WO2018064857A1 - 工业化处理淤泥渣土的方法 - Google Patents

工业化处理淤泥渣土的方法 Download PDF

Info

Publication number
WO2018064857A1
WO2018064857A1 PCT/CN2016/107450 CN2016107450W WO2018064857A1 WO 2018064857 A1 WO2018064857 A1 WO 2018064857A1 CN 2016107450 W CN2016107450 W CN 2016107450W WO 2018064857 A1 WO2018064857 A1 WO 2018064857A1
Authority
WO
WIPO (PCT)
Prior art keywords
sand
mud
fine
coarse
particle diameter
Prior art date
Application number
PCT/CN2016/107450
Other languages
English (en)
French (fr)
Inventor
陈宏伟
黄克伟
杨传锐
Original Assignee
深圳申佳原环保科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳申佳原环保科技有限公司 filed Critical 深圳申佳原环保科技有限公司
Publication of WO2018064857A1 publication Critical patent/WO2018064857A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B7/00Combinations of wet processes or apparatus with other processes or apparatus, e.g. for dressing ores or garbage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B9/00General arrangement of separating plant, e.g. flow sheets
    • B03B9/06General arrangement of separating plant, e.g. flow sheets specially adapted for refuse
    • B03B9/061General arrangement of separating plant, e.g. flow sheets specially adapted for refuse the refuse being industrial
    • B03B9/063General arrangement of separating plant, e.g. flow sheets specially adapted for refuse the refuse being industrial the refuse being concrete slurry
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B9/00General arrangement of separating plant, e.g. flow sheets
    • B03B9/06General arrangement of separating plant, e.g. flow sheets specially adapted for refuse
    • B03B9/061General arrangement of separating plant, e.g. flow sheets specially adapted for refuse the refuse being industrial
    • B03B9/065General arrangement of separating plant, e.g. flow sheets specially adapted for refuse the refuse being industrial the refuse being building rubble
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE
    • B09B5/00Operations not covered by a single other subclass or by a single other group in this subclass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/132Waste materials; Refuse; Residues
    • C04B33/1321Waste slurries, e.g. harbour sludge, industrial muds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/60Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes

Definitions

  • the invention relates to a treatment method for treating sludge and dregs generated during urban construction, in particular, soils excavated in urban construction, such as treatment methods of muck generated by subway construction, house construction and foundation excavation.
  • Metro construction and high-rise building construction are signs of a city's rapid development. In the construction of subways and high-rise buildings, a large amount of excavated soil will inevitably be produced. There is only one way to deal with this type of soil. It is to build a number of soil receiving sites in the surrounding areas of the city. The soil generated during the urban construction process is directly sent to the receiving fields through the soil truck. This treatment method essentially transfers the soil excavated from the place to be constructed to a place where urban construction is not needed. However, it is suitable for use as a receiving place in the surrounding areas of the city, and it is less and less. It is only necessary to overload the existing receiving field and form an artificial mountain. This artificial mountain is relatively loose.
  • the Chinese patent document CN1868597A discloses a comprehensive treatment method for construction waste, the processing steps of which include: after the construction waste is properly broken, the metal, bamboo, wood, plastic and the like are sorted and detected, and then the remaining materials are poured.
  • the material is screened by a three-level layered sieve frame, and then separated into a silt, medium and small grain sandstone from bottom to top.
  • the granules and large pieces of material are discharged in layers.
  • the sediment is also passed through a multi-stage mechanical sorting line to continue screening and separation into mud and sand and stone.
  • the separated large pieces are sent to the crusher for crushing and crushing.
  • subways or high-rise buildings are a lot of soil in a short period of time, if they are broken first, then sorting metal, bamboo, wood, plastic and other sundries, which requires a large number of yards to store the mud sand to be treated yesterday, which is not suitable for urban land.
  • the present invention provides a method for industrially treating sludge and dregs which can be used in the process of urban construction to carry out rapid industrial treatment and turn it into building materials and industrial soil.
  • the technical proposal of the present invention is to provide a method for industrially treating sludge and dregs, which is mainly suitable for treating muddy sand excavated in urban construction, and includes the following steps:
  • the treated muddy sand is treated into a thin mud sand and an aggregate mixture by a drum type mud sand separating device; wherein the drum type mud sand separating device includes at least an abrasive portion and a mud sand separating portion, and the abrasive portion utilizes an abrasive disposed on an inner wall of the cylinder
  • the treated mud sand entering the abrasive portion is initially crushed and sent to the separated portion of the mud sand, and high-pressure dilution water is disposed in the separated portion of the mud sand, and the mud sand entering the separation portion of the material is diluted into a thin mud sand, and the mud sand is separated.
  • the predetermined size of the large material is Between 20 mm and 50 mm, in particular, a plurality of round holes having a diameter of 20 mm to 50 mm may be disposed on the cylinder of the separated portion of the mud and sand, and the mud sand after the preliminary crushing is less than or equal to the diameter thereof.
  • 20mm-50mm can leak from the hole; and larger than 20mm-50mm diameter, including metal, bamboo, plastic And large particles of mud and stones and the like, are discharged from the discharge port, is discharged from the discharge port aniseed, aniseed After an additional treatment step described later for processing;
  • the thin mud sand having a particle diameter smaller than a predetermined particle diameter of the large material enters the coarse sand separation tank, and the coarse sand having a predetermined particle diameter equal to or larger than the coarse sand is separated by a slowly rotating coarse sand impeller assembly disposed on the coarse sand separation tank, wherein
  • the coarse sand impeller assembly includes at least a pair of impeller blades arranged at a predetermined interval in parallel, and a plurality of coarse sieves are tangentially disposed between the impeller blades, and a diameter of the coarse sieve is equal to a predetermined particle diameter of the coarse sand
  • the washed coarse sand is discharged into the coarse sand separation tank; the mud overflowing from the coarse sand separation tank enters (3) a mud treatment step; the mud filtered by the coarse sand enters (22) a fine sand separation step;
  • the mud filtered by the coarse sand enters the fine sand separation tank, and the fine sand having a particle diameter equal to or larger than a predetermined particle diameter of the fine sand is separated by a slowly rotating fine sand impeller assembly disposed on the fine sand separation tank, wherein the fine The sand impeller assembly comprises at least a pair of impeller blades arranged at a predetermined interval in parallel, and a plurality of fine sieve plates are arranged tangentially between the impeller blades, the fine meshes having a diameter equal to a predetermined particle diameter of the fine sand; and when the impeller is rotated
  • the mud sand deposited at the bottom of the fine sand separation tank is smashed onto the fine sieve piece, and the washed fine sand is discharged from the fine sand separation tank under the impact of high-pressure water; the mixed water filtered by the fine sand is used as the inlet port. Dilution water use;
  • the mud overflowing from the coarse sand separation tank is further finely treated and dehydrated to obtain a dry mud for use.
  • the mud processing step further includes the following steps:
  • the mud is discharged from the coarse sand separation tank by using a hydrocyclone sand dividing device, and the mud is tangentially moved into the cylinder of the hydrocyclone sand dividing device, from the cone of the hydrocyclone sand dividing device.
  • the slurry with sand discharged from the mouth is returned to the fine sand separation step for further processing; the mud flowing out from the overflow pipe of the hydrocyclone sand dividing device enters step (32);
  • the mud flowing out from the overflow pipe of the hydrocyclone sand dividing device removes the iron substance in the mud by means of a magnet to obtain a mud after de-ironing;
  • the organic matter is removed from the mud after the iron removal, and the organic mud is obtained;
  • the fine mud is sent to the sedimentation tank for sedimentation, and the clear water in the upper part of the sedimentation tank is used as high-pressure dilution water; the mud in the lower part of the sedimentation tank enters step (36);
  • the mud in the lower part of the sedimentation tank is dehydrated by using a dewatering device to obtain a dry mud for use; the extracted water is used as a high-pressure dilution water.
  • the coarse sand has a predetermined particle size selected between 2 mm and 3.5 mm.
  • the fine sand has a predetermined particle diameter selected between 0.5 mm and 1.5 mm.
  • the aggregate has a predetermined particle size selected between 20 mm and 50 mm.
  • a mud manufacturing step is also included, and after the dry mud is further dried and ground, it is made into a ceramic or porcelain product according to the composition of the dried mud.
  • the ceramic article is at least made into a soft ceramic having a composition of silica having a silica content of 70% or more. 80%-90%, soil modifier 10%-20%; wherein the soil modifier consists of 5-8 parts of cellulose, 1-3 parts of urea and ethylene-ethyl acetate copolymer 6-10 The mixture is mixed.
  • a part of the high pressure dilution water is derived from extraneous water.
  • the abrasive member is a herringbone structure, a triangular block or a triangular tapered block composed of a rebar.
  • the drum type mud sand separating device has a diameter selected between 1 m and 5 m and a length selected between 5 and 20 m.
  • the invention adopts a drum type mud sand separating device to treat the treated mud sand into a mixture of muddy sand and an aggregate, so that the waste soil pulled from the soil truck of the construction site can be directly poured into the separation device and quickly processed into a thin mud sand and The mixture of large materials will not cause accumulation; in addition, the soil to be treated can be made into ceramics or porcelain products according to the different soil composition, and all wastes are fully utilized, realizing waste turning into treasure, is a A green sustainable project.
  • the method of the invention more than 98% of the useful materials in the washing mud can be recycled and reused, and more than 90% of the waste water can be reused after being purified.
  • FIG. 1 is a schematic flow chart of a process of an embodiment of the present invention.
  • FIG. 1 discloses a method for industrially treating sludge and dregs, which is mainly suitable for treating muddy sand excavated in urban construction, and includes the following steps:
  • the treated mud sand is treated into a thin mud sand and an aggregate mixture by a drum type mud sand separating device; when installed, the drum type mud sand separating device is installed obliquely above the discharge port, wherein the drum type mud sand is installed
  • the separating device comprises at least an abrasive portion and a mud sand separating portion, and the abrasive portion initially crushes the treated mud sand entering the abrasive portion by using an abrasive member disposed on the inner wall of the cylinder, and is sent to the separated portion of the mud sand, and is disposed in the separated portion of the mud and sand
  • There is a high-pressure dilution water and the mud sand entering the material separation part is diluted into a thin mud sand, and the mud sand separation part allows a small mud sand mixture having a particle diameter smaller than a predetermined size of the large material
  • the large material mixture is discharged from the discharge opening; in the embodiment, the predetermined size of the large material is selected between 20 mm and 50 mm, and in particular, a diameter may be set on the cylinder of the separated part of the mud and sand.
  • the mud sand that has been initially crushed can be lowered from the round hole when its diameter is less than or equal to 20 mm to 50 mm.
  • large materials larger than 20 mm-50 mm in diameter including metal, bamboo, plastic, and large-grain stone and mud, are discharged from the discharge port, and the bulk material discharged from the discharge port, and then Processing by an anion treatment process described later;
  • the thin mud 39 having a particle diameter smaller than a predetermined particle diameter of the large material enters the coarse sand separation tank, and the coarse sand having a predetermined particle diameter equal to or larger than the coarse sand is separated by a slowly rotating coarse sand impeller assembly disposed on the coarse sand separation tank.
  • the grit impeller assembly comprises at least a pair of impeller blades arranged at a predetermined interval in parallel, and a plurality of coarse sieves are tangentially disposed between the impeller blades, the coarse sieve having a pore diameter equal to the coarse sand predetermined particles Diameter; when the impeller rotates, the mud sand deposited at the bottom of the coarse sand separation tank is smashed onto the coarse sieve.
