WO2018064903A1 - 一种镜头及摄像机 - Google Patents

一种镜头及摄像机 Download PDF

Info

Publication number
WO2018064903A1
WO2018064903A1 PCT/CN2017/093128 CN2017093128W WO2018064903A1 WO 2018064903 A1 WO2018064903 A1 WO 2018064903A1 CN 2017093128 W CN2017093128 W CN 2017093128W WO 2018064903 A1 WO2018064903 A1 WO 2018064903A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
light
prism
sub
group lens
Prior art date
Application number
PCT/CN2017/093128
Other languages
English (en)
French (fr)
Inventor
刘超
杨坤
王威
陈艳婷
许建军
Original Assignee
杭州海康威视数字技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州海康威视数字技术股份有限公司 filed Critical 杭州海康威视数字技术股份有限公司
Priority to US16/340,338 priority Critical patent/US20200045211A1/en
Priority to EP17857784.7A priority patent/EP3525443A4/en
Publication of WO2018064903A1 publication Critical patent/WO2018064903A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/177Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a negative front lens or group of lenses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/14Optical objectives specially designed for the purposes specified below for use with infrared or ultraviolet radiation
    • G02B13/146Optical objectives specially designed for the purposes specified below for use with infrared or ultraviolet radiation with corrections for use in multiple wavelength bands, such as infrared and visible light, e.g. FLIR systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • G02B27/1013Beam splitting or combining systems for splitting or combining different wavelengths for colour or multispectral image sensors, e.g. splitting an image into monochromatic image components on respective sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/58Means for changing the camera field of view without moving the camera body, e.g. nutating or panning of optics or image sensors

