WO2018066438A1 - 遮炎性織物 - Google Patents

遮炎性織物 Download PDF

Info

Publication number
WO2018066438A1
WO2018066438A1 PCT/JP2017/035047 JP2017035047W WO2018066438A1 WO 2018066438 A1 WO2018066438 A1 WO 2018066438A1 JP 2017035047 W JP2017035047 W JP 2017035047W WO 2018066438 A1 WO2018066438 A1 WO 2018066438A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
yarn
flame
fibers
fabric
Prior art date
Application number
PCT/JP2017/035047
Other languages
English (en)
French (fr)
Other versions
WO2018066438A9 (ja
Inventor
原田大
土倉弘至
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CA3038925A priority Critical patent/CA3038925A1/en
Priority to US16/339,062 priority patent/US11248319B2/en
Priority to RU2019112105A priority patent/RU2744284C2/ru
Priority to KR1020197008318A priority patent/KR20190056371A/ko
Priority to CN201780050959.8A priority patent/CN109642361B/zh
Priority to MX2019003778A priority patent/MX2019003778A/es
Priority to JP2018516201A priority patent/JP7036006B2/ja
Priority to BR112019006561A priority patent/BR112019006561A2/pt
Priority to EP17858276.3A priority patent/EP3524720B1/en
Publication of WO2018066438A1 publication Critical patent/WO2018066438A1/ja
Publication of WO2018066438A9 publication Critical patent/WO2018066438A9/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • D02G3/04Blended or other yarns or threads containing components made from different materials
    • D02G3/045Blended or other yarns or threads containing components made from different materials all components being made from artificial or synthetic material
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/50Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • D02G3/04Blended or other yarns or threads containing components made from different materials
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • D02G3/443Heat-resistant, fireproof or flame-retardant yarns or threads
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D1/00Woven fabrics designed to make specified articles
    • D03D1/0035Protective fabrics
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/242Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads inorganic, e.g. basalt
    • D03D15/267Glass
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/283Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads synthetic polymer-based, e.g. polyamide or polyester fibres
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/40Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads
    • D03D15/41Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads with specific twist
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/50Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
    • D03D15/513Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads heat-resistant or fireproof
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/50Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
    • D03D15/573Tensile strength
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/50Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
    • D03D15/587Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads adhesive; fusible
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/02Inorganic fibres based on oxides or oxide ceramics, e.g. silicates
    • D10B2101/06Glass
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2201/00Cellulose-based fibres, e.g. vegetable fibres
    • D10B2201/20Cellulose-derived artificial fibres
    • D10B2201/22Cellulose-derived artificial fibres made from cellulose solutions
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/02Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
    • D10B2331/021Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides aromatic polyamides, e.g. aramides
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/04Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/30Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polycondensation products not covered by indexing codes D10B2331/02 - D10B2331/14
    • D10B2331/301Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polycondensation products not covered by indexing codes D10B2331/02 - D10B2331/14 polyarylene sulfides, e.g. polyphenylenesulfide
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/04Heat-responsive characteristics
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/04Heat-responsive characteristics
    • D10B2401/041Heat-responsive characteristics thermoplastic; thermosetting
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2501/00Wearing apparel
    • D10B2501/04Outerwear; Protective garments
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2503/00Domestic or personal