  • the washed coarse sand is discharged into the coarse sand separation tank; the mud overflowing from the coarse sand separation tank Into the (3) mud treatment step; the mud filtered by the coarse sand enters the (22) fine sand separation step; in the present embodiment, the coarse sand has a predetermined particle size selected between 2 mm and 3.5 mm. That is, when the diameter of the coarse sieve is 2 mm, if the diameter of the sand is more than 2 mm, it will be separated as coarse sand; when the diameter of the coarse sieve is 3.5 mm, if the diameter of the sand is larger than 3.5 mm, Will be separated as coarse sand;
  • the coarse sand separation step of the present invention can also be carried out by the following method instead of the above method, as follows:
  • the thin mud sand having a particle diameter smaller than a predetermined particle diameter of the large material enters the coarse sand separation tank, the coarse sand separation tank includes a hopper and a curved tank body, and a sand removing spiral shaft is arranged in the curved surface tank body, and the particle diameter is smaller than the large material predetermined
  • the coarse sand of the particle size enters the hopper, and the coarse sand deposited in the hopper is brought into the upper part of the curved groove by the screw shaft, and is separated from the sand outlet; the mud overflowing from the hopper enters (3) the mud processing step
  • the mud that has been filtered with coarse sand enters the (22) fine sand separation step;
  • the mud filtered by the coarse sand enters the fine sand separation tank, and the fine sand having a particle diameter equal to or larger than a predetermined particle diameter of the fine sand is separated by a slowly rotating fine sand impeller assembly disposed on the fine sand separation tank, wherein the fine The sand impeller assembly comprises at least a pair of impeller blades arranged at a predetermined interval in parallel, and a plurality of fine sieve plates are arranged tangentially between the impeller blades, the fine meshes having a diameter equal to a predetermined particle diameter of the fine sand; and when the impeller is rotated
  • the mud sand deposited at the bottom of the fine sand separation tank is smashed onto the fine sieve piece, and the washed fine sand is discharged from the fine sand separation tank under the impact of high-pressure water; the mixed water filtered by the fine sand is used as the inlet port.
  • the dilution water is used; in the embodiment, the predetermined particle size of the fine sand is selected between 0.5 mm and 1.5 mm. That is, when the diameter of the fine sieve is 0.5 mm, if the diameter of the sand is more than 0.5 mm, it will be separated as fine sand; when the diameter of the coarse sieve is 1.5 mm, if the diameter of the sand is larger than 1.5 mm, Will be separated as fine sand;
  • the fine sand separation step of the present invention can also be carried out by the following method instead of the above method, as follows:
  • the mud filtered by the coarse sand enters the fine sand separation tank, and the fine sand separation tank includes a hopper and a curved tank body, and a sand removing spiral shaft is disposed in the curved surface tank body, and the mud powder having a particle diameter smaller than a predetermined particle diameter of the fine sand
  • the sand enters the hopper, and the coarse sand deposited in the hopper is brought into the curved groove by the screw shaft and separated from the sand outlet; the mixed water filtered by the fine sand is used as the dilution water of the inlet. ;
  • the mud overflowing from the coarse sand separation tank is further finely treated and dehydrated to obtain a dry mud for use.
  • the mud processing step further includes the following steps:
  • the mud is discharged from the coarse sand separation tank by using a hydrocyclone sand dividing device, and the mud is tangentially moved into the cylinder of the hydrocyclone sand dividing device, from the cone of the hydrocyclone sand dividing device.
  • the slurry with sand discharged from the mouth is returned to the fine sand separation step for further processing; the mud flowing out from the overflow pipe of the hydrocyclone sand dividing device enters step (32);
  • the mud flowing out from the overflow pipe of the hydrocyclone sand dividing device removes the iron substance in the mud by means of a magnet to obtain a mud after de-ironing;
  • the organic matter is removed from the mud after de-ironing to obtain an organic-free mud slurry;
  • the second predetermined mesh number is 120 mesh or more
  • the second predetermined mesh number is greater than the first predetermined mesh number
  • the fine organic mud is further sieved to obtain a fine mud
  • the fine mud is sent to the sedimentation tank for sedimentation, and the clear water in the upper part of the sedimentation tank is used as high-pressure dilution water; the mud in the lower part of the sedimentation tank enters step (36);
  • the slurry in the lower part of the sedimentation tank is dewatered by a dewatering apparatus to obtain a dry mud 37 for use; the extracted water is used as the high-pressure dilution water 39.
  • the mud manufacturing step 4 is further included, the dry mud is further dried (the moisture content is less than 20%) or the dry mud is dried to a moisture content of less than 10%, and then regrind is required, and after grinding, according to the composition of the dry mud, It is made into ceramics 41 or porcelain 42; if the content of silica in the soil is 70% or more, it is clay, which can be used as a raw material for ceramics. If the composition of the earth is greater than 30 %, it is porcelain clay, which can be used as a raw material for porcelain products.
  • the ceramic product 41 can be made into a building pottery piece 411, a daily pottery piece 412, a soft ceramic 413, etc.
  • the building can be various types of earthenware tiles, terracotta tiles, etc.
  • the daily pottery pieces can be clay pots, pottery bowls, etc.
  • soft ceramics 413 Is a new type of ceramic material, which can be modified by using various soils as base materials, wherein the preferred composition of the soft ceramic can be soil with a silica content of 70% or more. 80%-90%, soil modifier 10%-20%; wherein the soil modifier consists of 5-8 parts of cellulose, 1-3 parts of urea and ethylene-ethyl acetate copolymer 6-10 The mixture is mixed.
  • Example 1 Soil 80%, the soil modifier is 20%, mixed evenly, and then further mixed in the internal mixer under the condition of 130-150 degrees Celsius, molding can be;
  • Example 2 Soil 85%, the soil modifier is 15%, mixed evenly, and then further mixed in the internal mixer under the condition of 130-150 degrees Celsius, molding can be;
  • the soil modifier it may be prepared by mixing 5-8 parts of cellulose, 1-3 parts of urea and 6-10 parts of ethylene-ethyl acetate copolymer;
  • it can be mixed with 5 parts of cellulose, 1 part of urea and 6 parts of ethylene-ethyl acetate copolymer; it can also be mixed with 7 parts of cellulose, 2 parts of urea and 8 parts of ethylene-ethyl acetate copolymer. It can also be formed by mixing 8 parts of cellulose, 3 parts of urea and 10 parts of ethylene-ethyl acetate copolymer.
  • the cellulose in the present invention may be hydroxyethyl cellulose, hydroxypropyl methyl cellulose or hydroxypropyl cellulose, or may be hydroxyethyl cellulose, hydroxypropyl methyl cellulose and hydroxypropyl cellulose.
  • the combination of any two or more of them is not limited in proportion.
  • Elastic comprehensive performance index test method the elastic index mainly tests elongation and recovery rate
  • Test equipment steel ruler (accurate to 0.1mm) and marking pen.
  • Test conditions, tested soft ceramics and control samples were made to length 65 A strip of cm x 5 cm wide was marked with 50 cm; it was equilibrated for 4 hours at a temperature of 21 ⁇ 1 ° C and a humidity of 65 ⁇ 2%.
  • the test was continuously stretched to 30 N continuously, stopped for 3 seconds, slowly lifted, stopped for 3 seconds and then stretched, reciprocated three times, and the mark size was measured after the fourth stretch.
  • Test equipment timer, meter and tape (accurate to 0.1MM), static elongation tester;
  • Test conditions, tested soft ceramics and control samples were made to length 65 A spline of cm x width 5 cm was equilibrated for 4 hours at a temperature of 21 ⁇ 1 ° C and a humidity of 65 ⁇ 2%.
  • the elongation is first determined according to the above method for measuring the elongation
  • the sample to be tested was stretched to 80% of the elongation on the basis of the original length, released after fixing for half an hour, and the length L1 was measured after 1 hour.
  • the elongation is 40%, it is stretched to 50 + 50 x 40% x 80% cm, i.e., 66 cm.
  • the soft ceramics in the invention can be recycled and regenerated, and the nature of the soil can be reduced by physical and mechanical treatment to return to cultivation.
  • the porcelain product 42 may be a building porcelain piece 421 such as a ceramic tile or the like, and a daily-use porcelain 422 such as a porcelain pot, a porcelain bowl and a porcelain bottle, etc., and may also be made into an industrial porcelain piece 433, such as an insulating porcelain piece for electric power.
  • a building porcelain piece 421 such as a ceramic tile or the like
  • a daily-use porcelain 422 such as a porcelain pot, a porcelain bowl and a porcelain bottle, etc.
  • an industrial porcelain piece 433 such as an insulating porcelain piece for electric power.
  • a portion of the high pressure dilution water 39 is derived from the extraneous water 40.
  • the abrasive member is a herringbone structure, a triangular block or a triangular tapered block composed of a rebar.
  • the drum type mud sand separating device has a diameter selected between 1 m and 5 m and a length selected between 5 m and 20 m.
  • the earth vehicle of 10-20 tons can directly pour the soil to be treated into the drum type mud sand separation device.
  • a feed section 13 is provided at the foremost stage to extend the time for the soil to be treated to enter the abrasive portion 11, and the appropriate moisture is added to the feed section 13 to initially dilute the soil to be treated.
  • the dewatering apparatus of the present invention can be realized by a plate and frame filter press or a high-powered soil dewatering machine.
  • the present invention may further comprise an antalizing treatment step 5, which first sorts the metal, bamboo, wood, plastic and the like in the bulk material through the bulk material removing step 51 for the large material discharged from the discharge opening. Detected, and then, after the large material crushing step 52, the crushing machine is used to pulverize the large class. After crushing, the ground stone material can be directly used as a building material, and the mud material generated during the large material processing can be used as a new material to be treated. Return to the first step of the present invention for further processing.
  • an antalizing treatment step 5 first sorts the metal, bamboo, wood, plastic and the like in the bulk material through the bulk material removing step 51 for the large material discharged from the discharge opening. Detected, and then, after the large material crushing step 52, the crushing machine is used to pulverize the large class. After crushing, the ground stone material can be directly used as a building material, and the mud material generated during the large material processing can be used as a new material to be treated. Return to the first step of the present