Definitions

  • the present application relates to the field of optical device technologies, and in particular, to a lens and a camera.
  • a low-light camera is a surveillance camera that still captures sharp images at lower illuminance. Low illumination cameras have been widely used in security surveillance.
  • the low-light cameras need to use infrared light to fill light in low-light scenes, which can improve the brightness of the scene.
  • the light collected by the camera has both visible light and near-infrared light.
  • the wavelengths of visible light and near-infrared light are quite different. If they are mixed together, the collected image will be heavily color cast. Therefore, the low-light camera adopting this scheme can only output images in black and white mode.
  • the purpose of the embodiment of the present application is to provide a lens for separating visible light and infrared light, and providing a camera for outputting an image of a color mode in a low illumination scene.
  • the embodiment of the present application discloses a lens, comprising: a zooming lens set in sequence, a compensation group lens and a beam splitting device, or a compensation group lens, a zoom group lens and a beam splitting device which are sequentially disposed; among them,
  • the zoom lens has a negative power for diverging light emitted from the outside;
  • the compensation group lens has a positive power for concentrating light emitted from the variable magnification lens
  • the spectroscopic device separates light emitted from the compensation group lens into visible light and near-infrared light.
  • a first fixed group lens is further disposed between the zoom group lens and the compensation group lens, and the power of the first fixed group lens is positive;
  • the first fixed group lens is configured to converge light rays emitted from the zoom lens, after convergence Light rays are incident on the compensation group lens;
  • the lens includes a compensation group lens, a zoom group lens, and a beam splitting device which are sequentially disposed
  • the first fixed group lens is used for condensing light emitted from the compensation group lens, and after convergence Light is incident on the variable magnification lens.
  • a second fixed group lens is further disposed before the zoom group lens, the second fixed group lens has a positive power; and the third fixed group lens is further disposed before the compensation group lens.
  • the power of the third fixed group lens is positive;
  • the lens includes a zoom group lens, a compensation group lens, and a spectroscopic device that are sequentially disposed:
  • the second fixed group lens is configured to converge the light incident from the outside, and the concentrated light is incident on the variable magnification lens;
  • the third fixed group lens is configured to converge the light emitted from the zoom lens, and the concentrated light is incident on the compensation group lens;
  • the lens includes a compensation group lens, a zoom group lens, and a spectroscopic device that are sequentially disposed:
  • the second fixed group lens is configured to converge the light emitted from the compensation group lens, and the concentrated light is incident on the variable magnification lens;
  • the third fixed group lens is configured to converge the light incident from the outside, and the concentrated light is incident on the compensation group lens.
  • the spectroscopic device is a beam splitting prism or a spectroscopic filter
  • the beam splitting prism includes a first sub-prism and a second sub-prism, wherein the first sub-prism and the second sub-prism are right-angle prisms, and the first slope of the first sub-prism and the second sub-prism
  • the second inclined surface is opposite, and a light splitting film is disposed between the first inclined surface and the second inclined surface;
  • the light emitted from the compensation group lens is incident on the first sub-prism by a first right-angled surface, and the light is separated into visible light and near-infrared light after passing through the light-splitting film; the near-infrared light is separated by a second right angle Emitting the first sub-prism, the visible light is emitted from the third right-angled prism by the third right-angled surface; or the visible light is emitted from the second right-angled surface by the first sub-prism, the near-infrared light
  • the second sub-prism is emitted from the third right-angled surface.
  • the spectroscopic device is a dichroic prism
  • the near-infrared light is emitted from the second right-angled surface to the first sub-prism
  • the visible light is emitted from the third right-angled surface to the second sub-prism
  • a first anti-reflection film is disposed on the first right angle surface; the light emitted from the compensation group lens is incident on the first sub-prism from the first right-angle surface through the first anti-reflection film;
  • the second right angle surface is further provided with a second anti-reflection film; the near-infrared light is transmitted through the second anti-reflection film from the second right-angle surface to emit the first sub-prism;
  • the third right angle surface is further provided with a third anti-reflection film; the visible light passes through the third anti-reflection film to emit the second sub-prism from the third right-angle surface;
  • the spectroscopic device is a dichroic prism, and the near-infrared light is emitted from the second right-angled surface by the first sub-prism, and the visible light is emitted from the third right-angled surface by the second sub-prism ,
  • a first anti-reflection film is disposed on the first right angle surface; the light emitted from the compensation group lens is incident on the first sub-prism from the first right-angle surface through the first anti-reflection film;
  • the second rectangular surface is further provided with the third anti-reflection film; the visible light is transmitted through the third anti-reflection film from the second right-angle surface to the first sub-prism;
  • the second anti-reflection film is further disposed on the third right-angled surface; the near-infrared light passes through the second anti-reflection film, and the second sub-prism is emitted from the third right-angled surface .
  • the beam splitting device is a beam splitting prism
  • the beam splitting prism comprises a third sub-prism and a fourth sub-prism, wherein the third sub-prism is a non-right-angle prism, and the fourth sub-prism is a right-angle prism or A non-right angle prism is disposed between the third sub-prism and a surface opposite to the fourth sub-prism.
  • the lens is further provided with a first interface and a second interface, and the separated near-infrared light is emitted from the first interface, and the separated visible light is emitted from the second interface;
  • the visible light exits the lens from the first interface, and the near-infrared light exits the lens from the second interface.
  • the embodiment of the present application further discloses a camera, including: a lens, a visible light collection module, a near-infrared light collection module, and a fusion module according to the embodiment of the present application;
  • the lens separates the mixed light into visible light and near-infrared light, wherein the near-infrared light is emitted by an infrared fill light;
  • the visible light collection module collects visible light emitted from the lens, and the visible light collection module includes a first photosensitive chip, and the first photosensitive chip converts the visible light into a color signal and a first brightness signal;
  • the near-infrared light collecting module collects near-infrared light emitted from the lens, the near-infrared light collecting module includes a second photosensitive chip, and the second photosensitive chip converts the near-infrared light into a second brightness signal ;
  • the fusion module fuses the color signal, the first luminance signal, and the second luminance signal, and outputs the fused image.
  • the infrared fill light is disposed in the camera, and the infrared fill light is provided with a sensor switch, when the visible light intensity in the scene is lower than a preset threshold, or when a preset period is reached, The sensor switch is closed and the infrared fill light emits near infrared light.
  • the near-infrared light emitted by the infrared supplement lamp has a spectral center wavelength of 850 nm or 780 nm or 730 nm.
  • the lens provided in the solution is provided with a light splitting device, which can separate the incident light into visible light and near-infrared light; in addition, the light passes through the zoom lens and the compensation group lens before being injected into the beam splitting device, so that zooming and correction can be realized.
  • a light splitting device which can separate the incident light into visible light and near-infrared light; in addition, the light passes through the zoom lens and the compensation group lens before being injected into the beam splitting device, so that zooming and correction can be realized.
  • Aberration .
  • the solution further provides a camera, wherein the lens is disposed in the camera to separate the visible light and the infrared light; the camera is further provided with a visible light collecting module, collecting visible light emitted from the lens, and converting the visible light a color signal and a first brightness signal; the camera is further provided with a near-infrared light collecting module, collecting near-infrared light emitted from the lens, and converting the near-infrared light into a second brightness signal; Also provided with a fusion module, the color letter The number, the first brightness signal, and the second brightness signal are fused, and the fused image is output.
  • the camera provided by the solution separately combines the visible light and the near-infrared light, and then merges, thereby avoiding the color cast when the visible light and the near-infrared light are mixed, so that the color mode can be output in a low illumination scene. image.
  • FIG. 1 is a schematic diagram of a first structure of a lens according to an embodiment of the present application
  • FIG. 2 is a schematic diagram of a first structure of a spectroscopic device in a lens according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of a second structure of a lens according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a third structure of a lens according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a fourth structure of a lens according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a fifth structure of a lens according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a sixth embodiment of a lens according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a seventh type of a lens according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of an eighth embodiment of a lens according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of a ninth structure of a lens according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a tenth lens according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic diagram of a second structure of a light splitting device in a lens according to an embodiment of the present disclosure
  • FIG. 13 is a schematic diagram of a third structure of a light splitting device in a lens according to an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a camera according to an embodiment of the present application.
  • the embodiment of the present application provides a lens and a camera.
  • the lens provided by the embodiment of the present application is first described in detail below.
  • FIG. 1 is a first schematic structural diagram of a lens according to an embodiment of the present disclosure.
