WO2018062858A1 - 반사 방지 필름 - Google Patents
반사 방지 필름 Download PDFInfo
- Publication number
- WO2018062858A1 WO2018062858A1 PCT/KR2017/010735 KR2017010735W WO2018062858A1 WO 2018062858 A1 WO2018062858 A1 WO 2018062858A1 KR 2017010735 W KR2017010735 W KR 2017010735W WO 2018062858 A1 WO2018062858 A1 WO 2018062858A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- region
- nanoparticles
- low refractive
- refractive index
- Prior art date
Links
- 239000002105 nanoparticle Substances 0.000 claims description 266
- 239000010410 layer Substances 0.000 claims description 221
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 210
- 239000000377 silicon dioxide Substances 0.000 claims description 104
- 229910044991 metal oxide Inorganic materials 0.000 claims description 88
- 150000001875 compounds Chemical class 0.000 claims description 82
- 150000004706 metal oxides Chemical class 0.000 claims description 76
- 239000011247 coating layer Substances 0.000 claims description 49
- 239000011737 fluorine Substances 0.000 claims description 41
- 229910052731 fluorine Inorganic materials 0.000 claims description 41
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims description 39
- 238000000034 method Methods 0.000 claims description 35
- -1 alkoxy silane Chemical compound 0.000 claims description 34
- 125000000524 functional group Chemical group 0.000 claims description 34
- 238000001341 grazing-angle X-ray diffraction Methods 0.000 claims description 34
- 229920005989 resin Polymers 0.000 claims description 29
- 239000011347 resin Substances 0.000 claims description 29
- 238000000576 coating method Methods 0.000 claims description 27
- 239000011230 binding agent Substances 0.000 claims description 25
- 239000011248 coating agent Substances 0.000 claims description 23
- 238000001228 spectrum Methods 0.000 claims description 12
- 239000011342 resin composition Substances 0.000 claims description 11
- 229920001577 copolymer Polymers 0.000 claims description 10
- 239000002216 antistatic agent Substances 0.000 claims description 6
- 229910000077 silane Inorganic materials 0.000 claims description 5
- 230000003373 anti-fouling effect Effects 0.000 abstract description 30
- 238000002834 transmittance Methods 0.000 abstract description 14
- 239000010408 film Substances 0.000 description 92
- 239000008199 coating composition Substances 0.000 description 43
- 239000002245 particle Substances 0.000 description 34
- NIXOWILDQLNWCW-UHFFFAOYSA-M acrylate group Chemical group C(C=C)(=O)[O-] NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 29
- 239000007787 solid Substances 0.000 description 22
- 230000000052 comparative effect Effects 0.000 description 15
- 238000001035 drying Methods 0.000 description 15
- 238000004519 manufacturing process Methods 0.000 description 14
- 238000005259 measurement Methods 0.000 description 13
- 239000003960 organic solvent Substances 0.000 description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 12
- 239000000178 monomer Substances 0.000 description 11
- 239000012071 phase Substances 0.000 description 10
- 239000003999 initiator Substances 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- 229920000642 polymer Polymers 0.000 description 9
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 8
- 230000003667 anti-reflective effect Effects 0.000 description 8
- 238000009826 distribution Methods 0.000 description 8
- 238000009304 pastoral farming Methods 0.000 description 8
- 238000000016 photochemical curing Methods 0.000 description 8
- 238000002360 preparation method Methods 0.000 description 8
- 239000000758 substrate Substances 0.000 description 8
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 8
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 7
- 238000002441 X-ray diffraction Methods 0.000 description 7
- 230000003287 optical effect Effects 0.000 description 7
- 229910052710 silicon Inorganic materials 0.000 description 7
- 239000010703 silicon Substances 0.000 description 7
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 6
- HVVWZTWDBSEWIH-UHFFFAOYSA-N [2-(hydroxymethyl)-3-prop-2-enoyloxy-2-(prop-2-enoyloxymethyl)propyl] prop-2-enoate Chemical compound C=CC(=O)OCC(CO)(COC(=O)C=C)COC(=O)C=C HVVWZTWDBSEWIH-UHFFFAOYSA-N 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 125000005442 diisocyanate group Chemical group 0.000 description 5
- PCKZAVNWRLEHIP-UHFFFAOYSA-N 2-hydroxy-1-[4-[[4-(2-hydroxy-2-methylpropanoyl)phenyl]methyl]phenyl]-2-methylpropan-1-one Chemical compound C1=CC(C(=O)C(C)(O)C)=CC=C1CC1=CC=C(C(=O)C(C)(C)O)C=C1 PCKZAVNWRLEHIP-UHFFFAOYSA-N 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 4
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000010954 inorganic particle Substances 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 150000002576 ketones Chemical class 0.000 description 4
- 238000005191 phase separation Methods 0.000 description 4
- 230000000704 physical effect Effects 0.000 description 4
- 238000006116 polymerization reaction Methods 0.000 description 4
- 238000010926 purge Methods 0.000 description 4
- 238000002310 reflectometry Methods 0.000 description 4
- 230000002393 scratching effect Effects 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 125000003396 thiol group Chemical group [H]S* 0.000 description 4
- 229910001887 tin oxide Inorganic materials 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 239000011787 zinc oxide Substances 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- PTTPXKJBFFKCEK-UHFFFAOYSA-N 2-Methyl-4-heptanone Chemical compound CC(C)CC(=O)CC(C)C PTTPXKJBFFKCEK-UHFFFAOYSA-N 0.000 description 3
- TXBCBTDQIULDIA-UHFFFAOYSA-N 2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol Chemical compound OCC(CO)(CO)COCC(CO)(CO)CO TXBCBTDQIULDIA-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 3
- 150000001298 alcohols Chemical class 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000004132 cross linking Methods 0.000 description 3
- 238000001723 curing Methods 0.000 description 3
- 239000002612 dispersion medium Substances 0.000 description 3
- 150000002170 ethers Chemical class 0.000 description 3
- 239000010419 fine particle Substances 0.000 description 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 3
- 150000003377 silicon compounds Chemical class 0.000 description 3
- 239000008096 xylene Substances 0.000 description 3
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 2
- XLLIQLLCWZCATF-UHFFFAOYSA-N 2-methoxyethyl acetate Chemical compound COCCOC(C)=O XLLIQLLCWZCATF-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 2
- 229920002284 Cellulose triacetate Polymers 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 2
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 2
- 150000001242 acetic acid derivatives Chemical class 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 238000007611 bar coating method Methods 0.000 description 2
- 229920001940 conductive polymer Polymers 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- SWXVUIWOUIDPGS-UHFFFAOYSA-N diacetone alcohol Chemical compound CC(=O)CC(C)(C)O SWXVUIWOUIDPGS-UHFFFAOYSA-N 0.000 description 2
- 238000007607 die coating method Methods 0.000 description 2
- 150000002118 epoxides Chemical group 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- HNRMPXKDFBEGFZ-UHFFFAOYSA-N ethyl trimethyl methane Natural products CCC(C)(C)C HNRMPXKDFBEGFZ-UHFFFAOYSA-N 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 150000002222 fluorine compounds Chemical class 0.000 description 2
- 125000001153 fluoro group Chemical group F* 0.000 description 2
- 238000007756 gravure coating Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- JMMWKPVZQRWMSS-UHFFFAOYSA-N isopropyl acetate Chemical compound CC(C)OC(C)=O JMMWKPVZQRWMSS-UHFFFAOYSA-N 0.000 description 2
- 230000004807 localization Effects 0.000 description 2
- 239000002082 metal nanoparticle Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 239000002952 polymeric resin Substances 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- 239000011800 void material Substances 0.000 description 2
- POILWHVDKZOXJZ-ARJAWSKDSA-M (z)-4-oxopent-2-en-2-olate Chemical class C\C([O-])=C\C(C)=O POILWHVDKZOXJZ-ARJAWSKDSA-M 0.000 description 1
- HGDULKQRXBSKHL-UHFFFAOYSA-N 1,1-bis(2-methylprop-2-enoyloxy)propyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC(CC)(OC(=O)C(C)=C)OC(=O)C(C)=C HGDULKQRXBSKHL-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- HSOOIVBINKDISP-UHFFFAOYSA-N 1-(2-methylprop-2-enoyloxy)butyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC(CCC)OC(=O)C(C)=C HSOOIVBINKDISP-UHFFFAOYSA-N 0.000 description 1
- ARXJGSRGQADJSQ-UHFFFAOYSA-N 1-methoxypropan-2-ol Chemical compound COCC(C)O ARXJGSRGQADJSQ-UHFFFAOYSA-N 0.000 description 1
- DVVGIUUJYPYENY-UHFFFAOYSA-N 1-methylpyridin-2-one Chemical compound CN1C=CC=CC1=O DVVGIUUJYPYENY-UHFFFAOYSA-N 0.000 description 1
- PTJWCLYPVFJWMP-UHFFFAOYSA-N 2-[[3-hydroxy-2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol Chemical compound OCC(CO)(CO)COCC(CO)(CO)COCC(CO)(CO)CO PTJWCLYPVFJWMP-UHFFFAOYSA-N 0.000 description 1
- JLBJTVDPSNHSKJ-UHFFFAOYSA-N 4-Methylstyrene Chemical compound CC1=CC=C(C=C)C=C1 JLBJTVDPSNHSKJ-UHFFFAOYSA-N 0.000 description 1
- DBCAQXHNJOFNGC-UHFFFAOYSA-N 4-bromo-1,1,1-trifluorobutane Chemical compound FC(F)(F)CCCBr DBCAQXHNJOFNGC-UHFFFAOYSA-N 0.000 description 1
- JXAWFXYVNNBZLF-UHFFFAOYSA-N 4-methylpentan-2-one pentane-2,4-dione Chemical compound C(C(C)C)C(=O)C.CC(CC(C)=O)=O JXAWFXYVNNBZLF-UHFFFAOYSA-N 0.000 description 1
- KWOLFJPFCHCOCG-UHFFFAOYSA-N Acetophenone Natural products CC(=O)C1=CC=CC=C1 KWOLFJPFCHCOCG-UHFFFAOYSA-N 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical compound OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical class C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 150000007824 aliphatic compounds Chemical group 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- SMZOGRDCAXLAAR-UHFFFAOYSA-N aluminium isopropoxide Chemical compound [Al+3].CC(C)[O-].CC(C)[O-].CC(C)[O-] SMZOGRDCAXLAAR-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 150000001449 anionic compounds Chemical class 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 229910000410 antimony oxide Inorganic materials 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 150000001767 cationic compounds Chemical class 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229920000547 conjugated polymer Polymers 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000000572 ellipsometry Methods 0.000 description 1
- STVZJERGLQHEKB-UHFFFAOYSA-N ethylene glycol dimethacrylate Substances CC(=C)C(=O)OCCOC(=O)C(C)=C STVZJERGLQHEKB-UHFFFAOYSA-N 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000000727 fraction Substances 0.000 description 1
- 150000002314 glycerols Chemical class 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-M hexanoate Chemical compound CCCCCC([O-])=O FUZZWVXGSFPDMH-UHFFFAOYSA-M 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 125000005641 methacryl group Chemical group 0.000 description 1
- BFXIKLCIZHOAAZ-UHFFFAOYSA-N methyltrimethoxysilane Chemical compound CO[Si](C)(OC)OC BFXIKLCIZHOAAZ-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 150000003961 organosilicon compounds Chemical class 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- VTRUBDSFZJNXHI-UHFFFAOYSA-N oxoantimony Chemical compound [Sb]=O VTRUBDSFZJNXHI-UHFFFAOYSA-N 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920000553 poly(phenylenevinylene) Polymers 0.000 description 1
- 229920001197 polyacetylene Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920006294 polydialkylsiloxane Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- ZGSOBQAJAUGRBK-UHFFFAOYSA-N propan-2-olate;zirconium(4+) Chemical compound [Zr+4].CC(C)[O-].CC(C)[O-].CC(C)[O-].CC(C)[O-] ZGSOBQAJAUGRBK-UHFFFAOYSA-N 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical group 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000003678 scratch resistant effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 description 1
- ZUEKXCXHTXJYAR-UHFFFAOYSA-N tetrapropan-2-yl silicate Chemical compound CC(C)O[Si](OC(C)C)(OC(C)C)OC(C)C ZUEKXCXHTXJYAR-UHFFFAOYSA-N 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- CPUDPFPXCZDNGI-UHFFFAOYSA-N triethoxy(methyl)silane Chemical compound CCO[Si](C)(OCC)OCC CPUDPFPXCZDNGI-UHFFFAOYSA-N 0.000 description 1
- JXUKBNICSRJFAP-UHFFFAOYSA-N triethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CCO[Si](OCC)(OCC)CCCOCC1CO1 JXUKBNICSRJFAP-UHFFFAOYSA-N 0.000 description 1
- HQYALQRYBUJWDH-UHFFFAOYSA-N trimethoxy(propyl)silane Chemical compound CCC[Si](OC)(OC)OC HQYALQRYBUJWDH-UHFFFAOYSA-N 0.000 description 1
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/14—Protective coatings, e.g. hard coatings
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/11—Anti-reflection coatings
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
- C03C17/36—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
- C03C17/3602—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
- C03C17/3618—Coatings of type glass/inorganic compound/other inorganic layers, at least one layer being metallic
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J4/00—Measuring polarisation of light
- G01J4/02—Polarimeters of separated-field type; Polarimeters of half-shadow type
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/21—Polarisation-affecting properties
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/21—Polarisation-affecting properties
- G01N21/211—Ellipsometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/20—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/20—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
- G01N23/207—Diffractometry using detectors, e.g. using a probe in a central position and one or more displaceable detectors in circumferential positions
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/04—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/11—Anti-reflection coatings
- G02B1/113—Anti-reflection coatings using inorganic layer materials only
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/11—Anti-reflection coatings
- G02B1/113—Anti-reflection coatings using inorganic layer materials only
- G02B1/115—Multilayers
- G02B1/116—Multilayers including electrically conducting layers
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/02—Diffusing elements; Afocal elements
- G02B5/0205—Diffusing elements; Afocal elements characterised by the diffusing properties
- G02B5/0236—Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
- G02B5/0242—Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of dispersed particles
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/02—Diffusing elements; Afocal elements
- G02B5/0205—Diffusing elements; Afocal elements characterised by the diffusing properties
- G02B5/0236—Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
- G02B5/0247—Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of voids or pores
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2217/00—Coatings on glass
- C03C2217/70—Properties of coatings
- C03C2217/73—Anti-reflective coatings with specific characteristics
- C03C2217/734—Anti-reflective coatings with specific characteristics comprising an alternation of high and low refractive indexes
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/133502—Antiglare, refractive index matching layers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/70—Nanostructure
- Y10S977/773—Nanoparticle, i.e. structure having three dimensions of 100 nm or less
Definitions
- the present invention relates to an anti-reflection film, and more particularly, to an anti-reflection film that can simultaneously realize high scratch resistance and antifouling property while having a low reflectance and a high light transmittance, and can increase the sharpness of a screen of a display device.
- a flat panel display device such as a PDP or LCD is equipped with an anti-reflection film for minimizing reflection of light incident from the outside.
- a method for minimizing the reflection of light a method of dispersing a filler such as ceramic fine particles in a resin and coating the base film and imparting irregularities (ant i-gl are: AG coating); There are a method of using the interference of light by forming a plurality of different layers of refraction on the base film (ant i -ref lect ion (AR coating)) or a common method of these.
- the absolute amount of reflected light is equivalent to that of a general hard coating, but a low reflection effect can be obtained by reducing the amount of light entering the eye by using light scattering through unevenness.
- the AG coating has poor screen clarity due to surface irregularities, much research has recently been conducted on AR coatings.
- the film using the AR coating a multilayer structure in which a hard coating layer (high refractive index layer), a low reflection coating layer, and the like are laminated on a base film is commercialized.
- the method of forming a plurality of layers as described above to form each layer As the process is performed separately there is a disadvantage in that the interlayer adhesion (interface adhesion) is weak and the scratch resistance is poor.
- the present invention is to provide an anti-reflection film having a low reflectance and a high light transmittance and at the same time can implement a high scratch resistance and antifouling resistance and can increase the sharpness of the screen of the display device.
- a hard coating layer or anti-glare layer In this specification, a hard coating layer or anti-glare layer; And a low refractive layer formed on one surface of the hard coating layer or the antiglare layer and including a binder resin and vaporized silica nanoparticles, metal oxide nanoparticles, and inorganic nanoparticles dispersed in the binder resin.
- the layer includes a first region including hollow silica nanoparticles, a second region including the metal oxide nanoparticles, and a third region including the inorganic nano indenter in the low refractive layer.
- a fluorine-containing compound means the compound containing at least 1 or more fluorine elements among the compounds.
- (meth) acryl [(Meth) acryl] is meant to include both acryl and Methacryl.
- (co) polymer is meant to include both co-polymers and homo-polymers.
- hollow silica particles is a silica particle derived from a silicon compound or an organosilicon compound, the particles having a void space on the surface and / or inside of the silica particles Means.
- the binder layer including hollow silica nanoparticles, metal oxide nanoparticles, and inorganic nanoparticles dispersed in the binder resin.
- a first region including hollow silica nanoparticles, a second region including the metal oxide nanoparticles, and a third region including the inorganic nanoparticles are present, and the low refractive layer has a grazing angle incident X-ray.
- Anti-reflective, with at least one diffraction peak in the range of 50 ° to 60 ° , twice the angle of incidence of the incident X-ray in the diffraction (Grazing- incidence X—Ray Difract ion, GID) spectrum Films can be provided.
- the present inventors have conducted research on the anti-reflection film, so that the hollow silica nanoparticles, the metal oxide nanoparticles, and the inorganic nanoparticles may be separated from each other in the low refractive layer included in the antireflection film. It was confirmed through experiments that high scratch resistance and antifouling property can be realized simultaneously with reflectance and high light transmittance and completed the invention.
- the low refractive layer is grazing incidence X-ray diffraction (Grazing- incidence)
- the light may have at least one diffraction peak in a range of twice the angle of incidence of the incident X-ray (2 ⁇ ) of 50 ° to 60 ° , or 52 ° to 57 ° .
- the low refractive layer has a double angle (2 ⁇ ) value of 50 ° to 60 ° , or 52 ° to 57 ° , in the grazing incidence X-ray diffraction (GID) spectrum.
- a double angle (2 ⁇ ) value of 50 ° to 60 ° , or 52 ° to 57 °
- the grazing incidence X-ray diffraction (GID) spectrum is, as shown in FIGS.
- the incident angle ⁇ means an angle formed between the crystal plane and the X-ray when X-rays are irradiated onto a specific crystal plane, and the diffraction peak is twice the incident angle of the X-ray where the horizontal axis (X-axis) is incident on the xy plane.
- the low refractive layer has a double angle (2 ⁇ ) value of 50 ° to 60 ° , or 52 ° to 57 ° , in the grazing-incidence X-ray diffraction (GID) spectrum. It may have a diffraction peak of at least one, that is, one or two in the phosphorus range.
- Diffraction Spectral diffraction peaks measured in the range of 50 ° to ⁇ 60 ° or 52 ° to 57 ° are twice the incident angle of the incident X-rays. This is caused by the crystal structure of the particles, and if the metal oxide nanoparticles are not contained in the low refractive layer, diffraction peaks do not appear at all within the above-mentioned range.
- the metal oxide nanoparticles are included, if it is common in the low refractive layer without being mainly separated in a specific region, such as the low refractive layer of the embodiment, the refractive index to the first region, the second region, the third region Since the distribution is not made, there is a limit that the reflective ring film has a high reflectance of more than 0.5% in the visible light wavelength band region of 380 nm to 780 nm, and it is difficult to realize a good scratch resistance and antifouling property.
- the value of 2 times the incident angle of the incident X-rays is 50 ° to 60 ° , or 52 °. It appears that the diffraction intensity of the diffraction peaks appearing in the range of from 57 ° to 57 ° decreases, making it difficult to clearly separate as a distinct peak.
- grazing angle incident X-ray diffraction —Incidence X-ray diffraction ion (GID) spectra, where doubled incident angles of incident X-rays (2 ⁇ ) are detected as distinct peaks in the range 50 ° to 60 ° , or 52 ° to 57 ° It can have a strong diffraction intensity.
- X-ray diffractometers are X-ray generators that generate X-rays, goniometers that measure the angle of incidence, detectors that measure X-ray intensity, and control and calculations. It may include a control computing device (control. Data processing unit).
- Di f fract ion (GID) analysis makes the angle of incidence of the X-ray incident range very small with respect to the surface, preventing X-rays from penetrating to more than a few depths and diffraction, having a depth of several nm to several hundred nm from the surface.