Abstract

一种工业化处理淤泥渣土的方法,主要适合于用来处理城市建设中挖掘出来的泥砂土,包括如下步骤:(1)、泥砂初处理步骤;将被处理泥砂处理成稀泥砂和大料混合物;(2)、泥砂分离步骤,其中,包括(21)、粗砂分离步骤和(22)、细砂分离步骤(3)、泥浆处理步骤,从粗砂分离槽溢流出的泥浆被进一步精细处理后被脱水得到干泥备用。由于采用了滚筒式泥砂分离装置将被处理泥砂处理成稀泥砂和大料混合物,这样,从工地用泥土车拉来的废泥土可直接倒入分离装置内,被迅速处理成稀泥砂和大料混合物,不会造成堆积;另外,被处理出来的泥土,根据泥土成份的不同可以制成陶制品或瓷制品,真正做到了所有废物被全部利用,实现了变废为宝,是一项绿绝的可持续发展的项目。

Description

工业化处理淤泥渣土的方法
技术领域
  本发明涉及一种用于处理城市建设过程中产生的淤泥渣土的处理方法,尤其是在城市建设中挖出的泥土,如地铁施工、房屋建筑挖地基等产生的渣土的处理方法。
技术背景
  地铁建设和高层楼房建筑是一个城市飞速发展的标志。在地铁建设和高层楼房建筑中,必然会产生大量的被挖掘出来的泥土。现在处理这类泥土的方法只有一种方式,就是在城市的周边地带,适合堆土的地方建立若干泥土受纳场。把城市建设过程中产生的泥土直接通过泥土车送到这些受纳场填埋,这种处理方法其实质上就是把需要建设的地方挖掘出来的泥土转运到了暂时不需要进行城市建设的地方。可是,在城市周边适合于用来作为受纳场地方,也越来越少,不得已,只能将现有受纳场超负荷运行,形成人为的山体,这种人为的山体土质相对疏松,一旦受到地理环境变化和天气因素的影响,如地震或长时间下雨,很容易引起人为山体滑坡,造成不可估量的人为损失。如今年夏天,南方某市的这种受纳场的人为山体滑坡,就几乎将山体周边的几个工业区全部毁埋,造成了巨大的人员伤亡和财产损失。
  中国专利文献CN1868597A公开了一种建筑垃圾的综合处理方法,其处理步骤包括:将建筑垃圾适当破碎后,将其中的金属、竹、木、塑料等杂物分选检出,然后将剩余材料倒入具有三级分层的分格筛架的清洗池中,用水清洗并搅拌,物料经三级分层的分格筛架筛选后,由下至上分离成泥沙浆、中、小颗粒沙石粒和大块状物料分层排出,泥沙浆还通过多级机械分选筛生产线,继续筛选分离成泥浆和沙、石粒;分离出来的大块状物料再送至破碎机破碎,破碎后的物料再经三级筛架分级筛选,分离成粉状物和小、中、大颗粒沙石粒;而分离出来的泥浆则输送入沉淀池中沉淀,干燥成优质粘土,水则排入循环池循环利用。这种方法虽然具有处理后的所有物料可循环综合利用,符合环保和可持续发展的理念的优点,但是,在实际实施过程中,由于其首先要将建筑垃圾适当破碎后,然后再将其中的金属、竹、木、塑料等杂物分选检出,这个过程处理速度很慢,由于地铁或高层建筑都是很短的时间内会出现大量的泥土,如果都先破碎,再分选金属、竹、木、塑料等杂物,这就需要大量的堆场来昨时存储待处理泥砂,这给寸土寸金的城市用地来说,还是不太适合的。
  因此,如何快速的工业化处理由城市建设所产生的泥土,使其变废为宝是摆在人们面前的一个亟待解决的问题。
发明内容
  为了解决现有技术的不足,本发明向社会提供一种可以将城市建设过程中产生的泥土,进行快速化工业处理,使其变为建筑用料和工业泥土的工业化处理淤泥渣土的方法。
本发明的技术方案是:提供一种工业化处理淤泥渣土的方法,主要适合于用来处理城市建设中挖掘出来的泥砂土,包括如下步骤:
(1)、泥砂初处理步骤
  采用滚筒式泥砂分离装置将被处理泥砂处理成稀泥砂和大料混合物;其中,所述滚筒式泥砂分离装置至少包括磨料部分和泥砂分离部分,所述磨料部分利用设置在圆筒内壁上的磨料件将进入磨料部分内的被处理泥砂初步破碎,并送入到泥砂分离部分,在泥砂分离部分设有高压稀释水,将进入到所述物料分离部的泥砂稀释成稀泥砂,所述泥砂分离部分允许粒径小于大料预定粒径的稀泥砂混合物通过;而粒径大于等于大料预定粒径的大料混合物则被从排料口排出;本实施例中,所述大料预定粒径在20毫米-50毫米之间选择,具体实施起来,可以是泥砂分离部分的圆筒上设置若干直径为20毫米-50毫米中的圆孔,被初步破碎后的泥砂,当其直径小于或等于20毫米-50毫米时,可以从圆孔中下漏;而直径大于20毫米-50毫米的大料,包括金属类、竹木类、塑料类,以及大颗粒石料和泥料等,都从排料口排出,从排料口排出的大料,再经后述的大料处理工序进行处理;
(2)、泥砂分离步骤
(21)、粗砂分离步骤
粒径小于大料预定粒径的稀泥砂进入粗砂分离槽,由设置在粗砂分离槽上的缓慢转动的粗砂叶轮组件将粒径大于等于粗砂预定粒径的粗砂分离出来,其中,所述粗砂叶轮组件至少包括一对平行设置的间隔预定间距的叶轮片,在所述叶轮片之间切向设有若干粗筛片,所述粗筛片的孔径等于粗砂预定粒径;叶轮转动时,沉积在粗砂分离槽底部的泥砂被掏到粗筛片上,在高压水的冲击下,被洗净的粗砂排出粗砂分离槽;从粗砂分离槽溢流出的泥浆进入(3)泥浆处理步骤;被过滤了粗砂的泥浆进入(22)细砂分离步骤;
(22)、细砂分离步骤
被过滤了粗砂的泥浆进入细砂分离槽,由设置在细砂分离槽上的缓慢转动的细砂叶轮组件将粒径大于等于细砂预定粒径的细砂分离出来,其中,所述细砂叶轮组件至少包括一对平行设置的间隔预定间距的叶轮片,在所述叶轮片之间切向设有若干细筛片,所述细筛片的孔径等于细砂预定粒径;叶轮转动时,沉积在细砂分离槽底部的泥砂被掏到细筛片上,在高压水的冲击下,被洗净的细砂排出细砂分离槽;被过滤了细砂的混水被作为入料口的稀释水使用;
(3)、泥浆处理步骤
从粗砂分离槽溢流出的泥浆被进一步精细处理后被脱水得到干泥备用。
作为对本发明的改进,所述泥浆处理步骤进一步包括如下步骤:
(31)、进一步除砂步骤
采用水力旋流分砂装置对从粗砂分离槽溢流出的泥浆进一步除砂,所述泥浆被切向高速进入水力旋流分砂装置的圆柱体内,从水力旋流分砂装置的锥形体下口排出的带有砂的泥浆回到细砂分离步骤进一步处理;从水力旋流分砂装置的溢流管流出的泥浆进入(32)步;