  • the lens 10 includes: a zoom group lens 100, a compensation group lens 200, and a beam splitting device 300.
  • the variable power group lens 100 has a negative power for diverging light emitted from the outside;
  • the compensation group lens 200 has a positive power for concentrating the light emitted from the variable magnification lens 100;
  • the spectroscopic device 300 separates the light emitted from the compensating group lens 200 into visible light and near-infrared light.
  • the group lenses described in the embodiments of the present application may each comprise one or more lenses.
  • the light is incident from the outside into the variable magnification lens 100, and the variable magnification lens 100 diverges and emits the light, and the emitted light is incident on the compensation group lens 200, and the compensation group lens 200 converges the light. And emitted, the emitted light is incident on the spectroscopic device, and the spectroscopic device separates the light into visible light and near-infrared light.
  • the zoom lens 100 and the compensation lens 200 By the linkage of the zoom lens 100 and the compensation lens 200, a small magnification zoom can be achieved, and the zoom process has the same effect on visible light and near-infrared light.
  • optical path in FIG. 1 only represents a schematic diagram of the ray path and does not represent an accurate ray path.
  • the spectroscopic device 300 may be a beam splitting prism or a spectroscopic filter. If the spectroscopic device is a dichroic prism, the spectroscopic device 300 can include a first sub-prism 310 and a second sub-prism 320 as shown in FIG. 2, wherein the first sub-prism 310 and the second sub-prism 320 are right-angle prisms, the first sub- The first inclined surface 311 of the prism 310 is opposite to the second inclined surface 321 of the second sub-prism 320, and a beam splitting film 330 is disposed between the first inclined surface 311 and the second inclined surface 321 .
  • the light emitted from the compensation group lens is incident on the first sub-prism 310 by the first right-angled surface 312, and the light is passed through the spectral film 330.
  • the light is separated into visible light and near-infrared light.
  • the near-infrared light is emitted from the second right-angled surface 313 to the first sub-prism 310, and the visible light is emitted from the third right-angled surface 322 to the second sub-prism 320.
  • the wavelength of the light transmitted by the spectroscopic film may range from 440 nm to ( ⁇ -20) nm; the wavelength of the light reflected by the spectroscopic film may range from ( ⁇ +20) nm to 900 nm, wherein 550 ⁇ 730.
  • the first right angle surface 312 may further be provided with a first anti-reflection film; the light emitted from the compensation group lens 200 passes through the first anti-reflection film.
  • the first straight face 312 is incident on the first sub-prism 310.
  • the light permeable to the first anti-reflection film may range from 400 nm to 900 nm, such that the first anti-reflection film can transmit near-infrared light and visible light.
  • a second anti-reflection film may be disposed on the second right-angled surface 313; the near-infrared light is transmitted through the second anti-reflection film from the second right-angled surface 313 to the first sub-prism 310.
  • the light permeable to the second anti-reflection film may range from ⁇ nm to 900 nm, so that the second anti-reflection film can transmit near-infrared light.
  • a third anti-reflection film is further disposed on the third right-angled surface 322; the visible light is transmitted through the third anti-reflection film from the third right-angled surface 322 to the second sub-prism 320.
  • the light permeable to the third anti-reflection film may range from 400 nm to ⁇ nm, so that the third anti-reflection film can transmit visible light.
  • the visible light is emitted from the second right-angled surface 313 to the first sub-prism 310, and the near-infrared light is emitted from the third right-angled surface 322 to the second sub-prism 320.
  • the wavelength of the light reflected by the spectroscopic film may range from 440 nm to ( ⁇ -20) nm; the wavelength of the light transmitted by the spectroscopic film may range from ( ⁇ +20) nm to 900 nm, wherein 550 ⁇ 730.
  • the first right angle surface 312 may further be provided with a first anti-reflection film; the light emitted from the compensation group lens 200 passes through the first anti-reflection film.
  • the first straight face 312 is incident on the first sub-prism 310.
  • the first antireflection film is permeable to light
  • the wavelength of the line may range from 400 nm to 900 nm, such that the first anti-reflection film can transmit near-infrared light and visible light.
  • a second anti-reflection film may be disposed on the second right-angled surface 313; the visible light is transmitted through the third anti-reflection film from the second right-angled surface 313 to the first sub-prism 310.
  • the light permeable to the third anti-reflection film may range from 400 nm to ⁇ nm, so that the third anti-reflection film can transmit visible light.
  • the visible light is transmitted through the second anti-reflection film from the second right-angled surface 313 to the first sub-prism 310.
  • a second anti-reflection film may be disposed on the third right-angled surface 322; the near-infrared light passes through the second anti-reflection film to eject the second sub-prism 320 from the third right-angled surface 322.
  • the light permeable to the second anti-reflection film may range from ⁇ nm to 900 nm, so that the second anti-reflection film can transmit near-infrared light.
  • the average transmittance (Tave) of the first antireflection film, the second antireflection film, and the third antireflection film may be greater than 90%.
  • optical path in FIG. 2 only represents a schematic diagram of the ray path and does not represent an accurate ray path.
  • the lens 10 can also be provided with a first interface 400 and a second interface 500.
  • the separated near-infrared light is emitted from the first interface 400 to the lens 10, and is separated.
  • the visible light is emitted from the second interface 500 to the lens 10; in the second embodiment corresponding to FIG.
  • the separated visible light exits the lens 10 from the first interface 400, and the separated near-infrared light exits the lens 10 from the second interface 500.
  • a first fixed group lens 600 may be disposed between the variable magnification lens 100 and the compensation group lens 200.
  • the first fixed group lens 600 has a positive power.
  • the light emitted from the variable magnification lens 100 is concentrated, and the concentrated light is incident on the compensation group lens 200.
  • the light is incident from the outside into the variable magnification lens 100, and the variable magnification lens 100 diverges and emits the light, and the emitted light is incident on the first fixed group lens 600, and the first fixed group lens 600
  • the light is concentrated, and the concentrated light is incident on the compensation group lens 200.
  • the compensation group lens 200 converges and emits the light, and the emitted light is incident on the spectroscopic device, and the spectroscopic device separates the light into visible light and near-infrared light.
  • the first fixed group lens 600 can correct partial aberrations, and can also correct different fields of view of the object side. The role of the direction of the light. During the zooming process, the first fixed group lens 600 remains stationary.
  • a second fixed group lens 700 may be disposed before the variable magnification lens 100; the second fixed group lens 700 has a positive power for direct injection from the outside. The light converges and the concentrated light is incident on the variable magnification lens 100.
  • the second fixed group lens 700 mainly serves to correct aberrations. During the zooming process, the second fixed set lens 700 remains stationary.
  • the compensation group lens 200 is further provided with a third fixed group lens 800; the third fixed group lens 800 has a positive power for concentrating the light emitted from the variable magnification lens 100, and after convergence Light is incident on the compensation group lens 200.
  • the third fixed group lens 800 mainly serves to correct aberrations. During zooming, the third fixed set lens 800 remains stationary.
  • the second fixed group lens 700 may be disposed before the variable group lens 100, and the third fixed group lens 800 may be disposed after the compensation group lens 200. This will correct the aberration to a greater extent.
  • a third fixed set lens 800 is provided. In this way, not only can the effect of correcting the direction of the light in different fields of view of the object side, but also the aberration can be corrected to a greater extent.
  • optical path in FIG. 3-7 only represents a schematic diagram of the ray path and does not represent an accurate ray path.
  • the lens is provided with a light splitting device, which can separate the incident light into visible light and near-infrared light; in addition, before the light is incident on the light splitting device, the variable magnification lens and the compensation group lens are passed, so that Zoom and correct aberrations.
  • FIG. 8 is a schematic structural diagram of an eighth embodiment of a lens according to an embodiment of the present disclosure.
  • the lens 10 includes: a compensation group lens 200, a zoom group lens 100, and a beam splitting device 300 which are sequentially disposed;
  • the variable power group lens 100 has a negative power for diverging light emitted from the outside;
  • the compensation group lens 200 has a positive power for the light emitted from the variable magnification lens 100. Convergence
  • the spectroscopic device 300 separates the light emitted from the compensating group lens 200 into visible light and near-infrared light.
  • the group lenses described in the embodiments of the present application may each comprise one or more lenses.
  • the light is incident from the outside into the compensation group lens 200, and the compensation group lens 200 converges and emits the light, and the emitted light is incident on the variable magnification lens 100, and the variable magnification lens 100 diverges the light. And emitted, the emitted light is incident on the spectroscopic device, and the spectroscopic device separates the light into visible light and near-infrared light.
  • the zoom lens 100 and the compensation lens 200 By the linkage of the zoom lens 100 and the compensation lens 200, a small magnification zoom can be achieved, and the zoom process has the same effect on visible light and near-infrared light.
  • optical path in FIG. 8 only represents a schematic diagram of the ray path and does not represent an accurate ray path.
  • the spectroscopic device 300 may be a beam splitting prism or a spectroscopic filter. If the spectroscopic device is a dichroic prism, the spectroscopic device 300 can include a first sub-prism 310 and a second sub-prism 320 as shown in FIG. 2, wherein the first sub-prism 310 and the second sub-prism 320 are right-angle prisms, the first sub- The first inclined surface 311 of the prism 310 is opposite to the second inclined surface 321 of the second sub-prism 320, and a beam splitting film 330 is disposed between the first inclined surface 311 and the second inclined surface 321 .
  • the light emitted from the compensation group lens is incident on the first sub-prism 310 by the first right-angled surface 312, and the light is passed through the spectral film 330.
  • the light is separated into visible light and near-infrared light.
  • the near-infrared light is emitted from the second right-angled surface 313 to the first sub-prism 310, and the visible light is emitted from the third right-angled surface 322 to the second sub-prism 320.