- the structure information in the surface of a film layer or a thin film can be obtained clearly.
- Specific methods of grazing incidence X-ray diffraction (GID) analysis have been previously known. The method can be applied without limitation, for example, for a thin film of 100 A to 2000 A thickness, the incident X-ray angle is incident on the sample at 0.01 ° to 3 °, while the detector is rotated while the incident angle is fixed. The method of securing a spectrum can be used.
- inorganic nanoparticles are mainly distributed near the interface between the hard coating layer or the antiglare layer and the low refractive layer, and hollow silica nanoparticles are mainly distributed toward the opposite side of the interface, and the inorganic
- the metal oxide particles are mainly distributed between the nanoparticles and the hollow silica nanoparticles, three or more regions or three or more layers may be formed in the low refractive layer, thereby achieving a lower reflectance.
- the low refractive index layer can be implemented with greatly improved scratch resistance and stain resistance.
- Specific distributions of the inorganic nanoparticles, the metal oxide nanoparticles, and the hollow silica nanoparticles in the low refractive layer may include inorganic nanoparticles, metal oxide nanoparticles, and hollow silica nanoparticles having different average diameter ranges. It seems that it can be obtained by controlling the drying temperature of the photocurable resin composition for forming a low refractive layer including particles.
- the anti-reflection film of the embodiment is prepared from a composition for combing containing at least two particles of the three types of nanoparticles described above and a binder resin, a single low refractive index layer on the final antireflection film obtained after drying the coating composition There may be a near U region to a third region within the region. Accordingly, the coating composition prepared by dispersing the binder resin for each particle is prepared, and the coating composition is sequentially coated so that the film can be produced quickly and simply as compared to the conventional antireflection film in which a plurality of refractive index layers existed in the low refractive layer. The efficiency of the is improved, and peeling between layers can be prevented.
- the anti-reflection film of the embodiment is formed on one surface of the hard coating layer or anti-glare layer, the low refractive layer comprising a binder resin and hollow silica nanoparticles, metal oxide nanoparticles and inorganic nanoparticles dispersed in the binder resin It may include.
- the low refractive layer may include a first region containing hollow silica nanoparticles, a crater two regions containing the metal oxide nanoparticles, and a third region containing the inorganic nanoparticles.
- region may be a portion of the low refractive layer, such as a domain that is visually divided by a layer or a predetermined boundary.
- the first region includes at least 70 volume 3 ⁇ 4 of the total hollow silica nanoparticles
- the second region includes at least 70 volume% of the total metal oxide nanoparticles
- the third region is inorganic nano More than 70% by volume of the total particles may be included.
- 1 at least 70% by volume of the total hollow silica nanoparticles is present in one region of the hollow silica nanoparticles, meaning that the hollow silica nanoparticles are mostly distributed or present in the first region in the cross-section of the low refractive index layer.
- the first region may exhibit a tendency similar to the optical characteristics of the hollow silica nanoparticles.
- 'More than 70% by volume of the entire metal oxide nanoparticles are present in a specific second region' is defined as meaning that the metal oxide nanoparticles are mostly distributed or present in the second region in the cross-section of the low refractive index layer.
- the second region may exhibit a tendency similar to the optical characteristics of the metal oxide nanoparticles.
- third region 1 is defined as meaning that the inorganic nanoparticles are mostly distributed or present in the crab region 3 mostly in the cross-section of the low refractive index layer. Accordingly, the third region may exhibit a tendency similar to the optical characteristics of the inorganic nanoparticles.
- a method for confirming the type of particles mainly distributed in each region a method of measuring and comparing optical characteristics (for example, elliptical polarization) for each region may be used.
- optical characteristics for example, elliptical polarization
- the anti-reflection film of the embodiment is on the hard coating layer or anti-glare layer
- Three kinds of particles may be dispersed in the formed low refractive layer to form a specific region mainly located or distributed in the low refractive layer for each particle. Such regions may be formed by spontaneous separation of three kinds of particles within a single low refractive layer.
- the first region, the crab 2 region, and the crab 3 region included in the low refractive layer may have different refractive indices.
- the refractive indices of each of the first region, the second region, and the third region may satisfy the following general formula (2).
- the refractive index of the first region (nl) ⁇ the refractive index of the third region (n3) ⁇ the refractive index of the second region (n2) More specifically, the refractive index of the first region is less than 1.4, the refractive index of the second region is greater than 1.55
- the refractive index of the third region may be greater than 1.4 and less than 1.55. That is, the refractive index decreases in the order of the second region, the crab region 3, and the first region, and the refractive index of the third region may be larger than that of the first region and smaller than that of the second region.
- the low refractive index layer is located closer to the interface between the hard coating layer or the anti-glare layer and the low refractive index layer than the second region where the third region is located, and the hard region or the hard coating layer is larger than that of the first region. It may be located closer to the interface between the anti-glare layer and the low refractive index layer. That is, the giant U region, the crab region 2, and the third region included in the low refractive index layer are further added to the interface between the hard coating layer or the antiglare layer and the low refractive layer in the order of the third region, the second region, and the first region. It can be located nearby. More specifically, a third region, a crab 2 region on the crab 3 region, and a crab 1 region on the second region may be located on the hard coating layer or the antiglare layer.
- each region in such a low refractive layer seems to depend on the diameter of the particles mainly included in each region. Specifically, the larger the diameter of the particles mainly included in each region, the farther from the hard coating layer or the anti-glare layer. The smaller the diameter of the particles mainly contained in the area, the closer to the hard coating layer or the antiglare layer.
- An example of a method of confirming an arrangement order for each region in the low refractive layer is not particularly limited, and the refractive index for each region obtained through ellipsometry measurements of the low refractive layer may be used.
- a method of comparing the refraction of each of the three particles included in the low refractive layer may be used.
- the position of the region in the low refractive layer may be determined by the average diameter of the particles mainly contained in the region, and the region through the average diameter and refractive index information of the three particles dispersed in the low refractive layer You can check the order of placement.
- the antireflective film may realize a reflectance lower than the reflectance previously obtained using inorganic particles.
- the reflective ring film may exhibit very low levels of ultra low reflectivity of 0.3% or less, or 0.01% to 0.3%, or 0.2% to 0.3% in the visible light wavelength range of 380 nm to 780 nm.
- first region, the second region, and the third region of the low refractive layer may be present in a continuous phase by one binder resin.
- the presence of a continuous phase means that the binder resin is distributed without forming a separate phase such as an interface or a layer, and more specifically, the low refractive layer is a binder resin, hollow silica nanoparticles, and metal oxide nano. It may mean that it is prepared through one coating with a resin composition including particles and inorganic nanoparticles.
- the thickness of the giant U region, the second region, and the crater 3 region may be independently 10 nm to 200 nm.
- An example of the method of measuring the thickness is not particularly limited, and for example, thickness data measured by an ellipsoidal polarization method may be used.
- the inorganic nanoparticles may include solid silica nanoparticles or antimony-doped tin oxide nanoparticles, and the solid silica nanoparticles may be formed of a silica material and particles having no empty space therein.
- the refractive index of the inorganic nanoparticles is 1.45 to 1.85 or 1.45 to One . 6 may be.
- the metal oxide nanoparticles have an average diameter of 3 to 60ran, and means particles made of an oxide of a metal.
- the metal oxide are not particularly limited, and for example, titanium oxide (titanium dioxide), tin oxide (tin dioxide, etc.), zinc oxide (zinc oxide, etc.) can be used.
- the refractive index of the metal oxide nanoparticles may be 1.7 or more.
- the hollow silica nanoparticles have a mean diameter of 10 to 200nm, made of a silica material, and means a particle having a void space on the surface and / or inside thereof.
- the refractive index of the hollow silica nanoparticles is 1. 2 to 1.45.
- the low refractive index layer may include 15 to 70% by weight of the hollow silica nanoparticles 10 to 50% by weight of the metal oxide nanoparticles and 3 to 40% by weight of the inorganic nanoparticles relative to the total solid content.
- the solid content means only a solid component except for a component of a liquid phase, for example, an organic solvent, which may be selectively included as described below, in the low refractive layer.
- the metal oxide nanoparticles may be included in an amount of 20 parts by weight to 60 parts by weight and the inorganic nanoparticles in an amount of 10 parts by weight to 40 parts by weight based on 100 parts by weight of the hollow silica nanoparticles.
- phase separation between the hollow silica nanoparticles, metal oxide nanoparticles, and inorganic nanoparticles in the low refractive layer manufacturing process It is not common to occur and is not common, so that the refractive index region is not formed in the low refractive index layer, so that the reflectance can be increased, and excessive surface irregularities can occur, which can reduce the antifouling property.
- the inorganic nanoparticles when the content of the hollow silica nanoparticles, metal oxide nanoparticles and inorganic nanoparticles in the low refractive index layer is too small, the inorganic nanoparticles from a region close to the interface between the hard coating layer or the anti-glare layer and the low refractive index layer And a plurality of metal oxide nanoparticles may be difficult to locate, and the reflectance of the low refractive layer may be significantly increased.
- the inorganic nanoparticles, metal oxide nanoparticles and the hollow silica nanoparticles each has a (meth) acrylate group, an epoxide group, It may contain one or more semi-maleic functional groups selected from the group consisting of a vinyl group (Vinyl) and a thiol group (Thiol).
- the inorganic nanoparticles, the metal oxide nanoparticles, and the hollow silica nanoparticles each contain the above-described reactive functional groups, the low refractive index layer may have a higher degree of crosslinking, thereby improving scratch resistance and Antifouling property can be secured.
- the ratio of the average diameter of the inorganic nanoparticles to the average diameter of the hollow silica nanoparticles in the low refractive index layer may be 0.01 to 0.5. Accordingly, the hollow silica nanoparticles and the inorganic nanoparticles may exhibit different localization and distribution patterns in the low refractive layer, for example, the positions where the hollow silica nanoparticles and the inorganic nanoparticles are mainly distributed. May be different distances based on an interface between the hard coating layer or the antiglare layer and the low refractive index layer.
- the average diameter of the hollow silica nanoparticles and the average diameter of the inorganic nanoparticles are hollow silica nanoparticles and inorganic nanoparticles, respectively, which are identified in a TEM photograph (for example, a magnification of 25,000 times) of the antireflection film. It may be an average value obtained by measuring and calculating the diameter of.
- the low refractive layer may have a unique internal structure and an arrangement of components, and thus may have a lower reflectance. have.
- the surface properties of the low refractive layer are also changed, thereby improving scratch and antifouling properties.
- the hollow silica nanoparticles and the inorganic nanoparticles are agglomerated with each other or are localized according to the particle type. Since the distribution does not occur, it is difficult to significantly lower the reflectance of the anti-reflection film, and it may be difficult to achieve the required scratch and antifouling properties.
- the inherent effects of the antireflection film of the embodiment depend on the average diameter ratio between the hollow silica nanoparticles and the inorganic nanoparticles described above. .
- the antireflection film has a lower reflectance and a high light transmittance while simultaneously providing high scratch resistance and antifouling resistance.
- hollow silica nanoparticles and inorganic nanoparticles having a predetermined average diameter may be used.
- an average diameter of the hollow silica nanoparticles is within a range of 20 nm to 100 nm.
- the average diameter of the inorganic nanoparticles may be in the range of 1 ran to 30 ran.
- the average diameter ratio of the inorganic nanoparticles to the average diameter of the metal oxide nanoparticles may be 0.5 to 0.9. Accordingly, as the regions where the metal oxide nanoparticles and the inorganic nanoparticles are mainly distributed in the low refractive layer are changed, the low refractive layer has a unique internal structure and an arrangement of components, and thus may have a lower reflectance. ' There is.
- the metal oxide nanoparticles in the low refractive layer are harder than the inorganic nanoparticles or the anti-glare layer And may be dispersed far from the interface between the low refractive index layer.
- the average diameter of the metal oxide nanoparticles may be larger than the average diameter of the inorganic nanoparticles, may be smaller than the average diameter of the hollow silica nanoparticles. That is, the average diameters of the hollow silica nanoparticles, the metal oxide nanoparticles, and the inorganic nanoparticles may satisfy the following general formula (3).
- the metal oxide nanoparticles may have a diameter of 1 ⁇ or more, or as long as 5nm to 20nm compared to the metal nanoparticles, and due to this diameter difference, the low refractive layer formed on the hard coating layer or antiglare In the inorganic nanoparticles may be dispersed mainly on the side closer to the hard coating layer or anti-glare layer than the metal oxide nanoparticles. Accordingly, the low refractive index layer may realize an ultra low reflectance, and at the same time, mechanical properties such as scratch resistance may be improved.
- the hollow silica nanoparticles may have a diameter of 15 ran or more, or as long as 15 ⁇ to 60 nm or as long as 30 nm to 55 nm as compared to the metal oxide nanoparticles, and may be formed on the hard coating layer or the antiglare layer due to the difference in diameter.
- the low refractive layer formed on the metal oxide nanoparticles may be dispersed closer to the hard coating layer or anti-glare layer than the hollow silica nanoparticles. Accordingly, it is possible to implement improved scratch resistance and antifouling property on the surface of the low refractive index layer.
- the above-described low refractive layer may be prepared from a photocurable coating composition including a photopolymerizable compound, a fluorine-containing compound including a photoreactive functional group, hollow silica nanoparticles, metal oxide nanoparticles, inorganic nanoparticles, and a photoinitiator.
- the binder resin included in the low refractive index layer is crosslinked between the (co) polymer of the photopolymerizable compound and the fluorine-containing compound including the photoreactive functional group.
- the photopolymerizable compound included in the photocurable coating composition of the embodiment may form a base material of the binder resin of the low refractive index layer to be prepared.
- the photopolymerizable compound may include a monomer or oligomer including a (meth) acrylate or a vinyl group. More specifically, the photopolymerizable compound is
- a monomer or oligomer containing at least one, or at least two, or at least three (meth) acrylate or vinyl groups may be included.
- the monomer or oligomer containing the (meth) acrylate include tri (meth) acrylate for pentaerythrite, tetra (meth) acrylate for pentaerythri, penta (meth) acrylate for dipentaerythr, Dipentaerythri nucleus (meth) acrylate, tripentaerythrib hepta (meth) acrylate, triylene diisocyanate, xylene, diisocyanate, nucleamethylene diisocyanate, trimethylolpropane tri (meth) acrylate, Trimethylolpropane polyethoxy tri (meth) acrylate, trimethyl to propane trimethacrylate, ethylene glycol dimethacrylate, butanediol dimethacrylate, nuxaethyl methacrylate, butyl methacrylate or two or more thereof Or a urethane-modified acrylate oligomer, an urethan
- the monomer or oligomer containing the vinyl group include divinylbenzene, styrene or paramethylstyrene.
- the content of the photopolymerizable compound in the photocurable coating composition is not particularly limited, the content of the photopolymerizable compound in the solid content of the photocurable coating composition in consideration of the mechanical properties of the low refractive index layer or the antireflection film to be produced finally May be from 5% by weight to> 60% by weight.
- Solid content of the photocurable coating composition means only the components of the solid except the components of the liquid, for example, an organic solvent that may be optionally included as described below in the photocurable coating composition.
- the photopolymerizable compound may further include a fluorine-based (meth) acrylate monomer or oligomer in addition to the above-described monomer or oligomer.
- a fluorine-based (meth) acrylate monomer or oligomer in addition to the above-described monomer or oligomer.
- the weight ratio of the fluorine (meth) acrylate monomer or oligomer to the monomer or oligomer containing the (meth) acrylate or vinyl group May be 0.1% to 10%.
- fluorine-based (meth) acrylate monomers or oligomers may include at least one compound selected from the group consisting of the following formulas (11) to (15).
- R 1 is a hydrogen group or an alkyl group having 1 to 6 carbon atoms, an integer of 7 and b is an integer of 1 to 3.
- c is an integer of 1 to 10
- d is an integer of 1 to 11
- e is an integer of 1 to 5.
- f is an integer of 4 to 10.
- the low refractive index layer may include a portion derived from the fluorine-containing compound including the photo-reflective functional group.
- the fluorine-containing compound including the photoreactive functional group may include or replace one or more photoreactive functional groups, and the photoreactive functional groups may participate in the polymerization reaction by irradiation of light, for example, by irradiation of visible light or ultraviolet light.
- the photoreactive functional group may include various functional groups known to be able to participate in the polymerization reaction by irradiation of light. Specific examples thereof include a (meth) acrylate group, an epoxide group, a vinyl group (Vinyl), or a thiol group ( Thiol) is mentioned.
- Each of the ambleo compounds containing the photo-banung functional group has a weight average molecular weight of 2, 000 to 200, 000 g / mol, preferably 5, 000 to 100, 000 (weight average molecular weight in terms of polystyrene measured by GPC method).
- the fluorine-containing compounds in the photocurable coating composition may not be arranged uniformly and effectively on the surface, and thus are located inside the low refractive layer that is finally manufactured. Accordingly, the antifouling property of the surface of the low refractive index layer is lowered, and the crosslinking density of the low refractive index layer is lowered, so that mechanical properties such as overall strength and scratch resistance may be reduced.
- the weight average molecular weight of the fluorine-containing compound including the photo-reflective functional group is too high, compatibility with other components in the photocurable coating composition may be lowered, and thus the final refractive index of the low refractive layer The haze may be increased or the light transmittance may be lowered, and the strength of the low refractive index layer may also be lowered.
- the fluorine-containing compound including the photo-cyclic functional group is i) an aliphatic compound or aliphatic ring compound in which at least one photo-cyclic functional group is substituted, at least one fluorine is substituted in at least one carbon; i i) a heteroaliphatic compound or a heteroaliphatic ring compound substituted with one or more photocyclic functional groups, at least one hydrogen substituted with fluorine, and one or more carbons substituted with silicon; i i i) polydialkylsiloxane polymers (eg, polydimethylsiloxane polymers) in which at least one photoreactive functional group is substituted and at least one fluorine is substituted in at least one silicon; iv) a polyether compound substituted with at least one photoreactive functional group and at least one hydrogen is substituted with fluorine, or a mixture of two or more of 0 to iv) or a copolymer thereof.
- the photocurable coating composition may include 20 to 300 parts by weight of the fluorine-containing compound including the photobanung functional group based on 100 parts by weight of the photopolymerizable compound.
- the content of the fluorine-containing compound including the photoreactive functional group in the solid content of the photocurable coating composition may be 1% by weight to 30% by weight in consideration of the mechanical properties of the low refractive index layer or the antireflection film to be manufactured.
- the coating property of the photocurable coating composition of the embodiment is reduced or the low refractive layer obtained from the photocurable coating composition has sufficient durability or scratch resistance. May not have
- the amount of the fluorine-containing compound including the photoreactive functional group relative to the photopolymerizable compound is too small, the low refractive index layer obtained from the photocurable coating composition may not have a layered antifouling or scratch resistant mechanical properties. .
- the fluorine-containing compound including the photobanung functional group may further include silicon or a silicon compound. That is, the fluorine-containing compound including the photo-cyclic functional group may optionally contain a silicon or silicon compound, and specifically, the content of silicon in the fluorine-containing compound including the photo-cyclic functional group is 0.01 wt% to 2Q weight May be%.
- Silicon contained in the fluorine-containing compound containing the photo-banung functional group is It is possible to increase the compatibility with other components included in the photocurable coating composition of the embodiment and thereby to serve to increase the transparency by preventing the haze (haze) occurs in the refractive layer to be produced finally.
- the content of silicon in the fluorine-containing compound containing the photo-banung functional group is too large, the compatibility between the other components included in the photocurable coating composition and the fluorine-containing compound may be rather deteriorated, thereby resulting in low Since the refractive layer or the antireflection film does not have sufficient light transmittance or antireflection performance, the antifouling property of the surface may also be reduced.
- the low refractive layer may have a thickness of lnm to 300 ran, or 50nm to 200 nm.
- a hard coating layer or anti-glare layer a hard coating layer or anti-glare layer generally known may be used without great limitation.
- the hard coating film As an example of the hard coating film, a binder resin of a photocurable resin; And the hard coat film or anti-glare layer containing the antistatic agent dispersed in the said binder resin is mentioned.
- the photocurable resin included in the hard coating layer or the antiglare layer is a polymer of a photocurable compound that can cause polymerization reaction when irradiated with light such as ultraviolet rays, and may be conventional in the art.
- the photocurable compound may be a polyfunctional (meth) acrylate-based monomer or oligomer, wherein the number of (meth) acrylate-based functional groups is 2 to 10, or 2 to 8, or 2 to 7 It is advantageous in terms of securing physical properties of the hard coating layer.
- the photocurable compound may be tri (meth) acrylate for pentaerythroli, tetra (meth) acrylate for pentaerythroli, penta (meth) acrylate for dipentaerythritol, or nuclei of dipentaerythritol.