(32)、除铁步骤
从水力旋流分砂装置的溢流管流出的泥浆借助于磁铁除去泥浆中的铁质物质,得到除铁后泥浆;
(33)、除去有机物步骤
采用第一预定目数的筛子,对除铁后泥浆除去有机物,得到除有机物泥浆;
(34)、精细泥浆制备
采用第二预定目数的筛子,其中第二预定目数大于第一预定目数,对除有机物泥浆进一步精筛,得到精细泥浆;
(35)、泥浆沉淀
精细泥浆被送入沉淀池沉淀,沉淀池上部的清水被作为高压稀释水使用;沉淀池下部的泥浆进入第(36)步;
(36)、压榨脱水
采用脱水设备将沉淀池下部的泥浆进行脱水,得到干泥备用;所脱出的水作为高压稀释水使用。
作为对本发明的改进,所述粗砂预定粒径在2毫米-3.5毫米之间选择。
作为对本发明的改进,所述细砂预定粒径在0.5毫米-1.5毫米之间选择。
作为对本发明的改进,所述大料预定粒径在20毫米-50毫米之间选择。
作为对本发明的改进,还包括泥器制造步骤,干泥被进一步干燥和研磨后,根据干泥的成份,被做成陶制品或瓷制品。
作为对本发明的改进,所述陶制品至少被制成软陶瓷,所述软陶瓷的组成为二氧化硅含量大于等于70%的泥土 80%-90%,泥土改性剂10%-20%;其中,所述泥土改性剂由5-8份纤维素、尿素1-3份和乙稀-醋酸乙稀酯共聚物6-10份混合而成。
作为对本发明的改进,所述高压稀释水的一部分来自于外来水。
作为对本发明的改进,所述磨料件是由螺纹钢构成的人字形结构、三角形契块或三角形锥形块。
作为对本发明的改进,所述滚筒式泥砂分离装置的直径在1米-5米之间选择,长度在5-20米之间选择。
  本发明由于采用了滚筒式泥砂分离装置将被处理泥砂处理成稀泥砂和大料混合物,这样,从工地用泥土车拉来的废泥土可直接倒入分离装置内,被迅速处理成稀泥砂和大料混合物,不会造成堆积;另外,被处理出来的泥土,根据泥土成份的不同可以制成陶制品或瓷制品,真正做到了所有废物被全部利用,实现了变废为宝,是一项绿绝的可持续发展的项目。采用本发明的方法可实现冲洗泥浆中98%以上的有用料回收利用,废水净化后可以实现90%以上再利用。
附图说明
图1是本发明一种实施例的处理流程示意图。
具体实施方式
请参见图1,图1揭示的是一种工业化处理淤泥渣土的方法,主要适合于用来处理城市建设中挖掘出来的泥砂土,包括如下步骤:
(1)、泥砂初处理步骤
  采用滚筒式泥砂分离装置将被处理泥砂处理成稀泥砂和大料混合物;安装时,所述滚筒式泥砂分离装置被入料口高于排料口的斜着安装,其中,所述滚筒式泥砂分离装置至少包括磨料部分和泥砂分离部分,所述磨料部分利用设置在圆筒内壁上的磨料件将进入磨料部分内的被处理泥砂初步破碎,并送入到泥砂分离部分,在泥砂分离部分设有高压稀释水,将进入到所述物料分离部的泥砂稀释成稀泥砂,所述泥砂分离部分允许粒径小于大料预定粒径的稀泥砂混合物通过;而粒径大于等于大料预定粒径的大料混合物则被从排料口排出;本实施例中,所述大料预定粒径在20毫米-50毫米之间选择,具体实施起来,可以是泥砂分离部分的圆筒上设置若干直径为20毫米-50毫米中的圆孔,被初步破碎后的泥砂,当其直径小于或等于20毫米-50毫米时,可以从圆孔中下漏;而直径大于20毫米-50毫米的大料,包括金属类、竹木类、塑料类,以及大颗粒石料和泥料等,都从排料口排出,从排料口排出的大料,再经后述的大料处理工序进行处理;
(2)、泥砂分离步骤
(21)、粗砂分离步骤
粒径小于大料预定粒径的稀泥砂39进入粗砂分离槽,由设置在粗砂分离槽上的缓慢转动的粗砂叶轮组件将粒径大于等于粗砂预定粒径的粗砂分离出来,其中,所述粗砂叶轮组件至少包括一对平行设置的间隔预定间距的叶轮片,在所述叶轮片之间切向设有若干粗筛片,所述粗筛片的孔径等于粗砂预定粒径;叶轮转动时,沉积在粗砂分离槽底部的泥砂被掏到粗筛片上,在高压水的冲击下,被洗净的粗砂排出粗砂分离槽;从粗砂分离槽溢流出的泥浆进入(3)泥浆处理步骤;被过滤了粗砂的泥浆进入(22)细砂分离步骤;本实施例中,所述粗砂预定粒径在2毫米-3.5毫米之间选择。也就是当粗筛片的直径为2毫米时,砂粒的直径如果大于2毫米,则会被当作粗砂分离出来;当粗筛片的直径为3.5毫米时,砂粒的直径如果大于3.5毫米,则会被当作粗砂分离出来;
本发明的粗砂分离步骤还可以用下述方法实现,以代替上述的方法,具体如下:
粒径小于大料预定粒径的稀泥砂进入粗砂分离槽,所述粗砂分离槽包括料斗和弧形槽身,在所述弧面槽身内设除砂螺旋轴,粒径小于大料预定粒径的稀泥砂进入料斗内,沉积在料斗内的粗砂在螺旋轴作用下被带入弧形槽身上部,被从出砂口分离;从料斗溢流出的泥浆进入(3)泥浆处理步骤;被过滤了粗砂的泥浆进入(22)细砂分离步骤;
(22)、细砂分离步骤
被过滤了粗砂的泥浆进入细砂分离槽,由设置在细砂分离槽上的缓慢转动的细砂叶轮组件将粒径大于等于细砂预定粒径的细砂分离出来,其中,所述细砂叶轮组件至少包括一对平行设置的间隔预定间距的叶轮片,在所述叶轮片之间切向设有若干细筛片,所述细筛片的孔径等于细砂预定粒径;叶轮转动时,沉积在细砂分离槽底部的泥砂被掏到细筛片上,在高压水的冲击下,被洗净的细砂排出细砂分离槽;被过滤了细砂的混水被作为入料口的稀释水使用;本实施例中,所述细砂预定粒径在0.5毫米-1.5毫米之间选择。也就是当细筛片的直径为0.5毫米时,砂粒的直径如果大于0.5毫米,则会被当作细砂分离出来;当粗筛片的直径为1.5毫米时,砂粒的直径如果大于1.5毫米,则会被当作细砂分离出来;
本发明的细砂分离步骤还可以用下述方法实现,以代替上述的方法,具体如下:
被过滤了粗砂的泥浆进入细砂分离槽,所述细砂分离槽包括料斗和弧形槽身,在所述弧面槽身内设除砂螺旋轴,粒径小于细砂预定粒径的稀泥砂进入料斗内,沉积在料斗内的粗砂在螺旋轴作用下被带入弧形槽身上部,被从出砂口分离;被过滤了细砂的混水被作为入料口的稀释水使用;
(3)、泥浆处理步骤
从粗砂分离槽溢流出的泥浆被进一步精细处理后被脱水得到干泥备用。
作为对本发明的改进,所述泥浆处理步骤进一步包括如下步骤:
(31)、进一步除砂步骤