  • the visible light is emitted from the second right angle surface 313 to the first sub-prism 310, and the near-infrared light is emitted from the third right angle surface 322 to the second sub-prism 320.
  • the wavelength of the light transmitted by the spectroscopic film may range from 440 nm to ( ⁇ -20) nm; the wavelength of the light reflected by the spectroscopic film may range from ( ⁇ +20) nm to 900 nm, wherein 550 ⁇ 730.
  • the first right angle surface 312 may further be provided with a first anti-reflection film; the light emitted from the compensation group lens 200 passes through the first anti-reflection film.
  • the first straight face 312 is incident on the first sub-prism 310.
  • the light permeable to the first anti-reflection film may range from 400 nm to 900 nm, such that the first anti-reflection film can transmit near-infrared light and visible light.
  • a second anti-reflection film may be disposed on the second right-angled surface 313; the near-infrared light is transmitted through the second anti-reflection film from the second right-angled surface 313 to the first sub-prism 310.
  • the light permeable to the second anti-reflection film may range from ⁇ nm to 900 nm, so that the second anti-reflection film can transmit near-infrared light.
  • the visible light is transmitted through the second anti-reflection film from the second right-angled surface 313 to the first sub-prism 310.
  • the light permeable to the second anti-reflection film may range from 400 nm to ⁇ nm, so that the second anti-reflection film can transmit visible light.
  • a third anti-reflection film is further disposed on the third right-angled surface 322; the visible light is transmitted through the third anti-reflection film from the third right-angled surface 322 to the second sub-prism 320.
  • the light permeable to the third anti-reflection film may range from 400 nm to ⁇ nm, so that the third anti-reflection film can transmit visible light.
  • the near-infrared light is emitted from the third right-angled surface 322 through the third anti-reflection film.
  • the light permeable to the third anti-reflection film may range from ⁇ to 900 nm, so that the third anti-reflection film can transmit near-infrared light.
  • the spectroscopic film by providing the spectroscopic film, visible light can be emitted from the second right-angled surface 313 to the first sub-prism 310, and the near-infrared light is emitted from the third right-angled surface 322 to the second sub-prism.
  • the wavelength of the light reflected by the spectroscopic film may range from 440 nm to ( ⁇ -20) nm; the wavelength of the light transmitted by the spectroscopic film may range from ( ⁇ +20) nm to 900 nm, wherein 550 ⁇ 730.
  • the first right angle surface 312 may further be provided with a first anti-reflection film; the light emitted from the compensation group lens 200 passes through the first anti-reflection film.
  • the first straight face 312 is incident on the first sub-prism 310.
  • the light permeable to the first anti-reflection film may range from 400 nm to 900 nm, such that the first anti-reflection film can transmit near-infrared light and visible light.
  • a second anti-reflection film may be disposed on the second right-angled surface 313; the visible light is transmitted through the third anti-reflection film from the second right-angled surface 313 to the first sub-prism 310.
  • the light permeable to the third anti-reflection film may range from 400 nm to ⁇ nm, so that the third anti-reflection film can transmit visible light.
  • the visible light is transmitted through the second anti-reflection film from the second right-angled surface 313 to the first sub-prism 310.
  • a second anti-reflection film may be disposed on the third right-angled surface 322; the near-infrared light passes through the second anti-reflection film to eject the second sub-prism 320 from the third right-angled surface 322.
  • the light permeable to the second anti-reflection film may range from ⁇ nm to 900 nm, so that the second anti-reflection film can transmit near-infrared light.
  • the average transmittance (Tave) of the first antireflection film, the second antireflection film, and the third antireflection film may be greater than 90%.
  • optical path in FIG. 2 only represents a schematic diagram of the ray path and does not represent an accurate ray path.
  • the lens 10 can also be provided with a first interface 400 and a second interface 500.
  • the separated near-infrared light is emitted from the first interface 400 to the lens 10, and is separated.
  • the visible light is emitted from the second interface 500 to the lens 10; in the second embodiment corresponding to FIG.
  • the separated visible light exits the lens 10 from the first interface 400, and the separated near-infrared light exits the lens 10 from the second interface 500.
  • a first fixed group lens 600 may be disposed between the variable magnification lens 100 and the compensation group lens 200.
  • the first fixed group lens 600 has a positive power.
  • the light emitted from the variable magnification lens 100 is concentrated, and the concentrated light is incident on the compensation group lens 200.
  • the light is incident from the outside into the compensation group lens 200, and the compensation group lens 200 converges and emits the light, and the emitted light is incident on the first fixed group lens 600, and the first fixed group lens 600 emits light.
  • the convergence is performed, and the concentrated light is incident on the variable magnification lens 100.
  • the compensation group lens 200 diverges and emits the light, and the emitted light is incident on the spectroscopic device, and the spectroscopic device separates the light into visible light and near-infrared light.
  • the first fixed group lens 600 can correct partial aberrations and can also correct the direction of light in different fields of view of the object side. During the zooming process, the first fixed group lens 600 remains stationary.
  • a second fixed group lens 700 may be disposed before the variable magnification lens 100; the second fixed group lens 700 has a positive power for direct injection from the outside. The light converges and the concentrated light is incident on the variable magnification lens 100.
  • the second fixed group lens 700 mainly serves to correct aberrations. During the zooming process, the second fixed set lens 700 remains stationary.
  • the compensation group lens 200 is further provided with a third fixed group lens 800; the third fixed group lens 800 has a positive power for concentrating the light emitted from the variable magnification lens 100, and after convergence Light is incident on the compensation group lens 200.
  • the third fixed group lens 800 mainly serves to correct aberrations. During zooming, the third fixed set lens 800 remains stationary.
  • a first fixed group lens 600 is disposed between the variable magnification lens 100 and the compensation group lens 200, and a second fixed group lens 700 is disposed after the variable magnification lens 100, in the compensation group lens.
  • the third fixed group lens 800 is set before 200. In this way, not only can the effect of correcting the direction of the light in different fields of view of the object side, but also the aberration can be corrected to a greater extent.
  • optical path in FIG. 8-11 only represents a schematic diagram of the ray path and does not represent an accurate ray path.
  • the beam splitting prism may be a right angle prism or a non-right angle prism, which is not limited.
  • the beam splitting prism may include a third sub-prism 910 and a fourth sub-prism 920 as shown in FIG. 12 , wherein the third sub-prism 920 is a non-right-angle prism, and the fourth sub-prism is a right-angle prism, A beam splitting film 930 is disposed between the faces of the three sub-prisms 910 and the fourth sub-prisms 920. The angle a between the third sub-prism 910 and the fourth sub-prism 920 is equal.
  • the light is incident on the third sub-prism 910 from the surface 911. After passing through the beam splitting film 930, the light is separated into visible light and near-infrared light, and the near-infrared light is emitted from the surface 913 to the third sub-prism 910. 922 emits a fourth sub-prism 920.
  • the visible light is emitted from the surface 913 to the third sub-prism 910, and the near-infrared light is emitted from the surface 922 to the fourth sub-prism 920.
  • the third sub-prism 910 and the fourth sub-prism 920 may be partially cut off, and the cut-off beam splitting prism may be as shown in FIG. 13 , and the broken line portion indicates the cut portion. .
  • the third sub-prism 910 and the fourth sub-prism 920 are both non-orthogonal prisms.
  • the lens is provided with a light splitting device, which can separate the incident light into visible light and near-infrared light; in addition, before the light is incident on the light splitting device, the variable magnification lens and the compensation group lens are passed, so that Zoom and correct aberrations.
  • the embodiment of the present application further provides a camera, as shown in FIG. 14 , including the lens 10, the visible light collection module 20, the near-infrared light collection module 30, and the fusion module 40;
  • the lens 10 separates the mixed light into visible light and near-infrared light, wherein the near-infrared light is emitted by the infrared fill light;
  • the visible light collection module 20 collects visible light emitted from the lens 10, and the visible light collection module 20 includes a first photosensitive chip, and the first photosensitive chip converts the visible light into a color signal and a first brightness signal;
  • the near-infrared light collecting module 30 collects near-infrared light emitted from the lens 10, the near-infrared light collecting module includes a second photosensitive chip, and the second photosensitive chip converts the near-infrared light into a second brightness signal;
  • the fusion module 40 fuses the color signal, the first luminance signal, and the second luminance signal, and outputs the fused image.
  • the fused image is a color mode image with high brightness.
  • the infrared fill light may be disposed in the camera or may be separately provided, which is not limited herein.
  • the infrared fill light is provided with a sensor switch. When the visible light intensity in the scene is lower than a preset threshold, or when a preset period is reached, the sensor switch is closed, and the infrared fill light emits near-infrared light.
  • the spectral center wavelength of the near-infrared light emitted by the infrared supplemental light is 850 nm or 780 nm or 730 nm, which may of course be other, and is not limited herein.
  • the camera is provided with the above lens to realize separation of visible light and infrared light; the camera is further provided with a visible light collecting module, collecting visible light emitted from the lens, and converting the visible light into a color signal and a first brightness signal; the camera is further provided with a near-infrared light collecting module, collecting near-infrared light emitted from the lens, and converting the near-infrared light into a second brightness signal; A fusion module is provided, and the color signal, the first brightness signal and the second brightness signal are fused, and the fused image is output.
  • the camera provided by the solution separately combines the visible light and the near-infrared light, and then merges, thereby avoiding the color cast when the visible light and the near-infrared light are mixed, so that the color mode can be output in a low illumination scene. image.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Nonlinear Science (AREA)
  • Studio Devices (AREA)
  • Blocking Light For Cameras (AREA)
  • Lenses (AREA)