- Acrylate dipentaerythritol hepta (meth) acrylate, tripentaerythritol hepta (meth) acrylate, triylene diisocyanate, xylene diisocyanate, nusamethylene diisocyanate, trimethylolpropane tri (meth) acrylic It may be at least one selected from the group consisting of acrylate and trimethyl propane polyethoxy tri (meth) acrylate.
- the antistatic agent is a quaternary ammonium salt compound; Pyridinium salts; Cationic compounds having from 1 to 3 amino groups; Sulfonic acid base, sulfate ester base, phosphoric acid Anionic compounds such as ester bases and phosphonic acid bases; Positive compounds, such as an amino acid type or amino sulfate ester type compound; Nonionic compounds such as imino alcohol compounds, glycerin compounds, and polyethylene glycol compounds; Organic metal oxide compounds such as metal oxide alkoxide compounds including tin or titanium; Metal oxide chelate compounds such as acetylacetonate salts of the organometal oxide compounds; Two or more semi-ungmuls or polymerized compounds of these compounds; It may be a combination of two or more of these compounds.
- the quaternary ammonium salt compound may be a compound having one or more quaternary ammonium salt groups in the molecule, it can be used without limitation low molecular type or polymer type.
- a conductive polymer and metal oxide oxide fine particles can also be used as the antistatic agent.
- the conductive polymers include aromatic conjugated poly (paraphenylene), polycyclic heterocyclic conjugated poly (pi), polythiophene, aliphatic conjugated polyacetylene, heteroanimal polyaniline, and mixed conjugated conjugated system.
- the metal oxide oxide fine particles include zinc oxide, antimony oxide, tin oxide, cerium oxide, indium tin oxide, indium oxide, aluminium oxide, antimony doped tin oxide, aluminum doped zinc oxide, and the like.
- Binder resin of the photocurable resin; And the hard coat film or anti-glare layer comprising an antistatic agent dispersed in the binder resin is selected from the group consisting of alkoxy silane oligomer and metal oxide alkoxide-based oligomer
- the alkoxy silane compound may be conventional in the art, but preferably tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane, methyltrimethoxysilane, methyltriethoxysilane, methacryloxy It may be one or more compounds selected from the group consisting of propyltrimethoxysilane, glycidoxypropyl trimethoxysilane, and glycidoxypropyl triethoxysilane.
- the metal oxide alkoxide-based oligomer may be prepared through the sol-gel reaction of the composition comprising a metal oxide alkoxide-based compound and water.
- the sol-gel reaction can be carried out by a method similar to the method for producing an alkoxy silane oligomer described above.
- the sol-gel reaction may be performed by diluting the metal oxide alkoxide compound in an organic solvent and slowly dropping water.
- the molar ratio (based on metal oxide ions) of the metal oxide alkoxide compound to water is preferably adjusted within the range of 3 to 170.
- the metal oxide alkoxide-based compound may be at least one compound selected from the group consisting of titanium tetra-isopropoxide, zirconium isopropoxide, and aluminum isopropoxide.
- the hard coating layer or anti-glare layer may have a thickness of 0.1 to 100 kPa.
- the specific kind or thickness of the substrate is not particularly limited, and a substrate known to be used in the manufacture of a low refractive index layer or an antireflection film can be used without great limitation.
- the antireflection film of the embodiment a photocurable compound or a (co) polymer thereof, a low refractive index including a fluorine-containing compound, a photoinitiator, hollow silica nanoparticles, metal oxide nanoparticles and inorganic nanoparticles Applying a layer composition resin composition on a hard coat layer or antiglare layer and drying at a temperature of 35 to 100 ° C .; And photocuring the dried material of the resin composition.
- the anti-reflection film provided by the method for manufacturing the anti-reflection film is distributed in the low refractive layer so that the hollow silica nanoparticles, the metal oxide nanoparticles, and the inorganic nanoparticles can be distinguished from each other, and thus have a low reflectance and It has high light transmittance and high scratch resistance and stain resistance.
- the low refractive index harden the resin composition for forming a low refractive layer including a photocurable compound or a (co) polymer thereof, a fluorine-containing compound including a photoreactive functional group, a photoinitiator, hollow silica nanoparticles, metal oxide nanoparticles and inorganic nanoparticles It can be formed by coating on the coating layer and drying at a temperature of 35 ° C to 100 ° C, or 50 ° C to 95 ° C, or 60 ° C to 90 ° C.
- the antifouling property of the formed low refractive index layer may be greatly reduced.
- the temperature of drying the resin composition for forming the low refractive index layer applied on the hard coating layer or anti-glare layer is more than 100 ° C.
- the hollow silica nanoparticles, metal oxide nanoparticles and inorganic in the low refractive layer manufacturing process Phase separation between the nanoparticles does not occur in abundantly, so that not only the scratch resistance and the antifouling property of the low refractive index layer may be lowered, but also the reflectance may be greatly increased.
- the diameter difference between the inorganic nanoparticles, the metal oxide nanoparticles and the hollow silica nanoparticles together with the drying temperature in the process of drying the resin composition for forming the low refractive index layer applied on the hard coating layer or the antiglare layer. It is possible to form a low refractive layer having the characteristics of phase separation into the characteristic region.
- the ratio of the average diameter of the inorganic nanoparticles to the average diameter of the hollow silica nanoparticles is 0.01 to 0.5
- the hollow silica nanoparticles and the inorganic nanoparticles in the low refractive layer Different localization and distribution patterns may be exhibited, for example, the positions where the hollow silica nanoparticles and the inorganic nanoparticles are mainly distributed may be different distances based on an interface between the hard coating layer or the antiglare layer and the low refractive layer. Can be.
- the average diameter of the hollow silica nanoparticles and the average diameter of the inorganic nanoparticles are hollow silica nanoparticles and inorganic nanoparticles, respectively, which are identified in TEM photographs (for example, 25,000 times magnification) of the antireflection film. It may be an average value obtained by measuring and calculating the diameter of.
- the low refractive index layer has a unique internal structure and The arrangement of components allows for lower reflectivity.
- the surface characteristics of the low refractive index layer is also changed to achieve more improved scratch resistance and stain resistance.
- the hollow silica nanoparticles and the inorganic nanoparticles do not agglomerate with each other, or ubiquitous or distribution depending on the particle type, Not only it is difficult to significantly lower the reflectance of the anti-reflection film, it may be difficult to achieve the required scratch resistance and stain resistance.
- the inherent effects of the anti-reflection film of the embodiment for example, have a low reflectance and a high light transmittance, and can simultaneously realize high scratch resistance and antifouling property, and can improve the screen sharpness of the display device. It depends on the average diameter ratio between the hollow silica nanoparticles and the inorganic nanoparticles.
- the antireflection film has a lower reflectance and a high light transmittance while simultaneously providing high scratch resistance and antifouling resistance.
- hollow silica nanoparticles and inorganic nanoparticles having a predetermined average diameter may be used.
- the average diameter of the hollow silica nanoparticles is within a range of 20 nm to 100 ran.
- the average diameter of the inorganic nanoparticles may be in the range of 1 ran to 30 nm.
- the average diameter ratio of the inorganic nanoparticles to the average diameter of the metal oxide nanoparticles may be 0.5 to 0.9. Accordingly, as the regions where the metal oxide nanoparticles and the inorganic nanoparticles are mainly distributed in the low refractive index layer are changed, the low refractive index layer may have a unique internal structure and an arrangement of components, and thus may have a lower reflectance. have.
- the metal oxide nanoparticles in the low refractive layer are harder than the inorganic nanoparticles or the anti-glare layer And may be dispersed far from the interface between the low refractive index layer.
- the average diameter of the metal oxide nanoparticles may be larger than the average diameter of the inorganic nanoparticles, may be smaller than the average diameter of the hollow silica nanoparticles. That is, the average diameters of the hollow silica nanoparticles, the metal oxide nanoparticles, and the inorganic nanoparticles may satisfy the following general formula (3).
- the metal oxide nanoparticles may have a long diameter of 1 nm or more, or 5 nm to 20 nm, compared to the metal nanoparticles, and due to the difference in diameter, a low refractive index formed on the hard coating layer or the antiglare layer In the layer, the inorganic nanoparticles may be dispersed mainly on the side closer to the hard coating layer or the antiglare layer than the metal oxide nanoparticles. Accordingly, the low refractive index layer may realize an ultra low reflectance, and at the same time, mechanical properties such as scratch resistance may be improved.
- the hollow silica nanoparticles may have a diameter larger than 15 ran ' , or as long as 15 nm to 60 nm, or as long as 30 nm to 55 nm, compared to the metal oxide nanoparticles, and due to the diameter difference, the hard coating layer or the antiglare layer.
- the low refractive layer formed on the metal oxide nanoparticles may be dispersed closer to the hard coating layer or anti-glare layer than the hollow silica nanoparticles. Accordingly, it is possible to implement improved scratch resistance and antifouling property on the surface of the low refractive index layer.
- the step of drying the resin composition for forming the low refractive index layer applied on the hard coating layer at a temperature of 35 ° C to 100 ° C may be performed for 10 seconds to 5 minutes, or 30 seconds to 4 minutes.
- the drying time is too short, the phase separation phenomenon between the inorganic nanoparticles, the metal oxide nanoparticles, and the hollow silica nanoparticles described above is sufficiently It may not happen. On the contrary, when the drying time is too long, the formed low refractive index layer may erode the hard coating layer or the antiglare layer.
- the low refractive layer may be prepared from a photocurable coating composition including a photocurable compound or a (co) polymer thereof, a fluorine-containing compound including a photoreactive functional group, hollow silica nanoparticles, metal oxide nanoparticle inorganic nanoparticles, and a photoinitiator.
- a photocurable coating composition including a photocurable compound or a (co) polymer thereof, a fluorine-containing compound including a photoreactive functional group, hollow silica nanoparticles, metal oxide nanoparticle inorganic nanoparticles, and a photoinitiator.
- a photocurable coating composition including a photocurable compound or a (co) polymer thereof, a fluorine-containing compound including a photoreactive functional group, hollow silica nanoparticles, metal oxide nanoparticle inorganic nanoparticles, and a photoinitiator.
- the low refractive layer can be obtained by applying the photocurable coating composition on a predetermined substrate and photocuring the applied resultant.
- the specific kind or thickness of the substrate is not particularly limited, and a substrate known to be used in the manufacture of a low refractive index layer or an antireflection film can be used without great limitation.
- the method and apparatus conventionally used to apply the photocurable coating composition may be used without particular limitation, for example, bar coating method such as Meyer bar, gravure coating method, 2 rol l reverse coating method, vacuum s lot die coating, 2 roll coating, etc. may be used.
- the low refractive layer may have a thickness of lnm to 300 nm, or 50nm to 200 nm. Accordingly, the thickness of the photocurable coating composition applied on the predetermined substrate may be about Iran to 300 nm, or 50 nm to 200 nm.
- the photocurable coating composition may be irradiated with ultraviolet or visible light of 200nm to 400kHz wavelength, the exposure dose is preferably 100mJ / cirf to 4,000 mJ / cin 2 . Exposure time is not specifically limited, either, The exposure apparatus used can be changed suitably according to the wavelength or exposure amount of irradiation light.
- the photocurable coating composition may be nitrogen purging to apply nitrogen atmospheric conditions.
- fluorine-containing compound including the photocurable compound, the hollow silica nanoparticles, the metal oxide nanoparticles, the inorganic nanoparticles, and the photoreactive functional group may include the aforementioned contents with respect to the antireflection film of the embodiment. .
- Each of the hollow silica nanoparticles, the metal oxide nanoparticles, and the inorganic nanoparticles may be included in the composition in the form of a colloid dispersed in a predetermined dispersion medium.
- Each colloidal phase including the hollow silica nanoparticles, the metal oxide nanoparticles, and the inorganic nanoparticles may include an organic solvent as a dispersion medium.
- the hollow silica nanoparticles, the metal oxide nanoparticles, and the inorganic particles in consideration of the content range of the hollow silica nanoparticles, the metal oxide nanoparticles, and the inorganic nanoparticles or the viscosity of the photocurable coating composition in the photocurable coating composition.
- Content of the colloidal phase of each of the nanoparticles can be determined, for example, 15% to 70% by weight of the hollow silica nanoparticles in the colloidal phase, 5% to 60% by weight of the metal oxide nanoparticles and the inorganic nano 3% to 40% by weight of particles.
- the metal oxide nanoparticles may be included in an amount of 20 parts by weight to 60 parts by weight and the inorganic nanoparticles in an amount of 10 parts by weight to 40 parts by weight based on 100 parts by weight of the hollow silica nanoparticles.
- alcohols such as methane, isopropyl alcohol, ethylene glycol, butanol; Ketones such as methyl ethyl ketone and methyl isobutyl ketone; Aromatic hydrocarbons such as toluene and xylene; Dimethylformamide.
- Amides such as dimethylacetamide and N-methylpyridone; Esters such as ethyl acetate, butyl acetate and gamma butyrolactone; Ethers such as tetrahydrofuran and 1,4-dioxane; Or combinations thereof.
- the photopolymerization initiator can be used without limitation as long as it is a compound known to be used in the photocurable resin composition, and specifically, a benzophenone compound, acetophenone compound, biimidazole compound, triazine compound, oxime compound or Two or more kinds thereof can be used.
- the photopolymerization initiator may be used in an amount of 1 part by weight to 100 parts by weight. If the amount of the photopolymerization initiator is too small, an uncured material remaining in the photocuring step of the photocurable coating composition may be issued. If the amount of the photopolymerization initiator is too large, the non-aqueous initiator may remain as an impurity or have a low crosslinking density, thereby lowering mechanical properties or reflectance of the film.
- the photocurable coating composition may further include an organic solvent.
- organic solvents include ketones, alcohols, Acetates and ethers, or combinations of two or more thereof.
- Specific examples of such organic solvents include ketones such as methyl ethyl kenone, methyl isobutyl ketone acetylacetone or isobutyl ketone; Alcohols such as methanol, ethanol, diacetone alcohol, n-propane, i-propanol, n-butanol, i-butanol, or t-butanol; Acetates such as ethyl acetate, i-propyl acetate, or polyethylene glycol monomethyl ether acetate; Ethers such as tetrahydrofuran or propylene glycol monomethyl ether; Or two or more kinds thereof.
- the organic solvent may be included in the photocurable coating composition while being added at the time of mixing each component included in the photocurable coating composition or in the state in which each component is dispersed or mixed in the organic solvent. If the content of the organic solvent in the photocurable coating composition is too small, defects may occur, such as streaks in the resulting film due to the flowability of the photocurable coating composition is reduced. In addition, when the excessive amount of the organic solvent is added, the solid content is lowered, coating and film formation are not divided, the physical properties and surface properties of the film may be lowered, and defects may occur in the drying and curing process. Accordingly, the photocurable coating composition may include an organic solvent such that the concentration of the total solids of the components included is 1% by weight to 50% by weight, or 2% by weight to 20% by weight.
- the hard coating layer or anti-glare layer may be used without any limitation as long as it is a material known to be used for the antireflection film.
- the method of manufacturing the anti-reflection film further comprises the step of applying a photocurable compound or a (co) polymer thereof, a polymer coating composition for forming a hard coating layer or an antiglare layer comprising an antistatic agent on the substrate and photocuring It may be, through the above steps can form a hard coating layer or anti-glare layer.
- the components used to form the hard coat layer or the antiglare layer are the same as described above with respect to the antireflection film of the embodiment.
- the polymer coating composition for hard coating or anti-glare layer formed of an alkoxy silane oligomer and a metal oxide alkoxide oligomer may further comprise one or more compounds selected from the group.
- Method and apparatus commonly used to apply the polymer coating composition for forming the hard coating layer or anti-glare layer can be used without any particular limitation, for example, bar coating method such as Meyer bar, gravure coating method, 2 rol l reverse Coating method, vacuum s lot die coating, 2 roll coating method can be used.
- bar coating method such as Meyer bar, gravure coating method, 2 rol l reverse Coating method, vacuum s lot die coating, 2 roll coating method
- the step of photocuring the polymer resin composition for forming the hard coating layer or anti-glare layer may be irradiated with ultraviolet rays or visible light of 200nm to 400nm wavelength and the exposure dose is preferably 100mJ / cirf to 4,000 mJ / cin 2 .
- Exposure time is not specifically limited, either, The exposure apparatus used can be changed suitably according to the wavelength or exposure amount of irradiation light.
- nitrogen purging may be performed to apply nitrogen atmospheric conditions.
- an anti-reflection film having a low reflectance and a high light transmittance can implement high scratch resistance and antifouling, and can increase the sharpness of the screen of the display device.
- Figure 1 shows the grazing angle X D measurement results of the antireflection film obtained in Example 1.
- Figure 2 shows the grazing angle XRD measurement results of the antireflection film obtained in Example 2.
- Figure 3 shows the grazing angle XRD measurement results of the antireflection film obtained in Example 3.
- Figure 4 shows the grazing angle XRD measurement results of the antireflection film obtained in Example 4.
- Figure 5 shows the grazing angle XRD measurement results of the antireflection film obtained in Example 5.
- Figure 6 shows the grazing angle XRD measurement results of the antireflection film obtained in Comparative Example 1.
- KY0EISHA salt type antistatic hard coating solution 50 wt% solids, product name: LJD-1000 was coated with triacetyl cellulose (TAC) film with # 10 meyer bar and dried at 90 ° C for 1 minute, 150 mJ / UV light of ciif was irradiated to prepare a hard coat film having a thickness of about 5-6.
- TAC triacetyl cellulose
- Hollow silica nanoparticles (average diameter: about 50 to 60 nm) 40 wt%, Ti0 2 nanoparticles (average diameter: about 17 ran, average length: about 30 ran) 18 wt%, solid silica nanoparticles (average diameter : About 12 nm) 12 weight 3 ⁇ 4, 1st fluorine-containing compound (X-71-1203M, ShinEtsu Co., Ltd.) 3 weight 3 ⁇ 4>, 2nd fluorine-containing compound (RS_537, DIC Co., Ltd.) 7 weights, pentaerythritol triacrylate (PETA) 15% by weight, 5% by weight of initiator (Irgacure 127, Ciba) were diluted in a solvent of methyl i-butyl ketone (MIBK) to 4% by weight of solids.
- MIBK methyl i-butyl ketone
- the photocurable coating composition obtained above was coated with a # 4 meyer bar to have a thickness of about 180 to 200 nm, and dried and cured at the pressure, temperature and time of Table 1, respectively. At the time of curing, the dried coating was irradiated with ultraviolet light of 252 mJ / cnf under nitrogen purge. Examples 4-5 (1) Preparation of photocurable coating composition for low refractive layer production
- Hollow silica nanoparticles (average diameter: about 60 to 70 ran) 40 wt%, Ti0 2 nanoparticles (average diameter: about 17 ran, average length: about 30 ran) 15 weight 3 ⁇ 4, solid silica nanoparticles (average diameter : About 12 ran) 10% by weight, 1% fluorine-containing compound (X-71-1203M, ShinEtsu) 3% by weight, 2nd fluorine-containing compound (RS_537, DIC) ) 20% by weight and 5% by weight of initiator (Irgacure 127, Ciba) were diluted in a solvent of MIBKOnethyl isobutyl ketone) to a solid content of 4% by weight.
- initiator Irgacure 127, Ciba
- the photocurable coating composition obtained above was coated with # 4 meyer bar to have a thickness of about 180 to 200 ntn, and dried and cured at the pressure, temperature, and time of Table 1, respectively.
- the dried coating was irradiated with ultraviolet light of 252 mJ / cin 2 under nitrogen purge.
- the steel wool (area 2ciif) was loaded and reciprocated 10 times at a speed of 27 rpm to rub the surface of the antireflective film obtained in the examples and the comparative examples.
- the maximum load at which one scratch or less of 1 cm or less observed with the naked eye was observed was measured, and the results are shown in Table 2 below.
- the antireflection films of Examples 1 to 5 in which three kinds of particles (hollow silica nanoparticles, Ti0 2 nanoparticles, and solid silica nanoparticles) are included in the low refractive layer, are visible light regions. At the same time, it has a low reflectance of 0.30% or less and can simultaneously realize high scratch resistance and antifouling resistance. On the contrary, it was confirmed that only the hollow silica nanoparticles were included in the low refractive layer of the antireflection film of Comparative Example 1, showing low scratch resistance compared to the examples, and the antifouling property was also reduced.
- the ultra-low reflectance of the following is realized, and the scratch and antifouling properties It was confirmed that the proper level can be maintained.