采用水力旋流分砂装置对从粗砂分离槽溢流出的泥浆进一步除砂,所述泥浆被切向高速进入水力旋流分砂装置的圆柱体内,从水力旋流分砂装置的锥形体下口排出的带有砂的泥浆回到细砂分离步骤进一步处理;从水力旋流分砂装置的溢流管流出的泥浆进入(32)步;
(32)、除铁步骤
从水力旋流分砂装置的溢流管流出的泥浆借助于磁铁除去泥浆中的铁质物质,得到除铁后泥浆;
(33)、除去有机物步骤
采用第一预定目数的筛子(第一预定目数可在80-100目之间选择),对除铁后泥浆除去有机物,得到除有机物泥浆;
(34)、精细泥浆制备
采用第二预定目数的筛子(第二预定目数是大于等于120目),其中第二预定目数大于第一预定目数,对除有机物泥浆进一步精筛,得到精细泥浆;
(35)、泥浆沉淀
精细泥浆被送入沉淀池沉淀,沉淀池上部的清水被作为高压稀释水使用;沉淀池下部的泥浆进入第(36)步;
(36)、压榨脱水
采用脱水设备将沉淀池下部的泥浆进行脱水,得到干泥37备用;所脱出的水作为高压稀释水39使用。
优选的,还包括泥器制造步骤4,干泥被进一步干燥(水份含量小于20%)或者干泥被干燥成水份小于10%,则需要重新研磨,研磨后,根据干泥的成份,被做成陶制品41或瓷制品42;如果泥土的成份中二氧化硅的含量大于等于70%,则为陶土,可以作为陶制品的原料,如果泥土的成份中三氧化二铝的成份大于30%,则为瓷土,可以作为瓷制品的原料。
所述陶制品41可以做成建筑陶件411、日用陶件412以及软陶瓷413等,建筑可以各类陶地砖、陶瓦等,日用陶件可以陶壶、陶碗等,软陶瓷413是一种新型陶瓷材料,它可以用各种不同成份的泥土作为基料改性制作,其中,优选的所述软陶瓷的组成可以为用二氧化硅含量大于等于70%的泥土 80%-90%,泥土改性剂10%-20%;其中,所述泥土改性剂由5-8份纤维素、尿素1-3份和乙稀-醋酸乙稀酯共聚物6-10份混合而成。
实施例1:泥土 80%,泥土改性剂则采用20%,混合均匀,再在130-150摄氏度的条件下,在密炼机中进一步混炼,成型即可;
实施例2:泥土 85%,泥土改性剂则采用15%,混合均匀,再在130-150摄氏度的条件下,在密炼机中进一步混炼,成型即可;
实施:3:泥土 90%,泥土改性剂则采用10%,混合均匀,再在130-150摄氏度的条件下,在密炼机中进一步混炼,成型即可;
至于泥土改性剂,可以用5-8份纤维素、尿素1-3份和乙稀-醋酸乙稀酯共聚物6-10份混合而成;
如,可用5份纤维素、尿素1份和乙稀-醋酸乙稀酯共聚物6份混合而成;也可用7份纤维素、尿素2份和乙稀-醋酸乙稀酯共聚物8份混合而成;还可以用8份纤维素、尿素3份和乙稀-醋酸乙稀酯共聚物10份混合而成。
本发明中的纤维素可以是羟乙基纤维素、羟丙基甲基纤维素或羟丙基纤维素,也可以是羟乙基纤维素、羟丙基甲基纤维素和羟丙基纤维素中的任意两种以上的组合,其比例不限。
将本发明中的实施例1、实施例2和实施例3与市场上购买的软陶瓷地板,在弹性综合性能和耐磨性能两项指标进行了对比测试,其测试方法及结果如下:
弹性综合性能指标测试方法,弹性指标主要测试伸长率和回复率;
软陶瓷的伸长率的测定方法:
  试验器材,钢尺(精确至0.1mm)和标示笔。
样品夹具,夹口宽度大于50毫米。
试验条件,被测试软陶瓷及对照样品被制成长65 cm×宽5cm的样条,作好50cm标记;在温度为21±1℃和湿度为65±2%的条件下平衡4小时。
测试,连续慢慢拉伸至30N,停止3秒,慢慢抬起后停止3秒再拉伸,往复三次,第四次拉伸后测量标记尺寸。
伸长率计算,伸长率%=(拉伸后尺寸-50厘米)/50厘米。
软陶瓷的回复率的测定方法:
试验器材,定时器、米尺和软尺(精确至0.1MM)、静力伸长测试仪;
试验条件,被测试软陶瓷及对照样品被制成长65 cm×宽5cm的样条,在温度为21±1℃和湿度为65±2%的条件下平衡4小时。
操作,先按上述的伸长率的测定方法测定伸长率;
将被测样品在原长的基础上拉伸伸长率的80%,固定半小时后松开,1小时后测量其长度L1。
例如,伸长率是40%,则拉伸至50+50×40%×80%厘米,即66厘米。
弹性伸长回复率=(L1-50厘米)/50厘米。
耐磨性能指标测定:按照国标GB/T 12988《无机地面材料磨损性能实验方法》进行。
试验结果如下:
结果
 样品 弹性性能 耐磨性能(平均磨坑长度mm) 伸长率% 回复率% 对照样品 30.5 1.8 28.5 实施例1 42.5 1.2 22.6 实施例2 44.6 1.0 23.2 实施例3 43.7 0.8 22.9 从上表可以看出,本发明的实施例1、实施例2和实施例3在弹性性能和耐磨性能均优于对照样品。对照样品是从市场购买的佛山某工厂生产的软陶瓷地砖。
本发明中的软陶瓷可回收再生新品,也可通过物化机械处理还原泥土本质,回归耕种。
所述瓷制品42可以是建筑瓷件421如瓷砖等,日用瓷器422,如瓷壶、瓷碗和瓷瓶等,还可制成工业瓷件433,如电力用绝缘瓷件等。
优选的,所述高压稀释水39的一部分来自于外来水40。
优选的,所述磨料件是由螺纹钢构成的人字形结构、三角形契块或三角形锥形块。
优选的,所述滚筒式泥砂分离装置的直径在1米-5米之间选择,长度在5米-20米之间选择。
 当滚筒式泥砂分离装置的直径在3米以上时,10-20吨的泥土车可以直接将待处理泥土倒入滚筒式泥砂分离装置内,这种情况下,最好在滚筒式泥砂分离装置的最前段设置一个输料段13,以延长待处理泥土进入磨料部分11的时间,并在此输料段13加入适当水份将待处理泥土进行初步稀释。
优选的,本发明中的脱水设备可以采用板框压滤机或大功率泥土脱水机来实现。
优选的,本发明还可以包括大料处理步骤5,对从排料口排出的大料,首先经过大料除杂步骤51,将大料中的金属、竹、木、塑料等杂物分选检出,然后,经过大料破碎步骤52,用破碎机对大类进行粉碎,粉碎后地石料可以直接作为建筑材料使用,在大料处理过程中产生出来的泥料可以作为新的待处理料,返回本发明的第一步,进行进一步处理。

