 10 to 50 ⁇ m, preferably about 12 to 30 ⁇ m.
  • the print receiving layer 6 containing an amide-based additive is provided on at least a part of the outer surface of the battery packaging material (that is, the surface on the base material layer 1 side).
  • the print receiving layer 6 may be formed on the entire outer surface of the battery packaging material or may be formed on a part thereof. From the viewpoint of further improving the moldability of the battery packaging material, the print receiving layer 6 is preferably formed on the entire outer surface of the battery packaging material. When the location to be printed on the outer surface of the battery packaging material is predetermined, the print receiving layer 6 is preferably formed on a part of the outer surface.
  • the print receiving layer 6 is formed on a part of the outer surface, the area of the print receiving layer 6 occupying the outer surface from the viewpoint of a battery packaging material having both excellent printability and excellent moldability.
  • the ratio is preferably about 50% or more, more preferably about 80% or more, still more preferably about 90% or more, and particularly preferably about 99% or more.
  • the present inventors examined printing directly on the outside surface. It was revealed that the ink was repelled and the ink was difficult to be fixed, and a part where the ink was not formed may occur. In particular, there was a tendency for printability to be insufficient when printing by pad printing.
  • the print receiving layer 6 containing the amide-based additive is provided on at least a part of the outer surface, the outer surface of the battery packaging material (print receiving layer) 6), the ink is difficult to be repelled, and the ink can be suitably printed on the outside of the battery packaging material.
  • the print receiving layer 6 is formed in the battery packaging material of the present invention. Therefore, the ink is not easily repelled, and is particularly suitable as a battery packaging material in which printing is formed on the outer surface by pad printing.
  • the amide-based additive is contained in the print receiving layer 6, the moldability of the battery packaging material is also excellent.
  • the material constituting the print receiving layer 6 is not particularly limited as long as it has a surface on which ink is hard to be repelled.
  • the print receiving layer 6 is formed of, for example, a resin composition containing an amide-based additive and a resin.
  • the resin is not particularly limited, and examples thereof include a thermoplastic resin, a thermosetting resin, and an ionizing radiation curable resin.
  • the thermoplastic resin is not particularly limited, and acrylic resins such as polymethyl (meth) acrylate and polyethyl (meth) acrylate; polyolefin resins such as polypropylene and polyethylene; polycarbonate resins; vinyl chloride resins; acrylonitrile-butadiene-styrene resins (ABS resin); acrylonitrile-styrene-acrylic ester resin, nitrified cotton resin, and the like.
  • acrylic resin is preferable from the viewpoint of improving the printability and formability of the ink on the outer surface of the battery packaging material.
  • thermosetting resin is not particularly limited, and for example, epoxy resin, phenol resin, urea resin, unsaturated polyester resin, melamine resin, alkyd resin, polyimide resin, silicone resin, hydroxyl functional acrylic resin, carboxyl functional acrylic.
  • examples include resins, amide functional copolymers, and urethane resins.
  • urethane resin is preferable from the viewpoint of improving the printability and moldability of the ink on the outer surface of the battery packaging material.
  • urethane resins polyester urethane resins are more preferable from the same viewpoint.
  • the resin constituting the print receiving layer 6 contains an acrylic resin. It is preferable that the ratio of the acrylic resin is 80% by mass or more. More specifically, the resin constituting the print receiving layer 6 is particularly preferably about 80 to 100% by mass of acrylic resin and about 0 to 20% by mass of polyester urethane resin. That is, the print receiving layer 6 particularly preferably contains a resin containing about 80 to 100% by mass of an acrylic resin and about 0 to 20% by mass of a polyester urethane resin and the amide-based additive.
  • the tape When a battery using a battery packaging material is fixed with a tape or the like, the tape may be adhered to the print receiving layer 6 to fix the battery to a housing or the like. In such a case, since the adhesion of the print receiving layer 6 to the tape is excellent, the battery can be suitably fixed using the tape.
  • a tape a commercially available adhesive tape etc. are used, for example.
  • the ionizing radiation curable resin is a resin that crosslinks and cures when irradiated with ionizing radiation.
  • the polymer has a polymerizable unsaturated bond or an epoxy group, a prepolymer, an oligomer, And those obtained by appropriately mixing at least one of monomers and the like.
  • ionizing radiation means an electromagnetic wave or charged particle beam having an energy quantum capable of polymerizing or cross-linking molecules, and usually ultraviolet (UV) or electron beam (EB) is used. It also includes electromagnetic waves such as rays and ⁇ rays, and charged particle rays such as ⁇ rays and ion rays. A well-known thing can be used as ionizing radiation-curable resin.
  • a (meth) acrylate monomer having a radically polymerizable unsaturated group in the molecule is preferable, and a polyfunctional (meth) acrylate monomer is particularly preferable.
  • the polyfunctional (meth) acrylate monomer may be a (meth) acrylate monomer having two or more polymerizable unsaturated bonds (bifunctional or more), preferably three or more (trifunctional or more) in the molecule.
  • polyfunctional (meth) acrylate examples include ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di ( (Meth) acrylate, neopentyl glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, hydroxypivalate neopentyl glycol di (meth) acrylate, dicyclopentanyl di (meth) acrylate, caprolactone modified dicyclopentenyl di ( (Meth) acrylate, ethylene oxide-modified phosphoric acid di (meth) acrylate, allylated cyclohexyl di (meth) acrylate, isocyanurate di (meth) acrylate, trimethylolpropane tri (meth) acrylate , Ethylene oxide modified trimethylolpropane tri (me
  • the oligomer used as the ionizing radiation curable resin is preferably a (meth) acrylate oligomer having a radical polymerizable unsaturated group in the molecule, and more than two polymerizable unsaturated bonds in the molecule.
  • a polyfunctional (meth) acrylate oligomer having (bifunctional or higher) is preferred.
  • Examples of the polyfunctional (meth) acrylate oligomer include polycarbonate (meth) acrylate, acrylic silicone (meth) acrylate, urethane (meth) acrylate, epoxy (meth) acrylate, polyester (meth) acrylate, and polyether (meth) acrylate.
  • polybutadiene (meth) acrylate silicone (meth) acrylate, oligomer having a cationic polymerizable functional group in the molecule (for example, novolac type epoxy resin, bisphenol type epoxy resin, aliphatic vinyl ether, aromatic vinyl ether, etc.)
  • the polycarbonate (meth) acrylate is not particularly limited as long as it has a carbonate bond in the polymer main chain and a (meth) acrylate group in the terminal or side chain. It can be obtained by esterification with acrylic acid.
  • the polycarbonate (meth) acrylate may be, for example, a polycarbonate urethane (meth) acrylate which is a urethane (meth) acrylate having a polycarbonate skeleton.
  • the urethane (meth) acrylate having a polycarbonate skeleton can be obtained, for example, by reacting a polycarbonate polyol, a polyvalent isocyanate compound, and hydroxy (meth) acrylate.
  • the acrylic silicone (meth) acrylate can be obtained by radical copolymerizing a silicone macromonomer with a (meth) acrylate monomer.
  • Urethane (meth) acrylate can be obtained, for example, by esterifying, with (meth) acrylic acid, a polyurethane oligomer obtained by the reaction of polyether polyol, polyester polyol, caprolactone-based polyol or polycarbonate polyol and a polyisocyanate compound. it can.
  • Epoxy (meth) acrylate can be obtained, for example, by reacting (meth) acrylic acid with an oxirane ring of a relatively low molecular weight bisphenol type epoxy resin or novolak type epoxy resin and esterifying it.
  • a carboxyl-modified epoxy (meth) acrylate obtained by partially modifying this epoxy (meth) acrylate with a dibasic carboxylic acid anhydride can be used.
  • Polyester (meth) acrylate is obtained by esterifying the hydroxyl group of a polyester oligomer having hydroxyl groups at both ends obtained by condensation of a polyvalent carboxylic acid and a polyhydric alcohol with (meth) acrylic acid, for example, or It can be obtained by esterifying the terminal hydroxyl group of an oligomer obtained by adding an alkylene oxide with (meth) acrylic acid.
  • the polyether (meth) acrylate can be obtained by esterifying the hydroxyl group of the polyether polyol with (meth) acrylic acid.
  • Polybutadiene (meth) acrylate can be obtained by adding (meth) acrylic acid to the side chain of the polybutadiene oligomer.
  • Silicone (meth) acrylate can be obtained by adding (meth) acrylic acid to the terminal or side chain of silicone having a polysiloxane bond in the main chain.
  • the polyfunctional (meth) acrylate oligomer polycarbonate (meth) acrylate, urethane (meth) acrylate, and the like are particularly preferable. These oligomers may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the amide-based additive include saturated fatty acid amide, unsaturated fatty acid amide, substituted amide, methylol amide, saturated fatty acid bisamide, unsaturated fatty acid bisamide and the like.
  • Specific examples of the saturated fatty acid amide include lauric acid amide, palmitic acid amide, stearic acid amide, behenic acid amide, hydroxy stearic acid amide and the like.
  • Specific examples of the unsaturated fatty acid amide include oleic acid amide and erucic acid amide.
  • substituted amide examples include N-oleyl palmitic acid amide, N-stearyl stearic acid amide, N-stearyl oleic acid amide, N-oleyl stearic acid amide, N-stearyl erucic acid amide and the like.
  • methylolamide examples include methylol stearamide.
  • saturated fatty acid bisamides include methylene bis stearamide, ethylene biscapric amide, ethylene bis lauric acid amide, ethylene bis stearic acid amide, ethylene bishydroxy stearic acid amide, ethylene bisbehenic acid amide, hexamethylene bis stearic acid amide.
  • acid amide hexamethylene bisbehenic acid amide, hexamethylene hydroxystearic acid amide, N, N′-distearyl adipic acid amide, N, N′-distearyl sebacic acid amide, and the like.
  • unsaturated fatty acid bisamides include ethylene bisoleic acid amide, ethylene biserucic acid amide, hexamethylene bisoleic acid amide, N, N′-dioleyl adipic acid amide, N, N′-dioleyl sebacic acid amide Etc.
  • Specific examples of the fatty acid ester amide include stearoamidoethyl stearate.
  • aromatic bisamide examples include m-xylylene bis stearic acid amide, m-xylylene bishydroxy stearic acid amide, N, N′-distearyl isophthalic acid amide and the like.
  • erucic acid amide is preferable from the viewpoint of improving the printability and formability of the ink on the outer surface of the battery packaging material.
  • An amide type additive may be used individually by 1 type, and may be used in combination of 2 or more types.
  • the content of the amide-based additive in the print receiving layer 6 is not particularly limited, but the viewpoint of improving the printability of ink on the outer surface of the battery packaging material, and the viewpoint of improving the printability and moldability of the ink Therefore, preferably about 0.3 to 6.0% by mass, more preferably about 0.3 to 5.0% by mass, still more preferably about 2.0 to 4.0% by mass, and particularly preferably 3.0 to About 4.0 mass% is mentioned.
  • the content of the amide-based additive in the print receiving layer 6 can be determined based on an intensity peak obtained by scraping the print receiving layer 6 from the battery packaging material and subjecting it to gas chromatography.
  • the print receiving layer 6 may contain inorganic particles.
  • the inorganic particles are not particularly limited. For example, silica particles (colloidal silica, fumed silica, precipitated silica, etc.), barium sulfate particles, aluminum hydroxide particles, alumina particles, zirconia particles, titania particles, zinc oxide particles, etc.
  • the metal oxide particles are preferably mentioned, and silica particles are preferred.
  • An inorganic particle may be used individually by 1 type, and may be used in combination of 2 or more types.
  • the print receiving layer 6 may contain the additives exemplified in the surface coating layer described later.
  • the print receiving layer 6 can be formed by, for example, a method of applying the resin composition constituting the above-described print receiving layer 6 on the base material layer 1 by a known printing method or the like.
  • the thickness of the print receiving layer 6 is not particularly limited, but is preferably about 0.001 ⁇ m or more, more preferably about 0.005 ⁇ m or more, and further preferably about 0.01 ⁇ m or more. Further, the thickness is preferably about 50 ⁇ m or less, more preferably about 40 ⁇ m or less, and still more preferably about 5 ⁇ m or less. Further, it may be about 0.1 ⁇ m or less and about 0.05 ⁇ m or less. The thickness of the print receiving layer 6 can be measured by observing the cross section with a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • ink can be suitably printed on the surface of the print receiving layer 6. That is, in the present invention, the battery packaging material in which the ink is printed on the outer surface of the battery packaging material (the surface of the print receiving layer 6) is the ink printed on the surface of the print receiving layer 6 (cured product of ink, Dry material etc. are exposed.
  • the printed ink can form, for example, printing of barcodes, patterns, characters, and the like.
  • the ink used for printing is not particularly limited, and a known ink can be used. For example, a photocurable ink that is cured by irradiation with ultraviolet rays or the like can be used.
  • the wetting tension on the surface of the print receiving layer 6 is preferably about 33 mN / m or more, more preferably about 35 mN / m or more.
  • the said wetting tension means the value measured by the following method.
  • the wetting tension (mN / m) of the print receiving layer with a wetting reagent conforming to JIS standards is measured.
  • the test method conforms to “JIS K6768 1999 Plastic-Film and Sheet-Wetting Tension Test Method”.
  • the wet tension test mixture apply the reagent contained in the spherical absorbent cotton to the surface of the print receiving layer in a line of about 5 cm, and determine whether the liquid film is broken after 2 seconds.
  • the wetting tension (mN / m) is measured.
  • the wetting tension is measured in an environment with a temperature of 23 ° C. and a relative humidity of 50%.
  • the adhesive layer 2 is a layer provided between the base material layer 1 and the barrier layer 3 as necessary in order to firmly bond them.
  • the adhesive layer 2 is formed of an adhesive capable of bonding the base material layer 1 and the barrier layer 3 together.
  • the adhesive used for forming the adhesive layer 2 may be a two-component curable adhesive or a one-component curable adhesive.
  • the bonding mechanism of the adhesive used for forming the adhesive layer 2 is not particularly limited, and may be any of a chemical reaction type, a solvent volatilization type, a heat melting type, a hot pressure type, and the like.
  • adhesive components that can be used to form the adhesive layer 2 include polyester resins such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polyethylene isophthalate, and copolyester; polyethers Polyurethane adhesive; epoxy resin; phenolic resin; polyamide resin such as nylon 6, nylon 66, nylon 12, copolymer polyamide; polyolefin resin such as polyolefin, carboxylic acid modified polyolefin, metal modified polyolefin , Polyvinyl acetate resin; cellulose adhesive; (meth) acrylic resin; polyimide resin; polycarbonate; amino resin such as urea resin and melamine resin; chloroprene rubber, nitrile rubber, styrene - rubbers such as butadiene rubber, silicone-based resins. These adhesive components may be used individually by 1 type, and may be used in combination of 2 or more type. Among these adhesive components, a polyurethane
  • the adhesive layer 2 may contain a colorant.
  • the battery packaging material can be colored.
  • the colorant known ones such as pigments and dyes can be used.
  • 1 type may be used for a coloring agent, and 2 or more types may be mixed and used for it.
  • inorganic pigments preferably include carbon black and titanium oxide.
  • organic pigments preferably include azo pigments, phthalocyanine pigments, and condensed polycyclic pigments.
  • azo pigments include soluble pigments such as watching red and force-min 6C; insoluble azo pigments such as monoazo yellow, disazo yellow, pyrazolone orange, pyrazolone red, and permanent red, and phthalocyanine pigments include copper phthalocyanine pigments.
  • blue pigments and green pigments as metal-free phthalocyanine pigments, and condensed polycyclic pigments include dioxazine violet and quinacridone violet.
  • a pearl pigment, a fluorescent pigment, etc. can be used as a pigment, a pearl pigment, a fluorescent pigment, etc.
  • carbon black is preferable in order to make the appearance of the battery packaging material black.
  • the average particle diameter of the pigment is not particularly limited, and examples thereof include about 0.05 to 5 ⁇ m, preferably about 0.08 to 2 ⁇ m.
  • the average particle diameter of a pigment be the median diameter measured with the laser diffraction / scattering type particle size distribution measuring apparatus.
  • the content of the pigment in the adhesive layer 2 is not particularly limited as long as the battery packaging material is colored, and examples thereof include about 5 to 60% by mass.
  • the thickness of the adhesive layer 2 is not particularly limited as long as it exhibits a function as an adhesive layer, and may be, for example, about 1 to 10 ⁇ m, preferably about 2 to 5 ⁇ m.
  • the colored layer is a layer provided as necessary between the base material layer 1 and the adhesive layer 2 (illustration is omitted). By providing the colored layer, the battery packaging material can be colored.
  • the colored layer can be formed, for example, by applying an ink containing a colorant to the surface of the base material layer 1 or the surface of the barrier layer 3.
  • a colorant known ones such as pigments and dyes can be used.
  • 1 type may be used for a coloring agent, and 2 or more types may be mixed and used for it.
  • colorant contained in the colored layer are the same as those exemplified in the column of [Adhesive layer 2].
  • the barrier layer 3 is a layer having a function of preventing water vapor, oxygen, light and the like from entering the battery, in addition to improving the strength of the battery packaging material.
  • the barrier layer 3 can be formed of a metal foil, a metal vapor-deposited film, an inorganic oxide vapor-deposited film, a carbon-containing inorganic oxide vapor-deposited film, a film provided with these vapor-deposited layers, or the like, and is a layer formed of metal.
  • the metal constituting the barrier layer 3 include aluminum, stainless steel, titanium steel, and preferably aluminum.
  • the barrier layer 3 is preferably formed of a metal foil, and more preferably formed of an aluminum alloy foil or a stainless steel foil.
  • the barrier layer is made of, for example, annealed aluminum (JIS H4160: 1994 A8021H-O, JIS H4160: 1994 A8079H-O, JIS H4000: 2014 A8021P-O, JIS H4000: 2014 A8079P-O) and the like are more preferable.
  • examples of the stainless steel foil include austenitic stainless steel foil and ferritic stainless steel foil.
  • the stainless steel foil is preferably made of austenitic stainless steel.
  • austenitic stainless steel constituting the stainless steel foil include SUS304, SUS301, SUS316L, and among these, SUS304 is particularly preferable.
  • the thickness of the barrier layer 3 is not particularly limited as long as it functions as a barrier layer such as water vapor.
  • the upper limit is about 100 ⁇ m or less, preferably about 85 ⁇ m or less, more preferably about 50 ⁇ m or less, and further preferably about 40 ⁇ m or less.
  • the lower limit is preferably about 10 ⁇ m or more, and the thickness ranges from about 10 to 100 ⁇ m, about 10 to 80 ⁇ m, Preferably, it can be about 10 to 50 ⁇ m or about 10 to 40 ⁇ m.
  • the thickness of the stainless steel foil is preferably about 85 ⁇ m or less, more preferably about 50 ⁇ m or less, still more preferably about 40 ⁇ m or less, and further preferably about 30 ⁇ m or less. Particularly preferred is about 25 ⁇ m or less, and the lower limit is about 10 ⁇ m or more, and the preferred thickness range is about 10 to 85 ⁇ m, about 10 to 50 ⁇ m, more preferably about 10 to 40 ⁇ m, more preferably About 10 to 30 ⁇ m, more preferably about 15 to 25 ⁇ m.
  • the barrier layer 3 is preferably subjected to chemical conversion treatment on at least one side, preferably both sides, in order to stabilize adhesion, prevent dissolution and corrosion, and the like.
  • the chemical conversion treatment refers to a treatment for forming an acid-resistant film on the surface of the barrier layer.
  • the barrier layer 3 includes an acid resistant film.
  • chromate chromate using chromic acid compounds such as chromium nitrate, chromium fluoride, chromium sulfate, chromium acetate, chromium oxalate, chromium biphosphate, chromic acetyl acetate, chromium chloride, potassium sulfate chromium, etc.
  • X represents a hydrogen atom, a hydroxyl group, an alkyl group, a hydroxyalkyl group, an allyl group or a benzyl group.
  • R 1 and R 2 are the same or different and each represents a hydroxyl group, an alkyl group, or a hydroxyalkyl group.
  • examples of the alkyl group represented by X, R 1 and R 2 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, Examples thereof include a linear or branched alkyl group having 1 to 4 carbon atoms such as a tert-butyl group.
  • Examples of the hydroxyalkyl group represented by X, R 1 and R 2 include a hydroxymethyl group, a 1-hydroxyethyl group, a 2-hydroxyethyl group, a 1-hydroxypropyl group, a 2-hydroxypropyl group, 3- C1-C4 straight or branched chain in which one hydroxyl group such as hydroxypropyl group, 1-hydroxybutyl group, 2-hydroxybutyl group, 3-hydroxybutyl group, 4-hydroxybutyl group is substituted
  • An alkyl group is mentioned.
  • the alkyl group and hydroxyalkyl group represented by X, R 1 and R 2 may be the same or different.
  • X is preferably a hydrogen atom, a hydroxyl group or a hydroxyalkyl group.
  • the number average molecular weight of the aminated phenol polymer having a repeating unit represented by the general formulas (1) to (4) is preferably about 500 to 1,000,000, for example, about 1,000 to 20,000. More preferred.
  • a phosphoric acid is coated with a metal oxide such as aluminum oxide, titanium oxide, cerium oxide, tin oxide, or barium sulfate fine particles dispersed therein.
  • a method of forming an acid-resistant film on the surface of the barrier layer 3 by performing a baking treatment at 150 ° C. or higher can be mentioned.
  • a resin layer obtained by crosslinking a cationic polymer with a crosslinking agent may be further formed on the acid resistant film.
  • examples of the cationic polymer include polyethyleneimine, an ionic polymer complex composed of a polymer having polyethyleneimine and a carboxylic acid, a primary amine graft acrylic resin obtained by graft polymerization of a primary amine on an acrylic main skeleton, and polyallylamine. Or the derivative, aminophenol, etc. are mentioned.
  • these cationic polymers only one type may be used, or two or more types may be used in combination.
  • examples of the crosslinking agent include a compound having at least one functional group selected from the group consisting of an isocyanate group, a glycidyl group, a carboxyl group, and an oxazoline group, and a silane coupling agent. As these crosslinking agents, only one type may be used, or two or more types may be used in combination.
  • At least the surface on the inner layer side of the aluminum alloy foil is firstly immersed in an alkali soaking method, electrolytic cleaning method, acid cleaning method, electrolytic acid cleaning method.
  • Degreasing treatment is performed by a known treatment method such as an acid activation method, and then a Cr (chromium) phosphate, Ti (titanium) phosphate, Zr (zirconium) phosphate, Zn phosphate ( Zinc)
  • Treatment liquid aqueous solution mainly composed of metal phosphates such as salts and mixtures of these metal salts, or treatment mainly composed of non-metal phosphates and mixtures of these non-metal salts
  • an aqueous synthetic resin such as an acrylic resin, a phenolic resin, or a polyurethane resin
  • CrPO 4 chromium phosphate
  • AlPO 4 aluminum phosphate
  • Al 2 O 3 aluminum oxide
  • Al (OH) x water Zn 2 PO 4 ⁇ 4H 2 O (zinc phosphate hydrate) when treated with an acid-resistant film made of aluminum oxide), AlF x (aluminum fluoride), etc.
  • AlPO 4 aluminum phosphate
  • Al 2 O 3 aluminum oxide
  • Al (OH) x aluminum hydroxide
  • AlF x aluminum fluoride
  • an acid-resistant film for example, at least the surface on the inner layer side of the aluminum alloy foil is first subjected to an alkali dipping method, an electrolytic cleaning method, an acid cleaning method, an electrolytic acid cleaning method, An acid-resistant film can be formed by performing a degreasing process by a known processing method such as an activation method and then performing a known anodizing process on the degreasing surface.
  • a film of a phosphorus compound (for example, phosphate-based) or a chromium compound (for example, chromic acid-based) can be given.
  • a phosphorus compound for example, phosphate-based
  • a chromium compound for example, chromic acid-based
  • the phosphate system include zinc phosphate, iron phosphate, manganese phosphate, calcium phosphate, and chromium phosphate.
  • the chromic acid system include chromium chromate.
  • an acid-resistant film by forming an acid-resistant film such as a phosphorus compound (phosphate, etc.), a chromium compound (chromate, etc.), a fluoride, a triazine thiol compound, etc., during emboss molding
  • an acid-resistant film such as a phosphorus compound (phosphate, etc.), a chromium compound (chromate, etc.), a fluoride, a triazine thiol compound, etc.
  • an acid-resistant film such as a phosphorus compound (phosphate, etc.), a chromium compound (chromate, etc.), a fluoride, a triazine thiol compound, etc.
  • an aqueous solution composed of three components of a phenolic resin, a chromium fluoride (3) compound, and phosphoric acid is applied to the aluminum surface, and the dry baking treatment is good.
  • the acid-resistant film includes a layer having cerium oxide, phosphoric acid or phosphate, an anionic polymer, and a crosslinking agent that crosslinks the anionic polymer, and the phosphoric acid or phosphate is 1 to 100 parts by mass may be blended with 100 parts by mass of cerium oxide. It is preferable that the acid-resistant film has a multilayer structure further including a layer having a cationic polymer and a crosslinking agent for crosslinking the cationic polymer.
  • the anionic polymer is poly (meth) acrylic acid or a salt thereof, or a copolymer containing (meth) acrylic acid or a salt thereof as a main component.
  • the said crosslinking agent is at least 1 sort (s) chosen from the group which has a functional group in any one of an isocyanate group, a glycidyl group, a carboxyl group, and an oxazoline group, and a silane coupling agent.
  • the phosphoric acid or phosphate is preferably condensed phosphoric acid or condensed phosphate.
  • chemical conversion treatment only one type of chemical conversion treatment may be performed, or two or more types of chemical conversion processing may be performed in combination. Furthermore, these chemical conversion treatments may be carried out using one kind of compound alone, or may be carried out using a combination of two or more kinds of compounds.
  • chemical conversion treatments chromic acid chromate treatment, chromate treatment combining a chromic acid compound, a phosphoric acid compound, and an aminated phenol polymer are preferable.
  • the acid resistant film examples include those containing at least one of phosphate, chromate, fluoride, and triazine thiol.
  • An acid resistant film containing a cerium compound is also preferable.
  • cerium compound cerium oxide is preferable.
  • the acid resistant film examples include a phosphate film, a chromate film, a fluoride film, and a triazine thiol compound film.
  • a phosphate film As an acid-resistant film, one of these may be used, or a plurality of combinations may be used.
  • a treatment liquid comprising a mixture of a metal phosphate and an aqueous synthetic resin, or a mixture of a non-metal phosphate and an aqueous synthetic resin It may be formed of a treatment liquid consisting of
  • the composition of the acid resistant film can be analyzed using, for example, time-of-flight secondary ion mass spectrometry.
  • time-of-flight secondary ion mass spectrometry for example, at least one secondary ion composed of Ce, P and O (for example, Ce 2 PO 4 + , CePO 4 ⁇ , etc.) ) Or a peak derived from a secondary ion composed of Cr, P, and O (for example, at least one kind of CrPO 2 + , CrPO 4 ⁇ , etc.) is detected.
  • the amount of the acid-resistant film to be formed on the surface of the barrier layer 3 in the chemical conversion treatment is not particularly limited.
  • a chromic acid compound is present per 1 m 2 of the surface of the barrier layer 3.
  • the thickness of the acid-resistant film is not particularly limited, but is preferably about 1 nm to 20 ⁇ m, more preferably 1 to 100 nm, from the viewpoint of the cohesive strength of the film and the adhesive strength with the aluminum alloy foil or the heat-fusible resin layer. About 1 to 50 nm is preferable.
  • the thickness of the acid-resistant film can be measured by observation with a transmission electron microscope, or a combination of observation with a transmission electron microscope and energy dispersive X-ray spectroscopy or electron energy loss spectroscopy.
  • a solution containing a compound used for forming an acid-resistant film is applied to the surface of the barrier layer by a bar coating method, a roll coating method, a gravure coating method, a dipping method, etc., and then the temperature of the barrier layer is 70. It is performed by heating to about 200 ° C.
  • the barrier layer may be previously subjected to a degreasing treatment by an alkali dipping method, an electrolytic cleaning method, an acid cleaning method, an electrolytic acid cleaning method, or the like. By performing the degreasing process in this manner, it is possible to more efficiently perform the chemical conversion process on the surface of the barrier layer.
  • the heat-fusible resin layer 4 corresponds to the innermost layer, and is a layer that heat-fuses the heat-fusible resin layers and seals the battery element when the battery is assembled.
  • the resin component used for the heat-fusible resin layer 4 is not particularly limited as long as it can be heat-sealed, and examples thereof include polyolefin, cyclic polyolefin, acid-modified polyolefin, and acid-modified cyclic polyolefin. That is, the resin constituting the heat-fusible resin layer 4 may or may not include a polyolefin skeleton, and preferably includes a polyolefin skeleton.
  • the fact that the resin constituting the heat-fusible resin layer 4 contains a polyolefin skeleton can be analyzed by, for example, infrared spectroscopy, gas chromatography mass spectrometry, etc., and the analysis method is not particularly limited.
  • a peak derived from maleic acid is detected in the vicinity of the wave number of 1760 cm -1 and near the wave number 1780 cm -1.
  • the peak may be small and may not be detected. In that case, it can be analyzed by nuclear magnetic resonance spectroscopy.
  • polystyrene resin examples include polyethylene such as low density polyethylene, medium density polyethylene, high density polyethylene, and linear low density polyethylene; homopolypropylene, polypropylene block copolymer (for example, block copolymer of propylene and ethylene), polypropylene And polypropylenes such as random copolymers of propylene and ethylene (eg, terpolymers of ethylene-butene-propylene).
  • polyethylene and polypropylene are preferable.
  • the cyclic polyolefin is a copolymer of an olefin and a cyclic monomer
  • examples of the olefin that is a constituent monomer of the cyclic polyolefin include ethylene, propylene, 4-methyl-1-pentene, styrene, butadiene, and isoprene. Is mentioned.
  • Examples of the cyclic monomer that is a constituent monomer of the cyclic polyolefin include cyclic alkenes such as norbornene; specifically, cyclic dienes such as cyclopentadiene, dicyclopentadiene, cyclohexadiene, and norbornadiene.
  • cyclic alkene is preferable, and norbornene is more preferable.
  • the acid-modified polyolefin is a polymer obtained by block polymerization or graft polymerization of the polyolefin with an acid component such as carboxylic acid.
  • an acid component such as carboxylic acid.
  • the acid component used for modification include carboxylic acids such as maleic acid, acrylic acid, itaconic acid, crotonic acid, maleic anhydride, and itaconic anhydride, or anhydrides thereof.
  • the acid-modified cyclic polyolefin is obtained by copolymerizing a part of the monomer constituting the cyclic polyolefin in place of the ⁇ , ⁇ -unsaturated carboxylic acid or its anhydride, or by ⁇ , ⁇ - It is a polymer obtained by block polymerization or graft polymerization of an unsaturated carboxylic acid or its anhydride.
  • the cyclic polyolefin to be modified with carboxylic acid is the same as described above.
  • the carboxylic acid used for modification is the same as that used for modification of the polyolefin.
  • polyolefins such as polypropylene and carboxylic acid-modified polyolefins; and more preferred are polypropylene and acid-modified polypropylene.
  • the heat-fusible resin layer 4 may be formed of one kind of resin component alone or may be formed of a blend polymer in which two or more kinds of resin components are combined. Furthermore, the heat-fusible resin layer 4 may be formed of only one layer, but may be formed of two or more layers using the same or different resin components.
  • the thickness of the heat-fusible resin layer 4 is not particularly limited as long as it functions as a heat-fusible resin layer, but is preferably about 60 ⁇ m or less, more preferably about 15 to 40 ⁇ m.
  • the adhesive layer 5 is a layer provided between the barrier layer 3 and the heat-fusible resin layer 4 as necessary in order to firmly bond the barrier layer 3 and the heat-fusible resin layer 4.
  • the adhesive layer 5 is formed of a resin capable of bonding the barrier layer 3 and the heat-fusible resin layer 4.
  • the resin used for forming the adhesive layer 5 the adhesive mechanism, the kind of the adhesive component, and the like can be the same as the adhesive exemplified in the adhesive layer 2.
  • polyolefin resins such as polyolefin, cyclic polyolefin, carboxylic acid-modified polyolefin, carboxylic acid-modified cyclic polyolefin exemplified in the above-mentioned heat-fusible resin layer 4 can also be used. .
  • the polyolefin is preferably a carboxylic acid-modified polyolefin, and particularly preferably a carboxylic acid-modified polypropylene. That is, the resin constituting the adhesive layer 5 may or may not include a polyolefin skeleton, and preferably includes a polyolefin skeleton. The fact that the resin constituting the adhesive layer 5 contains a polyolefin skeleton can be analyzed by, for example, infrared spectroscopy, gas chromatography mass spectrometry, etc., and the analysis method is not particularly limited.
  • a peak derived from maleic acid is detected in the vicinity of the wave number of 1760 cm -1 and near the wave number 1780 cm -1.
  • the peak may be small and may not be detected. In that case, it can be analyzed by nuclear magnetic resonance spectroscopy.
  • the adhesive layer 5 preferably contains an acid-modified polyolefin.
  • the acid-modified polyolefin is a polymer modified by block polymerization or graft polymerization of polyolefin with an acid component such as carboxylic acid.
  • the acid component used for modification include carboxylic acids such as maleic acid, acrylic acid, itaconic acid, crotonic acid, maleic anhydride, and itaconic anhydride, or anhydrides thereof.
  • Polyolefins to be modified include polyethylenes such as low density polyethylene, medium density polyethylene, high density polyethylene, and linear low density polyethylene; homopolypropylene, polypropylene block copolymers (for example, block copolymers of propylene and ethylene), polypropylene Polypropylenes such as random copolymers (eg, random copolymers of propylene and ethylene); ethylene-butene-propylene terpolymers and the like.
  • polyethylene and polypropylene are preferable.
  • maleic anhydride-modified polyolefin and more preferably maleic anhydride-modified polypropylene are preferable.
  • the adhesive layer 5 is a cured resin composition containing an acid-modified polyolefin and a curing agent. More preferably, it is a product.
  • Preferred examples of the acid-modified polyolefin include those described above.
  • the adhesive layer 5 is a cured product of a resin composition containing an acid-modified polyolefin and at least one selected from the group consisting of a compound having an isocyanate group, a compound having an oxazoline group, and a compound having an epoxy group.
  • the resin composition is preferably a cured product of a resin composition containing an acid-modified polyolefin and at least one selected from the group consisting of a compound having an isocyanate group and a compound having an epoxy group.
  • the adhesive layer 5 preferably contains at least one selected from the group consisting of urethane resins, ester resins, and epoxy resins, and more preferably contains urethane resins and epoxy resins.
  • ester resin for example, an amide ester resin is preferable.
  • Amide ester resins are generally formed by the reaction of carboxyl groups and oxazoline groups.
  • the adhesive layer 5 is more preferably a cured product of a resin composition containing at least one of these resins and the acid-modified polyolefin.
  • the presence of the unreacted material is, for example, infrared spectroscopy, It can be confirmed by a method selected from Raman spectroscopy, time-of-flight secondary ion mass spectrometry (TOF-SIMS) and the like.
  • the curing agent having a heterocyclic ring include a curing agent having an oxazoline group and a curing agent having an epoxy group.
  • the curing agent having a C ⁇ N bond include a curing agent having an oxazoline group and a curing agent having an isocyanate group.
  • the curing agent having a C—O—C bond examples include a curing agent having an oxazoline group, a curing agent having an epoxy group, and a urethane resin.
  • the adhesive layer 5 is a cured product of a resin composition containing these curing agents, for example, gas chromatography mass spectrometry (GCMS), infrared spectroscopy (IR), time-of-flight secondary ion mass spectrometry (TOF) -SIMS) and X-ray photoelectron spectroscopy (XPS).
  • GCMS gas chromatography mass spectrometry
  • IR infrared spectroscopy
  • TOF time-of-flight secondary ion mass spectrometry
  • XPS X-ray photoelectron spectroscopy
  • the compound having an isocyanate group is not particularly limited, but a polyfunctional isocyanate compound is preferably used from the viewpoint of effectively enhancing the adhesion between the acid-resistant film and the adhesive layer 5.
  • the polyfunctional isocyanate compound is not particularly limited as long as it is a compound having two or more isocyanate groups.
  • Specific examples of the polyfunctional isocyanate-based curing agent include pentane diisocyanate (PDI), isophorone diisocyanate (IPDI), hexamethylene diisocyanate (HDI), tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), and polymerization and nurate of these. And a mixture thereof and a copolymer with another polymer.
  • the content of the compound having an isocyanate group in the adhesive layer 5 is preferably in the range of about 0.1 to 50% by mass in the resin composition constituting the adhesive layer 5, and preferably 0.5 to 40% by mass. More preferably, it is in the range of about.
  • the compound having an oxazoline group is not particularly limited as long as it is a compound having an oxazoline skeleton.
  • Specific examples of the compound having an oxazoline group include those having a polystyrene main chain and those having an acrylic main chain.
  • the Epocross series by Nippon Shokubai Co., Ltd. etc. are mentioned, for example.
  • the ratio of the compound having an oxazoline group in the adhesive layer 5 is preferably in the range of about 0.1 to 50% by mass, and about 0.5 to 40% by mass in the resin composition constituting the adhesive layer 5. It is more preferable that it is in the range. Thereby, the adhesiveness of the barrier layer 3 (or acid-resistant film
  • the epoxy resin is not particularly limited as long as it is a resin capable of forming a crosslinked structure with an epoxy group present in the molecule, and a known epoxy resin can be used.
  • the weight average molecular weight of the epoxy resin is preferably about 50 to 2000, more preferably about 100 to 1000, and still more preferably about 200 to 800.
  • the weight average molecular weight of the epoxy resin is a value measured by gel permeation chromatography (GPC) measured under conditions using polystyrene as a standard sample.
  • epoxy resin examples include trimethylolpropane glycidyl ether derivative, bisphenol A diglycidyl ether, modified bisphenol A diglycidyl ether, novolac glycidyl ether, glycerin polyglycidyl ether, polyglycerin polyglycidyl ether, and the like.
  • An epoxy resin may be used individually by 1 type, and may be used in combination of 2 or more types.
  • the proportion of the epoxy resin in the adhesive layer 5 is preferably in the range of about 0.1 to 50% by mass, and in the range of about 0.5 to 40% by mass in the resin composition constituting the adhesive layer 5. More preferably. Thereby, the adhesiveness of the barrier layer 3 (or acid-resistant film
  • the adhesive layer 5 is a cured resin composition containing at least one selected from the group consisting of a compound having an isocyanate group, a compound having an oxazoline group, and an epoxy resin, and the acid-modified polyolefin.
  • the acid-modified polyolefin functions as a main agent, and the compound having an isocyanate group, the compound having an oxazoline group, and the epoxy resin each function as a curing agent.
  • the thickness of the adhesive layer 5 is preferably about 30 ⁇ m or less, more preferably about 20 ⁇ m or less, more preferably about 5 ⁇ m or less, and the lower limit is about 0.1 ⁇ m or more, about 0.5 ⁇ m or more,
  • the thickness ranges are preferably about 0.1 to 30 ⁇ m, about 0.1 to 20 ⁇ m, about 0.1 to 5 ⁇ m, about 0.5 to 30 ⁇ m, about 0.5 to 20 ⁇ m, 0.5 to For example, about 5 ⁇ m.
  • the carbodiimide curing agent is not particularly limited as long as it is a compound having at least one carbodiimide group (—N ⁇ C ⁇ N—).
  • a polycarbodiimide compound having at least two carbodiimide groups is preferable.
  • the curing agent may be composed of two or more kinds of compounds.
  • the content of the curing agent in the resin composition forming the adhesive layer 5 is preferably in the range of about 0.1 to 50% by mass, more preferably in the range of about 0.1 to 30% by mass, More preferably, it is in the range of about 0.1 to 10% by mass.
  • the thickness of the adhesive layer 5 is not particularly limited as long as it functions as an adhesive layer. However, when the adhesive exemplified in the adhesive layer 2 is used, it is preferably about 1 to 10 ⁇ m, more preferably 1 to 1 ⁇ m. For example, about 5 ⁇ m. Further, when the resin exemplified in the heat-fusible resin layer 4 is used, it is preferably about 2 to 50 ⁇ m, more preferably about 10 to 40 ⁇ m. In the case of a cured product of an acid-modified polyolefin and a curing agent, it is preferably about 30 ⁇ m or less, more preferably about 0.1 to 20 ⁇ m, and still more preferably about 0.5 to 5 ⁇ m. When the adhesive layer 5 is a cured product of a resin composition containing an acid-modified polyolefin and a curing agent, the adhesive layer 5 can be formed by applying the resin composition and curing it by heating or the like.
  • the outer side of the base material layer 1 (the barrier layer of the base material layer 1) is optionally used for the purpose of improving design properties, electrolytic solution resistance, scratch resistance, moldability, and the like. If necessary, a surface coating layer may be provided on the side opposite to (3). The surface coating layer is provided between the base material layer 1 and the print receiving layer 6. When the print receiving layer 6 is provided on the entire surface outside the base material layer 1, it is not necessary to provide a surface coating layer between the base material layer 1 and the print receiving layer 6.
  • the print receiving layer 6 is provided on a part of the outer side of the base material layer 1, by providing a surface coating layer in a portion where the print receiving layer 6 is not provided, the design property and the anti-electrolytic solution Property, scratch resistance, moldability and the like may be improved.
  • the surface coating layer can be formed of, for example, polyvinylidene chloride, polyester resin, urethane resin, acrylic resin, epoxy resin, or the like. Of these, the surface coating layer is preferably formed of a two-component curable resin. Examples of the two-component curable resin for forming the surface coating layer include a two-component curable urethane resin, a two-component curable polyester resin, and a two-component curable epoxy resin. Moreover, you may mix
  • the additive to be added may function as, for example, a matting agent, and the surface coating layer may function as a mat layer.
  • Examples of the additive include fine particles having a particle size of about 0.5 nm to 5 ⁇ m.
  • the material of the additive is not particularly limited, and examples thereof include metals, metal oxides, inorganic substances, and organic substances.
  • the shape of the additive is not particularly limited, and examples thereof include a spherical shape, a fibrous shape, a plate shape, an indeterminate shape, and a balloon shape.
  • Specific additives include talc, silica, graphite, kaolin, montmorilloid, montmorillonite, synthetic mica, hydrotalcite, silica gel, zeolite, aluminum hydroxide, magnesium hydroxide, zinc oxide, magnesium oxide, aluminum oxide, Neodymium oxide, antimony oxide, titanium oxide, cerium oxide, calcium sulfate, barium sulfate, calcium carbonate, calcium silicate, lithium carbonate, calcium benzoate, calcium oxalate, magnesium stearate, alumina, carbon black, carbon nanotubes, high Melting
  • money, aluminum, copper, nickel etc. are mentioned.
  • additives may be used individually by 1 type, and may be used in combination of 2 or more type.
  • silica, barium sulfate, and titanium oxide are preferably used from the viewpoints of dispersion stability and cost.
  • the surface of the additive may be subjected to various surface treatments such as insulation treatment and high dispersibility treatment.
  • the method for forming the surface coating layer is not particularly limited, and examples thereof include a method of applying a two-component curable resin for forming the surface coating layer to the outer surface of the base material layer 1.
  • the additive may be added to the two-component curable resin, mixed, and then applied.
  • the thickness of the surface coating layer is not particularly limited as long as it exhibits the above function as the surface coating layer, and for example, it is about 0.5 to 10 ⁇ m, preferably about 1 to 5 ⁇ m.
  • the production method of the battery packaging material of the present invention is not particularly limited as long as a laminate in which layers of a predetermined composition are laminated is obtained.
  • a layering step is provided in which a laminate is obtained by laminating at least a print receiving layer, a base material layer, a barrier layer, and a heat-fusible resin layer from the outside.
  • the laminating step there is a method of laminating a print receiving layer containing an amide-based additive on the outer surface of the battery packaging material.
  • it comprises a laminating step of laminating a print receiving layer, a base material layer, a barrier layer, and a heat-fusible resin layer to obtain a laminate, and the print receiving layer is provided on the outer surface of the battery packaging material.
  • a method in which the print receiving layer includes an amide-based additive is provided.
  • the process of forming a printing layer on the surface of a printing receiving layer may be further provided.
  • a laminate in which the base material layer 1, the adhesive layer 2, and the barrier layer 3 are laminated in this order (hereinafter also referred to as “laminate A”) is formed.
  • the laminate A is formed by applying an adhesive used for forming the adhesive layer 2 on the base layer 1 or the barrier layer 3 whose surface is subjected to a chemical conversion treatment, if necessary, a gravure coating method, After applying and drying by a coating method such as a roll coating method, the barrier layer 3 or the base material layer 1 can be laminated and the adhesive layer 2 can be cured by a dry laminating method.
  • the print receiving layer 6 may be laminated on the outer surface before the substrate layer 1 and the metal layer 3 are laminated, or may be laminated on the outer surface after the substrate layer 1 and the metal layer 3 are laminated. Good.
  • the print receiving layer 6 may be laminated on the outer surface after the heat-fusible resin layer 4 is formed.
  • the adhesive layer 5 and the heat-fusible resin layer 4 are laminated on the barrier layer 3 of the laminate A in this order.
  • a method of laminating the adhesive layer 5 and the heat-fusible resin layer 4 on the barrier layer 3 of the laminate A by coextrusion (coextrusion laminating method) (2) a separate adhesive layer 5 And a layered product of the heat-fusible resin layer 4 and a method of laminating the layered product on the barrier layer 3 of the layered product A by a thermal laminating method.
  • Adhering to the barrier layer 3 of the layered product A An adhesive for forming the layer 5 is formed by extrusion or solution coating, and is laminated at a high temperature by drying or baking, and the heat-fusible resin layer 4 previously formed into a sheet on the adhesive layer 5 is formed.
  • Laminate A and heat-fusible resin layer 4 are pasted through layer 5 The method (sandwich lamination method), and the like to match.
  • the surface coating layer is laminated on the surface of the base material layer 1 opposite to the barrier layer 3.
  • the surface coating layer can be formed, for example, by applying the above-described resin for forming the surface coating layer to the surface of the base material layer 1.
  • the order of the step of laminating the barrier layer 3 on the surface of the base material layer 1 and the step of laminating the surface coating layer on the surface of the base material layer 1 are not particularly limited.
  • the barrier layer 3 may be formed on the surface of the base material layer 1 opposite to the surface coating layer.
  • a laminate composed of the adhesive layer 5 / the heat-fusible resin layer 4 to be provided is formed.
  • a hot roll contact type a hot air type It may be subjected to a heat treatment such as a near infrared type or a far infrared type. Examples of such heat treatment conditions include a temperature of about 150 to 250 ° C. and a time of about 1 to 5 minutes.
  • each layer constituting the laminate improves or stabilizes film forming properties, lamination processing, suitability for final processing (pouching, embossing), etc., as necessary. Therefore, surface activation treatment such as corona treatment, blast treatment, oxidation treatment, ozone treatment may be performed.
  • the print layer can be formed by printing ink on the surface of the print receiving layer 6.
  • the printing method is not particularly limited, and includes pad printing, ink jet printing, thermal transfer printing, laser printing, ink transfer printing, hot stamp printing, and the like.
  • pad printing is preferable when printing is performed on the battery packaging material after molding.
  • the print receiving layer 6 is formed on the outer surface, so that the ink can be suitably applied to the outer surface of the battery packaging material even by pad printing in which ink is easily repelled. Printing can be performed. Therefore, for example, a barcode, a pattern, a character, or the like can be suitably formed on at least a part of the outer surface.
  • the ink used for printing is as described above.
  • the battery packaging material of the present invention is used in a package for sealing and housing battery elements such as a positive electrode, a negative electrode, and an electrolyte. That is, a battery element including at least a positive electrode, a negative electrode, and an electrolyte can be accommodated in a package formed of the battery packaging material of the present invention to obtain a battery.
  • a printing layer may be formed in advance on the outer surface of the battery packaging material that houses the battery element. Further, after the battery element is accommodated, a printing layer can be formed on the surface of the printing receiving layer. Note that a battery packaging material in which a printing layer is formed in advance may be used to accommodate the battery element, and a printing layer may be further formed on the surface of the printing receiving layer.
  • a battery element including at least a positive electrode, a negative electrode, and an electrolyte is formed using the battery packaging material of the present invention, with the metal terminals connected to each of the positive electrode and the negative electrode protruding outward.
  • a flange portion region where the heat-fusible resin layers are in contact with each other
  • heat-sealing the heat-fusible resin layers of the flange portion to seal the battery
  • a battery using the packaging material is provided.
  • the ink is suitably printed on the outer surface of the battery after the battery packaging material is molded and the battery element is sealed. be able to. That is, since the battery of the present invention has the print receiving layer 6 on the outer surface, the ink can be suitably printed on the outer surface of the battery packaging material even by pad printing in which ink is easily repelled. For example, barcodes, patterns, characters, and the like can be suitably formed on at least a part of the outer surface of the battery.
  • the battery packaging material of the present invention may be used for either a primary battery or a secondary battery, but is preferably a secondary battery.
  • the type of secondary battery to which the battery packaging material of the present invention is applied is not particularly limited.
  • a lithium ion battery, a lithium ion polymer battery, a lead storage battery, a nickel-hydrogen storage battery, a nickel-cadmium storage battery, a nickel- Examples include iron storage batteries, nickel / zinc storage batteries, silver oxide / zinc storage batteries, metal-air batteries, multivalent cation batteries, capacitors, capacitors, and the like.
  • lithium ion batteries and lithium ion polymer batteries are suitable applications for the battery packaging material of the present invention.
  • Examples 1 to 16 and Comparative Examples 1 and 2 ⁇ Manufacture of battery packaging materials>
  • a base material layer thinness 15 ⁇ m
  • a barrier layer made of aluminum alloy foil thinness 35 ⁇ m
  • an adhesive layer thickness 3 ⁇ m
  • the adhesive layer and the base material layer on the barrier layer were dry-laminated to form a base material layer / adhesive layer / barrier layer laminate.
  • the chemical conversion treatment of the aluminum alloy foil used as the barrier layer is performed by rolling a treatment liquid composed of a phenol resin, a chromium fluoride compound, and phosphoric acid so that the coating amount of chromium is 10 mg / m 2 (dry weight).
  • the coating was applied to both surfaces of the aluminum alloy foil and baked for 20 seconds under the condition that the film temperature was 180 ° C. or higher.
  • 20 ⁇ m of carboxylic acid-modified polypropylene (arranged on the barrier layer side) and 15 ⁇ m of random polypropylene (innermost layer) are coextruded on the barrier layer of the laminate, whereby an adhesive layer / thermoadhesive resin layer is formed on the barrier layer. Were laminated.
  • the resin (polyester urethane resin or acrylic resin) described in Table 1 and an amide-based additive (erucic acid amide, content described in Table 1) are formed on the entire surface of the obtained laminate on the base layer side.
  • a print-receiving layer having a thickness of 1 ⁇ m was formed using a coating material containing a quantity of 1) to obtain a battery packaging material.
  • an amide additive was not added to the print receiving layer.
  • the wetting tension (mN / m) of the print receiving layer with a wetting reagent in accordance with JIS standards was determined.
  • the test method was in accordance with “JIS K6768 1999 plastic-film and sheet-wetting tension test method”. Using a liquid mixture for wet tension test manufactured by Nacalai Tesque, apply the reagent contained in spherical absorbent cotton to the surface of the print receiving layer in a line of about 5 cm. Determination was made, and the wetting tension (mN / m) when the liquid film was not torn was measured.
  • the wetting tension (mN / m) was measured in an environment at a temperature of 23 ° C. and a relative humidity of 50%. The results are shown in Table 1.
  • the sample and the sliding piece were brought into close contact with each other so as not to slip.
  • Pull the sliding piece at a speed of 100 mm / min, measure the dynamic friction force (N) between the two samples, and divide by the normal force (1.96 N) of the sliding piece of the dynamic friction force to calculate the dynamic friction coefficient did.
  • the dynamic friction coefficient was determined from the average value up to the first 30 mm after starting the relative displacement motion between the contact surfaces, ignoring the peak of the static friction force.
  • the load cell was directly connected to the sliding piece.
  • Pad printing was performed on the print receiving layer of each battery packaging material obtained above, and the printability was evaluated.
  • the pad printer used was SPACE PAD 6GX manufactured by Mishima Corporation, and the ink used was UV ink PJU-A black manufactured by Navitas Co., Ltd. Further, the ink was cured by irradiating UV light for 30 seconds from a distance of 10 cm at an ultraviolet wavelength of 254 nm with an As One handy UV lamp SUV-4.
  • the printed surface after curing was observed with an optical microscope and evaluated according to the following criteria.
  • the printability measurement was performed in an environment with a temperature of 24 ° C. and a relative humidity of 50%. The results are shown in Table 1.
  • “%” of missing prints represents the ratio of the missing area to the printed area formed in the print receiving layer. 5: No missing print 4: Print missing is 2.5% or less 3: Print missing is more than 2.5%, 5.0% or less 2: Print missing is 5.0% Over 10% or less 1: Print missing is over 10%
  • Each battery packaging material obtained above was cut into a rectangular shape of 80 mm ⁇ 120 mm, and 30 test samples were prepared.
  • Each test sample was male type having a rectangular convex part of 55 mm ⁇ 32 mm in an environment of 25 ° C.
  • surface is JIS B 0659-1: 2002 Annex 1 (Reference) Comparative surface roughness standard piece
  • the maximum height roughness (nominal value of Rz) specified in Table 2 is 1.6 ⁇ m, corner R: 2.0 mm, ridge line R: 1.0 mm, and a female mold having a recess corresponding thereto.
  • the surface is JIS B 0659-1: 2002 Annex 1 (reference).
  • the maximum height roughness (nominal value of Rz) specified in Table 2 of the comparative surface roughness standard piece is 3.2 ⁇ m.
  • the test sample was placed on the female mold and molded so that the heat-fusible resin layer side was positioned on the male mold side.
  • the clearance between the male mold and the female mold was 0.3 mm.
  • Examples 17-23 ⁇ Manufacture of battery packaging materials>
  • a barrier layer made of aluminum alloy foil (thickness 35 ⁇ m) subjected to chemical conversion treatment on both surfaces was laminated by a dry lamination method. Specifically, a two-component urethane adhesive (a polyol compound and an aromatic isocyanate compound) was applied to one surface of the aluminum alloy foil, and an adhesive layer (thickness 3 ⁇ m) was formed on the barrier layer. Next, the adhesive layer and the base material layer on the barrier layer were dry-laminated to form a base material layer / adhesive layer / barrier layer laminate.
  • a two-component urethane adhesive a polyol compound and an aromatic isocyanate compound
  • the chemical conversion treatment of the aluminum alloy foil used as the barrier layer is performed by rolling a treatment liquid composed of a phenol resin, a chromium fluoride compound, and phosphoric acid so that the coating amount of chromium is 10 mg / m 2 (dry weight).
  • the coating was applied to both surfaces of the aluminum alloy foil and baked for 20 seconds under the condition that the film temperature was 180 ° C. or higher.
  • 20 ⁇ m of carboxylic acid-modified polypropylene (arranged on the barrier layer side) and 15 ⁇ m of random polypropylene (innermost layer) are coextruded on the barrier layer of the laminate, whereby an adhesive layer / thermoadhesive resin layer is formed on the barrier layer. Were laminated.
  • each battery packaging material 30 obtained above is cut out in a size of 15 mm in width and 175 mm in length, and the acrylic plate 10 having a width of 15 mm, a length of 175 mm, and a thickness of 2 mm is coated with a double-sided tape 20.
  • the double-sided tape 40 having a width of 5 mm and a length of 125 mm was attached to the surface of the print receiving layer of the battery packaging material 30 that was attached and fixed.
  • an aluminum foil 50 (8079 material) having a thickness of 15 mm and a length of 300 mm cut out from the double-sided tape 40 and a thickness of 40 ⁇ m is stacked, and the JIS-Z0237: 2009 pressure-sensitive adhesive tape / pressure-sensitive adhesive sheet test method is 10.2.4.
  • the battery packaging material 30, the double-sided tape 40, and the aluminum foil 50 were crimped using the described crimping apparatus. Note that, in an environment of a temperature of 24 ° C. and a relative humidity of 50% RH, the mass of the roller of the crimping device reciprocates twice at a speed of 2 kg and 10 mm / sec. After being pressed with a roller and stored at a temperature of 24 ° C.
  • the aluminum foil 50 attached to the double-sided tape 40 is folded back to 180 ° at the end of the double-sided tape 40, and the above-described battery packaging material
  • Acrylic plate 10 fixed with aluminum foil 50 folded at 180 ° is fixed at the top and bottom of a tensile testing machine, 180 ° peeling angle, 200 mm distance between chucks, speed of 50 mm / min, temperature 24 ° C., relative humidity 50
  • a tensile test was performed in an environment of% RH to evaluate the adhesion of the tape.
  • the double-sided tape 40 was peeled in a state of being in close contact with the aluminum foil 50 side, and no peeling between the acrylic plate 10 and the battery packaging material 30 occurred, and the peeling was performed between the battery packaging material 30 and the double-sided tape 40.
  • the obtained peel strength was calculated as an average value excluding the first 25 mm and the last 20 mm of the measurement, and the tape adhesion was evaluated according to the following criteria. The results are shown in Table 2.
  • B Peel strength 3N / 5mm or more, less than 5N / 5mm
  • C Peel strength 3N / 5mm or less