Abstract

本申请实施例公开了一种镜头及摄像机,镜头中设置有分光装置,将入射光线分离为可见光及近红外光;镜头中还设置有变倍组镜片和补偿组镜片,实现变焦并矫正像差。摄像机中设置有该镜头,将可见光与红外光分离;摄像机中还设置有可见光采集模块,采集从镜头中射出的可见光,将其转化为色彩信号及第一亮度信号;摄像机中还设置有近红外光采集模块,采集从镜头中射出的近红外光,将其转化为第二亮度信号;摄像机中还设置有融合模块,将色彩信号、第一亮度信号及第二亮度信号进行融合,输出融合后的图像。由此可见,本方案提供的摄像机将可见光与近红外光分别处理后再进行融合,避免二者混合处理时出现的偏色,在低照度的场景下输出彩色模式的图像。

Description

一种镜头及摄像机
本申请要求于2016年10月8日提交中国专利局、申请号为201610878312.1、发明名称为“一种镜头及摄像机”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光学设备技术领域,特别涉及一种镜头及摄像机。
背景技术
低照度摄像机是指在较低光照度的条件下仍然可以摄取清晰图像的监控摄像机。低照度摄像机已经广泛应用于安防监控领域。
目前,大多低照度摄像机在低照度的场景下都需要采用红外灯进行补光,这样,可以提高场景亮度。但是,经过红外灯补光后,摄像机采集到的光线中既有可见光又有近红外光。可见光与近红外光波长差别较大,如果混合在一起,会使采集到的图像出现严重偏色,因此,采用这种方案的低照度摄像机只能输出黑白模式的图像。
发明内容
本申请实施例的目的在于提供一种镜头,实现可见光与红外光的分离,提供一种摄像机,在低照度的场景下输出彩色模式的图像。
为达到上述目的,本申请实施例公开了一种镜头,包括:顺次设置的变倍组镜片、补偿组镜片和分光装置,或者顺次设置的补偿组镜片、变倍组镜片和分光装置;其中,
所述变倍组镜片的光焦度为负,用于对从外部射入的光线进行发散;
所述补偿组镜片的光焦度为正,用于对从所述变倍组镜片射出的光线进行会聚;
所述分光装置将从所述补偿组镜片射出的光线分离为可见光及近红外光。
可选的,在所述变倍组镜片和所述补偿组镜片之间还设置有第一固定组镜片,所述第一固定组镜片的光焦度为正;
在所述镜头包括顺次设置的变倍组镜片、补偿组镜片和分光装置的情况下,所述第一固定组镜片,用于对从所述变倍组镜片射出的光线进行会聚,会聚后的光线射入所述补偿组镜片;
在所述镜头包括顺次设置的补偿组镜片、变倍组镜片和分光装置的情况下,所述第一固定组镜片,用于对从所述补偿组镜片射出的光线进行会聚,会聚后的光线射入所述变倍组镜片。
可选的,在所述变倍组镜片之前还设置有第二固定组镜片,所述第二固定组镜片的光焦度为正;在所述补偿组镜片之前还设置有第三固定组镜片,所述第三固定组镜片的光焦度为正;
在所述镜头包括顺次设置的变倍组镜片、补偿组镜片和分光装置的情况下:
所述第二固定组镜片,用于对从外部射入的光线进行会聚,会聚后的光线射入所述变倍组镜片;
所述第三固定组镜片,用于对从所述变倍组镜片射出的光线进行会聚,会聚后的光线射入所述补偿组镜片;
在所述镜头包括顺次设置的补偿组镜片、变倍组镜片和分光装置的情况下:
所述第二固定组镜片,用于对从所述补偿组镜片射出的光线进行会聚,会聚后的光线射入所述变倍组镜片;
所述第三固定组镜片,用于对从外部射入的光线进行会聚,会聚后的光线射入所述补偿组镜片。
可选的,所述分光装置为分光棱镜或分光滤光片;
所述分光棱镜包括第一子棱镜和第二子棱镜,其中,所述第一子棱镜和第二子棱镜为直角棱镜,所述第一子棱镜的第一斜面与所述第二子棱镜的第二斜面相对,且所述第一斜面与所述第二斜面之间设置有分光膜;
从所述补偿组镜片射出的光线由第一直角面射入所述第一子棱镜,光线经过所述分光膜后,被分离为可见光及近红外光;所述近红外光由第二直角 面射出所述第一子棱镜,所述可见光由第三直角面射出所述第二子棱镜;或者,所述可见光由所述第二直角面射出所述第一子棱镜,所述近红外光由所述第三直角面射出所述第二子棱镜。
可选的,在所述分光装置为分光棱镜、且所述近红外光由第二直角面射出所述第一子棱镜、所述可见光由第三直角面射出所述第二子棱镜的情况下,
所述第一直角面上还设置有第一增透膜;从所述补偿组镜片射出的光线透过所述第一增透膜从所述第一直角面射入所述第一子棱镜;
和/或,所述第二直角面上还设置有第二增透膜;所述近红外光透过所述第二增透膜由所述第二直角面射出所述第一子棱镜;
和/或,所述第三直角面上还设置有第三增透膜;所述可见光透过所述第三增透膜由所述第三直角面射出所述第二子棱镜;
在所述分光装置为分光棱镜、且所述近红外光由所述第二直角面射出所述第一子棱镜,所述可见光由所述第三直角面射出所述第二子棱镜的情况下,
所述第一直角面上还设置有第一增透膜;从所述补偿组镜片射出的光线透过所述第一增透膜从所述第一直角面射入所述第一子棱镜;
和/或,所述第二直角面上还设置有所述第三增透膜;所述可见光透过所述第三增透膜由所述第二直角面射出所述第一子棱镜;
和/或,所述第三直角面上还设置有所述第二增透膜;所述近红外光透过所述第二增透膜由所述第三直角面射出所述第二子棱镜。
可选的,所述分光装置为分光棱镜,所述分光棱镜包括第三子棱镜和第四子棱镜,其中,所述第三子棱镜为非直角棱镜,所述第四子棱镜为直角棱镜或者非直角棱镜,所述第三子棱镜与所述第四子棱镜相对的面之间设置有分光膜。
可选的,所述镜头还设置有第一接口和第二接口,分离出的近红外光从所述第一接口射出所述镜头,分离出的可见光从所述第二接口射出所述镜头; 或者,所述可见光从所述第一接口射出所述镜头,所述近红外光从所述第二接口射出所述镜头。
为达到上述目的,本申请实施例还公开了一种摄像机,包括:本申请实施例所述的镜头、可见光采集模块、近红外光采集模块、融合模块;其中,
所述镜头将混合光线分离为可见光及近红外光,其中,所述近红外光由红外补光灯发出;
所述可见光采集模块采集从所述镜头中射出的可见光,所述可见光采集模块中包含第一感光芯片,所述第一感光芯片将所述可见光转化为色彩信号及第一亮度信号;
所述近红外光采集模块采集从所述镜头中射出的近红外光,所述近红外光采集模块包含第二感光芯片,所述第二感光芯片将所述近红外光转化为第二亮度信号;
所述融合模块将所述色彩信号、第一亮度信号及第二亮度信号进行融合,并输出融合后的图像。
可选的,所述红外补光灯设置于所述摄像机中,所述红外补光灯中设置有传感器开关,当场景中的可见光强度低于预设阈值时、或者当到达预设周期时,所述传感器开关闭合,所述红外补光灯发射近红外光。
可选的,所述红外补光灯发射的近红外光的光谱中心波长为850nm或者780nm或者730nm。
本方案提供的镜头中设置有分光装置,可以将入射光线分离为可见光及近红外光;另外,光线射入分光装置之前还要经过变倍组镜片和补偿组镜片,这样,可以实现变焦并矫正像差。。
本方案还提供一种摄像机,摄像机中设置有该镜头,可实现可见光与红外光的分离;该摄像机中还设置有可见光采集模块,采集从所述镜头中射出的可见光,并将所述可见光转化为色彩信号及第一亮度信号;该摄像机中还设置有近红外光采集模块,采集从所述镜头中射出的近红外光,并将所述近红外光转化为第二亮度信号;该摄像机中还设置有融合模块,将所述色彩信 号、第一亮度信号及第二亮度信号进行融合,并输出融合后的图像。由此可见,本方案提供的摄像机将可见光与近红外光分别处理后再进行融合,避免了可见光与近红外光混合处理时出现的偏色,因此,在低照度的场景下可以输出彩色模式的图像。
当然,实施本申请的任一产品或方法并不一定需要同时达到以上所述的所有优点。
附图说明
为了更清楚地说明本申请实施例和现有技术的技术方案,下面对实施例和现有技术中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的镜头的第一种结构示意图;
图2为本申请实施例提供的镜头中的分光装置的第一种结构示意图;
图3为本申请实施例提供的镜头的第二种结构示意图;
图4为本申请实施例提供的镜头的第三种结构示意图;
图5为本申请实施例提供的镜头的第四种结构示意图;
图6为本申请实施例提供的镜头的第五种结构示意图;
图7为本申请实施例提供的镜头的第六种结构示意图;
图8为本申请实施例提供的镜头的第七种结构示意图;
图9为本申请实施例提供的镜头的第八种结构示意图;
图10为本申请实施例提供的镜头的第九种结构示意图;
图11为本申请实施例提供的镜头的第十种结构示意图;
图12为本申请实施例提供的镜头中的分光装置的第二种结构示意图;
图13为本申请实施例提供的镜头中的分光装置的第三种结构示意图;
图14为本申请实施例提供的一种摄像机的结构示意图。
具体实施方式
为使本申请的目的、技术方案、及优点更加清楚明白,以下参照附图并举实施例,对本申请进一步详细说明。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
为了解决上述技术问题,本申请实施例提供了一种镜头及摄像机。下面首先对本申请实施例提供的镜头进行详细说明。
图1为本申请实施例提供的镜头的第一种结构示意图,镜头10包括:顺次设置的变倍组镜片100、补偿组镜片200和分光装置300;其中,
变倍组镜片100的光焦度为负,用于对从外部射入的光线进行发散;
补偿组镜片200的光焦度为正,用于对从变倍组镜片100射出的光线进行会聚;
分光装置300将从补偿组镜片200射出的光线分离为可见光及近红外光。
本申请实施例中所述的组镜片,均可以包含一枚或多枚镜片。
如图1中的箭头所示,光线从外部射入变倍组镜片100,变倍组镜片100将光线进行发散并射出,射出的光线射入补偿组镜片200,补偿组镜片200将光线进行会聚并射出,射出的光线射入分光装置,分光装置将光线分离为可见光和近红外光。通过变倍组镜片100和补偿组镜片200的联动,可以实现小倍率变焦,并且变焦过程对可见光和近红外光的影响一致。
需要说明的是,图1中的光路走向仅表示光线路径的示意图,并不代表精确的光线路径。
分光装置300可以为分光棱镜或分光滤光片。如果分光装置为分光棱镜,分光装置300可以如图2所示,包括第一子棱镜310和第二子棱镜320,其中,第一子棱镜310和第二子棱镜320为直角棱镜,第一子棱镜310的第一斜面311与第二子棱镜320的第二斜面321相对,且第一斜面311与第二斜面321之间设置有分光膜330。
在图2对应的第一种实施方式中,如图2中的箭头所示,从补偿组镜片射出的光线由第一直角面312射入第一子棱镜310,光线经过分光膜330后,被分离为可见光及近红外光,近红外光由第二直角面313射出第一子棱镜310,可见光由第三直角面322射出第二子棱镜320。
具体的,分光膜透过的光线的波长范围可以为440nm~(λ-20)nm;分光膜反射的光线的波长范围可以为(λ+20)nm~900nm,其中,550<λ<730。
作为一种实施方式,在分光装置为分光棱镜的情况下,第一直角面312上还可以设置有第一增透膜;从补偿组镜片200射出的光线透过所述第一增透膜从第一直角面312射入第一子棱镜310。具体的,该第一增透膜可透过的光线的波长范围可以为400nm~900nm,这样,该第一增透膜可以透过近红外光和可见光。
作为一种实施方式,第二直角面313上还可以设置有第二增透膜;近红外光透过第二增透膜由第二直角面313射出第一子棱镜310。具体的,该第二增透膜可透过的光线的波长范围可以为λnm~900nm,这样,该第二增透膜可以透过近红外光。
作为一种实施方式,第三直角面322上还设置有第三增透膜;可见光透过第三增透膜由第三直角面322射出第二子棱镜320。具体的,该第三增透膜可透过的光线的波长范围可以为400nm~λnm,这样,该第三增透膜可以透过可见光。
在图2对应的第二种实施方式中,通过对分光膜的设置,可以实现可见光由第二直角面313射出第一子棱镜310,近红外光由第三直角面322射出第二子棱镜320。这种情况下,分光膜反射的光线的波长范围可以为440nm~(λ-20)nm;分光膜透过的光线的波长范围可以为(λ+20)nm~900nm,其中,550<λ<730。
在该实施方式中,在分光装置为分光棱镜的情况下,第一直角面312上还可以设置有第一增透膜;从补偿组镜片200射出的光线透过所述第一增透膜从第一直角面312射入第一子棱镜310。具体的,该第一增透膜可透过的光 线的波长范围可以为400nm~900nm,这样,该第一增透膜可以透过近红外光和可见光。
第二直角面313上还可以设置有第三增透膜;可见光透过第三增透膜由第二直角面313射出第一子棱镜310。具体的,该第三增透膜可透过的光线的波长范围可以为400nm~λnm,这样,该第三增透膜可以透过可见光。或可见光透过第二增透膜由第二直角面313射出第一子棱镜310。
第三直角面322上还可以设置有第二增透膜;近红外光透过第二增透膜由第三直角面322射出第二子棱镜320。具体的,该第二增透膜可透过的光线的波长范围可以为λnm~900nm,这样,该第二增透膜可以透过近红外光。
在对增透膜进行选择时,上述第一增透膜、第二增透膜、第三增透膜的平均透射率(Tave)均可以大于90%。
需要说明的是,图2中的光路走向仅表示光线路径的示意图,并不代表精确的光线路径。
如图3所示,镜头10还可以设置有第一接口400和第二接口500,在图2对应的第一种实施方式中,分离出的近红外光从第一接口400射出镜头10,分离出的可见光从第二接口500射出镜头10;在图2对应的第二种实施方式中,。分离出的可见光从第一接口400射出镜头10,分离出的近红外光从第二接口500射出镜头10。
作为一种实施方式,如图4所示,在变倍组镜片100和补偿组镜片200之间还可以设置有第一固定组镜片600;第一固定组镜片600的光焦度为正,用于对从变倍组镜片100射出的光线进行会聚,会聚后的光线射入补偿组镜片200。
如图4中的箭头所示,光线从外部射入变倍组镜片100,变倍组镜片100将光线进行发散并射出,射出的光线射入第一固定组镜片600,第一固定组镜片600将光线进行会聚,会聚后的光线射入补偿组镜片200,补偿组镜片200将光线进行会聚并射出,射出的光线射入分光装置,分光装置将光线分离为可见光和近红外光。
第一固定组镜片600可以矫正部分像差,还可以起到矫正物方不同视场 的光线方向的作用。变焦过程中,第一固定组镜片600保持不动。
作为一种实施方式,如图5所示,在变倍组镜片100之前还可以设置有第二固定组镜片700;第二固定组镜片700的光焦度为正,用于对从外部射入的光线进行会聚,会聚后的光线射入变倍组镜片100。
第二固定组镜片700主要起到矫正像差的作用。变焦过程中,第二固定组镜片700保持不动。
图5中,补偿组镜片200之前还设置有第三固定组镜片800;第三固定组镜片800的光焦度为正,用于对从变倍组镜片100射出的光线进行会聚,会聚后的光线射入补偿组镜片200。
第三固定组镜片800主要起到矫正像差的作用。变焦过程中,第三固定组镜片800保持不动。
当然,还可以如图6所示,在变倍组镜片100之前设置第二固定组镜片700,在补偿组镜片200之后设置第三固定组镜片800。这样会更大程度地矫正像差。
还可以如图7所示,在变倍组镜片100和补偿组镜片200之间设置第一固定组镜片600,在变倍组镜片100之前设置第二固定组镜片700,在补偿组镜片200之后设置第三固定组镜片800。这样,不仅可以起到矫正物方不同视场的光线方向的作用,还会更大程度地矫正像差。
需要说明的是,图3-7中的光路走向仅表示光线路径的示意图,并不代表精确的光线路径。
应用本方案提供的镜头,镜头中设置有分光装置,可以将入射光线分离为可见光及近红外光;另外,光线射入分光装置之前还要经过变倍组镜片和补偿组镜片,这样,可以实现变焦并矫正像差。
图8为本申请实施例提供的镜头的第八种结构示意图,镜头10包括:顺次设置的补偿组镜片200、变倍组镜片100和分光装置300;其中,
变倍组镜片100的光焦度为负,用于对从外部射入的光线进行发散;
补偿组镜片200的光焦度为正,用于对从变倍组镜片100射出的光线进 行会聚;
分光装置300将从补偿组镜片200射出的光线分离为可见光及近红外光。
本申请实施例中所述的组镜片,均可以包含一枚或多枚镜片。
如图8中的箭头所示,光线从外部射入补偿组镜片200,补偿组镜片200将光线进行会聚并射出,射出的光线射入变倍组镜片100,变倍组镜片100将光线进行发散并射出,射出的光线射入分光装置,分光装置将光线分离为可见光和近红外光。通过变倍组镜片100和补偿组镜片200的联动,可以实现小倍率变焦,并且变焦过程对可见光和近红外光的影响一致。
需要说明的是,图8中的光路走向仅表示光线路径的示意图,并不代表精确的光线路径。
分光装置300可以为分光棱镜或分光滤光片。如果分光装置为分光棱镜,分光装置300可以如图2所示,包括第一子棱镜310和第二子棱镜320,其中,第一子棱镜310和第二子棱镜320为直角棱镜,第一子棱镜310的第一斜面311与第二子棱镜320的第二斜面321相对,且第一斜面311与第二斜面321之间设置有分光膜330。
在图2对应的第一种实施方式中,如图2中的箭头所示,从补偿组镜片射出的光线由第一直角面312射入第一子棱镜310,光线经过分光膜330后,被分离为可见光及近红外光,近红外光由第二直角面313射出第一子棱镜310,可见光由第三直角面322射出第二子棱镜320。或可见光由第二直角面313射出第一子棱镜310,近红外光由第三直角面322射出第二子棱镜320。
具体的,分光膜透过的光线的波长范围可以为440nm~(λ-20)nm;分光膜反射的光线的波长范围可以为(λ+20)nm~900nm,其中,550<λ<730。
作为一种实施方式,在分光装置为分光棱镜的情况下,第一直角面312上还可以设置有第一增透膜;从补偿组镜片200射出的光线透过所述第一增透膜从第一直角面312射入第一子棱镜310。具体的,该第一增透膜可透过的光线的波长范围可以为400nm~900nm,这样,该第一增透膜可以透过近红外光和可见光。
作为一种实施方式,第二直角面313上还可以设置有第二增透膜;近红外光透过第二增透膜由第二直角面313射出第一子棱镜310。具体的,该第二增透膜可透过的光线的波长范围可以为λnm~900nm,这样,该第二增透膜可以透过近红外光。或可见光透过第二增透膜由第二直角面313射出第一子棱镜310。具体的,该第二增透膜可透过的光线的波长范围可以为400nm~λnm,这样,该第二增透膜可以透过可见光。
作为一种实施方式,第三直角面322上还设置有第三增透膜;可见光透过第三增透膜由第三直角面322射出第二子棱镜320。具体的,该第三增透膜可透过的光线的波长范围可以为400nm~λnm,这样,该第三增透膜可以透过可见光。或近红外光透过第三增透膜由第三直角面322射出第二子棱镜320。具体的,该第三增透膜可透过的光线的波长范围可以为λ~900nm,这样,该第三增透膜可以透过近红外光。
在图2对应的第二种实施方式中,通过对分光膜的设置,也可以实现可见光由第二直角面313射出第一子棱镜310,近红外光由第三直角面322射出第二子棱镜320。这种情况下,分光膜反射的光线的波长范围可以为440nm~(λ-20)nm;分光膜透过的光线的波长范围可以为(λ+20)nm~900nm,其中,550<λ<730。
在该实施方式中,在分光装置为分光棱镜的情况下,第一直角面312上还可以设置有第一增透膜;从补偿组镜片200射出的光线透过所述第一增透膜从第一直角面312射入第一子棱镜310。具体的,该第一增透膜可透过的光线的波长范围可以为400nm~900nm,这样,该第一增透膜可以透过近红外光和可见光。
第二直角面313上还可以设置有第三增透膜;可见光透过第三增透膜由第二直角面313射出第一子棱镜310。具体的,该第三增透膜可透过的光线的波长范围可以为400nm~λnm,这样,该第三增透膜可以透过可见光。或可见光透过第二增透膜由第二直角面313射出第一子棱镜310。
第三直角面322上还可以设置有第二增透膜;近红外光透过第二增透膜由第三直角面322射出第二子棱镜320。具体的,该第二增透膜可透过的光线的波长范围可以为λnm~900nm,这样,该第二增透膜可以透过近红外光。
在对增透膜进行选择时,上述第一增透膜、第二增透膜、第三增透膜的平均透射率(Tave)均可以大于90%。
需要说明的是,图2中的光路走向仅表示光线路径的示意图,并不代表精确的光线路径。
如图3所示,镜头10还可以设置有第一接口400和第二接口500,在图2对应的第一种实施方式中,分离出的近红外光从第一接口400射出镜头10,分离出的可见光从第二接口500射出镜头10;在图2对应的第二种实施方式中,。分离出的可见光从第一接口400射出镜头10,分离出的近红外光从第二接口500射出镜头10。
作为一种实施方式,如图9所示,在变倍组镜片100和补偿组镜片200之间还可以设置有第一固定组镜片600;第一固定组镜片600的光焦度为正,用于对从变倍组镜片100射出的光线进行会聚,会聚后的光线射入补偿组镜片200。
如图9中的箭头所示,光线从外部射入补偿组镜片200,补偿组镜片200将光线进行会聚并射出,射出的光线射入第一固定组镜片600,第一固定组镜片600将光线进行会聚,会聚后的光线射入变倍组镜片100,补偿组镜片200将光线进行发散并射出,射出的光线射入分光装置,分光装置将光线分离为可见光和近红外光。
第一固定组镜片600可以矫正部分像差,还可以起到矫正物方不同视场的光线方向的作用。变焦过程中,第一固定组镜片600保持不动。
作为一种实施方式,如图10所示,在变倍组镜片100之前还可以设置有第二固定组镜片700;第二固定组镜片700的光焦度为正,用于对从外部射入的光线进行会聚,会聚后的光线射入变倍组镜片100。
第二固定组镜片700主要起到矫正像差的作用。变焦过程中,第二固定组镜片700保持不动。
图10中,补偿组镜片200之前还设置有第三固定组镜片800;第三固定组镜片800的光焦度为正,用于对从变倍组镜片100射出的光线进行会聚,会聚后的光线射入补偿组镜片200。
第三固定组镜片800主要起到矫正像差的作用。变焦过程中,第三固定组镜片800保持不动。
当然,还可以如图11所示,在变倍组镜片100和补偿组镜片200之间设置第一固定组镜片600,在变倍组镜片100之后设置第二固定组镜片700,在补偿组镜片200之前设置第三固定组镜片800。这样,不仅可以起到矫正物方不同视场的光线方向的作用,还会更大程度地矫正像差。
需要说明的是,图8-11中的光路走向仅表示光线路径的示意图,并不代表精确的光线路径。
需要强调的是,在本实施例提供的镜头中,当分光装置为分光棱镜时,分光棱镜可以为直角棱镜,也可以为非直角棱镜,具体不做作限定。
作为一种实施方式,该分光棱镜可以如图12所示,包含第三子棱镜910和第四子棱镜920,其中,第三子棱镜920为非直角棱镜,第四子棱镜为直角棱镜,第三子棱镜910与第四子棱镜920相对的面之间设置有分光膜930。第三子棱镜910夹角a和第四子棱镜920夹角b相等。
在本实施方式中,光线由面911射入第三子棱镜910,光线经过分光膜930后,被分离为可见光及近红外光,近红外光由面913射出第三子棱镜910,可见光由面922射出第四子棱镜920。当然,如上所述,通过对分光膜的设置,也可以实现可见光由面913射出第三子棱镜910,近红外光由面922射出第四子棱镜920。
当然,为了减小棱镜体积,作为另一种实施方式,可以将第三子棱镜910和第四子棱镜920切除一部分,切除后的分光棱镜可以如图13所示,虚线部分表示被切除的部分。在图13所示实施方式中第三子棱镜910和第四子棱镜920均为非直角棱镜。
应用本方案提供的镜头,镜头中设置有分光装置,可以将入射光线分离为可见光及近红外光;另外,光线射入分光装置之前还要经过变倍组镜片和补偿组镜片,这样,可以实现变焦并矫正像差。
本申请实施例还提供一种摄像机,如图14所示,包括上述镜头10、可见光采集模块20、近红外光采集模块30、融合模块40;其中,
镜头10将混合光线分离为可见光及近红外光,其中,所述近红外光由红外补光灯发出;
可见光采集模块20采集从镜头10中射出的可见光,可见光采集模块20中包含第一感光芯片,所述第一感光芯片将所述可见光转化为色彩信号及第一亮度信号;
近红外光采集模块30采集从镜头10中射出的近红外光,所述近红外光采集模块包含第二感光芯片,所述第二感光芯片将所述近红外光转化为第二亮度信号;
融合模块40将所述色彩信号、第一亮度信号及第二亮度信号进行融合,并输出融合后的图像。该融合后的图像为彩色模式的图像,而且亮度较高。
上述红外补光灯可以设置于所述摄像机中,也可以单独设置,在此不做限定。红外补光灯中设置有传感器开关,当场景中的可见光强度低于预设阈值时、或者当到达预设周期时,所述传感器开关闭合,所述红外补光灯发射近红外光。所述红外补光灯发射的近红外光的光谱中心波长为850nm或者780nm或者730nm,当然也可以为其他,在此不做限定。
应用本方案提供的摄像机,摄像机中设置有上述镜头,可实现可见光与红外光的分离;该摄像机中还设置有可见光采集模块,采集从所述镜头中射出的可见光,并将所述可见光转化为色彩信号及第一亮度信号;该摄像机中还设置有近红外光采集模块,采集从所述镜头中射出的近红外光,并将所述近红外光转化为第二亮度信号;该摄像机中还设置有融合模块,将所述色彩信号、第一亮度信号及第二亮度信号进行融合,并输出融合后的图像。由此可见,本方案提供的摄像机将可见光与近红外光分别处理后再进行融合,避免了可见光与近红外光混合处理时出现的偏色,因此,在低照度的场景下可以输出彩色模式的图像。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要 素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
本说明书中的各个实施例均采用相关的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于装置实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
本领域普通技术人员可以理解实现上述方法实施方式中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,所述的程序可以存储于计算机可读取存储介质中,这里所称得的存储介质,如:ROM/RAM、磁碟、光盘等。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本申请保护的范围之内。

Claims (10)

  1. 一种镜头,其特征在于,包括:顺次设置的变倍组镜片、补偿组镜片和分光装置,或者顺次设置的补偿组镜片、变倍组镜片和分光装置;其中,
    所述变倍组镜片的光焦度为负,用于对从外部射入的光线进行发散;
    所述补偿组镜片的光焦度为正,用于对从所述变倍组镜片射出的光线进行会聚;
    所述分光装置将从所述补偿组镜片射出的光线分离为可见光及近红外光。
  2. 根据权利要求1所述的镜头,其特征在于,在所述变倍组镜片和所述补偿组镜片之间还设置有第一固定组镜片,所述第一固定组镜片的光焦度为正;
    在所述镜头包括顺次设置的变倍组镜片、补偿组镜片和分光装置的情况下,所述第一固定组镜片,用于对从所述变倍组镜片射出的光线进行会聚,会聚后的光线射入所述补偿组镜片;
    在所述镜头包括顺次设置的补偿组镜片、变倍组镜片和分光装置的情况下,所述第一固定组镜片,用于对从所述补偿组镜片射出的光线进行会聚,会聚后的光线射入所述变倍组镜片。
  3. 根据权利要求1或2所述的镜头,其特征在于,在所述变倍组镜片之前还设置有第二固定组镜片,所述第二固定组镜片的光焦度为正;在所述补偿组镜片之前还设置有第三固定组镜片,所述第三固定组镜片的光焦度为正;
    在所述镜头包括顺次设置的变倍组镜片、补偿组镜片和分光装置的情况下:
    所述第二固定组镜片,用于对从外部射入的光线进行会聚,会聚后的光线射入所述变倍组镜片;
    所述第三固定组镜片,用于对从所述变倍组镜片射出的光线进行会聚,会聚后的光线射入所述补偿组镜片;
    在所述镜头包括顺次设置的补偿组镜片、变倍组镜片和分光装置的情况下:
    所述第二固定组镜片,用于对从所述补偿组镜片射出的光线进行会聚,会聚后的光线射入所述变倍组镜片;
    所述第三固定组镜片,用于对从外部射入的光线进行会聚,会聚后的光线射入所述补偿组镜片。
  4. 根据权利要求1所述的镜头,其特征在于,所述分光装置为分光棱镜或分光滤光片;
    所述分光棱镜包括第一子棱镜和第二子棱镜,其中,所述第一子棱镜和第二子棱镜为直角棱镜,所述第一子棱镜的第一斜面与所述第二子棱镜的第二斜面相对,且所述第一斜面与所述第二斜面之间设置有分光膜;
    从所述补偿组镜片射出的光线由第一直角面射入所述第一子棱镜,光线经过所述分光膜后,被分离为可见光及近红外光;所述近红外光由第二直角面射出所述第一子棱镜,所述可见光由第三直角面射出所述第二子棱镜;或者,所述可见光由所述第二直角面射出所述第一子棱镜,所述近红外光由所述第三直角面射出所述第二子棱镜。
  5. 根据权利要求4所述的镜头,其特征在于,在所述分光装置为分光棱镜、且所述近红外光由第二直角面射出所述第一子棱镜、所述可见光由第三直角面射出所述第二子棱镜的情况下,
    所述第一直角面上还设置有第一增透膜;从所述补偿组镜片射出的光线透过所述第一增透膜从所述第一直角面射入所述第一子棱镜;
    和/或,所述第二直角面上还设置有第二增透膜;所述近红外光透过所述第二增透膜由所述第二直角面射出所述第一子棱镜;
    和/或,所述第三直角面上还设置有第三增透膜;所述可见光透过所述第三增透膜由所述第三直角面射出所述第二子棱镜;
    在所述分光装置为分光棱镜、且所述近红外光由所述第二直角面射出所述第一子棱镜,所述可见光由所述第三直角面射出所述第二子棱镜的情况下,
    所述第一直角面上还设置有第一增透膜;从所述补偿组镜片射出的光 线透过所述第一增透膜从所述第一直角面射入所述第一子棱镜;
    和/或,所述第二直角面上还设置有所述第三增透膜;所述可见光透过所述第三增透膜由所述第二直角面射出所述第一子棱镜;
    和/或,所述第三直角面上还设置有所述第二增透膜;所述近红外光透过所述第二增透膜由所述第三直角面射出所述第二子棱镜。
  6. 根据权利要求1所述的镜头,其特征在于,所述分光装置为分光棱镜,所述分光棱镜包括第三子棱镜和第四子棱镜,其中,所述第三子棱镜为非直角棱镜,所述第四子棱镜为直角棱镜或者非直角棱镜,所述第三子棱镜与所述第四子棱镜相对的面之间设置有分光膜。
  7. 根据权利要求1所述的镜头,其特征在于,所述镜头还设置有第一接口和第二接口,分离出的近红外光从所述第一接口射出所述镜头,分离出的可见光从所述第二接口射出所述镜头;或者,所述可见光从所述第一接口射出所述镜头,所述近红外光从所述第二接口射出所述镜头。
  8. 一种摄像机,其特征在于,包括:权利要求1-7任一项所述的镜头、可见光采集模块、近红外光采集模块、融合模块;其中,
    所述镜头将混合光线分离为可见光及近红外光,其中,所述近红外光由红外补光灯发出;
    所述可见光采集模块采集从所述镜头中射出的可见光,所述可见光采集模块中包含第一感光芯片,所述第一感光芯片将所述可见光转化为色彩信号及第一亮度信号;
    所述近红外光采集模块采集从所述镜头中射出的近红外光,所述近红外光采集模块包含第二感光芯片,所述第二感光芯片将所述近红外光转化为第二亮度信号;
    所述融合模块将所述色彩信号、第一亮度信号及第二亮度信号进行融合,并输出融合后的图像。
  9. 根据权利要求8所述的摄像机,其特征在于,所述红外补光灯设置于所述摄像机中,所述红外补光灯中设置有传感器开关,当场景中的可见光强 度低于预设阈值时、或者当到达预设周期时,所述传感器开关闭合,所述红外补光灯发射近红外光。
  10. 根据权利要求9所述的摄像机,其特征在于,所述红外补光灯发射的近红外光的光谱中心波长为850nm或者780nm或者730nm。
PCT/CN2017/093128 2016-10-08 2017-07-17 一种镜头及摄像机 WO2018064903A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/340,338 US20200045211A1 (en) 2016-10-08 2017-07-17 Camera lens and camera
EP17857784.7A EP3525443A4 (en) 2016-10-08 2017-07-17 CAMERA OBJECTIVE AND VIDEO CAMERA