Claims (10)

  1. [根据细则26改正16.05.2017]
    1. 一种工业化处理淤泥渣土的方法,主要适合于用来处理城市建设中挖掘出来的泥砂土,其特征在于,包括如下步骤:
    (1)、泥砂初处理步骤
      采用滚筒式泥砂分离装置将被处理泥砂处理成稀泥砂和大料混合物;其中,所述滚筒式泥砂分离装置至少包括磨料部分(11)和泥砂分离部分(12),所述磨料部分利用设置在圆筒内壁上的磨料件将进入磨料部分内的被处理泥砂初步破碎,并送入到泥砂分离部分,在泥砂分离部分设有高压稀释水,将进入到所述物料分离部的泥砂稀释成稀泥砂,所述泥砂分离部分允许粒径小于大料预定粒径的稀泥砂混合物通过;而粒径大于等于大料预定粒径的大料混合物则被从排料口排出;
    (2)、泥砂分离步骤
    (21)、粗砂分离步骤
    粒径小于大料预定粒径的稀泥砂进入粗砂分离槽,由设置在粗砂分离槽上的缓慢转动的粗砂叶轮组件将粒径大于等于粗砂预定粒径的粗砂分离出来,其中,所述粗砂叶轮组件至少包括一对平行设置的间隔预定间距的叶轮片,在所述叶轮片之间切向设有若干粗筛片,所述粗筛片的孔径等于粗砂预定粒径;叶轮转动时,沉积在粗砂分离槽底部的泥砂被掏到粗筛片上,在高压水的冲击下,被洗净的粗砂排出粗砂分离槽;从粗砂分离槽溢流出的泥浆进入(3)泥浆处理步骤;被过滤了粗砂的泥浆进入(22)细砂分离步骤;
    (22)、细砂分离步骤
    被过滤了粗砂的泥浆进入细砂分离槽,由设置在细砂分离槽上的缓慢转动的细砂叶轮组件将粒径大于等于细砂预定粒径的细砂分离出来,其中,所述细砂叶轮组件至少包括一对平行设置的间隔预定间距的叶轮片,在所述叶轮片之间切向设有若干细筛片,所述细筛片的孔径等于细砂预定粒径;叶轮转动时,沉积在细砂分离槽底部的泥砂被掏到细筛片上,在高压水的冲击下,被洗净的细砂排出细砂分离槽;被过滤了细砂的混水被作为入料口的稀释水使用;
    (3)、泥浆处理步骤
    从粗砂分离槽溢流出的泥浆被进一步精细处理后被脱水得到干泥备用。
  2. [根据细则26改正16.05.2017] 
    根据权利要求1所述的工业化处理淤泥渣土的方法,其特征在于,所述泥桨处理步骤进一步包括如下步骤:
    (31)、进一步除砂步骤
    采用水力旋流分砂装置对从粗砂分离槽溢流出的泥浆进一步除砂,所述泥浆被切向高速进入水力旋流分砂装置的圆柱体内,从水力旋流分砂装置的锥形体下口排出的带有砂的泥桨回到细砂分离步骤进一步处理;从水力旋流分砂装置的溢流管流出的泥浆进入(32)步;
    (32)、除铁步骤
    从水力旋流分砂装置的溢流管流出的泥浆借助于磁铁除去泥浆中的铁质物质,得到除铁后泥桨;
    (33)、除去有机物步骤
    采用第一预定目数的筛子,对除铁后泥浆除去有机物,得到除有机物泥浆;
    (34)、精细泥浆制备
    采用第二预定目数的筛子,其中第二预定目数大于第一预定目数,对除有机物泥浆进一步精筛,得到精细泥浆;
    (35)、泥浆沉淀
    精细泥浆被送入沉淀池沉淀,沉淀池上部的清水被作为高压稀释水使用;沉淀池下部的泥浆进入第(36)步;
    (36)、压搾脱水
    采用脱水设备将沉淀池下部的泥浆进行脱水,得到干泥备用;所脱出的水作为高压稀释水使用。
  3. [根据细则26改正16.05.2017] 
    根据权利要求1或2所述的工业化处理淤泥渣土的方法,其特征在于,所述粗砂预定粒径在2毫米-3.5毫米之间选择。
  4. [根据细则26改正16.05.2017] 
    根据权利要求1或2所述的工业化处理淤泥渣土的方法,其特征在于,所述细砂预定粒径在0.5毫米-1.5毫米之间选择。
  5. [根据细则26改正16.05.2017] 
    根据权利要求1或2所述的工业化处理淤泥渣土的方法,其特征在于,所述大料预定粒径在20毫米-50毫米之间选择。
  6. [根据细则26改正16.05.2017] 
    根据权利要求1或2所述的工业化处理淤泥渣土的方法,其特征在于,还包括泥器制造步骤,干泥被进一步干燥后,根据干泥的成份,被做成陶制品或瓷制品。
  7. [根据细则26改正16.05.2017] 
    根据权利要求6所述的工业化处理淤泥渣土的方法,其特征在于,所述陶制品至少被制成软陶瓷,所述软陶瓷的组成为二氧化硅含量大于等于70%的泥土 80%-90%,泥土改性剂10%-20%;其中,所述泥土改性剂由5-8份纤维素、尿素1-3份和乙稀-醋酸乙稀酯共聚物6-10份混合而成。
  8. [根据细则26改正16.05.2017] 
    根据权利要求1或2所述的工业化处理淤泥渣土的方法,其特征在于,所述高压稀释水的一部分来自于外来水。
  9. [根据细则26改正16.05.2017] 
    根据权利要求1或2所述的工业化处理淤泥渣土的方法,其特征在于,所述磨料件是由螺纹钢构成的人字形结构、三角形契块或三角形锥形块。
  10. [根据细则26改正16.05.2017] 
    根据权利要求1或2所述的工业化处理淤泥渣土的方法,其特征在于,所述滚筒式泥砂分离装置的直径在1米-5米之间选择,长度在5米-20米之间选择。
PCT/CN2016/107450 2016-09-26 2016-11-28 工业化处理淤泥渣土的方法 WO2018064857A1 (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201610845817 2016-09-26
CN201610880395.8A CN106311725B (zh) 2016-09-26 2016-10-09 工业化处理淤泥渣土的方法
CN201610880395.8 2016-10-09

Publications (1)

Publication Number Publication Date
WO2018064857A1 true WO2018064857A1 (zh) 2018-04-12

Family

ID=57821308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/107450 WO2018064857A1 (zh) 2016-09-26 2016-11-28 工业化处理淤泥渣土的方法

Country Status (2)

Country Link
CN (1) CN106311725B (zh)
WO (1) WO2018064857A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111115646A (zh) * 2019-12-31 2020-05-08 深圳市华域环保科技有限公司 采用建筑弃土生产黏土的方法
CN112757470A (zh) * 2020-12-31 2021-05-07 中铁工程服务有限公司 一种盾构渣土制砖回收利用方法
CN113045179A (zh) * 2021-03-24 2021-06-29 福建狮威水利工程有限公司 污水厂淤泥深度脱水方法
CN114105507A (zh) * 2021-12-01 2022-03-01 莫良义 一种洗沙泥改进方法
CN114455787A (zh) * 2021-12-30 2022-05-10 深圳市华威环保建材有限公司 一种淤泥的处置方法及装置
CN115414728A (zh) * 2022-09-26 2022-12-02 北京泓龙科技有限公司 一种矿料冶炼用水浆分离装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107694738A (zh) * 2017-08-22 2018-02-16 广东中态绿城建筑淤泥渣土实业有限公司 一种建筑废料回收利用方法
CN108160314B (zh) * 2017-11-28 2023-06-06 深圳江氏恩泽实业有限公司 建筑垃圾处理系统
CN108080396B (zh) * 2017-12-14 2020-09-22 付朝品 一种原生渣土再生利用方法
CN110340112A (zh) * 2019-07-18 2019-10-18 三川德青工程机械有限公司 土压平衡盾构渣土综合处理及资源生态利用方法及系统
CN112495558A (zh) * 2020-11-16 2021-03-16 北京建工资源循环利用投资有限公司 一种开槽土回收方法
CN113578522A (zh) * 2021-08-05 2021-11-02 中铁开发投资集团有限公司 一种盾构现场渣土筛分处理装置及其使用方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5794791A (en) * 1987-11-30 1998-08-18 Genesis Research Corporation Coal cleaning process
CN101177325A (zh) * 2006-11-11 2008-05-14 宜昌黑旋风工程机械有限公司 地下工程施工中泥水多级处理装置
CN103769312A (zh) * 2014-01-09 2014-05-07 广东华隧建设股份有限公司 一种泥水盾构渣土处理回收利用的施工方法
CN204396456U (zh) * 2014-12-11 2015-06-17 北京建工环境修复股份有限公司 一种基于减量浓缩设计理念的土壤淋洗修复系统
CN104858048A (zh) * 2015-05-07 2015-08-26 康明克斯(北京)机电设备有限公司 土压平衡盾构渣土环保再生处理方法和设备
CN106238444A (zh) * 2016-09-26 2016-12-21 深圳申佳原环保科技有限公司 工业化处理淤泥渣土的系统
CN206168930U (zh) * 2016-09-26 2017-05-17 深圳申佳原环保科技有限公司 工业化处理淤泥渣土的系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5794791A (en) * 1987-11-30 1998-08-18 Genesis Research Corporation Coal cleaning process
CN101177325A (zh) * 2006-11-11 2008-05-14 宜昌黑旋风工程机械有限公司 地下工程施工中泥水多级处理装置
CN103769312A (zh) * 2014-01-09 2014-05-07 广东华隧建设股份有限公司 一种泥水盾构渣土处理回收利用的施工方法
CN204396456U (zh) * 2014-12-11 2015-06-17 北京建工环境修复股份有限公司 一种基于减量浓缩设计理念的土壤淋洗修复系统
CN104858048A (zh) * 2015-05-07 2015-08-26 康明克斯(北京)机电设备有限公司 土压平衡盾构渣土环保再生处理方法和设备
CN106238444A (zh) * 2016-09-26 2016-12-21 深圳申佳原环保科技有限公司 工业化处理淤泥渣土的系统
CN206168930U (zh) * 2016-09-26 2017-05-17 深圳申佳原环保科技有限公司 工业化处理淤泥渣土的系统

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111115646A (zh) * 2019-12-31 2020-05-08 深圳市华域环保科技有限公司 采用建筑弃土生产黏土的方法
CN112757470A (zh) * 2020-12-31 2021-05-07 中铁工程服务有限公司 一种盾构渣土制砖回收利用方法
CN113045179A (zh) * 2021-03-24 2021-06-29 福建狮威水利工程有限公司 污水厂淤泥深度脱水方法
CN114105507A (zh) * 2021-12-01 2022-03-01 莫良义 一种洗沙泥改进方法
CN114455787A (zh) * 2021-12-30 2022-05-10 深圳市华威环保建材有限公司 一种淤泥的处置方法及装置
CN115414728A (zh) * 2022-09-26 2022-12-02 北京泓龙科技有限公司 一种矿料冶炼用水浆分离装置
CN115414728B (zh) * 2022-09-26 2023-12-08 北京泓龙科技有限公司 一种矿料冶炼用水浆分离装置

Also Published As

Publication number Publication date
CN106311725A (zh) 2017-01-11
CN106311725B (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
WO2018064857A1 (zh) 工业化处理淤泥渣土的方法
WO2018064878A1 (zh) 工业化处理淤泥渣土的系统
CN101560073A (zh) 一种废弃混凝土回收再利用的方法
CN206168930U (zh) 工业化处理淤泥渣土的系统
CN108080396A (zh) 一种原生渣土再生利用方法
CN110104977A (zh) 一种混凝土掺和料及石材人造石加工产生的固废处理方法
CN110976478A (zh) 一种拆建及装修废弃物的资源化处理工艺
CN113480217A (zh) 一种利用建筑垃圾制备混凝土的混凝土生产工艺
CN114309015A (zh) 一种不需人力分拣的建筑装修垃圾协同处理技术
Patil et al. Recycled coarse aggregates
CN103848584A (zh) 一种建筑垃圾资源化再生微粉、细砂联合生产工艺方法
CN109824290A (zh) 一种工程弃土再生骨料的生产方法
KR100660142B1 (ko) 건식 모래 생산 방법 및 그 시스템
CN113816637A (zh) 以温石棉矿山剥离废石为骨料的免烧砌块及其制备方法
CN111847949A (zh) 一种废弃混凝土块处理用分类方法
KR20010054014A (ko) 밀립도 투수콘크리트의 박층 포장방법
JP4030574B1 (ja) 土系舗装材
CN111807774B (zh) 基建用仿石加工方法及基建用仿石
GB1580908A (en) Production of sand
CN110156361A (zh) 一种混凝土掺和料及消除瓷砖生产产生的固废的方法
CN106316364A (zh) 建筑固体废料和油污废料综合利用方法
CN105439518B (zh) 一种混凝土修补剂及其制备方法
JP2004067399A (ja) 建設汚泥からの再生砂の製造方法
KR20120122786A (ko) 규격화된 인공 건축골재 포장화 생산방법
Jindal et al. A Pragmatic Approach on Use of Beneficiated Recycled Concrete Aggregates in PQC Mix

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16918190

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29/07/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16918190

Country of ref document: EP

Kind code of ref document: A1