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided is a battery packaging material having excellent suitability with respect to printing. The battery packaging material comprises a laminated body comprising, in the given order from the outside, at least a base material layer, a barrier layer, and a heat-fusible resin layer. The battery packaging material is provided with a print receiving layer on an outer surface thereof, and the print receiving layer includes an amide-based additive.

Description

電池用包装材料、その製造方法、電池及びその製造方法Battery packaging material, manufacturing method thereof, battery and manufacturing method thereof
 本発明は、電池用包装材料、その製造方法、電池及びその製造方法に関する。 The present invention relates to a battery packaging material, a manufacturing method thereof, a battery, and a manufacturing method thereof.
 従来、様々なタイプの電池が開発されているが、あらゆる電池において、電極や電解質等の電池素子を封止するために包装材料が不可欠な部材になっている。従来、電池用包装として金属製の包装材料が多用されていたが、近年、電気自動車、ハイブリッド電気自動車、パソコン、カメラ、携帯電話等の高性能化に伴い、電池には、多様な形状が要求されると共に、薄型化や軽量化が求められている。しかしながら、従来多用されていた金属製の電池用包装材料では、形状の多様化に追従することが困難であり、しかも軽量化にも限界があるという欠点がある。 Conventionally, various types of batteries have been developed. However, in every battery, a packaging material is an indispensable member for sealing battery elements such as electrodes and electrolytes. Conventionally, metal packaging materials have been widely used as battery packaging, but in recent years, with the increasing performance of electric vehicles, hybrid electric vehicles, personal computers, cameras, mobile phones, etc., batteries are required to have various shapes. At the same time, there is a demand for reduction in thickness and weight. However, metal battery packaging materials that have been widely used in the past have the disadvantages that it is difficult to follow the diversification of shapes and that there is a limit to weight reduction.
 そこで、多様な形状に加工が容易で、薄型化や軽量化を実現し得る電池用包装材料として、基材層/接着層/バリア層/熱融着性樹脂層が順次積層されたフィルム状の積層体が提案されている(例えば、特許文献1参照)。このようなフィルム状の電池用包装材料では、熱融着性樹脂層同士を対向させて周縁部をヒートシールにて熱溶着させることにより電池素子を封止できるように形成されている。 Therefore, as a battery packaging material that can be easily processed into various shapes and can be made thinner and lighter, a film-like structure in which a base layer / adhesive layer / barrier layer / heat-sealable resin layer are sequentially laminated. A laminated body has been proposed (see, for example, Patent Document 1). Such a film-shaped battery packaging material is formed so that the battery element can be sealed by causing the heat-fusible resin layers to face each other and heat-sealing the peripheral edge portion by heat sealing.
 上記のような積層体により形成された種々の包装材料において、基材層の表面にインキを印刷して、バーコード、柄、文字などを形成し、印刷した側の基材層の上に接着剤、金属箔を積層する方法により、包装材料に印字する方法が広く採用されている。しかしながら、基材層とバリア層との間にこのような印刷面が存在すると、基材層とバリア層との密着性が低下して、層間においてデラミネーションが生じやすくなる。特に、電池用包装材料が適用される電池には、高い安全性が要求されるため、このような基材層の表面に印刷し印刷した側の基材層上に接着剤及び金属層を積層する方法は、電池用包装材料においては敬遠されている。したがって、従来、電池用包装材料にバーコードなどの印字を形成する場合には、一般に、印字が形成されたシールを基材層の表面に貼り付ける方法が採用されている。 In various packaging materials formed by the laminates as described above, ink is printed on the surface of the base material layer to form barcodes, patterns, characters, etc., and then bonded onto the base material layer on the printed side A method of printing on a packaging material by a method of laminating an agent and a metal foil is widely adopted. However, when such a printing surface exists between the base material layer and the barrier layer, the adhesion between the base material layer and the barrier layer is lowered, and delamination is likely to occur between the layers. In particular, since high safety is required for a battery to which a battery packaging material is applied, an adhesive and a metal layer are laminated on the base material layer on the printed side. This method is avoided in battery packaging materials. Therefore, conventionally, when printing a barcode or the like on a battery packaging material, a method of sticking a seal on which a print is formed on the surface of a base material layer is generally employed.
特開2008-287971号公報JP 2008-287971 A
 しかしながら、印字が形成されたシールを基材層の表面に貼り付けると、電池用包装材料の厚みや重さが増大する。そこで、本発明者らは、電池用包装材料に対する近年の更なる薄型化や軽量化の傾向を考慮して、電池用包装材料の基材層の表面に直接インキの印刷により印字する方法を検討した。 However, if the seal on which the print is formed is attached to the surface of the base material layer, the thickness and weight of the battery packaging material increase. Therefore, the present inventors considered a method of printing directly on the surface of the base material layer of the battery packaging material in consideration of the trend of further thinning and weight reduction for the battery packaging material in recent years. did.
 電池用包装材料の基材層の表面に直接インキの印刷により印字する方法としては、例えば、パッド印刷(タンポ印刷とも称される)やインクジェット印刷が知られている。パッド印刷とは、次のような印刷方法である。まず、印字したいパターンがエッチングされた平板の凹部にインキを流し込む。次に、当該凹部の上からシリコンパッドを押し当てて、シリコンパッドにインキを転移させる。次に、シリコンパッド表面に転移されたインキを印刷対象物に転写して、印刷対象物に印字を形成する。このようなパッド印刷は、弾性のあるシリコンパッドなどを用いてインキが印刷対象物に転写されるため、成形後の電池用包装材料の表面にも印刷しやすく、電池素子を電池用包装材料で封止した後に、電池に印字することができるという利点を有する。また、インクジェット印刷においても同様の利点を有する。 As a method for printing directly on the surface of the base material layer of the battery packaging material by ink printing, for example, pad printing (also referred to as tampo printing) or ink jet printing is known. Pad printing is a printing method as follows. First, ink is poured into a concave portion of a flat plate in which a pattern to be printed is etched. Next, the silicon pad is pressed from above the concave portion to transfer the ink to the silicon pad. Next, the ink transferred to the surface of the silicon pad is transferred to the object to be printed to form a print on the object to be printed. In such pad printing, the ink is transferred to the object to be printed using an elastic silicon pad or the like. Therefore, it is easy to print on the surface of the battery packaging material after molding, and the battery element is made of the battery packaging material. After sealing, the battery can be printed. In addition, ink jet printing has similar advantages.
 ところが、本発明者らが検討したところ、ポリアミド樹脂やポリエステル樹脂などにより形成されている従来汎用されている基材層の表面にインキを印刷すると、当該基材層表面においてインキが弾かれて、インキが定着しにくく、インキが形成されない抜け部分が生じることがあることが明らかとなった。特に、パッド印刷によって印刷した場合の印刷適性が不十分になる傾向があることが明らかとなった。 However, when the present inventors examined, when ink was printed on the surface of a conventionally used base material layer formed of a polyamide resin or a polyester resin, the ink was repelled on the surface of the base material layer, It was found that the ink is difficult to fix, and there may be a missing portion where the ink is not formed. In particular, it has been clarified that printability tends to be insufficient when printing is performed by pad printing.
 また、電池用包装材料においては、体積エネルギー密度を高めるために、一般的に、冷間成形により凹部が形成され、電池素子の収容体積を大きくしている。近年、深絞り成形によって、さらに収容体積を大きくすることが求められている。しかしながら、成形時において、電池用包装材料にピンホールやクラックが生じた場合には、電解液がアルミニウム合金箔層にまで浸透して金属析出物を形成し、その結果、短絡を生じさせることになりかねないため、電池用包装材料には、さらに優れた成形性を備えさせることが求められている。 Also, in battery packaging materials, in order to increase volume energy density, generally, recesses are formed by cold forming to increase the capacity of battery elements. In recent years, it has been required to further increase the storage volume by deep drawing. However, when pinholes or cracks occur in the battery packaging material at the time of molding, the electrolytic solution penetrates into the aluminum alloy foil layer to form metal deposits, resulting in a short circuit. For this reason, the battery packaging material is required to have more excellent moldability.
 このような状況下、本発明は、優れた印刷適性を備えた電池用包装材料を提供することを主たる目的(第1の目的)とし、さらに、優れた印刷適性に加えて、優れた成形性をも備えた電池用包装材料を提供することも目的(第2の目的)とする。さらに、本発明は、当該電池用包装材料の製造方法、当該電池用包装材料用いた電池及び電池の製造方法を提供することも目的とする。 Under such circumstances, the main object of the present invention is to provide a battery packaging material with excellent printability (first object), and in addition to excellent printability, excellent moldability. It is also an object (second object) to provide a battery packaging material provided with the above. Furthermore, another object of the present invention is to provide a method for producing the battery packaging material, a battery using the battery packaging material, and a method for producing the battery.
 即ち、本発明は、下記に掲げる態様の発明を提供する。
項1. 外側から、少なくとも、基材層、バリア層、及び熱融着性樹脂層をこの順に備える積層体からなる電池用包装材料であって、
 前記電池用包装材料はその外側表面に印字受容層を備えており、
 前記印字受容層は、アマイド系添加剤を含んでいる、電池用包装材料。
項2. 前記アマイド系添加剤は、エルカ酸アミドである、項1に記載の電池用包装材料。
項3. 前記印字受容層の前記アマイド系添加剤の含有量が、0.3質量%以上6.0質量%以下である、項1または2に記載の電池用包装材料。
項4. 前記印字受容層が、前記電池用包装材料の外側表面の全面に形成されている、項1~3のいずれかに記載の電池用包装材料。
項5. 前記印字受容層の外側表面に印字層を備えている、項1~4のいずれかに記載の電池用包装材料。
項6. 前記印字受容層の厚みが、0.001μm以上50μm以下の範囲にある、項1~5のいずれかに記載の電池用包装材料。
項7. 前記基材層が、ポリアミド樹脂及びポリエステル樹脂の少なくとも一方により形成されている、項1~6のいずれかに記載の電池用包装材料。
項8. 前記印字受容層は、アクリル樹脂を80質量%以上含む樹脂と、前記アマイド系添加剤とを含んでいる、項1~7のいずれかに記載の電池用包装材料。
項9. 少なくとも正極、負極、及び電解質を備えた電池素子が、項1~8のいずれかに記載の電池用包装材料により形成された包袋体内に収容されている、電池。
項10. 外側から、少なくとも、印字受容層と、基材層と、バリア層と、熱融着性樹脂層とをこの順に備える積層体からなる電池用包装材料の製造方法であって、
 前記印字受容層と、前記基材層と、前記バリア層と、前記熱融着性樹脂層とを積層して積層体を得る積層工程を備えており、
 前記印字受容層は前記電池用包装材料の外側表面に備えられ、前記印字受容層は、アマイド系添加剤を含んでいる、電池用包装材料の製造方法。
項11. 前記印字受容層の表面に印字層を形成する工程をさらに備える、項10に記載の電池用包装材料の製造方法。
項12. 項1~8のいずれかに記載の電池用包装材料により形成された包装体内に、少なくとも正極、負極、及び電解質を備えた電池素子を収容する工程を備える、電池の製造方法。
項13. 前記印字受容層の表面に印字層を形成する工程をさらに備える、項12に記載の電池の製造方法。
That is, this invention provides the invention of the aspect hung up below.
Item 1. From the outside, a battery packaging material consisting of a laminate comprising at least a base material layer, a barrier layer, and a heat-fusible resin layer in this order,
The battery packaging material has a print receiving layer on its outer surface,
The printing receiving layer is a battery packaging material containing an amide-based additive.
Item 2. Item 4. The battery packaging material according to Item 1, wherein the amide-based additive is erucic acid amide.
Item 3. Item 3. The battery packaging material according to Item 1 or 2, wherein the content of the amide-based additive in the print receiving layer is 0.3% by mass or more and 6.0% by mass or less.
Item 4. Item 4. The battery packaging material according to any one of Items 1 to 3, wherein the print receiving layer is formed on the entire outer surface of the battery packaging material.
Item 5. Item 5. The battery packaging material according to any one of Items 1 to 4, further comprising a printing layer on an outer surface of the printing receiving layer.
Item 6. Item 6. The battery packaging material according to any one of Items 1 to 5, wherein the thickness of the print receiving layer is in the range of 0.001 μm to 50 μm.
Item 7. Item 7. The battery packaging material according to any one of Items 1 to 6, wherein the base material layer is formed of at least one of a polyamide resin and a polyester resin.
Item 8. Item 8. The battery packaging material according to any one of Items 1 to 7, wherein the print-receiving layer includes a resin containing 80% by mass or more of an acrylic resin and the amide additive.
Item 9. A battery in which a battery element including at least a positive electrode, a negative electrode, and an electrolyte is accommodated in a package formed by the battery packaging material according to any one of Items 1 to 8.
Item 10. From the outside, at least a printing receiving layer, a base material layer, a barrier layer, and a method for producing a battery packaging material comprising a laminate comprising a heat-fusible resin layer in this order,
Comprising a laminating step of laminating the print receiving layer, the base material layer, the barrier layer, and the heat-fusible resin layer to obtain a laminate,
The printing receiving layer is provided on an outer surface of the battery packaging material, and the printing receiving layer contains an amide-based additive.
Item 11. Item 11. The method for producing a battery packaging material according to Item 10, further comprising a step of forming a printing layer on the surface of the printing receiving layer.
Item 12. Item 9. A method for producing a battery, comprising a step of accommodating a battery element including at least a positive electrode, a negative electrode, and an electrolyte in a package formed of the battery packaging material according to any one of Items 1 to 8.
Item 13. Item 13. The method for producing a battery according to Item 12, further comprising a step of forming a printing layer on the surface of the printing receiving layer.
 本発明によれば、優れた印刷適性を備えた電池用包装材料を提供することができる。さらに、本発明によれば、当該電池用包装材料の製造方法、当該電池用包装材料を用いた電池及び電池の製造方法を提供することができる。 According to the present invention, a battery packaging material having excellent printability can be provided. Furthermore, according to this invention, the manufacturing method of the said packaging material for batteries, the battery using the said packaging material for batteries, and the manufacturing method of a battery can be provided.
本発明の電池用包装材料の断面構造の一例を示す図である。It is a figure which shows an example of the cross-section of the packaging material for batteries of this invention. 本発明の電池用包装材料の断面構造の一例を示す図である。It is a figure which shows an example of the cross-section of the packaging material for batteries of this invention. 本発明の電池用包装材料の断面構造の一例を示す図である。It is a figure which shows an example of the cross-section of the packaging material for batteries of this invention. テープ密着性の評価方法を説明するための模式図である。It is a schematic diagram for demonstrating the evaluation method of tape adhesiveness. テープ密着性の評価方法を説明するための模式図である。It is a schematic diagram for demonstrating the evaluation method of tape adhesiveness.
 本発明の電池用包装材料は、外側から、少なくとも、基材層、バリア層、及び熱融着性樹脂層をこの順に備える積層体からなり、前記電池用包装材料の外側表面に印字受容層を備えており、印字受容層は、アマイド系添加剤を含んでいることを特徴とする。以下、本発明の電池用包装材料について詳述する。 The battery packaging material of the present invention comprises a laminate comprising at least a base material layer, a barrier layer, and a heat-fusible resin layer in this order from the outside, and a print receiving layer is provided on the outer surface of the battery packaging material. And the print receiving layer includes an amide-based additive. Hereinafter, the battery packaging material of the present invention will be described in detail.
 なお、本明細書において、数値範囲については、「~」で示される数値範囲は「以上」、「以下」を意味する。例えば、2~15mmとの表記は、2mm以上15mm以下を意味する。 In this specification, the numerical range indicated by “to” means “above” or “below”. For example, the notation of 2 to 15 mm means 2 mm or more and 15 mm or less.
1.電池用包装材料の積層構造
 本発明の電池用包装材料は、例えば図1に示すように、外側から、印字受容層6、基材層1、バリア層3、及び熱融着性樹脂層4をこの順に備える積層体からなる。本発明の電池用包装材料において、印字受容層6が最外層になり、熱融着性樹脂層4は最内層になる。即ち、電池の組み立て時に、電池素子の周縁に位置する熱融着性樹脂層4同士が熱融着して電池素子を密封することにより、電池素子が封止される。
1. Laminated structure of battery packaging material The battery packaging material of the present invention comprises, for example, a print receiving layer 6, a substrate layer 1, a barrier layer 3, and a heat-fusible resin layer 4 from the outside as shown in FIG. It consists of a laminated body provided in this order. In the battery packaging material of the present invention, the print receiving layer 6 is the outermost layer, and the heat-fusible resin layer 4 is the innermost layer. That is, when the battery is assembled, the battery element is sealed by heat-sealing the heat-fusible resin layers 4 positioned at the periphery of the battery element to seal the battery element.
 本発明の電池用包装材料は、例えば図2に示すように、基材層1とバリア層3との間に、これらの接着性を高める目的で、必要に応じて接着剤層2を有していてもよい。また、例えば図3に示すように、バリア層3と熱融着性樹脂層4との間に、これらの接着性を高める目的で、必要に応じて接着層5を設けてもよい。また、基材層1の外側(熱融着性樹脂層4とは反対側)には、必要に応じて表面被覆層(図示を省略する)などが設けられていてもよい。なお、表面被覆層を備える場合、表面被覆層は、基材層1と印字受容層6との間に位置する。 For example, as shown in FIG. 2, the battery packaging material of the present invention has an adhesive layer 2 between the base material layer 1 and the barrier layer 3 for the purpose of enhancing the adhesion between them. It may be. For example, as shown in FIG. 3, an adhesive layer 5 may be provided between the barrier layer 3 and the heat-fusible resin layer 4 as necessary for the purpose of enhancing the adhesion. Moreover, a surface coating layer (not shown) or the like may be provided on the outside of the base material layer 1 (on the side opposite to the heat-fusible resin layer 4) as necessary. When the surface coating layer is provided, the surface coating layer is located between the base material layer 1 and the print receiving layer 6.
 後述の通り、印字受容層6は、基材層1の外側表面(バリア層3とは反対側の表面)の少なくとも一部に形成されていればよい。すなわち、印字受容層6は、基材層1の外側表面の全面に形成されていてもよいし、一部に形成されていてもよい。 As will be described later, the print receiving layer 6 may be formed on at least a part of the outer surface of the base material layer 1 (surface opposite to the barrier layer 3). That is, the print receiving layer 6 may be formed on the entire outer surface of the base material layer 1 or may be formed on a part thereof.
 本発明の電池用包装材料において、基材層側表面(外側表面)の動摩擦係数は、約0.50以下であることが好ましく、約0.26以下であることがより好ましく、約0.18以下であることがさらに好ましく、約0.13以下であることが特に好ましい。なお、動摩擦係数は、次の方法によって測定された値を意味する。 In the battery packaging material of the present invention, the dynamic friction coefficient of the base layer side surface (outer surface) is preferably about 0.50 or less, more preferably about 0.26 or less, and about 0.18. More preferably, it is more preferably about 0.13 or less. The dynamic friction coefficient means a value measured by the following method.
(動摩擦係数の測定)
 電池用包装材料を、200mm×80mmの長方形状に2枚切り出して試験サンプルとする。JIS K7125:1999の8.1フィルム対フィルムの測定に準拠し、動摩擦係数を測定する市販の測定機を用いて、接触面積が40cm2(一辺の長さ63mmの正方形)で底面を弾力性のあるフェルトで覆った全質量が200gの滑り片を使用し、速度100mm/minの条件で、試験サンプルの基材層側同士を重ね合せて動摩擦係数を測定する。なお、測定環境は、温度24℃、相対湿度50%とする。また、サンプルと滑り片とも密着させて滑らないようにする。速度100mm/分の速度で滑り片を引っ張り、2枚のサンプル間の動摩擦力(N)を測定し、動摩擦力の滑り片の法線力(1.96N)で除して、動摩擦係数を算出する。動摩擦係数は、静摩擦力のピークを無視し、接触面間の相対ずれ運動を開始した後の最初の30mmまでの平均値から求める。なお、ロードセルは、滑り片に直接接続させる。
(Measurement of dynamic friction coefficient)
Two battery packaging materials are cut out into a rectangular shape of 200 mm × 80 mm to obtain test samples. Based on the measurement of 8.1 film-to-film of JIS K7125: 1999, using a commercially available measuring machine that measures the dynamic friction coefficient, the contact area is 40 cm 2 (square with a side length of 63 mm) and the bottom surface is elastic. A sliding piece having a total mass of 200 g covered with a certain felt is used, and the substrate layer side of the test sample is overlapped with each other under the condition of a speed of 100 mm / min, and the dynamic friction coefficient is measured. The measurement environment is a temperature of 24 ° C. and a relative humidity of 50%. Also, keep the sample and sliding piece in close contact so that they do not slide. Pull the sliding piece at a speed of 100 mm / min, measure the dynamic friction force (N) between the two samples, and divide by the normal force (1.96 N) of the sliding piece of the dynamic friction force to calculate the dynamic friction coefficient To do. The dynamic friction coefficient is obtained from the average value up to the first 30 mm after starting the relative displacement motion between the contact surfaces, ignoring the peak of the static friction force. The load cell is directly connected to the sliding piece.
 本発明の電池用包装材料を構成する積層体の総厚みとしては、特に制限されないが、積層体の総厚みを可能な限り薄くしつつ、高い成形性を発揮する観点からは、好ましくは約160μm以下、より好ましくは35~155μm程度、さらに好ましくは45~155μm程度が挙げられる。本発明の電池用包装材料を構成する積層体の厚みが、例えば160μm以下と薄い場合にも、本発明によれば、優れた成形性を発揮し得る。このため、本発明の電池用包装材料は、電池のエネルギー密度の向上に寄与することができる。 The total thickness of the laminate constituting the battery packaging material of the present invention is not particularly limited, but is preferably about 160 μm from the viewpoint of exhibiting high moldability while reducing the total thickness of the laminate as much as possible. Hereinafter, it is more preferably about 35 to 155 μm, and further preferably about 45 to 155 μm. Even when the thickness of the laminate constituting the battery packaging material of the present invention is as thin as 160 μm or less, for example, the present invention can exhibit excellent moldability. For this reason, the packaging material for batteries of this invention can contribute to the improvement of the energy density of a battery.
2.電池用包装材料を形成する各層
[基材層1]
 本発明の電池用包装材料において、基材層1は、バリア層3の外側に位置しており、電池用包装材料の支持体として機能する層である。基材層1を形成する素材については、絶縁性を備えるものであることを限度として特に制限されるものではない。基材層1を形成する素材としては、例えば、ポリエステル、ポリアミド、エポキシ樹脂、アクリル樹脂、フッ素樹脂、ポリウレタン、珪素樹脂、フェノール樹脂、ポリエーテルイミド、ポリイミド、及びこれらの混合物や共重合物等が挙げられる。高い成形性を発揮する観点からこれらの中でも、ポリエステル、ポリアミドが好ましい。
2. Each layer forming the battery packaging material [base material layer 1]
In the battery packaging material of the present invention, the base material layer 1 is positioned outside the barrier layer 3 and functions as a support for the battery packaging material. The material for forming the base material layer 1 is not particularly limited as long as it has insulating properties. Examples of the material for forming the base material layer 1 include polyester, polyamide, epoxy resin, acrylic resin, fluorine resin, polyurethane, silicon resin, phenol resin, polyetherimide, polyimide, and a mixture or copolymer thereof. Can be mentioned. Among these, polyester and polyamide are preferable from the viewpoint of exhibiting high moldability.
 ポリエステルとしては、具体的には、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリエチレンイソフタレート、ポリカーボネート、エチレンテレフタレートを繰り返し単位の主体とした共重合ポリエステル、ブチレンテレフタレートを繰り返し単位の主体とした共重合ポリエステル等が挙げられる。また、エチレンテレフタレートを繰り返し単位の主体とした共重合ポリエステルとしては、具体的には、エチレンテレフタレートを繰り返し単位の主体としてエチレンイソフタレートと重合する共重合体ポリエステル(以下、ポリエチレン(テレフタレート/イソフタレート)にならって略す)、ポリエチレン(テレフタレート/イソフタレート)、ポリエチレン(テレフタレート/アジペート)、ポリエチレン(テレフタレート/ナトリウムスルホイソフタレート)、ポリエチレン(テレフタレート/ナトリウムイソフタレート)、ポリエチレン(テレフタレート/フェニル-ジカルボキシレート)、ポリエチレン(テレフタレート/デカンジカルボキシレート)等が挙げられる。また、ブチレンテレフタレートを繰り返し単位の主体とした共重合ポリエステルとしては、具体的には、ブチレンテレフタレートを繰り返し単位の主体としてブチレンイソフタレートと重合する共重合体ポリエステル(以下、ポリブチレン(テレフタレート/イソフタレート)にならって略す)、ポリブチレン(テレフタレート/アジペート)、ポリブチレン(テレフタレート/セバケート)、ポリブチレン(テレフタレート/デカンジカルボキシレート)、ポリブチレンナフタレート等が挙げられる。これらのポリエステルは、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。ポリエステルは、耐電解液性に優れ、電解液の付着に対して白化等が発生し難いという利点があり、基材層1の形成素材として好適に使用される。 Specific examples of the polyester include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polyethylene isophthalate, polycarbonate, copolymerized polyester mainly composed of ethylene terephthalate, butylene terephthalate as a repeating unit. Examples thereof include a copolymer polyester mainly used. The copolymer polyester mainly composed of ethylene terephthalate is a copolymer polyester that polymerizes with ethylene isophthalate mainly composed of ethylene terephthalate (hereinafter, polyethylene (terephthalate / isophthalate)). Abbreviated), polyethylene (terephthalate / isophthalate), polyethylene (terephthalate / adipate), polyethylene (terephthalate / sodium sulfoisophthalate), polyethylene (terephthalate / sodium isophthalate), polyethylene (terephthalate / phenyl-dicarboxylate) And polyethylene (terephthalate / decanedicarboxylate). In addition, as a copolymer polyester mainly composed of butylene terephthalate as a repeating unit, specifically, a copolymer polyester that polymerizes with butylene isophthalate having butylene terephthalate as a repeating unit (hereinafter referred to as polybutylene (terephthalate / isophthalate)). For example), polybutylene (terephthalate / adipate), polybutylene (terephthalate / sebacate), polybutylene (terephthalate / decanedicarboxylate), polybutylene naphthalate and the like. These polyesters may be used individually by 1 type, and may be used in combination of 2 or more type. Polyester has the advantage of being excellent in electrolytic solution resistance and less likely to cause whitening due to the adhesion of the electrolytic solution, and is suitably used as a material for forming the base material layer 1.
 また、ポリアミドとしては、具体的には、ナイロン6、ナイロン66、ナイロン610、ナイロン12、ナイロン46、ナイロン6とナイロン66との共重合体等の脂肪族系ポリアミド;テレフタル酸及び/又はイソフタル酸に由来する構成単位を含むナイロン6I、ナイロン6T、ナイロン6IT、ナイロン6I6T(Iはイソフタル酸、Tはテレフタル酸を表す)等のヘキサメチレンジアミン-イソフタル酸-テレフタル酸共重合ポリアミド、ポリメタキシリレンアジパミド(MXD6)等の芳香族を含むポリアミド;ポリアミノメチルシクロヘキシルアジパミド(PACM6)等の脂環系ポリアミド;さらにラクタム成分や、4,4’-ジフェニルメタン-ジイソシアネート等のイソシアネート成分を共重合させたポリアミド、共重合ポリアミドとポリエステルやポリアルキレンエーテルグリコールとの共重合体であるポリエステルアミド共重合体やポリエーテルエステルアミド共重合体;これらの共重合体等が挙げられる。これらのポリアミドは、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。延伸ポリアミドフィルムは延伸性に優れており、成形時の基材層1の樹脂割れによる白化の発生を防ぐことができ、基材層1の形成素材として好適に使用される。 Specific examples of polyamides include aliphatic polyamides such as nylon 6, nylon 66, nylon 610, nylon 12, nylon 46, and a copolymer of nylon 6 and nylon 66; terephthalic acid and / or isophthalic acid Nylon 6I, Nylon 6T, Nylon 6IT, Nylon 6I6T (I represents isophthalic acid, T represents terephthalic acid) and the like, and polymetaxylylene azide Polyamide containing aromatics such as Pamide (MXD6); Alicyclic polyamides such as Polyaminomethylcyclohexyl Adipamide (PACM6); and Lactam components and isocyanate components such as 4,4′-diphenylmethane-diisocyanate are copolymerized Polyamide, co-weight Polyester amide copolymer and polyether ester amide copolymer is a copolymer of polyamide and polyester and polyalkylene ether glycol; copolymers thereof, and the like. These polyamides may be used individually by 1 type, and may be used in combination of 2 or more type. The stretched polyamide film is excellent in stretchability, can prevent whitening due to resin cracking of the base material layer 1 during molding, and is suitably used as a material for forming the base material layer 1.
 基材層1は、1軸又は2軸延伸された樹脂フィルムで形成されていてもよく、また未延伸の樹脂フィルムで形成してもよい。中でも、1軸又は2軸延伸された樹脂フィルム、とりわけ2軸延伸された樹脂フィルムは、配向結晶化することにより耐熱性が向上しているので、基材層1として好適に使用される。また、基材層1は、上記の素材をバリア層3上にコーティングして形成されていてもよい。 The base material layer 1 may be formed of a uniaxial or biaxially stretched resin film, or may be formed of an unstretched resin film. Among them, a uniaxially or biaxially stretched resin film, in particular, a biaxially stretched resin film has improved heat resistance by orientation crystallization, and thus is suitably used as the base material layer 1. Moreover, the base material layer 1 may be formed by coating the above-mentioned material on the barrier layer 3.
 これらの中でも、基材層1を形成する樹脂フィルムとして、高い成形性を発揮する観点から好ましくはナイロン、ポリエステル、更に好ましくは2軸延伸ナイロン、2軸延伸ポリエステル、特に好ましくは2軸延伸ナイロンが挙げられる。 Among these, as a resin film for forming the base material layer 1, nylon, polyester, more preferably biaxially stretched nylon, biaxially stretched polyester, and particularly preferably biaxially stretched nylon are used from the viewpoint of exhibiting high moldability. Can be mentioned.
 基材層1は、耐ピンホール性及び電池の包装体とした時の絶縁性を向上させるために、異なる素材の樹脂フィルム及びコーティングの少なくとも一方を積層化することも可能である。具体的には、ポリエステルフィルムとナイロンフィルムとを積層させた多層構造や、2軸延伸ポリエステルと2軸延伸ナイロンとを積層させた多層構造等が挙げられる。基材層1を多層構造にする場合、各樹脂フィルムは接着剤を介して接着してもよく、また接着剤を介さず直接積層させてもよい。接着剤を介さず接着させる場合には、例えば、共押出しラミネート法、サンドイッチラミネート法、サーマルラミネート法等の熱溶融状態で接着させる方法が挙げられる。また、接着剤を介して接着させる場合、使用する接着剤は、2液硬化型接着剤であってもよく、また1液硬化型接着剤であってもよい。更に、接着剤の接着機構についても、特に制限されず、化学反応型、溶剤揮発型、熱溶融型、熱圧型、紫外線(UV)又は電子線(EB)などの電離放射線硬化型等のいずれであってもよい。接着剤の成分としてポリエステル系樹脂、ポリエーテル系樹脂、ポリウレタン系樹脂、エポキシ系樹脂、フェノール樹脂系樹脂、ポリアミド系樹脂、ポリオレフィン系樹脂、ポリ酢酸ビニル系樹脂、セルロース系樹脂、(メタ)アクリル系樹脂、ポリイミド系樹脂、アミノ樹脂、ゴム、シリコン系樹脂が挙げられる。 The base material layer 1 can be laminated with at least one of resin films and coatings of different materials in order to improve pinhole resistance and insulation when used as a battery package. Specific examples include a multilayer structure in which a polyester film and a nylon film are laminated, and a multilayer structure in which a biaxially stretched polyester and a biaxially stretched nylon are laminated. When making the base material layer 1 into a multilayer structure, each resin film may be adhere | attached through an adhesive agent, and may be laminated | stacked directly without an adhesive agent. In the case of bonding without using an adhesive, for example, a method of bonding in a hot-melt state such as a co-extrusion lamination method, a sandwich lamination method, or a thermal lamination method can be mentioned. Moreover, when making it adhere | attach through an adhesive agent, the adhesive agent to be used may be a two-component curable adhesive, or a one-component curable adhesive. Furthermore, the bonding mechanism of the adhesive is not particularly limited, and any of a chemical reaction type, a solvent volatilization type, a heat melting type, a hot pressure type, an ionizing radiation curable type such as an ultraviolet ray (UV) or an electron beam (EB), etc. There may be. As an adhesive component, polyester resin, polyether resin, polyurethane resin, epoxy resin, phenol resin resin, polyamide resin, polyolefin resin, polyvinyl acetate resin, cellulose resin, (meth) acrylic resin Resins, polyimide resins, amino resins, rubbers, and silicon resins can be used.