Definitions

  • the present invention relates to a flameproof fabric.
  • halogen type or phosphorus type As the flame retardant, halogen type or phosphorus type is generally used, but in recent years, replacement of halogen type chemicals with phosphorus type chemicals has been advanced due to environmental regulations. However, some phosphorus drugs do not reach the flame retardant effect of conventional halogen drugs.
  • Patent Document 1 carbonized flame retardant polymer meta-aramid and flame-retardant polyester and modacrylic fiber
  • Patent Document 2 meta-aramid and PPS composite
  • Patent Document 3 flame-retardant treated with flame-resistant yarn A polyester composite
  • the conventional flame retardant performance is based on the LOI value specified in JIS and the flameproof standard specified in the Fire Service Act, both under conditions where the ignition source and heating time are standardized.
  • the performance was not sufficient to prevent the spread of fire when exposed to flame for a long time like an actual fire.
  • the thickness of the flame retardant material must be made sufficiently thick, or it must be combined with a non-flammable inorganic material, so that the texture is greatly impaired and flexibility is increased. In addition to being poor, there was a problem that workability on a curved surface was lowered.
  • Patent Document 1 Although the method described in Patent Document 1 is flexible and has a high LOI value and excellent flame retardancy, since meta-aramid rapidly shrinks and hardens due to temperature rise, local stress concentration occurs. The textile form cannot be maintained and the ability to block the flame for a long time is lacking.
  • Patent Document 2 discloses that compounding meta-aramid and PPS is excellent in chemical resistance and has a high LOI value.
  • this is a string-like evaluation and is a textile form for blocking flames for a long time. Is not described. Moreover, even if it uses such a technique as it is and it is a textile form, it cannot be said that it is enough in the performance which interrupts a flame for a long time.
  • Patent Document 3 discloses a woven fabric of flame-resistant yarn and flame-retardant polyester. However, since warp is a flame-retardant polyester, the fabric structure collapses due to prolonged flame contact, although it exhibits flame retardancy. End up lacking the ability to block the flame.
  • the present invention has been made in view of the problems of such a conventional flame retardant fabric, and an object of the present invention is to provide a flame barrier fabric having high flame barrier properties.
  • the flameproof fabric of the present invention has the following configuration. That is, Non-melting fiber A having a high-temperature shrinkage rate of 3% or less, and a thermoplastic fiber having a LOI value of 25 or more according to JIS K 7201-2 (2007) and a melting point lower than the ignition temperature of non-melting fiber A B is a woven fabric containing warp and weft yarns, the breaking elongation of the warp yarns and weft yarns is greater than 5%, and the area ratio of the unmelted fiber A is 10 in the projected area in the complete structure of the woven fabric. %, The area ratio of the thermoplastic fiber B is 5% or more, and the thickness is 0.08 mm or more according to the JIS L 1096-A method (2010).
  • the flameproof fabric of the present invention preferably contains fibers C other than the non-melted fiber A and the thermoplastic fiber B in an area ratio of the projected area in the complete structure of the fabric of 20% or less.
  • the non-molten fiber A is preferably selected from the group of flameproofed fibers, meta-aramid fibers, glass fibers, and mixtures thereof.
  • the thermoplastic fiber B is composed of polyphenylene sulfide, flame retardant liquid crystal polyester, flame retardant poly (alkylene terephthalate), flame retardant poly (acrylonitrile butadiene styrene), flame retardant polysulfone, poly (Ether-ether-ketone), poly (ether-ketone-ketone), polyethersulfone, polyarylate, polyphenylsulfone, polyetherimide, polyamideimide, and a fiber made of a resin selected from a group thereof It is preferable.
  • the flame barrier fabric of the present invention has high flame barrier properties by having the above configuration.
  • the high-temperature shrinkage rate is measured by measuring the original length L 0 after leaving the fiber as a raw material for the nonwoven fabric in a standard state (20 ° C., relative humidity 65%) for 12 hours and then applying a tension of 0.1 cN / dtex.
  • the fiber was exposed to a dry heat atmosphere at 290 ° C. for 30 minutes without applying a load, sufficiently cooled in a standard state (20 ° C., relative humidity 65%), and further subjected to 0% to the fiber.
  • the length L 1 is measured by applying a tension of .1 cN / dtex, and is a numerical value obtained from L 0 and L 1 by the following formula.
  • High temperature shrinkage [(L 0 ⁇ L 1 ) / L 0 ] ⁇ 100 (%)
  • the high temperature shrinkage of the non-molten fiber A is 3% or less.
  • the high temperature shrinkage rate is low, and it is preferable that the breaking elongation of the yarn constituting the fabric is high.
  • the high temperature shrinkage rate is preferably ⁇ 5% or more.
  • the high temperature shrinkage rate is preferably 0 to 2%.
  • the LOI value is a volume percentage of the minimum oxygen amount necessary for sustaining the combustion of a substance in a mixed gas of nitrogen and oxygen, and it can be said that the higher the LOI value, the more difficult it is to burn. Accordingly, the LOI value of the thermoplastic fiber B of the flameproof woven fabric of the present invention in accordance with JIS K 7201-2 (2007) is 25 or more. If the LOI value of the thermoplastic fiber B is less than 25, the thermoplastic fiber is easy to burn, it is difficult to extinguish even if the fire source is removed, and the spread of fire cannot be prevented. A higher LOI value is preferable, but the upper limit of the LOI value of a substance that can be actually obtained is about 65.
  • the ignition temperature is a spontaneous ignition temperature measured by a method based on JIS K 7193 (2010).
  • the melting point is a value measured by a method according to JIS K 7121 (2012).
  • the breaking elongation of the yarn refers to that measured by a method based on JIS L 1095 (2010). Specifically, an initial load of 0.2 cN / dtex is applied, a tensile test is performed under the conditions of a gripping interval of 200 mm and a tensile speed of 100% strain / minute, and the elongation at the time when the yarn breaks is obtained. The test is conducted 50 times, and the average value of the ones excluding those broken at the grip is adopted.
  • the breaking elongation of the warp and the weft constituting the flameproof fabric of the present invention is 5% or more. If the breaking elongation of the warp and weft is less than 5%, the fabric is likely to break due to the thermal stress generated between the high temperature part that is in contact with the flame and the low temperature part that is not in contact with the flame. Therefore, it is impossible to apply the tension.
  • the non-molten fiber A refers to a fiber that does not liquefy when exposed to a flame and maintains the fiber shape, and preferably does not liquefy and ignite at a temperature of 700 ° C. What does not ignite is more preferable.
  • the non-melted fiber having the high temperature shrinkage rate in the range defined by the present invention include flameproofed fiber, meta-aramid fiber, and glass fiber.
  • the flame-resistant fiber is a fiber subjected to flame resistance treatment using a fiber selected from acrylonitrile-based, pitch-based, cellulose-based, phenol-based fiber and the like as a raw material. These may be used alone or in combination of two or more.
  • a flame resistant fiber that has a low high temperature shrinkage rate, and that progresses in carbonization due to an oxygen blocking effect by a film formed by the thermoplastic fiber B to be described later at the time of flame contact, and further improves the heat resistance at high temperatures, is preferable.
  • acrylonitrile-based flame-resistant fibers are more preferably used as fibers having a small specific gravity and being flexible and excellent in flame retardancy.
  • Such flame-resistant fibers are obtained by using acrylic fibers as precursors in high-temperature air. Obtained by heating and oxidation.
  • meta-aramid fibers are high in high-temperature shrinkage and do not satisfy the high-temperature shrinkage specified in the present invention. If it exists, it can be preferably used.
  • glass fiber has a small elongation at break and does not satisfy the range of elongation at break specified in the present invention, but it is used as a spun yarn or as a yarn constituting a woven fabric by being compounded with different materials. Any glass fiber within the elongation can be preferably used.
  • the non-melting fiber preferably used in the present invention is used in a method of combining non-melting fiber alone or with a different material, and may be in any form of filament or staple.
  • the fiber length is preferably in the range of 30 to 60 mm, and more preferably in the range of 38 to 51 mm. If the fiber length is in the range of 38 to 51 mm, it can be made into a spun yarn in a general spinning process, and can be easily mixed with a different material.
  • the thickness of the single fiber of the non-melt fiber is not particularly limited, but the single fiber fineness is preferably in the range of 0.1 to 10 dtex from the viewpoint of the passability in the spinning process.
  • the thermoplastic fiber B used in the present invention has a LOI value of 25 or more and a melting point lower than the ignition temperature of the unmelted fiber A. If the LOI value of the thermoplastic fiber B is less than 25, combustion in the air cannot be suppressed, and the polymer is not easily carbonized. When the melting point of the thermoplastic fiber B is equal to or higher than the ignition temperature of the non-molten fiber A, the melted polymer is emitted before forming a film between the surface of the non-molten fiber A and between the fibers, so a flame shielding effect cannot be expected. .
  • the melting point of the thermoplastic fiber B is preferably 200 ° C.
  • polyphenylene sulfide flame retardant liquid crystal polyester, flame retardant poly (alkylene terephthalate), flame retardant poly (acrylonitrile butadiene styrene), flame retardant polysulfone, poly (ether-ether-ketone), poly ( Ether-ketone-ketone), polyethersulfone, polyarylate, polyphenylsulfone, polyetherimide, polyamideimide and fibers composed of thermoplastic resins selected from the group thereof. These may be used alone or in combination of two or more.
  • polyphenylene sulfide fibers are most preferable from the viewpoint of the high LOI value, the melting point range, and the availability.
  • PPS fibers polyphenylene sulfide fibers
  • a polymer whose LOI value is not within the range defined by the present invention can be preferably used by treating with a flame retardant if the LOI value after treatment is within the range defined by the present invention.
  • the flame retardant is not particularly limited, but a phosphorus-based or sulfur-based flame retardant that generates phosphoric acid or sulfuric acid during thermal decomposition and develops a mechanism for dehydrating and carbonizing the polymer substrate is preferable.
  • thermoplastic fiber B used in the present invention is used by a method of combining the above thermoplastic resin alone or with a different material, and may be in any form of a filament or a staple.
  • the fiber length is preferably in the range of 30 to 60 mm, and more preferably in the range of 38 to 51 mm. If the fiber length is in the range of 38 to 51 mm, it can be made into a spun yarn in a general spinning process, and can be easily mixed with a different material.
  • the thickness of the single fiber of the thermoplastic fiber B is not particularly limited, but the single fiber fineness is preferably in the range of 0.1 to 10 dtex from the viewpoint of passing through the spinning process. .
  • the total fineness when used as a filament and the yarn count when used as a spun yarn are not particularly limited as long as they satisfy the provisions of the present invention, and may be appropriately selected in consideration of a desired thickness.
  • the PPS fiber preferably used in the present invention is a synthetic fiber made of a polymer having a polymer structural unit as a main structural unit of — (C 6 H 4 —S) —.
  • Typical examples of these PPS polymers include polyphenylene sulfide, polyphenylene sulfide sulfone, polyphenylene sulfide ketone, random copolymers thereof, block copolymers, and mixtures thereof.
  • polyphenylene sulfide containing a p-phenylene unit represented by — (C 6 H 4 —S) —, preferably 90 mol% or more, as the main structural unit of the polymer is desirable. From the viewpoint of mass, polyphenylene sulfide containing 80% by mass, more preferably 90% by mass or more of p-phenylene units is desirable.
  • the PPS fiber preferably used in the present invention is used by a method of combining PPS fiber alone or with a different material, and may be in any form of filament or staple.
  • the fiber length is preferably in the range of 30 to 60 mm, and more preferably in the range of 38 to 51 mm. If the fiber length is in the range of 38 to 51 mm, it can be made into a spun yarn in a general spinning process, and can be easily mixed with a different material.
  • the thickness of the single fiber of PPS is not particularly limited, but it is preferable that the single fiber fineness is in the range of 0.1 to 10 dtex from the viewpoint of passing through the spinning process.
  • the method for producing the PPS fiber used in the present invention is preferably a method in which the polymer having the phenylene sulfide structural unit described above is melted at a melting point or higher and spun from a spinneret to form a fiber.
  • the spun fiber is an unstretched PPS fiber as it is.
  • Most of the unstretched PPS fibers have an amorphous structure and a high elongation at break.
  • stretched yarns are commercially available in which the fiber is stretched and oriented following spinning to improve the strength and dimensional stability of the fiber.
  • a plurality of PPS fibers such as “Torcon” (registered trademark) (manufactured by Toray Industries, Inc.) and “Procon” (registered trademark) (manufactured by Toyobo) are in circulation.
  • the unstretched PPS fiber and the stretched yarn can be used in combination within the range satisfying the scope of the present invention.
  • a fiber C other than the non-melted fiber A and the thermoplastic fiber B may be contained in order to further add a specific performance to the knitted fabric.
  • polyester fibers other than vinylon fibers and thermoplastic fibers B, nylon fibers, and the like may be used.
  • spandex fibers may be used to impart stretch properties.
  • spandex fibers examples include “Lycra” (registered trademark) of East Leoperontex Co., Ltd., “Roika” (registered trademark) of Asahi Kasei Corporation, “Creola” (registered trademark) of Hyosun Corporation, and the like.
  • the content of the fiber C is not particularly limited as long as the effect of the present invention is not impaired.
  • the area ratio of the fibers C other than the non-melt fiber A and the thermoplastic fiber B is as follows. It is preferably 20% or less, and more preferably 10% or less.
  • the thickness of the fabric of the present invention is measured by a method according to JIS L 1096 (2010) and is 0.08 mm or more.
  • the thickness of the woven fabric is preferably 0.3 mm or more. If the thickness of the woven fabric is less than 0.08 mm, sufficient flame shielding performance cannot be obtained.
  • the density of the fabric of the present invention is not particularly limited and is appropriately selected depending on the required flame shielding performance. If the density is small, the heat insulation is improved by increasing the air layer. As long as the property is obtained.
  • either a spun yarn or a filament yarn can be used.
  • each of the non-melt fiber A and the thermoplastic fiber B may be used as a spun yarn, or the non-melt fiber A and the thermoplastic fiber B may be blended at a predetermined ratio within the scope of the present invention.
  • the number of crimps of the fibers is preferably 7 pieces / 2.54 cm or more. However, if the number of crimps is too large, the fiber passes through the process of forming a sliver with a carding machine. Since the properties deteriorate, it is preferably less than 30 pieces / 2.54 cm.
  • the fiber length of the non-melted fiber and the fiber length of the molten fiber are preferably in the range of 30 to 60 mm, and more preferably in the range of 38 to 51 mm.
  • the blended yarn can be obtained, for example, by first uniformly mixing using a fiber opening device, then forming a sliver with a carding machine, drawing with a drawing machine, roving and spinning. A plurality of the spun yarns obtained may be twisted together.
  • a false twisted yarn of each of the non-molten fiber A and the thermoplastic fiber B, or a composite of the non-melt fiber A and the thermoplastic fiber B by a method such as air blending or composite false twist is used. be able to.
  • the woven fabric of the present invention is woven using the spun yarn or filament yarn obtained above using an air jet loom, water jet loom, rapier loom, projectile loom, shuttle loom, or the like.
  • warp gluing may be performed or no gluing may be performed, but in the case of using a yarn containing flame-resistant yarn fiber, gluing is performed in order to suppress fuzz during weaving of the flame-resistant yarn. It is preferable to carry out.
  • the weave structure may be selected from plain weave, twill weave, satin weave and their changed structures according to the texture and design. Furthermore, a multi-woven structure such as a double weave may be used.
  • the thread and the woven structure constituting the woven fabric have an area ratio of the non-melted fiber A of 10% or more and an area ratio of the thermoplastic fiber B of 5% in the projected area in the complete structure of the woven fabric. If the area ratio of the non-molten fiber A is less than 10%, the function as an aggregate becomes insufficient. The area ratio of the non-molten fiber A is preferably 15% or more. If the area ratio of the thermoplastic fiber B is less than 5%, the thermoplastic fiber does not spread sufficiently in the form of a film between the non-melted fibers of the aggregate. The area ratio of the thermoplastic fiber B is preferably 10% or more.
  • the complete structure of the fabric refers to the smallest repeating unit constituting the fabric.
  • Cotton yarn count constituting the fabric is a N e, the yarn cross-section is converted regarded as circular, when the density of the yarn ⁇ of (g / cm 3), the yarn diameter D (cm), the following Calculated by the formula.
  • the density ⁇ of the fiber was measured by a method according to ASTM D4018-11.
  • FIG. 2 is a conceptual diagram of the complete structure of a plain woven fabric for explaining the complete structure of the woven fabric and the projected area of each fiber.
  • the warp yarn density is n 1 (lines / inch (2.54 cm))
  • the weft yarn density is n 2 (lines / inch (2.54 cm)
  • the length of the complete structure of the woven fabric in the length direction 21 The length 22 in the horizontal direction is (2.54 ⁇ 2) / n 2 (cm) and (2.54 ⁇ 2) / n 1 (cm), respectively.
  • thermoplastic fiber B melts and coats the surface of the fabric when the flameproof fabric of the present invention is in contact with the flame.
  • the area ratio (S ⁇ / S ⁇ ) occupied by each fiber on the surface of the yarn constituting the fabric is considered to be equal to the volume ratio (V ⁇ / V ⁇ ) occupied by each fiber, and the projected area of the yarn constituting the fabric
  • the projected area of each fiber is calculated by multiplying the area ratio occupied by each fiber.
  • the calculation can be performed by the same procedure as described above from the weight mixing ratio of the respective fibers.
  • the calculation can be performed according to the above-mentioned concept.
  • the calculation is performed using the projected area of the surface to which the flame hits.
  • the set temperature is good enough to obtain the effect of suppressing the high temperature shrinkage, and is preferably 160 to 240 ° C., more preferably 190 to 230 ° C.
  • Resin processing may be performed for the purpose of improving wear resistance or improving texture as long as the effect of the present invention is not impaired at the same time as heat setting or after heat setting.
  • resin processing can be performed by either pad dry curing, in which the fabric is immersed in a resin tank, then squeezed with a padder, dried, and fixed, or pad steam method, in which the resin is reacted and fixed in a steam tank. Can be selected.
  • the flameproof fabric of the present invention thus obtained is excellent in flameproofing properties and has an excellent fire spread effect, so it is used for clothing materials, wall materials, flooring materials, ceiling materials, coating materials and the like that require flame retardancy.
  • it can be suitably used for fireproof protective clothing, and for preventing fire spread of urethane sheet materials such as automobiles and airplanes, and for preventing spread of bed mattresses.
  • LOI value The LOI value was measured according to JIS K7201-2 (2007).
  • the flame was ignited by a method according to A-1 method (45 ° micro burner method) of JIS L 1091 (Flame Product Flammability Test Method, 1999), and the flame shielding property was evaluated as follows. As shown in FIG. 1, a micro burner 1 having a flame length L of 45 mm is set up in a vertical direction, and a test body 2 is arranged at an angle of 45 degrees with respect to a horizontal plane. Flameproofness was evaluated in a test in which the combustor 4 was placed through a 2 mm spacer 3 and burned.
  • polyester fiber drawn yarn As the stretched polyester fiber, “Tetron” (registered trademark) manufactured by Toray Industries, Inc., which is a polyethylene terephthalate fiber having a single fiber fineness of 2.2 dtex (diameter: 14 ⁇ m), product number T9615 was cut into 51 mm and used.
  • the polyester fiber has a LOI value of 22 and a melting point of 256 ° C.
  • Example 1 (spinning) The drawn yarn of PPS fiber and the flameproof yarn were mixed by a fiber spreader, then further mixed by a blended cotton machine, and then passed through a carding machine to make a sliver.
  • the spun yarn thus obtained was woven using a rapier loom with a plain weave of 50 warps / inch (2.54 cm) and 50 wefts / inch (2.54 cm).
  • Example 2 Using the spun yarn described in Example 1, weaving at warp 20 / inch (2.54 cm) and weft 20 / inch (2.54 cm), and refining and heat setting under the same conditions as in Example 1 Thus, a woven fabric having warps of 22 / inch (2.54 cm) and weft of 21 / inch (2.54 cm) was obtained. The thickness of the woven fabric was 0.432 mm. When the high elongation of the decomposed yarn was measured, the tensile strength was 1.8 cN / dtex and the tensile elongation was 18%. In the flameproof evaluation of this fabric, the combustor did not ignite for 10 minutes and had sufficient flameproofness.
  • Example 3 In Example 1, it carried out on the same conditions except having changed the mixture ratio of PPS of a spun yarn and flameproofing yarn to 20:80.
  • the obtained spun yarn had a tensile strength of 1.9 cN / dtex and a tensile elongation of 15%.
  • the yarn density of the woven fabric after refining and heat setting was 51 warps / inch (2.54 cm) and 51 wefts / inch (2.54 cm).
  • the thickness of the fabric was 0.640 mm. When the high elongation of the decomposed yarn was measured, the tensile strength was 1.5 cN / dtex and the tensile elongation was 12%. In the flameproof evaluation of this fabric, the combustor did not ignite for 30 minutes and had sufficient flameproofness.
  • Example 4 In Example 1, it carried out on the same conditions except having made the mixture ratio of spun yarn PPS and flameproofing yarn into 80:20.
  • the spun yarn obtained had a tensile strength of 2.3 cN / dtex and a tensile elongation of 20%.
  • the yarn density of the woven fabric after refining and heat setting was 52 warps / inch (2.54 cm) and 51 wefts / inch (2.54 cm).
  • the thickness of the fabric was 0.560 mm. When the high elongation of the decomposed yarn was measured, the tensile strength was 2.0 cN / dtex and the tensile elongation was 16%. In the flame-proof evaluation of this fabric, the combustion body did not ignite for 20 minutes and had a sufficient flame-proof property.
  • Example 5 In Example 1, in addition to PPS and flameproofing yarn, spun yarn of polyester fiber was further blended into the spun yarn, and the mixture ratio was 60:20:20. The resulting spun yarn had a tensile strength of 2.2 cN / dtex and a tensile elongation of 21%.
  • the yarn density of the woven fabric after refining / heat setting was warp 51 / inch (2.54 cm) and weft 52 / inch (2.54 cm).
  • the thickness of the fabric was 0.580 mm. When the high elongation of the decomposed yarn was measured, the tensile strength was 1.8 cN / dtex and the tensile elongation was 18%. In the flame-proof evaluation of this fabric, the combustion body did not ignite for 20 minutes and had a sufficient flame-proof property.
  • Example 6 In the same manner as in Example 1, a 30th-number spun yarn of drawn polyester fiber yarn was produced, and two yarns were twisted to form a double yarn.
  • a blended yarn having a weight mixing ratio of 60 to 40 of the stretched PPS fiber and the flameproofed yarn was used as the warp, and the weft was a spun yarn of the stretched polyester fiber, a stretched yarn of the PPS fiber, and a flameproofed yarn.
  • a woven fabric in which blended yarns were alternately driven one by one was produced, and refined and heat-set by the same procedure as in Example 1.
  • the yarn density of the fabric after heat setting was 50 warps / inch (2.54 cm) and 49 wefts / inch (2.54 cm).
  • the thickness of the fabric was 0.510 mm.
  • the tensile strength was 1.8 cN / dtex and the tensile elongation was 17%.
  • the combustor did not ignite for 15 minutes and had sufficient flameproofness.
  • Example 7 In Example 1, in addition to PPS and flameproofed yarn, a spun yarn of polyester fiber and Daiwabo Rayon DFG DFG were blended into the spun yarn, and the mixing ratio was changed to PPS20 vs. flameproofed yarn 20 vs. polyester 30 vs. flame resistant rayon 30. The test was performed under the same conditions except that. The obtained spun yarn had a tensile strength of 2.2 cN / dtex and a tensile elongation of 20%. The yarn density of the woven fabric after refining and heat setting was warp 50 / inch (2.54 cm) and weft 50 / inch (2.54 cm). The thickness of the fabric was 0.570 mm.
  • Example 8 Using the spun yarn described in Example 1, weaving was 2/1 twill at 50 warps / inch (2.54 cm) and 50 wefts / inch (2.54 cm), and refined under the same conditions as in Example 1. -A woven fabric having warps of 50 / inch (2.54 cm) and weft of 50 / inch (2.54 cm) was obtained by performing heat setting. Moreover, the thickness of the fabric was 0.610 mm. When the high elongation of the decomposed yarn was measured, the tensile strength was 1.9 cN / dtex, and the tensile elongation was 18%. In the flameproof evaluation of this fabric, the combustor did not ignite for 30 minutes and had sufficient flameproofness.
  • Example 1 In the same manner as in Example 1, 30th spun yarn having a blend ratio of PPS and flame-resistant yarn of 90 to 10 was produced. The obtained spun yarn had a tensile strength of 2.3 cN / dtex and a tensile elongation of 21%. Two of them were twisted into a double yarn. Weaving at 50 warps / inch (2.54 cm) and 50 wefts / inch (2.54 cm), and by refining and heat setting under the same conditions as in Example 1, 51 warps / inch (2. 54 cm) and 51 weft / inch (2.54 cm) woven fabric was obtained. The thickness of the woven fabric was 0.560 mm.
  • the tensile strength was 2.0 cN / dtex and the tensile elongation was 17%.
  • the area ratio of the flameproof yarn was too small, and PPS was unable to form a film between the flameproof yarn when in contact with the flame, and the flame penetrated after 2 minutes. Ignited.
  • Example 2 In the same manner as in Example 1, 30th spun yarn having a blend ratio of PPS and flameproof yarn of 5 to 95 was produced. The obtained spun yarn had a tensile strength of 1.7 cN / dtex and a tensile elongation of 12%. Two of them were twisted into a double yarn. Weaving at 50 warps / inch (2.54 cm) and 50 wefts / inch (2.54 cm), and by refining and heat setting under the same conditions as in Example 1, 51 warps / inch (2. 54 cm) and 50 weft / inch (2.54 cm) woven fabric was obtained. The thickness of the woven fabric was 0.590 mm.
  • the tensile strength was 1.3 cN / dtex and the tensile elongation was 12%.
  • the area ratio of PPS was too small, so that a sufficient film could not be formed between the flameproofing yarns, and the flameproofing yarns gradually became thinner due to flame contact, After 2 minutes and 30 seconds, the combustion body ignited.
  • Example 3 Weaving at 15 warps / inch (2.54 cm) and 15 wefts / inch (2.54 cm) using the spun yarn described in Example 1, and refining and heat setting under the same conditions as in Example 1 Thus, a woven fabric having a warp of 15 / inch (2.54 cm) and a weft of 16 / inch (2.54 cm) was obtained. The thickness of the woven fabric was 0.405 mm. When the high elongation of the decomposed yarn was measured, the tensile strength was 1.8 cN / dtex and the tensile elongation was 18%.
  • Example 4 In Example 1, the same conditions were followed except that the spun yarn was further blended with a stretched polyester fiber yarn in addition to PPS and flameproofed yarn, and the blend ratio was 45 to 15 40.
  • the obtained spun yarn had a tensile strength of 2.1 cN / dtex and a tensile elongation of 18%.
  • the yarn density of the woven fabric after refining / heat setting was warp 51 / inch (2.54 cm) and weft 50 / inch (2.54 cm).
  • the thickness of the fabric was 0.530 mm. When the high elongation of the decomposed yarn was measured, the tensile strength was 1.9 cN / dtex, and the tensile elongation was 16%.
  • the present invention is effective for preventing the spread of fire and is suitable for use in clothing materials, wall materials, floor materials, ceiling materials, covering materials, etc. that are required to have flame retardancy. It is suitable for use in the prevention of fire spread of urethane sheet materials and bed mattresses of urethane sheets for automobiles and aircrafts.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Woven Fabrics (AREA)

Abstract

高温収縮率が3%以下の非溶融繊維Aと、JIS K 7201-2(2007年)に準拠するLOI値が25以上でありかつ融点が非溶融繊維Aの発火温度よりも低い融点を有する熱可塑性繊維Bとを、経糸および緯糸に含む織物であって、該経糸および緯糸の破断伸度が5%以上であり、かつ、織物の完全組織における投影面積において、前記非溶融繊維Aの面積率が10%以上かつ前記熱可塑性繊維Bの面積率が5%かつJIS L 1096-A法(2010年)に準拠する厚さが0.08mm以上であることを特徴とする遮炎性織物。 高い遮炎性を備えた遮炎性織物を提供する。

Description

遮炎性織物
 本発明は、遮炎性織物に関する。
 従来より、難燃性が求められる用途では、ポリエステル、ナイロン、セルロース系繊維に難燃効果のある薬剤を原糸段階で練りこむ方法や後加工で付与する方法が採用されてきた。
 難燃剤としては、ハロゲン系やリン系が一般的に用いられるが、近年では、環境規制により、ハロゲン系薬剤からリン系薬剤への置き換えが進んでいる。しかし、リン系薬剤では、従来のハロゲン系薬剤の難燃効果に及ばないものがある。
 そこで、より高い難燃性を付与する方法として、高い難燃性を有したポリマーを複合する方法がある。例えば、炭化型難燃ポリマーのメタアラミドと難燃処理したポリエステルおよびモダクリル繊維の複合体(特許文献1)や、メタアラミドとPPSの複合体(特許文献2)、あるいは、耐炎化糸と難燃処理したポリエステルの複合体(特許文献3)などが知られている。
特開平11-293542号公報 特開平01-272836号公報 特開2005-334525号公報
 しかしながら、従来の難燃性能は、JISに規定されたLOI値や、消防法に定められた防炎規格によるものであって、いずれも着火源や加熱時間が規格化された条件下での性能であり、実際の火災のように長時間炎に晒された際の延焼防止に際して、十分とはいえなかった。長時間の延焼防止効果を付与するためには、難燃素材の厚みを十分に厚くしたり、あるいは不燃性の無機材料との複合化を余儀なくされ、そのために風合いが大きく損なわれ、柔軟性が乏しくなるほか、曲面上への施工性が低下するといった問題点を有していた。
 特許文献1記載の方法では、柔軟性があり、さらにLOI値も高く難燃性に優れているものの、メタアラミドは温度上昇によって急激に収縮・硬化してしまうため、局所的に応力集中が発生してテキスタイル形態を保つことができず、長時間炎を遮断する性能に欠ける。
 また、特許文献2では、メタアラミドとPPSを複合することで耐薬品性に優れ、LOI値も高いことが開示されているが、糸状での評価であり、長時間炎を遮断するためのテキスタイル形態について、記載されていない。また、かかる技術をそのまま用いてテキスタイル形態としても長時間炎を遮断する性能において十分とはいえない。
 さらに、特許文献3では、耐炎化糸と難燃ポリエステルの織物が開示されているが、経糸は難燃ポリエステルであるため、難燃性は示すものの、長時間の接炎によって織物構造が崩壊してしまい、炎を遮断する性能に欠ける。
 本発明は、このような従来の難燃性布帛の有する課題に鑑みてなされたものであって、高い遮炎性を備えた遮炎性織物を提供することを目的とする。
 本発明の遮炎性織物は上記課題を解決するために、次の構成を有する。すなわち、
 高温収縮率が3%以下の非溶融繊維Aと、JIS K 7201-2(2007年)に準拠するLOI値が25以上でありかつ非溶融繊維Aの発火温度よりも低い融点を有する熱可塑性繊維Bとを、経糸および緯糸に含む織物であって、該経糸および緯糸の破断伸度が5%よりも大きく、かつ、織物の完全組織における投影面積において、前記非溶融繊維Aの面積率が10%以上かつ前記熱可塑性繊維Bの面積率が5%以上かつJIS L 1096-A法(2010年)に準拠する厚さが0.08mm以上である遮炎性織物、である。
 本発明の遮炎性織物は、前記非溶融繊維Aおよび熱可塑性繊維B以外の繊維Cを織物の完全組織における投影面積の面積率で20%以下含有することが好ましい。
 本発明の遮炎性織物は、前記非溶融繊維Aが、耐炎化繊維、メタアラミド系繊維、ガラス繊維およびこれらの混合物の群から選択されることが好ましい。
 本発明の遮炎性織物は、前記熱可塑性繊維Bが、ポリフェニレンサルファイド、難燃性液晶ポリエステル、難燃性ポリ(アルキレンテレフタレート)、難燃性ポリ(アクリロニトリルブタジエンスチレン)、難燃性ポリスルホン、ポリ(エーテル-エーテル-ケトン)、ポリ(エーテル-ケトン-ケトン)、ポリエーテルスルホン、ポリアリレート、ポリフェニルスルホン、ポリエーテルイミド、ポリアミドイミドおよびこれらの混合物の群から選択される樹脂からなる繊維であることが好ましい。
 本発明の遮炎性織物は、上記の構成を備えることにより、高い遮炎性を備えている。
遮炎性を評価するための燃焼試験を説明するための図である。 織物の完全組織およびそれぞれの繊維の投影面積を説明するための平織物の完全組織の概念図である。
 本発明について説明する。
 《高温収縮率》
 本発明において高温収縮率とは、不織布の原料となる繊維を標準状態(20℃、相対湿度65%)中で12時間放置後、0.1cN/dtexの張力を与えて原長Lを測定し、その繊維に対して荷重を付加せずに290℃の乾熱雰囲気に30分間暴露し、標準状態(20℃、相対湿度65%)中で十分冷却したうえで、さらに繊維に対して0.1cN/dtexの張力を与えて長さLを測定し、LおよびLから以下の式で求められる数値である。
 高温収縮率=〔(L-L)/L〕×100(%) 
 本発明の遮炎性織物において、非溶融繊維Aの高温収縮率は3%以下である。炎が近づき熱が加わると熱可塑性繊維が溶融し、溶融した熱可塑性繊維が非溶融繊維(骨材)の表面に沿って薄膜状に広がる。さらに温度が上がると、やがて、両繊維は炭化するが、非溶融繊維の高温収縮率が3%を超えると、高温となった接炎部近辺は収縮しやすく、また、炎の接していない低温部と高温度部の間で生じた熱応力による織物の破断が生じやすいので、長時間炎を遮断することができない。この点で、高温収縮率は低く、織物を構成する糸の破断伸度は高い方が好ましいが、縮まずとも熱によって大幅に膨張しても織物構造が崩れ、その部分から炎が貫通する原因となるので、高温収縮率は-5%以上であることが好ましい。なかでも高温収縮率が0~2%であることが好ましい。
 《LOI値》
 LOI値は、窒素と酸素の混合気体において、物質の燃焼を持続させるのに必要な最小酸素量の容積百分率であり、LOI値が高いほど燃え難いと言える。そこで、本発明の遮炎性織物の熱可塑性繊維BのJIS K 7201-2(2007年)に準拠するLOI値は25以上である。熱可塑性繊維BのLOI値が25に満たないと、熱可塑性繊維は燃えやすく、火源を離しても消火しにくく、延焼を防ぐことができない。LOI値は高い方が好ましいが、現実に入手可能な物質のLOI値の上限は65程度である。
 《発火温度》
 発火温度は、JIS K 7193(2010年)に準拠した方法で測定した自然発火温度である。
 《融点》
 融点は、JIS K 7121(2012年)に準拠した方法で測定した値である。10℃/分で加熱した際の融解ピーク温度の値をいう。
 《糸の破断伸度》
 糸の破断伸度は、JIS L 1095(2010年)に準拠した方法で測定したものをいう。具体的には、0.2cN/dtexの初荷重を加えて、つかみ間隔200mm、引張速度100%歪/分の条件で引張試験を行ない、糸が破断した時点の伸度とする。50回試験をおこない、掴み部分で破断したものを除いたものの平均値を採用する。
 本発明の遮炎性織物を構成する経糸および緯糸の破断伸度は5%以上である。経糸および緯糸の破断伸度が5%に満たないと、接炎している高温部と炎の接していない低温部との間で生じた熱応力による織物の破断が生じやすいので、長時間炎を遮断することができず、張力をかけて施工することは不可能である。
 《非溶融繊維A》
 本発明において、非溶融繊維Aとは炎にさらされた際に液化せず、繊維形状を保つ繊維をいい、700℃の温度で液化および発火しないものが好ましく、800℃以上の温度で液化および発火しないものがさらに好ましい。上記高温収縮率が本発明で規定する範囲にある非溶融繊維として、例えば、耐炎化繊維、メタアラミド系繊維およびガラス繊維を挙げることができる。耐炎化繊維は、アクリロニトリル系、ピッチ系、セルロース系、フェノール系繊維等から選択される繊維を原料として耐炎化処理を行った繊維である。これらは単独で使用しても2種類以上を同時に使用してもよい。なかでも、高温収縮率が低くかつ、後述する熱可塑性繊維Bが接炎時に形成する皮膜による酸素遮断効果によって、炭素化が進行し、高温下での耐熱性がさらに向上する耐炎化繊維が好ましく、各種の耐炎化繊維の中で比重が小さく柔軟で難燃性に優れる繊維としてアクリロニトリル系耐炎化繊維がより好ましく用いられ、かかる耐炎化繊維は前駆体としてのアクリル系繊維を高温の空気中で加熱、酸化することによって得られる。市販品としては、後記する実施例および比較例で使用した、Zoltek社製耐炎化繊維“PYRON”(登録商標)の他、東邦テナックス(株)“パイロメックス”(Pyromex)(登録商標)等が挙げられる。また、一般にメタアラミド系繊維は高温収縮率が高く、本発明で規定する高温収縮率を満たさないが、高温収縮率を抑制処理することにより本発明の高温収縮率の範囲内としたメタアラミド系繊維であれば、好ましく使用することができる。さらに、一般にガラス繊維は破断伸度が小さく、本発明で規定する破断伸度の範囲を満たさないが、紡績糸として用いたり、異素材と複合することで織物を構成する糸として本発明の破断伸度内としたガラス繊維であれば、好ましく用いることができる。
 また本発明で好ましく用いられる非溶融繊維は、非溶融繊維単独あるいは異素材と複合する方法で用いられ、フィラメント、ステープルのいずれの形態であってもよい。ステープルを紡績して用いる場合には、繊維長は30~60mmの範囲内にあることが好ましく、38~51mmの範囲内にあることがより好ましい。繊維長が38~51mmの範囲内であれば、一般的な紡績工程で紡績糸とすることが可能であり、異素材と混紡することが容易である。また、非溶融繊維の単繊維の太さについても、特に限定されるものではないが、紡績工程の通過性の点から、単繊維繊度は0.1~10dtexの範囲内にあるものが好ましい。
 《熱可塑性繊維B》
 本発明で用いる熱可塑性繊維Bは、前記LOI値が25以上であり、かつ融点が非溶融繊維Aの発火温度よりも低い融点を有する。熱可塑性繊維BのLOI値が25に満たないと、空気中での燃焼を抑制できず、ポリマーが炭化しにくい。熱可塑性繊維Bの融点が非溶融繊維Aの発火温度以上であると、溶融したポリマーが非溶融繊維Aの表面および繊維間で皮膜を形成する前に発してしまうので、遮炎効果は期待できない。熱可塑性繊維Bの融点は、非溶融繊維Aの発火温度よりも200℃以上低いことが好ましく、300℃以上低いことがさらに好ましい。具体例としては例えば、ポリフェニレンサルファイド、難燃性液晶ポリエステル、難燃性ポリ(アルキレンテレフタレート)、難燃性ポリ(アクリロニトリルブタジエンスチレン)、難燃性ポリスルホン、ポリ(エーテル-エーテル-ケトン)、ポリ(エーテル-ケトン-ケトン)、ポリエーテルスルホン、ポリアリレート、ポリフェニルスルホン、ポリエーテルイミド、ポリアミドイミドおよびこれらの混合物の群から選択される熱可塑性樹脂で構成される繊維を挙げることができる。これらは単独で使用しても、2種類以上を同時に使用してもよい。これらの中で、LOI値の高さおよび融点の範囲および入手の容易さの点から、最も好ましいのはポリフェニレンサルファイド繊維(以下、PPS繊維ともいう)である。また、LOI値が本発明で規定する範囲にないポリマーであっても、難燃剤で処理することによって、処理後のLOI値が本発明で規定する範囲内であれば好ましく用いることができる。難燃剤は特に制限されるものではないが、熱分解時にリン酸あるいは硫酸を生成し、ポリマー基材を脱水炭化させる機構を発現するリン系や硫黄系の難燃剤が好ましい。
 また本発明で用いられる熱可塑性繊維Bは、上記熱可塑性樹脂単独あるいは異素材と複合する方法で用いられ、フィラメント、ステープルのいずれの形態であってもよい。ステープルを紡績して用いる場合には、繊維長は30~60mmの範囲内にあることが好ましく、38~51mmの範囲内にあることがより好ましい。繊維長が38~51mmの範囲内であれば、一般的な紡績工程で紡績糸とすることが可能であり、異素材と混紡することが容易である。また、熱可塑性繊維Bの単繊維の太さについても、特に限定されるものではないが、紡績工程の通過性の点から、単繊維繊度は0.1~10dtexの範囲内にあるものが好ましい。
 フィラメントとして用いる場合の総繊度、紡績糸とする場合の番手としては特に制限はなく、本発明の規定を満たす範囲であればよく、所望の厚さを考慮して適宜選択すればよい。
 本発明で好ましく用いられるPPS繊維は、ポリマー構成単位が-(C-S)-を主な構造単位とする重合体からなる合成繊維である。これらPPS重合体の代表例としては、ポリフェニレンスルフィド、ポリフェニレンスルフィドスルホン、ポリフェニレンスルフィドケトン、これらのランダム共重合体、ブロック共重合体およびそれらの混合物などが挙げられる。特に好ましいPPS重合体としては、ポリマーの主要構造単位として、-(C-S)-で表されるp-フェニレン単位を、好ましくは90モル%以上含有するポリフェニレンスルフィドが望ましい。質量の観点からは、p-フェニレン単位を80質量%、さらには90質量%以上含有するポリフェニレンスルフィドが望ましい。
 また本発明で好ましく用いられるPPS繊維は、PPS繊維単独あるいは異素材と複合する方法で用いられ、フィラメント、ステープルのいずれの形態であってもよい。ステープルを紡績して用いる場合には、繊維長は30~60mmの範囲内にあることが好ましく、38~51mmの範囲内にあることがより好ましい。繊維長が38~51mmの範囲内であれば、一般的な紡績工程で紡績糸とすることが可能であり、異素材と混紡することが容易である。また、PPSの単繊維の太さについても、特に限定されるものではないが、紡績工程の通過性の点から、単繊維繊度は0.1~10dtexの範囲内にあるものが好ましい。
 本発明で用いられるPPS繊維の製造方法は、上述のフェニレンサルファイド構造単位を有するポリマーをその融点以上で溶融し、紡糸口金から紡出することにより繊維状にする方法が好ましい。紡出された繊維は、そのままでは未延伸のPPS繊維である。未延伸のPPS繊維は、その大部分が非晶構造であり、破断伸度は高い。一方、このような繊維は熱による寸法安定性が乏しいので、紡出に続いて熱延伸して配向させ、繊維の強力と熱寸法安定性を向上させた延伸糸が市販されている。PPS繊維としては、“トルコン”(登録商標)(東レ(株)製)、“プロコン”(登録商標)(東洋紡(株)製)など、複数のものが流通している。
 本発明においては、本発明の範囲を満たす範囲で上記未延伸のPPS繊維と延伸糸を併用することができる。なお、PPS繊維の代わりに本発明の範囲を満たす繊維の延伸糸と未延伸糸を併用することでももちろん構わない。
 《非溶融繊維Aおよび熱可塑性繊維B以外の繊維C》
 非溶融繊維Aおよび熱可塑性繊維B以外の繊維Cを、編物に特定の性能をさらに付加するために含有させてもよい。例えば、編物の吸湿性や吸水性を向上させるために、ビニロン繊維、熱可塑性繊維B以外のポリエステル繊維、ナイロン繊維等を用いてもよい。また、ストレッチ性を付与するために、スパンデックス繊維を用いてもよい。スパンデックス繊維の例としては、東レオペロンテックス(株)の“ライクラ”(登録商標)、旭化成株式会社の“ロイカ“(登録商標)、ヒョスンコーポレーションの“クレオラ“(登録商標)等が挙げられる。繊維Cの含有量は本発明の効果を損なわない限り特に制限はないが、遮炎性織物の完全組織における投影面積において、前記非溶融繊維Aおよび熱可塑性繊維B以外の繊維Cの面積率が20%以下であるのが好ましく、10%以下であるのがより好ましい。
 本発明の織物の厚さはJIS L 1096(2010年)に準拠する方法で測定したもので、0.08mm以上である。織物の厚さは0.3mm以上であることが好ましい。織物の厚さが0.08mmに満たないと、十分な遮炎性能を得ることができない。
 本発明の織物の密度は、特に制限はなく、要求される遮炎性能によって適宜選択され、密度が小さいと空気層が増加することで断熱性が向上するが、扱いやすさと目標とする遮炎性が得られる範囲であればよい。
 本発明の織物に用いる糸の形態として、紡績糸、フィラメント糸のいずれも用いることができる。
 紡績糸の場合には、非溶融繊維Aおよび熱可塑性繊維Bそれぞれを紡績糸としても良いし、本発明の範囲内で非溶融繊維Aおよび熱可塑性繊維Bを所定の割合で混紡しても良い。繊維同士の絡合性を十分得るためには、繊維のけん縮数は7個/2.54cm以上であることが好ましいが、けん縮数が多すぎると梳綿機によってスライバーとする工程の通過性が悪くなるため、30個/2.54cm未満であることが好ましい。非溶融繊維Aおよび熱可塑性繊維Bを混紡する場合には、いずれも同じ長さの短繊維を用いることが、より均一な紡績糸を得ることができるので好ましい。なお同じ長さは厳密に同じでなくてもよく、非溶融繊維Aの長さに対し±5%程度の差異があってもよい。かかる観点から、非溶融繊維の繊維長も、溶融繊維の繊維長も繊維長は30~60mmの範囲内にあることが好ましく、38~51mmの範囲内にあることがより好ましい。混紡糸は、例えば、まず開繊装置を用いて均一に混合し、次いで、梳綿機によってスライバーとし、練条機で延伸し、粗紡、精紡する工程を経ることで得られる。得られた紡績糸を複数本撚合わせても良い。
 フィラメントの場合には、非溶融繊維Aおよび熱可塑性繊維Bのそれぞれの仮撚り加工糸、あるいはエア混繊や複合仮撚りなどの方法により非溶融繊維Aおよび熱可塑性繊維Bを複合したものを用いることができる。
  本発明の織物は、上記で得られた紡績糸あるいはフィラメント糸を用いて、エアージェット織機、ウォータージェット織機、レピア織機、プロジェクタイル織機、シャトル織機などを使用して製織する。経糸の準備工程において、経糸糊付けを行ってもよいし、糊付け無しでもよいが、耐炎化糸繊維を含んだ糸を用いる場合には、耐炎化糸の製織時の毛羽立ちを抑制するために、糊付けをおこなうことが好ましい。織物組織は、風合いや意匠性に合わせて平織り、綾織り、繻子織りやそれらの変化組織を選択すればよい。さらに、二重織りなどの多重織り組織としてもよい。
 《面積率》
  織物を構成する糸および織り構造は、織物の完全組織における投影面積において、前記非溶融繊維Aの面積率が10%以上かつ前記熱可塑性繊維Bの面積率が5%である。非溶融繊維Aの面積率が10%に満たないと、骨材としての機能が不十分となる。非溶融繊維Aの面積率は15%以上であるのが好ましい。熱可塑性繊維Bの面積率が5%に満たないと、骨材の非溶融繊維の間に熱可塑性繊維が膜状に十分広がらなくなる。熱可塑性繊維Bの面積率は10%以上であるのが好ましい。
  以下、面積率の算出法について説明する。
  ここで、織物の完全組織とは、その織物を構成する最小の繰返し単位のことをいう。織物を構成する糸の綿番手をNとし、糸の断面が円形であるとみなして換算すると、糸の密度がρ(g/cm)のとき、糸の直径D(cm)は、次式で算出される。繊維の密度ρは、ASTM D4018-11に準拠する方法で測定した。
 D=0.08673/{(N×ρ)1/2
  ここで、織物を構成する糸が2種類の繊維αと繊維βの複合体である場合には、糸の密度ρ´は、それぞれの繊維の密度をραおよびρβ、重量混率をWtαおよびWtβとしたとき、次式で算出される。
 ρ´=(ρα×Wtα)+(ρβ×Wtβ
 ただし、Wtα+Wtβ=1である。
 例えば、平織り組織の場合には、経糸、緯糸ともに2本ずつで表現される。図2は織物の完全組織およびそれぞれの繊維の投影面積を説明するための平織物の完全組織の概念図である。経糸の糸密度をn(本/インチ(2.54cm))、緯糸の糸密度をn(本/インチ(2.54cm))としたとき、織物の完全組織のタテ方向の長さ21およびヨコ方向の長さ22は、それぞれ(2.54×2)/n(cm)および(2.54×2)/n(cm)となり、織物の完全組織の投影面積Sは、次式で算出される。
 S={(2.54×2)/n}×{(2.54×2)/n}(cm
 織物を構成する糸の断面を円形と仮定し、製織による糸の変形はないと仮定すると、織物を構成する糸の投影直径はDとなる。経糸の直径と緯糸の直径をそれぞれDおよびDとすると、経糸および緯糸が織物の完全組織中に占める面積SおよびSは、それぞれ、次式、次次式で算出される。
 S=2×[{(2.54×2×D)/n}-(D×D)]
 S=2×[{(2.54×2×D)/n}-(D×D)]
 織物を構成する糸は2種類の繊維αと繊維βから成っており、それぞれの重量混率がWtα、Wtβであるので、織物を構成する糸中に含まれる繊維αと繊維βが占める体積VαとVβには次の関係が成り立つ。
 (ρα×Vα):(ρβ×Vβ)=Wtα:Wtβ
つまり、
 (Vα/Vβ)=(ρβ×Wtα)/(ρα×Wtβ
 ここで、2種類の繊維が複合されている形態に関わらず、本発明の遮炎性織物に接炎した際に熱可塑性繊維Bは溶融して織物表面を被覆するため、本発明においては織物を構成する糸表面をそれぞれの繊維が占める面積比(Sα/Sβ)はそれぞれの繊維が占める体積の比(Vα/Vβ)と等しいとみなし、織物を構成する糸の投影面積に、それぞれの繊維が占める面積比を乗じることで、各繊維の投影面積を算出するものとする。
 経糸の繊維αと繊維βの重量混率をWtα1およびWtβ1、緯糸の繊維αと繊維βの重量混率をWtα2およびWtβ2としたときの、経糸中に繊維αと繊維βが占める面積比を(Sα1/Sβ1)、緯糸中に繊維αと繊維βが締める面積比を(Sα2/Sβ2)とすると、織物の完全組織中に占める繊維αおよび繊維βの投影面積SαおよびSβは、それぞれ、次式、次次式で算出される。
 Sα=S×{Sα1/(Sα1+Sβ1)}+S×{Sα2/(Sα2+Sβ2)}
 Sβ=S×{Sβ1/(Sα1+Sβ1)}+S×{Sβ2/(Sα2+Sβ2)}
 織物の完全組織の投影面積はSであるので、繊維αが占める面積比率Pαおよび繊維βが占める面積比率Pβは、それぞれ、次式、次次式で算出される。
 Pα(%)=(Sα/S)×100
 Pβ(%)=(Sβ/S)×100
 織物を構成する糸に含まれる繊維が3種類以上の場合も、それぞれの繊維の重量混率から以上と同様の手順で計算することができる。また平織以外の織組織の場合も上記の考え方に準じて計算することができる。なお二重織りなどの多重織り組織の場合には、炎があたる面の投影面積で算出する。
 製織後、通常の方法で糊抜き、精練を実施後、テンターを用いて所定の幅および密度に熱セットしてもよいし、生機のまま使用してもよい。セット温度は高温収縮率を抑制する効果が得られる温度がよく、好ましくは160~240℃、より好ましくは190~230℃である。
 熱セットと同時あるいは、熱セット後に別工程で本発明の効果を損なわない範囲で耐摩耗性改善や風合い改善の目的等で樹脂加工をおこなってもよい。樹脂加工は、用いる樹脂の種類に応じて、織物を樹脂槽に浸漬させたのちパッダーで絞り、乾燥、固着させるパッドドライキュア法と、蒸気槽中で樹脂を反応、固着させるパッドスチーム法のいずれかを選択することができる。
 かくして得られる本発明の遮炎性織物は遮炎性に優れ、火災の延焼効果に優れるので、難燃性が要求される衣料材、壁材、床材、天井材、被覆材などに使用するのに好適であって、特に、耐火防護服や、自動車や航空機などのウレタンシート材の延焼防止被覆材およびベッドマットレスの延焼防止で使用するのに好適に使用することができる。
 次に、実施例に基づき本発明を具体的に説明する。ただし、本発明はこれらの実施例のみに限定されるものではない。本発明の技術的範囲を逸脱しない範囲において、様々な変形や修正が可能である。なお、本実施例で用いる各種特性の測定方法は、以下のとおりである。
 [目付]
 JIS L 1096(2010年)に準拠して測定し、1m当たりの質量(g/m)で表した。
 [厚さ]
 JIS L 1096(2010年)に準拠して、測定した。
 [LOI値]
 LOI値は、JIS K 7201-2(2007年)に準拠して、測定した。
  [遮炎性評価]
 JIS L 1091(繊維製品の燃焼性試験方法、1999年)のA-1法(45゜ミクロバーナ法)に準じた方法で着火し、以下のとおり遮炎性を評価した。図1に示すように、火炎長さLが45mmであるミクロバーナ1を垂直方向に立て、水平面に対して45度の角度で試験体2を配置し、試験体2に対して厚さthが2mmのスペーサー3を介して燃焼体4を配置して燃焼する試験で遮炎性を評価した。燃焼体4には含有水分率を均一とするために標準状態で24時間放置した、GEヘルスケア・ジャパン株式会社が販売する定性ろ紙グレード2(1002)を用い、ミクロバーナ1に着火してから燃焼体4が引火するまでの時間を秒単位で測定した。なお、接炎3分以内で燃焼体4に引火した場合は、「遮炎性無し」とし、不可とする。3分以上炎にさらされても燃焼体4に引火しない場合を「遮炎性能有り」とするが、遮炎時間は長ければ長いほどよく、3分以上20分未満を良、20分以上を優とした。
 次に、以下の実施例および比較例における用語について説明する。
 《PPS繊維の延伸糸》
 延伸されたPPS繊維として、単繊維繊度2.2dtex(直径14μm)、カット長51mmの東レ(株)製“トルコン”(登録商標)、品番S371を用いた。このPPS繊維のLOI値は34、融点は284℃である。
 《ポリエステル繊維の延伸糸》
 延伸されたポリエステル繊維として、単繊維繊度2.2dtex(直径14μm)のポリエチレンテレフタレート繊維である東レ(株)製“テトロン”(登録商標)、品番T9615を51mmにカットして用いた。このポリエステル繊維のLOI値は22、融点は256℃である。
 《耐炎化糸》
 1.7dtexのZoltek社製耐炎化繊維“PYRON”(登録商標)を51mmにカットしたものを用いた。“PYRON”(登録商標)の高温収縮率は1.6%であった。JIS K 7193(2010年)に準拠した方法で加熱したところ、800℃でも発火は認められず、発火温度は800℃以上である。
 [実施例1]
 (紡績)
 PPS繊維の延伸糸および耐炎化糸を開繊機によって混合し、次いで混打綿機によって更に混合し、次いで梳綿機に通じてスライバーとした。得られたスライバーの重量は、310ゲレン/6ヤード(1ゲレン=1/7000ポンド)(20.09g/5.46m)であった。次いで練条機でトータルドラフトを8 倍に設定して延伸し、290ゲレン/6ヤード(18.79g/5.46m)のスライバーとした。次いで粗紡機で0.55T/2.54cmに加撚して7.4 倍に延伸し、250ゲレン/6ヤード(16.20g/5.46m)の粗糸を得た。次いで精紡機で16.4T/2.54cmに加撚してトータルドラフト30倍に延伸して加撚し、綿番手で30番の紡績糸を得た。得られた紡績糸をダブルツイスターで64.7T/2.54cmで上撚をかけ、30番双糸とした。紡績糸のPPS繊維の延伸糸と耐炎化糸の重量混率は、60対40であった。紡績糸の引張強度は2.2cN/dtex、引張伸度は18%であった。
 (製織)
 得られた紡績糸を、レピア織機で経50本/インチ(2.54cm)、緯50本/インチ(2.54cm)の平織りで製織した。
 (精練・熱セット)
 界面活性剤を含む80℃の温水中で、20分間精練をおこなったのち、130℃のテンターで乾燥させ、さらに230℃のテンターで熱セットをおこなった。熱セット後の織物の糸密度は、経52本/インチ(2.54cm)、緯51本/インチ(2.54cm)であった。また織物の厚さは0.570mmであった。分解糸の強伸度を測定したところ、引張強度は1.7cN/dtex、引張伸度は16%であった。
 (遮炎性評価)
 本織物の遮炎評価では30分間、燃焼体に引火することが無く、十分な遮炎性を有していた。
 [実施例2]
 実施例1に記載の紡績糸を用い、経20本/インチ(2.54cm)、緯20本/インチ(2.54cm)で製織し、実施例1と同様の条件で精錬・熱セットをおこなうことで、経22本/インチ(2.54cm)、緯21本/インチ(2.54cm)の織物を得た。また、織物の厚さは0.432mmであった。分解糸の強伸度を測定したところ、引張強度は1.8cN/dtex、引張伸度は18%であった。本織物の遮炎評価では10分間、燃焼体に引火することが無く、十分な遮炎性を有していた。
 [実施例3]
 実施例1で、紡績糸のPPSと耐炎化糸の混率を20対80にした以外は同様の条件でおこなった。得られた紡績糸の引張強度は1.9cN/dtex、引張伸度は15%であった。精錬・熱セット後の織物の糸密度は、経51本/インチ(2.54cm)、緯51本/インチ(2.54cm)であった。また織物の厚さは0.640mmであった。分解糸の強伸度を測定したところ、引張強度は1.5cN/dtex、引張伸度は12%であった。本織物の遮炎評価では30分間、燃焼体に引火することが無く、十分な遮炎性を有していた。
 [実施例4]
 実施例1で、紡績糸のPPSと耐炎化糸の混率を80対20にした以外は同様の条件でおこなった。得られた紡績糸の引張強度は2.3cN/dtex、引張伸度は20%であった。精錬・熱セット後の織物の糸密度は、経52本/インチ(2.54cm)、緯51本/インチ(2.54cm)であった。また織物の厚さは0.560mmであった。分解糸の強伸度を測定したところ、引張強度は2.0cN/dtex、引張伸度は16%であった。本織物の遮炎評価では20分間、燃焼体に引火することが無く、十分な遮炎性を有していた。
 [実施例5]
 実施例1で、紡績糸にPPSと耐炎化糸以外にさらにポリエステル繊維の延伸糸を混紡し、混率を60対20対20にした以外は同様の条件でおこなった。得られた紡績糸の引張強度は2.2cN/dtex、引張伸度は21%であった。精錬・熱セット後の織物の糸密度は、経51本/インチ(2.54cm)、緯52本/インチ(2.54cm)であった。また織物の厚さは0.580mmであった。分解糸の強伸度を測定したところ、引張強度は1.8cN/dtex、引張伸度は18%であった。本織物の遮炎評価では20分間、燃焼体に引火することが無く、十分な遮炎性を有していた。
 [実施例6]
 実施例1と同様の方法で、ポリエステル繊維の延伸糸の30番手紡績糸を作製し、それを2本撚り合わせて双糸とした。実施例1のPPS繊維の延伸糸と耐炎化糸の重量混率が60対40の混紡糸を経糸に、緯糸は、ポリエステル繊維の延伸糸の紡績糸と、PPS繊維の延伸糸と耐炎化糸の混紡糸を1本ずつ交互に打ち込んだ織物を作製し、実施例1と同じ手順で精錬・熱セットした。熱セット後の織物の糸密度は、経50本/インチ(2.54cm)、緯49本/インチ(2.54cm)であった。また織物の厚さは0.510mmであった。分解糸の強伸度を測定したところ、引張強度は1.8cN/dtex、引張伸度は17%であった。本織物の遮炎評価では15分間、燃焼体に引火することが無く、十分な遮炎性を有していた。
 [実施例7]
 実施例1で、紡績糸にPPSと耐炎化糸以外にさらにポリエステル繊維の延伸糸およびダイワボウレーヨン(株)レーヨンDFGを混紡し、混率をPPS20対耐炎化糸20対ポリエステル30対難燃レーヨン30にした以外は同様の条件でおこなった。得られた紡績糸の引張強度は2.2cN/dtex、引張伸度は20%であった。精錬・熱セット後の織物の糸密度は、経50本/インチ(2.54cm)、緯50本/インチ(2.54cm)であった。また織物の厚さは0.570mmであった。分解糸の強伸度を測定したところ、引張強度は1.6cN/dtex、引張伸度は15%であった。本織物の遮炎評価では15分間、燃焼体に引火することが無く、十分な遮炎性を有していた。
 [実施例8]
 実施例1に記載の紡績糸を用い、経50本/インチ(2.54cm)、緯50本/インチ(2.54cm)で2/1綾織で製織し、実施例1と同様の条件で精錬・熱セットをおこなうことで、経50本/インチ(2.54cm)、緯50本/インチ(2.54cm)の織物を得た。また、織物の厚さは0.610mmであった。分解糸の強伸度を測定したところ、引張強度は1.9cN/dtex、引張伸度は18%であった。本織物の遮炎評価では30分間、燃焼体に引火することが無く、十分な遮炎性を有していた。
 [比較例1]
 実施例1と同様の方法で、PPSと耐炎化糸の混率が90対10の30番手紡績糸を作製した。得られた紡績糸の引張強度は2.3cN/dtex、引張伸度は21%であった。それを2本撚り合わせて双糸とした。経50本/インチ(2.54cm)、緯50本/インチ(2.54cm)で製織し、実施例1と同様の条件で精錬・熱セットをおこなうことで、経51本/インチ(2.54cm)、緯51本/インチ(2.54cm)の織物を得た。また、織物の厚さは0.560mmであった。分解糸の強伸度を測定したところ、引張強度は2.0cN/dtex、引張伸度は17%であった。本織物で遮炎評価をおこなったところ、耐炎化糸の面積比率が小さすぎ、接炎時にPPSが耐炎化糸間で被膜を形成することができずに炎が2分後に貫通し、燃焼体に引火した。
 [比較例2]
 実施例1と同様の方法で、PPSと耐炎化糸の混率が5対95の30番手紡績糸を作製した。得られた紡績糸の引張強度は1.7cN/dtex、引張伸度は12%であった。それを2本撚り合わせて双糸とした。経50本/インチ(2.54cm)、緯50本/インチ(2.54cm)で製織し、実施例1と同様の条件で精錬・熱セットをおこなうことで、経51本/インチ(2.54cm)、緯50本/インチ(2.54cm)の織物を得た。また、織物の厚さは0.590mmであった。分解糸の強伸度を測定したところ、引張強度は1.3cN/dtex、引張伸度は12%であった。本織物で遮炎評価をおこなったところ、PPSの面積比率が小さすぎるため、耐炎化糸間に十分に被膜を形成することができず、接炎によって徐々に耐炎化糸が細くなり、接炎2分30秒後に燃焼体に引火した。
 [比較例3]
 実施例1に記載の紡績糸を用い、経15本/インチ(2.54cm)、緯15本/インチ(2.54cm)で製織し、実施例1と同様の条件で精錬・熱セットをおこなうことで、経15本/インチ(2.54cm)、緯16本/インチ(2.54cm)の織物を得た。また、織物の厚さは0.405mmであった。分解糸の強伸度を測定したところ、引張強度は1.8cN/dtex、引張伸度は18%であった。本織物で遮炎評価をおこなったところ、耐炎化糸の面積比率が小さすぎ、接炎時にPPSが耐炎化糸間で被膜を形成することができずに炎が1分30秒後に貫通し、燃焼体に引火した。
 [比較例4]
 実施例1で、紡績糸にPPSと耐炎化糸以外にさらにポリエステル繊維の延伸糸を混紡し、混率を45対15体40にした以外は同様の条件でおこなった。得られた紡績糸の引張強度は2.1cN/dtex、引張伸度は18%であった。精錬・熱セット後の織物の糸密度は、経51本/インチ(2.54cm)、緯50本/インチ(2.54cm)であった。また織物の厚さは0.530mmであった。分解糸の強伸度を測定したところ、引張強度は1.9cN/dtex、引張伸度は16%であった。本織物で遮炎評価をおこなったところ、耐炎化糸の面積比率が小さすぎるため、接炎時に織物が大幅に収縮し、また、溶融したポリエステル繊維の延伸糸が十分に皮膜化することができずに炎が1分30秒で貫通し、燃焼体に引火した。
 下記の表1および表2に実施例1~6および比較例1~4の非溶融繊維Aの面積率、前記非溶融繊維Aの発火温度よりも低い融点を有する熱可塑性繊維Bの面積率、その他繊維Cの面積率、織物の厚さおよび遮炎性評価結果をまとめて示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 本発明は、火災の延焼防止に有効で、難燃性が要求される衣料材、壁材、床材、天井材、被覆材などに使用するのに好適であって、特に、耐火防護服や、自動車や航空機などのウレタンシート材の延焼防止被覆材およびベッドマットレスの延焼防止で使用するのに好適である。
 1 ミクロバーナ
 2 試験体
 3 スペーサー
 4 燃焼体
 21 織物の完全組織のタテ方向の長さ
 22 織物の完全組織のヨコ方向の長さ
 D1 経糸の直径
 D2 緯糸の直径

Claims (4)

  1. 高温収縮率が3%以下の非溶融繊維Aと、JIS K 7201-2(2007年)に準拠するLOI値が25以上でありかつ融点が非溶融繊維Aの発火温度よりも低い融点を有する熱可塑性繊維Bとを、経糸および緯糸に含む織物であって、該経糸および緯糸の破断伸度が5%よりも大きく、かつ、織物の完全組織における投影面積において、前記非溶融繊維Aの面積率が10%以上かつ前記熱可塑性繊維Bの面積率が5%以上かつJIS L 1096-A法(2010年)に準拠する厚さが0.08mm以上である遮炎性織物。
  2. 前記非溶融繊維Aおよび前記熱可塑性繊維B以外の繊維Cを織物の完全組織における投影面積の面積率で20%以下含有する請求項1に記載の遮炎性織物。
  3. 前記非溶融繊維Aが、耐炎化繊維、メタアラミド系繊維、ガラス繊維およびこれらの混合物の群から選択される請求項1または2に記載の遮炎性織物。
  4. 前記熱可塑性繊維Bが、ポリフェニレンサルファイド、異方性難燃ポリエステル、難燃性ポリ(アルキレンテレフタレート)、難燃性ポリ(アクリロニトリルブタジエンスチレン)、難燃性ポリスルホン、ポリ(エーテル-エーテル-ケトン)、ポリ(エーテル-ケトン-ケトン)、ポリエーテルスルホン、ポリアリレート、ポリフェニルスルホン、ポリエーテルイミド、ポリアミドイミドおよびこれらの混合物の群から選択される樹脂からなる繊維である請求項1~3の何れかに記載の遮炎性織物。
PCT/JP2017/035047 2016-10-05 2017-09-27 遮炎性織物 WO2018066438A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CA3038925A CA3038925A1 (en) 2016-10-05 2017-09-27 Flame-resistant woven fabric
US16/339,062 US11248319B2 (en) 2016-10-05 2017-09-27 Flame-resistant woven fabric
RU2019112105A RU2744284C2 (ru) 2016-10-05 2017-09-27 Огнестойкая тканая ткань
KR1020197008318A KR20190056371A (ko) 2016-10-05 2017-09-27 차염성 직물
CN201780050959.8A CN109642361B (zh) 2016-10-05 2017-09-27 阻火性机织物
MX2019003778A MX2019003778A (es) 2016-10-05 2017-09-27 Tela tejida resistente al fuego.
JP2018516201A JP7036006B2 (ja) 2016-10-05 2017-09-27 遮炎性織物
BR112019006561A BR112019006561A2 (pt) 2016-10-05 2017-09-27 pano tecido resistente à chama
EP17858276.3A EP3524720B1 (en) 2016-10-05 2017-09-27 Flame-resistant woven fabric

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-197071 2016-10-05
JP2016197071 2016-10-05

Publications (2)

Publication Number Publication Date
WO2018066438A1 true WO2018066438A1 (ja) 2018-04-12
WO2018066438A9 WO2018066438A9 (ja) 2019-02-28

Family

ID=61830949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/035047 WO2018066438A1 (ja) 2016-10-05 2017-09-27 遮炎性織物

Country Status (11)

Country Link
US (1) US11248319B2 (ja)
EP (1) EP3524720B1 (ja)
JP (1) JP7036006B2 (ja)
KR (1) KR20190056371A (ja)
CN (1) CN109642361B (ja)
BR (1) BR112019006561A2 (ja)
CA (1) CA3038925A1 (ja)
MX (1) MX2019003778A (ja)
RU (1) RU2744284C2 (ja)
TW (1) TW201819701A (ja)
WO (1) WO2018066438A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019188197A1 (ja) * 2018-03-29 2019-10-03 東レ株式会社 織編物

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113748240A (zh) * 2019-04-25 2021-12-03 东丽株式会社 合成皮革及被覆物品
WO2020218178A1 (ja) * 2019-04-25 2020-10-29 東レ株式会社 合成皮革および被覆物品
WO2021070747A1 (ja) * 2019-10-10 2021-04-15 東レ株式会社 耐炎性積層成形体
CN111979627B (zh) * 2020-05-12 2021-07-20 江苏百护纺织科技有限公司 具有阻燃性的纱线、面料、服装和阻燃工作服

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007099209A (ja) * 2005-10-07 2007-04-19 Toyota Motor Corp 車両旋回装置および車両旋回方法
WO2012102090A1 (ja) * 2011-01-27 2012-08-02 日本毛織株式会社 防護服用布帛及びこれに使用する紡績糸
JP2014159666A (ja) * 2013-02-18 2014-09-04 Wl Gore & Associates Gmbh 防炎性布地構造体
JP2015229805A (ja) * 2014-06-03 2015-12-21 帝人株式会社 布帛および繊維製品
JP2017201063A (ja) * 2016-05-02 2017-11-09 帝人株式会社 難燃性布帛および繊維製品

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL36371A (en) * 1970-03-17 1975-06-25 Chiarotto N Flameproof composite yarns
JPH01272836A (ja) 1988-04-25 1989-10-31 Teijin Ltd 複合糸条
JP4114995B2 (ja) 1998-04-14 2008-07-09 帝国繊維株式会社 防炎性布帛
US6989194B2 (en) * 2002-12-30 2006-01-24 E. I. Du Pont De Nemours And Company Flame retardant fabric
JP2005334525A (ja) 2004-05-31 2005-12-08 Atom Kosan Kk スティック型塵埃除去具及び軽量物品の吸着移送具
US20060116043A1 (en) * 2004-11-30 2006-06-01 Doug Hope Flame resistant fiber blend and fabrics made therefrom
JP2007092209A (ja) * 2005-09-28 2007-04-12 Teijin Techno Products Ltd 耐熱性布帛及びそれからなる耐熱性防護服
CN102378835B (zh) 2009-04-24 2013-12-18 日本毛织株式会社 防火性布料及使用了该布料的防火服
RU2408748C1 (ru) * 2009-09-11 2011-01-10 Наталия Марковна Левакова Огнестойкая ткань
JP2012036511A (ja) * 2010-08-04 2012-02-23 Kuraray Co Ltd 難燃性布帛およびそれを用いてなる防護衣
AT511288B1 (de) * 2010-11-24 2013-01-15 Chemiefaser Lenzing Ag Flammbeständiger Stoff für Schutzkleidung
KR101929080B1 (ko) * 2011-09-02 2018-12-13 인비스타 텍스타일스 (유.케이.) 리미티드 부분 방향족 폴리아미드 섬유 및 다른 방염성 섬유를 포함하는 방염성 얀 및 패브릭
CN104499161B (zh) 2014-12-18 2016-04-06 常熟市宝沣特种纤维有限公司 永久阻燃多功能面料及其制备方法
CN104651997B (zh) * 2015-02-13 2018-05-01 上海特安纶纤维有限公司 包含一种含砜基的共混型芳族聚酰胺纤维的纤维混合物、及由其纱线、织物和制备方法
JP5972420B1 (ja) * 2015-03-18 2016-08-17 日本毛織株式会社 多層構造紡績糸とこれを使用した耐熱性布帛及び耐熱性防護服

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007099209A (ja) * 2005-10-07 2007-04-19 Toyota Motor Corp 車両旋回装置および車両旋回方法
WO2012102090A1 (ja) * 2011-01-27 2012-08-02 日本毛織株式会社 防護服用布帛及びこれに使用する紡績糸
JP2014159666A (ja) * 2013-02-18 2014-09-04 Wl Gore & Associates Gmbh 防炎性布地構造体
JP2015229805A (ja) * 2014-06-03 2015-12-21 帝人株式会社 布帛および繊維製品
JP2017201063A (ja) * 2016-05-02 2017-11-09 帝人株式会社 難燃性布帛および繊維製品

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "SUNBURNER", 7 December 2017 (2017-12-07), pages 1 - 2, XP055597300, Retrieved from the Internet <URL:http://www.tohotextile.co.jp/material/sumburner.html> *
See also references of EP3524720A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019188197A1 (ja) * 2018-03-29 2019-10-03 東レ株式会社 織編物

Also Published As

Publication number Publication date
US11248319B2 (en) 2022-02-15
BR112019006561A2 (pt) 2019-07-02
RU2019112105A (ru) 2020-11-06
RU2744284C2 (ru) 2021-03-04
CA3038925A1 (en) 2018-04-12
JPWO2018066438A1 (ja) 2019-08-22
EP3524720A4 (en) 2020-05-06
MX2019003778A (es) 2019-07-01
WO2018066438A9 (ja) 2019-02-28
RU2019112105A3 (ja) 2021-01-25
TW201819701A (zh) 2018-06-01
CN109642361B (zh) 2021-05-25
US20200224341A1 (en) 2020-07-16
CN109642361A (zh) 2019-04-16
EP3524720B1 (en) 2021-04-07
EP3524720A1 (en) 2019-08-14
JP7036006B2 (ja) 2022-03-15
KR20190056371A (ko) 2019-05-24

Similar Documents

Publication Publication Date Title
WO2018066439A1 (ja) 遮炎性編物
WO2018066438A1 (ja) 遮炎性織物
WO2017006807A1 (ja) 遮炎性不織布
US11618240B2 (en) Nonwoven fabric sheet
WO2019188197A1 (ja) 織編物
KR101280553B1 (ko) 레이온 단섬유와 탄소섬유를 포함하는 준 불연 방적사 및 이를 사용한 원단
JP2007291570A (ja) 難燃性合成繊維、難燃繊維複合体およびそれを用いた炎遮断性バリア用不織布
JP2019173226A (ja) 織編物
JP2014001467A (ja) 難燃ポリエステル繊維の製造方法
JP7172998B2 (ja) 不織布
JP7251475B2 (ja) タフテッドカーペット
US20240102206A1 (en) Flame-retardant fabric and work clothing using the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018516201

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17858276

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197008318

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3038925

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019006561

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2017858276

Country of ref document: EP

Effective date: 20190506

ENP Entry into the national phase

Ref document number: 112019006561

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190401