- the diffraction peaks by the nanoparticles are measured by the strong diffraction intensity, from which the Ti0 2 nanoparticles are mainly phase separated from the hollow silica nanoparticles and the solid silica nanoparticles in the low refractive layer. It can be confirmed.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Optics & Photonics (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Analytical Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Laminated Bodies (AREA)
- Surface Treatment Of Optical Elements (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
- Vessels, Lead-In Wires, Accessory Apparatuses For Cathode-Ray Tubes (AREA)
Abstract
본 발명은, 낮은 반사율 및 높은 투광율을 가지면서 높은 내스크래치성 및 방오성을 동시에 구현할 수 있고 디스플레이 장치의 화면의 선명도를 높일 수 있는 반사 방지 필름에 관한 것이다.
Description
【명세서】
【발명의 명칭】
반사 방지 필름
【기술분야】
관련 출원 (들)과의 상호 인용
본 출원은 2016년 9월 27일자 한국 특허 출원 제 10-2016-0124106호, 2016년 10월 20일자 한국 특허 출원 제 10-2016-0136734호 및 2017년 1월 20일 자 한국 특허 출원 제 10-2017-0009886호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함 된다.
본 발명은 반사 방지 필름에 관한 것으로서, 보다 상세하게는 낮은 반사율 및 높은 투광율을 가지면서 높은 내스크래치성 및 방오성을 동시에 구현할 수 있고 디스플레이 장치의 화면의 선명도를 높일 수 있는 반사 방지 필름에 관한 것이다.
【발명의 배경이 되는 기술】
일반적으로 PDP, LCD 등의 평판 디스플레이 장치에는 외부로부터 입사되는 빛의 반사를 최소화하기 위한 반사 방지 필름이 장착된다.
빛의 반사를 최소화하기 위한 방법으로는 수지에 세라믹 미립자 등의 필러를 분산시켜 기재 필름 상에 코팅하고 요철을 부여하는 방법 (ant i-gl are : AG 코팅) ; 기재 필름 상에 굴절를이 다른 다수의 층을 형성시켜 빛의 간섭을 이용하는 방법 ( ant i -ref lect ion : AR 코팅) 또는 이들을 흔용하는 방법 등이 있다.
그 중, 상기 AG 코팅의 경우 반사되는 빛의 절대량은 일반적인 하드 코팅과 동등한 수준이지만, 요철을 통한 빛의 산란을 이용해 눈에 들어오는 빛의 양을 줄임으로써 저반사 효과를 얻을 수 있다. 그러나, 상기 AG 코팅은 표면 요철로 인해 화면의 선명도가 떨어지기 때문에, 최근에는 AR 코팅에 대한 많은 연구가 이루어지고 있다.
상기 AR 코팅을 이용한 필름으로는 기재 필름 상에 하드 코팅층 (고굴절률층), 저반사 코팅층 등이 적층된 다층 구조인 것이 상용화되고 있다. 그러나, 상기와 같이 다수의 층을 형성시키는 방법은 각 층을 형성하는
공정을 별도로 수행함에 따라 층간 밀착력 (계면 접착력)이 약해 내스크래치성이 떨어지는 단점이 있다.
또한, 이전에는 반사 방지 필름에 포함되는 저굴절층의 내스크래치성을 향상시키기 위해서는 나노미터 사이즈의 다양한 입자 (예를 들어, 실리카, 알루미나, 제을라이트 등의 입자)를 첨가하는 방법이 주로 시도되었다. 그러나, 상기와 같이 나노미터 사이즈의 입자를 사용하는 경우 저굴절층의 반사율을 낮추면서 내스크래치성을 동시에 높이기 어려운 한계가 있었으며, 나노미터의 사이즈의 입자로 인하여 저굴절층 표면이 갖는 방오성이 크게 저하되었다.
이에 따라 외부로부터 입사되는 빛의 절대 반사량을 줄이고 표면의 내스크래치성과 함께 방오성을 향상시키기 위한 많은 연구가 이루어지고 있으나, 이에 따른 물성 개선의 정도가 미흡한 실정이다.
[발명의 내용]
【해결하고자 하는 과제】
본 발명은 낮은 반사율 및 높은 투광율을 가지면서 높은 내스크래치성 및 방오성을 동시에 구현할 수 있고 디스플레이 장치의 화면의 선명도를 높일 수 있는 반사 방지 필름을 제공하기 위한 것이다.
【과제의 해결 수단】
본 명세서에서는, 하드 코팅층 또는 방현층 ; 및 상기 하드 코팅층 또는 방현층의 일면에 형성되며, 바인더 수지와 상기 바인더 수지에 분산된 증공형 실리카 나노 입자, 금속 산화물 나노 입자 및 무기 나노 입자를 포함하는 저굴절층;을 포함하고, 상기 저굴절층 중에는 상기 저굴절층 중에는 중공형 실리카 나노 입자가 포함된 제 1영역, 상기 금속 산화물 나노 입자가 포함된 제 2영역, 및 상기 무기 나노 압자가 포함된 제 3영역이 존재하며, 상기 저굴절층은 스침각 입사 X선 회절 (Grazing- incidence X-Ray Di f fract ion , GID) 스펙트럼에서, 입사되는 X선의 입사각의 2배 (2 Θ )값이 50° 내지 60° 인 범위에서 적어도 하나의 회절 피크를 갖는, 반사 방지 필름이 제공된다.
이하 발명의 구체적인 구현예에 따른 반사 방지 필름에 관하여 보다 상세하게 설명하기로 한다. 본 명세서에서, 광중합성 화합물은 빛이 조사되면, 예를 들어 가시
광선 또는 자외선이 조사되면 중합 반웅을 일으키는 화합물을 통칭한다.
또한, 함불소 화합물은 화합물 중 적어도 1개 이상의 불소 원소가 포함된 화합물을 의미한다.
또한, (메트)아크릴 [ (Meth)acryl ]은 아크릴 (acryl ) 및 메타크릴레이트 (Methacryl ) 양쪽 모두를 포함하는 의미이다.
또한, (공)중합체는 공증합체 (co-polymer ) 및 단독 충합체 (homo- polymer ) 양쪽 모두를 포함하는 의미이다.
또한, 중공형 실리카 입자 (si l i ca hol low part i c les)라 함은 규소 화합물 또는 유기 규소 화합물로부터 도출되는 실리카 입자로서, 상기 실리카 입자의 표면 및 /또는 내부에 빈 공간이 존재하는 형태의 입자를 의미한다. 발명의 일 구현예에 따르면, 하드 코팅층 또는 방현층; 및 상기 하드 코팅층 또는 방현층의 일면에 형성되며, 바인더 수지와 상기 바인더 수지에 분산된 중공형 실리카 나노 입자, 금속 산화물 나노 입자 및 무기 나노 입자를 포함하는 저굴절층;을 포함하고, 상기 저굴절층 .중에는 중공형 실리카 나노 입자가 포함된 제 1영역, 상기 금속 산화물 나노 입자가 포함된 제 2영역, 및 상기 무기 나노 입자가 포함된 제 3영역이 존재하며, 상기 저굴절층은 스침각 입사 X선 회절 (Grazing- incidence X— Ray Di f fract ion, GID) 스펙트럼에서, 입사되는 X선의 입사각의 2배 (2 Θ )값이 50° 내지 60° 인 범위에서 적어도 하나의 회절 피크를 갖는, 반사 방지 필름이 제공될 수 있다.
이전에는 반사 방지 필름의 굴절률을 낮추기 위해 굴절률이 낮은 무기 입자를 과량 첨가하여 반사율 특성을 구현하였으나, 굴절를이 낮은 무기 입자를 많이 사용할수록 반사 방지 필름의 내스크래치성과 같은 기계적 물성이 감소하는 등의 한계가 있었다.
이에, 본 발명자들은 반사 방지 필름에 관한 연구를 진행하여, 반사 방지 필름에 포함되는 저굴절층 내에서 중공형 실리카 나노 입자, 금속 산화물 나노 입자 및 무기 나노 입자가 서로 구분될 수 있도록 분포시키는 경우 낮은 반사율 및 높은 투광율을 가지면서 높은 내스크래치성 및 방오성을 동시에 구현할 수 있다는 점을 실험을 통하여 확인하고 발명을 완성하였다.
구체적으로, 상기 저굴절층은 스침각 입사 X선 회절 (Grazing- incidence
X-Ray Diffraction, GID) 스펙트럼에서, 입사되는 X선의 입사각의 2배 (2Θ)값이 50° 내지 60° , 또는 52° 내지 57° 인 범위에서 적어도 하나의 회절 피크를 가질 수 있다.
상기 저굴절층은 스침각 입사 X선 회절 (Grazing- incidence X-Ray Diffraction, GID) 스펙트럼에서, 입사되는 X선의 입사각의 2배 (2Θ)값이 50° 내지 60° , 또는 52° 내지 57° 인 범위에서 적어도 하나의 회절 피크를 갖는 경우, 내부에 최적화된 굴절율 분포를 유지할 수 있으며, 이에 따라 보다 낮은 반사율을 구현하고, 스크래치 또는 방오성 향상도 함께 구현할 수 있다. 구체적으로, 상기 스침각 입사 X선 회절 (Grazing- incidence X-Ray Diffraction, GID) 스펙트럼은 하기 도 1 내지 도 7에 나타난 바와 같이, 가로축이 입사되는 X선의 입사각의 2배 (2Θ)값이고, 세로축이 회절 강도 (Intensity)인 그래프로 나타날 수 있다.
상기 입사각 (Θ)이란 X선이 특정 결정면에 조사될 때, 결정면과 X선이 이루는 각도를 의미하며, 상기 회절 피크란, x-y 평면에서의 가로축 (X축)이 입사되는 X선의 입사각의 2배 (2Θ)값이고, x-y 평면에서의 세로축 (y축)이 회절 강도인 그래프 상에서, 가로축 (X축)인 입사되는 X선의 입사각의 2배 (2Θ)값이 양의 방향으로 증가함에 따라, 세로축 (y축)인 회절 강도에 대한 가로축 (X축)인 X선의 입사각의 2배 (2Θ)값의 1차 미분값 (접선의 기울기, dy/dx)이 양의 값에서 음의 값으로 변하는, 1차 미분값 (접선의 기울기, dy/dx)이 0인 지점을 의미한다.
상기 저굴절층은 스침각 입사 X선 회절 (Grazing-incidence X-Ray Diffraction, GID) 스펙트럼에서, 입사되는 X선의 입사각의 2배 (2Θ)값이 50° 내지 60° , 또는 52° 내지 57° 인 범위에서 적어도 하나, 즉 하나 또는 2이상의 회절 피크를 가질 수 있다.
상기 저굴절층의 스침각 입사 X선 회절 (Grazing- incidence X-Ray
Diffraction, GID) 스펙트럼상, 입사되는 X선의 입사각의 2배 (2Θ)값이 50° 내지ᅵ 60° , 또는 52° 내지 57° 인 범위에서 측정되는 회절 피크는 저굴절층 내에 포함된 금속 산화물 나노 입자의 결정 구조에 의해 나타나는 것이며, 상기 금속 산화물 나노 입자가 저굴절층내에 함유되지 않는다면 상술한 범위내에서 회절 피크가 전혀 나타나지 않게 된다.
한편, 상기 금속 산화물 나노 입자가 포함되더라도, 상기 일 구현예의 저굴절층과 같이 특정 영역에 주로 상분리되지 못한채 저굴절층 내에 흔재되는 경우에는, 제 1영역, 제 2영역, 제 3영역으로의 굴절률 분포가 이루어지지 않아, 반사 반지 필름이 380nm 내지 780nm의 가시 광선 파장대 영역에서 0.5% 초과로 높은 반사율을 갖게 되는 한계가 있으며, 층분한 내스크래치성 및 방오성을 구현하기 어렵다.
이처럼, 상기 저굴절층내에서 금속 산화물 나노 입자가 특정 영역에 주로 상분리되지 못한채 저굴절층 내에 흔재되는 경우에는 입사되는 X선의 입사각의 2배 (2 Θ )값이 50° 내지 60° , 또는 52° 내지 57° 인 범위에서 나타나는 회절 피크의 회절 강도가 감소하여 뚜렷한 피크로서 명확히 분리되기 어려운 것으로 보인다.
즉, 상기 일 구현예의 저굴절층은 금속 산화물 나노 입자가 저굴절층 내에 흔재되지 않고, 특정 영역에 주로 상분리됨에 따라, 하기 도 1 내지 도 5에 나타난 바와 같이, 스침각 입사 X선 회절 (Grazing—incidence X-Ray Di f fract ion, GID) 스펙트럼에서, 입사되는 X선의 입사각의 2배 (2 Θ )값이 50° 내지 60° , 또는 52° 내지 57° 인 범위에서 뚜렷한 피크로 검출될 정도로 강한 회절 강도를 가질 수 있다.
상기 저굴절층의 스침각 입사 X선 회절 (Grazing- incidence X-Ray Di f fract ion, GID) 스펙트럼을 측정하는 구체적인 방법의 예가 크게 한정되는 것은 아니며, X선 회절장치 (X-ray Di f f ractometer )를 사용할 수 있다. X선 회절장치는 X선을 발생시키는 X선 발생장치 (X-ray Generator ) , 입사각도를 측정하는 고니오메터 (Goniometer ) , X선 세기를 측정하는 검출기 (Detector ), 제어 및 연산을 진행하는 제어연산장치 (control . data process ing uni t ) 등을 포함할 수 있다.
특히, 상기 스침각 입사 X선 회절 (Grazing- incidence X-Ray
Di f fract ion, GID) 분석은, X선 입사범의 입사각을 표면에 대해 매우 작게 하여, X선이 수 이상의 깊이까지 침투하여 회절되는 것을 방지하여, 표면으로부터 수 nm 내지 수백 nm의 깊이를 갖는 필름층의 표면 또는 박막 내의 구조 정보를 선명하게 얻을 수 있다. 스침각 입사 X선 회절 (Grazing- incidence X-Ray Di f fract ion, GID) 분석의 구체적인 방법에 대해서는 종전 알려진
방법을 제한없이 적용할 수 있으며, 예를 들면, 100 A 내지 2000A 두께의 박막에 대해, 입사하는 X선의 각도를 0.01° 내지 3° 로 시료에 입사하고, 입사각은 고정시킨 상태에서 검출기를 회전하면서 스펙트럼을 확보하는 방법 등을 사용할 수 있다.
상기 반사 방지 필름의 저굴절층 중 상기 하드 코팅층 또는 방현층과 상기 저굴절층 간의 계면 가까이에 무기 나노 입자를 주로 분포시키고 상기 계면의 반대면 쪽으로는 중공형 실리카 나노 입자를 주로 분포시키고, 상기 무기 나노 입자와 중공형 실리카 나노 입자 사이에 금속 산화물 입자를 주로 분포시키는 경우, 상기 저굴절층 내에 서로 다른 3개 이상의 영역, 또는 3개 이상의 층이 형성될 수 있으며, 이를 통해 보다 낮은 반사율을 달성할 수 있으며, 또한 상기 저굴절층이 크게 향상된 내스크래치성 및 방오성을 함께 구현할 수 있다.
상기 저굴절층에서 상기 무기 나노 입자, 금속 산화물 나노 입자 및 중공형 실리카 나노 입자의 특이적 분포는 평균직경 범위가 상이한 무기 나노 입자, 금속 산화물 나노 입자 및 중공형 실리카 나노 입자, 이렇게 3종의 나노 입자를 포함한 저굴절층 형성용 광경화성 수지 조성물의 건조 온도를 제어함으로 얻어질 수 있는 것으로 보인다.
또한, 상기 일 구현예의 반사 방지 필름은 상술한 3종의 나노 입자 중 2종 이상의 입자와 바인더 수지를 포함한 코뒹용 조성물로부터 제조되어, 코팅 조성물의 건조 이후 얻어진 최종 반사 방지 필름 상에서, 단일 저굴절층 내에 거 U영역 내지 제 3영역이 존재할 수 있다. 이에 따라, 각각의 입자 별로 바인더 수지의 분산시킨 코팅용 조성물을 제조하고, 이를 순차적으로 코팅시켜 저굴절층 내에 다수의 굴절률층이 존재하던 종전 반사 방지 필름에 비해 빠르고 간편하게 필름을 제조할 수 있어 공정의 효율성이 향상되며, 층간의 박리를 방지할 수 있다.
이하에서는 상기 일 구현예의 반사 방지 필름에 대하여, 보다 구체적으로 설명하고자 한다. 상기 일 구현예의 반사 방지 필름은 상기 하드 코팅층 또는 방현층의 일면에 형성되며, 바인더 수지와 상기 바인더 수지에 분산된 중공형 실리카 나노 입자, 금속 산화물 나노 입자 및 무기 나노 입자를 포함하는 저굴절층을 포함할 수 있다.
특히, 상기 저굴절층 중에는 중공형 실리카 나노 입자가 포함된 제 1영역, 상기 금속 산화물 나노 입자가 포함된 게 2영역, 및 상기 무기 나노 입자가 포함된 제 3영역이 존재할 수 있다.
본 명세서에서 사용되는 "영역"이란, 시각적으로 층이나 소정의 경계로 구분되는 도메인 (domai n) 등 상기 저굴절층 중의 일부분일 수 있다.
보다 구체적으로, 상기 제 1영역은 중공형 실리카 나노 입자 전체 중 70부피 ¾ 이상이 포함되며, 상기 제 2영역은 금속 산화물 나노 입자 전체 중 70부피 % 이상이 포함되며, 상기 제 3영역은 무기 나노 입자 전체 중 70부피 % 이상이 포함될 수 있다. 1상기 중공형 실리카 나노 입자 전체 중 70 부피 % 이상이 특정 게 1영역에 존재한다'는 것은 상기 저굴절층의 단면에서 상기 중공형 실리카 나노 입자가 상기 제 1영역에 대부분 주로 분포 또는 존재한다는 의미로 사용되었으며, 이에 따라 상기 제 1영역은 상기 중공형 실리카 나노 입자의 광학적 특성과 유사한 경향을 나타낼 수 있다.
'상기 금속 산화물 나노 입자 전체 중 70 부피 % 이상이 특정 제 2영역에 존재한다'는 상기 저굴절층의 단면에서 상기 금속 산화물 나노 입자가 상기 제 2영역에 대부분 주로 분포 또는 존재한다는 의미로 정의되며, 이에 따라 상기 제 2영역은 상기 금속 산화물 나노 입자의 광학적 특성과 유사한 경향을 나타낼 수 있다.
'상기 무기 나노 입자 전체 중 70 부피 % 이상이 특정 제 3영역에 존재한다1는 상기 저굴절층의 단면에서 상기 무기 나노 입자가 상기 게 3영역에 대부분 주로 분포 또는 존재한다는 의미로 정의되며, 이에 따라 상기 제 3영역은 상기 무기 나노 입자의 광학적 특성과 유사한 경향을 나타낼 수 있다.
구체적으로, 각 영역에 주로 분포된 입자의 종류를 확인하는 방법의 예로는, 각 영역에 대한 광학적 특성 (예를 들어, 타원편광법)을 측정 및 비교하는 방법을 사용할 수 있다. 상술한 바와 같이, 각 영역에 주로 분포된 입자의 광학적 특성에 따라, 유사범위의 광학적 특성이 해당 영역에서 구현된다는 점에서, 각 영역의 광학적 특성 측정 및 비교를 통해 각 영역에 포함된 입자의 정보를 확인할 수 있다.
즉, 상기 일 구현예의 반사 방지 필름은 하드 코팅층 또는 방현층 상에
형성된 저굴절층 내에 3종꾀 입자가 분산되어, 각각의 입자별로 저굴절층 내에 주로 위치 또는 분포하는 특정의 영역을 형성할 수 있다. 이러한 영역은 단일의 저굴절층 내에서 3종의 입자간 자발적 분리에 의해 형성될 수 있다. 한편, 상기 저굴절층에 포함된 제 1영역, 게 2영역 및 게 3영역은 서로 상이한 굴절률을 가질 수 있다. 구체적으로, 상기 게 1영역, 제 2영역 및 거 13영역 각각의 굴절률은 하기 일반식 2를 만족할 수 있다.
[일반식 2]
제 1영역의 굴절률 (nl) < 제3영역의 굴절률 (n3) < 제 2영역의 굴절를 (n2) 보다 구체적으로는, 상기 제 1영역의 굴절률이 1.4 미만이고, 게 2영역의 굴절률이 1.55 초과이며, 제 3영역의 굴절률이 1.4 초과 내지 1.55 미만일 수 있다. 즉, 제 2영역, 게 3영역, 그리고 제 1영역의 순서대로 굴절률이 감소하게 되며, 제 3영역의 굴절률이 제 1영역의 굴절률보다 크고, 제 2영역의 굴절률보다 작은 특징을 가질 수 있다. 이와 같은 특징적인 굴절를 분포를 가짐에 따라, 기존에 비해 보다 낮은 반사율을 갖는 반사 방지 필름을 구현할 수 있다.