 電池用包装材料の基材層には、撥水剤が含まれていてもよい。例えば、ナイロンなどのポリアミド樹脂フィルムが汎用されており、ポリアミド樹脂フィルムには、一般に、撥水剤としてエチレンビスオレイン酸アミド、エチレンビスステアリン酸アミドなどが含まれている。撥水剤を含むことにより、フィルムの製造の際に、溶融樹脂の水に対するぬれ性が調整され、原反フィルムの表面に適度な凹凸(表面粗さ)を形成することができ、原反フィルムの延伸後にもこの凹凸形状が残り、表面の滑り性が調整されたポリアミド樹脂フィルムとすることができる。ただし、基材層に撥水剤が含まれると、電池用包装材料に電解液などの電池素子を封入した後のベーキング工程等で熱が加えられることにより、撥水剤が基材層表面にブリードアウトし、パッド印刷等によって基材層表面にインキを印刷した場合、基材層表面においてインキが弾かれて、インキが定着しにくくなり、インキが形成されない抜け部分が生じ得る問題が生じやすい。 The base material layer of the battery packaging material may contain a water repellent. For example, a polyamide resin film such as nylon is widely used, and the polyamide resin film generally contains ethylene bisoleic acid amide, ethylene bis stearic acid amide or the like as a water repellent. By including a water repellent, the wettability of the molten resin to water can be adjusted during film production, and moderate unevenness (surface roughness) can be formed on the surface of the original film. This stretched shape remains even after stretching, and a polyamide resin film having a controlled surface slipperiness can be obtained. However, when the water repellent is contained in the base material layer, heat is applied in the baking process after the battery element such as the electrolyte is sealed in the battery packaging material, so that the water repellent is applied to the surface of the base material layer. When ink is printed on the surface of the base material layer by bleed-out and pad printing or the like, the ink is repelled on the surface of the base material layer, making it difficult to fix the ink, and a problem that a missing portion where no ink is formed is likely to occur. .
 これに対して、本発明の電池用包装材料においては、基材層1側表面に印字受容層6が設けられているため、基材層1が撥水剤を含む場合にも、電池用包装材料の外側表面は、優れたインキの印刷適性を発揮することができる。 On the other hand, in the battery packaging material of the present invention, since the print receiving layer 6 is provided on the surface of the base material layer 1, the battery packaging material can be used even when the base material layer 1 contains a water repellent. The outer surface of the material can exhibit excellent ink printability.
 基材層1に含まれる撥水剤の含有量としては、特に制限されないが、好ましくは200~1500ppm程度、より好ましくは300~1200ppm程度が挙げられる。なお、本発明において、基材層1に含まれる撥水剤含有量は、基材層の内部及び表面に存在する撥水剤(例えば、エチレンビスステアリン酸アミド、エチレンビスオレイン酸アミドなどの脂肪酸アミド)の合計量である。電池用包装材料の基材層1に含まれる撥水剤の含有量は、電池用包装材料から基材層1を剥がし、基材層1をヘキサフルオロイソプロピルアルコールに溶解させた後、ジメチルエタンを加えて溶媒沈殿させ、樹脂成分を分離させて撥水剤の抽出溶液を作製し、当該抽出溶液をGC-MS分析することにより定量することができる。 The content of the water repellent contained in the base material layer 1 is not particularly limited, but is preferably about 200 to 1500 ppm, more preferably about 300 to 1200 ppm. In the present invention, the content of the water repellent contained in the base material layer 1 is the water repellent (such as ethylene bis stearamide, ethylene bis oleate amide, etc.) present in the base layer. Amide). The content of the water repellent contained in the base material layer 1 of the battery packaging material is determined by removing the base material layer 1 from the battery packaging material, dissolving the base material layer 1 in hexafluoroisopropyl alcohol, and then adding dimethylethane. In addition, solvent precipitation is performed, the resin component is separated to prepare an extraction solution of a water repellent, and the extraction solution can be quantified by GC-MS analysis.
 基材層1の厚さとしては、例えば、10~50μm程度、好ましくは12~30μm程度が挙げられる。 The thickness of the base material layer 1 is, for example, about 10 to 50 μm, preferably about 12 to 30 μm.
[印字受容層6]
 本発明の電池用包装材料においては、アマイド系添加剤を含む印字受容層6が、電池用包装材料の外側表面(すなわち、基材層1側の表面)の少なくとも一部に設けられている。印字受容層6は、電池用包装材料の外側表面の全面に形成されていてもよいし、一部に形成されていてもよい。電池用包装材料の成形性をより一層高める観点からは、印字受容層6は、電池用包装材料の外側表面の全面に形成されていることが好ましい。電池用包装材料の外側表面に印字する箇所が予め定められている場合には、印字受容層6は、外側表面の一部に形成されていることが好ましい。印字受容層6が外側表面の一部に形成されている場合、優れた印刷適性と優れた成形性とを兼ね備えた電池用包装材料とする観点から、外表面に占める印字受容層6の面積の割合としては、好ましくは約50%以上、より好ましくは約80%以上、さらに好ましくは約90%以上、特に好ましくは約99%以上が挙げられる。
[Print receiving layer 6]
In the battery packaging material of the present invention, the print receiving layer 6 containing an amide-based additive is provided on at least a part of the outer surface of the battery packaging material (that is, the surface on the base material layer 1 side). The print receiving layer 6 may be formed on the entire outer surface of the battery packaging material or may be formed on a part thereof. From the viewpoint of further improving the moldability of the battery packaging material, the print receiving layer 6 is preferably formed on the entire outer surface of the battery packaging material. When the location to be printed on the outer surface of the battery packaging material is predetermined, the print receiving layer 6 is preferably formed on a part of the outer surface. In the case where the print receiving layer 6 is formed on a part of the outer surface, the area of the print receiving layer 6 occupying the outer surface from the viewpoint of a battery packaging material having both excellent printability and excellent moldability. The ratio is preferably about 50% or more, more preferably about 80% or more, still more preferably about 90% or more, and particularly preferably about 99% or more.
 前述の通り、従来のように電池用包装材料の外側にシールを貼り付けるのではなく、外側表面に直接印字することを本発明者らが検討したところ、外側表面にインキを印刷すると、外側表面においてインキが弾かれて、インキが定着しにくく、インキが形成されない抜け部分が生じることがあることが明らかとなった。特に、パッド印刷によって印刷した場合の印刷適性が不十分になる傾向があった。 As described above, instead of pasting a seal on the outside of the battery packaging material as in the prior art, the present inventors examined printing directly on the outside surface. It was revealed that the ink was repelled and the ink was difficult to be fixed, and a part where the ink was not formed may occur. In particular, there was a tendency for printability to be insufficient when printing by pad printing.
 これに対して、本発明の電池用包装材料においては、アマイド系添加剤を含む印字受容層6が外側表面の少なくとも一部に設けられているため、電池用包装材料の外側表面(印字受容層6の表面)においてインキが弾かれにくく、電池用包装材料の外側に好適にインキを印刷することができる。特に、パッド印刷によってインキを印刷すると、外側表面でインキが弾かれ、印刷不良が生じる場合があるが、本発明の電池用包装材料は、このような場合においても、印字受容層6が形成されているため、インキが弾かれにくく、パッド印刷によって外側表面に印字などが形成される電池用包装材料として、特に好適である。さらに、アマイド系添加剤が印字受容層6に含まれていることによって、電池用包装材料の成形性にも優れている。 On the other hand, in the battery packaging material of the present invention, since the print receiving layer 6 containing the amide-based additive is provided on at least a part of the outer surface, the outer surface of the battery packaging material (print receiving layer) 6), the ink is difficult to be repelled, and the ink can be suitably printed on the outside of the battery packaging material. In particular, when ink is printed by pad printing, the ink may be repelled on the outer surface and printing defects may occur. However, in such a case, the print receiving layer 6 is formed in the battery packaging material of the present invention. Therefore, the ink is not easily repelled, and is particularly suitable as a battery packaging material in which printing is formed on the outer surface by pad printing. Furthermore, since the amide-based additive is contained in the print receiving layer 6, the moldability of the battery packaging material is also excellent.
 印字受容層6を構成する素材としては、インキが弾かれにくい表面となるものであれば、特に制限されない。印字受容層6は、例えば、アマイド系添加剤と樹脂とを含む樹脂組成物によって形成される。樹脂としては、特に制限されないが、例えば、熱可塑性樹脂、熱硬化性樹脂、電離放射線硬化性樹脂などが挙げられる。 The material constituting the print receiving layer 6 is not particularly limited as long as it has a surface on which ink is hard to be repelled. The print receiving layer 6 is formed of, for example, a resin composition containing an amide-based additive and a resin. The resin is not particularly limited, and examples thereof include a thermoplastic resin, a thermosetting resin, and an ionizing radiation curable resin.
 熱可塑性樹脂としては、特に制限されず、ポリメチル(メタ)アクリレート、ポリエチル(メタ)アクリレートなどのアクリル樹脂;ポリプロピレン、ポリエチレン等のポリオレフィン系樹脂;ポリカーボネート樹脂;塩化ビニル系樹脂;アクリロニトリル-ブタジエン-スチレン樹脂(ABS樹脂);アクリロニトリル-スチレン-アクリル酸エステル樹脂、硝化綿樹脂などが挙げられる。これらの中でも、電池用包装材料の外側表面におけるインキの印刷適性と成形性を向上させる観点から、アクリル樹脂が好ましい。 The thermoplastic resin is not particularly limited, and acrylic resins such as polymethyl (meth) acrylate and polyethyl (meth) acrylate; polyolefin resins such as polypropylene and polyethylene; polycarbonate resins; vinyl chloride resins; acrylonitrile-butadiene-styrene resins (ABS resin); acrylonitrile-styrene-acrylic ester resin, nitrified cotton resin, and the like. Among these, an acrylic resin is preferable from the viewpoint of improving the printability and formability of the ink on the outer surface of the battery packaging material.
 熱硬化性樹脂としては、特に制限されず、例えば、エポキシ樹脂、フェノール樹脂、ユリア樹脂、不飽和ポリエステル樹脂、メラミン樹脂、アルキド樹脂、ポリイミド樹脂、シリコーン樹脂、水酸基官能性アクリル樹脂、カルボキシル官能性アクリル樹脂、アミド官能性共重合体、ウレタン樹脂などが挙げられる。これらの中でも、電池用包装材料の外側表面におけるインキの印刷適性と成形性を向上させる観点から、ウレタン樹脂が好ましい。また、ウレタン樹脂の中でも、同様の観点から、ポリエステルウレタン樹脂がさらに好ましい。 The thermosetting resin is not particularly limited, and for example, epoxy resin, phenol resin, urea resin, unsaturated polyester resin, melamine resin, alkyd resin, polyimide resin, silicone resin, hydroxyl functional acrylic resin, carboxyl functional acrylic. Examples include resins, amide functional copolymers, and urethane resins. Among these, urethane resin is preferable from the viewpoint of improving the printability and moldability of the ink on the outer surface of the battery packaging material. Among urethane resins, polyester urethane resins are more preferable from the same viewpoint.
 さらに、電池用包装材料の外側表面におけるインキの印刷適性と成形性を向上させた上で、さらにテープに対する密着性を高める観点からは、印字受容層6を構成する樹脂は、アクリル樹脂を含むことが好ましく、アクリル樹脂の割合が80質量%以上であることが好ましい。より具体的には、印字受容層6を構成する樹脂において、アクリル樹脂が80~100質量%程度、ポリエステルウレタン樹脂が0~20質量%程度であることが特に好ましい。すなわち、印字受容層6は、アクリル樹脂を80~100質量%程度、ポリエステルウレタン樹脂を0~20質量%程度を含む樹脂と、前記アマイド系添加剤とを含んでいることが特に好ましい。電池用包装材料を用いた電池は、テープなどによって固定される際に、印字受容層6にテープが接着されて、電池が筐体などに固定されることがある。このような場合に、印字受容層6のテープに対する密着性に優れていることにより、テープを用いて電池を好適に固定することができる。なお、テープとしては、例えば、市販の粘着テープなどが使用される。 Furthermore, from the viewpoint of improving the printability and moldability of the ink on the outer surface of the battery packaging material and further improving the adhesion to the tape, the resin constituting the print receiving layer 6 contains an acrylic resin. It is preferable that the ratio of the acrylic resin is 80% by mass or more. More specifically, the resin constituting the print receiving layer 6 is particularly preferably about 80 to 100% by mass of acrylic resin and about 0 to 20% by mass of polyester urethane resin. That is, the print receiving layer 6 particularly preferably contains a resin containing about 80 to 100% by mass of an acrylic resin and about 0 to 20% by mass of a polyester urethane resin and the amide-based additive. When a battery using a battery packaging material is fixed with a tape or the like, the tape may be adhered to the print receiving layer 6 to fix the battery to a housing or the like. In such a case, since the adhesion of the print receiving layer 6 to the tape is excellent, the battery can be suitably fixed using the tape. In addition, as a tape, a commercially available adhesive tape etc. are used, for example.
 また、電離放射線硬化性樹脂とは、電離放射線を照射することにより、架橋、硬化する樹脂であり、具体的には、分子中に重合性不飽和結合又はエポキシ基を有する、プレポリマー、オリゴマー、及びモノマーなどのうち少なくとも1種を適宜混合したものが挙げられる。ここで電離放射線とは、電磁波又は荷電粒子線のうち、分子を重合あるいは架橋しうるエネルギー量子を有するものを意味し、通常紫外線(UV)又は電子線(EB)が用いられるが、その他、X線、γ線等の電磁波、α線、イオン線等の荷電粒子線も含むものである。電離放射線硬化性樹脂としては、公知のものを使用することができる。 The ionizing radiation curable resin is a resin that crosslinks and cures when irradiated with ionizing radiation. Specifically, the polymer has a polymerizable unsaturated bond or an epoxy group, a prepolymer, an oligomer, And those obtained by appropriately mixing at least one of monomers and the like. Here, ionizing radiation means an electromagnetic wave or charged particle beam having an energy quantum capable of polymerizing or cross-linking molecules, and usually ultraviolet (UV) or electron beam (EB) is used. It also includes electromagnetic waves such as rays and γ rays, and charged particle rays such as α rays and ion rays. A well-known thing can be used as ionizing radiation-curable resin.
 電離放射線硬化性樹脂として使用される上記モノマーとしては、分子中にラジカル重合性不飽和基を持つ(メタ)アクリレートモノマーが好適であり、中でも多官能性(メタ)アクリレートモノマーが好ましい。多官能性(メタ)アクリレートモノマーとしては、分子内に重合性不飽和結合を2個以上(2官能以上)、好ましくは3個以上(3官能以上)有する(メタ)アクリレートモノマーであればよい。多官能性(メタ)アクリレートとして、具体的には、エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート、カプロラクトン変性ジシクロペンテニルジ(メタ)アクリレート、エチレンオキシド変性リン酸ジ(メタ)アクリレート、アリル化シクロヘキシルジ(メタ)アクリレート、イソシアヌレートジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド変性トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、プロピオン酸変性ジペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、プロピレンオキシド変性トリメチロールプロパントリ(メタ)アクリレート、トリス(アクリロキシエチル)イソシアヌレート、プロピオン酸変性ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、エチレンオキシド変性ジペンタエリスリトールヘキサ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート等が挙げられる。これらのモノマーは、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。 As the monomer used as the ionizing radiation curable resin, a (meth) acrylate monomer having a radically polymerizable unsaturated group in the molecule is preferable, and a polyfunctional (meth) acrylate monomer is particularly preferable. The polyfunctional (meth) acrylate monomer may be a (meth) acrylate monomer having two or more polymerizable unsaturated bonds (bifunctional or more), preferably three or more (trifunctional or more) in the molecule. Specific examples of the polyfunctional (meth) acrylate include ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di ( (Meth) acrylate, neopentyl glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, hydroxypivalate neopentyl glycol di (meth) acrylate, dicyclopentanyl di (meth) acrylate, caprolactone modified dicyclopentenyl di ( (Meth) acrylate, ethylene oxide-modified phosphoric acid di (meth) acrylate, allylated cyclohexyl di (meth) acrylate, isocyanurate di (meth) acrylate, trimethylolpropane tri (meth) acrylate , Ethylene oxide modified trimethylolpropane tri (meth) acrylate, dipentaerythritol tri (meth) acrylate, propionic acid modified dipentaerythritol tri (meth) acrylate, pentaerythritol tri (meth) acrylate, propylene oxide modified trimethylolpropane tri ( (Meth) acrylate, tris (acryloxyethyl) isocyanurate, propionic acid modified dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, ethylene oxide modified dipentaerythritol hexa (meth) acrylate, caprolactone modified dipentaerythritol Examples include hexa (meth) acrylate. These monomers may be used individually by 1 type, and may be used in combination of 2 or more type.
 また、電離放射線硬化性樹脂として使用される上記オリゴマーとしては、分子中にラジカル重合性不飽和基を持つ(メタ)アクリレートオリゴマーが好適であり、中でも分子内に重合性不飽和結合を2個以上(2官能以上)有する多官能性(メタ)アクリレートオリゴマーが好ましい。多官能性(メタ)アクリレートオリゴマーとしては、例えば、ポリカーボネート(メタ)アクリレート、アクリルシリコーン(メタ)アクリレート、ウレタン(メタ)アクリレート、エポキシ(メタ)アクリレート、ポリエステル(メタ)アクリレート、ポリエーテル(メタ)アクリレート、ポリブタジエン(メタ)アクリレート、シリコーン(メタ)アクリレート、分子中にカチオン重合性官能基を有するオリゴマー(例えば、ノボラック型エポキシ樹脂、ビスフェノール型エポキシ樹脂、脂肪族ビニルエーテル、芳香族ビニルエーテル等)等が挙げられる。ここで、ポリカーボネート(メタ)アクリレートは、ポリマー主鎖にカーボネート結合を有し、かつ末端または側鎖に(メタ)アクリレート基を有するものであれば特に制限されず、例えば、ポリカーボネートポリオールを(メタ)アクリル酸でエステル化することにより得ることができる。ポリカーボネート(メタ)アクリレートは、例えば、ポリカーボネート骨格を有するウレタン(メタ)アクリレートであるポリカーボネート系ウレタン(メタ)アクリレートなどであってもよい。ポリカーボネート骨格を有するウレタン(メタ)アクリレートは、例えば、ポリカーボネートポリオールと、多価イソシアネート化合物と、ヒドロキシ(メタ)アクリレートとを反応させることにより得られる。アクリルシリコーン(メタ)アクリレートは、シリコーンマクロモノマーを(メタ)アクリレートモノマーとラジカル共重合させることにより得ることができる。ウレタン(メタ)アクリレートは、例えば、ポリエーテルポリオールやポリエステルポリオールやカプロラクトン系ポリオールやポリカーボネートポリオールと、ポリイソシアネート化合物の反応によって得られるポリウレタンオリゴマーを、(メタ)アクリル酸でエステル化することにより得ることができる。エポキシ(メタ)アクリレートは、例えば、比較的低分子量のビスフェノール型エポキシ樹脂やノボラック型エポキシ樹脂のオキシラン環に、(メタ)アクリル酸を反応しエステル化することにより得ることができる。また、このエポキシ(メタ)アクリレートを部分的に二塩基性カルボン酸無水物で変性したカルボキシル変性型のエポキシ(メタ)アクリレートも用いることができる。ポリエステル(メタ)アクリレートは、例えば多価カルボン酸と多価アルコールの縮合によって得られる両末端に水酸基を有するポリエステルオリゴマーの水酸基を(メタ)アクリル酸でエステル化することにより、或いは多価カルボン酸にアルキレンオキシドを付加して得られるオリゴマーの末端の水酸基を(メタ)アクリル酸でエステル化することにより得ることができる。ポリエーテル(メタ)アクリレートは、ポリエーテルポリオールの水酸基を(メタ)アクリル酸でエステル化することにより得ることができる。ポリブタジエン(メタ)アクリレートは、ポリブタジエンオリゴマーの側鎖に(メタ)アクリル酸を付加することにより得ることができる。シリコーン(メタ)アクリレートは、主鎖にポリシロキサン結合をもつシリコーンの末端又は側鎖に(メタ)アクリル酸を付加することにより得ることができる。これらの中でも、多官能性(メタ)アクリレートオリゴマーとしては、ポリカーボネート(メタ)アクリレート、ウレタン(メタ)アクリレートなどが特に好ましい。これらのオリゴマーは、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。 The oligomer used as the ionizing radiation curable resin is preferably a (meth) acrylate oligomer having a radical polymerizable unsaturated group in the molecule, and more than two polymerizable unsaturated bonds in the molecule. A polyfunctional (meth) acrylate oligomer having (bifunctional or higher) is preferred. Examples of the polyfunctional (meth) acrylate oligomer include polycarbonate (meth) acrylate, acrylic silicone (meth) acrylate, urethane (meth) acrylate, epoxy (meth) acrylate, polyester (meth) acrylate, and polyether (meth) acrylate. , Polybutadiene (meth) acrylate, silicone (meth) acrylate, oligomer having a cationic polymerizable functional group in the molecule (for example, novolac type epoxy resin, bisphenol type epoxy resin, aliphatic vinyl ether, aromatic vinyl ether, etc.) . Here, the polycarbonate (meth) acrylate is not particularly limited as long as it has a carbonate bond in the polymer main chain and a (meth) acrylate group in the terminal or side chain. It can be obtained by esterification with acrylic acid. The polycarbonate (meth) acrylate may be, for example, a polycarbonate urethane (meth) acrylate which is a urethane (meth) acrylate having a polycarbonate skeleton. The urethane (meth) acrylate having a polycarbonate skeleton can be obtained, for example, by reacting a polycarbonate polyol, a polyvalent isocyanate compound, and hydroxy (meth) acrylate. The acrylic silicone (meth) acrylate can be obtained by radical copolymerizing a silicone macromonomer with a (meth) acrylate monomer. Urethane (meth) acrylate can be obtained, for example, by esterifying, with (meth) acrylic acid, a polyurethane oligomer obtained by the reaction of polyether polyol, polyester polyol, caprolactone-based polyol or polycarbonate polyol and a polyisocyanate compound. it can. Epoxy (meth) acrylate can be obtained, for example, by reacting (meth) acrylic acid with an oxirane ring of a relatively low molecular weight bisphenol type epoxy resin or novolak type epoxy resin and esterifying it. Also, a carboxyl-modified epoxy (meth) acrylate obtained by partially modifying this epoxy (meth) acrylate with a dibasic carboxylic acid anhydride can be used. Polyester (meth) acrylate is obtained by esterifying the hydroxyl group of a polyester oligomer having hydroxyl groups at both ends obtained by condensation of a polyvalent carboxylic acid and a polyhydric alcohol with (meth) acrylic acid, for example, or It can be obtained by esterifying the terminal hydroxyl group of an oligomer obtained by adding an alkylene oxide with (meth) acrylic acid. The polyether (meth) acrylate can be obtained by esterifying the hydroxyl group of the polyether polyol with (meth) acrylic acid. Polybutadiene (meth) acrylate can be obtained by adding (meth) acrylic acid to the side chain of the polybutadiene oligomer. Silicone (meth) acrylate can be obtained by adding (meth) acrylic acid to the terminal or side chain of silicone having a polysiloxane bond in the main chain. Among these, as the polyfunctional (meth) acrylate oligomer, polycarbonate (meth) acrylate, urethane (meth) acrylate, and the like are particularly preferable. These oligomers may be used individually by 1 type, and may be used in combination of 2 or more type.
 アマイド系添加剤の具体例としては、飽和脂肪酸アミド、不飽和脂肪酸アミド、置換アミド、メチロールアミド、飽和脂肪酸ビスアミド、不飽和脂肪酸ビスアミドなどが挙げられる。飽和脂肪酸アミドの具体例としては、ラウリン酸アミド、パルミチン酸アミド、ステアリン酸アミド、ベヘン酸アミド、ヒドロキシステアリン酸アミドなどが挙げられる。不飽和脂肪酸アミドの具体例としては、オレイン酸アミド、エルカ酸アミドなどが挙げられる。置換アミドの具体例としては、N-オレイルパルミチン酸アミド、N-ステアリルステアリン酸アミド、N-ステアリルオレイン酸アミド、N-オレイルステアリン酸アミド、N-ステアリルエルカ酸アミドなどが挙げられる。また、メチロールアミドの具体例としては、メチロールステアリン酸アミドなどが挙げられる。飽和脂肪酸ビスアミドの具体例としては、メチレンビスステアリン酸アミド、エチレンビスカプリン酸アミド、エチレンビスラウリン酸アミド、エチレンビスステアリン酸アミド、エチレンビスヒドロキシステアリン酸アミド、エチレンビスベヘン酸アミド、ヘキサメチレンビスステアリン酸アミド、ヘキサメチレンビスベヘン酸アミド、ヘキサメチレンヒドロキシステアリン酸アミド、N,N’-ジステアリルアジピン酸アミド、N,N’-ジステアリルセバシン酸アミドなどが挙げられる。不飽和脂肪酸ビスアミドの具体例としては、エチレンビスオレイン酸アミド、エチレンビスエルカ酸アミド、ヘキサメチレンビスオレイン酸アミド、N,N’-ジオレイルアジピン酸アミド、N,N’-ジオレイルセバシン酸アミドなどが挙げられる。脂肪酸エステルアミドの具体例としては、ステアロアミドエチルステアレートなどが挙げられる。また、芳香族系ビスアミドの具体例としては、m-キシリレンビスステアリン酸アミド、m-キシリレンビスヒドロキシステアリン酸アミド、N,N’-ジステアリルイソフタル酸アミドなどが挙げられる。これらの中でも、電池用包装材料の外側表面におけるインキの印刷適性と成形性を向上させる観点から、エルカ酸アミドが好ましい。アマイド系添加剤は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。 Specific examples of the amide-based additive include saturated fatty acid amide, unsaturated fatty acid amide, substituted amide, methylol amide, saturated fatty acid bisamide, unsaturated fatty acid bisamide and the like. Specific examples of the saturated fatty acid amide include lauric acid amide, palmitic acid amide, stearic acid amide, behenic acid amide, hydroxy stearic acid amide and the like. Specific examples of the unsaturated fatty acid amide include oleic acid amide and erucic acid amide. Specific examples of the substituted amide include N-oleyl palmitic acid amide, N-stearyl stearic acid amide, N-stearyl oleic acid amide, N-oleyl stearic acid amide, N-stearyl erucic acid amide and the like. Specific examples of methylolamide include methylol stearamide. Specific examples of saturated fatty acid bisamides include methylene bis stearamide, ethylene biscapric amide, ethylene bis lauric acid amide, ethylene bis stearic acid amide, ethylene bishydroxy stearic acid amide, ethylene bisbehenic acid amide, hexamethylene bis stearic acid amide. And acid amide, hexamethylene bisbehenic acid amide, hexamethylene hydroxystearic acid amide, N, N′-distearyl adipic acid amide, N, N′-distearyl sebacic acid amide, and the like. Specific examples of unsaturated fatty acid bisamides include ethylene bisoleic acid amide, ethylene biserucic acid amide, hexamethylene bisoleic acid amide, N, N′-dioleyl adipic acid amide, N, N′-dioleyl sebacic acid amide Etc. Specific examples of the fatty acid ester amide include stearoamidoethyl stearate. Specific examples of the aromatic bisamide include m-xylylene bis stearic acid amide, m-xylylene bishydroxy stearic acid amide, N, N′-distearyl isophthalic acid amide and the like. Among these, erucic acid amide is preferable from the viewpoint of improving the printability and formability of the ink on the outer surface of the battery packaging material. An amide type additive may be used individually by 1 type, and may be used in combination of 2 or more types.
 印字受容層6のアマイド系添加剤の含有量としては、特に制限されないが、電池用包装材料の外側表面におけるインキの印刷適性を向上させる観点、さらにはインキの印刷適性と成形性を向上させる観点から、好ましくは0.3~6.0質量%程度、より好ましくは0.3~5.0質量%程度、さらに好ましくは2.0~4.0質量%程度、特に好ましくは3.0~4.0質量%程度が挙げられる。 The content of the amide-based additive in the print receiving layer 6 is not particularly limited, but the viewpoint of improving the printability of ink on the outer surface of the battery packaging material, and the viewpoint of improving the printability and moldability of the ink Therefore, preferably about 0.3 to 6.0% by mass, more preferably about 0.3 to 5.0% by mass, still more preferably about 2.0 to 4.0% by mass, and particularly preferably 3.0 to About 4.0 mass% is mentioned.
 なお、印字受容層6のアマイド系添加剤の含有量は、電池用包装材料から印字受容層6を削り取り、ガスクロマトグラフィーに供して得られる強度ピークに基づき定量することができる。 The content of the amide-based additive in the print receiving layer 6 can be determined based on an intensity peak obtained by scraping the print receiving layer 6 from the battery packaging material and subjecting it to gas chromatography.
 印字受容層6は、無機粒子を含んでいてもよい。無機粒子としては、特に制限されないが、例えば、シリカ粒子(コロイダルシリカ、ヒュームドシリカ、沈降性シリカなど)、硫酸バリウム粒子、水酸化アルミニウム粒子、アルミナ粒子、ジルコニア粒子、チタニア粒子、酸化亜鉛粒子などの金属酸化物粒子が好ましく挙げられ、シリカ粒子が好ましい。無機粒子は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。また、印字受容層6には、後述の表面被覆層で例示した添加剤が含まれていてもよい。 The print receiving layer 6 may contain inorganic particles. The inorganic particles are not particularly limited. For example, silica particles (colloidal silica, fumed silica, precipitated silica, etc.), barium sulfate particles, aluminum hydroxide particles, alumina particles, zirconia particles, titania particles, zinc oxide particles, etc. The metal oxide particles are preferably mentioned, and silica particles are preferred. An inorganic particle may be used individually by 1 type, and may be used in combination of 2 or more types. Further, the print receiving layer 6 may contain the additives exemplified in the surface coating layer described later.
 印字受容層6は、例えば上述の印字受容層6を構成する樹脂組成物を、公知の印刷法などによって基材層1の上に塗布する方法などによって形成することができる。 The print receiving layer 6 can be formed by, for example, a method of applying the resin composition constituting the above-described print receiving layer 6 on the base material layer 1 by a known printing method or the like.
 印字受容層6の厚みとしては、特に制限されないが、好ましくは約0.001μm以上、より好ましくは約0.005μm以上、さらに好ましくは約0.01μm以上が挙げられる。また、当該厚みとしては、好ましくは約50μm以下、より好ましくは約40μm以下、さらに好ましくは約5μm以下が挙げられる。さらに、約0.1μm以下、約0.05μm以下であってもよい。なお、印字受容層6の厚みは、断面を走査型電子顕微鏡(SEM)観察することによって測定することができる。 The thickness of the print receiving layer 6 is not particularly limited, but is preferably about 0.001 μm or more, more preferably about 0.005 μm or more, and further preferably about 0.01 μm or more. Further, the thickness is preferably about 50 μm or less, more preferably about 40 μm or less, and still more preferably about 5 μm or less. Further, it may be about 0.1 μm or less and about 0.05 μm or less. The thickness of the print receiving layer 6 can be measured by observing the cross section with a scanning electron microscope (SEM).
 本発明の電池用包装材料においては、印字受容層6の表面にインキを好適に印刷することができる。すなわち、本発明において、電池用包装材料の外側表面(印字受容層6の表面)にインキが印刷された電池用包装材料は、印字受容層6の表面に印刷されたインキ(インキの硬化物、乾燥物など)が露出している。印刷されたインキは、例えば、バーコード、柄、文字などの印字を形成することができる。印刷に用いるインキとしては、特に制限されず、公知のものを使用することができ、例えば、紫外線などを照射することにより硬化する光硬化性インキなどを用いることができる。 In the battery packaging material of the present invention, ink can be suitably printed on the surface of the print receiving layer 6. That is, in the present invention, the battery packaging material in which the ink is printed on the outer surface of the battery packaging material (the surface of the print receiving layer 6) is the ink printed on the surface of the print receiving layer 6 (cured product of ink, Dry material etc. are exposed. The printed ink can form, for example, printing of barcodes, patterns, characters, and the like. The ink used for printing is not particularly limited, and a known ink can be used. For example, a photocurable ink that is cured by irradiation with ultraviolet rays or the like can be used.
 本発明の電池用包装材料は、印字受容層6表面のぬれ張力が、約33mN/m以上であることが好ましく、約35mN/m以上であることがより好ましい。なお、当該ぬれ張力は、以下の方法により測定された値を意味する。 In the battery packaging material of the present invention, the wetting tension on the surface of the print receiving layer 6 is preferably about 33 mN / m or more, more preferably about 35 mN / m or more. In addition, the said wetting tension means the value measured by the following method.
(ぬれ張力の測定)
 JIS規格に準拠したぬれ試薬による印字受容層のぬれ張力(mN/m)を測定する。試験方法は、「JIS K6768 1999 プラスチック-フィルム及びシート-ぬれ張力試験法」に準拠する。ぬれ張力試験用混合液を使用し、球状の脱脂綿に含ませた試薬を、印字受容層の表面に5cmほど線状に塗布し、2秒後に液膜が破れるか否かで判定し、破れなかったぬれ張力(mN/m)を測定する。なお、ぬれ張力の測定は、温度23℃、相対湿度50%の環境にて行う。
(Measurement of wetting tension)
The wetting tension (mN / m) of the print receiving layer with a wetting reagent conforming to JIS standards is measured. The test method conforms to “JIS K6768 1999 Plastic-Film and Sheet-Wetting Tension Test Method”. Using the wet tension test mixture, apply the reagent contained in the spherical absorbent cotton to the surface of the print receiving layer in a line of about 5 cm, and determine whether the liquid film is broken after 2 seconds. The wetting tension (mN / m) is measured. The wetting tension is measured in an environment with a temperature of 23 ° C. and a relative humidity of 50%.
[接着剤層2]
 本発明の電池用包装材料において、接着剤層2は、基材層1とバリア層3を強固に接着させるために、必要に応じて、これらの間に設けられる層である。
[Adhesive layer 2]