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610878312.1A CN107920188A (zh) 2016-10-08 2016-10-08 一种镜头及摄像机
CN201610878312.1 2016-10-08

Publications (1)

Publication Number Publication Date
WO2018064903A1 true WO2018064903A1 (zh) 2018-04-12

Family

ID=61831328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/093128 WO2018064903A1 (zh) 2016-10-08 2017-07-17 一种镜头及摄像机

Country Status (4)

Country Link
US (1) US20200045211A1 (zh)
EP (1) EP3525443A4 (zh)
CN (1) CN107920188A (zh)
WO (1) WO2018064903A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110381230A (zh) * 2018-04-13 2019-10-25 甘肃智呈网络科技有限公司 一种前置分光结构的双目摄像装置
CN111654609A (zh) * 2020-06-12 2020-09-11 杭州海康威视数字技术股份有限公司 一种实现摄像机低功耗的控制方法、摄像机

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110493506B (zh) * 2018-12-12 2021-03-02 杭州海康威视数字技术股份有限公司 一种图像处理方法和系统
CN110196484B (zh) 2019-05-30 2020-06-23 浙江大华技术股份有限公司 一种镜头
CN113128259B (zh) * 2019-12-30 2023-08-29 杭州海康威视数字技术股份有限公司 人脸识别设备及人脸识别方法
CN111756969A (zh) * 2020-06-16 2020-10-09 RealMe重庆移动通信有限公司 光学模组及电子设备
CN114125188A (zh) * 2020-08-26 2022-03-01 信泰光学(深圳)有限公司 镜头装置
CN114520870B (zh) * 2020-11-20 2023-06-20 华为技术有限公司 一种显示方法及终端
CN113068012A (zh) * 2021-04-08 2021-07-02 中山联合光电研究院有限公司 成像系统及成像设备
CN115097604B (zh) * 2022-07-05 2023-10-24 杭州海康威视数字技术股份有限公司 一种多光谱镜头和一种多光谱摄像装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102721469A (zh) * 2012-06-14 2012-10-10 中国科学院自动化研究所 双相机的多光谱成像系统和方法
CN102809429A (zh) * 2012-07-26 2012-12-05 中国科学院自动化研究所 基于双相机的多光谱成像系统和方法
CN202720392U (zh) * 2012-08-01 2013-02-06 江苏北方湖光光电有限公司 共轴光学系统
WO2015131009A1 (en) * 2014-02-28 2015-09-03 The Johns Hopkins University Eye alignment monitor and method
CN105223699A (zh) * 2015-09-28 2016-01-06 凯迈(洛阳)测控有限公司 一种可见光/红外光双波段光学系统
CN105425371A (zh) * 2015-12-14 2016-03-23 福建福光股份有限公司 紧凑型中波红外连续变焦镜头

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01106006A (ja) * 1987-10-20 1989-04-24 Fuji Photo Film Co Ltd ズームレンズ
US4868588A (en) * 1989-02-10 1989-09-19 Stephen Hajnal Rotatable snorkel camera system
US6690846B2 (en) * 2001-03-01 2004-02-10 Chorum Technologies Lp Dispersion-compensated optical wavelength router
US6871022B2 (en) * 2001-09-14 2005-03-22 Stratos International, Inc. Cascaded optical multiplexer
US7630085B2 (en) * 2005-04-19 2009-12-08 Texas Instruments Incorporated Interferometers of high resolutions
JP4831760B2 (ja) * 2007-03-29 2011-12-07 日本放送協会 3次元情報検出方法及びその装置
US20090278932A1 (en) * 2008-05-09 2009-11-12 Steven Yi System and Method of Optical Sensing in an Aerial Vehicle
US9323894B2 (en) * 2011-08-19 2016-04-26 Masimo Corporation Health care sanitation monitoring system
JP5782111B2 (ja) * 2011-04-05 2015-09-24 富士フイルム株式会社 ズームレンズおよび撮像装置
JP2013255144A (ja) * 2012-06-08 2013-12-19 Hitachi Consumer Electronics Co Ltd 撮像装置
US9036080B2 (en) * 2012-09-04 2015-05-19 Canon Kabushiki Kaisha Apparatus and method for acquiring information about light-field data
CN103278927B (zh) * 2013-06-21 2015-05-13 西安工业大学 双波段共口径共光路共变焦成像光学系统
JP6128008B2 (ja) * 2013-08-26 2017-05-17 ソニー株式会社 投射型表示装置
DE102015203844A1 (de) * 2015-03-04 2016-09-08 Carl Zeiss Meditec Ag Optiksystem und Operationsmikroskop

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102721469A (zh) * 2012-06-14 2012-10-10 中国科学院自动化研究所 双相机的多光谱成像系统和方法
CN102809429A (zh) * 2012-07-26 2012-12-05 中国科学院自动化研究所 基于双相机的多光谱成像系统和方法
CN202720392U (zh) * 2012-08-01 2013-02-06 江苏北方湖光光电有限公司 共轴光学系统
WO2015131009A1 (en) * 2014-02-28 2015-09-03 The Johns Hopkins University Eye alignment monitor and method
CN105223699A (zh) * 2015-09-28 2016-01-06 凯迈(洛阳)测控有限公司 一种可见光/红外光双波段光学系统
CN105425371A (zh) * 2015-12-14 2016-03-23 福建福光股份有限公司 紧凑型中波红外连续变焦镜头

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3525443A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110381230A (zh) * 2018-04-13 2019-10-25 甘肃智呈网络科技有限公司 一种前置分光结构的双目摄像装置
CN111654609A (zh) * 2020-06-12 2020-09-11 杭州海康威视数字技术股份有限公司 一种实现摄像机低功耗的控制方法、摄像机

Also Published As

Publication number Publication date
EP3525443A4 (en) 2019-11-27
EP3525443A1 (en) 2019-08-14
CN107920188A (zh) 2018-04-17
US20200045211A1 (en) 2020-02-06

Similar Documents

Publication Publication Date Title
WO2018064903A1 (zh) 一种镜头及摄像机
CN102377937B (zh) 摄像装置
BRPI1102370A2 (pt) aparelho e metodo de processamento de imagem, e, programa
US9894273B2 (en) Modular lens for extremely wide field of view
JP2008268868A (ja) 撮像装置
EP1637912A3 (en) Automatic focusing system
CN102004301B (zh) 超广角高分辨率日夜两用摄像镜头
WO2014032386A1 (zh) 一种应用快速开关光源的高速摄像方法及应用装置
WO2019076150A1 (zh) 一种摄像机以及图像生成方法
WO2008145735A3 (fr) Camera infrarouge comportant un zoom optique de grand rapport
CN103116213A (zh) 三百万像素日夜共焦板机镜头
JP2010245870A (ja) マルチスペクトル撮影用レンズアダプタ装置、マルチスペクトル撮影装置、および画像処理装置
CN105259646B (zh) 2.8‑8mm小型变焦镜头
TWI397718B (zh) 取像裝置
JP6336337B2 (ja) 撮像装置及びその制御方法、プログラム、記憶媒体
WO2014057335A1 (en) System for capturing scene and nir relighting effects in movie postproduction transmission
US20110234809A1 (en) Dual-lens image capture device
JP2005309072A (ja) 可視光・赤外光撮影用アダプター
CN207336910U (zh) 一种全景镜头及全景摄像模组
CN105263016B (zh) 一种立体光学系统及其成像方法
KR20130005882A (ko) 디지털 촬영 장치, 그 제어방법, 및 오토포커싱 방법
CN201984200U (zh) 超广角高分辨率日夜两用摄像镜头
CN107329253A (zh) 一种用于单透镜扩大景深成像的光学景深延拓装置及方法
CN207766411U (zh) 一种基于双摄像头的动作监控系统
JP2011199570A (ja) カメラ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17857784

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017857784

Country of ref document: EP

Effective date: 20190508