또한, 상기 저굴절층은 상기 제 3영역이 거ᅵ2영역에 비하여 상기 하드 코팅층 또는 방현층과 상기 저굴절층 간의 계면에 보다 가까이 위치하고, 상기 거 12영역이 게 1영역에 비하여 상기 하드 코팅층 또는 방현층과 상기 저굴절층 간의 계면에 보다 가까이 위치할 수 있다. 즉, 상기 저굴절층에 포함된 거 U영역, 게 2영역 및 제 3영역은 제 3영역, 게 2영역, 그리고 제 1영역의 순서로 하드 코팅층 또는 방현층과 상기 저굴절층 간의 계면에 더 가까이 위치할 수 있다. 보다 구체적으로, 상기 하드 코팅층 또는 방현층 상에 제 3영역, 게 3영역 상에 게 2영역, 제 2영역 상에 게 1영역이 위치할 수 있다.
이와 같은 저굴절층 내에 영역별 배치 순서는 각 영역에 주로 포함된 입자의 직경에 따른 것으로 보이며, 구체적으로, 각 영역에 주로 포함된 입자의 직경이 클수록 하드 코팅층 또는 방현층으로부터 멀리 위치하며, 각 영역에 주로 포함된 입자의 직경이 작을수록 하드 코팅층 또는 방현층으로부터 가까이 위치하게 된다 .
상기 저굴절층 내에 영역별 배치 순서를 확인할 수 있는 방법의 예가 크게 한정되는 것은 아니며, 상기 저굴절층에 대한 영역별 타원편광법 (el l ipsometry) 측정결과를 통해 얻어지는 영역별 굴절률과,
저굴절층에 포함된 3종의 입자 각각의 굴절를을 비교하는 방법을 사용할 수 있다. 후술하는 바와 같이, 상기 저굴절층 내에서 영역의 위치는 영역에 주로 함유된 입자의 평균 직경에 의해 결정될 수 있으며, 저굴절층에 분산된 3종의 입자의 평균 직경과 굴절률 정보를 통해 상기 영역별 배치 순서를 확인할 수 있다.
이에 따라, 상기 반사 방지 필름은 이전에 무기 입자를 사용하여 얻어질 수 있었던 반사율 보다 낮은 반사율을 구현할 수 있다. 구체적으로 상기 반사 반지 필름은 380nm 내지 780nm의 가시 광선 파장대 영역에서 0.3%이하, 또는 0. 1% 내지 0.3%, 또는 0.2% 내지 0.3%의 매우 낮은 수준의 초저반사율을나타낼 수 있다.
또한, 상기 저굴절층 중 상기 제 1영역, 게 2영역 및 제 3영역은 하나의 바인더 수지에 의하여 연속상으로 존재할 수 있다. 연속상으로 존재한다고 함은 바인더 수지가 계면 또는 층과 같은 분리상을 형성함이 없이 분포하고 있음을 의미하며, 보다 구체적으로는 상기 저굴절층이 바인더 수지, 중공형 실리카 나노 입자, 금속 산화물 나노 입자 및 무기 나노 입자를 포함한 수지 조성물에 의한 한번의 코팅을 통해 제조되었음을 의미할 수 있다.
반대로, 각층을 형성하기 위한 코팅용 조성물을 층의 개수만큼 준비하고, 순차적으로 코팅 및 건조함으로써 다층구조를 형성하는 기존의 방법에서는 하부층의 코팅 및 건조 이후, 하부층 상에 상부층을 코팅 및 건조하는 방법을 사용함에 따라, 하부층과 상부층 간에 계면이 형성되는 등 분리상을 이루게 되며, 상부층과 하부층에 포함된 바인더 수지는 연속상이 아닌 분리상을 이루게 된다.
상기 거 U영역, 제 2영역, 및 게 3영역의 두께는 각각 독립적으로 10 nm 내지 200 nm일 수 있다. 상기 두께를 측정하는 방법의 예가 크게 한정되는 것은 아니며, 예를 들어, 타원편광법 (e l l i psomet ry)에 의해 측정된 두께 데이터를 사용할 수 있다.
상기 무기 나노 입자는 솔리드형 실리카 나노 입자 또는 안티몬 도프 산화주석 나노 입자를 포함하며, 상기 솔리드형 실리카 나노 입자는 실리카 재료로 이루어지고, 그 내부에 빈 공간이 존재하지 않는 형태의 입자를 의미한다. 상기 무기 나노 입자의 굴절률은 1.45 내지 1.85 또는 1.45 내지
1 . 6일 수 있다.
또한, 상기 금속산화물 나노 입자는 3 내지 60ran의 평균 직경을 가지며, 금속의 산화물로 이루어진 입자를 의미한다. 상기 금속산화물의 예가 크게 한정되는 것은 아니며, 예를 들어, 티타늄 산화물 (이산화 티타늄 등), 주석 산화물 (이산화 주석 등), 아연 산화물 (산화아연 등) 등을 사용할 수 있다. 상기 금속 산화물 나노 입자의 굴절률은 1 .7 이상일 수 있다.
또한, 상기 중공형 실리카 나노 입자는 10 내지 200nm의 평균 직경을 가지며, 실라카 재료로 이루어지고, 그 표면 및 /또는 내부에 빈 공간이 존재하는 형태의 입자를 의미한다. 상기 중공형 실리카 나노 입자의 굴절률은 1 . 2 내지 1 .45일 수 있다.
상기 저굴절층은 전체 고형분 함량 대비 상기 중공형 실리카 나노 입자 15 내지 70 중량 상기 금속 산화물 나노 입자 10 내지 50 중량 % 및 상기 무기 나노 입자 3 내지 40중량 %를 포함할 수 있다. 상기 고형분은 상기 저굴절층 중 액상의 성분, 예들 들어 후술하는 바와 같이 선택적으로 포함될 수 있는 유기 용매 등의 성분을 제외한 고체의 성분만을 의미한다.
보다 구체적으로, 상기 중공형 실리카 나노 입자 100 중량부에 대하여 상기 금속 산화물 나노 입자는 20 중량부 내지 60 중량부, 상기 무기 나노 입자는 10 중량부 내지 40 중량부로 포함될 수 있다.
상기 저굴절층 중 상기 중공형 실리카 나노 입자, 금속 산화물 나노 입자 및 무기 나노 입자의 함량이 과다해지는 경우 상기 저굴절층 제조 과정에서 상기 중공형 실리카 나노 입자, 금속 산화물 나노 입자 및 무기 나노 입자 간의 상분리가 층분히 일어나지 않고 흔재되어 저굴절층 내에 굴절률이 다른 영역이 형성되지 않아 반사율이 높아질 수 있으며, 표면 요철이 과다하게 발생하여 방오성이 저하될 수 있다. 또한, 상기 저굴절층 중 상기 중공형 실리카 나노 입자, 금속 산화물 나노 입자 및 무기 나노 입자의 함량이 과소한 경우, 상기 하드 코팅층 또는 방현층과 상기 저굴절층 간의 계면으로부터 가까운 영역에서부터 상기 무기 나노 입자와 금속 산화물 나노 입자 중 다수가 위치하기 어려을 수 있으며, 상기 저굴절층의 반사율은 크게 높아질 수 있다. 한편, 상기 무기 나노 입자, 금속 산화물 나노 입자 및 상기 중공형 실리카 나노 입자 각각은 표면에 (메트)아크릴레이트기, 에폭사이드기,
비닐기 (Vinyl ) 및 싸이올기 (Thiol )로 이루어진 군에서 선택된 1종 이상의 반웅성 작용기를 함유할 수 있다. 상기 무기 나노 입자, 금속 산화물 나노 입자 및 상기 중공형 실리카 나노 입자 각각이 표면에 상술한 반응성 작용기를 함유함에 따라서, 상기 저굴절층은 보다 높은 가교도를 가질 수 있으며, 이에 따라 보다 향상된 내스크래치성 및 방오성을 확보할 수 있다.
보다 구체적으로, 상기 저굴절층에서 상기 중공형 실리카 나노 입자의 평균 직경 대비 상기 무기 나노 입자의 평균 직경의 비율이 0.01 내지 0.5일 수 있다. 이에 따라, 상기 저굴절층 내에서 상기 중공형 실리카 나노 입자 및 무기 나노 입자가 서로 다른 편재 및 분포 양상을 나타낼 수 있으며, 예를 들어 상기 중공형 실리카 나노 입자 및 무기 나노 입자 각각이 주로 분포하는 위치가 상기 하드 코팅층 또는 방현층과 상기 저굴절층 간의 계면을 기준으로 서로 다른 거리일 수 있다.
상기 중공형 실리카 나노 입자의 평균 직경 및 상기 무기 나노 입자의 평균 직경은 각각 상기 반사 방지 필름의 TEM사진 (예를 들어, 25 ,000배의 배율)에서 확인되는 중공형 실리카 나노 입자 및 무기 나노 입자의 직경을 측정하고 계산하여 얻어진 평균값일 수 있다.
이와 같이 상기 저굴절층에서 상기 증공형 실리카 나노 입자 및 무기 나노 입자가 주로 분포하는 영역이 달라짐에 따라서, 상기 저굴절층이 고유한 내부 구조 및 성분들의 배열 양상을 가지게 되어 보다 낮은 반사율을 가질 수 있다. 또한, 상기 저굴절층에서 상기 중공형 실리카 나노 입자 및 무기 나노 입자가 주로 분포하는 영역이 달라짐에 따라서, 상기 저굴절층의 표면 특성 또한 함께 달라지게 되어 보다 향상된 내스크래치성과 방오성을 구현할 수 있다.
이에 반하여, 상기 저굴절층에 포함되는 중공형 실리카 나노 입자의 직경과 무기 나노 입자의 직경 간의 차이가 그리 크지 않은 경우, 상기 중공형 실리카 나노 입자 및 무기 나노 입자가 서로 뭉치거나 입자 종류에 따른 편재나 분포가 일어나지 않아서, 상기 반사 방지 필름의 반사율을 크게 낮추기 어려울 뿐만 아니라, 요구되는 내스크래치성과 방오성을 달성하기 어려을 수 있다.
이와 같이, 상기 구현예의 반사 방지 필름이 갖는 고유의 효과, 예를
들어 낮은 반사율 및 높은 투광율을 가지면서 높은 내스크래치성 및 방오성을 동시에 구현할 수 있고 디스플레이 장치의 화면의 선명도를 높일 수 있는 특성은 상술한 중공형 실리카 나노 입자 및 무기 나노 입자 간의 평균 직경 비율에 따른 것이다.
상술한 중공형 실리카 나노 입자의 평균 직경 대비 무기 나노 입자의 평균 직경의 비율이 상술한 조건을 만족함에 따라, 상기 반사 방지 필름이 보다 낮은 반사율 및 높은 투광율을 가지면서 높은 내스크래치성 및 방오성을 동시에 구현할 수 있는데, 이와 같은 반사 방지 필름의 특성을 보다 용이하게 조절하고 적용 분야에서 요구되는 특성을 맞추기 위해서 소정의 평균 직경을 갖는 중공형 실리카 나노 입자 및 무기 나노 입자를 사용할 수 있다.
예를 들어, 상기 반사 방지 필름이 보다 낮은 반사율 및 높은 투광율을 가지면서 보다 향상되고 높은 내스크래치성 및 방오성을 구현하기 위해서, 상기 중공형 실리카 나노 입자의 평균 직경이 20 nm 내지 100 nm의 범위 이내일 수 있으며, 또한 상기 무기 나노 입자의 평균 직경이 1 ran 내지 30 ran의 범위 이내일 수 있다.
또한, 상기 금속 산화물 나노 입자의 평균직경에 대한 무기 나노 입자의 평균직경 비율이 0.5 내지 0.9일 수 있다. 이에 따라, 상기 저굴절층에서 상기 금속 산화물 나노 입자 및 무기 나노 입자가 주로 분포하는 영역이 달라짐에 따라서, 상기 저굴절층이 고유한 내부 구조 및 성분들의 배열 양상을 가지게 되어 보다 낮은 반사율을 가질 수'있다.
구체적으로, 상기 금속 산화물 나노 입자의 평균직경에 대한 무기 나노 입자의 평균직경 비율이 상술한 범위를 만족함에 따라, 저굴절층 내에서 상기 금속 산화물 나노 입자는 무기 나노 입자 보다 상기 하드 코팅층 또는 방현층과 상기 저굴절층 간의 계면으로부터 먼곳에 분산될 수 있다.
보다 구체적으로, 상기 금속 산화물 나노 입자의 평균 직경은 상기 무기 나노 입자의 평균 직경보다 크고, 상기 중공형 실리카 나노 입자의 평균 직경보다 작을 수 있다. 즉, 상기 중공형 실리카 나노 입자, 금속 산화물 나노 입자 및 무기 나노 입자의 평균 직경이 하기 일반식 3을 만족할 수 있다.
[일반식 3]
무기 나노 입자의 평균직경 < 금속 산화물 나노 입자의 평균직경 <
중공형 실리카 나노 입자의 평균직경
보다 구체적으로, 상기 금속 산화물 나노 입자가 상기 금속 나노 입자에 비하여 1 ηπι 이상, 또는 5nm 내지 20nm만큼 긴 직경을 가질 수 있으며, 이러한 직경 차이로 인하여 상기 하드 코팅층 또는 방현충 상에 형성되는 저굴절층에서 상기 무기 나노 입자가 금속 산화물 나노 입자에 비해 하드 코팅층 또는 방현층 쪽에 보다 가까운 쪽에 주로 분산될 수 있다. 이에 따라, 상기 저굴절층이 초저반사율을 구현함과 동시에 내스크래치 등의 기계적 특성이 향상될 수 있다.
또한, 상기 중공형 실리카 나노 입자가 상기 금속 산화물 나노 입자에 비하여 15 ran 이상, 또는 15腿 내지 60nm만큼 또는 30nm 내지 55nm 만큼 긴 직경을 가질 수 있으며, 이러한 직경 차이로 인하여 상기 하드 코팅층 또는 방현층 상에 형성되는 저굴절층에서 상기 금속 산화물 나노 입자가 중공형 실리카 나노 입자에 비해 하드 코팅층 또는 방현층 쪽에 보다 가까운 쪽에 분산될 수 있다. 이에 따라, 상기 저굴절층의 표면에서 향상된 내스크래치성과 방오성을 구현할 수 있다.
한편, 상술한 저굴절층은 광중합성 화합물, 광반웅성 작용기를 포함한 함불소 화합물, 중공형 실리카 나노 입자, 금속 산화물 나노 입자, 무기 나노 입자 및 광개시제를 포함한 광경화성 코팅 조성물로부터 제조될 수 있다.
이에 따라, 상기 저굴절층에 포함되는 바인더 수지는 광중합성 화합물의 (공)중합체 및 광반웅성 작용기를 포함한 함불소 화합물 간의 가교
(공)중합체를 포함할 수 있다.
상기 구현예의 광경화성 코팅 조성물에 포함되는 광중합성 화합물은 제조되는 저굴절층의 바인더 수지의 기재를 형성할 수 있다. 구체적으로, 상기 광중합성 화합물은 (메트)아크릴레이트 또는 비닐기를 포함하는 단량체 또는 올리고머를 포함할 수 있다. 보다 구체적으로, 상기 광중합성 화합물은
(메트)아크릴레이트 또는 비닐기를 1이상, 또는 2이상, 또는 3이상 포함하는 단량체 또는 을리고머를 포함할 수 있다.
상기 (메트)아크릴레이트를 포함한 단량체 또는 올리고머의 구체적인 예로는, 펜타에리스리를 트리 (메트)아크릴레이트 , 펜타에리스리를 테트라 (메트)아크릴레이트, 디펜타에리스리를 펜타 (메트)아크릴레이트,
디펜타에리스리를 핵사 (메트)아크릴레이트, 트리펜타에리스리를 헵타 (메트)아크릴레이트, 트릴렌 디이소시아네이트, 자일렌.디이소시아네이트, 핵사메틸렌 디이소시아네이트, 트리메틸올프로판 트리 (메트)아크릴레이트, 트리메틸올프로판 폴리에톡시 트리 (메트)아크릴레이트, 트리메틸를프로판트리메타크릴레이트, 에틸렌글리콜 디메타크릴레이트, 부탄디올 디메타크릴레이트, 핵사에틸 메타크릴레이트, 부틸 메타크릴레이트 또는 이들의 2종 이상의 흔합물이나, 또는 우레탄 변성 아크릴레이트 올리고머, 에폭사이드 아크릴레이트 올리고머, 에테르아크릴레이트 올리고머, 덴드리틱 아크릴레이트 올리고머, 또는 이들의 2종 이상의 흔합물을 들 수 있다. 이때 상기 을리고머의 분자량 (GPC법에 의해 측정한 폴리스티렌 환산의 중량 평균 분자량)은 1 ,000 내지 10 , 000인 것이 바람직하다.
상기 비닐기를 포함하는 단량체 또는 올리고머의 구체적인 예로는, 디비닐벤젠, 스티렌 또는 파라메틸스티렌을 들 수 있다.
상기 광경화성 코팅 조성물 중 상기 광중합성 화합물의 함량이 크게 한정되는 것은 아니나, 최종 제조되는 저굴절층이나 반사 방지 필름의 기계적 물성 둥을 고려하여 상기 광경화성 코팅 조성물의 고형분 중 상기 광중합성 화합물의 함량은 5중량 ¾> 내지 60중량 %일 수 있다. 상기 광경화성 코팅 조성물의 고형분은 상기 광경화성 코팅 조성물 중 액상의 성분, 예들 들어 후술하는 바와 같이 선택적으로 포함될 수 있는 유기 용매 등의 성분을 제외한 고체의 성분만을 의미한다.
한편, 상기 광중합성 화합물은 상술한 단량체 또는 올리고머 이외로 불소계 (메트)아크릴레이트계 단량체 또는 을리고머를 더 포함할 수 있다. 상기 불소계 (메트)아크릴레이트계 단량체 또는 을리고머를 더 포함하는 경우, 상기 (메트)아크릴레이트 또는 비닐기를 포함하는 단량체 또는 올리고머에 대한 상기 불소계 (메트)아크릴레이트계 단량체 또는 을리고머의 중량비는 0.1% 내지 10%일 수 있다.
상기 불소계 (메트)아크릴레이트계 단량체 또는 올리고머의 구체적인 예로는 하기 화학식 11 내지 15로 이루어진 군에서 선택되는 1종 이상의 화합물을 들 수 있다.
상기 화학식 11에서, R1은 수소기 또는 탄소수 1 내지 6의 알킬기이고, 지 7의 정수이며, b는 1 내지 3의 정수이다.
[화학식 12]
[화학식 13]
[화학식 14]
[화학식 15]
상기 화학식 15에서, f는 4 내지 10의 정수이다.
한편, 상기 저굴절층에는 상기 광반웅성 작용기를 포함한 함불소 화합물로부터 유래한 부분이 포함될 수 있다.
상기 광반웅성 작용기를 포함한 함불소 화합물에는 1이상의 광반웅성 작용기가 포함 또는 치환될 수 있으며, 상기 광반웅성 작용기는 빛의 조사에 의하여, 예를 들어 가시 광선 또는 자외선의 조사에 의하여 중합 반웅에 참여할 수 있는 작용기를 의미한다 . 상기 광반웅성 작용기는 빛의 조사에 의하여 중합 반웅에 참여할 수 있는 것으로 알려진 다양한 작용기를 포함할 수 있으몌 이의 구체적인 예로는 (메트)아크릴레이트기, 에폭사이드기, 비닐기 (Vinyl ) 또는 싸이올기 (Thiol )를 들 수 있다.
상기 광반웅성 작용기를 포함한 함블소 화합물 각각은 2 , 000 내지 200 , 000 g/mol , 바람직하게는 5 , 000 내지 100 , 000의 중량평균분자량 (GPC법에 의해 측정한 폴리스티렌 환산의 중량 평균 분자량)을 가질 수 있다.
상기 광반웅성 작용기를 포함한 함불소 화합물의 중량평균분자량이 너무 작으면, 상기 광경화성 코팅 조성물에서 함불소 화합물들이 표면에 균일하고 효과적으로 배열하지 못하고 최종 제조되는 저굴절층의 내부에 위치하게 되는데, 이에 따라 상기 저굴절층의 표면이 갖는 방오성이 저하되고 상기 저굴절층의 가교 밀도가 낮아져서 전체적인 강도나 내크스래치성 등의 기계적 물성이 저하될 수 있다.