In the battery packaging material of the present invention, the adhesive layer 2 is a layer provided between the base material layer 1 and the barrier layer 3 as necessary in order to firmly bond them.
 接着剤層2は、基材層1とバリア層3とを接着可能である接着剤によって形成される。接着剤層2の形成に使用される接着剤は、2液硬化型接着剤であってもよく、また1液硬化型接着剤であってもよい。更に、接着剤層2の形成に使用される接着剤の接着機構についても、特に制限されず、化学反応型、溶剤揮発型、熱溶融型、熱圧型等のいずれであってもよい。 The adhesive layer 2 is formed of an adhesive capable of bonding the base material layer 1 and the barrier layer 3 together. The adhesive used for forming the adhesive layer 2 may be a two-component curable adhesive or a one-component curable adhesive. Furthermore, the bonding mechanism of the adhesive used for forming the adhesive layer 2 is not particularly limited, and may be any of a chemical reaction type, a solvent volatilization type, a heat melting type, a hot pressure type, and the like.
 接着剤層2の形成に使用できる接着成分としては、具体的には、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリエチレンイソフタレート、共重合ポリエステル等のポリエステル系樹脂;ポリエーテル系接着剤;ポリウレタン系接着剤;エポキシ系樹脂;フェノール系樹脂;ナイロン6、ナイロン66、ナイロン12、共重合ポリアミド等のポリアミド系樹脂;ポリオレフィン、カルボン酸変性ポリオレフィン、金属変性ポリオレフィン等のポリオレフィン系樹脂、ポリ酢酸ビニル系樹脂;セルロース系接着剤;(メタ)アクリル系樹脂;ポリイミド系樹脂;ポリカーボネート;尿素樹脂、メラミン樹脂等のアミノ樹脂;クロロプレンゴム、ニトリルゴム、スチレン-ブタジエンゴム等のゴム;シリコーン系樹脂等が挙げられる。これらの接着成分は1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。これらの接着成分の中でも、好ましくはポリウレタン系接着剤が挙げられる。 Specific examples of adhesive components that can be used to form the adhesive layer 2 include polyester resins such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polyethylene isophthalate, and copolyester; polyethers Polyurethane adhesive; epoxy resin; phenolic resin; polyamide resin such as nylon 6, nylon 66, nylon 12, copolymer polyamide; polyolefin resin such as polyolefin, carboxylic acid modified polyolefin, metal modified polyolefin , Polyvinyl acetate resin; cellulose adhesive; (meth) acrylic resin; polyimide resin; polycarbonate; amino resin such as urea resin and melamine resin; chloroprene rubber, nitrile rubber, styrene - rubbers such as butadiene rubber, silicone-based resins. These adhesive components may be used individually by 1 type, and may be used in combination of 2 or more type. Among these adhesive components, a polyurethane adhesive is preferable.
 また、接着剤層2は、着色剤を含んでいてもよい。接着剤層2が着色剤を含んでいることにより、電池用包装材料を着色することができる。着色剤としては、顔料、染料などの公知のものが使用できる。また、着色剤は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。 Further, the adhesive layer 2 may contain a colorant. When the adhesive layer 2 includes a colorant, the battery packaging material can be colored. As the colorant, known ones such as pigments and dyes can be used. Moreover, only 1 type may be used for a coloring agent, and 2 or more types may be mixed and used for it.
 例えば、無機系の顔料の具体例としては、好ましくはカーボンブラック、酸化チタンなどが挙げられる。また、有機系の顔料の具体例としては、好ましくはアゾ系顔料、フタロシアニン系顔料、縮合多環系顔料などが挙げられる。アゾ系顔料としては、ウォッチングレッド、力―ミン6Cなどの溶性顔料;モノアゾイエロー、ジスアゾイエロー、ピラゾロンオレンジ、ピラゾロンレッド、パーマネントレッド等の不溶性アゾ顔料が挙げられ、フタロシアニン系顔料としては、銅フタロシアニン顔料、無金属フタロシアニン顔料としての青系顔料や緑系顔料が挙げられ、縮合多環系顔料としては、ジオキサジンバイオレット、キナクリドンバイオレットなどが挙げられる。また、顔料としては、パール顔料や、蛍光顔料なども使用できる。 For example, specific examples of inorganic pigments preferably include carbon black and titanium oxide. Specific examples of organic pigments preferably include azo pigments, phthalocyanine pigments, and condensed polycyclic pigments. Examples of azo pigments include soluble pigments such as watching red and force-min 6C; insoluble azo pigments such as monoazo yellow, disazo yellow, pyrazolone orange, pyrazolone red, and permanent red, and phthalocyanine pigments include copper phthalocyanine pigments. And blue pigments and green pigments as metal-free phthalocyanine pigments, and condensed polycyclic pigments include dioxazine violet and quinacridone violet. Moreover, as a pigment, a pearl pigment, a fluorescent pigment, etc. can be used.
 着色剤の中でも、例えば電池用包装材料の外観を黒色とするためには、カーボンブラックが好ましい。 Among the colorants, for example, carbon black is preferable in order to make the appearance of the battery packaging material black.
 顔料の平均粒子径としては、特に制限されず、例えば、0.05~5μm程度、好ましくは0.08~2μm程度が挙げられる。なお、顔料の平均粒子径は、レーザ回折/散乱式粒子径分布測定装置で測定されたメジアン径とする。 The average particle diameter of the pigment is not particularly limited, and examples thereof include about 0.05 to 5 μm, preferably about 0.08 to 2 μm. In addition, let the average particle diameter of a pigment be the median diameter measured with the laser diffraction / scattering type particle size distribution measuring apparatus.
 接着剤層2における顔料の含有量としては、電池用包装材料が着色されれば特に制限されず、例えば5~60質量%程度が挙げられる。 The content of the pigment in the adhesive layer 2 is not particularly limited as long as the battery packaging material is colored, and examples thereof include about 5 to 60% by mass.
 接着剤層2の厚みについては、接着層としての機能を発揮すれば特に制限されないが、例えば、1~10μm程度、好ましくは2~5μm程度が挙げられる。 The thickness of the adhesive layer 2 is not particularly limited as long as it exhibits a function as an adhesive layer, and may be, for example, about 1 to 10 μm, preferably about 2 to 5 μm.
[着色層]
 着色層は、基材層1と接着剤層2との間に必要に応じて設けられる層である(図示を省略する)。着色層を設けることにより、電池用包装材料を着色することができる。
[Colored layer]
The colored layer is a layer provided as necessary between the base material layer 1 and the adhesive layer 2 (illustration is omitted). By providing the colored layer, the battery packaging material can be colored.
 着色層は、例えば、着色剤を含むインキを基材層1の表面、またはバリア層3の表面に塗布することにより形成することができる。着色剤としては、顔料、染料などの公知のものが使用できる。また、着色剤は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。 The colored layer can be formed, for example, by applying an ink containing a colorant to the surface of the base material layer 1 or the surface of the barrier layer 3. As the colorant, known ones such as pigments and dyes can be used. Moreover, only 1 type may be used for a coloring agent, and 2 or more types may be mixed and used for it.
 着色層に含まれる着色剤の具体例としては、[接着剤層2]の欄で例示したものと同じものが例示される。 Specific examples of the colorant contained in the colored layer are the same as those exemplified in the column of [Adhesive layer 2].
[バリア層3]
 電池用包装材料において、バリア層3は、電池用包装材料の強度向上の他、電池内部に水蒸気、酸素、光などが侵入することを防止する機能を有する層である。バリア層3は、金属箔、金属蒸着膜、無機酸化物蒸着膜、炭素含有無機酸化物蒸着膜、これらの蒸着層を設けたフィルムなどにより形成することができ、金属で形成されている層であることが好ましい。バリア層3を構成する金属としては、具体的には、アルミニウム、ステンレス鋼、チタン鋼などが挙げられ、好ましくはアルミニウムが挙げられる。バリア層3は、金属箔により形成することが好ましく、アルミニウム合金箔又はステンレス鋼箔により形成することがさらに好ましい。
[Barrier layer 3]
In the battery packaging material, the barrier layer 3 is a layer having a function of preventing water vapor, oxygen, light and the like from entering the battery, in addition to improving the strength of the battery packaging material. The barrier layer 3 can be formed of a metal foil, a metal vapor-deposited film, an inorganic oxide vapor-deposited film, a carbon-containing inorganic oxide vapor-deposited film, a film provided with these vapor-deposited layers, or the like, and is a layer formed of metal. Preferably there is. Specific examples of the metal constituting the barrier layer 3 include aluminum, stainless steel, titanium steel, and preferably aluminum. The barrier layer 3 is preferably formed of a metal foil, and more preferably formed of an aluminum alloy foil or a stainless steel foil.
 電池用包装材料の製造時に、バリア層3にしわやピンホールが発生することを防止する観点からは、バリア層は、例えば、焼きなまし処理済みのアルミニウム(JIS H4160:1994 A8021H-O、JIS H4160:1994 A8079H-O、JIS H4000:2014 A8021P-O、JIS H4000:2014 A8079P-O)など軟質アルミニウム合金箔により形成することがより好ましい。 From the viewpoint of preventing the generation of wrinkles and pinholes in the barrier layer 3 during the production of the battery packaging material, the barrier layer is made of, for example, annealed aluminum (JIS H4160: 1994 A8021H-O, JIS H4160: 1994 A8079H-O, JIS H4000: 2014 A8021P-O, JIS H4000: 2014 A8079P-O) and the like are more preferable.
 また、ステンレス鋼箔としては、オーステナイト系のステンレス鋼箔、フェライト系のステンレス鋼箔などが挙げられる。ステンレス鋼箔は、オーステナイト系のステンレス鋼により構成されていることが好ましい。 Also, examples of the stainless steel foil include austenitic stainless steel foil and ferritic stainless steel foil. The stainless steel foil is preferably made of austenitic stainless steel.
 ステンレス鋼箔を構成するオーステナイト系のステンレス鋼の具体例としては、SUS304、SUS301、SUS316Lなどが挙げられ、これら中でも、SUS304が特に好ましい。 Specific examples of the austenitic stainless steel constituting the stainless steel foil include SUS304, SUS301, SUS316L, and among these, SUS304 is particularly preferable.
 バリア層3の厚みは、水蒸気などのバリア層としての機能を発揮すれば特に制限されないが、電池用包装材料の厚みを薄くする観点からは、例えば、上限としては、約100μm以下、好ましくは約85μm以下、より好ましくは約50μm以下、さらに好ましくは約40μm以下が挙げられ、下限としては、好ましくは約10μm以上が挙げられ、当該厚みの範囲としては、10~100μm程度、10~80μm程度、好ましくは10~50μm程度、10~40μm程度とすることができる。なお、バリア層3がステンレス鋼箔により構成されている場合、ステンレス鋼箔の厚みとしては、好ましくは約85μm以下、より好ましくは約50μm以下、さらに好ましくは約40μm以下、さらに好ましくは約30μm以下、特に好ましくは約25μm以下が挙げられ、下限としては、約10μm以上が挙げられ、好ましい厚みの範囲としては、10~85μm程度、10~50μm程度、より好ましくは10~40μm程度、より好ましくは10~30μm程度、さらに好ましくは15~25μm程度が挙げられる。 The thickness of the barrier layer 3 is not particularly limited as long as it functions as a barrier layer such as water vapor. From the viewpoint of reducing the thickness of the battery packaging material, for example, the upper limit is about 100 μm or less, preferably about 85 μm or less, more preferably about 50 μm or less, and further preferably about 40 μm or less. The lower limit is preferably about 10 μm or more, and the thickness ranges from about 10 to 100 μm, about 10 to 80 μm, Preferably, it can be about 10 to 50 μm or about 10 to 40 μm. When the barrier layer 3 is made of stainless steel foil, the thickness of the stainless steel foil is preferably about 85 μm or less, more preferably about 50 μm or less, still more preferably about 40 μm or less, and further preferably about 30 μm or less. Particularly preferred is about 25 μm or less, and the lower limit is about 10 μm or more, and the preferred thickness range is about 10 to 85 μm, about 10 to 50 μm, more preferably about 10 to 40 μm, more preferably About 10 to 30 μm, more preferably about 15 to 25 μm.
 また、バリア層3は、接着の安定化、溶解や腐食の防止などのために、少なくとも一方の面、好ましくは両面が化成処理されていることが好ましい。ここで、化成処理とは、バリア層の表面に耐酸性皮膜を形成する処理をいう。本発明のバリア層3の表面に耐酸性皮膜が形成されている場合、バリア層3には耐酸性皮膜が含まれる。化成処理としては、例えば、硝酸クロム、フッ化クロム、硫酸クロム、酢酸クロム、蓚酸クロム、重リン酸クロム、クロム酸アセチルアセテート、塩化クロム、硫酸カリウムクロムなどのクロム酸化合物を用いたクロム酸クロメート処理;リン酸ナトリウム、リン酸カリウム、リン酸アンモニウム、ポリリン酸などのリン酸化合物を用いたリン酸クロメート処理;下記一般式(1)~(4)で表される繰り返し単位を有するアミノ化フェノール重合体を用いたクロメート処理などが挙げられる。なお、当該アミノ化フェノール重合体において、下記一般式(1)~(4)で表される繰り返し単位は、1種類単独で含まれていてもよいし、2種類以上の任意の組み合わせであってもよい。 The barrier layer 3 is preferably subjected to chemical conversion treatment on at least one side, preferably both sides, in order to stabilize adhesion, prevent dissolution and corrosion, and the like. Here, the chemical conversion treatment refers to a treatment for forming an acid-resistant film on the surface of the barrier layer. When an acid resistant film is formed on the surface of the barrier layer 3 of the present invention, the barrier layer 3 includes an acid resistant film. As the chemical conversion treatment, for example, chromate chromate using chromic acid compounds such as chromium nitrate, chromium fluoride, chromium sulfate, chromium acetate, chromium oxalate, chromium biphosphate, chromic acetyl acetate, chromium chloride, potassium sulfate chromium, etc. Treatment: Phosphoric acid chromate treatment using a phosphoric acid compound such as sodium phosphate, potassium phosphate, ammonium phosphate, polyphosphoric acid; aminated phenol having a repeating unit represented by the following general formulas (1) to (4) Examples include chromate treatment using a polymer. In the aminated phenol polymer, the repeating units represented by the following general formulas (1) to (4) may be contained singly or in any combination of two or more. Also good.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 一般式(1)~(4)中、Xは、水素原子、ヒドロキシル基、アルキル基、ヒドロキシアルキル基、アリル基またはベンジル基を示す。また、R1及びR2は、それぞれ同一または異なって、ヒドロキシル基、アルキル基、またはヒドロキシアルキル基を示す。一般式(1)~(4)において、X、R1及びR2で示されるアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基などの炭素数1~4の直鎖または分枝鎖状アルキル基が挙げられる。また、X、R1及びR2で示されるヒドロキシアルキル基としては、例えば、ヒドロキシメチル基、1-ヒドロキシエチル基、2-ヒドロキシエチル基、1-ヒドロキシプロピル基、2-ヒドロキシプロピル基、3-ヒドロキシプロピル基、1-ヒドロキシブチル基、2-ヒドロキシブチル基、3-ヒドロキシブチル基、4-ヒドロキシブチル基などのヒドロキシル基が1個置換された炭素数1~4の直鎖または分枝鎖状アルキル基が挙げられる。一般式(1)~(4)において、X、R1及びR2で示されるアルキル基及びヒドロキシアルキル基は、それぞれ同一であってもよいし、異なっていてもよい。一般式(1)~(4)において、Xは、水素原子、ヒドロキシル基またはヒドロキシアルキル基であることが好ましい。一般式(1)~(4)で表される繰り返し単位を有するアミノ化フェノール重合体の数平均分子量は、例えば、500~100万程度であることが好ましく、1000~2万程度であることがより好ましい。 In the general formulas (1) to (4), X represents a hydrogen atom, a hydroxyl group, an alkyl group, a hydroxyalkyl group, an allyl group or a benzyl group. R 1 and R 2 are the same or different and each represents a hydroxyl group, an alkyl group, or a hydroxyalkyl group. In the general formulas (1) to (4), examples of the alkyl group represented by X, R 1 and R 2 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, Examples thereof include a linear or branched alkyl group having 1 to 4 carbon atoms such as a tert-butyl group. Examples of the hydroxyalkyl group represented by X, R 1 and R 2 include a hydroxymethyl group, a 1-hydroxyethyl group, a 2-hydroxyethyl group, a 1-hydroxypropyl group, a 2-hydroxypropyl group, 3- C1-C4 straight or branched chain in which one hydroxyl group such as hydroxypropyl group, 1-hydroxybutyl group, 2-hydroxybutyl group, 3-hydroxybutyl group, 4-hydroxybutyl group is substituted An alkyl group is mentioned. In the general formulas (1) to (4), the alkyl group and hydroxyalkyl group represented by X, R 1 and R 2 may be the same or different. In the general formulas (1) to (4), X is preferably a hydrogen atom, a hydroxyl group or a hydroxyalkyl group. The number average molecular weight of the aminated phenol polymer having a repeating unit represented by the general formulas (1) to (4) is preferably about 500 to 1,000,000, for example, about 1,000 to 20,000. More preferred.
 また、バリア層3に耐食性を付与する化成処理方法として、リン酸中に、酸化アルミニウム、酸化チタン、酸化セリウム、酸化スズなどの金属酸化物や硫酸バリウムの微粒子を分散させたものをコーティングし、150℃以上で焼付け処理を行うことにより、バリア層3の表面に耐酸性皮膜を形成する方法が挙げられる。また、耐酸性皮膜の上には、カチオン性ポリマーを架橋剤で架橋させた樹脂層をさらに形成してもよい。ここで、カチオン性ポリマーとしては、例えば、ポリエチレンイミン、ポリエチレンイミンとカルボン酸を有するポリマーからなるイオン高分子錯体、アクリル主骨格に1級アミンをグラフト重合させた1級アミングラフトアクリル樹脂、ポリアリルアミンまたはその誘導体、アミノフェノールなどが挙げられる。これらのカチオン性ポリマーとしては、1種類のみを用いてもよいし、2種類以上を組み合わせて用いてもよい。また、架橋剤としては、例えば、イソシアネート基、グリシジル基、カルボキシル基、及びオキサゾリン基よりなる群から選ばれた少なくとも1種の官能基を有する化合物、シランカップリング剤などが挙げられる。これらの架橋剤としては、1種類のみを用いてもよいし、2種類以上を組み合わせて用いてもよい。 Further, as a chemical conversion treatment method for imparting corrosion resistance to the barrier layer 3, a phosphoric acid is coated with a metal oxide such as aluminum oxide, titanium oxide, cerium oxide, tin oxide, or barium sulfate fine particles dispersed therein. A method of forming an acid-resistant film on the surface of the barrier layer 3 by performing a baking treatment at 150 ° C. or higher can be mentioned. Further, a resin layer obtained by crosslinking a cationic polymer with a crosslinking agent may be further formed on the acid resistant film. Here, examples of the cationic polymer include polyethyleneimine, an ionic polymer complex composed of a polymer having polyethyleneimine and a carboxylic acid, a primary amine graft acrylic resin obtained by graft polymerization of a primary amine on an acrylic main skeleton, and polyallylamine. Or the derivative, aminophenol, etc. are mentioned. As these cationic polymers, only one type may be used, or two or more types may be used in combination. Examples of the crosslinking agent include a compound having at least one functional group selected from the group consisting of an isocyanate group, a glycidyl group, a carboxyl group, and an oxazoline group, and a silane coupling agent. As these crosslinking agents, only one type may be used, or two or more types may be used in combination.
 また、耐酸性皮膜を具体的に設ける方法としては、たとえば、一つの例として、少なくともアルミニウム合金箔の内層側の面を、まず、アルカリ浸漬法、電解洗浄法、酸洗浄法、電解酸洗浄法、酸活性化法等の周知の処理方法で脱脂処理を行い、その後脱脂処理面にリン酸Cr(クロム)塩、リン酸Ti(チタン)塩、リン酸Zr(ジルコニウム)塩、リン酸Zn(亜鉛)塩などのリン酸金属塩およびこれらの金属塩の混合体を主成分とする処理液(水溶液)、あるいは、リン酸非金属塩およびこれらの非金属塩の混合体を主成分とする処理液(水溶液)、あるいは、これらとアクリル系樹脂ないしフェノール系樹脂ないしポリウレタン系樹脂等の水系合成樹脂との混合物からなる処理液(水溶液)をロールコート法、グラビア印刷法、浸漬法等の周知の塗工法で塗工することにより、耐酸性皮膜を形成することができる。たとえば、リン酸Cr(クロム)塩系処理液で処理した場合は、CrPO4(リン酸クロム)、AlPO4(リン酸アルミニウム)、Al23(酸化アルミニウム)、Al(OH)x(水酸化アルミニウム)、AlFx(フッ化アルミニウム)などからなる耐酸性皮膜となり、リン酸Zn(亜鉛)塩系処理液で処理した場合は、Zn2PO4・4H2O(リン酸亜鉛水和物)、AlPO4(リン酸アルミニウム)、Al23(酸化アルミニウム)、Al(OH)x(水酸化アルミニウム)、AlFx(フッ化アルミニウム)などからなる耐酸性皮膜となる。 In addition, as a method for specifically providing an acid-resistant film, for example, as an example, at least the surface on the inner layer side of the aluminum alloy foil is firstly immersed in an alkali soaking method, electrolytic cleaning method, acid cleaning method, electrolytic acid cleaning method. , Degreasing treatment is performed by a known treatment method such as an acid activation method, and then a Cr (chromium) phosphate, Ti (titanium) phosphate, Zr (zirconium) phosphate, Zn phosphate ( Zinc) Treatment liquid (aqueous solution) mainly composed of metal phosphates such as salts and mixtures of these metal salts, or treatment mainly composed of non-metal phosphates and mixtures of these non-metal salts A liquid (aqueous solution) or a treatment liquid (aqueous solution) composed of a mixture of these with an aqueous synthetic resin such as an acrylic resin, a phenolic resin, or a polyurethane resin, roll coating, gravure printing, immersion By coating in a known coating method etc., it is possible to form the acid-resistant coating. For example, when treated with a Cr (chromium) phosphate-based treatment solution, CrPO 4 (chromium phosphate), AlPO 4 (aluminum phosphate), Al 2 O 3 (aluminum oxide), Al (OH) x (water Zn 2 PO 4 · 4H 2 O (zinc phosphate hydrate) when treated with an acid-resistant film made of aluminum oxide), AlF x (aluminum fluoride), etc. ), AlPO 4 (aluminum phosphate), Al 2 O 3 (aluminum oxide), Al (OH) x (aluminum hydroxide), AlF x (aluminum fluoride), and the like.
 また、耐酸性皮膜を設ける具体的方法の他の例としては、たとえば、少なくともアルミニウム合金箔の内層側の面を、まず、アルカリ浸漬法、電解洗浄法、酸洗浄法、電解酸洗浄法、酸活性化法等の周知の処理方法で脱脂処理を行い、その後脱脂処理面に周知の陽極酸化処理を施すことにより、耐酸性皮膜を形成することができる。 In addition, as another example of a specific method for providing an acid-resistant film, for example, at least the surface on the inner layer side of the aluminum alloy foil is first subjected to an alkali dipping method, an electrolytic cleaning method, an acid cleaning method, an electrolytic acid cleaning method, An acid-resistant film can be formed by performing a degreasing process by a known processing method such as an activation method and then performing a known anodizing process on the degreasing surface.
 また、耐酸性皮膜の他の一例としては、リン化合物(例えば、リン酸塩系)、クロム化合物(例えば、クロム酸系)の皮膜が挙げられる。リン酸塩系としては、リン酸亜鉛、リン酸鉄、リン酸マンガン、リン酸カルシウム、リン酸クロムなどが挙げられ、クロム酸系としては、クロム酸クロムなどが挙げられる。 As another example of the acid-resistant film, a film of a phosphorus compound (for example, phosphate-based) or a chromium compound (for example, chromic acid-based) can be given. Examples of the phosphate system include zinc phosphate, iron phosphate, manganese phosphate, calcium phosphate, and chromium phosphate. Examples of the chromic acid system include chromium chromate.
 また、耐酸性皮膜の他の一例としては、リン化合物(リン酸塩など)、クロム化合物(クロム酸塩など)、フッ化物、トリアジンチオール化合物等の耐酸性皮膜を形成することによって、エンボス成形時のアルミニウムと基材層との間のデラミネーション防止、電解質と水分とによる反応で生成するフッ化水素により、アルミニウム表面の溶解、腐食、特にアルミニウムの表面に存在する酸化アルミニウムが溶解、腐食することを防止し、かつ、アルミニウム表面の接着性(濡れ性)を向上させ、ヒートシール時の基材層とアルミニウムとのデラミネーション防止、エンボスタイプにおいてはプレス成形時の基材層とアルミニウムとのデラミネーション防止の効果を示す。耐酸性皮膜を形成する物質のなかでも、フェノール系樹脂、フッ化クロム(3)化合物、リン酸の3成分から構成された水溶液をアルミニウム表面に塗布し、乾燥焼付けの処理が良好である。 In addition, as another example of an acid-resistant film, by forming an acid-resistant film such as a phosphorus compound (phosphate, etc.), a chromium compound (chromate, etc.), a fluoride, a triazine thiol compound, etc., during emboss molding Prevention of delamination between aluminum and base material layer, and dissolution and corrosion of aluminum surface, especially aluminum oxide existing on the surface of aluminum, due to hydrogen fluoride generated by reaction between electrolyte and moisture In addition, the adhesion (wetting) of the aluminum surface is improved, the delamination between the base material layer and aluminum during heat sealing is prevented, and in the embossed type, the delamination between the base material layer and aluminum during press molding is performed. Shows the effect of preventing lamination. Among substances that form an acid-resistant film, an aqueous solution composed of three components of a phenolic resin, a chromium fluoride (3) compound, and phosphoric acid is applied to the aluminum surface, and the dry baking treatment is good.
 また、耐酸性皮膜は、酸化セリウムと、リン酸またはリン酸塩と、アニオン性ポリマーと、該アニオン性ポリマーを架橋させる架橋剤とを有する層を含み、前記リン酸またはリン酸塩が、前記酸化セリウム100質量部に対して、1~100質量部配合されていてもよい。耐酸性皮膜が、カチオン性ポリマーおよび該カチオン性ポリマーを架橋させる架橋剤を有する層をさらに含む多層構造であることが好ましい。 The acid-resistant film includes a layer having cerium oxide, phosphoric acid or phosphate, an anionic polymer, and a crosslinking agent that crosslinks the anionic polymer, and the phosphoric acid or phosphate is 1 to 100 parts by mass may be blended with 100 parts by mass of cerium oxide. It is preferable that the acid-resistant film has a multilayer structure further including a layer having a cationic polymer and a crosslinking agent for crosslinking the cationic polymer.
 さらに、前記アニオン性ポリマーが、ポリ(メタ)アクリル酸またはその塩、あるいは(メタ)アクリル酸またはその塩を主成分とする共重合体であることが好ましい。また、前記架橋剤が、イソシアネート基、グリシジル基、カルボキシル基、オキサゾリン基のいずれかの官能基を有する化合物とシランカップリング剤よりなる群から選ばれる少なくとも1種であることが好ましい。 Furthermore, it is preferable that the anionic polymer is poly (meth) acrylic acid or a salt thereof, or a copolymer containing (meth) acrylic acid or a salt thereof as a main component. Moreover, it is preferable that the said crosslinking agent is at least 1 sort (s) chosen from the group which has a functional group in any one of an isocyanate group, a glycidyl group, a carboxyl group, and an oxazoline group, and a silane coupling agent.
 また、前記リン酸またはリン酸塩が、縮合リン酸または縮合リン酸塩であることが好ましい。 The phosphoric acid or phosphate is preferably condensed phosphoric acid or condensed phosphate.
 化成処理は、1種類の化成処理のみを行ってもよいし、2種類以上の化成処理を組み合わせて行ってもよい。さらに、これらの化成処理は、1種の化合物を単独で使用して行ってもよく、また2種以上の化合物を組み合わせて使用して行ってもよい。化成処理の中でも、クロム酸クロメート処理や、クロム酸化合物、リン酸化合物、及びアミノ化フェノール重合体を組み合わせたクロメート処理などが好ましい。 As the chemical conversion treatment, only one type of chemical conversion treatment may be performed, or two or more types of chemical conversion processing may be performed in combination. Furthermore, these chemical conversion treatments may be carried out using one kind of compound alone, or may be carried out using a combination of two or more kinds of compounds. Among the chemical conversion treatments, chromic acid chromate treatment, chromate treatment combining a chromic acid compound, a phosphoric acid compound, and an aminated phenol polymer are preferable.
 耐酸性皮膜の具体例としては、リン酸塩、クロム酸塩、フッ化物、及びトリアジンチオールのうち少なくとも1種を含むものが挙げられる。また、セリウム化合物を含む耐酸性皮膜も好ましい。セリウム化合物としては、酸化セリウムが好ましい。 Specific examples of the acid resistant film include those containing at least one of phosphate, chromate, fluoride, and triazine thiol. An acid resistant film containing a cerium compound is also preferable. As the cerium compound, cerium oxide is preferable.
 また、耐酸性皮膜の具体例としては、リン酸塩系皮膜、クロム酸塩系皮膜、フッ化物系皮膜、トリアジンチオール化合物皮膜なども挙げられる。耐酸性皮膜としては、これらのうち1種類であってもよいし、複数種類の組み合わせであってもよい。さらに、耐酸性皮膜としては、アルミニウム合金箔の化成処理面を脱脂処理した後に、リン酸金属塩と水系合成樹脂との混合物からなる処理液、またはリン酸非金属塩と水系合成樹脂との混合物からなる処理液で形成されたものであってもよい。 Specific examples of the acid resistant film include a phosphate film, a chromate film, a fluoride film, and a triazine thiol compound film. As an acid-resistant film, one of these may be used, or a plurality of combinations may be used. Furthermore, as an acid-resistant film, after degreasing the chemical conversion surface of the aluminum alloy foil, a treatment liquid comprising a mixture of a metal phosphate and an aqueous synthetic resin, or a mixture of a non-metal phosphate and an aqueous synthetic resin It may be formed of a treatment liquid consisting of
 なお、耐酸性皮膜の組成の分析は、例えば、飛行時間型2次イオン質量分析法を用いて行うことができる。飛行時間型2次イオン質量分析法を用いた耐酸性皮膜の組成の分析により、例えば、CeとPとOからなる2次イオン(例えば、Ce2PO4 +、CePO4 -などの少なくとも1種)や、例えば、CrとPとOからなる2次イオン(例えば、CrPO2 +、CrPO4 -などの少なくとも1種)に由来するピークが検出される。 The composition of the acid resistant film can be analyzed using, for example, time-of-flight secondary ion mass spectrometry. By analyzing the composition of the acid-resistant film using time-of-flight secondary ion mass spectrometry, for example, at least one secondary ion composed of Ce, P and O (for example, Ce 2 PO 4 + , CePO 4 −, etc.) ) Or a peak derived from a secondary ion composed of Cr, P, and O (for example, at least one kind of CrPO 2 + , CrPO 4 −, etc.) is detected.
 化成処理においてバリア層3の表面に形成させる耐酸性皮膜の量については、特に制限されないが、例えば、上記のクロメート処理を行う場合であれば、バリア層3の表面1m2当たり、クロム酸化合物がクロム換算で0.5~50mg程度、好ましくは1.0~40mg程度、リン化合物がリン換算で0.5~50mg程度、好ましくは1.0~40mg程度、及びアミノ化フェノール重合体が1.0~200mg程度、好ましくは5.0~150mg程度の割合で含有されていることが望ましい。 The amount of the acid-resistant film to be formed on the surface of the barrier layer 3 in the chemical conversion treatment is not particularly limited. For example, if the above chromate treatment is performed, a chromic acid compound is present per 1 m 2 of the surface of the barrier layer 3. About 0.5 to 50 mg, preferably about 1.0 to 40 mg in terms of chromium, about 0.5 to 50 mg, preferably about 1.0 to 40 mg in terms of phosphorus, and 1. It is desirable that it is contained in a proportion of about 0 to 200 mg, preferably about 5.0 to 150 mg.
 耐酸性皮膜の厚みとしては、特に制限されないが、皮膜の凝集力や、アルミニウム合金箔や熱融着性樹脂層との密着力の観点から、好ましくは1nm~20μm程度、より好ましくは1~100nm程度、さらに好ましくは1~50nm程度が挙げられる。なお、耐酸性皮膜の厚みは、透過電子顕微鏡による観察、または、透過電子顕微鏡による観察と、エネルギー分散型X線分光法もしくは電子線エネルギー損失分光法との組み合わせによって測定することができる。 The thickness of the acid-resistant film is not particularly limited, but is preferably about 1 nm to 20 μm, more preferably 1 to 100 nm, from the viewpoint of the cohesive strength of the film and the adhesive strength with the aluminum alloy foil or the heat-fusible resin layer. About 1 to 50 nm is preferable. The thickness of the acid-resistant film can be measured by observation with a transmission electron microscope, or a combination of observation with a transmission electron microscope and energy dispersive X-ray spectroscopy or electron energy loss spectroscopy.
 化成処理は、耐酸性皮膜の形成に使用する化合物を含む溶液を、バーコート法、ロールコート法、グラビアコート法、浸漬法などによって、バリア層の表面に塗布した後に、バリア層の温度が70~200℃程度になるように加熱することにより行われる。また、バリア層に化成処理を施す前に、予めバリア層を、アルカリ浸漬法、電解洗浄法、酸洗浄法、電解酸洗浄法などによる脱脂処理に供してもよい。このように脱脂処理を行うことにより、バリア層の表面の化成処理をより効率的に行うことが可能となる。 In the chemical conversion treatment, a solution containing a compound used for forming an acid-resistant film is applied to the surface of the barrier layer by a bar coating method, a roll coating method, a gravure coating method, a dipping method, etc., and then the temperature of the barrier layer is 70. It is performed by heating to about 200 ° C. In addition, before the chemical conversion treatment is performed on the barrier layer, the barrier layer may be previously subjected to a degreasing treatment by an alkali dipping method, an electrolytic cleaning method, an acid cleaning method, an electrolytic acid cleaning method, or the like. By performing the degreasing process in this manner, it is possible to more efficiently perform the chemical conversion process on the surface of the barrier layer.
[熱融着性樹脂層4]
 本発明の電池用包装材料において、熱融着性樹脂層4は、最内層に該当し、電池の組み立て時に熱融着性樹脂層同士が熱融着して電池素子を密封する層である。
[Heat-fusion resin layer 4]
In the battery packaging material of the present invention, the heat-fusible resin layer 4 corresponds to the innermost layer, and is a layer that heat-fuses the heat-fusible resin layers and seals the battery element when the battery is assembled.
 熱融着性樹脂層4に使用される樹脂成分については、熱融着可能であることを限度として特に制限されないが、例えば、ポリオレフィン、環状ポリオレフィン、酸変性ポリオレフィン、酸変性環状ポリオレフィンが挙げられる。すなわち、熱融着性樹脂層4を構成する樹脂は、ポリオレフィン骨格を含んでいても含んでいなくてもよく、ポリオレフィン骨格を含んでいることが好ましい。熱融着性樹脂層4を構成する樹脂がポリオレフィン骨格を含むことは、例えば、赤外分光法、ガスクロマトグラフィー質量分析法などにより分析可能であり、分析方法は特に問わない。例えば、赤外分光法にて無水マレイン酸変性ポリオレフィンを測定すると、波数1760cm-1付近と波数1780cm-1付近に無水マレイン酸由来のピークが検出される。ただし、酸変性度が低いとピークが小さくなり検出されない場合がある。その場合は核磁気共鳴分光法にて分析可能である。 The resin component used for the heat-fusible resin layer 4 is not particularly limited as long as it can be heat-sealed, and examples thereof include polyolefin, cyclic polyolefin, acid-modified polyolefin, and acid-modified cyclic polyolefin. That is, the resin constituting the heat-fusible resin layer 4 may or may not include a polyolefin skeleton, and preferably includes a polyolefin skeleton. The fact that the resin constituting the heat-fusible resin layer 4 contains a polyolefin skeleton can be analyzed by, for example, infrared spectroscopy, gas chromatography mass spectrometry, etc., and the analysis method is not particularly limited. For example, when measuring the infrared spectroscopy at a maleic anhydride-modified polyolefin, a peak derived from maleic acid is detected in the vicinity of the wave number of 1760 cm -1 and near the wave number 1780 cm -1. However, if the acid modification degree is low, the peak may be small and may not be detected. In that case, it can be analyzed by nuclear magnetic resonance spectroscopy.
 前記ポリオレフィンとしては、具体的には、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、線状低密度ポリエチレン等のポリエチレン;ホモポリプロピレン、ポリプロピレンのブロックコポリマー(例えば、プロピレンとエチレンのブロックコポリマー)、ポリプロピレンのランダムコポリマー(例えば、プロピレンとエチレンのランダムコポリマー)等のポリプロピレン;エチレン-ブテン-プロピレンのターポリマー等が挙げられる。これらのポリオレフィンの中でも、好ましくはポリエチレン及びポリプロピレンが挙げられる。 Specific examples of the polyolefin include polyethylene such as low density polyethylene, medium density polyethylene, high density polyethylene, and linear low density polyethylene; homopolypropylene, polypropylene block copolymer (for example, block copolymer of propylene and ethylene), polypropylene And polypropylenes such as random copolymers of propylene and ethylene (eg, terpolymers of ethylene-butene-propylene). Among these polyolefins, polyethylene and polypropylene are preferable.
 前記環状ポリオレフィンは、オレフィンと環状モノマーとの共重合体であり、前記環状ポリオレフィンの構成モノマーであるオレフィンとしては、例えば、エチレン、プロピレン、4-メチル-1-ペンテン、スチレン、ブタジエン、イソプレン、等が挙げられる。また、前記環状ポリオレフィンの構成モノマーである環状モノマーとしては、例えば、ノルボルネン等の環状アルケン;具体的には、シクロペンタジエン、ジシクロペンタジエン、シクロヘキサジエン、ノルボルナジエン等の環状ジエン等が挙げられる。これらのポリオレフィンの中でも、好ましくは環状アルケン、更に好ましくはノルボルネンが挙げられる。 The cyclic polyolefin is a copolymer of an olefin and a cyclic monomer, and examples of the olefin that is a constituent monomer of the cyclic polyolefin include ethylene, propylene, 4-methyl-1-pentene, styrene, butadiene, and isoprene. Is mentioned. Examples of the cyclic monomer that is a constituent monomer of the cyclic polyolefin include cyclic alkenes such as norbornene; specifically, cyclic dienes such as cyclopentadiene, dicyclopentadiene, cyclohexadiene, and norbornadiene. Among these polyolefins, cyclic alkene is preferable, and norbornene is more preferable.
 前記酸変性ポリオレフィンとは、前記ポリオレフィンをカルボン酸等の酸成分でブロック重合又はグラフト重合することにより変性したポリマーである。変性に使用される酸成分としては、例えば、マレイン酸、アクリル酸、イタコン酸、クロトン酸、無水マレイン酸、無水イタコン酸等のカルボン酸又はその無水物が挙げられる。 The acid-modified polyolefin is a polymer obtained by block polymerization or graft polymerization of the polyolefin with an acid component such as carboxylic acid. Examples of the acid component used for modification include carboxylic acids such as maleic acid, acrylic acid, itaconic acid, crotonic acid, maleic anhydride, and itaconic anhydride, or anhydrides thereof.
 前記酸変性環状ポリオレフィンとは、環状ポリオレフィンを構成するモノマーの一部を、α,β-不飽和カルボン酸又はその無水物に代えて共重合することにより、或いは環状ポリオレフィンに対してα,β-不飽和カルボン酸又はその無水物をブロック重合又はグラフト重合することにより得られるポリマーである。カルボン酸変性される環状ポリオレフィンについては、前記と同様である。また、変性に使用されるカルボン酸としては、前記ポリオレフィンの変性に使用されるものと同様である。 The acid-modified cyclic polyolefin is obtained by copolymerizing a part of the monomer constituting the cyclic polyolefin in place of the α, β-unsaturated carboxylic acid or its anhydride, or by α, β- It is a polymer obtained by block polymerization or graft polymerization of an unsaturated carboxylic acid or its anhydride. The cyclic polyolefin to be modified with carboxylic acid is the same as described above. The carboxylic acid used for modification is the same as that used for modification of the polyolefin.
 これらの樹脂成分の中でも、好ましくはポリプロピレンなどのポリオレフィン、カルボン酸変性ポリオレフィン;更に好ましくはポリプロピレン、酸変性ポリプロピレンが挙げられる。 Among these resin components, preferred are polyolefins such as polypropylene and carboxylic acid-modified polyolefins; and more preferred are polypropylene and acid-modified polypropylene.
 熱融着性樹脂層4は、1種の樹脂成分単独で形成してもよく、また2種以上の樹脂成分を組み合わせたブレンドポリマーにより形成してもよい。更に、熱融着性樹脂層4は、1層のみで成されていてもよいが、同一又は異なる樹脂成分によって2層以上で形成されていてもよい。 The heat-fusible resin layer 4 may be formed of one kind of resin component alone or may be formed of a blend polymer in which two or more kinds of resin components are combined. Furthermore, the heat-fusible resin layer 4 may be formed of only one layer, but may be formed of two or more layers using the same or different resin components.
 また、熱融着性樹脂層4の厚みとしては、熱融着性樹脂層としての機能を発揮すれば特に制限されないが、好ましくは約60μm以下、より好ましくは15~40μm程度が挙げられる。 Further, the thickness of the heat-fusible resin layer 4 is not particularly limited as long as it functions as a heat-fusible resin layer, but is preferably about 60 μm or less, more preferably about 15 to 40 μm.
[接着層5]
 本発明の電池用包装材料において、接着層5は、バリア層3と熱融着性樹脂層4を強固に接着させるために、これらの間に必要に応じて設けられる層である。
[Adhesive layer 5]
In the battery packaging material of the present invention, the adhesive layer 5 is a layer provided between the barrier layer 3 and the heat-fusible resin layer 4 as necessary in order to firmly bond the barrier layer 3 and the heat-fusible resin layer 4.
 接着層5は、バリア層3と熱融着性樹脂層4とを接着可能である樹脂によって形成される。接着層5の形成に使用される樹脂としては、その接着機構、接着剤成分の種類等は、接着剤層2で例示した接着剤と同様のものが使用できる。また、接着層5の形成に使用される樹脂としては、前述の熱融着性樹脂層4で例示したポリオレフィン、環状ポリオレフィン、カルボン酸変性ポリオレフィン、カルボン酸変性環状ポリオレフィンなどのポリオレフィン系樹脂も使用できる。バリア層3と熱融着性樹脂層4との密着性に優れる観点から、ポリオレフィンとしては、カルボン酸変性ポリオレフィンが好ましく、カルボン酸変性ポリプロピレンが特に好ましい。すなわち、接着層5を構成する樹脂は、ポリオレフィン骨格を含んでいても含んでいなくてもよく、ポリオレフィン骨格を含んでいることが好ましい。接着層5を構成する樹脂がポリオレフィン骨格を含むことは、例えば、赤外分光法、ガスクロマトグラフィー質量分析法などにより分析可能であり、分析方法は特に問わない。例えば、赤外分光法にて無水マレイン酸変性ポリオレフィンを測定すると、波数1760cm-1付近と波数1780cm-1付近に無水マレイン酸由来のピークが検出される。ただし、酸変性度が低いとピークが小さくなり検出されない場合がある。その場合は核磁気共鳴分光法にて分析可能である。 The adhesive layer 5 is formed of a resin capable of bonding the barrier layer 3 and the heat-fusible resin layer 4. As the resin used for forming the adhesive layer 5, the adhesive mechanism, the kind of the adhesive component, and the like can be the same as the adhesive exemplified in the adhesive layer 2. Further, as the resin used for forming the adhesive layer 5, polyolefin resins such as polyolefin, cyclic polyolefin, carboxylic acid-modified polyolefin, carboxylic acid-modified cyclic polyolefin exemplified in the above-mentioned heat-fusible resin layer 4 can also be used. . From the viewpoint of excellent adhesion between the barrier layer 3 and the heat-fusible resin layer 4, the polyolefin is preferably a carboxylic acid-modified polyolefin, and particularly preferably a carboxylic acid-modified polypropylene. That is, the resin constituting the adhesive layer 5 may or may not include a polyolefin skeleton, and preferably includes a polyolefin skeleton. The fact that the resin constituting the adhesive layer 5 contains a polyolefin skeleton can be analyzed by, for example, infrared spectroscopy, gas chromatography mass spectrometry, etc., and the analysis method is not particularly limited. For example, when measuring the infrared spectroscopy at a maleic anhydride-modified polyolefin, a peak derived from maleic acid is detected in the vicinity of the wave number of 1760 cm -1 and near the wave number 1780 cm -1. However, if the acid modification degree is low, the peak may be small and may not be detected. In that case, it can be analyzed by nuclear magnetic resonance spectroscopy.
 バリア層3(又は耐酸性皮膜)と熱融着性樹脂層4との密着性を向上させる観点から、接着層5は、酸変性ポリオレフィンを含むことが好ましい。酸変性ポリオレフィンは、ポリオレフィンをカルボン酸などの酸成分でブロック重合又はグラフト重合することにより変性したポリマーである。変性に使用される酸成分としては、例えば、マレイン酸、アクリル酸、イタコン酸、クロトン酸、無水マレイン酸、無水イタコン酸などのカルボン酸又はその無水物が挙げられる。また、変性されるポリオレフィンとしては、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、線状低密度ポリエチレンなどのポリエチレン;ホモポリプロピレン、ポリプロピレンのブロックコポリマー(例えば、プロピレンとエチレンのブロックコポリマー)、ポリプロピレンのランダムコポリマー(例えば、プロピレンとエチレンのランダムコポリマー)などのポリプロピレン;エチレン-ブテン-プロピレンのターポリマーなどが挙げられる。これらのポリオレフィンの中でも、好ましくはポリエチレン及びポリプロピレンが挙げられる。 From the viewpoint of improving the adhesion between the barrier layer 3 (or acid-resistant film) and the heat-fusible resin layer 4, the adhesive layer 5 preferably contains an acid-modified polyolefin. The acid-modified polyolefin is a polymer modified by block polymerization or graft polymerization of polyolefin with an acid component such as carboxylic acid. Examples of the acid component used for modification include carboxylic acids such as maleic acid, acrylic acid, itaconic acid, crotonic acid, maleic anhydride, and itaconic anhydride, or anhydrides thereof. Polyolefins to be modified include polyethylenes such as low density polyethylene, medium density polyethylene, high density polyethylene, and linear low density polyethylene; homopolypropylene, polypropylene block copolymers (for example, block copolymers of propylene and ethylene), polypropylene Polypropylenes such as random copolymers (eg, random copolymers of propylene and ethylene); ethylene-butene-propylene terpolymers and the like. Among these polyolefins, polyethylene and polypropylene are preferable.
 接着層5において、酸変性ポリオレフィンの中でも、特に無水マレイン酸変性ポリオレフィン、さらには無水マレイン酸変性ポリプロピレンが好ましい。 In the adhesive layer 5, among the acid-modified polyolefins, maleic anhydride-modified polyolefin, and more preferably maleic anhydride-modified polypropylene are preferable.
 さらに、電池用包装材料の厚みを薄くしつつ、成形後の形状安定性に優れた電池用包装材料とする観点からは、接着層5は、酸変性ポリオレフィンと硬化剤を含む樹脂組成物の硬化物であることがより好ましい。酸変性ポリオレフィンとしては、好ましくは、前記のものが例示できる。 Furthermore, from the viewpoint of making the battery packaging material excellent in shape stability after molding while reducing the thickness of the battery packaging material, the adhesive layer 5 is a cured resin composition containing an acid-modified polyolefin and a curing agent. More preferably, it is a product. Preferred examples of the acid-modified polyolefin include those described above.
 また、接着層5は、酸変性ポリオレフィンと、イソシアネート基を有する化合物、オキサゾリン基を有する化合物、及びエポキシ基を有する化合物からなる群より選択される少なくとも1種とを含む樹脂組成物の硬化物であることが好ましく、酸変性ポリオレフィンと、イソシアネート基を有する化合物及びエポキシ基を有する化合物からなる群より選択される少なくとも1種とを含む樹脂組成物の硬化物であることが特に好ましい。また、接着層5は、ウレタン樹脂、エステル樹脂、及びエポキシ樹脂からなる群より選択される少なくとも1種を含むことが好ましく、ウレタン樹脂及びエポキシ樹脂を含むことがより好ましい。エステル樹脂としては、例えばアミドエステル樹脂が好ましい。アミドエステル樹脂は、一般的にカルボキシル基とオキサゾリン基の反応で生成する。接着層5は、これらの樹脂のうち少なくとも1種と前記酸変性ポリオレフィンを含む樹脂組成物の硬化物であることがより好ましい。なお、接着層5に、イソシアネート基を有する化合物、オキサゾリン基を有する化合物、エポキシ樹脂などの硬化剤の未反応物が残存している場合、未反応物の存在は、例えば、赤外分光法、ラマン分光法、飛行時間型二次イオン質量分析法(TOF-SIMS)などから選択される方法で確認することが可能である。 The adhesive layer 5 is a cured product of a resin composition containing an acid-modified polyolefin and at least one selected from the group consisting of a compound having an isocyanate group, a compound having an oxazoline group, and a compound having an epoxy group. The resin composition is preferably a cured product of a resin composition containing an acid-modified polyolefin and at least one selected from the group consisting of a compound having an isocyanate group and a compound having an epoxy group. The adhesive layer 5 preferably contains at least one selected from the group consisting of urethane resins, ester resins, and epoxy resins, and more preferably contains urethane resins and epoxy resins. As the ester resin, for example, an amide ester resin is preferable. Amide ester resins are generally formed by the reaction of carboxyl groups and oxazoline groups. The adhesive layer 5 is more preferably a cured product of a resin composition containing at least one of these resins and the acid-modified polyolefin. In the case where an unreacted product of a curing agent such as a compound having an isocyanate group, a compound having an oxazoline group, or an epoxy resin remains in the adhesive layer 5, the presence of the unreacted material is, for example, infrared spectroscopy, It can be confirmed by a method selected from Raman spectroscopy, time-of-flight secondary ion mass spectrometry (TOF-SIMS) and the like.
 また、バリア層3(又は耐酸性皮膜)と熱融着性樹脂層4と接着層5との密着性をより高める観点から、接着層5は、酸素原子、複素環、C=N結合、及びC-O-C結合からなる群より選択される少なくとも1種を有する硬化剤を含む樹脂組成物の硬化物であることが好ましい。複素環を有する硬化剤としては、例えば、オキサゾリン基を有する硬化剤、エポキシ基を有する硬化剤などが挙げられる。また、C=N結合を有する硬化剤としては、オキサゾリン基を有する硬化剤、イソシアネート基を有する硬化剤などが挙げられる。また、C-O-C結合を有する硬化剤としては、オキサゾリン基を有する硬化剤、エポキシ基を有する硬化剤、ウレタン樹脂などが挙げられる。接着層5がこれらの硬化剤を含む樹脂組成物の硬化物であることは、例えば、ガスクロマトグラフ質量分析(GCMS)、赤外分光法(IR)、飛行時間型二次イオン質量分析法(TOF-SIMS)、X線光電子分光法(XPS)などの方法で確認することができる。 Further, from the viewpoint of further improving the adhesion between the barrier layer 3 (or acid-resistant film), the heat-fusible resin layer 4 and the adhesive layer 5, the adhesive layer 5 includes an oxygen atom, a heterocyclic ring, a C = N bond, and It is preferably a cured product of a resin composition containing a curing agent having at least one selected from the group consisting of C—O—C bonds. Examples of the curing agent having a heterocyclic ring include a curing agent having an oxazoline group and a curing agent having an epoxy group. Examples of the curing agent having a C═N bond include a curing agent having an oxazoline group and a curing agent having an isocyanate group. Examples of the curing agent having a C—O—C bond include a curing agent having an oxazoline group, a curing agent having an epoxy group, and a urethane resin. The adhesive layer 5 is a cured product of a resin composition containing these curing agents, for example, gas chromatography mass spectrometry (GCMS), infrared spectroscopy (IR), time-of-flight secondary ion mass spectrometry (TOF) -SIMS) and X-ray photoelectron spectroscopy (XPS).
 イソシアネート基を有する化合物としては、特に制限されないが、耐酸性皮膜と接着層5との密着性を効果的に高める観点からは、好ましくは多官能イソシアネート化合物が挙げられる。多官能イソシアネート化合物は、2つ以上のイソシアネート基を有する化合物であれば、特に限定されない。多官能イソシアネート系硬化剤の具体例としては、ペンタンジイソシアネート(PDI)、イソホロンジイソシアネート(IPDI)、ヘキサメチレンジイソシアネート(HDI)、トリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、これらをポリマー化やヌレート化したもの、これらの混合物や他ポリマーとの共重合物などが挙げられる。 The compound having an isocyanate group is not particularly limited, but a polyfunctional isocyanate compound is preferably used from the viewpoint of effectively enhancing the adhesion between the acid-resistant film and the adhesive layer 5. The polyfunctional isocyanate compound is not particularly limited as long as it is a compound having two or more isocyanate groups. Specific examples of the polyfunctional isocyanate-based curing agent include pentane diisocyanate (PDI), isophorone diisocyanate (IPDI), hexamethylene diisocyanate (HDI), tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), and polymerization and nurate of these. And a mixture thereof and a copolymer with another polymer.
 接着層5における、イソシアネート基を有する化合物の含有量としては、接着層5を構成する樹脂組成物中、0.1~50質量%程度の範囲にあることが好ましく、0.5~40質量%程度の範囲にあることがより好ましい。 The content of the compound having an isocyanate group in the adhesive layer 5 is preferably in the range of about 0.1 to 50% by mass in the resin composition constituting the adhesive layer 5, and preferably 0.5 to 40% by mass. More preferably, it is in the range of about.
 オキサゾリン基を有する化合物は、オキサゾリン骨格を備える化合物であれば、特に限定されない。オキサゾリン基を有する化合物の具体例としては、ポリスチレン主鎖を有するもの、アクリル主鎖を有するものなどが挙げられる。また、市販品としては、例えば、日本触媒社製のエポクロスシリーズなどが挙げられる。 The compound having an oxazoline group is not particularly limited as long as it is a compound having an oxazoline skeleton. Specific examples of the compound having an oxazoline group include those having a polystyrene main chain and those having an acrylic main chain. Moreover, as a commercial item, the Epocross series by Nippon Shokubai Co., Ltd. etc. are mentioned, for example.
 接着層5における、オキサゾリン基を有する化合物の割合としては、接着層5を構成する樹脂組成物中、0.1~50質量%程度の範囲にあることが好ましく、0.5~40質量%程度の範囲にあることがより好ましい。これにより、バリア層3(又は耐酸性皮膜)と接着層5との密着性を効果的に高めることができる。 The ratio of the compound having an oxazoline group in the adhesive layer 5 is preferably in the range of about 0.1 to 50% by mass, and about 0.5 to 40% by mass in the resin composition constituting the adhesive layer 5. It is more preferable that it is in the range. Thereby, the adhesiveness of the barrier layer 3 (or acid-resistant film | membrane) and the contact bonding layer 5 can be improved effectively.
 エポキシ樹脂としては、分子内に存在するエポキシ基によって架橋構造を形成することが可能な樹脂であれば、特に制限されず、公知のエポキシ樹脂を用いることができる。エポキシ樹脂の重量平均分子量としては、好ましくは50~2000程度、より好ましくは100~1000程度、さらに好ましくは200~800程度が挙げられる。なお、本発明において、エポキシ樹脂の重量平均分子量は、標準サンプルとしてポリスチレンを用いた条件で測定された、ゲル浸透クロマトグラフィ(GPC)により測定された値である。 The epoxy resin is not particularly limited as long as it is a resin capable of forming a crosslinked structure with an epoxy group present in the molecule, and a known epoxy resin can be used. The weight average molecular weight of the epoxy resin is preferably about 50 to 2000, more preferably about 100 to 1000, and still more preferably about 200 to 800. In the present invention, the weight average molecular weight of the epoxy resin is a value measured by gel permeation chromatography (GPC) measured under conditions using polystyrene as a standard sample.
 エポキシ樹脂の具体例としては、トリメチロールプロパンのグリシジルエーテル誘導体、ビスフェノールAジグリシジルエーテル、変性ビスフェノールAジグリシジルエーテル、ノボラックグリシジルエーテル、グリセリンポリグリシジルエーテル、ポリグリセリンポリグリシジルエーテルなどが挙げられる。エポキシ樹脂は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。 Specific examples of the epoxy resin include trimethylolpropane glycidyl ether derivative, bisphenol A diglycidyl ether, modified bisphenol A diglycidyl ether, novolac glycidyl ether, glycerin polyglycidyl ether, polyglycerin polyglycidyl ether, and the like. An epoxy resin may be used individually by 1 type, and may be used in combination of 2 or more types.
 接着層5における、エポキシ樹脂の割合としては、接着層5を構成する樹脂組成物中、0.1~50質量%程度の範囲にあることが好ましく、0.5~40質量%程度の範囲にあることがより好ましい。これにより、バリア層3(又は耐酸性皮膜)と接着層5との密着性を効果的に高めることができる。 The proportion of the epoxy resin in the adhesive layer 5 is preferably in the range of about 0.1 to 50% by mass, and in the range of about 0.5 to 40% by mass in the resin composition constituting the adhesive layer 5. More preferably. Thereby, the adhesiveness of the barrier layer 3 (or acid-resistant film | membrane) and the contact bonding layer 5 can be improved effectively.
 なお、本発明において、接着層5が、イソシアネート基を有する化合物、オキサゾリン基を有する化合物、及びエポキシ樹脂からなる群より選択される少なくとも1種と、前記酸変性ポリオレフィンとを含む樹脂組成物の硬化物である場合、酸変性ポリオレフィンが主剤として機能し、イソシアネート基を有する化合物、オキサゾリン基を有する化合物、及びエポキシ樹脂は、それぞれ、硬化剤として機能する。 In the present invention, the adhesive layer 5 is a cured resin composition containing at least one selected from the group consisting of a compound having an isocyanate group, a compound having an oxazoline group, and an epoxy resin, and the acid-modified polyolefin. When it is a product, the acid-modified polyolefin functions as a main agent, and the compound having an isocyanate group, the compound having an oxazoline group, and the epoxy resin each function as a curing agent.
 接着層5の厚さは、好ましくは約30μm以下、より好ましくは約20μm以下、さらに好ましくは約5μm以下が挙げられ、下限としては、約0.1μm以上、約0.5μm以上が挙げられ、当該厚さの範囲としては、好ましくは、0.1~30μm程度、0.1~20μm程度、0.1~5μm程度、0.5~30μm程度、0.5~20μm程度、0.5~5μm程度が挙げられる。 The thickness of the adhesive layer 5 is preferably about 30 μm or less, more preferably about 20 μm or less, more preferably about 5 μm or less, and the lower limit is about 0.1 μm or more, about 0.5 μm or more, The thickness ranges are preferably about 0.1 to 30 μm, about 0.1 to 20 μm, about 0.1 to 5 μm, about 0.5 to 30 μm, about 0.5 to 20 μm, 0.5 to For example, about 5 μm.
 カルボジイミド系硬化剤は、カルボジイミド基(-N=C=N-)を少なくとも1つ有する化合物であれば、特に限定されない。カルボジイミド系硬化剤としては、カルボジイミド基を少なくとも2つ以上有するポリカルボジイミド化合物が好ましい。 The carbodiimide curing agent is not particularly limited as long as it is a compound having at least one carbodiimide group (—N═C═N—). As the carbodiimide curing agent, a polycarbodiimide compound having at least two carbodiimide groups is preferable.
 接着層5によるバリア層3と熱融着性樹脂層4との密着性を高めるなどの観点から、硬化剤は、2種類以上の化合物により構成されていてもよい。 From the viewpoint of improving the adhesion between the barrier layer 3 and the heat-fusible resin layer 4 by the adhesive layer 5, the curing agent may be composed of two or more kinds of compounds.
 接着層5を形成する樹脂組成物における硬化剤の含有量は、0.1~50質量%程度の範囲にあることが好ましく、0.1~30質量%程度の範囲にあることがより好ましく、0.1~10質量%程度の範囲にあることがさらに好ましい。 The content of the curing agent in the resin composition forming the adhesive layer 5 is preferably in the range of about 0.1 to 50% by mass, more preferably in the range of about 0.1 to 30% by mass, More preferably, it is in the range of about 0.1 to 10% by mass.
 接着層5の厚みについては、接着層としての機能を発揮すれば特に制限されないが、接着剤層2で例示した接着剤を用いる場合であれば、好ましくは1~10μm程度、より好ましくは1~5μm程度が挙げられる。また、熱融着性樹脂層4で例示した樹脂を用いる場合であれば、好ましくは2~50μm程度、より好ましくは10~40μm程度が挙げられる。また、酸変性ポリオレフィンと硬化剤との硬化物である場合であれば、好ましくは約30μm以下、より好ましくは0.1~20μm程度、さらに好ましくは0.5~5μm程度が挙げられる。なお、接着層5が酸変性ポリオレフィンと硬化剤を含む樹脂組成物の硬化物である場合、当該樹脂組成物を塗布し、加熱等により硬化させることにより、接着層5を形成することができる。 The thickness of the adhesive layer 5 is not particularly limited as long as it functions as an adhesive layer. However, when the adhesive exemplified in the adhesive layer 2 is used, it is preferably about 1 to 10 μm, more preferably 1 to 1 μm. For example, about 5 μm. Further, when the resin exemplified in the heat-fusible resin layer 4 is used, it is preferably about 2 to 50 μm, more preferably about 10 to 40 μm. In the case of a cured product of an acid-modified polyolefin and a curing agent, it is preferably about 30 μm or less, more preferably about 0.1 to 20 μm, and still more preferably about 0.5 to 5 μm. When the adhesive layer 5 is a cured product of a resin composition containing an acid-modified polyolefin and a curing agent, the adhesive layer 5 can be formed by applying the resin composition and curing it by heating or the like.
[表面被覆層]
 本発明の電池用包装材料においては、意匠性、耐電解液性、耐擦過性、成形性の向上などを目的として、必要に応じて、基材層1の外側(基材層1のバリア層3とは反対側)に、必要に応じて、表面被覆層を設けてもよい。表面被覆層は、基材層1と印字受容層6との間に設けられる。なお、印字受容層6が基材層1の外側の全面に設けられる場合には、基材層1と印字受容層6との間に表面被覆層を設けなくてもよい。また、印字受容層6が基材層1の外側の一部に設けられている場合には、印字受容層6が設けられていない部分に表面被覆層を設けることにより、意匠性、耐電解液性、耐擦過性、成形性などを向上さてもよい。
[Surface coating layer]
In the battery packaging material of the present invention, the outer side of the base material layer 1 (the barrier layer of the base material layer 1) is optionally used for the purpose of improving design properties, electrolytic solution resistance, scratch resistance, moldability, and the like. If necessary, a surface coating layer may be provided on the side opposite to (3). The surface coating layer is provided between the base material layer 1 and the print receiving layer 6. When the print receiving layer 6 is provided on the entire surface outside the base material layer 1, it is not necessary to provide a surface coating layer between the base material layer 1 and the print receiving layer 6. Further, when the print receiving layer 6 is provided on a part of the outer side of the base material layer 1, by providing a surface coating layer in a portion where the print receiving layer 6 is not provided, the design property and the anti-electrolytic solution Property, scratch resistance, moldability and the like may be improved.
 表面被覆層は、例えば、ポリ塩化ビニリデン、ポリエステル系樹脂、ウレタン樹脂、アクリル系樹脂、エポキシ系樹脂などにより形成することができる。表面被覆層は、これらの中でも、2液硬化型樹脂により形成することが好ましい。表面被覆層を形成する2液硬化型樹脂としては、例えば、2液硬化型ウレタン樹脂、2液硬化型ポリエステル樹脂、2液硬化型エポキシ系樹脂などが挙げられる。また、表面被覆層には、添加剤を配合してもよい。添加する添加剤は、例えばマット化剤として機能してもよく、表面被覆層はマット層として機能してもよい。 The surface coating layer can be formed of, for example, polyvinylidene chloride, polyester resin, urethane resin, acrylic resin, epoxy resin, or the like. Of these, the surface coating layer is preferably formed of a two-component curable resin. Examples of the two-component curable resin for forming the surface coating layer include a two-component curable urethane resin, a two-component curable polyester resin, and a two-component curable epoxy resin. Moreover, you may mix | blend an additive with a surface coating layer. The additive to be added may function as, for example, a matting agent, and the surface coating layer may function as a mat layer.
 添加剤としては、例えば、粒径が0.5nm~5μm程度の微粒子が挙げられる。添加剤の材質については、特に制限されないが、例えば、金属、金属酸化物、無機物、有機物等が挙げられる。また、添加剤の形状についても、特に制限されないが、例えば、球状、繊維状、板状、不定形、バルーン状等が挙げられる。添加剤として、具体的には、タルク、シリカ、グラファイト、カオリン、モンモリロイド、モンモリロナイト、合成マイカ、ハイドロタルサイト、シリカゲル、ゼオライト、水酸化アルミニウム、水酸化マグネシウム、酸化亜鉛,酸化マグネシウム、酸化アルミニウム、酸化ネオジウム、酸化アンチモン、酸化チタン、酸化セリウム、硫酸カルシウム、硫酸バリウム、炭酸カルシウム、ケイ酸カルシウム、炭酸リチウム、安息香酸カルシウム、シュウ酸カルシウム、ステアリン酸マグネシウム、アルミナ、カーボンブラック、カーボンナノチューブ類、高融点ナイロン、架橋アクリル、架橋スチレン、架橋ポリエチレン、ベンゾグアナミン、金、アルミニウム、銅、ニッケル等が挙げられる。これらの添加剤は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。これらの添加剤の中でも、分散安定性やコスト等の観点から、好ましくはシリカ、硫酸バリウム、酸化チタンが挙げられる。また、添加剤には、表面に絶縁処理、高分散性処理等の各種表面処理を施しておいてもよい。 Examples of the additive include fine particles having a particle size of about 0.5 nm to 5 μm. The material of the additive is not particularly limited, and examples thereof include metals, metal oxides, inorganic substances, and organic substances. Further, the shape of the additive is not particularly limited, and examples thereof include a spherical shape, a fibrous shape, a plate shape, an indeterminate shape, and a balloon shape. Specific additives include talc, silica, graphite, kaolin, montmorilloid, montmorillonite, synthetic mica, hydrotalcite, silica gel, zeolite, aluminum hydroxide, magnesium hydroxide, zinc oxide, magnesium oxide, aluminum oxide, Neodymium oxide, antimony oxide, titanium oxide, cerium oxide, calcium sulfate, barium sulfate, calcium carbonate, calcium silicate, lithium carbonate, calcium benzoate, calcium oxalate, magnesium stearate, alumina, carbon black, carbon nanotubes, high Melting | fusing point nylon, crosslinked acrylic, crosslinked styrene, crosslinked polyethylene, benzoguanamine, gold | metal | money, aluminum, copper, nickel etc. are mentioned. These additives may be used individually by 1 type, and may be used in combination of 2 or more type. Among these additives, silica, barium sulfate, and titanium oxide are preferably used from the viewpoints of dispersion stability and cost. In addition, the surface of the additive may be subjected to various surface treatments such as insulation treatment and high dispersibility treatment.
 表面被覆層を形成する方法としては、特に制限されないが、例えば、表面被覆層を形成する2液硬化型樹脂を基材層1の外側の表面に塗布する方法が挙げられる。添加剤を配合する場合には、2液硬化型樹脂に添加剤を添加して混合した後、塗布すればよい。 The method for forming the surface coating layer is not particularly limited, and examples thereof include a method of applying a two-component curable resin for forming the surface coating layer to the outer surface of the base material layer 1. When blending the additive, the additive may be added to the two-component curable resin, mixed, and then applied.
 表面被覆層の厚みとしては、表面被覆層としての上記の機能を発揮すれば特に制限されないが、例えば、0.5~10μm程度、好ましくは1~5μm程度が挙げられる。 The thickness of the surface coating layer is not particularly limited as long as it exhibits the above function as the surface coating layer, and for example, it is about 0.5 to 10 μm, preferably about 1 to 5 μm.
3.電池用包装材料の製造方法
 本発明の電池用包装材料の製造方法については、所定の組成の各層を積層させた積層体が得られる限り、特に制限されない。電池用包装材料の製造方法としては、例えば、外側から、少なくとも、印字受容層と、基材層と、バリア層と、熱融着性樹脂層とを積層して積層体を得る積層工程を備えており、積層工程において、電池用包装材料の外側表面に、アマイド系添加剤を含む印字受容層を積層する方法が挙げられる。すなわち、印字受容層と、基材層と、バリア層と、熱融着性樹脂層とを積層して積層体を得る積層工程を備えており、印字受容層は電池用包装材料の外側表面に備えられ、印字受容層は、アマイド系添加剤を含んでいる方法が挙げられる。また、電池用包装材料の製造方法において、印字受容層の表面に印字層を形成する工程をさらに備えていてもよい。
3. Production method of battery packaging material The production method of the battery packaging material of the present invention is not particularly limited as long as a laminate in which layers of a predetermined composition are laminated is obtained. As a method for producing a battery packaging material, for example, a layering step is provided in which a laminate is obtained by laminating at least a print receiving layer, a base material layer, a barrier layer, and a heat-fusible resin layer from the outside. In the laminating step, there is a method of laminating a print receiving layer containing an amide-based additive on the outer surface of the battery packaging material. That is, it comprises a laminating step of laminating a print receiving layer, a base material layer, a barrier layer, and a heat-fusible resin layer to obtain a laminate, and the print receiving layer is provided on the outer surface of the battery packaging material. A method in which the print receiving layer includes an amide-based additive is provided. Moreover, in the manufacturing method of the packaging material for batteries, the process of forming a printing layer on the surface of a printing receiving layer may be further provided.
 本発明の電池用包装材料の製造方法の一例としては、以下の通りである。まず、基材層1、接着剤層2、バリア層3が順に積層された積層体(以下、「積層体A」と表記することもある)を形成する。積層体Aの形成は、具体的には、基材層1上又は必要に応じて表面が化成処理されたバリア層3に接着剤層2の形成に使用される接着剤を、グラビアコート法、ロールコート法等の塗布方法で塗布・乾燥した後に、当該バリア層3又は基材層1を積層させて接着剤層2を硬化させるドライラミネート法によって行うことができる。 An example of the method for producing the battery packaging material of the present invention is as follows. First, a laminate in which the base material layer 1, the adhesive layer 2, and the barrier layer 3 are laminated in this order (hereinafter also referred to as “laminate A”) is formed. Specifically, the laminate A is formed by applying an adhesive used for forming the adhesive layer 2 on the base layer 1 or the barrier layer 3 whose surface is subjected to a chemical conversion treatment, if necessary, a gravure coating method, After applying and drying by a coating method such as a roll coating method, the barrier layer 3 or the base material layer 1 can be laminated and the adhesive layer 2 can be cured by a dry laminating method.
 印字受容層6は、基材層1と金属層3とを積層する前に外側表面に積層してもよいし、基材層1と金属層3とを積層した後に外側表面に積層してもよい。また、印字受容層6は、熱融着性樹脂層4を形成した後に、外側表面に積層してもよい。 The print receiving layer 6 may be laminated on the outer surface before the substrate layer 1 and the metal layer 3 are laminated, or may be laminated on the outer surface after the substrate layer 1 and the metal layer 3 are laminated. Good. The print receiving layer 6 may be laminated on the outer surface after the heat-fusible resin layer 4 is formed.
 次いで、積層体Aのバリア層3上に、接着層5及び熱融着性樹脂層4をこの順になるように積層させる。例えば、(1)積層体Aのバリア層3上に、接着層5及び熱融着性樹脂層4を共押出しすることにより積層する方法(共押出しラミネート法)、(2)別途、接着層5と熱融着性樹脂層4が積層した積層体を形成し、これを積層体Aのバリア層3上にサーマルラミネート法により積層する方法、(3)積層体Aのバリア層3上に、接着層5を形成させるための接着剤を押出し法や溶液コーティングし、高温で乾燥さらには焼き付ける方法等により積層させ、この接着層5上に予めシート状に製膜した熱融着性樹脂層4をサーマルラミネート法により積層する方法、(4)積層体Aのバリア層3と、予めシート状に製膜した熱融着性樹脂層4との間に、溶融させた接着層5を流し込みながら、接着層5を介して積層体Aと熱融着性樹脂層4を貼り合せる方法(サンドイッチラミネート法)等が挙げられる。 Next, the adhesive layer 5 and the heat-fusible resin layer 4 are laminated on the barrier layer 3 of the laminate A in this order. For example, (1) a method of laminating the adhesive layer 5 and the heat-fusible resin layer 4 on the barrier layer 3 of the laminate A by coextrusion (coextrusion laminating method), (2) a separate adhesive layer 5 And a layered product of the heat-fusible resin layer 4 and a method of laminating the layered product on the barrier layer 3 of the layered product A by a thermal laminating method. (3) Adhering to the barrier layer 3 of the layered product A An adhesive for forming the layer 5 is formed by extrusion or solution coating, and is laminated at a high temperature by drying or baking, and the heat-fusible resin layer 4 previously formed into a sheet on the adhesive layer 5 is formed. (4) Adhesion while pouring a molten adhesive layer 5 between the barrier layer 3 of the laminate A and the heat-fusible resin layer 4 previously formed into a sheet shape. Laminate A and heat-fusible resin layer 4 are pasted through layer 5 The method (sandwich lamination method), and the like to match.
 表面被覆層を設ける場合には、基材層1のバリア層3とは反対側の表面に、表面被覆層を積層する。表面被覆層は、例えば表面被覆層を形成する上記の樹脂を基材層1の表面に塗布することにより形成することができる。なお、基材層1の表面にバリア層3を積層する工程と、基材層1の表面に表面被覆層を積層する工程の順番は、特に制限されない。例えば、基材層1の表面に表面被覆層を形成した後、基材層1の表面被覆層とは反対側の表面にバリア層3を形成してもよい。 When providing the surface coating layer, the surface coating layer is laminated on the surface of the base material layer 1 opposite to the barrier layer 3. The surface coating layer can be formed, for example, by applying the above-described resin for forming the surface coating layer to the surface of the base material layer 1. The order of the step of laminating the barrier layer 3 on the surface of the base material layer 1 and the step of laminating the surface coating layer on the surface of the base material layer 1 are not particularly limited. For example, after the surface coating layer is formed on the surface of the base material layer 1, the barrier layer 3 may be formed on the surface of the base material layer 1 opposite to the surface coating layer.
 上記のようにして、必要に応じて設けられる表面被覆層/基材層1/必要に応じて設けられる接着剤層2/必要に応じて表面が化成処理されたバリア層3/必要に応じて設けられる接着層5/熱融着性樹脂層4からなる積層体が形成されるが、接着剤層2または接着層5の接着性を強固にするために、更に、熱ロール接触式、熱風式、近赤外線式又は遠赤外線式等の加熱処理に供してもよい。このような加熱処理の条件としては、例えば150~250℃程度で1~5分間程度が挙げられる。 As described above, the surface coating layer / base material layer 1 provided as necessary / adhesive layer 2 provided as necessary / barrier layer 3 whose surface is subjected to chemical conversion treatment as needed / as needed A laminate composed of the adhesive layer 5 / the heat-fusible resin layer 4 to be provided is formed. In order to strengthen the adhesiveness of the adhesive layer 2 or the adhesive layer 5, further, a hot roll contact type, a hot air type It may be subjected to a heat treatment such as a near infrared type or a far infrared type. Examples of such heat treatment conditions include a temperature of about 150 to 250 ° C. and a time of about 1 to 5 minutes.
 本発明の電池用包装材料において、積層体を構成する各層は、必要に応じて、製膜性、積層化加工、最終製品2次加工(パウチ化、エンボス成形)適性等を向上又は安定化するために、コロナ処理、ブラスト処理、酸化処理、オゾン処理等の表面活性化処理を施していてもよい。 In the battery packaging material of the present invention, each layer constituting the laminate improves or stabilizes film forming properties, lamination processing, suitability for final processing (pouching, embossing), etc., as necessary. Therefore, surface activation treatment such as corona treatment, blast treatment, oxidation treatment, ozone treatment may be performed.
 印字受容層6の表面に印字層を形成する方法としては、例えば、印字受容層6の表面にインキを印刷することにより、印字層を形成することができる。印刷方法としては、特に制限されず、パッド印刷、インクジェット印刷、熱転写式印刷、レーザ印刷、インク転写式印刷、ホットスタンプ印刷などが挙げられる。これらの中でも、成形後の電池用包装材料に印刷を行う場合には、パッド印刷が好ましい。本発明の製造方法によって得られる電池用包装材料は、外側表面に印字受容層6が形成されているため、インキが弾かれやすいパッド印刷によっても、電池用包装材料の外側表面に好適にインキの印刷を行うことができる。従って、外側表面の少なくも一部に、例えば、バーコード、柄、文字などの印字を好適に形成することができる。印刷に用いられるインキとしては、上記の通りである。 As a method for forming the print layer on the surface of the print receiving layer 6, for example, the print layer can be formed by printing ink on the surface of the print receiving layer 6. The printing method is not particularly limited, and includes pad printing, ink jet printing, thermal transfer printing, laser printing, ink transfer printing, hot stamp printing, and the like. Among these, pad printing is preferable when printing is performed on the battery packaging material after molding. In the battery packaging material obtained by the production method of the present invention, the print receiving layer 6 is formed on the outer surface, so that the ink can be suitably applied to the outer surface of the battery packaging material even by pad printing in which ink is easily repelled. Printing can be performed. Therefore, for example, a barcode, a pattern, a character, or the like can be suitably formed on at least a part of the outer surface. The ink used for printing is as described above.
4.電池用包装材料の用途
 本発明の電池用包装材料は、正極、負極、電解質等の電池素子を密封して収容するための包装体に使用される。すなわち、本発明の電池用包装材料によって形成された包装体中に、少なくとも正極、負極、及び電解質を備えた電池素子を収容して、電池とすることができる。本発明の電池の製造において、電池素子を収容する電池用包装材料の外側表面には、予め印字層が形成されていてもよい。また、電池素子を収容した後、印字受容層の表面に印字層を形成することもできる。なお、予め印字層が形成されている電池用包装材料を用いて、電池素子を収容し、印字受容層の表面にさらに印字層を形成してもよい。
4). Application of Battery Packaging Material The battery packaging material of the present invention is used in a package for sealing and housing battery elements such as a positive electrode, a negative electrode, and an electrolyte. That is, a battery element including at least a positive electrode, a negative electrode, and an electrolyte can be accommodated in a package formed of the battery packaging material of the present invention to obtain a battery. In the production of the battery of the present invention, a printing layer may be formed in advance on the outer surface of the battery packaging material that houses the battery element. Further, after the battery element is accommodated, a printing layer can be formed on the surface of the printing receiving layer. Note that a battery packaging material in which a printing layer is formed in advance may be used to accommodate the battery element, and a printing layer may be further formed on the surface of the printing receiving layer.
 具体的には、少なくとも正極、負極、及び電解質を備えた電池素子を、本発明の電池用包装材料で、前記正極及び負極の各々に接続された金属端子が外側に突出させた状態で、電池素子の周縁にフランジ部(熱融着性樹脂層同士が接触する領域)が形成できるようにして被覆し、前記フランジ部の熱融着性樹脂層同士をヒートシールして密封させることによって、電池用包装材料を使用した電池が提供される。なお、本発明の電池用包装材料により形成された包装体中に電池素子を収容する場合、本発明の電池用包装材料の熱融着性樹脂部分が内側(電池素子と接する面)になるようにして、包装体を形成する。 Specifically, a battery element including at least a positive electrode, a negative electrode, and an electrolyte is formed using the battery packaging material of the present invention, with the metal terminals connected to each of the positive electrode and the negative electrode protruding outward. By covering the periphery of the element so that a flange portion (region where the heat-fusible resin layers are in contact with each other) can be formed, and heat-sealing the heat-fusible resin layers of the flange portion to seal the battery A battery using the packaging material is provided. When the battery element is housed in the package formed of the battery packaging material of the present invention, the heat-fusible resin portion of the battery packaging material of the present invention is on the inner side (surface in contact with the battery element). Thus, a package is formed.
 本発明の電池には、上記本発明の電池用包装材料が用いられているため、電池用包装材料が成形され、電池素子が封止された後の電池の外側表面に好適にインキを印刷することができる。すなわち、本発明の電池は、外側表面に印字受容層6が設けられているため、インキが弾かれやすいパッド印刷によっても、電池用包装材料の外側表面に好適にインキの印刷を行うことができ、電池の外側表面の少なくとも一部に、例えば、バーコード、柄、文字などの印字を好適に形成することができる。 Since the battery packaging material of the present invention is used in the battery of the present invention, the ink is suitably printed on the outer surface of the battery after the battery packaging material is molded and the battery element is sealed. be able to. That is, since the battery of the present invention has the print receiving layer 6 on the outer surface, the ink can be suitably printed on the outer surface of the battery packaging material even by pad printing in which ink is easily repelled. For example, barcodes, patterns, characters, and the like can be suitably formed on at least a part of the outer surface of the battery.
 本発明の電池用包装材料は、一次電池、二次電池のいずれに使用してもよいが、好ましくは二次電池である。本発明の電池用包装材料が適用される二次電池の種類については、特に制限されず、例えば、リチウムイオン電池、リチウムイオンポリマー電池、鉛蓄電池、ニッケル・水素蓄電池、ニッケル・カドミウム蓄電池、ニッケル・鉄蓄電池、ニッケル・亜鉛蓄電池、酸化銀・亜鉛蓄電池、金属空気電池、多価カチオン電池、コンデンサー、キャパシター等が挙げられる。これらの二次電池の中でも、本発明の電池用包装材料の好適な適用対象として、リチウムイオン電池及びリチウムイオンポリマー電池が挙げられる。 The battery packaging material of the present invention may be used for either a primary battery or a secondary battery, but is preferably a secondary battery. The type of secondary battery to which the battery packaging material of the present invention is applied is not particularly limited. For example, a lithium ion battery, a lithium ion polymer battery, a lead storage battery, a nickel-hydrogen storage battery, a nickel-cadmium storage battery, a nickel- Examples include iron storage batteries, nickel / zinc storage batteries, silver oxide / zinc storage batteries, metal-air batteries, multivalent cation batteries, capacitors, capacitors, and the like. Among these secondary batteries, lithium ion batteries and lithium ion polymer batteries are suitable applications for the battery packaging material of the present invention.
 以下に実施例及び比較例を示して本発明を詳細に説明する。但し本発明は実施例に限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples. However, the present invention is not limited to the examples.
実施例1~16及び比較例1~2
<電池用包装材料の製造>
 ナイロン樹脂からなる基材層(厚さ15μm)の上に、両面に化成処理を施したアルミニウム合金箔(厚さ35μm)からなるバリア層をドライラミネーション法により積層させた。具体的には、アルミニウム合金箔の一方面に、2液型ウレタン接着剤(ポリオール化合物と芳香族イソシアネート系化合物)を塗布し、バリア層上に接着層(厚さ3μm)を形成した。次いで、バリア層上の接着層と基材層をドライラミネーションして、基材層/接着剤層/バリア層の積層体を作成した。なお、バリア層として使用したアルミニウム合金箔の化成処理は、フェノール樹脂、フッ化クロム化合物、及びリン酸からなる処理液をクロムの塗布量が10mg/m2(乾燥重量)となるように、ロールコート法によりアルミニウム合金箔の両面に塗布し、皮膜温度が180℃以上となる条件で20秒間焼付けすることにより行った。次に積層体のバリア層の上に、カルボン酸変性ポリプロピレン(バリア層側に配置)20μmとランダムポリプロピレン(最内層)15μmを共押し出しすることにより、バリア層上に接着層/熱接着性樹脂層を積層させた。
Examples 1 to 16 and Comparative Examples 1 and 2
<Manufacture of battery packaging materials>
On a base material layer (thickness 15 μm) made of nylon resin, a barrier layer made of aluminum alloy foil (thickness 35 μm) subjected to chemical conversion treatment on both surfaces was laminated by a dry lamination method. Specifically, a two-component urethane adhesive (a polyol compound and an aromatic isocyanate compound) was applied to one surface of the aluminum alloy foil, and an adhesive layer (thickness 3 μm) was formed on the barrier layer. Next, the adhesive layer and the base material layer on the barrier layer were dry-laminated to form a base material layer / adhesive layer / barrier layer laminate. In addition, the chemical conversion treatment of the aluminum alloy foil used as the barrier layer is performed by rolling a treatment liquid composed of a phenol resin, a chromium fluoride compound, and phosphoric acid so that the coating amount of chromium is 10 mg / m 2 (dry weight). The coating was applied to both surfaces of the aluminum alloy foil and baked for 20 seconds under the condition that the film temperature was 180 ° C. or higher. Next, 20 μm of carboxylic acid-modified polypropylene (arranged on the barrier layer side) and 15 μm of random polypropylene (innermost layer) are coextruded on the barrier layer of the laminate, whereby an adhesive layer / thermoadhesive resin layer is formed on the barrier layer. Were laminated.
 次に、得られた各積層体の基材層側の表面の全面に、表1に記載の樹脂(ポリエステルウレタン樹脂またはアクリル樹脂)とアマイド系添加剤(エルカ酸アミド、表1に記載の含有量)を含む塗料を用いて厚さ1μmの印字受容層を形成して、電池用包装材料を得た。なお、比較例1、2においては、印字受容層にアマイド系添加剤を添加しなかった。 Next, the resin (polyester urethane resin or acrylic resin) described in Table 1 and an amide-based additive (erucic acid amide, content described in Table 1) are formed on the entire surface of the obtained laminate on the base layer side. A print-receiving layer having a thickness of 1 μm was formed using a coating material containing a quantity of 1) to obtain a battery packaging material. In Comparative Examples 1 and 2, an amide additive was not added to the print receiving layer.
<ぬれ張力の測定>
 上記で得られた各電池用包装材料の印字適性の比較検証を目的とし、JIS規格に準拠したぬれ試薬による印字受容層のぬれ張力(mN/m)の判定を実施した。試験方法は、「JIS K6768 1999 プラスチック-フィルム及びシート-ぬれ張力試験法」に準拠した。ナカライテスク社製のぬれ張力試験用混合液を使用し、球状の脱脂綿に含ませた試薬を、印字受容層の表面に5cmほど線状に塗布し、2秒後に液膜が破れるか否かで判定し、液膜が破れなかった時のぬれ張力(mN/m)を測定した。なお、ぬれ張力(mN/m)の測定は、温度23℃、相対湿度50%の環境にて行った。結果を表1に示す。
<Measurement of wetting tension>
For the purpose of comparing and verifying the printability of the battery packaging materials obtained above, the wetting tension (mN / m) of the print receiving layer with a wetting reagent in accordance with JIS standards was determined. The test method was in accordance with “JIS K6768 1999 plastic-film and sheet-wetting tension test method”. Using a liquid mixture for wet tension test manufactured by Nacalai Tesque, apply the reagent contained in spherical absorbent cotton to the surface of the print receiving layer in a line of about 5 cm. Determination was made, and the wetting tension (mN / m) when the liquid film was not torn was measured. The wetting tension (mN / m) was measured in an environment at a temperature of 23 ° C. and a relative humidity of 50%. The results are shown in Table 1.
<動摩擦係数の測定>
 上記で得られた各電池用包装材料を、200mm×80mmの長方形状に2枚切り出して試験サンプルとした。測定機はイマダ株式会社製 型式COF2-2Nを使用した。JIS K7125:1999の8.1フィルム対フィルムの測定に準拠し、接触面積が40cm2(一辺の長さ63mmの正方形)で底面を弾力性のあるフェルトで覆った全質量が200gの滑り片を使用し、速度100mm/minの条件で、試験サンプルの基材層側表面同士を重ね合せて動摩擦係数を測定した。結果を表1に示す。なお、測定環境は、温度24℃、相対湿度50%である。また、サンプルと滑り片とも密着させて滑らないようにした。速度100mm/分の速度で滑り片を引っ張り、2枚のサンプル間の動摩擦力(N)を測定し、動摩擦力の滑り片の法線力(1.96N)で除して、動摩擦係数を算出した。動摩擦係数は、静摩擦力のピークを無視し、接触面間の相対ずれ運動を開始した後の最初の30mmまでの平均値から求めた。なお、ロードセルは、滑り片に直接接続させた。
<Measurement of dynamic friction coefficient>
Each of the battery packaging materials obtained above was cut into two rectangular shapes of 200 mm × 80 mm to obtain test samples. The measuring machine used was Model COF2-2N manufactured by Imada Corporation. According to JIS K7125: 1999 8.1 film-to-film measurement, a sliding piece having a contact area of 40 cm 2 (a square with a side length of 63 mm) and a bottom covered with elastic felt is 200 g in total. Used, the dynamic friction coefficient was measured by superimposing the base material layer side surfaces of the test sample on the condition of a speed of 100 mm / min. The results are shown in Table 1. The measurement environment is a temperature of 24 ° C. and a relative humidity of 50%. Also, the sample and the sliding piece were brought into close contact with each other so as not to slip. Pull the sliding piece at a speed of 100 mm / min, measure the dynamic friction force (N) between the two samples, and divide by the normal force (1.96 N) of the sliding piece of the dynamic friction force to calculate the dynamic friction coefficient did. The dynamic friction coefficient was determined from the average value up to the first 30 mm after starting the relative displacement motion between the contact surfaces, ignoring the peak of the static friction force. The load cell was directly connected to the sliding piece.
<印字性評価>
 上記で得られた各電池用包装材料の印字受容層にパッド印刷を行い、印字性を評価した。パッド印刷機は、ミシマ株式会社製SPACE PAD 6GXを使用し、インキはナビタス株式会社製のUVインキPJU-A黒色を使用した。また、アズワン製のハンディーUVランプ SUV-4で紫外線波長:254nmにて10cmの距離から紫外光を30秒間照射してインキを硬化させた。硬化後の印刷面を光学顕微鏡で観察し、以下の基準により評価した。なお、印字適性測定は、温度24℃、相対湿度50%の環境にて行った。結果を表1に示す。なお、以下の基準において、印字の抜けの「%」は、印字受容層に形成される印字面積に占める抜けの面積の割合を示している。
5:印字の抜けが全く無い
4:印字の抜けが2.5%以下である
3:印字の抜けが2.5%超、5.0%以下である
2:印字の抜けが5.0%超、10%以下である
1:印字の抜けが10%超である
<Printability evaluation>
Pad printing was performed on the print receiving layer of each battery packaging material obtained above, and the printability was evaluated. The pad printer used was SPACE PAD 6GX manufactured by Mishima Corporation, and the ink used was UV ink PJU-A black manufactured by Navitas Co., Ltd. Further, the ink was cured by irradiating UV light for 30 seconds from a distance of 10 cm at an ultraviolet wavelength of 254 nm with an As One handy UV lamp SUV-4. The printed surface after curing was observed with an optical microscope and evaluated according to the following criteria. The printability measurement was performed in an environment with a temperature of 24 ° C. and a relative humidity of 50%. The results are shown in Table 1. In the following criteria, “%” of missing prints represents the ratio of the missing area to the printed area formed in the print receiving layer.
5: No missing print 4: Print missing is 2.5% or less 3: Print missing is more than 2.5%, 5.0% or less 2: Print missing is 5.0% Over 10% or less 1: Print missing is over 10%
<成形性の評価>
 上記で得られた各電池用包装材料を80mm×120mmの長方形状に断裁して、それぞれ、30枚ずつ試験サンプルを作製した。各試験サンプルを、25℃の環境下にて、55mm×32mmの矩形状の凸部を有する雄型(表面は、JIS B 0659-1:2002附属書1(参考) 比較用表面粗さ標準片の表2に規定される、最大高さ粗さ(Rzの呼び値)が1.6μmである。コーナーR:2.0mm、稜線R:1.0mm)と、これに対応した凹部を有する雌型(表面は、JIS B 0659-1:2002附属書1(参考) 比較用表面粗さ標準片の表2に規定される、最大高さ粗さ(Rzの呼び値)が3.2μmである。コーナーR2.0mm、稜線R1.0mm)を用いて、押さえ圧0.16MPa、成形深さ5.5mmで冷間成形(引き込み1段成形)した。このとき、雄型側に熱融着性樹脂層側が位置するよう、雌型上に上記試験サンプルを載置して成形をおこなった。雄型と雌型のクリアランスは、0.3mmとした。成形後のサンプルについて、暗室の中にてペンライトで光を当てて、光の透過によって、アルミニウム箔にピンホールやクラックが生じているか否かを確認した。成形後の試験サンプル30枚に全てにピンホールが発生してなかった場合を、良品(A)と評価し、1枚でもピンホールが発生していた場合を、不良品(C)と評価した。また、成形深さを6.0mm、6.5mm、7.0mmとした場合についても、同様にして成形性を評価した。結果を表1に示す。
<Evaluation of formability>
Each battery packaging material obtained above was cut into a rectangular shape of 80 mm × 120 mm, and 30 test samples were prepared. Each test sample was male type having a rectangular convex part of 55 mm × 32 mm in an environment of 25 ° C. (surface is JIS B 0659-1: 2002 Annex 1 (Reference) Comparative surface roughness standard piece The maximum height roughness (nominal value of Rz) specified in Table 2 is 1.6 μm, corner R: 2.0 mm, ridge line R: 1.0 mm, and a female mold having a recess corresponding thereto. (The surface is JIS B 0659-1: 2002 Annex 1 (reference). The maximum height roughness (nominal value of Rz) specified in Table 2 of the comparative surface roughness standard piece is 3.2 μm. R2.0 mm, ridgeline R1.0 mm), and cold forming (retraction one-step forming) with a pressing pressure of 0.16 MPa and a forming depth of 5.5 mm. At this time, the test sample was placed on the female mold and molded so that the heat-fusible resin layer side was positioned on the male mold side. The clearance between the male mold and the female mold was 0.3 mm. About the sample after shaping | molding, light was irradiated with the penlight in the dark room, and it was confirmed whether the pinhole and the crack had arisen in aluminum foil by permeation | transmission of light. A case where no pinholes occurred in all 30 test samples after molding was evaluated as a good product (A), and a case where even one pinhole was generated was evaluated as a defective product (C). . Further, the moldability was evaluated in the same manner when the molding depth was 6.0 mm, 6.5 mm, and 7.0 mm. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表1に示される結果から、外側から、少なくとも、基材層、バリア層、及び熱融着性樹脂層をこの順に備える積層体からなり、当該外側の表面に印字受容層を備えており、かつ、印字受容層がアマイド系添加剤を含んでいる実施例1~16の電池用包装材料は、優れた印字性と成形性を兼ね備えていることが分かる。 From the results shown in Table 1, from the outside, it comprises a laminate comprising at least a base material layer, a barrier layer, and a heat-fusible resin layer in this order, provided with a print receiving layer on the outer surface, and It can be seen that the battery packaging materials of Examples 1 to 16 in which the print receiving layer contains an amide-based additive have both excellent printability and moldability.
実施例17~23
<電池用包装材料の製造>
 ナイロン樹脂からなる基材層(厚さ15μm)の上に、両面に化成処理を施したアルミニウム合金箔(厚さ35μm)からなるバリア層をドライラミネーション法により積層させた。具体的には、アルミニウム合金箔の一方面に、2液型ウレタン接着剤(ポリオール化合物と芳香族イソシアネート系化合物)を塗布し、バリア層上に接着層(厚さ3μm)を形成した。次いで、バリア層上の接着層と基材層をドライラミネーションして、基材層/接着剤層/バリア層の積層体を作成した。なお、バリア層として使用したアルミニウム合金箔の化成処理は、フェノール樹脂、フッ化クロム化合物、及びリン酸からなる処理液をクロムの塗布量が10mg/m2(乾燥重量)となるように、ロールコート法によりアルミニウム合金箔の両面に塗布し、皮膜温度が180℃以上となる条件で20秒間焼付けすることにより行った。次に積層体のバリア層の上に、カルボン酸変性ポリプロピレン(バリア層側に配置)20μmとランダムポリプロピレン(最内層)15μmを共押し出しすることにより、バリア層上に接着層/熱接着性樹脂層を積層させた。
Examples 17-23
<Manufacture of battery packaging materials>
On a base material layer (thickness 15 μm) made of nylon resin, a barrier layer made of aluminum alloy foil (thickness 35 μm) subjected to chemical conversion treatment on both surfaces was laminated by a dry lamination method. Specifically, a two-component urethane adhesive (a polyol compound and an aromatic isocyanate compound) was applied to one surface of the aluminum alloy foil, and an adhesive layer (thickness 3 μm) was formed on the barrier layer. Next, the adhesive layer and the base material layer on the barrier layer were dry-laminated to form a base material layer / adhesive layer / barrier layer laminate. In addition, the chemical conversion treatment of the aluminum alloy foil used as the barrier layer is performed by rolling a treatment liquid composed of a phenol resin, a chromium fluoride compound, and phosphoric acid so that the coating amount of chromium is 10 mg / m 2 (dry weight). The coating was applied to both surfaces of the aluminum alloy foil and baked for 20 seconds under the condition that the film temperature was 180 ° C. or higher. Next, 20 μm of carboxylic acid-modified polypropylene (arranged on the barrier layer side) and 15 μm of random polypropylene (innermost layer) are coextruded on the barrier layer of the laminate, whereby an adhesive layer / thermoadhesive resin layer is formed on the barrier layer. Were laminated.
 次に、得られた各積層体の基材層側の表面の全面に、表2に記載の樹脂(ポリエステルウレタン樹脂とアクリル樹脂を表2に記載の割合で含む樹脂)とアマイド系添加剤(エルカ酸アミド、表2に記載の含有量)を含む塗料を用いて厚さ1μmの印字受容層を形成して、電池用包装材料を得た。 Next, the resin described in Table 2 (resin containing a polyester urethane resin and an acrylic resin in the ratio described in Table 2) and an amide-based additive ( A print-receiving layer having a thickness of 1 μm was formed using a paint containing erucic acid amide (contents shown in Table 2) to obtain a battery packaging material.
 実施例1~16及び比較例1~2と同様にして、実施例17~23で得られた各電池用包装材料について、印字受容層のぬれ張力の測定、基材層側の表面の動摩擦係数の測定、印字性評価、成形性の評価を行った。結果を表2に示す。なお、表2には、前述の実施例14と実施例6の結果も記載した。 In the same manner as in Examples 1 to 16 and Comparative Examples 1 and 2, for each battery packaging material obtained in Examples 17 to 23, measurement of the wetting tension of the print receiving layer and the dynamic friction coefficient of the surface on the base material layer side Measurement, printability evaluation, and moldability evaluation. The results are shown in Table 2. Table 2 also shows the results of Example 14 and Example 6 described above.
(テープ密着性の評価)
 実施例17~23、さらに実施例6,14で得られた各電池用包装材料の印字受容層のテープ密着性を以下の方法により評価した。結果を表2に示す。図4、5に示すように、上記で得られた各電池用包装材料30を幅15mm、長さ175mmのサイズで切出し、幅15mm、長さ175mm、厚み2mmのアクリル板10に両面テープ20で貼り付け固定し、貼りつけた電池用包装材料30の印字受容層表面に、幅5mm、長さ125mmの両面テープ40(TesaSE社製 tesa(登録商標 70415))を貼った。さらに、その両面テープ40の上から幅15mm、長さ300mmで切出した厚み40μmのアルミニウム箔50(8079材)を重ね、JIS-Z0237:2009粘着テープ・粘着シート試験方法の10.2.4に記載された圧着装置を用いて電池用包材材料30と両面テープ40とアルミニウム箔50の圧着を行った。なお、温度24℃、相対湿度50%RHの環境において、圧着装置のローラーの質量は2Kg、10mm/secの速度で2往復している。ローラーで圧着して温度24℃、相対湿度50%RHで1時間保管した後、両面テープ40に貼りつけた、アルミニウム箔50を両面テープ40の端で180°に折返し、上述した電池用包装材料を固定したアクリル板10と180°に折返したアルミニウム箔50を引張試験機の上下で固定して、180°の剥離角、チャック間距離200mm、50mm/minの速度、温度24℃、相対湿度50%RHの環境で引張試験を行いテープの密着性を評価した。このとき両面テープ40はアルミニウム箔50側に密着した状態で剥離し、アクリル板10と電池用包装材料30間の剥がれも発生せず、電池用包装材料30と両面テープ40間で剥離した。なお、得られた剥離強度は、測定の最初の25mmと最後の20mmを除いた平均値として算出したものであり、以下に示す基準でテープ密着性を評価した。結果を表2に示す。
A: 剥離強度 5N/5mm以上
B: 剥離強度 3N/5mm以上、5N/5mmより小さい
C: 剥離強度 3N/5mmより小さい
(Evaluation of tape adhesion)
The tape adhesion of the print receiving layer of each battery packaging material obtained in Examples 17 to 23 and Examples 6 and 14 was evaluated by the following method. The results are shown in Table 2. As shown in FIGS. 4 and 5, each battery packaging material 30 obtained above is cut out in a size of 15 mm in width and 175 mm in length, and the acrylic plate 10 having a width of 15 mm, a length of 175 mm, and a thickness of 2 mm is coated with a double-sided tape 20. The double-sided tape 40 having a width of 5 mm and a length of 125 mm (tesa (registered trademark 70415) manufactured by TesaSE) was attached to the surface of the print receiving layer of the battery packaging material 30 that was attached and fixed. Furthermore, an aluminum foil 50 (8079 material) having a thickness of 15 mm and a length of 300 mm cut out from the double-sided tape 40 and a thickness of 40 μm is stacked, and the JIS-Z0237: 2009 pressure-sensitive adhesive tape / pressure-sensitive adhesive sheet test method is 10.2.4. The battery packaging material 30, the double-sided tape 40, and the aluminum foil 50 were crimped using the described crimping apparatus. Note that, in an environment of a temperature of 24 ° C. and a relative humidity of 50% RH, the mass of the roller of the crimping device reciprocates twice at a speed of 2 kg and 10 mm / sec. After being pressed with a roller and stored at a temperature of 24 ° C. and a relative humidity of 50% RH for 1 hour, the aluminum foil 50 attached to the double-sided tape 40 is folded back to 180 ° at the end of the double-sided tape 40, and the above-described battery packaging material Acrylic plate 10 fixed with aluminum foil 50 folded at 180 ° is fixed at the top and bottom of a tensile testing machine, 180 ° peeling angle, 200 mm distance between chucks, speed of 50 mm / min, temperature 24 ° C., relative humidity 50 A tensile test was performed in an environment of% RH to evaluate the adhesion of the tape. At this time, the double-sided tape 40 was peeled in a state of being in close contact with the aluminum foil 50 side, and no peeling between the acrylic plate 10 and the battery packaging material 30 occurred, and the peeling was performed between the battery packaging material 30 and the double-sided tape 40. The obtained peel strength was calculated as an average value excluding the first 25 mm and the last 20 mm of the measurement, and the tape adhesion was evaluated according to the following criteria. The results are shown in Table 2.
A: Peel strength 5N / 5mm or more B: Peel strength 3N / 5mm or more, less than 5N / 5mm C: Peel strength 3N / 5mm or less
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
1 基材層
2 接着剤層
3 バリア層
4 熱融着性樹脂層
5 接着層
6 印字受容層
DESCRIPTION OF SYMBOLS 1 Base material layer 2 Adhesive layer 3 Barrier layer 4 Heat-fusible resin layer 5 Adhesive layer 6 Print receiving layer