또한, 상기 광반웅성 작용기를 포함한 함불소 화합물의 중량평균분자량이 너무 높으면, 상기 광경화성 코팅 조성물에서 다른 성분들과의 상용성이 낮아질 수 있고, 이에 따라 최종 제조되는 저굴절층의
헤이즈가 높아지거나 광투과도가 낮아질 수 있으며, 상기 저굴절층의 강도 또한 저하될 수 있다.
구체적으로 , 상기 광반웅성 작용기를 포함한 함불소 화합물은 i ) 하나 이상의 광반웅성 작용기가 치환되고, 적어도 하나의 탄소에 1이상의 불소가 치환된 지방족 화합물 또는 지방족 고리 화합물; i i ) 1 이상의 광반웅성 작용기로 치환되고, 적어도 하나의 수소가 불소로 치환되고, 하나 이상의 탄소가 규소로 치환된 헤테로 (hetero) 지방족 화합물 또는 헤테로 (hetero)지방족 고리 화합물; i i i ) 하나 이상의 광반웅성 작용기가 치환되고, 적어도 하나의 실리콘에 1이상의 불소가 치환된 폴리디알킬실록산계 고분자 (예를 들어, 폴리디메틸실록산계 고분자) ; iv) 1 이상의 광반응성 작용기로 치환되고 적어도 하나의 수소가 불소로 치환된 폴리에테르 화합물, 또는 상기 0 내지 iv) 중 2이상의 흔합물 또는 이들의 공중합체를 들 수 있다. 상기 광경화성 코팅 조성물은 상기 광중합성 화합물 100중량부에 대하여 상기 광반웅성 작용기를 포함한 함불소 화합물 20 내지 300중량부를 포함할 수 있다. 최종 제조되는 저굴절층이나 반사 방지 필름의 기계적 물성 등을 고려하여 상기 광경화성 코팅 조성물의 고형분 중 상기 광반응성 작용기를 포함한 함불소 화합물의 함량은 1중량 % 내지 30중량%일 수 있다.
상기 광중합성 화합물 대비 상기 광반웅성 작용기를 포함한 함불소 화합물이 과량으로 첨가되는 경우 상기 구현예의 광경화성 코팅 조성물의 코팅성이 저하되거나 상기 광경화성 코팅 조성물로부터 얻어진 저굴절층이 충분한 내구성이나 내스크래치성을 갖지 못할 수 있다. 또한, 상기 광중합성 화합물 대비 상기 광반응성 작용기를 포함한 함불소 화합물의 양이 너무 작으면, 상기 광경화성 코팅 조성물로부터 얻어진 저굴절층이 층분한 방오성이나 내스크래치성 둥의 기계적 물성을 갖지 못할 수 있다.
상기 광반웅성 작용기를 포함한 함불소 화합물은 규소 또는 규소 화합물을 더 포함할 수 있다. 즉, 상기 광반웅성 작용기를 포함한 함불소 화합물은 선택적으로 내부에 규소 또는 규소 화합물을 함유할 수 있고, 구체적으로 상기 광반웅성 작용기를 포함한 함불소 화합물 중 규소의 함량은 0. 1 중량 % 내지 2Q중량 %일 수 있다.
상기 광반웅성 작용기를 포함한 함불소 화합물에 포함되는 규소는 상기
구현예의 광경화성 코팅 조성물에 포함되는 다른 성분과의 상용성을 높일 수 있으며 이에 따라 최종 제조되는 굴절층에 헤이즈 (haze )가 발생하는 것을 방지하여 투명도를 높이는 역할을 할 수 있다. 한편, 상기 광반웅성 작용기를 포함한 함불소 화합물 중 규소의 함량이 너무 커지면, 상기 광경화성 코팅 조성물에 포함된 다른 성분과 상기 함불소 화합물 간의 상용성이 오히려 저하될 수 있으며, 이에 따라 최종 제조되는 저굴절층이나 반사 방지 필름이 충분한 투광도나 반사 방지 성능을 갖지 못하여 표면의 방오성 또한 저하될 수 있다.
상기 저굴절층은 lnm 내지 300 ran , 또는 50nm 내지 200 nm의 두께를 가질 수 있다.
한편, 상기 하드 코팅층 또는 방현층으로는 통상적으로 알려진 하드 코팅층 또는 방현층을 큰 제한 없이 사용할 수 있다.
상기 하드 코팅 필름의 일 예로서, 광경화성 수지의 바인더 수지; 및 상기 바인더 수지에 분산된 대전 방지제를 포함하는 하드 코팅 필름 또는 방현층을 들 수 있다.
상기 하드코팅층 또는 방현층에 포함되는 광경화형 수지는 자외선 등의 광이 조사되면 중합 반웅을 일으킬 수 있는 광경화형 화합물의 중합체로서, 당업계에서 통상적인 것일 수 있다. 다만, 바람직하게는, 상기 광경화형 화합물은 다관능성 (메트)아크릴레이트계 단량체 또는 올리고머일 수 있고, 이때 (메트)아크릴레이트계 관능기의 수는 2 내지 10, 또는 2 내지 8, 또는 2 내지 7인 것이, 하드코팅층의 물성 확보 측면에서 유리하다. 또는, 상기 광경화형 화합물은 펜타에리스리를 트리 (메트)아크릴레이트, 펜타에리스리를 테트라 (메트)아크릴레이트, 디펜타에리스리를 펜타 (메트)아크릴레이트, 디펜타에리스리를 핵시^메트)아크릴레이트, 디펜타에리스리를 헵타 (메트)아크릴레이트, 트리펜타에리스리를 헵타 (메트)아크릴레이트, 트릴렌 디이소시아네이트, 자일렌 디이소시아네이트, 핵사메틸렌 디이소시아네이트, 트리메틸올프로판 트리 (메트)아크릴레이트, 및 트리메틸을프로판 폴리에록시 트리 (메트)아크릴레이트로 이루어진 군에서 선택되는 1종 이상일 수 있다. 상기 대전 방지제는 4급 암모늄염 화합물; 피리디늄염; 1 내지 3개의 아미노기를 갖는 양이온성 화합물; 설폰산 염기, 황산 에스테르 염기, 인산
에스테르 염기, 포스폰산 염기 등의 음이온성 화합물; 아미노산계 또는 아미노 황산 에스테르계 화합물 등의 양성 화합물; 이미노 알코올계 화합물, 글리세린계 화합물, 폴리에틸렌 글리콜계 화합물 등의 비이온성 화합물 ; 주석 또는 티타늄 등을 포함한 금속 산화물 알콕사이드 화합물 등의 유기 금속 산화물 화합물; 상기 유기 금속 산화물 화합물의 아세틸아세토네이트 염 등의 금속 산화물 킬레이트 화합물; 이러한 화합물들의 2종 이상의 반웅물 또는 고분자화물; 이러한 화합물들의 2종 이상의 흔합물일 수 있다. 여기서, 상기 4급 암모늄염 화합물은 분자 내에 1개 이상의 4급 암모늄염기를 가지는 화합물일 수 있으며, 저분자형 또는 고분자형을 제한 없이 사용할 수 있다. 또한, 상기 대전 방지제로는 도전성 고분자와 금속 산화물 산화물 미립자도 사용할 수 있다. 상기 도전성 고분자로는 방향족 공액계 폴리 (파라페닐렌) , 헤테로고리식 공액계의 폴리피를, 폴리티오펜, 지방족 공액계의 폴리아세틸렌, 헤테로 원자를 함유한 공액예의 폴리아닐린, 흔합 형태 공액계의 폴리 (페닐렌 비닐렌), 분자중에 복수의 공액 사슬을 갖는 공액계인 복쇄형 공액계 화합물, 공액 고분자 사슬을 포화 고분자에 그래프트 또는 블록 공중합시킨 도전성 복합체 등이 있다. 또한, 상기 금속 산화물 산화물 미립자로는 산화 아연, 산화 안티몬, 산화 주석, 산화 세륨, 인듐 주석 산화물, 산화 인듐, 산화 알루니뮴, 안티몬 도핑된 산화 주석, 알루미늄 도핑된 산화 아연 등을 들 수 있다.
상기 광경화성 수지의 바인더 수지; 및 상기 바인더 수지에 분산된 대전 방지제를 포함하는 하드 코팅 필름 또는 방현층은 알콕시 실란계 올리고머 및 금속 산화물 알콕사이드계 을리고머로 이루어진 군에서 선택되는
1종 이상의 화합물을 더 포함할 수 있다.
상기 알콕시 실란계 화합물은 당업계에서 통상적인 것일 수 있으나, 바람직하게는 테트라메특시실란, 테트라에록시실란, 테트라이소프로폭시실란, 메틸트리메특시실란, 메틸트리에특시실란, 메타크릴록시프로필트리메특시실란, 글리시독시프로필 트리메톡시실란, 및 글리시독시프로필 트리에록시실란으로 이루어진 군에서 선택되는 1종 이상의 화합물일 수 있다.
또한, 상기 금속 산화물 알콕사이드계 올리고머는 금속 산화물 알콕사이드계 화합물 및 물을 포함하는 조성물의 졸-겔 반웅을 통해 제조할 수
있다. 상기 졸-겔 반웅은 전술한 알콕시 실란계 올리고머의 제조 방법에 준하는 방법으로 수행할 수 있다.
다만, 상기 금속 산화물 알콕사이드계 화합물은 물과 급격하게 반웅할 수 있으므로, 상기 금속 산화물 알콕사이드계 화합물을 유기용매에 희석한 후 물을 천천히 드로핑하는 방법으로 상기 졸-겔 반웅을 수행할 수 있다. 이때, 반웅 효율 등을 감안하여, 물에 대한 금속 산화물 알콕사이드 화합물의 몰비 (금속 산화물이온 기준)는 3 내지 170인 범위 내에서 조절하는 것이 바람직하다.
여기서, 상기 금속 산화물 알콕사이드계 화합물은 티타늄 테트라- 이소프로폭사이드, 지르코늄 이소프로폭사이드, 및 알루미늄 이소프로폭사이드로 이루어진 군에서 선택되는 1종 이상의 화합물일 수 있다. 상기 하드 코팅층 또는 방현층은 0. 1 내지 100卿의 두께를 가질 수 있다.
상기 하드 코팅층 또는 방현층의 다른 일면에 결합된 기재를 더 포함할 수 있다. 상기 기재의 구체적인 종류나 두께는 크게 한정되는 것은 아니며, 저굴절층 또는 반사 방지 필름의 제조에 사용되는 것으로 알려진 기재를 큰 제한 없이 사용할 수 있다. 한편, 상기 일 구현예의 반사 방지 필름은, 광경화형 화합물 또는 이의 (공)중합체, 광반웅성 작용기를 포함한 함불소 화합물, 광개시제, 중공형 실리카 나노 입자, 금속 산화물 나노 입자 및 무기 나노 입자를 포함한 저굴절층 형성용 수지 조성물을 하드 코팅층 또는 방현층 상에 도포하고 35 내지 100 °C의 온도에서 건조하는 단계; 및 상기 수지 조성물의 건조물을 광경화하는 단계;를 포함하는 반사 방지 필름의 제조 방법을 통하여 제공될 수 있다.
구체적으로, 상기 반사 방지 필름의 제조 방법에 의하여 제공되는 반사 방지 필름은 저굴절층 내에서 중공형 실리카 나노 입자, 금속 산화물 나노 입자 및 무기 나노 입자가 서로 구분될 수 있도록 분포시키고 이에 따라 낮은 반사율 및 높은 투광율을 가지면서 높은 내스크래치성 및 방오성을 동시에 구현할 수 있다.
상기 저굴절충은 광경화형 화합물 또는 이의 (공)중합체, 광반웅성 작용기를 포함한 함불소 화합물, 광개시제, 중공형 실리카 나노 입자, 금속 산화물 나노 입자 및 무기 나노 입자를 포함한 저굴절층 형성용 수지 조성물을 하드 코팅층 상에 도포하고 35 °C 내지 100 °C , 또는 50 °C 내지 95 °C, 또는 60 °C 내지 90 °C의 온도에서 건조함으로서 형성될 수 있다.
상기 하드 코팅층 또는 방현층 상에 도포된 저굴절층 형성용 수지 조성물을 건조하는 온도가 35 °C 미만이면, 상기 형성되는 저굴절층이 갖는 방오성이 크게 저하될 수 있다. 또한, 상기 하드 코팅층 또는 방현층 상에 도포된 저굴절층 형성용 수지 조성물을 건조하는 온도가 100 °C 초과이면, 상기 저굴절층 제조 과정에서 상기 중공형 실리카 나노 입자, 금속 산화물 나노 입자 및 무기 나노 입자 간의 상분리가 층분히 일어나지 않고 흔재되어 상기 저굴절층의 내스크래치성 및 방오성이 저하될 뿐만 아니라 반사율도 크게 높아질 수 있다.
상기 하드 코팅층 또는 방현층 상에 도포된 저굴절층 형성용 수지 조성물을 건조하는 과정에서 상기 건조 온도와 함께 상기 무기 나노 입자, 금속 산화물 나노 입자 및 중공형 실리카 나노 입자 간의 직경 차이를 조절함으로서 상술한 특징적인 영역으로 상분리 되는 특성을 갖는 저굴절층을 형성할 수 있다.
구체적으로, 상기 중공형 실리카 나노 입자의 평균 직경 대비 상기 무기 나노 입자의 평균 직경의 비율이 0.01 내지 0. 5 임에 따라서, 상기 저굴절층 내에서 상기 중공형 실리카 나노 입자 및 무기 나노 입자가 서로 다른 편재 및 분포 양상을 나타낼 수 있으며, 예를 들어 상기 중공형 실리카 나노 입자 및 무기 나노 입자 각각이 주로 분포하는 위치가 상기 하드 코팅층 또는 방현층과 상기 저굴절층 간의 계면을 기준으로 서로 다른 거리일 수 있다. 상기 중공형 실리카 나노 입자의 평균 직경 및 상기 무기 나노 입자의 평균 직경은 각각 상기 반사 방지 필름의 TEM사진 (예를 들어, 25, 000배의 배율)에서 확인되는 중공형 실리카 나노 입자 및 무기 나노 입자의 직경을 측정하고 계산하여 얻어진 평균값일 수 있다.
이와 같이 상기 중공형 실리카 나노 입자 및 무기 나노 입자가 주로 분포하는 영역이 달라짐에 따라서, 상기 저굴절층이 고유한 내부 구조 및
성분들의 배열 양상을 가지게 되어 보다 낮은 반사율을 가질 수 있다 . 또한, 상기 중공형 실리카 나노 입자 및 무기 나노 입자가 주로 분포하는 영역이 달라짐에 따라서, 상기 저굴절층의 표면 특성 또한 함께 달라지게 되어 보다 향상된 내스크래치성과 방오성을 구현할 수 있다.
이에 반하여, 상기 중공형 실리카 나노 입자의 직경과 무기 나노 입자의 직경 간의 차이가 그리 크지 않은 경우, 상기 중공형 실리카 나노 입자 및 무기 나노 입자가 서로 뭉치거나 입자 종류에 따른 편재나 분포가 일어나지 않아서, 상기 반사 방지 필름의 반사율을 크게 낮추기 어려울 뿐만 아니라, 요구되는 내스크래치성과 방오성을 달성하기 어려을 수 있다.
이와 같이, 상기 구현예의 반사 방지 필름이 갖는 고유의 효과, 예를 들어 낮은 반사율 및 높은 투광율을 가지면서 높은 내스크래치성 및 방오성을 동시에 구현할 수 있고 디스플레이 장치의 화면의 선명도를 높일 수 있는 특성은 상술한 중공형 실리카 나노 입자 및 무기 나노 입자 간의 평균 직경 비율에 따른 것이다.
상술한 중공형 실리카 나노 입자의 평균 직경 대비 무기 나노 입자의 평균 직경의 비율이 상술한 조건을 만족함에 따라, 상기 반사 방지 필름이 보다 낮은 반사율 및 높은 투광율을 가지면서 높은 내스크래치성 및 방오성을 동시에 구현할 수 있는데, 이와 같은 반사 방지 필름의 특성을 보다 용이하게 조절하고 적용 분야에서 요구되는 특성을 맞추기 위해서 소정의 평균 직경을 갖는 중공형 실리카 나노 입자 및 무기 나노 입자를 사용할 수 있다.
예를 들어 , 상기 반사 방지 필름이 보다 낮은 반사율 및 높은 투광율을 가지면서 보다 향상되고 높은 내스크래치성 및 방오성을 구현하기 위해서, 상기 중공형 실리카 나노 입자의 평균 직경이 20 nm 내지 100 ran의 범위 이내일 수 있으며, 또한 상기 무기 나노 입자의 평균 직경이 1 ran 내지 30 nm의 범위 이내일 수 있다.
또한, 상기 금속 산화물 나노 입자의 평균직경에 대한 무기 나노 입자의 평균직경 비율이 0.5 내지 0.9일 수 있다. 이에 따라, 상기 저굴절층에서 상기 금속 산화물 나노 입자 및 무기 나노 입자가 주로 분포하는 영역이 달라짐에 따라서, 상기 저굴절층이 고유한 내부 구조 및 성분들의 배열 양상을 가지게 되어 보다 낮은 반사율을 가질 수 있다.
구체적으로, 상기 금속 산화물 나노 입자의 평균직경에 대한 무기 나노 입자의 평균직경 비율이 상술한 범위를 만족함에 따라, 저굴절층 내에서 상기 금속 산화물 나노 입자는 무기 나노 입자 보다 상기 하드 코팅층 또는 방현층과 상기 저굴절층 간의 계면으로부터 먼곳에 분산될 수 있다.
보다 구체적으로, 상기 금속 산화물 나노 입자의 평균 직경은 상기 무기 나노 입자의 평균 직경보다 크고, 상기 중공형 실리카 나노 입자의 평균 직경보다 작을 수 있다. 즉, 상기 중공형 실리카 나노 입자, 금속 산화물 나노 입자 및 무기 나노 입자의 평균 직경이 하기 일반식 3를 만족할 수 있다.
[일반식 3]
무기 나노 입자의 평균직경 < 금속 산화물 나노 입자의 평균직경 < 중공형 실리카 나노 입자의 평균직경
보다 구체적으로, 상기 금속 산화물 나노 입자가 상기 금속 나노 입자에 비하여 1 nm 이상, 또는 5nm 내지 20nm만큼.긴 직경을 가질 수 있으며, 이러한 직경 차이로 인하여 상기 하드 코팅층 또는 방현층 상에 형성되는 저굴절층에서 상기 무기 나노 입자가 금속 산화물 나노 입자에 비해 하드 코팅층 또는 방현층 쪽에 보다 가까운 쪽에 주로 분산될 수 있다. 이에 따라, 상기 저굴절층이 초저반사율을 구현함과 동시에 내스크래치 등의 기계적 특성이 향상될 수 있다.
또한, 상기 중공형 실리카 나노 입자가 상기 금속 산화물 나노 입자에 비하여 15 ran '이상, 또는 15nm 내지 60nm만큼, 또는 30nm 내지 55nm 만큼 긴 직경을 가질 수 있으며, 이러한 직경 차이로 인하여 상기 하드 코팅층 또는 방현층 상에 형성되는 저굴절층에서 상기 금속 산화물 나노 입자가 중공형 실리카 나노 입자에 비해 하드 코팅층 또는 방현층 쪽에 보다 가까운 쪽에 분산될 수 있다. 이에 따라, 상기 저굴절층의 표면에서 향상된 내스크래치성과 방오성을 구현할 수 있다.
한편, 상기 하드 코팅층 상에 도포된 저굴절층 형성용 수지 조성물을 35 °C 내지 100 °C 의 온도에서 건조하는 단계는 10초 내지 5분간, 또는 30초 내지 4분간 수행될 수 있다.
상기 건조 시간이 너무 짧은 경우, 상술한 상기 무기 나노 입자, 금속 산화물 나노 입자 및 중공형 실리카 나노 입자 간의 상분리 현상이 층분히
일어나지 않을 수 있다. 이에 반하여, 상기 건조 시간이 너무 긴 경우, 상기 형성되는 저굴절층이 하드 코팅층 또는 방현층을 침식할 수 있다.
한편, 상기 저굴절층은 광경화형 화합물 또는 이의 (공)중합체, 광반웅성 작용기를 포함한 함불소 화합물, 중공형 실리카 나노 입자, 금속 산화물 나노 입자 무기 나노 입자 및 광개시제를 포함한 광경화성 코팅 조성물로부터 제조될 수 있다.
상기 저굴절층은 상기 광경화성 코팅 조성물을 소정의 기재 상에 도포하고 도포된 결과물을 광경화함으로써 얻어질 수 있다. 상기 기재의 구체적인 종류나 두께는 크게 한정되는 것은 아니며, 저굴절층 또는 반사 방지 필름의 제조에 사용되는 것으로 알려진 기재를 큰 제한 없이 사용할 수 있다. 상기 광경화성 코팅 조성물을 도포하는데 통상적으로 사용되는 방법 및 장치를 별 다른 제한 없이 사용할 수 있으며, 예를 들어, Meyer bar 등의 바 코팅법, 그라비아 코팅법, 2 rol l reverse 코팅법, vacuum s lot die 코팅법, 2 rol l 코팅법 등을 사용할 수 있다.
상기 저굴절층은 lnm 내지 300 nm , 또는 50nm 내지 200 nm의 두께를 가질 수 있다. 이에 따라, 상기 소정의 기재 상에 도포되는 상기 광경화성 코팅 조성물의 두께는 약 Iran 내지 300 nm , 또는 50nm 내지 200 nm일 수 있다. 상기 광경화성 코팅 조성물을 광경화 시키는 단계에서는 200nm 내지 400皿파장의 자외선 또는 가시 광선을 조사할 수 있고, 조사시 노광량은 100 mJ/cirf 내지 4 , 000 mJ/cin2 이 바람직하다. 노광 시간도 특별히 한정되는 것이 아니고, 사용 되는 노광 장치, 조사 광선의 파장 또는 노광량에 따라 적절히 변화시킬 수 있다.
또한, 상기 광경화성 코팅 조성물을 광경화 시키는 단계에서는 질소 대기 조건을 적용하기 위하여 질소 퍼징 등을 할 수 있다.
상기 광경화형 화합물, 중공형 실리카 나노 입자, 금속 산화물 나노 입자, 무기 나노 입자 및 광반응성 작용기를 포함한 함불소 화합물에 관한 구체적인 내용은 상기 일 구현예의 반사 방지 필름에 관하여 상술한 내용을 포함할 수 있다.
상기 중공형 실리카 나노 입자, 금속 산화물 나노 입자 및 무기 나노 입자 각각은 소정의 분산매에 분산된 콜로이드상으로 조성물에 포함될 수 있다.
상기 중공형 실리카 나노 입자, 금속 산화물 나노 입자 및 무기 나노 입자를 포함하는 각각의 콜로이드상은 분산매로 유기 용매를 포함할 수 있다.
상기 광경화성 코팅 조성물 중 상기 중공형 실리카 나노 입자, 금속 산화물 나노 입자 및 무기 나노 입자 각각의 함량 범위나 상기 광경화성 코팅 조성물의 점도 등을 고려하여 상기 중공형 실리카 나노 입자, 금속 산화물 나노 입자 및 무기 나노 입자 각각의 콜로이드 상 중 함량이 결정될 수 있으며, 예를 들어 상기 콜로이드상 중 상기 중공형 실리카 나노 입자 15 중량 % 내지 70 중량 %, 상기 금속 산화물 나노 입자 5 중량 % 내지 60 중량 % 및 상기 무기 나노 입자 3 중량 % 내지 40중량%일 수 있다. 보다 구체적으로, 상기 중공형 실리카 나노 입자 100 중량부에 대하여 상기 금속 산화물 나노 입자는 20 중량부 내지 60 중량부, 상기 무기 나노 입자는 10 중량부 내지 40 중량부로 포함될 수 있다.
여기서, 상기 분산매 중 유기 용매로는 메탄을, 이소프로필알코올, 에틸렌글리콜, 부탄올 등의 알코을류; 메틸에틸케톤, 메틸이소부틸케톤 등의 케톤류; 를루엔, 자일렌 등의 방향족 탄화수소류; 디메틸포름아미드. 디메틸아세트아미드, N-메틸피를리돈 등의 아미드류; 초산에틸, 초산부틸, 감마부틸로락톤 등의 에스테르류; 테트라하이드로퓨란, 1,4-디옥산 등의 에테르류; 또는 이들의 흔합물이 포함될 수 있다.
상기 광중합 개시제로는 광경화성 수지 조성물에 사용될 수 있는 것으로 알려진 화합물이면 크게 제한 없이 사용 가능하며, 구체적으로 벤조 페논계 화합물, 아세토페논계 화합물, 비이미다졸계 화합물, 트리아진계 화합물, 옥심계 화합물 또는 이들의 2종 이상의 흔합물을 사용할 수 있다.
상기 광중합성 화합물 100중량부에 대하여, 상기 광중합 개시제는 1 중량부 내지 100중량부의 함량으로 사용될 수 있다. 상기 광중합 개시제의 양이 너무 작으면, 상기 광경화성 코팅 조성물의 광경화 단계에서 미경화되어 잔류하는 물질이 발행할 수 있다. 상기 광중합 개시제의 양이 너무 많으면, 미반웅 개시제가 불순물로 잔류하거나 가교 밀도가 낮아져서 제조되는 필름의 기계적 물성이 저하되거나 반사율이 크게 높아질 수 있다.
한편, 상기 광경화성 코팅 조성물은 유기 용매를 더 포함할 수 있다. 상기 유기 용매의 비제한적인 예를 들면 케톤류, 알코올류,
아세테이트류 및 에테르류, 또는 이들의 2종 이상의 흔합물을 들 수 있다. 이러한 유기 용매의 구체적인 예로는, 메틸에틸케논, 메틸이소부틸케톤 아세틸아세톤 또는 이소부틸케톤 등의 케톤류; 메탄올, 에탄올, 디아세톤알코올, n-프로판을, i-프로판올, n-부탄올, i-부탄올, 또는 t-부탄올 등의 알코올류; 에틸아세테이트, i-프로필아세테이트, 또는 폴리에틸렌글리콜 모노메틸에테르 아세테이트 등의 아세테이트류; 테트라하이드로퓨란 또는 프로필렌글라이콜 모노메틸에테르 등의 에테르류; 또는 이들의 2종 이상의 흔합물을 들 수 있다.
상기 유기 용매는 상기 광경화성 코팅 조성물에 포함되는 각 성분들을 흔합하는 시기에 첨가되거나 각 성분들아 유기 용매에 분산 또는 흔합된 상태로 첨가되면서 상기 광경화성 코팅 조성물에 포함될 수 있다. 상기 광경화성 코팅 조성물 중 유기 용매의 함량이 너무 작으면, 상기 광경화성 코팅 조성물의 흐름성이 저하되어 최종 제조되는 필름에 줄무늬가 생기는 등 불량이 발생할 수 있다. 또한, 상기 유기 용매의 과량 첨가시 고형분 함량이 낮아져, 코팅 및 성막이 층분히 되지 않아서 필름의 물성이나 표면 특성이 저하될 수 있고, 건조 및 경화 과정에서 불량이 발생할 수 있다. 이에 따라, 상기 광경화성 코팅 조성물은 포함되는 성분들의 전체 고형분의 농도가 1중량 % 내지 50중량 %, 또는 2 중량 % 내지 20중량 %가 되도록 유기 용매를 포함할 수 있다.
상기 하드 코팅층 또는 방현층은 반사 방지 필름에 사용할 수 있는 것으로 알려진 재질이면 큰 제한 없이 사용할 수 있다.
구체적으로, 상기 반사 방지 필름의 제조 방법은 광경화형 화합물 또는 이의 (공)중합체, 광개시제 및 대전 방지제를 포함한 하드 코팅층 또는 방현층 형성용 고분자 수지 조성물을 기재 상에 도포하고 광경화하는 단계를 더 포함할 수 있으며, 상기 단계를 통하여 하드 코팅층 또는 방현층을 형성할 수 있다.
상기 하드 코팅층 또는 방현층 형성에 사용되는 성분에 관해서는 상기 일 구현예의 반사 방지 필름에 관하여 상술한 바와 같다.
또한, 상기 하드 코팅충 또는 방현층 형성용 고분자 수지 조성물은 알콕시 실란계 올리고머 및 금속 산화물 알콕사이드계 올리고머로 이루어진
군에서 선택되는 1종 이상의 화합물을 더 포함할 수 있다.
상기 하드 코팅층 또는 방현층 형성용 고분자 수지 조성물을 도포하는데 통상적으로 사용되는 방법 및 장치를 별 다른 제한 없이 사용할 수 있으며, 예를 들어, Meyer bar 등의 바 코팅법, 그라비아 코팅법, 2 rol l reverse 코팅법, vacuum s lot di e 코팅법, 2 ro l l 코팅법 둥을 사용할 수 있다. 상기 하드 코팅층 또는 방현층 형성용 고분자 수지 조성물을 광경화 시키는 단계에서는 200nm 내지 400nm파장의 자외선 또는 가시 광선을 조사할 수 있고 조사시 노광량은 100 mJ/cirf 내지 4 , 000 mJ/cin2 이 바람직하다. 노광 시간도 특별히 한정되는 것이 아니고, 사용 되는 노광 장치, 조사 광선의 파장 또는 노광량에 따라 적절히 변화시킬 수 있다. 또한, 상기 하드 코팅층 또는 방현층 형성용 고분자 수지 조성물을 광경화 시키는 단계에서는 질소 대기 조건을 적용하기 위하여 질소 퍼징 등을 할 수 있다.
【발명의 효과】
본 발명에 따르면, 낮은 반사율 및 높은 투광율을 가지면서 높은 내스크래치성 및 방오성을 동시에 구현할 수 있고 디스플레이 장치의 화면의 선명도를 높일 수 있는 반사 방지 필름이 제공될 수 있다.
【도면의 간단한 설명】
도 1은 실시예 1에서 얻어진 반사방지필름의 스침각 X D 측정 결과를 나타낸 것이다.
도 2은 실시예 2에서 얻어진 반사방지필름의 스침각 XRD 측정 결과 나타낸 것이다.
도 3은 실시예 3에서 얻어진 반사방지필름의 스침각 XRD 측정 결과를 나타낸 것이다.
도 4은 실시예 4에서 얻어진 반사방지필름의 스침각 XRD 측정 결과 나타낸 것이다.
도 5은 실시예 5에서 얻어진 반사방지필름의 스침각 XRD 측정 결과 나타낸 것이다.
도 6은 비교예 1에서 얻어진 반사방지필름의 스침각 XRD 측정 결과 나타낸 것이다.
도 7은 비교예 2에서 얻어진 반사방지필름의 스침각 XRD 측정 결과를
나타낸 것이다.
【발명을 실시하기 위한 구체적인 내용】
발명을 하기의 실시예에서 보다 상세하게 설명한다. 단, 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의하여 한정되는 것은 아니다.
<제조예 >
제조예: 하드코팅 필름의 제조
KY0EISHA사 염타입의 대전 방지 하드 코팅액 (고형분 50중량 %, 제품명: LJD-1000)을 트리아세틸 셀루로스 (TAC) 필름에 #10 meyer bar로 코팅하고 90 °C에서 1분 건조한 이후, 150 mJ/ciif의 자외선을 조사하여 약 5 내지 6 의 두께를 갖는 하드 코팅 필름을 제조하였다.
<실시예 1 내지 5: 반사 방지 필름의 제조 >
실시예 1 내지 3
(1) 저굴절층 제조용 광경화성 코팅 조성물의 제조
중공형 실리카 나노 입자 (평균직경: 약 50 내지 60 nm) 40중량 %, Ti02 나노 입자 (평균직경: 약 17 ran , 평균길이: 약 30 ran) 18중량 %, 솔리드형 실리카 나노 입자 (평균직경: 약 12 nm) 12중량 ¾, 제 1함불소 화합물 (X-71-1203M, ShinEtsu사) 3 중량 ¾>, 제 2함불소 화합물 (RS_537 ,DIC사) 7중량 , 펜타에리트리를트리아크릴레이트 (PETA) 15 중량 %, 개시제 ( Irgacure 127, Ciba사) 5중량 %를, MIBK(methyl i sobutyl ketone)용매에 고형분 농도 4 중량%가 되도록 희석하였다.
(2) 저굴절층 및 반사 방지 필름의 제조
상기 제조예의 하드 코팅 필름 상에., 상기에서 얻어진 광경화성 코팅 조성물을 #4 meyer bar로 두께가 약 180 내지 200nm가 되도록 코팅하고, 하기 표 1의 압력, 온도 및 시간으로 각각 건조 및 경화하였다. 상기 경화시에는 질소 퍼징하에서 상기 건조된 코팅물에 252 mJ/cnf의 자외선을 조사하였다. 실시예 4 내지 5
(1) 저굴절층 제조용 광경화성 코팅 조성물의 제조
중공형 실리카 나노 입자 (평균직경: 약 60 내지 70 ran) 40중량 %, Ti02 나노 입자 (평균직경: 약 17 ran, 평균길이: 약 30 ran) 15중량 ¾, 솔리드형 실리카 나노 입자 (평균직경: 약 12 ran) 10중량 %, 제 1함불소 화합물 (X-71-1203M, ShinEtsu사) 3중량 %, 제 2함불소 화합물 (RS_537,DIC사) 7중량 펜타에리트리롤트리아크릴레이트 (PETA) 20 중량 %, 개시제 (Irgacure 127, Ciba사) 5중량 %를, MIBKOnethyl isobutyl ketone)용매에 고형분 농도 4 중량 %가 되도록 희석하였다.
(2) 저굴절층 및 반사 방지 필름의 제조
상기 제조예의 하드 코팅 필름 상에, 상기에서 얻어진 광경화성 코팅 조성물을 #4 meyer bar로 두께가 약 180 내지 200ntn가 되도록 코팅하고, 하기 표 1의 압력, 온도 및 시간으로 각각 건조 및 경화하였다. 상기 경화시에는 질소 퍼징하에서 상기 건조된 코팅물에 252 mJ/cin2의 자외선을 조사하였다.
【표 1】
실시예의 반사방지 필름 제조조건
<비교예 1내지 2: 반사방지 필름의 제조 >
비교예 1
저굴절층 제조용 광경화성 코팅 조성물로 중공형 실리카 나노 입자 (평균직경: 약 60 내지 70 nm) 65중량 %, 제 1함불소 화합물 (X—71-1203M, ShinEtsu사) 5 중량 %, 게 2함불소 화합물 (RS-537, DIC사) 5 중량 %, 펜타에리트리를트리아크릴레이트 (PETA) 20 증량 ¾>, 개시제 (Irgacure 127, Ciba사) 5중량 %를, MIBKOnethyl isobutyl ketone)용매에 고형분 농도 3 중량%가 되도록 희석한 조성물을 사용한 것을 제외하고, 실시예 1과 동일한 방법으로 반사 방지 필름을 제조하였다.
비교예 2
저굴절층 제조용 광경화성 코팅 조성물로 중공형 실리카 나노 입자 (평균직경: 약 50 내지 60 nm) 55중량 %, 솔리드형 실리카 나노 입자 (평균직경: 약 12 ran ) 10중량 %, 게 1함불소 화합물 (X-71-1203M, ShinEtsu사) 3 중량 %, 제 2함불소 화합물 (RS-537 ,DIC사) 10 중량 ¾>, 펜타에리트리를트리아크릴레이트 (PETA) 17 중량 % , 개시제 ( Irgacure 127, Ciba사) 5중량 %를, MIBKOnethyl i sobutyl ketone)용매에 고형분 농도 3 중량%가 되도록 희석한 조성물을 사용한 것을 제외하고, 실시예 1과 동일한 방법으로 반사 방지 필름을 제조하였다.
<실험예: 반사방지 필름의 물성 측정 >
상기 실시예 및 비교예에서 얻어진 반사 방지 필름에 대하여 다음과 같은 항목의 실험을 시행하였다.
1. 반사방지 필름의 평균 반사율측정
실시예 및 비교예에서 얻어진 반사 방지 필름이 가시 광선 영역 (380 내지 780nm)에서 나타내는 평균 반사율을 Sol idspec 3700 ( SHI MADZU) 장비를 이용하여 측정하고, 그 결과를 하기 표 2에 기재하였다.
2. 내스크래치성 측정
스틸울 (면적 2ciif)에 하중을 걸고 27 rpm의 속도로 10회 왕복하며 실시예 및 비교예에서 얻어진 반사 방지 필름의 표면을 문질렀다. 육안으로 관찰되는 1cm이하의 스크래치 1개 이하가 관찰되는 최대 하중을 측정하고, 그 결과를 하기 표 2에 기재하였다.
3. 방오성 측정
실시예 및 비교예에서 얻어진 반사 방지 필름의 표면에 검은색 네임펜으로 5 cm길이의 직선을 그리고, 무진천을 이용하여 문질렀을 때 지워지는 횟수를 확인하여 방오성을 측정하고, 그 결과를 하기 표 2에
기재하였다.
<측정 기준 >
0 : 지워지는 시점이 10회 이하
Δ : 지워지는 시점이 11회 내지 20회
X: 지워지는 시점이 20회 초과
【표 2】
실시예 및 비교예의 실험예 결과
상기 표 2에 나타난 바와 같이, 저굴절층 내에 3종의 입자 (중공형 실리카 나노 입자, Ti02 나노 입자, 솔리드형 실리카 나노 입자)가 포함된 실시예 1내지 5의 반사 방지 필름은 가시 광선 영역에서 0.30% 이하의 낮은 반사율을 나타내면서도 높은 내스크래치성 및 방오성을 동시에 구현할 수 있다. 이에 반하여, 비교예 1 의 반사 방지 필름의 저굴절층에서는 중공형 실리카 나노 입자만이 포함되어, 실시예에 비해 낮은 내스크래치성을 나타내었고, 방오성도 감소한다는 점이 확인된다.
그리고, 비교예 2의 반사 방지 필름의 저굴절층에서는 중공형 실리카 나노입자와 솔리드형 실리카 나노 입자가 포함되어 내스크래치성과 방오성은 높게 나타났지만, 평균반사율이 0.6% 초과로 높게 측정되어 초저반사율의 구현이 어렵다는 점을 확인하였다.
즉, 상기 실시예의 경우, 저굴절층 내에서 3종의 입자를 분산시킴에 따라, 이하의 초저반사율을 구현함과 동시에, 내스크래치성과 방오성도
적정 수준을 유지할 수 있음을 확인하였다.
4. 스침각 입사 X선 회절 (Grazing-incidence X-Ray Diffraction, GID) 분석
상기 실시예 및 비교예 각각에서 얻어진 저굴절를층에 대하여,
PANalytical X'Pert Pro MRD X D 장비 [45kV 전압, 40 mA 전류, Cu K- a radiation (파장: 1.5148A), 입사각 (θ) 0.01° 내지 3° ]를 이용하여 스침각 입사 X선 회절 스펙트럼을 측정하고, 그 결과를 하기 도 1 내지 도 7에 각각 나타내었다.
상기 도 1 내지 도 5에 나타난 바와 같이, 상기 실시예 1 내지 5에서 얻어진 반사방지 필름의 경우, 저굴절층에 대하여 스침각 입사 X선 회절 측정 결과, 2Θ= 52° ~ 57° 범위에서 뚜렷한 회절피크가 발견되는 것을 확인할 수 있었다.
상술한 2Θ= 52° ~ 57° 범위에서 발견되는 회절피크는 상기 저굴절층 내에 포함된 결정성을 갖는 Ti02 나노 입자에 의한 것으로서, 상술한 실시예의 스침각 입사 X선 회절 측정시에는 Ti02 나노 입자에 의한 회절 피크가 강한 회절 강도를 통해 뚜럇하게 측정되어, 이로부터 상기 실시예의 저굴절층내에 Ti02 나노 입자가 중공형 실리카 나노입자 및 솔리드형 실리카 나노 입자에 비해 주로 상분리된 영역이 형성되어 있음을 확인할 수 있다.
반면, 하기 도 6 및 도 7에 나타난 바와 같이, 비교예 1(도 6) 및 비교예 2(도 7)의 반사 방지 필름은, 저굴절층내에 Ti02 나노 입자가 함유되지 않아, 저굴절층에 대한 스침각 입사 X선 회절 측정 결과, 2Θ= 52° ~ 57° 범위에서 회절피크가 전혀 발견되지 않는다는 것을 확인할 수 있었다.
Claims
【청구항 1】
하드 코팅층 또는 방현층; 및
상기 하드 코팅층 또는 방현층의 일면에 형성되며, 바인더 수지와 상기 바인더 수지에 분산된 중공형 실리카 나노 입자, 금속 산화물 나노 입자 및 무기 나노 입자를 포함하는 저굴절층을 포함하고,
상기 저굴절층 중에는 중공형 실리카 나노 입자가 포함 게 1영역, 상기 금속 산화물 나노 입자가 포함된 게 2영역, 및 상기 무기 나노 입자가 포함된 제 3영역이 존재하며 ,
상기 저굴절층은 스침각 입사 X선 회절 (Grazing- incidence X-Ray
Diffraction, GID) 스펙트럼에서, 입사되는 X선의 입사각의 2배 (2Θ)값이 50° 내지 60° 인 범위에서 적어도 하나의 회절 피크를 갖는, 반사 방자 필름.