Claims (13)

  1.  外側から、少なくとも、基材層、バリア層、及び熱融着性樹脂層をこの順に備える積層体からなる電池用包装材料であって、
     前記電池用包装材料はその外側表面に印字受容層を備えており、
     前記印字受容層は、アマイド系添加剤を含んでいる、電池用包装材料。
    From the outside, a battery packaging material consisting of a laminate comprising at least a base material layer, a barrier layer, and a heat-fusible resin layer in this order,
    The battery packaging material has a print receiving layer on its outer surface,
    The printing receiving layer is a battery packaging material containing an amide-based additive.
  2.  前記アマイド系添加剤は、エルカ酸アミドである、請求項1に記載の電池用包装材料。 The battery packaging material according to claim 1, wherein the amide additive is erucic acid amide.
  3.  前記印字受容層の前記アマイド系添加剤の含有量が、0.3質量%以上6.0質量%以下である、請求項1または2に記載の電池用包装材料。 The battery packaging material according to claim 1 or 2, wherein the content of the amide-based additive in the print receiving layer is 0.3 mass% or more and 6.0 mass% or less.
  4.  前記印字受容層が、前記電池用包装材料の外側表面の全面に形成されている、請求項1~3のいずれかに記載の電池用包装材料。 The battery packaging material according to any one of claims 1 to 3, wherein the print receiving layer is formed on the entire outer surface of the battery packaging material.
  5.  前記印字受容層の外側表面に印字層を備えている、請求項1~4のいずれかに記載の電池用包装材料。 The battery packaging material according to any one of claims 1 to 4, further comprising a printing layer on an outer surface of the printing receiving layer.
  6.  前記印字受容層の厚みが、0.001μm以上50μm以下の範囲にある、請求項1~5のいずれかに記載の電池用包装材料。 The battery packaging material according to any one of claims 1 to 5, wherein the thickness of the print receiving layer is in the range of 0.001 µm to 50 µm.
  7.  前記基材層が、ポリアミド樹脂及びポリエステル樹脂の少なくとも一方により形成されている、請求項1~6のいずれかに記載の電池用包装材料。 The battery packaging material according to any one of claims 1 to 6, wherein the base material layer is formed of at least one of a polyamide resin and a polyester resin.
  8.  前記印字受容層は、アクリル樹脂を80質量%以上含む樹脂と、前記アマイド系添加剤とを含んでいる、請求項1~7のいずれかに記載の電池用包装材料。 The battery packaging material according to any one of claims 1 to 7, wherein the print receiving layer contains a resin containing 80% by mass or more of an acrylic resin and the amide-based additive.
  9.  少なくとも正極、負極、及び電解質を備えた電池素子が、請求項1~8のいずれかに記載の電池用包装材料により形成された包袋体内に収容されている、電池。 A battery in which a battery element including at least a positive electrode, a negative electrode, and an electrolyte is accommodated in a package formed by the battery packaging material according to any one of claims 1 to 8.
  10.  外側から、少なくとも、印字受容層と、基材層と、バリア層と、熱融着性樹脂層とをこの順に備える積層体からなる電池用包装材料の製造方法であって、
     前記印字受容層と、前記基材層と、前記バリア層と、前記熱融着性樹脂層とを積層して積層体を得る積層工程を備えており、
     前記印字受容層は前記電池用包装材料の外側表面に備えられ、前記印字受容層は、アマイド系添加剤を含んでいる、電池用包装材料の製造方法。
    From the outside, at least a printing receiving layer, a base material layer, a barrier layer, and a method for producing a battery packaging material comprising a laminate comprising a heat-fusible resin layer in this order,
    Comprising a laminating step of laminating the print receiving layer, the base material layer, the barrier layer, and the heat-fusible resin layer to obtain a laminate,
    The printing receiving layer is provided on an outer surface of the battery packaging material, and the printing receiving layer contains an amide-based additive.
  11.  前記印字受容層の表面に印字層を形成する工程をさらに備える、請求項10に記載の電池用包装材料の製造方法。 The method for producing a battery packaging material according to claim 10, further comprising a step of forming a printing layer on a surface of the printing receiving layer.
  12.  請求項1~8のいずれかに記載の電池用包装材料により形成された包装体内に、少なくとも正極、負極、及び電解質を備えた電池素子を収容する工程を備える、電池の製造方法。 A method for producing a battery, comprising a step of accommodating a battery element including at least a positive electrode, a negative electrode, and an electrolyte in a package formed of the battery packaging material according to any one of claims 1 to 8.
  13.  前記印字受容層の表面に印字層を形成する工程をさらに備える、請求項12に記載の電池の製造方法。 The battery manufacturing method according to claim 12, further comprising a step of forming a printing layer on a surface of the printing receiving layer.
PCT/JP2017/038793 2016-10-26 2017-10-26 Battery packaging material and method for manufacturing same, battery and method of manufacturing same WO2018079681A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018547764A JP6519715B2 (en) 2016-10-26 2017-10-26 Packaging material for battery, method for manufacturing the same, battery and method for manufacturing the same
CN201780055487.5A CN109952664B (en) 2016-10-26 2017-10-26 Battery packaging material, method for producing same, battery, and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-209967 2016-10-26
JP2016209967 2016-10-26

Publications (1)

Publication Number Publication Date
WO2018079681A1 true WO2018079681A1 (en) 2018-05-03

Family

ID=62025065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/038793 WO2018079681A1 (en) 2016-10-26 2017-10-26 Battery packaging material and method for manufacturing same, battery and method of manufacturing same

Country Status (3)

Country Link
JP (2) JP6519715B2 (en)
CN (1) CN109952664B (en)
WO (1) WO2018079681A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109546016A (en) * 2018-10-31 2019-03-29 上海恩捷新材料科技有限公司 Packaging film for electrochemical cell and preparation method thereof
CN111216424A (en) * 2018-11-26 2020-06-02 昭和电工包装株式会社 Outer casing for electricity storage device and method for manufacturing same
WO2020153457A1 (en) * 2019-01-23 2020-07-30 大日本印刷株式会社 All-solid-state battery and method for manufacturing same
CN113330620A (en) * 2019-01-23 2021-08-31 大日本印刷株式会社 Exterior material for all-solid-state battery, method for producing same, and all-solid-state battery

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7395923B2 (en) * 2019-10-03 2023-12-12 Ube株式会社 Polyamide resin film and laminate for bonding with prepreg
CN111213953B (en) * 2020-01-16 2021-06-04 温州市丰盛鞋业有限公司 Leather boot and preparation method thereof
WO2024080837A1 (en) * 2022-10-14 2024-04-18 주식회사 엘지에너지솔루션 Secondary battery
JP2024081206A (en) * 2022-12-06 2024-06-18 株式会社レゾナック・パッケージング Battery packaging materials

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013191581A (en) * 2011-12-28 2013-09-26 Dainippon Printing Co Ltd Packaging material for electrochemical cell
JP2014007131A (en) * 2012-06-27 2014-01-16 Dainippon Printing Co Ltd Packaging material for electrochemical cell
WO2016047416A1 (en) * 2014-09-26 2016-03-31 大日本印刷株式会社 Batrery packaging material
JP2016186934A (en) * 2015-03-26 2016-10-27 大日本印刷株式会社 Packaging material for battery, manufacturing method of the same, and battery
JP2017073384A (en) * 2015-10-08 2017-04-13 凸版印刷株式会社 Sheet for drawing
WO2017141960A1 (en) * 2016-02-18 2017-08-24 凸版印刷株式会社 Exterior material for power storage devices, and method for producing exterior material for power storage devices
WO2017179636A1 (en) * 2016-04-12 2017-10-19 大日本印刷株式会社 Packaging material for batteries, method for producing same and battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102994001A (en) * 2012-12-26 2013-03-27 宁波大榭开发区综研化学有限公司 Waterproof double sticky tape
JP6205205B2 (en) 2013-08-09 2017-09-27 昭和電工パッケージング株式会社 Molding packaging material
JP6459306B2 (en) * 2013-08-30 2019-01-30 凸版印刷株式会社 Exterior materials for lithium-ion batteries
JP6657717B2 (en) 2015-09-29 2020-03-04 東洋インキScホールディングス株式会社 Packaging materials for power storage devices

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013191581A (en) * 2011-12-28 2013-09-26 Dainippon Printing Co Ltd Packaging material for electrochemical cell
JP2014007131A (en) * 2012-06-27 2014-01-16 Dainippon Printing Co Ltd Packaging material for electrochemical cell
WO2016047416A1 (en) * 2014-09-26 2016-03-31 大日本印刷株式会社 Batrery packaging material
JP2016186934A (en) * 2015-03-26 2016-10-27 大日本印刷株式会社 Packaging material for battery, manufacturing method of the same, and battery
JP2017073384A (en) * 2015-10-08 2017-04-13 凸版印刷株式会社 Sheet for drawing
WO2017141960A1 (en) * 2016-02-18 2017-08-24 凸版印刷株式会社 Exterior material for power storage devices, and method for producing exterior material for power storage devices
WO2017179636A1 (en) * 2016-04-12 2017-10-19 大日本印刷株式会社 Packaging material for batteries, method for producing same and battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109546016A (en) * 2018-10-31 2019-03-29 上海恩捷新材料科技有限公司 Packaging film for electrochemical cell and preparation method thereof
CN111216424A (en) * 2018-11-26 2020-06-02 昭和电工包装株式会社 Outer casing for electricity storage device and method for manufacturing same
WO2020153457A1 (en) * 2019-01-23 2020-07-30 大日本印刷株式会社 All-solid-state battery and method for manufacturing same
JP6756421B1 (en) * 2019-01-23 2020-09-16 大日本印刷株式会社 All-solid-state battery and its manufacturing method
CN113316857A (en) * 2019-01-23 2021-08-27 大日本印刷株式会社 All-solid-state battery and method for manufacturing same
CN113330620A (en) * 2019-01-23 2021-08-31 大日本印刷株式会社 Exterior material for all-solid-state battery, method for producing same, and all-solid-state battery
EP3916871A4 (en) * 2019-01-23 2023-01-25 Dai Nippon Printing Co., Ltd. All-solid-state battery and method for manufacturing same
JP7443989B2 (en) 2019-01-23 2024-03-06 大日本印刷株式会社 All-solid-state battery and its manufacturing method
CN113316857B (en) * 2019-01-23 2024-06-14 大日本印刷株式会社 All-solid battery and manufacturing method thereof

Also Published As

Publication number Publication date
JP2019160799A (en) 2019-09-19
CN109952664B (en) 2021-11-30
CN109952664A (en) 2019-06-28
JP7031638B2 (en) 2022-03-08
JPWO2018079681A1 (en) 2019-06-24
JP6519715B2 (en) 2019-05-29

Similar Documents

Publication Publication Date Title
WO2018079681A1 (en) Battery packaging material and method for manufacturing same, battery and method of manufacturing same
JP6477967B1 (en) Battery packaging material, manufacturing method thereof, and battery
JP6566133B2 (en) Battery packaging material, method for producing the same, battery, and polyester film
WO2017209218A1 (en) Battery packaging material, production method therefor, battery, and polyester film
JP7163922B2 (en) BATTERY PACKAGING MATERIAL, BATTERY, MANUFACTURING METHOD THEREOF, AND METHOD FOR IMPROVING BATTERY PACKAGING MATERIAL WITH INK PRINTABILITY
JP7238403B2 (en) BATTERY PACKAGING MATERIAL, MANUFACTURING METHOD THEREOF, AND BATTERY
JP2020155364A (en) Exterior material for power storage device, manufacturing method of the same, and power storage device
JP7136108B2 (en) Battery packaging materials and batteries
WO2015137378A1 (en) Battery packaging material
JP2020155411A (en) Packaging material for battery, manufacturing method of the same, and battery
WO2016047416A1 (en) Batrery packaging material
JP6710896B2 (en) Battery packaging material
WO2018066672A1 (en) Packaging material for battery, manufacturing method therefor, and battery
JP2020129543A (en) Power storage device exterior material, manufacturing method of the same, and power storage device
JP2016072211A5 (en)
JP6596870B2 (en) Method for producing molded body for battery packaging material
JP2016186871A (en) Battery packaging material
JP6587039B1 (en) Battery packaging material, battery, manufacturing method thereof, and polyester film
JP2019016537A (en) Packaging material for battery, manufacturing method thereof, and battery
JP6592938B2 (en) Battery packaging materials
JP7294132B2 (en) Battery packaging materials and batteries
WO2019039504A1 (en) Packaging material for batteries, battery, and production method for packaging material for batteries
JP2016184477A (en) Battery packaging material
JP2017069043A (en) Battery-packaging material
JP2016184478A (en) Battery packaging material

Legal Events

Date Code Title Description
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17866129

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018547764

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17866129

Country of ref document: EP

Kind code of ref document: A1