【청구항 2】
게 1항에 있어서,
상기 저굴절층은 스침각 입사 X선 회절 (Grazing—incidence X-Ray Diffraction, GID) 스펙트럼에서, 입사되는 X선의 입사각의 2배 (2Θ)값이 52° 내지 57° 인 범위에서 회절 피크를 갖는, 반사 방지 필름.
【청구항 3】
제 1항 내지 게 2항 중 어느 한항에 있어서
상기 스침각 입사 X선 회절 (Grazing- incidence X-Ray Diffraction, GID) 스펙트럼은 가로축이 입사되는 X선의 입사각의 2배 (2Θ)값이고, 세로축이 회절 강도인 그래프로 나타나는, 반사 방지 필름.
【청구항 4】
거 U항에 있어서,
상기 제 1영역, 제 2영역 및 제 3영역이 하기 일반식 2를 만족하는 반사 방지 필름:
[일반식 2]
제 1영역의 굴절률 (nl) < 제 3영역의 굴절률 (n3) < 제 2영역의 굴절률 (n2) 상기 nl , n2 및 n3는 70° 의 입사각을 적용하여 380 nm 내지 1000 ran의 파장 범위에서 선편광을 측정하여 얻어진 굴절률이다.
【청구항 5】
게 1항에 있어서,
상기 제 1영역은 중공형 실리카 나노 입자 전체 중 70부피 % 이상이 포함되며, 상기 게 2영역은 금속 산화물 나노 입자 전체 중 70부피 % 이상이 포함되며, 상기 제 3영역은 무기 나노 입자 전체 중 70부피 % 이상이 포함된, 반사 방지 필름.
[청구항 6】
게 1항에 있어서,
상기 저굴절층은 상기 제 3영역이 게 2영역에 비하여 상기 하드 코팅층 또는 방현층과 상기 저굴절층 간의 계면에 보다 가까이 위치하고, 상기 제 2영역이 제 1영역에 비하여 상기 하드 코팅층 또는 방현층과 상기 저굴절층 간의 계면에 보다 가까이 위치하는 반사 방지 필름.
【청구항 7】
제 1항에 있어서,
상기 저굴절층 중 상기 제 1영역, 제 2영역 및 게 3영역은 하나의 바인더 수지에 의하여 연속상으로 존재하는, 반사 방지 필름.
【청구항 8】
제 1항에 있어서,
상기 저굴절층은 바인더 수지, 중공형 실리카 나노 입자, 금속 산화물 나노 입자 및 무기 나노 입자를 포함한 수지 조성물의 코팅으로 얻어지는, 반사 방지 필름.
【청구항 9】
제 1항에 있어서,
상기 중공형 실리카 나노 입자, 금속 산화물 나노 입자 및 무기 나노 입자의 평균 직경이 하기 일반식 3을 만족하는, 반사 방지 필름:
[일반식 3]
무기 나노 입자의 평균직경 < 금속 산화물 나노 입자의 평균직경 < 중공형 실리카 나노 입자의 평균직경.
【청구항 10]
제 1항에 있어서,
상기 중공형 실리카 나노 입자의 평균직경에 대한 상기 무기 나노 입자의 평균직경 비율이 0.01 내지 0.5인, 반사 방지 필름.
[청구항 11】
게 1항에 있어서,
상기 계 1영역의 굴절를이 1.4 미만이고, 게 2영역의 굴절률이 1.55 초과이며, 게 3영역의 굴절률이 1.4 초과 내지 1.55 미만인, 반사 방지 필름.
【청구항 12】
제 1항에 있어서,
상기 반사 반지 필름은 380nm 내지 780ran의 가시 광선 파장대 영역에서
0.3%이하의 평균 반사율을 나타내는, 반사 방지 필름.
[청구항 13】
제 1항에 있어서,
상기 저굴절층에 포함된 바인더 수지는 광중합성 화합물의 (공)중합체 및 광반웅성 작용기를 포함한 함불소 화합물을 포함하고, 상기 광반웅성 작용기를 포함한 함불소 화합물은 2 , 000 내지 200 , 000의 중량평균분자량을 갖는 반사 방지 필름.
【청구항 14】
거 U항에 있어서,
상기 하드 코팅층 또는 방현층은 광경화성 수지를 포함한 바인더 수지 ; 및 상기 바인더 수지에 분산된 대전 방지제를 포함하는, 반사 방지 필름.
【청구항 15】
제 14항에 있어서,
상기 하드 코팅층 또는 방현층은 알콕시 실란계 올리고머 및 금속 산화물 알콕사이드계 올리고머로 이루어진 군에서 선택되는 1종 이상의 화합물을 더 포함하는, 반사 ^지 필름.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17856744.2A EP3413101B1 (en) | 2016-09-27 | 2017-09-27 | Anti-reflection film |
US16/091,640 US10823883B2 (en) | 2016-09-27 | 2017-09-27 | Antireflection film |
CN201780021689.8A CN108885282B (zh) | 2016-09-27 | 2017-09-27 | 抗反射膜 |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2016-0124106 | 2016-09-27 | ||
KR1020160124106A KR101977933B1 (ko) | 2016-09-27 | 2016-09-27 | 반사 방지 필름 및 이의 제조 방법 |
KR1020160136734A KR101977934B1 (ko) | 2016-10-20 | 2016-10-20 | 반사 방지 필름 |
KR10-2016-0136734 | 2016-10-20 | ||
KR10-2017-0009886 | 2017-01-20 | ||
KR1020170009886A KR102040223B1 (ko) | 2017-01-20 | 2017-01-20 | 반사 방지 필름 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2018062858A1 true WO2018062858A1 (ko) | 2018-04-05 |
WO2018062858A8 WO2018062858A8 (ko) | 2018-04-26 |
Family
ID=61759942
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2017/010732 WO2018062855A1 (ko) | 2016-09-27 | 2017-09-27 | 반사 방지 필름 및 이의 제조 방법 |
PCT/KR2017/010733 WO2018062856A1 (ko) | 2016-09-27 | 2017-09-27 | 반사 방지 필름 |
PCT/KR2017/010735 WO2018062858A1 (ko) | 2016-09-27 | 2017-09-27 | 반사 방지 필름 |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2017/010732 WO2018062855A1 (ko) | 2016-09-27 | 2017-09-27 | 반사 방지 필름 및 이의 제조 방법 |
PCT/KR2017/010733 WO2018062856A1 (ko) | 2016-09-27 | 2017-09-27 | 반사 방지 필름 |
Country Status (4)
Country | Link |
---|---|
US (3) | US10962686B2 (ko) |
EP (3) | EP3413100B1 (ko) |
CN (3) | CN108885283B (ko) |
WO (3) | WO2018062855A1 (ko) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2962722T3 (es) * | 2018-08-08 | 2024-03-20 | Mitsubishi Gas Chemical Co | Composición de recubrimiento duro, película laminada y película curable |
KR102594548B1 (ko) | 2019-01-02 | 2023-10-27 | 삼성디스플레이 주식회사 | 윈도우, 윈도우의 제조 방법 및 윈도우를 포함하는 표시 장치 |
EP3693765B1 (en) * | 2019-02-05 | 2023-04-19 | Essilor International | Article coated with an antireflective coating having improved optical properties |
KR102337211B1 (ko) | 2019-03-12 | 2021-12-09 | 주식회사 엘지화학 | 반사 방지 필름, 편광판 및 디스플레이 장치 |
CN110194598A (zh) * | 2019-05-30 | 2019-09-03 | 华为技术有限公司 | 玻璃面板及其制备方法、包含该玻璃面板的显示屏和终端 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20040073627A (ko) * | 2003-02-14 | 2004-08-21 | 한국과학기술연구원 | 투광성 반사방지막 및 그를 포함하는 물품 |
JP2006049296A (ja) * | 2004-07-09 | 2006-02-16 | Fuji Photo Film Co Ltd | 中空導電性微粒子、光学機能フィルム、反射防止フィルム、その製造方法、偏光板、及び画像表示装置 |
JP2009217258A (ja) * | 2008-02-13 | 2009-09-24 | Fujifilm Corp | 光学フィルム、その製造方法、偏光板および画像表示装置 |
KR20120093212A (ko) * | 2009-10-16 | 2012-08-22 | 다이니폰 인사츠 가부시키가이샤 | 광학 필름 및 디스플레이 패널 |
US20130196140A1 (en) * | 2012-01-30 | 2013-08-01 | Guardian Industries Corp. | Coated article with antireflection coating including porous nanoparticles, and/or method of making the same |
Family Cites Families (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6247601A (ja) | 1985-08-27 | 1987-03-02 | Seiko Epson Corp | 反射防止膜 |
US5123022A (en) * | 1990-10-16 | 1992-06-16 | The United States Of America As Represented By The Department Of Energy | Frequency mixing crystal |
WO2000000855A1 (en) * | 1998-06-30 | 2000-01-06 | Kimberly-Clark Worldwide, Inc. | Coating composition for reducing reflection and fogging |
US20020090521A1 (en) | 2000-09-29 | 2002-07-11 | Tatsuji Nakajima | Silica layers and antireflection film using same |
JP3853624B2 (ja) | 2000-09-29 | 2006-12-06 | 大日本印刷株式会社 | シリカ層、及びシリカ層を用いた反射防止フィルム、ディスプレイ装置、液晶ディスプレイ装置 |
JPWO2003005069A1 (ja) | 2001-07-05 | 2004-10-28 | 帝人デュポンフィルム株式会社 | 反射防止フィルムおよびその製造法 |
JP2003098304A (ja) | 2001-09-26 | 2003-04-03 | Dainippon Printing Co Ltd | 反射防止転写フィルム及びそれを用いた反射防止加工方法 |
EP2420539A1 (en) * | 2001-10-25 | 2012-02-22 | Panasonic Electric Works Co., Ltd | Composite thin film holding substrate, transparent conductive film holding substrate, and surface light emitting body |
US8339707B2 (en) | 2004-03-11 | 2012-12-25 | Teijin Dupont Films Japan Limited | Anti-reflection multi-layer laminated film |
JP2005266051A (ja) | 2004-03-17 | 2005-09-29 | Konica Minolta Opto Inc | 反射防止フィルム、偏光板及び画像表示装置 |
CN100513477C (zh) | 2004-03-18 | 2009-07-15 | 捷时雅股份有限公司 | 液状固化性树脂组合物及使用了它的叠层体的制造方法 |
JP2005275225A (ja) | 2004-03-26 | 2005-10-06 | Konica Minolta Opto Inc | 反射防止フィルム、偏光板及び画像表示装置 |
WO2006016592A1 (en) * | 2004-08-12 | 2006-02-16 | Fujifilm Corporation | Anti-reflection film |
JP2007121993A (ja) | 2005-09-29 | 2007-05-17 | Dainippon Printing Co Ltd | 反射防止積層体及びその製造方法 |
JP2007272131A (ja) | 2006-03-31 | 2007-10-18 | Dainippon Printing Co Ltd | 反射防止積層体及びその製造方法 |
JP5032785B2 (ja) | 2006-03-31 | 2012-09-26 | 大日本印刷株式会社 | 反射防止積層体及びその製造方法 |
US7615283B2 (en) | 2006-06-13 | 2009-11-10 | 3M Innovative Properties Company | Fluoro(meth)acrylate polymer composition suitable for low index layer of antireflective film |
JP2009244382A (ja) * | 2008-03-28 | 2009-10-22 | Sharp Corp | 機能性フィルム及び表示装置 |
US8066390B2 (en) | 2008-04-22 | 2011-11-29 | Fujifilm Corporation | Antiglare film, antireflection film, polarizing plate and image display device |
JP2010078886A (ja) | 2008-09-25 | 2010-04-08 | Fujifilm Corp | 防眩フィルム、反射防止フィルム、偏光板および画像表示装置 |
JP5175672B2 (ja) | 2008-09-26 | 2013-04-03 | 富士フイルム株式会社 | 防眩フィルム、反射防止フィルム、偏光板及び画像表示装置 |
US20130295507A1 (en) | 2010-12-23 | 2013-11-07 | Education On Behalf Of Oregon State University | Processes to form aqueous precursors, hafnium and zirconium oxide films, and hafnium and zirconium oxide patterns |
JP2012150226A (ja) | 2011-01-18 | 2012-08-09 | Dainippon Printing Co Ltd | 反射防止フィルム、反射防止フィルムの製造方法及び画像表示装置 |
CN103370286A (zh) | 2011-02-11 | 2013-10-23 | 帝斯曼知识产权资产管理有限公司 | 在基材上沉积抗反射层的方法 |
CN103430055B (zh) | 2011-03-14 | 2016-10-12 | 3M创新有限公司 | 多层纳米结构化制品 |
US20150064405A1 (en) | 2011-04-20 | 2015-03-05 | Corning Incorporated | Low reflectivity articles and methods thereof |
KR101871135B1 (ko) | 2011-04-26 | 2018-06-25 | 다이니폰 인사츠 가부시키가이샤 | 반사 방지 필름, 편광판 및 화상 표시 장치 |
KR20130047634A (ko) | 2011-10-28 | 2013-05-08 | 호야 가부시키가이샤 | 반사 방지막 및 광학 소자 |
JP5662982B2 (ja) | 2011-10-28 | 2015-02-04 | Hoya株式会社 | 反射防止膜および光学素子 |
US20130236153A1 (en) * | 2012-03-06 | 2013-09-12 | The Royal Institution For The Advancement Of Learning / Mcgill University | Method of manufacturing optical fibers, tapered optical fibers and devices thereof |
US10059622B2 (en) | 2012-05-07 | 2018-08-28 | Guardian Glass, LLC | Anti-reflection glass with tin oxide nanoparticles |
WO2014022609A1 (en) | 2012-08-01 | 2014-02-06 | Ferro Corporation | Light influencing nano layer |
JP5693749B2 (ja) | 2012-08-06 | 2015-04-01 | 積水ナノコートテクノロジー株式会社 | 光透過性導電性フィルム及び光透過性導電性フィルムを含有するタッチパネル |
JP2014041249A (ja) * | 2012-08-22 | 2014-03-06 | Dainippon Printing Co Ltd | 光学フィルム |
US20140186613A1 (en) | 2012-12-27 | 2014-07-03 | Guardian Industries Corp. | Anti-reflection coatings with self-cleaning properties, substrates including such coatings, and related methods |
JP6153093B2 (ja) | 2013-09-03 | 2017-06-28 | 株式会社豊田中央研究所 | 反射防止膜及びその製造方法 |
JP2015084029A (ja) | 2013-10-25 | 2015-04-30 | 凸版印刷株式会社 | 反射防止フィルム、偏光板、タッチパネル基板、及び、画像表示装置 |
CN105829921B (zh) | 2013-12-19 | 2018-11-09 | 3M创新有限公司 | 包括包含带有磷表面处理剂的纳米粒子的自组装层的制品 |
US9689793B2 (en) | 2014-02-14 | 2017-06-27 | Kent State University | System and method thereof for accurate optical detection of amphiphiles at a liquid crystal interface |
DE102014104798B4 (de) | 2014-04-03 | 2021-04-22 | Schott Ag | Harte anti-Reflex-Beschichtungen sowie deren Herstellung und Verwendung |
KR20160099903A (ko) | 2015-02-13 | 2016-08-23 | 동국대학교 산학협력단 | 다기능성 복합 코팅의 제조방법 |
KR101813707B1 (ko) | 2015-11-04 | 2017-12-29 | 주식회사 엘지화학 | 반사 방지 필름 및 이의 제조 방법 |
US10222510B2 (en) | 2016-03-09 | 2019-03-05 | Lg Chem, Ltd | Anti-reflective film |
CN107632330B (zh) * | 2016-07-14 | 2019-11-01 | 株式会社Lg化学 | 防反射膜 |
-
2017
- 2017-09-27 EP EP17856742.6A patent/EP3413100B1/en active Active
- 2017-09-27 CN CN201780022126.0A patent/CN108885283B/zh active Active
- 2017-09-27 US US16/091,630 patent/US10962686B2/en active Active
- 2017-09-27 CN CN201780021689.8A patent/CN108885282B/zh active Active
- 2017-09-27 CN CN201780018137.1A patent/CN108885281B/zh active Active
- 2017-09-27 US US16/087,023 patent/US10908323B2/en active Active
- 2017-09-27 WO PCT/KR2017/010732 patent/WO2018062855A1/ko active Application Filing
- 2017-09-27 WO PCT/KR2017/010733 patent/WO2018062856A1/ko active Application Filing
- 2017-09-27 US US16/091,640 patent/US10823883B2/en active Active
- 2017-09-27 EP EP17856741.8A patent/EP3407097B1/en active Active
- 2017-09-27 WO PCT/KR2017/010735 patent/WO2018062858A1/ko active Application Filing
- 2017-09-27 EP EP17856744.2A patent/EP3413101B1/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20040073627A (ko) * | 2003-02-14 | 2004-08-21 | 한국과학기술연구원 | 투광성 반사방지막 및 그를 포함하는 물품 |
JP2006049296A (ja) * | 2004-07-09 | 2006-02-16 | Fuji Photo Film Co Ltd | 中空導電性微粒子、光学機能フィルム、反射防止フィルム、その製造方法、偏光板、及び画像表示装置 |
JP2009217258A (ja) * | 2008-02-13 | 2009-09-24 | Fujifilm Corp | 光学フィルム、その製造方法、偏光板および画像表示装置 |
KR20120093212A (ko) * | 2009-10-16 | 2012-08-22 | 다이니폰 인사츠 가부시키가이샤 | 광학 필름 및 디스플레이 패널 |
US20130196140A1 (en) * | 2012-01-30 | 2013-08-01 | Guardian Industries Corp. | Coated article with antireflection coating including porous nanoparticles, and/or method of making the same |
Also Published As
Publication number | Publication date |
---|---|
US10908323B2 (en) | 2021-02-02 |
US10823883B2 (en) | 2020-11-03 |
EP3413101A4 (en) | 2019-05-08 |
WO2018062855A8 (ko) | 2018-08-09 |
WO2018062855A1 (ko) | 2018-04-05 |
EP3407097A4 (en) | 2019-01-02 |
CN108885281B (zh) | 2021-01-08 |
CN108885283A (zh) | 2018-11-23 |
CN108885282B (zh) | 2020-04-21 |
CN108885282A (zh) | 2018-11-23 |
WO2018062856A1 (ko) | 2018-04-05 |
US10962686B2 (en) | 2021-03-30 |
EP3413101A1 (en) | 2018-12-12 |
EP3407097A1 (en) | 2018-11-28 |
CN108885283B (zh) | 2020-08-14 |
US20190154882A1 (en) | 2019-05-23 |
EP3413100A4 (en) | 2019-01-23 |
CN108885281A (zh) | 2018-11-23 |
EP3407097B1 (en) | 2020-08-19 |
US20190101670A1 (en) | 2019-04-04 |
EP3413100B1 (en) | 2020-11-04 |
US20190154883A1 (en) | 2019-05-23 |
WO2018062858A8 (ko) | 2018-04-26 |
EP3413101B1 (en) | 2020-09-09 |
EP3413100A1 (en) | 2018-12-12 |
WO2018062856A8 (ko) | 2018-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7411536B2 (ja) | 反射防止フィルム | |
KR101973196B1 (ko) | 반사 방지 필름 | |
KR102040223B1 (ko) | 반사 방지 필름 | |
KR101953775B1 (ko) | 반사 방지 필름 | |
TWI665273B (zh) | 防反射膜 | |
KR102216567B1 (ko) | 반사 방지 필름 | |
WO2018062858A1 (ko) | 반사 방지 필름 | |
KR101977934B1 (ko) | 반사 방지 필름 | |
WO2018199487A1 (ko) | 반사 방지 필름 | |
WO2017122953A1 (ko) | 반사 방지 필름 및 이의 제조 방법 | |
WO2017155338A1 (ko) | 반사 방지 필름 | |
KR101977933B1 (ko) | 반사 방지 필름 및 이의 제조 방법 | |
WO2017155335A1 (ko) | 반사 방지 필름 | |
KR102361621B1 (ko) | 반사 방지 필름 | |
KR101916944B1 (ko) | 반사 방지 필름 | |
WO2017142291A1 (ko) | 저굴절층 형성용 광경화성 코팅 조성물 | |
WO2017155337A1 (ko) | 반사 방지 필름 | |
WO2017155358A1 (ko) | 반사 방지 필름 및 이의 제조 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2017856744 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2017856744 Country of ref document: EP Effective date: 20180907 |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17856744 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |