WO2018062273A1 - Light-emitting device - Google Patents

Light-emitting device Download PDF

Info

Publication number
WO2018062273A1
WO2018062273A1 PCT/JP2017/034959 JP2017034959W WO2018062273A1 WO 2018062273 A1 WO2018062273 A1 WO 2018062273A1 JP 2017034959 W JP2017034959 W JP 2017034959W WO 2018062273 A1 WO2018062273 A1 WO 2018062273A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
electrode
sealing
substrate
insulating layer
Prior art date
Application number
PCT/JP2017/034959
Other languages
French (fr)
Japanese (ja)
Inventor
吉田 綾子
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Publication of WO2018062273A1 publication Critical patent/WO2018062273A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • H05B33/28Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode of translucent electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/841Self-supporting sealing arrangements

Definitions

  • the present invention relates to a light emitting device.
  • OLEDs organic light emitting diodes
  • the light emitting part of the OLED has an organic layer, and emits light by electroluminescence of the organic layer.
  • Patent Document 1 describes a structure for preventing moisture from entering an organic layer with respect to an OLED.
  • the OLED described in Patent Document 1 includes a first electrode, an insulating layer, an organic layer, and a second electrode.
  • the insulating layer has an opening exposing a part of the first electrode.
  • the organic layer overlaps the opening of the insulating layer.
  • the second electrode overlaps the opening of the insulating layer and covers the entire organic layer. This prevents moisture from entering the organic layer.
  • the end of the second electrode is on the insulating layer and is not in contact with the first electrode. Thereby, the short circuit of the 1st electrode and the 2nd electrode is prevented.
  • Patent Document 2 describes an example of a method for sealing a light emitting unit.
  • the OLED of Patent Document 2 includes a first substrate, a plurality of light emitting units, a second substrate, and a plurality of sealing materials.
  • the plurality of light emitting units are on the first substrate.
  • the second substrate overlaps the first substrate such that the plurality of light emitting units are located between the first substrate and the second substrate.
  • Each of the plurality of sealing materials is between the first substrate and the second substrate and surrounds each of the plurality of light emitting units. In this way, the second substrate and the plurality of sealing materials function as a sealing portion.
  • a sealing portion may be provided on the substrate.
  • a sealing portion when such a sealing portion is provided, when the substrate is bent, bending stress is generated in the sealing portion. Such bending stress may act on the sealing portion so that the sealing portion is peeled off from the substrate or the sealing portion is damaged, for example.
  • An example of a problem to be solved by the present invention is to reduce bending stress generated in a sealing portion when a substrate is bent in an OLED.
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG.
  • FIG. 5 is a sectional view taken along line BB in FIG. 4.
  • FIG. 5 is a cross-sectional view taken along the line CC of FIG.
  • FIG. 5 is a DD cross-sectional view of FIG. 4. It is a figure which shows the 1st modification of FIG. It is a figure which shows the 2nd modification of FIG.
  • FIG. 1 is a cross-sectional view illustrating a light emitting device according to Example 1.
  • FIG. It is a figure which shows the modification of FIG. 6 is a cross-sectional view showing a light emitting device according to Example 2.
  • FIG. 6 is a cross-sectional view illustrating a light emitting device according to Example 3.
  • FIG. 6 is a plan view showing a light emitting device according to Example 4.
  • FIG. 16 is a sectional view taken along line BB in FIG. 6 is a plan view showing a light emitting device according to Example 5.
  • FIG. FIG. 18 is a sectional view taken along line BB in FIG. 6 is a plan view showing a light emitting device according to Example 6.
  • FIG. FIG. 20 is a sectional view taken along line BB in FIG.
  • FIG. 12 is a plan view showing a light emitting device according to Example 7.
  • FIG. FIG. 22 is a cross-sectional view taken along line EE in FIG. 21.
  • 10 is a cross-sectional view showing a light emitting device according to Example 8.
  • FIG. 10 is a cross-sectional view showing a light emitting device according to Example 9.
  • FIG. 12 is a cross-sectional view illustrating a light emitting device according to Example 10.
  • FIG. 1 is a plan view showing a light emitting device 10 according to the embodiment.
  • FIG. 2 is a diagram in which the organic layer 120 and the second electrode 130 are removed from FIG.
  • FIG. 3 is a diagram in which the insulating layer 140 is removed from FIG.
  • FIG. 4 is an enlarged view of the region ⁇ shown in FIG.
  • FIG. 5 is a cross-sectional view taken along the line AA in FIG. 6 is a cross-sectional view taken along the line BB of FIG. 7 is a cross-sectional view taken along the line CC of FIG. 8 is a cross-sectional view taken along the line DD of FIG.
  • the sealing member 200 (FIG. 5) is not shown in FIGS. 1 to 4 and FIGS.
  • the light emitting device 10 includes a substrate 100, a plurality of light emitting units 152, a plurality of non-light emitting units 154, and a plurality of sealing units 160.
  • the substrate 100 has a first surface 102.
  • the plurality of light emitting units 152 are located on the first surface 102 side of the substrate 100.
  • Each of the light emitting units 152 includes a stacked structure of the first electrode 110, the organic layer 120, and the second electrode 130.
  • the plurality of light emitting units 152 and the plurality of non-light emitting units 154 are alternately arranged.
  • Each of the plurality of sealing portions 160 seals each of the plurality of light emitting portions 152.
  • the first sealing portion 161 and the second sealing portion 163 of the plurality of sealing portions 160 are the first light emitting portion 151 and the second light emitting portion 153 of the plurality of light emitting portions 152. Each is sealed.
  • the first sealing portion 161 and the second sealing portion 163 are adjacent to each other, and the first light emitting portion 151 and the second light emitting portion 153 are adjacent to each other.
  • the 1st sealing part 161 and the 2nd sealing part 163 have the 1st end part 161a and the 2nd end part 163b, respectively.
  • the first end portion 161 a and the second end portion 163 b overlap the non-light emitting portion 154 between the first light emitting portion 151 and the second light emitting portion 153.
  • first end portion 161a is located between the first light emitting portion 151 and the second end portion 163b
  • second end portion 163b is the second sealing portion 163 and the first end. It is located between the part 161a. Further, the second end 163b is separated from the first end 161a.
  • each of the plurality of sealing portions 160 is shortened in the arrangement direction of the plurality of light emitting portions 152. For this reason, even if the substrate 100 is curved along the arrangement direction of the plurality of light emitting portions 152, the bending stress generated in each of the plurality of sealing portions 160 is small.
  • each of the plurality of sealing portions 160 seals each of the plurality of light emitting portions 152. For this reason, even if any of the plurality of sealing portions 160 is damaged, the light emitting portion 152 sealed by the other sealing portions 160 is not affected.
  • the first surface 102 of the substrate 100 is the first between the first end 161a and the second end 163b (the region 102c in this drawing) of the non-light emitting portion 154. None of the electrode 110, the organic layer 120, and the second electrode 130 overlaps. In other words, the light emitting device 10 has a region (translucent region) that transmits light in a direction perpendicular to the substrate 100 between the first end 161a and the second end 163b. For this reason, the light transmittance in the region 102c is high.
  • the entire substrate 100 is made of an inorganic material, specifically glass, and the sealing portion 160 contains an inorganic material.
  • the water vapor transmission rate of the substrate 100 and the water vapor transmission rate of the inorganic layer 160 are both low.
  • the substrate 100 and the inorganic layer 160 function as a barrier layer for blocking water vapor. For this reason, water vapor is prevented from entering the organic layer 120 from the substrate 100 or the inorganic layer 160.
  • the sealing portion 160 is in contact with the first surface 102 of the substrate 100. For this reason, water vapor is prevented from entering between the sealing portion 160 and the substrate 100.
  • the second electrode 130 functions as the sealing portion 160.
  • the second electrode 130 covers the organic layer 120 and includes a conductive material.
  • the second electrode 130 functions as a conductive layer for applying a voltage to the organic layer 120.
  • the water vapor permeability of the second electrode 130 (sealing part 160) is low. In this way, the second electrode 130 functions as a barrier layer for blocking water vapor.
  • the light emitting device 10 includes a substrate 100, a plurality of first electrodes 110, a plurality of first connection portions 112, a plurality of first terminals 114, a first wiring 116, a plurality of second electrodes 130 (a plurality of sealing portions 160), A plurality of second connection portions 132, a plurality of second terminals 134, a second wiring 136, and a plurality of insulating layers 140 are provided.
  • the shape of the substrate 100 is a rectangle having a pair of long sides and a pair of short sides when viewed from a direction perpendicular to the first surface 102.
  • the shape of the substrate 100 is not limited to the example shown in this figure.
  • the shape of the substrate 100 may be, for example, a circle or a polygon other than a rectangle when viewed from a direction perpendicular to the first surface 102.
  • the plurality of first electrodes 110 are spaced apart from each other, and are specifically arranged in a line along the long side of the substrate 100. Each of the plurality of first electrodes 110 extends along the short side of the substrate 100.
  • Each of the plurality of first electrodes 110 is connected to each of the plurality of first terminals 114 via each of the plurality of first connection portions 112.
  • the plurality of first terminals 114 are connected to each other by the first wiring 116.
  • the first wiring 116 extends along one of the pair of long sides of the substrate 100.
  • An external voltage is supplied to the first electrode 110 via the first wiring 116, the first terminal 114, and the first connection portion 112.
  • the first electrode 110, the first connection portion 112, and the first terminal 114 are integrated with each other.
  • the light emitting device 10 includes a conductive layer having a region functioning as the first electrode 110, a region functioning as the first connection portion 112, and a region functioning as the first terminal 114.
  • Each of the plurality of second electrodes 130 overlaps each of the plurality of first electrodes 110.
  • the plurality of second electrodes 130 are spaced apart from each other, specifically, aligned in a line along the long side of the substrate 100.
  • Each of the plurality of second electrodes 130 extends along the short side of the substrate 100, specifically, along a pair of long sides extending along the short side of the substrate 100 and a long side of the substrate 100. And a pair of short sides extending.
  • Each of the plurality of second electrodes 130 is connected to each of the plurality of second terminals 134 via each of the plurality of second connection portions 132.
  • the plurality of second terminals 134 are connected to each other by the second wiring 136.
  • the second wiring 136 is opposed to the first wiring 116 across the plurality of first electrodes 110 and the plurality of second electrodes 130, and extends along the other of the pair of long sides of the substrate 100.
  • An external voltage is supplied to the second electrode 130 via the second wiring 136, the second terminal 134, and the second connection part 132.
  • the second connection portion 132 and the second terminal 134 are integrated with each other.
  • the light emitting device 10 includes a conductive layer having a region functioning as the second connection portion 132 and a region functioning as the second terminal 134.
  • Each of the plurality of insulating layers 140 overlaps each of the plurality of first electrodes 110.
  • the plurality of insulating layers 140 are spaced apart from each other, and specifically are arranged in a line along the long side of the substrate 100.
  • Each of the plurality of insulating layers 140 extends along the short side of the substrate 100, specifically, along the pair of long sides extending along the short side of the substrate 100 and the long side of the substrate 100. It has a pair of short sides that extend.
  • Each of the plurality of insulating layers 140 has an opening 142.
  • the first electrode 110, the organic layer 120, and the second electrode 130 are regions that function as the light emitting unit 150 (the first electrode 110, the organic layer 120, and the second electrode). 130 laminated structures).
  • the insulating layer 140 defines the light emitting unit 150.
  • the light emitting unit 150 (opening 142) extends along the short side of the substrate 100. Specifically, the light emitting unit 150 (opening 142) extends along the pair of long sides extending along the short side of the substrate 100 and the long side of the substrate 100. It has a pair of short sides that extend.
  • the light emitting device 10 includes a sealing member 200.
  • the sealing member 200 seals the first surface 102 of the substrate 100, the first electrode 110, the organic layer 120, the second electrode 130, and the insulating layer 140.
  • the sealing member 200 has an adhesive layer 210 and a covering layer 220.
  • the adhesive layer 210 covers the first surface 102 of the substrate 100, the first electrode 110, the organic layer 120, the second electrode 130, and the insulating layer 140.
  • the adhesive layer 210 includes, for example, an organic material.
  • the covering layer 220 is attached to the first surface 102 of the substrate 100 via the adhesive layer 210.
  • the coating layer 220 has translucency and is, for example, a glass substrate.
  • the covering layer 220 covers at least one of the plurality of sealing portions 160, and covers all of the plurality of sealing portions 160 in the example shown in the drawing. Note that each of the plurality of coating layers 220 may cover each of the plurality of sealing portions 160.
  • the covering layer 220 functions as a protective member for protecting the sealing portion 160 from external impacts.
  • the outgas from the interface between the adhesive layer 210 and the coating layer 220 or from the adhesive layer 210 may contain water vapor.
  • Such water vapor can cause deterioration of the organic layer 120.
  • the substrate 100 and the second electrode 130 (sealing portion 160) function as a barrier layer for blocking water vapor. For this reason, water vapor is prevented from entering the organic layer 120.
  • the light emitting device 10 includes a substrate 100, a first electrode 110, an organic layer 120, a second electrode 130 (sealing portion 160), and an insulating layer 140.
  • the substrate 100 has a first surface 102 and a second surface 104.
  • the second surface 104 is on the opposite side of the first surface 102.
  • the first electrode 110, the organic layer 120, the second electrode 130, and the insulating layer 140 are on the first surface 102 of the substrate 100.
  • the first electrode 110, the organic layer 120, and the second electrode 130 have a region that functions as the light emitting unit 150. In this region, the first electrode 110, the organic layer 120, and The second electrodes 130 overlap each other.
  • the substrate 100 has translucency. Specifically, in the example shown in the figure, the substrate 100 is a glass substrate, in other words, includes an inorganic material (that is, glass). The water vapor transmission rate of glass is low. In this way, the substrate 100 functions as a barrier layer for blocking water vapor. In the example shown in this drawing, a part of the surface of the glass substrate described above functions as the first surface 102 of the substrate 100. Thus, the 1st surface 102 of the board
  • the substrate 100 may have flexibility.
  • the flexibility of the light emitting device 10 is suppressed from being hindered by the sealing portion 160.
  • each of the plurality of sealing portions 160 seals each of the plurality of light emitting portions 152.
  • the length of each of the plurality of sealing portions 160 is shortened in the arrangement direction of the plurality of light emitting portions 152.
  • the stress acting on the substrate 100 from the sealing portion 160 is small.
  • the first electrode 110 has translucency and conductivity.
  • the first electrode 110 includes a material having translucency and conductivity, for example, a metal oxide, for example, ITO (Indium Tin Oxide) and IZO (Indium Zinc Oxide), In 2 O 3 , ZnO, AZO (Aluminum-doped Zinc Oxide), GZO (Gallium-doped Zinc Oxide), ATO (Antimony-doped Tin Oxide), and IGZO (Indium Galium Zinc Oxide). Accordingly, light from the organic layer 120 can pass through the first electrode 110.
  • a metal oxide for example, ITO (Indium Tin Oxide) and IZO (Indium Zinc Oxide), In 2 O 3 , ZnO, AZO (Aluminum-doped Zinc Oxide), GZO (Gallium-doped Zinc Oxide), ATO (Antimony-doped Tin Oxide), and IGZO (Indium Galium Zinc Oxide).
  • the organic layer 120 includes, for example, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer.
  • the hole injection layer and the hole transport layer are connected to the first electrode 110.
  • the electron transport layer and the electron injection layer are connected to the second electrode 130.
  • the light emitting layer emits light by a voltage between the first electrode 110 and the second electrode 130.
  • the second electrode 130 (sealing portion 160) has light reflectivity, conductivity, and water vapor barrier properties.
  • the second electrode 130 includes an inorganic material having light reflectivity, conductivity, and water vapor barrier properties, such as metal, specifically, for example, Al, Ag, MgAg, Cr, Au, Cu. , Pt, and Pd.
  • the second electrode 130 preferably contains Al.
  • the light emitting device 10 is bottom emission, and most of the light from the organic layer 120 is emitted from the second surface 104 side.
  • the second electrode 130 functions as a barrier layer for blocking water vapor.
  • the second electrode 130 due to the light reflectivity of the second electrode 130 (sealing portion 160), the second electrode 130 (sealing portion 160) has a light shielding property. For this reason, in the example shown to this figure, it is suppressed that the light from the organic layer 120 leaks from the 2nd electrode 130 (sealing part 160).
  • the insulating layer 140 has translucency.
  • the insulating layer 140 includes an organic insulating material, specifically, for example, polyimide.
  • the insulating layer 140 may include an inorganic insulating material, specifically, for example, silicon oxide (SiO x ), silicon oxynitride (SiON), or silicon nitride (SiN x ).
  • the first electrode 110 has an end portion 110a and an end portion 110b
  • the organic layer 120 has an end portion 120a and an end portion 120b
  • the second electrode 130 has an end portion 130a and an end portion 130b
  • the insulating layer 140 Has an end portion 140a and an end portion 140b
  • the opening 142 has an end portion 142a and an end portion 142b.
  • the end part 110a, the end part 120a, the end part 130a, the end part 140a, and the end part 142a are oriented in the same direction.
  • the end part 110b, the end part 120b, the end part 130b, the end part 140b, and the end part 142b face the same direction, and the end part 110a, the end part 120a, the end part 130a, the end part 140a, and the end part 142a, respectively.
  • the end portion 130a functions as the first end portion 161a
  • the end portion 130b functions as the second end portion 163b.
  • the insulating layer 140 has a side surface 144a, a side surface 144b, a side surface 146a, and a side surface 146b.
  • the side surface 144a and the side surface 144b face the outside of the light emitting unit 150, and are on the end portion 110a side and the end portion 110b side of the first electrode 110, respectively.
  • the side surface 146a and the side surface 146b face the inside of the light emitting unit 150, and are respectively on the end portion 110a side and the end portion 110b side of the first electrode 110.
  • the insulating layer 140 covers the end 110a and the end 110b of the first electrode 110.
  • the end 110a and the end 110b are respectively the end 140a and the end. 142a and between end 140b and end 142b.
  • the insulating layer 140 is covered with the second electrode 130. In this way, the insulating layer 140 prevents the first electrode 110 and the second electrode 130 from contacting each other, i.e., the first electrode 110 and the second electrode 130 are not short-circuited to each other.
  • the end portion 120a and the end portion 120b of the organic layer 120 are respectively outside the end portion 142a and the end portion 142b of the opening 142, and specifically, both are on the upper surface of the insulating layer 140. Thereby, a part of the organic layer 120 covers the side surface 146a of the insulating layer 140, and another part of the organic layer 120 covers the side surface 146b of the insulating layer 140. Both the side surface 146a and the side surface 146b of the insulating layer 140 are inclined outward from the upper surface of the insulating layer 140 toward the lower surface. Thereby, the organic layer 120 becomes easy to follow along the side surface 146a and the side surface 146b. In this manner, a gap is prevented from being formed between the organic layer 120 and the side surface 146a and between the organic layer 120 and the side surface 146b.
  • the end portion 130 a and the end portion 130 b of the second electrode 130 are respectively outside the side surface 144 a and the side surface 144 b of the insulating layer 140, and specifically, both are in contact with the first surface 102 of the substrate 100. . Accordingly, a part of the second electrode 130 covers the side surface 144 a of the insulating layer 140, and another part of the organic layer 120 covers the side surface 144 b of the insulating layer 140. Both the side surface 144 a and the side surface 144 b of the insulating layer 140 are inclined to the outside of the insulating layer 140 from the upper surface to the lower surface of the insulating layer 140. Accordingly, the second electrode 130 is easily along the side surface 144a and the side surface 144b. In this way, the formation of gaps between the second electrode 130 and the side surface 144a and between the second electrode 130 and the side surface 144b is suppressed.
  • the first surface 102 of the substrate 100 has a plurality of regions 102a and a plurality of regions 102c.
  • Each of the plurality of regions 102a overlaps with each of the plurality of first electrodes 110, and in the example illustrated in this drawing, extends from the end portion 130a to the end portion 130b of the second electrode 130.
  • Each of the plurality of regions 102c does not overlap with the plurality of first electrodes 110, and in the example illustrated in the drawing, the end portion 130a of one second electrode 130 of the light emitting units 150 adjacent to each other is connected to the other first electrode 110a.
  • the two electrodes 130 extend to the end portion 130b.
  • the light emitting device 10 is perpendicular to the substrate 100 between the end portion 130a of one second electrode 130 and the end portion 130b of the other second electrode 130 of the light emitting portions 150 adjacent to each other.
  • the plurality of regions 102a and the plurality of regions 102c are arranged alternately.
  • the pitch ratio d3 / (d1 + d3) of the light emitting units 150 adjacent to each other is, for example, 0.3 or more and 0.9 or less (0.3 ⁇ d3 / (d1 + d3) ⁇ 0.9).
  • the pitch of the light emitting units 150 adjacent to each other is narrowed to some extent. Therefore, in human vision, light appears to be emitted over the entire surface including the plurality of regions 102a and the plurality of regions 102c.
  • the width of the region 102c (that is, the region where light can pass through the light emitting device 10) is increased to some extent. For this reason, in human vision, an object can be seen through the light emitting device 10 over the entire surface including the plurality of regions 102a and the plurality of regions 102c.
  • the first electrode 110 has an end portion 110d
  • the organic layer 120 has an end portion 120c and an end portion 120d
  • the second electrode 130 has an end portion 130c and an end portion 130d
  • the insulating layer 140 has an end portion 140c.
  • the opening 142 has an end 142c and an end 142d.
  • the end portion 120c, the end portion 130c, the end portion 140c, and the end portion 142c face each other in the same direction.
  • the end part 110d, the end part 120d, the end part 130d, the end part 140d, and the end part 142d face each other in the same direction.
  • the end portion 120d, the end portion 130d, the end portion 140d, and the end portion 142d are on opposite sides of the end portion 120c, the end portion 130c, the end portion 140c, and the end portion 142c, respectively.
  • the insulating layer 140 has a side surface 144c, a side surface 144d, a side surface 146c, and a side surface 146d.
  • the side surface 144c and the side surface 144d face the outside of the light emitting unit 150, and are on the first terminal 114 side and the second terminal 134 side, respectively.
  • the side surface 146c and the side surface 146d face the inside of the light emitting unit 150, and are on the first terminal 114 side and the second terminal 134 side, respectively.
  • the insulating layer 140 covers the end 110d of the first electrode 110.
  • the end 110d is between the end 140d and the end 142d in the length direction of the light emitting unit 150.
  • the insulating layer 140 is covered with the second electrode 130. In this way, the insulating layer 140 prevents the first electrode 110 and the second electrode 130 from contacting each other, i.e., the first electrode 110 and the second electrode 130 are not short-circuited to each other.
  • the edge part 120c and the edge part 120d of the organic layer 120 are respectively outside the edge part 142c and the edge part 142d of the opening 142, and specifically, both are on the upper surface of the insulating layer 140. Accordingly, a part of the organic layer 120 covers the side surface 146c of the insulating layer 140, and another part of the organic layer 120 covers the side surface 146d of the insulating layer 140. Both the side surface 146c and the side surface 146d of the insulating layer 140 are inclined outward from the upper surface of the insulating layer 140 toward the lower surface. Thereby, the organic layer 120 becomes easy to follow along the side surface 146c and the side surface 146d. In this way, gaps are prevented from being formed between the organic layer 120 and the side surface 146c and between the organic layer 120 and the side surface 146d.
  • the end portion 130c of the second electrode 130 is inside the end portion 140c of the insulating layer 140.
  • the end portion 130c is inside the end portion 120c of the organic layer 120 on the upper surface of the insulating layer 140. This prevents the second electrode 130 from coming into contact with the first connection part 112 and the first terminal 114, that is, the second electrode 130 is prevented from being short-circuited with the first connection part 112 and the first terminal 114.
  • the side surface 144c of the insulating layer 140 is inclined outward from the upper surface of the insulating layer 140 toward the lower surface.
  • the end portion 130d of the second electrode 130 is located outside the side surface 144d of the insulating layer 140, and specifically, is in contact with the upper surfaces of the second connection portion 132 and the second terminal 134. Thus, a part of the second electrode 130 covers the side surface 144d of the insulating layer 140.
  • the side surface 144d of the insulating layer 140 is inclined outward from the upper surface of the insulating layer 140 toward the lower surface. Thereby, the 2nd electrode 130 becomes easy to follow along side 144d. In this way, a gap is prevented from being formed between the second electrode 130 and the side surface 144d.
  • the second electrode 130 is located outside the end portion 110d of the first electrode 110, more specifically, between the second connection portion 132 and the insulating layer 140. It is in contact with the surface 102.
  • the organic layer 120 is surrounded by the barrier layer (that is, the substrate 100 and the sealing portion 160) from the side surface 144 d of the insulating layer 140 to the first surface 102 of the substrate 100. In this way, water vapor is prevented from entering the organic layer 120.
  • the first electrode 110, the first connection part 112, the first terminal 114, the second connection part 132, and the second terminal 134 are formed on the first surface 102 of the substrate 100.
  • the first electrode 110, the first connection part 112, the first terminal 114, the second connection part 132, and the second terminal 134 are formed by patterning a conductive layer formed by sputtering.
  • the insulating layer 140 is formed on the first electrode 110.
  • the insulating layer 140 is formed by patterning a photosensitive resin applied on the first surface 102 of the substrate 100.
  • the organic layer 120 is formed on the first electrode 110 and the insulating layer 140.
  • the organic layer 120 is formed by vapor deposition.
  • the organic layer 120 may be formed by abutting a metal mask against the insulating layer 140.
  • the organic layer 120 may be formed by application. In this case, the material of the organic layer 120 is applied in the opening 142 of the insulating layer 140.
  • the second electrode 130 is formed on the organic layer 120.
  • the second electrode 130 is formed by vacuum deposition using a mask.
  • the light emitting device 10 shown in FIGS. 1 to 8 is manufactured.
  • FIG. 9 is a diagram showing a first modification of FIG.
  • the sealing member 200 may be a sealing can 230.
  • the sealing can 230 is bonded to the first surface 102 of the substrate 100 via an adhesive (not shown).
  • a region between the second electrode 130 and the sealing can 230 is hollow.
  • a desiccant 232 is attached to the sealing can 230.
  • the interface between the sealing can 230 and the substrate 100 may contain water vapor.
  • Such water vapor can cause deterioration of the organic layer 120.
  • the substrate 100 and the second electrode 130 (sealing portion 160) function as a barrier layer for blocking water vapor. For this reason, water vapor is prevented from entering the organic layer 120.
  • Part of the sealing can 230 covers the sealing part 160 from the first surface 102 side of the substrate 100, and this part of the sealing can 230 functions as the covering layer 220 (FIG. 5). Yes.
  • the coating layer 220 (sealing can 230) functions as a protective member for protecting the sealing portion 160 from external impacts.
  • FIG. 10 is a diagram showing a second modification of FIG.
  • the sealing member 200 may be a sealing film 240.
  • the sealing film 240 covers the first surface 102 of the substrate 100, the first electrode 110, the organic layer 120, and the second electrode 130 along the surface of the second electrode 130 and the first surface 102 of the substrate 100. More specifically, the sealing film 240 extends from one of the two light emitting units 150 adjacent to each other to the other, and in the example illustrated in this drawing, covers the entire surface of the first surface 102 of the substrate 100. It has spread.
  • the sealing film 240 is made of an inorganic material such as silicon nitride (SiN x ), silicon oxynitride (SiON), silicon oxide (SiO x ), aluminum oxide (Al x O y ), or titanium oxide (TiO 2). x ), and is formed, for example, by sputtering, CVD (Chemical Vapor Deposition) or ALD (Atomic Layer Deposition).
  • the organic layer 120 is not exposed from the second electrode 130. Therefore, the sealing film 240 comes into contact with the inorganic member (that is, the first surface 102 of the substrate 100 or the surface of the sealing portion 160) in any region on the first surface 102 of the substrate 100.
  • the adhesion of the sealing film 240 to the inorganic member (that is, the first surface 102 of the substrate 100 or the surface of the sealing portion 160) is higher than the adhesion of the sealing film 240 to the organic layer 120.
  • the sealing film 240 is firmly adhered to the first surface 102 of the substrate 100.
  • each of the plurality of sealing portions 160 seals each of the plurality of light emitting portions 152. For this reason, the length of each of the plurality of sealing portions 160 is shortened in the arrangement direction of the plurality of light emitting portions 152. Thereby, even if the board
  • FIG. 11 is a cross-sectional view illustrating the light emitting device 10 according to Example 1, and corresponds to FIG. 6 of the embodiment.
  • the light emitting device 10 according to this example is the same as the light emitting device 10 according to the embodiment except for the following points.
  • the substrate 100 includes a resin substrate 100a and an inorganic layer 100b.
  • the inorganic layer 100b is coated on the surface on the first surface 102 side of the resin substrate 100a.
  • the resin substrate 100a functions as a first layer including a resin material, for example, PEN (polyethylene naphthalate), PES (polyethersulfone), PET (polyethylene terephthalate), or polyimide, and the inorganic layer 100b.
  • PEN polyethylene naphthalate
  • PES polyethersulfone
  • PET polyethylene terephthalate
  • polyimide polyimide
  • the inorganic layer 100 b has a surface opposite to the resin substrate 100 a, and this surface of the inorganic layer 100 b functions as the first surface 102 of the substrate 100.
  • substrate 100 contains the inorganic material.
  • the inorganic layer 100b has a water vapor barrier property. In this case, even if the water vapor transmission rate of the resin substrate 100a is high, the water vapor from the resin substrate 100a can be prevented from entering the organic layer 120.
  • each of the plurality of sealing portions 160 seals each of the plurality of light emitting portions 152.
  • the length of each of the plurality of sealing portions 160 is shortened in the arrangement direction of the plurality of light emitting portions 152.
  • the substrate 100 has flexibility.
  • the flexibility of the light emitting device 10 is suppressed from being hindered by the sealing portion 160.
  • each of the plurality of sealing portions 160 seals each of the plurality of light emitting portions 152.
  • the length of each of the plurality of sealing portions 160 is shortened in the arrangement direction of the plurality of light emitting portions 152.
  • the stress acting on the substrate 100 from the sealing portion 160 is small.
  • FIG. 12 is a diagram showing a modification of FIG.
  • the substrate 100 may have an inorganic layer 100c.
  • the inorganic layer 100c is coated on the surface of the resin substrate 100a on the second surface 104 side.
  • the inorganic layer 100c includes an inorganic material, for example, silicon nitride (SiN x ), silicon oxynitride (SiON), silicon oxide (SiO x ), or aluminum oxide (Al x O y ).
  • the inorganic layer 100c has a water vapor barrier property. Thereby, it is possible to prevent the water vapor on the second surface 104 side from entering the resin substrate 100a.
  • FIG. 13 is a cross-sectional view illustrating the light emitting device 10 according to Example 2, and corresponds to FIG. 6 of the embodiment.
  • the light emitting device 10 according to this example is the same as the light emitting device 10 according to the embodiment except for the following points.
  • the light emitting device 10 includes a second electrode 130 and a sealing portion 160.
  • the sealing portion 160 covers the second electrode 130, and is disposed on the first surface 102 of the substrate 100 outside the end portions of the first electrode 110 (the end portion 110 a and the end portion 110 b in the example shown in the figure). It touches.
  • the sealing part 160 is an inorganic layer.
  • the sealing part 160 is a barrier material such as silicon nitride (SiN x ), silicon oxynitride (SiON), or silicon oxide (SiO x ).
  • SiN x silicon nitride
  • SiON silicon oxynitride
  • SiO x silicon oxide
  • the sealing part 160 has a water vapor barrier property. For this reason, it is suppressed that water vapor
  • FIG. 1 A water vapor barrier property.
  • the organic layer 120 can be covered with the barrier layer (that is, the sealing portion 160) without increasing the width of the second electrode 130. For this reason, it is possible to prevent the width of the light shielding region (that is, the region overlapping with the second electrode 130) from increasing.
  • the end portion 130a and the end portion 130b of the second electrode 130 are inside the end portion 140a and the end portion 140b of the insulating layer 140, respectively.
  • the upper surface of the insulating layer 140 is provided. Above, they are inside the end 120a and the end 120b of the organic layer 120, respectively.
  • the sealing part 160 has an end part 160a and an end part 160b.
  • the end part 160a and the end part 160b of the sealing part 160 are on the end part 110a side and the end part 110b side of the first electrode 110, respectively. More specifically, the end portion 160a and the end portion 160b of the sealing portion 160 overlap the non-light emitting portion 154 on the outside of the end portion 140a and the end portion 140b of the insulating layer 140, respectively.
  • each of the plurality of sealing portions 160 seals each of the plurality of light emitting portions 152.
  • the length of each of the plurality of sealing portions 160 is shortened in the arrangement direction of the plurality of light emitting portions 152. Thereby, even if the board
  • the sealing part 160 has translucency. For this reason, it is suppressed that the light transmittance of the light-emitting device 10 is inhibited by the sealing portion 160.
  • the first surface 102 of the substrate 100 has a plurality of regions 102a, a plurality of regions 102b, and a plurality of regions 102c.
  • Each of the plurality of regions 102a overlaps the light shielding member (second electrode 130 in the example shown in the figure), and in the example shown in the figure, extends from the end part 130a to the end part 130b of the second electrode 130. Yes.
  • Each of the plurality of regions 102b does not overlap with the light shielding member (the second electrode 130 in the example shown in this figure), and the light transmitting member (the insulating layer 140 and the sealing portion 160 in the example shown in this figure).
  • each of the plurality of regions 102c does not overlap with the light shielding member (second electrode 130 in the example shown in this figure) and the light transmitting member (in the example shown in this figure, the insulating layer 140 and the sealing portion 160).
  • the two light emitting units 150 adjacent to each other extend from the end 160a of one sealing unit 160 to the end 160b of the other sealing unit 160.
  • Each of the plurality of regions 102 a overlaps each of the plurality of first electrodes 110.
  • Each of the plurality of regions 102 c does not overlap with the plurality of first electrodes 110.
  • the plurality of regions 102a and the plurality of regions 102c are viewed among the plurality of regions 102a, the plurality of regions 102b, and the plurality of regions 102c, the plurality of regions 102a and the plurality of regions 102c are alternately arranged.
  • the width d2 of the region 102b is shorter than the width d3 of the region 102c. For this reason, the light transmittance of the light emitting device 10 is high.
  • the region 102b overlaps with the translucent member (the insulating layer 140 and the sealing portion 160), whereas the region 102c does not overlap with such a translucent member. For this reason, the light transmittance of the region 102c is higher than the light transmittance of the region 102b. Thereby, the light transmittance of the light-emitting device 10 is high.
  • the light emitting device 10 is suppressed from functioning as a filter that blocks light of a specific wavelength.
  • the light transmittance of the insulating layer 140 and the light transmittance of the sealing portion 160 may differ depending on the wavelength.
  • the insulating layer 140 and the sealing portion 160 can function as a filter that blocks light of a specific wavelength.
  • the width d2 of the region 102b is narrow, specifically, narrower than the width d3 of the region 102c. For this reason, it is suppressed that the light-emitting device 10 functions as a filter which interrupts
  • the width d2 of the region 102b is, for example, 0 to 0.3 times (0 ⁇ d2 / d1 ⁇ 0.3) the width d1 of the region 102a.
  • the width d3 of the region 102c is, for example, not less than 0.3 times and not more than 3 times the width d1 of the region 102a (0.3 ⁇ d3 / d1 ⁇ 3).
  • the width d1 of the region 102a is, for example, not less than 50 ⁇ m and not more than 500 ⁇ m.
  • the width d2 of the region 102b is, for example, not less than 0 ⁇ m and not more than 100 ⁇ m.
  • the width d3 of the region 102c is 15 ⁇ m or more and 1000 ⁇ m or less.
  • FIG. 14 is a cross-sectional view illustrating the light emitting device 10 according to Example 3, and corresponds to FIG. 6 of the embodiment.
  • the light emitting device 10 according to this example is the same as the light emitting device 10 according to the embodiment except for the following points.
  • the first electrode 110 has light reflectivity and conductivity.
  • the first electrode 110 includes a material having light reflectivity and conductivity, and includes, for example, metal, specifically, for example, at least one of Al, Ag, and MgAg.
  • the light emitting device 10 is top emission, and most of the light from the organic layer 120 is emitted from the first surface 102 side.
  • the second electrode 130 (sealing portion 160) has translucency, conductivity, and water vapor barrier properties.
  • the second electrode 130 includes an inorganic material having translucency, conductivity, and water vapor barrier properties, such as a metal oxide, specifically, for example, ITO, IZO, In 2 O 3 , It contains at least one of ZnO, AZO, GZO, ATO and IGZO.
  • the second electrode 130 functions as a barrier layer for blocking water vapor.
  • the first surface 102 of the substrate 100 has a plurality of regions 102a, a plurality of regions 102b, and a plurality of regions 102c.
  • Each of the plurality of regions 102a overlaps the light shielding member (first electrode 110 in the example shown in the figure), and in the example shown in the figure, extends from the end 110a to the end 110b of the first electrode 110. Yes.
  • Each of the plurality of regions 102b does not overlap with the light shielding member (the first electrode 110 in the example shown in the figure), and the light transmitting member (the second electrode 130 and the insulating layer 140 in the example shown in the figure).
  • each of the plurality of regions 102c does not overlap with the light shielding member (the first electrode 110 in the example shown in this figure) and the light transmitting member (the second electrode 130 and the insulating layer 140 in the example shown in this figure).
  • the two light emitting units 150 adjacent to each other extend from the end 130a of one second electrode 130 to the end 130b of the other second electrode 130.
  • Each of the plurality of regions 102 a overlaps each of the plurality of first electrodes 110.
  • Each of the plurality of regions 102 c does not overlap with the plurality of first electrodes 110.
  • the plurality of regions 102a and the plurality of regions 102c are arranged alternately.
  • the width d2 of the region 102b is shorter than the width d3 of the region 102c. For this reason, the light transmittance of the light emitting device 10 is high for the same reason as described with reference to FIG. Furthermore, it is suppressed that the light emitting device 10 functions as a filter that blocks light of a specific wavelength.
  • each of the plurality of sealing portions 160 seals each of the plurality of light emitting portions 152.
  • the length of each of the plurality of sealing portions 160 is shortened in the arrangement direction of the plurality of light emitting portions 152.
  • FIG. 15 is a plan view showing the light emitting device 10 according to Example 4, and corresponds to FIG. 4 of the embodiment.
  • 16 is a cross-sectional view taken along the line BB of FIG. 15, and corresponds to FIG. 6 of the embodiment.
  • the light emitting device 10 according to this example is the same as the light emitting device 10 according to the embodiment except for the following points.
  • the light emitting device 10 includes a plurality of conductive portions 170 (conductive portions 172 and conductive portions 174).
  • the conductive part 172 and the conductive part 174 extend along the length direction of the first electrode 110.
  • the conductive portion 172 is on the upper surface of the first electrode 110 in the vicinity of the end portion 110 a of the first electrode 110 and is covered with the insulating layer 140.
  • the conductive portion 174 is on the upper surface of the first electrode 110 in the vicinity of the end portion 110 b of the first electrode 110 and is covered with the insulating layer 140.
  • the conductive portion 172 and the conductive portion 174 function as auxiliary electrodes for the first electrode 110 and are electrically connected to the first electrode 110. Specifically, the conductivity of the conductive part 172 and the conductivity of the conductive part 174 are higher than the conductivity of the first electrode 110.
  • the conductive part 172 and the conductive part 174 include, for example, Al, Ag, an Al alloy, or an Ag alloy. In this way, a voltage drop due to the first electrode 110 can be suppressed.
  • FIG. 17 is a plan view illustrating the light emitting device 10 according to Example 5, and corresponds to FIG. 4 of the embodiment.
  • FIG. 18 is a cross-sectional view taken along the line BB of FIG. 17 and corresponds to FIG. 6 of the embodiment.
  • the light emitting device 10 according to this example is the same as the light emitting device 10 according to the embodiment except for the following points.
  • the light emitting device 10 includes a plurality of insulating layers 180 (insulating layers 182 and 184).
  • the plurality of insulating layers 180 extend along the length direction of the light emitting unit 150.
  • the insulating layer 182 and the insulating layer 184 face each other with the insulating layer 140 interposed therebetween.
  • the insulating layer 182 has an end 182a, an end 182b, a side 182c, and a side 184d.
  • the end portion 182a faces the outside of the light emitting unit 150.
  • the end 182b is on the opposite side of the end 182a and faces the inside of the light emitting unit 150.
  • the side surface 182c faces the outside of the light emitting unit 150.
  • the side surface 182d is on the opposite side of the side surface 182c and faces the inside of the light emitting unit 150.
  • the insulating layer 184 includes an end portion 184a, an end portion 184b, a side surface 184c, and a side surface 184d.
  • the end portion 184a faces the outside of the light emitting unit 150.
  • the end 184 b is on the opposite side of the end 184 a and faces the inside of the light emitting unit 150.
  • the side surface 184 c faces the outside of the light emitting unit 150.
  • the side surface 184d is on the opposite side of the side surface 184c and faces the inside of the light emitting unit 150.
  • the insulating layer 182 and the insulating layer 184 include an organic insulating material, specifically, for example, polyimide.
  • the insulating layer 182 and the insulating layer 184 include an inorganic insulating material, specifically, for example, silicon oxide (SiO x ), silicon oxynitride (SiON), or silicon nitride (SiN x ). You may go out.
  • the insulating layer 182 and the insulating layer 184 are on the first surface 102 of the substrate 100.
  • the insulating layer 182 and the insulating layer 184 are located outside the end portion 110a and the end portion 110b of the first electrode 110, respectively, and are separated from the end portion 140a and the end portion 140b of the insulating layer 140, respectively.
  • the second electrode 130 is in contact with the first surface 102 of the substrate 100 between the end portion 140 a of the insulating layer 140 and the end portion 182 b of the insulating layer 182, and the end portion 140 b of the insulating layer 140 and the end portion of the insulating layer 184. It is in contact with the first surface 102 of the substrate 100 between 184b.
  • the second electrode 130 when the second electrode 130 is formed, the second electrode 130 can be deposited by abutting a metal mask against the upper surface of the insulating layer 182 and the upper surface of the insulating layer 184. For this reason, the width of the second electrode 130 can be precisely controlled. Furthermore, in the example shown in this drawing, the thickness of the insulating layer 182 and the thickness of the insulating layer 184 are substantially equal to each other. Therefore, when the second electrode 130 is deposited using a metal mask, the metal mask is placed on the upper surface of the insulating layer 182 and the upper surface of the insulating layer 184 so that the metal mask is substantially parallel to the first surface 102 of the substrate 100. You can hit it.
  • the metal mask is abutted against the upper surface of the insulating layer 182 and the upper surface of the insulating layer 184, it is not necessary to abut the metal mask against the upper surface of the insulating layer 140. If the metal mask is abutted against the upper surface of the insulating layer 140, the insulating layer 140 and the light emitting unit 150 may be damaged. In the example shown in the figure, the possibility of such damage can be reduced as much as possible.
  • the end portion 130a of the second electrode 130 is between the end portion 182a and the end portion 182b of the insulating layer 184 in the width direction of the light emitting unit 150, and is on the upper surface of the insulating layer 182 in the example shown in this drawing.
  • the second electrode 130 covers at least a part of the insulating layer 182. Accordingly, the second electrode 130 covers the first surface 102 of the substrate 100 between the end portion 140 a of the insulating layer 140 and the end portion 182 b of the insulating layer 182. It comes in contact with the surface 102 reliably.
  • the end portion 130b of the second electrode 130 is between the end portion 184a and the end portion 184b of the insulating layer 184 in the width direction of the light emitting unit 150, and is on the upper surface of the insulating layer 184 in the example shown in this drawing. In this way, the second electrode 130 covers at least a part of the insulating layer 184. Accordingly, the second electrode 130 covers the first surface 102 of the substrate 100 between the end portion 140b of the insulating layer 140 and the end portion 184b of the insulating layer 184. It comes in contact with the surface 102 reliably.
  • the side surface 182 d of the insulating layer 182 is covered with a part of the second electrode 130.
  • the side surface 182d is inclined to the outside of the insulating layer 182 as it goes from the upper surface to the lower surface of the insulating layer 182. Thereby, the 2nd electrode 130 becomes easy to follow along side 182d. For this reason, the formation of a gap between the second electrode 130 and the side surface 182d is suppressed.
  • the side surface 182c is also inclined to the outside of the insulating layer 182 from the upper surface to the lower surface of the insulating layer 182.
  • the side surface 184 d of the insulating layer 184 is covered with a part of the second electrode 130.
  • the side surface 184d is inclined to the outside of the insulating layer 184 as it goes from the upper surface to the lower surface of the insulating layer 184.
  • the 2nd electrode 130 becomes easy to follow along side 184d.
  • the side surface 184c is also inclined to the outside of the insulating layer 184 as it goes from the upper surface to the lower surface of the insulating layer 184.
  • the first surface 102 of the substrate 100 has a plurality of regions 102a, a plurality of regions 102b, and a plurality of regions 102c.
  • Each of the plurality of regions 102a overlaps the light shielding member (second electrode 130 in the example shown in the figure), and in the example shown in the figure, extends from the end part 130a to the end part 130b of the second electrode 130. Yes.
  • Each of the plurality of regions 102b does not overlap with the light shielding member (second electrode 130 in the example shown in this figure) but overlaps with the light transmitting member (insulating layer 180 in the example shown in this figure).
  • each of the plurality of regions 102c does not overlap with the light shielding member (second electrode 130 in the example shown in this figure) and the light transmitting member (insulating layer 180 in the example shown in this figure), and the example shown in this figure. Then, it extends from the end 182 a of one insulating layer 182 of the two light emitting units 150 adjacent to each other to the end 184 a of the other insulating layer 184.
  • Each of the plurality of regions 102 a overlaps each of the plurality of first electrodes 110.
  • Each of the plurality of regions 102 c does not overlap with the plurality of first electrodes 110.
  • the plurality of regions 102a and the plurality of regions 102c are viewed among the plurality of regions 102a, the plurality of regions 102b, and the plurality of regions 102c, the plurality of regions 102a and the plurality of regions 102c are alternately arranged.
  • the width d2 of the region 102b is shorter than the width d3 of the region 102c. For this reason, the light transmittance of the light emitting device 10 is high for the same reason as described with reference to FIG. Furthermore, it is suppressed that the light emitting device 10 functions as a filter that blocks light of a specific wavelength.
  • each of the plurality of sealing portions 160 seals each of the plurality of light emitting portions 152.
  • the length of each of the plurality of sealing portions 160 is shortened in the arrangement direction of the plurality of light emitting portions 152.
  • FIG. 19 is a plan view illustrating the light emitting device 10 according to the sixth embodiment, which corresponds to FIG. 17 of the fifth embodiment.
  • 20 is a cross-sectional view taken along the line BB in FIG. 19 and corresponds to FIG. 18 in the fifth embodiment.
  • the light emitting device 10 according to the present example is the same as the light emitting device 10 according to the example 5 except for the following points.
  • the light emitting device 10 includes a plurality of dummy electrodes 190 (a dummy electrode 191, a dummy electrode 192, a dummy electrode 193, a dummy electrode 194, a dummy electrode 195, and a dummy electrode 196).
  • the plurality of dummy electrodes 190 extend along the length direction of the light emitting unit 150.
  • the plurality of dummy electrodes 190 are on the first surface 102 of the substrate 100.
  • the dummy electrode 191 and the dummy electrode 192 are covered with the insulating layer 140.
  • the end portion 140a and the end portion 140b of the insulating layer 140 are on the upper surface of the dummy electrode 191 and the upper surface of the dummy electrode 192, respectively. is there.
  • the dummy electrode 193 and the dummy electrode 194 are covered with an insulating layer 182.
  • the end portion 182a and the end portion 182b of the insulating layer 182 are on the upper surface of the dummy electrode 193 and the upper surface of the dummy electrode 194, respectively. is there.
  • the dummy electrode 195 and the dummy electrode 196 are covered with an insulating layer 184. Specifically, the end 184a and the end 184b of the insulating layer 184 are on the upper surface of the dummy electrode 195 and the upper surface of the dummy electrode 196, respectively. is there.
  • the dummy electrode 190 has translucency and conductivity.
  • the dummy electrode 190 includes a material having translucency and conductivity, for example, a metal oxide, specifically, for example, ITO, IZO, In 2 O 3 , ZnO, AZO, GZO, At least one of ATO and IGZO is included.
  • the dummy electrode 190 includes the same material as that of the first electrode 110, for example.
  • the adhesion of the insulating layer 140 to the dummy electrode 191 and the dummy electrode 192 is higher than the adhesion of the insulating layer 140 to the first surface 102 of the substrate 100. Further, the adhesion of the dummy electrode 191 and the dummy electrode 192 to the first surface 102 of the substrate 100 is higher than the adhesion of the insulating layer 140 to the first surface 102 of the substrate 100.
  • the dummy electrode 191 functions as an adhesive layer for preventing the end portion 140 a of the insulating layer 140 from peeling from the first surface 102 of the substrate 100, and the dummy electrode 192 is the insulating layer 140.
  • This end portion 140 b functions as an adhesive layer for preventing the end portion 140 b from peeling from the first surface 102 of the substrate 100.
  • the adhesion of the insulating layer 182 to the dummy electrode 193 and the dummy electrode 194 is higher than the adhesion of the insulating layer 182 to the first surface 102 of the substrate 100. Further, the adhesion of the dummy electrode 193 and the dummy electrode 194 to the first surface 102 of the substrate 100 is higher than the adhesion of the insulating layer 182 to the first surface 102 of the substrate 100.
  • the dummy electrode 193 functions as an adhesive layer for preventing the end portion 182a of the insulating layer 182 from peeling from the first surface 102 of the substrate 100, and the dummy electrode 194 includes the insulating layer 182. This end portion 182b functions as an adhesive layer for preventing the first surface 102 of the substrate 100 from peeling off.
  • the adhesion of the insulating layer 184 to the dummy electrode 195 and the dummy electrode 196 is higher than the adhesion of the insulating layer 184 to the first surface 102 of the substrate 100. Further, the adhesion of the dummy electrode 195 and the dummy electrode 196 to the first surface 102 of the substrate 100 is higher than the adhesion of the insulating layer 184 to the first surface 102 of the substrate 100.
  • the dummy electrode 195 functions as an adhesive layer for preventing the end portion 184a of the insulating layer 184 from peeling from the first surface 102 of the substrate 100, and the dummy electrode 196 includes the insulating layer 184.
  • This end portion 184 b functions as an adhesive layer for preventing the end portion 184 b from peeling from the first surface 102 of the substrate 100.
  • FIG. 21 is a plan view showing the light emitting device 10 according to Example 7, and corresponds to FIG. 4 of the embodiment. 22 is a cross-sectional view taken along the line EE of FIG.
  • the light emitting device 10 according to this example is the same as the light emitting device 10 according to the embodiment except for the following points.
  • the first electrode 110 has an end portion 110a, an end portion 110b, an end portion 110c, and an end portion 110d.
  • the end part 110 a and the end part 110 b extend along the length direction of the first electrode 110.
  • the end portion 110 c and the end portion 110 d extend along the width direction of the first electrode 110.
  • the end portion 110 c is connected to the first terminal 114 via the first connection portion 112.
  • the width of the first connection part 112 is narrower than the width of the first electrode 110.
  • the end portion 110d is on the opposite side of the end portion 110c and faces the second terminal 134.
  • the second electrode 130 is formed on the first surface 102 of the substrate 100 outside the end portion 110 c of the first electrode 110, more specifically, between the insulating layer 140 and the first terminal 114. It touches.
  • the organic layer 120 is surrounded by the barrier layer (that is, the substrate 100 and the second electrode 130) from the side surface 144c of the insulating layer 140 to the first surface 102 of the substrate 100. In this way, water vapor is prevented from entering the organic layer 120.
  • the second electrode 130 is not in contact with the first connection part 112 and the first terminal 114. For this reason, the second electrode 130 is prevented from being short-circuited with the first connection portion 112 and the first terminal 114.
  • FIG. 23 is a cross-sectional view illustrating the light emitting device 10 according to Example 8, and corresponds to FIG. 6 of the embodiment.
  • the light emitting device 10 according to this example is the same as the light emitting device 10 according to the embodiment except for the following points.
  • the sealing portion 160 may include an adhesive layer 162 and a covering layer 164.
  • the adhesive layer 162 covers the first surface 102 of the substrate 100, the first electrode 110, the organic layer 120, the second electrode 130, and the insulating layer 140.
  • the adhesive layer 162 includes, for example, an organic material.
  • the covering layer 164 is attached to the first surface 102 of the substrate 100 via the adhesive layer 162.
  • the covering layer 164 has translucency, and is a glass substrate, for example.
  • the sealing part 160 has an end part 160a and an end part 160b.
  • the end part 160a and the end part 160b of the sealing part 160 are on the end part 110a side and the end part 110b side of the first electrode 110, respectively. More specifically, the end portion 160a and the end portion 160b of the sealing portion 160 overlap the non-light emitting portion 154 on the outside of the end portion 140a and the end portion 140b of the insulating layer 140, respectively.
  • each of the plurality of sealing portions 160 seals each of the plurality of light emitting portions 152.
  • the length of each of the plurality of sealing portions 160 is shortened in the arrangement direction of the plurality of light emitting portions 152. Thereby, even if the board
  • FIG. 24 is a cross-sectional view illustrating the light emitting device 10 according to Example 9, and corresponds to FIG. 6 of the embodiment.
  • the light emitting device 10 according to this example is the same as the light emitting device 10 according to the embodiment except for the following points.
  • the sealing portion 160 may include a sealing can 166 and an adhesive layer 168.
  • the sealing can 166 is bonded to the first surface 102 of the substrate 100 through the adhesive layer 168.
  • the sealing can 166 covers the first electrode 110, the organic layer 120, the second electrode 130, and the insulating layer 140 with a hollow region interposed therebetween.
  • the sealing part 160 has an end part 160a and an end part 160b.
  • the end part 160a and the end part 160b of the sealing part 160 are on the end part 110a side and the end part 110b side of the first electrode 110, respectively. More specifically, the end portion 160a and the end portion 160b of the sealing portion 160 overlap the non-light emitting portion 154 on the outside of the end portion 140a and the end portion 140b of the insulating layer 140, respectively.
  • each of the plurality of sealing portions 160 seals each of the plurality of light emitting portions 152.
  • the length of each of the plurality of sealing portions 160 is shortened in the arrangement direction of the plurality of light emitting portions 152. Thereby, even if the board
  • Example 10 is a cross-sectional view illustrating the light emitting device 10 according to Example 10, and corresponds to FIG. 5 of the embodiment.
  • the light emitting device 10 according to this example is the same as the light emitting device 10 according to the embodiment except for the following points.
  • the first electrode 110 extends planarly on the first surface 102 of the substrate 100.
  • the plurality of insulating layers 140 are on the first electrode 110.
  • Each of the plurality of insulating layers 140 has an opening 142.
  • Each of the plurality of organic layers 120 and each of the plurality of second electrodes 130 overlap with each of the plurality of openings 142.
  • the plurality of light emitting units 152 are positioned on the first surface 102 of the substrate 100. In other words, the plurality of light emitting units 152 are configured by the common first electrode 110.
  • the sealing part 160 covers the second electrode 130 and is in contact with the first electrode 110 outside the insulating layer 140. Thereby, the sealing part 160 has sealed the light emission part 152 (especially organic layer 120).
  • the sealing part 160 is an insulating layer, more specifically, for example, an inorganic insulating layer. For this reason, in the example shown in this drawing, the second electrode 130 is prevented from being short-circuited to the first electrode 110. Furthermore, the sealing part 160 may have translucency. In this case, it is suppressed that the light transmittance of the light emitting device 10 is inhibited by the sealing portion 160.
  • each of the plurality of sealing portions 160 is shortened in the arrangement direction of the plurality of light emitting portions 152. For this reason, even if the substrate 100 is curved along the arrangement direction of the plurality of light emitting portions 152, the bending stress generated in each of the plurality of sealing portions 160 is small.

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

A plurality of sealing portions (160) respectively seal a plurality of light-emitting portions (152). A first sealing portion (161) and a second sealing portion (163) among the plurality of sealing portions (160) respectively seal a first light-emitting portion (151) and a second light-emitting portion (153) among the plurality of light-emitting portions (152). The first sealing portion (161) and the second sealing portion (163) are adjacent to one another, and the first light-emitting portion (151) and the second light-emitting portion (153) are adjacent to one another. The first sealing portion (161) and the second sealing portion (163) respectively have a first end portion (161a) and a second end portion (163b). The first end portion (161a) and the second end portion (163b) overlap with a non-light-emitting portion (154) between the first light-emitting portion (151) and the second light-emitting portion (153).

Description

発光装置Light emitting device
 本発明は、発光装置に関する。 The present invention relates to a light emitting device.
 近年、発光装置として有機発光ダイオード(OLED)が開発されている。OLEDの発光部は、有機層を有しており、有機層のエレクトロルミネッセンスにより光を発する。 Recently, organic light emitting diodes (OLEDs) have been developed as light emitting devices. The light emitting part of the OLED has an organic layer, and emits light by electroluminescence of the organic layer.
 OLEDでは、水によって有機層が劣化することがある。特許文献1には、OLEDに関して、水分が有機層に侵入しないようにさせる構造について記載されている。特許文献1に記載のOLEDは、第1電極、絶縁層、有機層及び第2電極を備えている。絶縁層は、第1電極の一部を露出する開口を有している。有機層は、絶縁層の開口と重なっている。第2電極は、絶縁層の開口と重なっており、有機層の全体を覆っている。これにより、有機層に水分が侵入することが防止されている。第2電極の端部は、絶縁層上にあって第1電極に接していない。これにより、第1電極と第2電極の短絡が防止されている。 In OLED, the organic layer may be deteriorated by water. Patent Document 1 describes a structure for preventing moisture from entering an organic layer with respect to an OLED. The OLED described in Patent Document 1 includes a first electrode, an insulating layer, an organic layer, and a second electrode. The insulating layer has an opening exposing a part of the first electrode. The organic layer overlaps the opening of the insulating layer. The second electrode overlaps the opening of the insulating layer and covers the entire organic layer. This prevents moisture from entering the organic layer. The end of the second electrode is on the insulating layer and is not in contact with the first electrode. Thereby, the short circuit of the 1st electrode and the 2nd electrode is prevented.
 さらに、OLEDでは、発光部を封止部で封止することがある。特許文献2には、発光部を封止する方法の一例について記載されている。特許文献2のOLEDは、第1基板、複数の発光部、第2基板及び複数の封止材を備えている。複数の発光部は、第1基板上にある。第2基板は、複数の発光部が第1基板と第2基板の間に位置するように第1基板に重なっている。複数の封止材のそれぞれは、第1基板と第2基板の間にあって、複数の発光部のそれぞれを囲んでいる。このようにして、第2基板及び複数の封止材が封止部として機能している。 Furthermore, in the OLED, the light emitting part may be sealed with a sealing part. Patent Document 2 describes an example of a method for sealing a light emitting unit. The OLED of Patent Document 2 includes a first substrate, a plurality of light emitting units, a second substrate, and a plurality of sealing materials. The plurality of light emitting units are on the first substrate. The second substrate overlaps the first substrate such that the plurality of light emitting units are located between the first substrate and the second substrate. Each of the plurality of sealing materials is between the first substrate and the second substrate and surrounds each of the plurality of light emitting units. In this way, the second substrate and the plurality of sealing materials function as a sealing portion.
特開2014-154566号公報JP 2014-154666 A 特開2006-172795号公報JP 2006-172895 A
 上記したように、OLEDでは、封止部を基板上に設けることがある。一方、このような封止部を設けた場合において基板を湾曲させたとき、封止部に曲げ応力が生じることになる。このような曲げ応力は、例えば、封止部を基板から剥離させ、又は封止部を破損するように封止部に作用することがある。 As described above, in the OLED, a sealing portion may be provided on the substrate. On the other hand, when such a sealing portion is provided, when the substrate is bent, bending stress is generated in the sealing portion. Such bending stress may act on the sealing portion so that the sealing portion is peeled off from the substrate or the sealing portion is damaged, for example.
 本発明が解決しようとする課題としては、OLEDにおいて、基板を湾曲させた場合に封止部に生じる曲げ応力を小さくすることが一例として挙げられる。 An example of a problem to be solved by the present invention is to reduce bending stress generated in a sealing portion when a substrate is bent in an OLED.
 請求項1に記載の発明は、
 第1面を有する基板と、
 前記基板の前記第1面側に位置し、第1電極、有機層及び第2電極の積層構造をそれぞれ含む複数の発光部と、
 前記複数の発光部のうち互いに隣り合う第1発光部と第2発光部の間に位置する非発光部と、
 前記第1発光部を封止する第1封止部と、
 前記第2発光部を封止する第2封止部と、
を備え、
 前記第1封止部は、前記非発光部と重なる第1端部を有し、
 前記第2封止部は、前記非発光部と重なる第2端部を有する発光装置である。
The invention described in claim 1
A substrate having a first surface;
A plurality of light emitting units located on the first surface side of the substrate and each including a stacked structure of a first electrode, an organic layer, and a second electrode;
A non-light emitting part located between the first light emitting part and the second light emitting part adjacent to each other among the plurality of light emitting parts;
A first sealing portion for sealing the first light emitting portion;
A second sealing portion for sealing the second light emitting portion;
With
The first sealing portion has a first end overlapping the non-light emitting portion,
The second sealing portion is a light emitting device having a second end overlapping the non-light emitting portion.
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。 The above-described object and other objects, features, and advantages will be further clarified by a preferred embodiment described below and the following drawings attached thereto.
実施形態に係る発光装置を示す平面図である。It is a top view which shows the light-emitting device which concerns on embodiment. 図1から有機層及び第2電極を取り除いた図である。It is the figure which removed the organic layer and the 2nd electrode from FIG. 図2から絶縁層を取り除いた図である。It is the figure which removed the insulating layer from FIG. 図2に示した領域αを拡大した図である。It is the figure which expanded the area | region (alpha) shown in FIG. 図1のA-A断面図である。FIG. 2 is a cross-sectional view taken along the line AA in FIG. 図4のB-B断面図である。FIG. 5 is a sectional view taken along line BB in FIG. 4. 図4のC-C断面図である。FIG. 5 is a cross-sectional view taken along the line CC of FIG. 図4のD-D断面図である。FIG. 5 is a DD cross-sectional view of FIG. 4. 図5の第1の変形例を示す図である。It is a figure which shows the 1st modification of FIG. 図5の第2の変形例を示す図である。It is a figure which shows the 2nd modification of FIG. 実施例1に係る発光装置を示す断面図である。1 is a cross-sectional view illustrating a light emitting device according to Example 1. FIG. 図11の変形例を示す図である。It is a figure which shows the modification of FIG. 実施例2に係る発光装置を示す断面図である。6 is a cross-sectional view showing a light emitting device according to Example 2. FIG. 実施例3に係る発光装置を示す断面図である。6 is a cross-sectional view illustrating a light emitting device according to Example 3. FIG. 実施例4に係る発光装置を示す平面図である。6 is a plan view showing a light emitting device according to Example 4. FIG. 図15のB-B断面図である。FIG. 16 is a sectional view taken along line BB in FIG. 実施例5に係る発光装置を示す平面図である。6 is a plan view showing a light emitting device according to Example 5. FIG. 図17のB-B断面図である。FIG. 18 is a sectional view taken along line BB in FIG. 実施例6に係る発光装置を示す平面図である。6 is a plan view showing a light emitting device according to Example 6. FIG. 図19のB-B断面図である。FIG. 20 is a sectional view taken along line BB in FIG. 実施例7に係る発光装置を示す平面図である。12 is a plan view showing a light emitting device according to Example 7. FIG. 図21のE-E断面図である。FIG. 22 is a cross-sectional view taken along line EE in FIG. 21. 実施例8に係る発光装置を示す断面図である。10 is a cross-sectional view showing a light emitting device according to Example 8. FIG. 実施例9に係る発光装置を示す断面図である。10 is a cross-sectional view showing a light emitting device according to Example 9. FIG. 実施例10に係る発光装置を示す断面図である。FIG. 12 is a cross-sectional view illustrating a light emitting device according to Example 10.
 以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate.
 図1は、実施形態に係る発光装置10を示す平面図である。図2は、図1から有機層120及び第2電極130を取り除いた図である。図3は、図2から絶縁層140を取り除いた図である。図4は、図2に示した領域αを拡大した図である。図5は、図1のA-A断面図である。図6は、図4のB-B断面図である。図7は、図4のC-C断面図である。図8は、図4のD-D断面図である。なお、説明のため、図1~図4及び図6~図8では、封止部材200(図5)を図示していない。 FIG. 1 is a plan view showing a light emitting device 10 according to the embodiment. FIG. 2 is a diagram in which the organic layer 120 and the second electrode 130 are removed from FIG. FIG. 3 is a diagram in which the insulating layer 140 is removed from FIG. FIG. 4 is an enlarged view of the region α shown in FIG. FIG. 5 is a cross-sectional view taken along the line AA in FIG. 6 is a cross-sectional view taken along the line BB of FIG. 7 is a cross-sectional view taken along the line CC of FIG. 8 is a cross-sectional view taken along the line DD of FIG. For the sake of explanation, the sealing member 200 (FIG. 5) is not shown in FIGS. 1 to 4 and FIGS.
 図5を用いて発光装置10の概要について説明する。発光装置10は、基板100、複数の発光部152、複数の非発光部154及び複数の封止部160を備えている。基板100は、第1面102を有している。複数の発光部152は、基板100の第1面102側に位置している。複数の発光部152のそれぞれは、第1電極110、有機層120及び第2電極130の積層構造を含んでいる。複数の発光部152及び複数の非発光部154は、交互に並んでいる。複数の封止部160のそれぞれは、複数の発光部152のそれぞれを封止している。本図に示すように、複数の封止部160のうちの第1封止部161及び第2封止部163は、複数の発光部152のうちの第1発光部151及び第2発光部153をそれぞれ封止している。第1封止部161と第2封止部163は、互いに隣り合っており、第1発光部151と第2発光部153は、互いに隣り合っている。第1封止部161及び第2封止部163は、それぞれ、第1端部161a及び第2端部163bを有している。第1端部161a及び第2端部163bは、第1発光部151と第2発光部153の間で非発光部154と重なっている。より具体的には、第1端部161aは、第1発光部151と第2端部163bとの間に位置しており、第2端部163bは、第2封止部163と第1端部161aとの間に位置している。さらに、第2端部163bは、第1端部161aから離れている。 The outline of the light emitting device 10 will be described with reference to FIG. The light emitting device 10 includes a substrate 100, a plurality of light emitting units 152, a plurality of non-light emitting units 154, and a plurality of sealing units 160. The substrate 100 has a first surface 102. The plurality of light emitting units 152 are located on the first surface 102 side of the substrate 100. Each of the light emitting units 152 includes a stacked structure of the first electrode 110, the organic layer 120, and the second electrode 130. The plurality of light emitting units 152 and the plurality of non-light emitting units 154 are alternately arranged. Each of the plurality of sealing portions 160 seals each of the plurality of light emitting portions 152. As shown in the drawing, the first sealing portion 161 and the second sealing portion 163 of the plurality of sealing portions 160 are the first light emitting portion 151 and the second light emitting portion 153 of the plurality of light emitting portions 152. Each is sealed. The first sealing portion 161 and the second sealing portion 163 are adjacent to each other, and the first light emitting portion 151 and the second light emitting portion 153 are adjacent to each other. The 1st sealing part 161 and the 2nd sealing part 163 have the 1st end part 161a and the 2nd end part 163b, respectively. The first end portion 161 a and the second end portion 163 b overlap the non-light emitting portion 154 between the first light emitting portion 151 and the second light emitting portion 153. More specifically, the first end portion 161a is located between the first light emitting portion 151 and the second end portion 163b, and the second end portion 163b is the second sealing portion 163 and the first end. It is located between the part 161a. Further, the second end 163b is separated from the first end 161a.
 本図に示す例においては、複数の発光部152の配列方向において、複数の封止部160のそれぞれの長さが短くなっている。このため、複数の発光部152の配列方向に沿って基板100を湾曲させても、複数の封止部160のそれぞれに発生する曲げ応力は小さいものになる。 In the example shown in this drawing, the length of each of the plurality of sealing portions 160 is shortened in the arrangement direction of the plurality of light emitting portions 152. For this reason, even if the substrate 100 is curved along the arrangement direction of the plurality of light emitting portions 152, the bending stress generated in each of the plurality of sealing portions 160 is small.
 さらに、本図に示す例では、複数の封止部160のそれぞれが複数の発光部152のそれぞれを封止している。このため、仮に複数の封止部160のうちのいずれかが破損したとしても、その他の封止部160によって封止されている発光部152が影響を受けることはない。 Furthermore, in the example shown in this drawing, each of the plurality of sealing portions 160 seals each of the plurality of light emitting portions 152. For this reason, even if any of the plurality of sealing portions 160 is damaged, the light emitting portion 152 sealed by the other sealing portions 160 is not affected.
 さらに、本図に示す例では、基板100の第1面102は、非発光部154のうち第1端部161aと第2端部163bとの間(本図において、領域102c)において、第1電極110、有機層120及び第2電極130のいずれとも重なっていない。言い換えると、発光装置10は、第1端部161aと第2端部163bとの間に、基板100と垂直方向に光を透過する領域(透光領域)を有している。このため、領域102cにおける光線透過率が高いものとなっている。 Further, in the example shown in this drawing, the first surface 102 of the substrate 100 is the first between the first end 161a and the second end 163b (the region 102c in this drawing) of the non-light emitting portion 154. None of the electrode 110, the organic layer 120, and the second electrode 130 overlaps. In other words, the light emitting device 10 has a region (translucent region) that transmits light in a direction perpendicular to the substrate 100 between the first end 161a and the second end 163b. For this reason, the light transmittance in the region 102c is high.
 さらに、本図に示す例では、基板100の全体は、無機材料、具体的にはガラスからなっており、封止部160は、無機材料を含んでいる。このため、基板100の水蒸気透過率及び無機層160の水蒸気透過率は、いずれも低い。このようにして、基板100及び無機層160は、水蒸気を遮断するためのバリア層として機能している。このため、基板100又は無機層160から水蒸気が有機層120に侵入することが防止されている。 Furthermore, in the example shown in this drawing, the entire substrate 100 is made of an inorganic material, specifically glass, and the sealing portion 160 contains an inorganic material. For this reason, the water vapor transmission rate of the substrate 100 and the water vapor transmission rate of the inorganic layer 160 are both low. In this way, the substrate 100 and the inorganic layer 160 function as a barrier layer for blocking water vapor. For this reason, water vapor is prevented from entering the organic layer 120 from the substrate 100 or the inorganic layer 160.
 さらに、本図に示す例では、封止部160が基板100の第1面102に接している。このため、封止部160と基板100の間から水蒸気が侵入することが防止されている。 Furthermore, in the example shown in this drawing, the sealing portion 160 is in contact with the first surface 102 of the substrate 100. For this reason, water vapor is prevented from entering between the sealing portion 160 and the substrate 100.
 本図に示す例では、第2電極130が封止部160として機能している。第2電極130は、有機層120を覆っており、導電材料を含んでいる。これにより、第2電極130は、有機層120に電圧を印加するための導電層として機能している。さらに、上記したように、第2電極130(封止部160)の水蒸気透過率は低い。このようにして、第2電極130は、水蒸気を遮断するためのバリア層として機能している。 In the example shown in the figure, the second electrode 130 functions as the sealing portion 160. The second electrode 130 covers the organic layer 120 and includes a conductive material. Thereby, the second electrode 130 functions as a conductive layer for applying a voltage to the organic layer 120. Furthermore, as described above, the water vapor permeability of the second electrode 130 (sealing part 160) is low. In this way, the second electrode 130 functions as a barrier layer for blocking water vapor.
 次に、図1~図4を用いて、発光装置10の平面レイアウトの詳細について説明する。発光装置10は、基板100、複数の第1電極110、複数の第1接続部112、複数の第1端子114、第1配線116、複数の第2電極130(複数の封止部160)、複数の第2接続部132、複数の第2端子134、第2配線136及び複数の絶縁層140を備えている。 Next, the details of the planar layout of the light emitting device 10 will be described with reference to FIGS. The light emitting device 10 includes a substrate 100, a plurality of first electrodes 110, a plurality of first connection portions 112, a plurality of first terminals 114, a first wiring 116, a plurality of second electrodes 130 (a plurality of sealing portions 160), A plurality of second connection portions 132, a plurality of second terminals 134, a second wiring 136, and a plurality of insulating layers 140 are provided.
 基板100の形状は、第1面102に垂直な方向から見た場合、一対の長辺及び一対の短辺を有する矩形である。ただし、基板100の形状は、本図に示す例に限定されるものではない。基板100の形状は、第1面102に垂直な方向から見た場合、例えば円でもよいし、又は矩形以外の多角形であってもよい。 The shape of the substrate 100 is a rectangle having a pair of long sides and a pair of short sides when viewed from a direction perpendicular to the first surface 102. However, the shape of the substrate 100 is not limited to the example shown in this figure. The shape of the substrate 100 may be, for example, a circle or a polygon other than a rectangle when viewed from a direction perpendicular to the first surface 102.
 複数の第1電極110は、互いに離間して位置しており、具体的には、基板100の長辺に沿って一列に並んでいる。複数の第1電極110のそれぞれは、基板100の短辺に沿って延伸している。 The plurality of first electrodes 110 are spaced apart from each other, and are specifically arranged in a line along the long side of the substrate 100. Each of the plurality of first electrodes 110 extends along the short side of the substrate 100.
 複数の第1電極110のそれぞれは、複数の第1接続部112のそれぞれを介して、複数の第1端子114のそれぞれに接続している。複数の第1端子114は、第1配線116によって互いに接続している。第1配線116は、基板100の一対の長辺の一方に沿って延伸している。外部からの電圧は、第1配線116、第1端子114及び第1接続部112を介して第1電極110に供給される。なお、本図に示す例において、第1電極110、第1接続部112及び第1端子114は、互いに一体となっている。言い換えると、発光装置10は、第1電極110として機能する領域、第1接続部112として機能する領域及び第1端子114として機能する領域を有する導電層を備えている。 Each of the plurality of first electrodes 110 is connected to each of the plurality of first terminals 114 via each of the plurality of first connection portions 112. The plurality of first terminals 114 are connected to each other by the first wiring 116. The first wiring 116 extends along one of the pair of long sides of the substrate 100. An external voltage is supplied to the first electrode 110 via the first wiring 116, the first terminal 114, and the first connection portion 112. In the example shown in the figure, the first electrode 110, the first connection portion 112, and the first terminal 114 are integrated with each other. In other words, the light emitting device 10 includes a conductive layer having a region functioning as the first electrode 110, a region functioning as the first connection portion 112, and a region functioning as the first terminal 114.
 複数の第2電極130のそれぞれは、複数の第1電極110のそれぞれに重なっている。複数の第2電極130は、互いに離間して位置しており、具体的には、基板100の長辺に沿って一列に並んでいる。複数の第2電極130のそれぞれは、基板100の短辺に沿って延伸しており、具体的には、基板100の短辺に沿って延伸する一対の長辺及び基板100の長辺に沿って延伸する一対の短辺を有している。 Each of the plurality of second electrodes 130 overlaps each of the plurality of first electrodes 110. The plurality of second electrodes 130 are spaced apart from each other, specifically, aligned in a line along the long side of the substrate 100. Each of the plurality of second electrodes 130 extends along the short side of the substrate 100, specifically, along a pair of long sides extending along the short side of the substrate 100 and a long side of the substrate 100. And a pair of short sides extending.
 複数の第2電極130のそれぞれは、複数の第2接続部132のそれぞれを介して、複数の第2端子134のそれぞれに接続している。複数の第2端子134は、第2配線136によって互いに接続している。第2配線136は、複数の第1電極110及び複数の第2電極130を挟んで第1配線116と対向しており、基板100の一対の長辺の他方に沿って延伸している。外部からの電圧は、第2配線136、第2端子134及び第2接続部132を介して第2電極130に供給される。なお、本図に示す例において、第2接続部132及び第2端子134は、互いに一体となっている。言い換えると、発光装置10は、第2接続部132として機能する領域及び第2端子134として機能する領域を有する導電層を備えている。 Each of the plurality of second electrodes 130 is connected to each of the plurality of second terminals 134 via each of the plurality of second connection portions 132. The plurality of second terminals 134 are connected to each other by the second wiring 136. The second wiring 136 is opposed to the first wiring 116 across the plurality of first electrodes 110 and the plurality of second electrodes 130, and extends along the other of the pair of long sides of the substrate 100. An external voltage is supplied to the second electrode 130 via the second wiring 136, the second terminal 134, and the second connection part 132. In the example shown in the figure, the second connection portion 132 and the second terminal 134 are integrated with each other. In other words, the light emitting device 10 includes a conductive layer having a region functioning as the second connection portion 132 and a region functioning as the second terminal 134.
 複数の絶縁層140のそれぞれは、複数の第1電極110のそれぞれに重なっている。複数の絶縁層140は、互いに離間して位置しており、具体的には、基板100の長辺に沿って一列に並んでいる。複数の絶縁層140のそれぞれは、基板100の短辺に沿って延伸しており、具体的には、基板100の短辺に沿って延伸する一対の長辺及び基板100の長辺に沿って延伸する一対の短辺を有している。 Each of the plurality of insulating layers 140 overlaps each of the plurality of first electrodes 110. The plurality of insulating layers 140 are spaced apart from each other, and specifically are arranged in a line along the long side of the substrate 100. Each of the plurality of insulating layers 140 extends along the short side of the substrate 100, specifically, along the pair of long sides extending along the short side of the substrate 100 and the long side of the substrate 100. It has a pair of short sides that extend.
 複数の絶縁層140のそれぞれは、開口142を有している。図6を用いて後述するように、開口142内において、第1電極110、有機層120及び第2電極130は、発光部150として機能する領域(第1電極110、有機層120及び第2電極130の積層構造)を有している。言い換えると、絶縁層140は、発光部150を画定している。発光部150(開口142)は、基板100の短辺に沿って延伸しており、具体的には、基板100の短辺に沿って延伸する一対の長辺及び基板100の長辺に沿って延伸する一対の短辺を有している。 Each of the plurality of insulating layers 140 has an opening 142. As will be described later with reference to FIG. 6, in the opening 142, the first electrode 110, the organic layer 120, and the second electrode 130 are regions that function as the light emitting unit 150 (the first electrode 110, the organic layer 120, and the second electrode). 130 laminated structures). In other words, the insulating layer 140 defines the light emitting unit 150. The light emitting unit 150 (opening 142) extends along the short side of the substrate 100. Specifically, the light emitting unit 150 (opening 142) extends along the pair of long sides extending along the short side of the substrate 100 and the long side of the substrate 100. It has a pair of short sides that extend.
 次に、図5を用いて封止部材200の一例について説明する。本図に示す例において、発光装置10は、封止部材200を備えている。封止部材200は、基板100の第1面102、第1電極110、有機層120、第2電極130及び絶縁層140を封止している。具体的には、封止部材200は、接着層210及び被覆層220を有している。接着層210は、基板100の第1面102、第1電極110、有機層120、第2電極130及び絶縁層140を覆っている。接着層210は、例えば有機材料を含んでいる。被覆層220は、接着層210を介して基板100の第1面102に取り付けられている。被覆層220は、透光性を有しており、例えばガラス基板である。 Next, an example of the sealing member 200 will be described with reference to FIG. In the example shown in this drawing, the light emitting device 10 includes a sealing member 200. The sealing member 200 seals the first surface 102 of the substrate 100, the first electrode 110, the organic layer 120, the second electrode 130, and the insulating layer 140. Specifically, the sealing member 200 has an adhesive layer 210 and a covering layer 220. The adhesive layer 210 covers the first surface 102 of the substrate 100, the first electrode 110, the organic layer 120, the second electrode 130, and the insulating layer 140. The adhesive layer 210 includes, for example, an organic material. The covering layer 220 is attached to the first surface 102 of the substrate 100 via the adhesive layer 210. The coating layer 220 has translucency and is, for example, a glass substrate.
 被覆層220は、複数の封止部160のうちの少なくとも1つを覆っており、本図に示す例では、複数の封止部160のすべてを覆っている。なお、複数の被覆層220のそれぞれが複数の封止部160のそれぞれを覆っていてもよい。被覆層220は、外部の衝撃から封止部160を保護するための保護部材として機能している。 The covering layer 220 covers at least one of the plurality of sealing portions 160, and covers all of the plurality of sealing portions 160 in the example shown in the drawing. Note that each of the plurality of coating layers 220 may cover each of the plurality of sealing portions 160. The covering layer 220 functions as a protective member for protecting the sealing portion 160 from external impacts.
 本図に示す例においては、接着層210と被覆層220の界面又は接着層210からのアウトガスが水蒸気を含んでいることがある。このような水蒸気は、有機層120の劣化の原因になり得る。本図に示す例においては、仮にこのような水蒸気があったとしても、基板100及び第2電極130(封止部160)が、水蒸気を遮断するためのバリア層として機能している。このため、水蒸気が有機層120に侵入することが防止されている。 In the example shown in the figure, the outgas from the interface between the adhesive layer 210 and the coating layer 220 or from the adhesive layer 210 may contain water vapor. Such water vapor can cause deterioration of the organic layer 120. In the example shown in this figure, even if such water vapor exists, the substrate 100 and the second electrode 130 (sealing portion 160) function as a barrier layer for blocking water vapor. For this reason, water vapor is prevented from entering the organic layer 120.
 次に、図6を用いて、発光装置10について発光部150の長さ方向(発光部150の長辺に沿った方向)に垂直な断面の詳細を説明する。発光装置10は、基板100、第1電極110、有機層120、第2電極130(封止部160)及び絶縁層140を備えている。基板100は、第1面102及び第2面104を有している。第2面104は、第1面102の反対側にある。第1電極110、有機層120、第2電極130及び絶縁層140は、基板100の第1面102上にある。絶縁層140の開口142内において、第1電極110、有機層120及び第2電極130は、発光部150として機能する領域を有しており、この領域において、第1電極110、有機層120及び第2電極130は、互いに重なっている。 Next, details of a cross section perpendicular to the length direction of the light emitting unit 150 (the direction along the long side of the light emitting unit 150) of the light emitting device 10 will be described with reference to FIG. The light emitting device 10 includes a substrate 100, a first electrode 110, an organic layer 120, a second electrode 130 (sealing portion 160), and an insulating layer 140. The substrate 100 has a first surface 102 and a second surface 104. The second surface 104 is on the opposite side of the first surface 102. The first electrode 110, the organic layer 120, the second electrode 130, and the insulating layer 140 are on the first surface 102 of the substrate 100. In the opening 142 of the insulating layer 140, the first electrode 110, the organic layer 120, and the second electrode 130 have a region that functions as the light emitting unit 150. In this region, the first electrode 110, the organic layer 120, and The second electrodes 130 overlap each other.
 基板100は、透光性を有している。具体的には、本図に示す例では、基板100は、ガラス基板であり、言い換えると、無機材料(すなわち、ガラス)を含んでいる。ガラスの水蒸気透過率は低い。このようにして、基板100は、水蒸気を遮断するためのバリア層として機能している。本図に示す例においては、上記したガラス基板の表面の一部が基板100の第1面102として機能している。このようにして、基板100の第1面102は、無機材料(すなわち、ガラス)を含んでいる。 The substrate 100 has translucency. Specifically, in the example shown in the figure, the substrate 100 is a glass substrate, in other words, includes an inorganic material (that is, glass). The water vapor transmission rate of glass is low. In this way, the substrate 100 functions as a barrier layer for blocking water vapor. In the example shown in this drawing, a part of the surface of the glass substrate described above functions as the first surface 102 of the substrate 100. Thus, the 1st surface 102 of the board | substrate 100 contains the inorganic material (namely, glass).
 基板100は、可撓性を有していてもよい。この場合、本図に示す例においては、発光装置10の可撓性が封止部160によって阻害されることが抑制される。具体的には、本図に示す例では、複数の封止部160のそれぞれが複数の発光部152のそれぞれを封止している。このため、複数の発光部152の配列方向において、複数の封止部160のそれぞれの長さが短くなっている。この場合、基板100を湾曲させた場合に封止部160から基板100に働く応力が小さいものとなる。このため、本図に示す例においては、発光装置10の可撓性が封止部160によって阻害されることが抑制される。 The substrate 100 may have flexibility. In this case, in the example shown in this drawing, the flexibility of the light emitting device 10 is suppressed from being hindered by the sealing portion 160. Specifically, in the example shown in this drawing, each of the plurality of sealing portions 160 seals each of the plurality of light emitting portions 152. For this reason, the length of each of the plurality of sealing portions 160 is shortened in the arrangement direction of the plurality of light emitting portions 152. In this case, when the substrate 100 is bent, the stress acting on the substrate 100 from the sealing portion 160 is small. For this reason, in the example shown to this figure, it is suppressed that the flexibility of the light-emitting device 10 is inhibited by the sealing part 160. FIG.
 第1電極110は、透光性及び導電性を有している。具体的には、第1電極110は、透光性及び導電性を有する材料を含んでおり、例えば金属酸化物、具体的には例えば、ITO(Indium Tin Oxide)及びIZO(Indium Zinc Oxide)、In、ZnO、AZO(Aluminum-doped Zinc Oxide)、GZO(Gallium-doped Zinc Oxide)、ATO(Antimony-doped Tin Oxide)及びIGZO(Indium Galium Zinc Oxide)の少なくとも1つを含んでいる。これにより、有機層120からの光は、第1電極110を透過することができる。 The first electrode 110 has translucency and conductivity. Specifically, the first electrode 110 includes a material having translucency and conductivity, for example, a metal oxide, for example, ITO (Indium Tin Oxide) and IZO (Indium Zinc Oxide), In 2 O 3 , ZnO, AZO (Aluminum-doped Zinc Oxide), GZO (Gallium-doped Zinc Oxide), ATO (Antimony-doped Tin Oxide), and IGZO (Indium Galium Zinc Oxide). Accordingly, light from the organic layer 120 can pass through the first electrode 110.
 有機層120は、例えば、正孔注入層、正孔輸送層、発光層、電子輸送層及び電子注入層を含んでいる。正孔注入層及び正孔輸送層は、第1電極110に接続している。電子輸送層及び電子注入層は、第2電極130に接続している。発光層は、第1電極110と第2電極130の間の電圧によって光を発する。 The organic layer 120 includes, for example, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer. The hole injection layer and the hole transport layer are connected to the first electrode 110. The electron transport layer and the electron injection layer are connected to the second electrode 130. The light emitting layer emits light by a voltage between the first electrode 110 and the second electrode 130.
 第2電極130(封止部160)は、光反射性、導電性及び水蒸気バリア性を有している。具体的には、第2電極130は、光反射性、導電性及び水蒸気バリア性を有する無機材料を含んでおり、例えば金属、具体的には例えば、Al、Ag、MgAg、Cr、Au、Cu、Pt及びPdの少なくとも1つを含んでおり、特に、第2電極130は、Alを含んでいることが好ましい。これにより、有機層120からの光は、第2電極130をほとんど透過することなく、第2電極130で反射される。言い換えると、本図に示す例において、発光装置10は、ボトムエミッションであり、有機層120からの光のほとんどは、第2面104側から出射される。さらに、第2電極130は、水蒸気を遮断するためのバリア層として機能している。 The second electrode 130 (sealing portion 160) has light reflectivity, conductivity, and water vapor barrier properties. Specifically, the second electrode 130 includes an inorganic material having light reflectivity, conductivity, and water vapor barrier properties, such as metal, specifically, for example, Al, Ag, MgAg, Cr, Au, Cu. , Pt, and Pd. In particular, the second electrode 130 preferably contains Al. Thereby, the light from the organic layer 120 is reflected by the second electrode 130 with hardly passing through the second electrode 130. In other words, in the example shown in this drawing, the light emitting device 10 is bottom emission, and most of the light from the organic layer 120 is emitted from the second surface 104 side. Furthermore, the second electrode 130 functions as a barrier layer for blocking water vapor.
 なお、第2電極130(封止部160)の光反射性に起因して、第2電極130(封止部160)は、遮光性を有している。このため、本図に示す例では、有機層120からの光が第2電極130(封止部160)から漏れることが抑制されている。 In addition, due to the light reflectivity of the second electrode 130 (sealing portion 160), the second electrode 130 (sealing portion 160) has a light shielding property. For this reason, in the example shown to this figure, it is suppressed that the light from the organic layer 120 leaks from the 2nd electrode 130 (sealing part 160).
 絶縁層140は、透光性を有している。一例において、絶縁層140は、有機絶縁材料、具体的には例えばポリイミドを含んでいる。他の例において、絶縁層140は、無機絶縁材料、具体的には例えば、シリコン酸化物(SiO)、シリコン酸窒化物(SiON)又はシリコン窒化物(SiN)を含んでいてもよい。 The insulating layer 140 has translucency. In one example, the insulating layer 140 includes an organic insulating material, specifically, for example, polyimide. In another example, the insulating layer 140 may include an inorganic insulating material, specifically, for example, silicon oxide (SiO x ), silicon oxynitride (SiON), or silicon nitride (SiN x ).
 第1電極110は端部110a及び端部110bを有し、有機層120は端部120a及び端部120bを有し、第2電極130は端部130a及び端部130bを有し、絶縁層140は端部140a及び端部140bを有し、開口142は端部142a及び端部142bを有している。端部110a、端部120a、端部130a、端部140a及び端部142aは、互いに同じ方向を向いている。端部110b、端部120b、端部130b、端部140b及び端部142bは、互いに同じ方向を向いており、それぞれ、端部110a、端部120a、端部130a、端部140a及び端部142aの反対側にある。なお、図5に示したように、端部130aは、第1端部161aとして機能しており、端部130bは、第2端部163bとして機能している。 The first electrode 110 has an end portion 110a and an end portion 110b, the organic layer 120 has an end portion 120a and an end portion 120b, the second electrode 130 has an end portion 130a and an end portion 130b, and the insulating layer 140. Has an end portion 140a and an end portion 140b, and the opening 142 has an end portion 142a and an end portion 142b. The end part 110a, the end part 120a, the end part 130a, the end part 140a, and the end part 142a are oriented in the same direction. The end part 110b, the end part 120b, the end part 130b, the end part 140b, and the end part 142b face the same direction, and the end part 110a, the end part 120a, the end part 130a, the end part 140a, and the end part 142a, respectively. On the other side. As shown in FIG. 5, the end portion 130a functions as the first end portion 161a, and the end portion 130b functions as the second end portion 163b.
 絶縁層140は、側面144a、側面144b、側面146a及び側面146bを有している。側面144a及び側面144bは、発光部150の外側を向いており、それぞれ、第1電極110の端部110a側及び端部110b側にある。側面146a及び側面146bは、発光部150の内側を向いており、それぞれ、第1電極110の端部110a側及び端部110b側にある。 The insulating layer 140 has a side surface 144a, a side surface 144b, a side surface 146a, and a side surface 146b. The side surface 144a and the side surface 144b face the outside of the light emitting unit 150, and are on the end portion 110a side and the end portion 110b side of the first electrode 110, respectively. The side surface 146a and the side surface 146b face the inside of the light emitting unit 150, and are respectively on the end portion 110a side and the end portion 110b side of the first electrode 110.
 絶縁層140は、第1電極110の端部110a及び端部110bを覆っており、言い換えると、発光部150の幅方向において、端部110a及び端部110bは、それぞれ、端部140aと端部142aの間及び端部140bと端部142bの間にある。絶縁層140は、第2電極130によって覆われている。このようにして、絶縁層140は、第1電極110と第2電極130とが互いに接触すること、すなわち第1電極110と第2電極130とが互いに短絡することを防止している。 The insulating layer 140 covers the end 110a and the end 110b of the first electrode 110. In other words, in the width direction of the light emitting unit 150, the end 110a and the end 110b are respectively the end 140a and the end. 142a and between end 140b and end 142b. The insulating layer 140 is covered with the second electrode 130. In this way, the insulating layer 140 prevents the first electrode 110 and the second electrode 130 from contacting each other, i.e., the first electrode 110 and the second electrode 130 are not short-circuited to each other.
 有機層120の端部120a及び端部120bは、それぞれ、開口142の端部142a及び端部142bよりも外側にあり、具体的には、双方とも、絶縁層140の上面上にある。これにより、有機層120の一部が絶縁層140の側面146aを覆っており、有機層120の他の一部が絶縁層140の側面146bを覆っている。絶縁層140の側面146a及び側面146bは、いずれも、絶縁層140の上面から下面に向かうにつれて絶縁層140の外側に傾いている。これにより、有機層120は、側面146a及び側面146bに沿いやすくなる。このようにして、有機層120と側面146aの間及び有機層120と側面146bの間に隙間が形成されることが防止されている。 The end portion 120a and the end portion 120b of the organic layer 120 are respectively outside the end portion 142a and the end portion 142b of the opening 142, and specifically, both are on the upper surface of the insulating layer 140. Thereby, a part of the organic layer 120 covers the side surface 146a of the insulating layer 140, and another part of the organic layer 120 covers the side surface 146b of the insulating layer 140. Both the side surface 146a and the side surface 146b of the insulating layer 140 are inclined outward from the upper surface of the insulating layer 140 toward the lower surface. Thereby, the organic layer 120 becomes easy to follow along the side surface 146a and the side surface 146b. In this manner, a gap is prevented from being formed between the organic layer 120 and the side surface 146a and between the organic layer 120 and the side surface 146b.
 第2電極130の端部130a及び端部130bは、それぞれ、絶縁層140の側面144a及び側面144bよりも外側にあり、具体的には、双方とも、基板100の第1面102に接している。これにより、第2電極130の一部が絶縁層140の側面144aを覆っており、有機層120の他の一部が絶縁層140の側面144bを覆っている。絶縁層140の側面144a及び側面144bは、いずれも、絶縁層140の上面から下面に向かうにつれて絶縁層140の外側に傾いている。これにより、第2電極130は、側面144a及び側面144bに沿いやすくなる。このようにして、第2電極130と側面144aの間及び第2電極130と側面144bの間に隙間が形成されることが抑制されている。 The end portion 130 a and the end portion 130 b of the second electrode 130 are respectively outside the side surface 144 a and the side surface 144 b of the insulating layer 140, and specifically, both are in contact with the first surface 102 of the substrate 100. . Accordingly, a part of the second electrode 130 covers the side surface 144 a of the insulating layer 140, and another part of the organic layer 120 covers the side surface 144 b of the insulating layer 140. Both the side surface 144 a and the side surface 144 b of the insulating layer 140 are inclined to the outside of the insulating layer 140 from the upper surface to the lower surface of the insulating layer 140. Accordingly, the second electrode 130 is easily along the side surface 144a and the side surface 144b. In this way, the formation of gaps between the second electrode 130 and the side surface 144a and between the second electrode 130 and the side surface 144b is suppressed.
 基板100の第1面102は、複数の領域102a及び複数の領域102cを有している。複数の領域102aのそれぞれは、複数の第1電極110のそれぞれと重なっており、本図に示す例では、第2電極130の端部130aから端部130bまで広がっている。複数の領域102cのそれぞれは、複数の第1電極110と重なっておらず、本図に示す例では、互いに隣接する発光部150のうちの一方の第2電極130の端部130aから他方の第2電極130の端部130bまで広がっている。このようにして、発光装置10は、互いに隣接する発光部150のうちの一方の第2電極130の端部130aから他方の第2電極130の端部130bとの間に、基板100と垂直方向に光を透過する領域(透光領域)を有している。複数の領域102a及び複数の領域102cは、交互に並んでいる。 The first surface 102 of the substrate 100 has a plurality of regions 102a and a plurality of regions 102c. Each of the plurality of regions 102a overlaps with each of the plurality of first electrodes 110, and in the example illustrated in this drawing, extends from the end portion 130a to the end portion 130b of the second electrode 130. Each of the plurality of regions 102c does not overlap with the plurality of first electrodes 110, and in the example illustrated in the drawing, the end portion 130a of one second electrode 130 of the light emitting units 150 adjacent to each other is connected to the other first electrode 110a. The two electrodes 130 extend to the end portion 130b. Thus, the light emitting device 10 is perpendicular to the substrate 100 between the end portion 130a of one second electrode 130 and the end portion 130b of the other second electrode 130 of the light emitting portions 150 adjacent to each other. Has a region that transmits light (translucent region). The plurality of regions 102a and the plurality of regions 102c are arranged alternately.
 互いに隣接する発光部150のピッチの比d3/(d1+d3)は、例えば、0.3以上0.9以下(0.3≦d3/(d1+d3)≦0.9)であることが好ましい。比d3/(d1+d3)が0.9以下である場合、互いに隣接する発光部150のピッチがある程度狭くなっている。このため、人間の視覚では、複数の領域102a及び複数の領域102cを含む全面に亘って光が発せられるように見えるようになる。比d3/(d1+d3)が0.3以上である場合、領域102c(すなわち、光が発光装置10を透過可能な領域)の幅がある程度広くなっている。このため、人間の視覚では、複数の領域102a及び複数の領域102cを含む全面に亘って発光装置10を介して物体が透けて見えるようになる。 It is preferable that the pitch ratio d3 / (d1 + d3) of the light emitting units 150 adjacent to each other is, for example, 0.3 or more and 0.9 or less (0.3 ≦ d3 / (d1 + d3) ≦ 0.9). When the ratio d3 / (d1 + d3) is 0.9 or less, the pitch of the light emitting units 150 adjacent to each other is narrowed to some extent. Therefore, in human vision, light appears to be emitted over the entire surface including the plurality of regions 102a and the plurality of regions 102c. When the ratio d3 / (d1 + d3) is 0.3 or more, the width of the region 102c (that is, the region where light can pass through the light emitting device 10) is increased to some extent. For this reason, in human vision, an object can be seen through the light emitting device 10 over the entire surface including the plurality of regions 102a and the plurality of regions 102c.
 次に、図7及び図8を用いて、発光装置10について発光部150の幅方向(発光部150の短辺に沿った方向)に垂直な断面の詳細を説明する。 Next, details of a cross section perpendicular to the width direction of the light emitting unit 150 (the direction along the short side of the light emitting unit 150) of the light emitting device 10 will be described with reference to FIGS.
 第1電極110は端部110dを有し、有機層120は端部120c及び端部120dを有し、第2電極130は端部130c及び端部130dを有し、絶縁層140は端部140c及び端部140dを有し、開口142は端部142c及び端部142dを有している。端部120c、端部130c、端部140c及び端部142cは、互いに同じ方向を向いている。端部110d、端部120d、端部130d、端部140d及び端部142dは、互いに同じ方向を向いている。端部120d、端部130d、端部140d及び端部142dは、それぞれ、端部120c、端部130c、端部140c及び端部142cの反対側にある。 The first electrode 110 has an end portion 110d, the organic layer 120 has an end portion 120c and an end portion 120d, the second electrode 130 has an end portion 130c and an end portion 130d, and the insulating layer 140 has an end portion 140c. In addition, the opening 142 has an end 142c and an end 142d. The end portion 120c, the end portion 130c, the end portion 140c, and the end portion 142c face each other in the same direction. The end part 110d, the end part 120d, the end part 130d, the end part 140d, and the end part 142d face each other in the same direction. The end portion 120d, the end portion 130d, the end portion 140d, and the end portion 142d are on opposite sides of the end portion 120c, the end portion 130c, the end portion 140c, and the end portion 142c, respectively.
 絶縁層140は、側面144c、側面144d、側面146c及び側面146dを有している。側面144c及び側面144dは、発光部150の外側を向いており、それぞれ、第1端子114側及び第2端子134側にある。側面146c及び側面146dは、発光部150の内側を向いており、それぞれ、第1端子114側及び第2端子134側にある。 The insulating layer 140 has a side surface 144c, a side surface 144d, a side surface 146c, and a side surface 146d. The side surface 144c and the side surface 144d face the outside of the light emitting unit 150, and are on the first terminal 114 side and the second terminal 134 side, respectively. The side surface 146c and the side surface 146d face the inside of the light emitting unit 150, and are on the first terminal 114 side and the second terminal 134 side, respectively.
 絶縁層140は、第1電極110の端部110dを覆っており、言い換えると、発光部150の長さ方向において、端部110dは、端部140dと端部142dの間にある。絶縁層140は、第2電極130によって覆われている。このようにして、絶縁層140は、第1電極110と第2電極130とが互いに接触すること、すなわち第1電極110と第2電極130とが互いに短絡することを防止している。 The insulating layer 140 covers the end 110d of the first electrode 110. In other words, the end 110d is between the end 140d and the end 142d in the length direction of the light emitting unit 150. The insulating layer 140 is covered with the second electrode 130. In this way, the insulating layer 140 prevents the first electrode 110 and the second electrode 130 from contacting each other, i.e., the first electrode 110 and the second electrode 130 are not short-circuited to each other.
 有機層120の端部120c及び端部120dは、それぞれ、開口142の端部142c及び端部142dよりも外側にあり、具体的には、双方とも、絶縁層140の上面上にある。これにより、有機層120の一部が絶縁層140の側面146cを覆っており、有機層120の他の一部が絶縁層140の側面146dを覆っている。絶縁層140の側面146c及び側面146dは、いずれも、絶縁層140の上面から下面に向かうにつれて絶縁層140の外側に傾いている。これにより、有機層120は、側面146c及び側面146dに沿いやすくなる。このようにして、有機層120と側面146cの間及び有機層120と側面146dの間に隙間が形成されることが防止されている。 The edge part 120c and the edge part 120d of the organic layer 120 are respectively outside the edge part 142c and the edge part 142d of the opening 142, and specifically, both are on the upper surface of the insulating layer 140. Accordingly, a part of the organic layer 120 covers the side surface 146c of the insulating layer 140, and another part of the organic layer 120 covers the side surface 146d of the insulating layer 140. Both the side surface 146c and the side surface 146d of the insulating layer 140 are inclined outward from the upper surface of the insulating layer 140 toward the lower surface. Thereby, the organic layer 120 becomes easy to follow along the side surface 146c and the side surface 146d. In this way, gaps are prevented from being formed between the organic layer 120 and the side surface 146c and between the organic layer 120 and the side surface 146d.
 第2電極130の端部130cは、絶縁層140の端部140cよりも内側にあり、本図に示す例では、絶縁層140の上面上において有機層120の端部120cよりも内側にある。これにより、第2電極130が第1接続部112及び第1端子114に接触すること、すなわち、第2電極130が第1接続部112及び第1端子114と短絡することが防止される。なお、本図に示す例において、絶縁層140の側面144cは、絶縁層140の上面から下面に向かうにつれて絶縁層140の外側に傾いている。 The end portion 130c of the second electrode 130 is inside the end portion 140c of the insulating layer 140. In the example shown in the drawing, the end portion 130c is inside the end portion 120c of the organic layer 120 on the upper surface of the insulating layer 140. This prevents the second electrode 130 from coming into contact with the first connection part 112 and the first terminal 114, that is, the second electrode 130 is prevented from being short-circuited with the first connection part 112 and the first terminal 114. In the example shown in this drawing, the side surface 144c of the insulating layer 140 is inclined outward from the upper surface of the insulating layer 140 toward the lower surface.
 第2電極130の端部130dは、絶縁層140の側面144dよりも外側にあり、具体的には、第2接続部132及び第2端子134の上面に接している。これにより、第2電極130の一部が絶縁層140の側面144dを覆っている。絶縁層140の側面144dは、絶縁層140の上面から下面に向かうにつれて絶縁層140の外側に傾いている。これにより、第2電極130は、側面144dに沿いやすくなる。このようにして、第2電極130と側面144dの間に隙間が形成されることが防止されている。 The end portion 130d of the second electrode 130 is located outside the side surface 144d of the insulating layer 140, and specifically, is in contact with the upper surfaces of the second connection portion 132 and the second terminal 134. Thus, a part of the second electrode 130 covers the side surface 144d of the insulating layer 140. The side surface 144d of the insulating layer 140 is inclined outward from the upper surface of the insulating layer 140 toward the lower surface. Thereby, the 2nd electrode 130 becomes easy to follow along side 144d. In this way, a gap is prevented from being formed between the second electrode 130 and the side surface 144d.
 さらに、本図に示す例では、第2電極130は、第1電極110の端部110dよりも外側、より具体的には第2接続部132と絶縁層140の間において、基板100の第1面102に接している。これにより、有機層120は、絶縁層140の側面144dから基板100の第1面102に亘って、バリア層(すなわち、基板100及び封止部160)によって囲まれている。このようにして、有機層120に水蒸気が侵入することが防止されている。 Furthermore, in the example shown in this drawing, the second electrode 130 is located outside the end portion 110d of the first electrode 110, more specifically, between the second connection portion 132 and the insulating layer 140. It is in contact with the surface 102. Thereby, the organic layer 120 is surrounded by the barrier layer (that is, the substrate 100 and the sealing portion 160) from the side surface 144 d of the insulating layer 140 to the first surface 102 of the substrate 100. In this way, water vapor is prevented from entering the organic layer 120.
 次に、図1~図8に示した発光装置10の製造方法について説明する。 Next, a method for manufacturing the light emitting device 10 shown in FIGS. 1 to 8 will be described.
 まず、基板100の第1面102上に第1電極110、第1接続部112、第1端子114及び第2接続部132及び第2端子134を形成する。一例において、第1電極110、第1接続部112、第1端子114、第2接続部132及び第2端子134は、スパッタリングにより形成された導電層をパターニングすることにより形成される。 First, the first electrode 110, the first connection part 112, the first terminal 114, the second connection part 132, and the second terminal 134 are formed on the first surface 102 of the substrate 100. In one example, the first electrode 110, the first connection part 112, the first terminal 114, the second connection part 132, and the second terminal 134 are formed by patterning a conductive layer formed by sputtering.
 次いで、第1電極110上に絶縁層140を形成する。一例において、絶縁層140は、基板100の第1面102上に塗布された感光性樹脂をパターニングすることにより形成される。 Next, the insulating layer 140 is formed on the first electrode 110. In one example, the insulating layer 140 is formed by patterning a photosensitive resin applied on the first surface 102 of the substrate 100.
 次いで、第1電極110上及び絶縁層140上に有機層120を形成する。一例において、有機層120は、蒸着により形成される。この場合、メタルマスクを絶縁層140に突き当てて有機層120を形成してもよい。他の例において、有機層120は、塗布により形成されてもよい。この場合、絶縁層140の開口142内に有機層120の材料を塗布する。 Next, the organic layer 120 is formed on the first electrode 110 and the insulating layer 140. In one example, the organic layer 120 is formed by vapor deposition. In this case, the organic layer 120 may be formed by abutting a metal mask against the insulating layer 140. In another example, the organic layer 120 may be formed by application. In this case, the material of the organic layer 120 is applied in the opening 142 of the insulating layer 140.
 次いで、有機層120上に第2電極130を形成する。一例において、第2電極130は、マスクを用いた真空蒸着により形成される。 Next, the second electrode 130 is formed on the organic layer 120. In one example, the second electrode 130 is formed by vacuum deposition using a mask.
 このようにして、図1~図8に示した発光装置10が製造される。 In this way, the light emitting device 10 shown in FIGS. 1 to 8 is manufactured.
 図9は、図5の第1の変形例を示す図である。本図に示すように、封止部材200は、封止缶230であってもよい。封止缶230は、接着剤(不図示)を介して基板100の第1面102に接合されている。第2電極130と封止缶230の間の領域は、中空となっている。さらに、封止缶230には乾燥剤232が取り付けられている。 FIG. 9 is a diagram showing a first modification of FIG. As shown in the figure, the sealing member 200 may be a sealing can 230. The sealing can 230 is bonded to the first surface 102 of the substrate 100 via an adhesive (not shown). A region between the second electrode 130 and the sealing can 230 is hollow. Further, a desiccant 232 is attached to the sealing can 230.
 本図に示す例においては、封止缶230と基板100の界面が水蒸気を含んでいることがある。このような水蒸気は、有機層120の劣化の原因になり得る。本図に示す例においては、仮にこのような水蒸気があったとしても、このような水蒸気は乾燥剤232によって吸収される。さらに、基板100及び第2電極130(封止部160)が、水蒸気を遮断するためのバリア層として機能している。このため、水蒸気が有機層120に侵入することが防止されている。 In the example shown in the figure, the interface between the sealing can 230 and the substrate 100 may contain water vapor. Such water vapor can cause deterioration of the organic layer 120. In the example shown in this figure, even if such water vapor exists, such water vapor is absorbed by the desiccant 232. Further, the substrate 100 and the second electrode 130 (sealing portion 160) function as a barrier layer for blocking water vapor. For this reason, water vapor is prevented from entering the organic layer 120.
 なお、封止缶230の一部は、封止部160を基板100の第1面102側から覆っており、封止缶230のこの一部は、被覆層220(図5)として機能している。言い換えると、被覆層220(封止缶230)は、外部の衝撃から封止部160を保護するための保護部材として機能している。 Part of the sealing can 230 covers the sealing part 160 from the first surface 102 side of the substrate 100, and this part of the sealing can 230 functions as the covering layer 220 (FIG. 5). Yes. In other words, the coating layer 220 (sealing can 230) functions as a protective member for protecting the sealing portion 160 from external impacts.
 図10は、図5の第2の変形例を示す図である。本図に示すように、封止部材200は、封止膜240であってもよい。封止膜240は、第2電極130の表面及び基板100の第1面102に沿って基板100の第1面102、第1電極110、有機層120及び第2電極130を覆っている。より具体的には、封止膜240は、互いに隣接する2つの発光部150の一方から他方に亘って広がっており、本図に示す例では、基板100の第1面102の全面に亘って広がっている。 FIG. 10 is a diagram showing a second modification of FIG. As shown in the figure, the sealing member 200 may be a sealing film 240. The sealing film 240 covers the first surface 102 of the substrate 100, the first electrode 110, the organic layer 120, and the second electrode 130 along the surface of the second electrode 130 and the first surface 102 of the substrate 100. More specifically, the sealing film 240 extends from one of the two light emitting units 150 adjacent to each other to the other, and in the example illustrated in this drawing, covers the entire surface of the first surface 102 of the substrate 100. It has spread.
 封止膜240は、無機材料、例えば、シリコン窒化物(SiN)、シリコン酸窒化物(SiON)、シリコン酸化物(SiO)、アルミニウム酸化物(Al)又はチタン酸化物(TiO)を含んでおり、例えば、スパッタリング、CVD(Chemical Vapor Deposition)又はALD(Atomic Layer Deposition)により形成されている。 The sealing film 240 is made of an inorganic material such as silicon nitride (SiN x ), silicon oxynitride (SiON), silicon oxide (SiO x ), aluminum oxide (Al x O y ), or titanium oxide (TiO 2). x ), and is formed, for example, by sputtering, CVD (Chemical Vapor Deposition) or ALD (Atomic Layer Deposition).
 本図に示す例においては、有機層120が第2電極130から露出していない。このため、封止膜240は、基板100の第1面102上のいずれの領域においても、無機部材(すなわち、基板100の第1面102又は封止部160の表面)と接するようになる。無機部材(すなわち、基板100の第1面102又は封止部160の表面)に対する封止膜240の密着性は、有機層120に対する封止膜240の密着性よりも高い。このようにして、本図に示す例では、封止膜240は、基板100の第1面102に強固に密着している。 In the example shown in the figure, the organic layer 120 is not exposed from the second electrode 130. Therefore, the sealing film 240 comes into contact with the inorganic member (that is, the first surface 102 of the substrate 100 or the surface of the sealing portion 160) in any region on the first surface 102 of the substrate 100. The adhesion of the sealing film 240 to the inorganic member (that is, the first surface 102 of the substrate 100 or the surface of the sealing portion 160) is higher than the adhesion of the sealing film 240 to the organic layer 120. Thus, in the example shown in this drawing, the sealing film 240 is firmly adhered to the first surface 102 of the substrate 100.
 以上、本実施形態によれば、複数の封止部160のそれぞれは、複数の発光部152のそれぞれを封止している。このため、複数の発光部152の配列方向において、複数の封止部160のそれぞれの長さが短くなっている。これにより、複数の発光部152の配列方向に沿って基板100を湾曲させても、複数の封止部160のそれぞれに発生する曲げ応力は小さいものになる。 As described above, according to the present embodiment, each of the plurality of sealing portions 160 seals each of the plurality of light emitting portions 152. For this reason, the length of each of the plurality of sealing portions 160 is shortened in the arrangement direction of the plurality of light emitting portions 152. Thereby, even if the board | substrate 100 is curved along the sequence direction of the some light emission part 152, the bending stress which generate | occur | produces in each of the some sealing part 160 becomes a small thing.
(実施例1)
 図11は、実施例1に係る発光装置10を示す断面図であり、実施形態の図6に対応する。本実施例に係る発光装置10は、以下の点を除いて、実施形態に係る発光装置10と同様である。
(Example 1)
FIG. 11 is a cross-sectional view illustrating the light emitting device 10 according to Example 1, and corresponds to FIG. 6 of the embodiment. The light emitting device 10 according to this example is the same as the light emitting device 10 according to the embodiment except for the following points.
 本図に示す例において、基板100は、樹脂基板100a及び無機層100bを有している。無機層100bは、樹脂基板100aの第1面102側の表面にコーティングされている。言い換えると、樹脂基板100aは、樹脂材料、例えば、PEN(ポリエチレンナフタレート)、PES(ポリエーテルサルホン)、PET(ポリエチレンテレフタラート)又はポリイミドを含む第1層として機能しており、無機層100bは、無機材料、例えば、シリコン窒化物(SiN)、シリコン酸窒化物(SiON)、シリコン酸化物(SiO)又はアルミニウム酸化物(Al)を含む第2層として機能している。無機層100bは、樹脂基板100aとは反対側の表面を有しており、無機層100bのこの表面は、基板100の第1面102として機能している。このようにして、基板100の第1面102は、無機材料を含んでいる。 In the example shown in the figure, the substrate 100 includes a resin substrate 100a and an inorganic layer 100b. The inorganic layer 100b is coated on the surface on the first surface 102 side of the resin substrate 100a. In other words, the resin substrate 100a functions as a first layer including a resin material, for example, PEN (polyethylene naphthalate), PES (polyethersulfone), PET (polyethylene terephthalate), or polyimide, and the inorganic layer 100b. Functions as a second layer comprising an inorganic material, for example, silicon nitride (SiN x ), silicon oxynitride (SiON), silicon oxide (SiO x ) or aluminum oxide (Al x O y ) . The inorganic layer 100 b has a surface opposite to the resin substrate 100 a, and this surface of the inorganic layer 100 b functions as the first surface 102 of the substrate 100. Thus, the 1st surface 102 of the board | substrate 100 contains the inorganic material.
 無機層100bは、水蒸気バリア性を有している。この場合、仮に、樹脂基板100aの水蒸気透過率が高くても、樹脂基板100aからの水蒸気が有機層120に侵入することを防止することができる。 The inorganic layer 100b has a water vapor barrier property. In this case, even if the water vapor transmission rate of the resin substrate 100a is high, the water vapor from the resin substrate 100a can be prevented from entering the organic layer 120.
 本図に示す例において、第2電極130(封止部160)の端部130a及び端部130bは、それぞれ、絶縁層140の端部140a及び端部140bの外側において、非発光部154と重なっている。このようにして、複数の封止部160のそれぞれは、複数の発光部152のそれぞれを封止している。このため、複数の発光部152の配列方向において、複数の封止部160のそれぞれの長さが短くなっている。これにより、複数の発光部152の配列方向に沿って基板100を湾曲させても、複数の封止部160のそれぞれに発生する曲げ応力は小さいものになる。 In the example shown in this figure, the end part 130a and the end part 130b of the second electrode 130 (sealing part 160) overlap the non-light emitting part 154 on the outside of the end part 140a and the end part 140b of the insulating layer 140, respectively. ing. In this way, each of the plurality of sealing portions 160 seals each of the plurality of light emitting portions 152. For this reason, the length of each of the plurality of sealing portions 160 is shortened in the arrangement direction of the plurality of light emitting portions 152. Thereby, even if the board | substrate 100 is curved along the sequence direction of the several light emission part 152, the bending stress which generate | occur | produces in each of the some sealing part 160 will become small.
 さらに、基板100(樹脂基板100a)は、可撓性を有している。本図に示す例においては、発光装置10の可撓性が封止部160によって阻害されることが抑制される。具体的には、本図に示す例では、複数の封止部160のそれぞれが複数の発光部152のそれぞれを封止している。このため、複数の発光部152の配列方向において、複数の封止部160のそれぞれの長さが短くなっている。この場合、基板100を湾曲させた場合に封止部160から基板100に働く応力が小さいものとなる。このため、本図に示す例においては、発光装置10の可撓性が封止部160によって阻害されることが抑制される。 Furthermore, the substrate 100 (resin substrate 100a) has flexibility. In the example shown in the drawing, the flexibility of the light emitting device 10 is suppressed from being hindered by the sealing portion 160. Specifically, in the example shown in this drawing, each of the plurality of sealing portions 160 seals each of the plurality of light emitting portions 152. For this reason, the length of each of the plurality of sealing portions 160 is shortened in the arrangement direction of the plurality of light emitting portions 152. In this case, when the substrate 100 is bent, the stress acting on the substrate 100 from the sealing portion 160 is small. For this reason, in the example shown to this figure, it is suppressed that the flexibility of the light-emitting device 10 is inhibited by the sealing part 160. FIG.
 図12は、図11の変形例を示す図である。本図に示すように、基板100は、無機層100cを有していてもよい。無機層100cは、樹脂基板100aの第2面104側の表面にコーティングされている。無機層100cは、無機材料、例えば、シリコン窒化物(SiN)、シリコン酸窒化物(SiON)、シリコン酸化物(SiO)又はアルミニウム酸化物(Al)を含んでいる。無機層100cは、水蒸気バリア性を有している。これにより、第2面104側の水蒸気が樹脂基板100aに侵入することを防止することができる。 FIG. 12 is a diagram showing a modification of FIG. As shown in this figure, the substrate 100 may have an inorganic layer 100c. The inorganic layer 100c is coated on the surface of the resin substrate 100a on the second surface 104 side. The inorganic layer 100c includes an inorganic material, for example, silicon nitride (SiN x ), silicon oxynitride (SiON), silicon oxide (SiO x ), or aluminum oxide (Al x O y ). The inorganic layer 100c has a water vapor barrier property. Thereby, it is possible to prevent the water vapor on the second surface 104 side from entering the resin substrate 100a.
(実施例2)
 図13は、実施例2に係る発光装置10を示す断面図であり、実施形態の図6に対応する。本実施例に係る発光装置10は、以下の点を除いて、実施形態に係る発光装置10と同様である。
(Example 2)
FIG. 13 is a cross-sectional view illustrating the light emitting device 10 according to Example 2, and corresponds to FIG. 6 of the embodiment. The light emitting device 10 according to this example is the same as the light emitting device 10 according to the embodiment except for the following points.
 本図に示す例において、発光装置10は、第2電極130及び封止部160を備えている。封止部160は、第2電極130を覆っており、第1電極110の端部(本図に示す例では、端部110a及び端部110b)より外側において、基板100の第1面102に接している。封止部160は、無機層であり、具体的には、封止部160は、バリア材料、例えば、シリコン窒化物(SiN)、シリコン酸窒化物(SiON)、シリコン酸化物(SiO)、アルミニウム酸化物(Al)及びチタン酸化物(TiO)の少なくとも一つを含んでいる。 In the example shown in this drawing, the light emitting device 10 includes a second electrode 130 and a sealing portion 160. The sealing portion 160 covers the second electrode 130, and is disposed on the first surface 102 of the substrate 100 outside the end portions of the first electrode 110 (the end portion 110 a and the end portion 110 b in the example shown in the figure). It touches. The sealing part 160 is an inorganic layer. Specifically, the sealing part 160 is a barrier material such as silicon nitride (SiN x ), silicon oxynitride (SiON), or silicon oxide (SiO x ). , At least one of aluminum oxide (Al x O y ) and titanium oxide (TiO x ).
 封止部160は、水蒸気バリア性を有している。このため、封止部160から水蒸気が有機層120に侵入することが抑制される。 The sealing part 160 has a water vapor barrier property. For this reason, it is suppressed that water vapor | steam penetrate | invades into the organic layer 120 from the sealing part 160. FIG.
 さらに、本図に示す例においては、第2電極130の幅を広くすることなく、バリア層(すなわち、封止部160)によって有機層120を覆うことができる。このため、遮光領域(すなわち、第2電極130と重なる領域)の幅が広がることを防止することができる。具体的には、第2電極130の端部130a及び端部130bは、それぞれ、絶縁層140の端部140a及び端部140bよりも内側にあり、本図に示す例では、絶縁層140の上面上において、それぞれ、有機層120の端部120a及び端部120bよりも内側にある。 Furthermore, in the example shown in this drawing, the organic layer 120 can be covered with the barrier layer (that is, the sealing portion 160) without increasing the width of the second electrode 130. For this reason, it is possible to prevent the width of the light shielding region (that is, the region overlapping with the second electrode 130) from increasing. Specifically, the end portion 130a and the end portion 130b of the second electrode 130 are inside the end portion 140a and the end portion 140b of the insulating layer 140, respectively. In the example shown in the drawing, the upper surface of the insulating layer 140 is provided. Above, they are inside the end 120a and the end 120b of the organic layer 120, respectively.
 封止部160は、端部160a及び端部160bを有している。封止部160の端部160a及び端部160bは、それぞれ、第1電極110の端部110a側及び端部110b側にある。より具体的には、封止部160の端部160a及び端部160bは、それぞれ、絶縁層140の端部140a及び端部140bの外側において、非発光部154と重なっている。このようにして、複数の封止部160のそれぞれは、複数の発光部152のそれぞれを封止している。このため、複数の発光部152の配列方向において、複数の封止部160のそれぞれの長さが短くなっている。これにより、複数の発光部152の配列方向に沿って基板100を湾曲させても、複数の封止部160のそれぞれに発生する曲げ応力は小さいものになる。 The sealing part 160 has an end part 160a and an end part 160b. The end part 160a and the end part 160b of the sealing part 160 are on the end part 110a side and the end part 110b side of the first electrode 110, respectively. More specifically, the end portion 160a and the end portion 160b of the sealing portion 160 overlap the non-light emitting portion 154 on the outside of the end portion 140a and the end portion 140b of the insulating layer 140, respectively. In this way, each of the plurality of sealing portions 160 seals each of the plurality of light emitting portions 152. For this reason, the length of each of the plurality of sealing portions 160 is shortened in the arrangement direction of the plurality of light emitting portions 152. Thereby, even if the board | substrate 100 is curved along the sequence direction of the some light emission part 152, the bending stress which generate | occur | produces in each of the some sealing part 160 becomes a small thing.
 さらに、本図に示す例において、封止部160は、透光性を有している。このため、発光装置10の光線透過率が封止部160によって阻害されることが抑制されている。 Furthermore, in the example shown in this figure, the sealing part 160 has translucency. For this reason, it is suppressed that the light transmittance of the light-emitting device 10 is inhibited by the sealing portion 160.
 基板100の第1面102は、複数の領域102a、複数の領域102b及び複数の領域102cを有している。複数の領域102aのそれぞれは、遮光部材(本図に示す例では、第2電極130)と重なっており、本図に示す例では、第2電極130の端部130aから端部130bまで広がっている。複数の領域102bのそれぞれは、遮光部材(本図に示す例では、第2電極130)と重なっておらず、透光部材(本図に示す例では、絶縁層140及び封止部160)と重なっており、本図に示す例では、第2電極130の端部130aから封止部160の端部160aまで(又は第2電極130の端部130bから封止部160の端部160bまで)広がっている。複数の領域102cのそれぞれは、遮光部材(本図に示す例では、第2電極130)及び透光部材(本図に示す例では、絶縁層140及び封止部160)と重なっておらず、本図に示す例では、互いに隣接する2つの発光部150の一方の封止部160の端部160aから他方の封止部160の端部160bまで広がっている。 The first surface 102 of the substrate 100 has a plurality of regions 102a, a plurality of regions 102b, and a plurality of regions 102c. Each of the plurality of regions 102a overlaps the light shielding member (second electrode 130 in the example shown in the figure), and in the example shown in the figure, extends from the end part 130a to the end part 130b of the second electrode 130. Yes. Each of the plurality of regions 102b does not overlap with the light shielding member (the second electrode 130 in the example shown in this figure), and the light transmitting member (the insulating layer 140 and the sealing portion 160 in the example shown in this figure). In the example shown in this figure, from the end portion 130a of the second electrode 130 to the end portion 160a of the sealing portion 160 (or from the end portion 130b of the second electrode 130 to the end portion 160b of the sealing portion 160). It has spread. Each of the plurality of regions 102c does not overlap with the light shielding member (second electrode 130 in the example shown in this figure) and the light transmitting member (in the example shown in this figure, the insulating layer 140 and the sealing portion 160). In the example shown in this figure, the two light emitting units 150 adjacent to each other extend from the end 160a of one sealing unit 160 to the end 160b of the other sealing unit 160.
 複数の領域102aのそれぞれは、複数の第1電極110のそれぞれと重なっている。複数の領域102cのそれぞれは、複数の第1電極110と重なっていない。複数の領域102a、複数の領域102b及び複数の領域102cのうち複数の領域102a及び複数の領域102cのみを見た場合、複数の領域102aと複数の領域102cは、交互に並んでいる。 Each of the plurality of regions 102 a overlaps each of the plurality of first electrodes 110. Each of the plurality of regions 102 c does not overlap with the plurality of first electrodes 110. When only the plurality of regions 102a and the plurality of regions 102c are viewed among the plurality of regions 102a, the plurality of regions 102b, and the plurality of regions 102c, the plurality of regions 102a and the plurality of regions 102c are alternately arranged.
 本図に示す例において、領域102bの幅d2は、領域102cの幅d3よりも短い。このため、発光装置10の光線透過率が高くなっている。具体的には、上記したように、領域102bは透光部材(絶縁層140及び封止部160)と重なっているのに対して、領域102cはこのような透光部材と重なっていない。このため、領域102cの光線透過率は領域102bの光線透過率よりも高い。これにより、発光装置10の光線透過率が高くなっている。 In the example shown in the figure, the width d2 of the region 102b is shorter than the width d3 of the region 102c. For this reason, the light transmittance of the light emitting device 10 is high. Specifically, as described above, the region 102b overlaps with the translucent member (the insulating layer 140 and the sealing portion 160), whereas the region 102c does not overlap with such a translucent member. For this reason, the light transmittance of the region 102c is higher than the light transmittance of the region 102b. Thereby, the light transmittance of the light-emitting device 10 is high.
 さらに、本図に示す例では、発光装置10が特定の波長の光を遮断するフィルタとして機能することが抑制されている。詳細には、絶縁層140の光線透過率及び封止部160の光線透過率が波長によって異なっていることがある。このため、絶縁層140及び封止部160は、特定の波長の光を遮断するフィルタとして機能し得る。本図に示す例では、上記したように、領域102b(絶縁層140及び封止部160と重なる領域)の幅d2は狭く、具体的には領域102cの幅d3よりも狭い。このため、発光装置10が特定の波長の光を遮断するフィルタとして機能することが抑制される。 Furthermore, in the example shown in this figure, the light emitting device 10 is suppressed from functioning as a filter that blocks light of a specific wavelength. Specifically, the light transmittance of the insulating layer 140 and the light transmittance of the sealing portion 160 may differ depending on the wavelength. For this reason, the insulating layer 140 and the sealing portion 160 can function as a filter that blocks light of a specific wavelength. In the example shown in this figure, as described above, the width d2 of the region 102b (the region overlapping with the insulating layer 140 and the sealing portion 160) is narrow, specifically, narrower than the width d3 of the region 102c. For this reason, it is suppressed that the light-emitting device 10 functions as a filter which interrupts | blocks the light of a specific wavelength.
 本図に示す例において、領域102bの幅d2は、領域102aの幅d1の例えば0倍以上0.3倍以下(0≦d2/d1≦0.3)である。領域102cの幅d3は、領域102aの幅d1の例えば0.3倍以上3倍以下(0.3≦d3/d1≦3)である。領域102aの幅d1は、例えば50μm以上500μm以下である。領域102bの幅d2は、例えば0μm以上100μm以下である。領域102cの幅d3は、15μm以上1000μm以下である。 In the example shown in the figure, the width d2 of the region 102b is, for example, 0 to 0.3 times (0 ≦ d2 / d1 ≦ 0.3) the width d1 of the region 102a. The width d3 of the region 102c is, for example, not less than 0.3 times and not more than 3 times the width d1 of the region 102a (0.3 ≦ d3 / d1 ≦ 3). The width d1 of the region 102a is, for example, not less than 50 μm and not more than 500 μm. The width d2 of the region 102b is, for example, not less than 0 μm and not more than 100 μm. The width d3 of the region 102c is 15 μm or more and 1000 μm or less.
(実施例3)
 図14は、実施例3に係る発光装置10を示す断面図であり、実施形態の図6に対応する。本実施例に係る発光装置10は、以下の点を除いて、実施形態に係る発光装置10と同様である。
(Example 3)
FIG. 14 is a cross-sectional view illustrating the light emitting device 10 according to Example 3, and corresponds to FIG. 6 of the embodiment. The light emitting device 10 according to this example is the same as the light emitting device 10 according to the embodiment except for the following points.
 第1電極110は、光反射性及び導電性を有している。具体的には、第1電極110は、光反射性及び導電性を有する材料を含んでおり、例えば金属、具体的には例えば、Al、Ag及びMgAgの少なくとも1つを含んでいる。これにより、有機層120からの光は、第1電極110をほとんど透過することなく、第1電極110で反射される。言い換えると、本図に示す例において、発光装置10は、トップエミッションであり、有機層120からの光のほとんどは、第1面102側から出射される。 The first electrode 110 has light reflectivity and conductivity. Specifically, the first electrode 110 includes a material having light reflectivity and conductivity, and includes, for example, metal, specifically, for example, at least one of Al, Ag, and MgAg. Thereby, the light from the organic layer 120 is reflected by the first electrode 110 with almost no transmission through the first electrode 110. In other words, in the example shown in the drawing, the light emitting device 10 is top emission, and most of the light from the organic layer 120 is emitted from the first surface 102 side.
 第2電極130(封止部160)は、透光性、導電性及び水蒸気バリア性を有している。具体的には、第2電極130は、透光性、導電性及び水蒸気バリア性を有する無機材料を含んでおり、例えば金属酸化物、具体的には例えば、ITO、IZO、In、ZnO、AZO、GZO、ATO及びIGZOの少なくとも1つを含んでいる。これにより、有機層120からの光は、第2電極130(封止部160)を透過することができる。さらに、第2電極130は、水蒸気を遮断するためのバリア層として機能している。 The second electrode 130 (sealing portion 160) has translucency, conductivity, and water vapor barrier properties. Specifically, the second electrode 130 includes an inorganic material having translucency, conductivity, and water vapor barrier properties, such as a metal oxide, specifically, for example, ITO, IZO, In 2 O 3 , It contains at least one of ZnO, AZO, GZO, ATO and IGZO. Thereby, the light from the organic layer 120 can pass through the second electrode 130 (sealing part 160). Furthermore, the second electrode 130 functions as a barrier layer for blocking water vapor.
 基板100の第1面102は、複数の領域102a、複数の領域102b及び複数の領域102cを有している。複数の領域102aのそれぞれは、遮光部材(本図に示す例では、第1電極110)と重なっており、本図に示す例では、第1電極110の端部110aから端部110bまで広がっている。複数の領域102bのそれぞれは、遮光部材(本図に示す例では、第1電極110)と重なっておらず、透光部材(本図に示す例では、第2電極130及び絶縁層140)と重なっており、本図に示す例では、第1電極110の端部110aから第2電極130の端部130aまで(又は第1電極110の端部110bから第2電極130の端部130bまで)広がっている。複数の領域102cのそれぞれは、遮光部材(本図に示す例では、第1電極110)及び透光部材(本図に示す例では、第2電極130及び絶縁層140)と重なっておらず、本図に示す例では、互いに隣接する2つの発光部150の一方の第2電極130の端部130aから他方の第2電極130の端部130bまで広がっている。 The first surface 102 of the substrate 100 has a plurality of regions 102a, a plurality of regions 102b, and a plurality of regions 102c. Each of the plurality of regions 102a overlaps the light shielding member (first electrode 110 in the example shown in the figure), and in the example shown in the figure, extends from the end 110a to the end 110b of the first electrode 110. Yes. Each of the plurality of regions 102b does not overlap with the light shielding member (the first electrode 110 in the example shown in the figure), and the light transmitting member (the second electrode 130 and the insulating layer 140 in the example shown in the figure). In the example shown in this figure, from the end 110a of the first electrode 110 to the end 130a of the second electrode 130 (or from the end 110b of the first electrode 110 to the end 130b of the second electrode 130). It has spread. Each of the plurality of regions 102c does not overlap with the light shielding member (the first electrode 110 in the example shown in this figure) and the light transmitting member (the second electrode 130 and the insulating layer 140 in the example shown in this figure). In the example shown in this drawing, the two light emitting units 150 adjacent to each other extend from the end 130a of one second electrode 130 to the end 130b of the other second electrode 130.
 複数の領域102aのそれぞれは、複数の第1電極110のそれぞれと重なっている。複数の領域102cのそれぞれは、複数の第1電極110と重なっていない。複数の領域102aと複数の領域102cは、交互に並んでいる。 Each of the plurality of regions 102 a overlaps each of the plurality of first electrodes 110. Each of the plurality of regions 102 c does not overlap with the plurality of first electrodes 110. The plurality of regions 102a and the plurality of regions 102c are arranged alternately.
 本図に示す例において、領域102bの幅d2は、領域102cの幅d3よりも短い。このため、図13を用いて説明した理由と同様の理由により、発光装置10の光線透過率が高くなっている。さらに、発光装置10が特定の波長の光を遮断するフィルタとして機能することが抑制されている。 In the example shown in the figure, the width d2 of the region 102b is shorter than the width d3 of the region 102c. For this reason, the light transmittance of the light emitting device 10 is high for the same reason as described with reference to FIG. Furthermore, it is suppressed that the light emitting device 10 functions as a filter that blocks light of a specific wavelength.
 本図に示す例において、第2電極130(封止部160)の端部130a及び端部130bは、それぞれ、絶縁層140の端部140a及び端部140bの外側において、非発光部154と重なっている。このようにして、複数の封止部160のそれぞれは、複数の発光部152のそれぞれを封止している。このため、複数の発光部152の配列方向において、複数の封止部160のそれぞれの長さが短くなっている。これにより、複数の発光部152の配列方向に沿って基板100を湾曲させても、複数の封止部160のそれぞれに発生する曲げ応力は小さいものになる。 In the example shown in this figure, the end part 130a and the end part 130b of the second electrode 130 (sealing part 160) overlap the non-light emitting part 154 on the outside of the end part 140a and the end part 140b of the insulating layer 140, respectively. ing. In this way, each of the plurality of sealing portions 160 seals each of the plurality of light emitting portions 152. For this reason, the length of each of the plurality of sealing portions 160 is shortened in the arrangement direction of the plurality of light emitting portions 152. Thereby, even if the board | substrate 100 is curved along the sequence direction of the some light emission part 152, the bending stress which generate | occur | produces in each of the some sealing part 160 becomes a small thing.
(実施例4)
 図15は、実施例4に係る発光装置10を示す平面図であり、実施形態の図4に対応する。図16は、図15のB-B断面図であり、実施形態の図6に対応する。本実施例に係る発光装置10は、以下の点を除いて、実施形態に係る発光装置10と同様である。
Example 4
FIG. 15 is a plan view showing the light emitting device 10 according to Example 4, and corresponds to FIG. 4 of the embodiment. 16 is a cross-sectional view taken along the line BB of FIG. 15, and corresponds to FIG. 6 of the embodiment. The light emitting device 10 according to this example is the same as the light emitting device 10 according to the embodiment except for the following points.
 本図に示す例において、発光装置10は、複数の導電部170(導電部172及び導電部174)を備えている。導電部172及び導電部174は、第1電極110の長さ方向に沿って延伸している。導電部172は、第1電極110の端部110aの近傍において、第1電極110の上面上にあって絶縁層140によって覆われている。導電部174は、第1電極110の端部110bの近傍において、第1電極110の上面上にあって絶縁層140によって覆われている。 In the example shown in the figure, the light emitting device 10 includes a plurality of conductive portions 170 (conductive portions 172 and conductive portions 174). The conductive part 172 and the conductive part 174 extend along the length direction of the first electrode 110. The conductive portion 172 is on the upper surface of the first electrode 110 in the vicinity of the end portion 110 a of the first electrode 110 and is covered with the insulating layer 140. The conductive portion 174 is on the upper surface of the first electrode 110 in the vicinity of the end portion 110 b of the first electrode 110 and is covered with the insulating layer 140.
 導電部172及び導電部174は、第1電極110の補助電極として機能しており、第1電極110と電気的に接続している。具体的には、導電部172の導電率及び導電部174の導電率は、第1電極110の導電率よりも高い。導電部172及び導電部174は、例えば、Al、Ag、Al合金又はAg合金を含んでいる。このようにして、第1電極110による電圧降下を抑制することができる。 The conductive portion 172 and the conductive portion 174 function as auxiliary electrodes for the first electrode 110 and are electrically connected to the first electrode 110. Specifically, the conductivity of the conductive part 172 and the conductivity of the conductive part 174 are higher than the conductivity of the first electrode 110. The conductive part 172 and the conductive part 174 include, for example, Al, Ag, an Al alloy, or an Ag alloy. In this way, a voltage drop due to the first electrode 110 can be suppressed.
(実施例5)
 図17は、実施例5に係る発光装置10を示す平面図であり、実施形態の図4に対応する。図18は、図17のB-B断面図であり、実施形態の図6に対応する。本実施例に係る発光装置10は、以下の点を除いて、実施形態に係る発光装置10と同様である。
(Example 5)
FIG. 17 is a plan view illustrating the light emitting device 10 according to Example 5, and corresponds to FIG. 4 of the embodiment. FIG. 18 is a cross-sectional view taken along the line BB of FIG. 17 and corresponds to FIG. 6 of the embodiment. The light emitting device 10 according to this example is the same as the light emitting device 10 according to the embodiment except for the following points.
 図17に示すように、発光装置10は、複数の絶縁層180(絶縁層182及び絶縁層184)を備えている。複数の絶縁層180は、発光部150の長さ方向に沿って延伸している。絶縁層182と絶縁層184は、絶縁層140を挟んで互いに対向している。 As shown in FIG. 17, the light emitting device 10 includes a plurality of insulating layers 180 (insulating layers 182 and 184). The plurality of insulating layers 180 extend along the length direction of the light emitting unit 150. The insulating layer 182 and the insulating layer 184 face each other with the insulating layer 140 interposed therebetween.
 図18に示すように、絶縁層182は、端部182a、端部182b、側面182c及び側面184dを有している。端部182aは、発光部150の外側を向いている。端部182bは、端部182aの反対側にあり、発光部150の内側を向いている。側面182cは、発光部150の外側を向いている。側面182dは、側面182cの反対側にあり、発光部150の内側を向いている。絶縁層184は、端部184a、端部184b、側面184c及び側面184dを有している。端部184aは、発光部150の外側を向いている。端部184bは、端部184aの反対側にあり、発光部150の内側を向いている。側面184cは、発光部150の外側を向いている。側面184dは、側面184cの反対側にあり、発光部150の内側を向いている。 As shown in FIG. 18, the insulating layer 182 has an end 182a, an end 182b, a side 182c, and a side 184d. The end portion 182a faces the outside of the light emitting unit 150. The end 182b is on the opposite side of the end 182a and faces the inside of the light emitting unit 150. The side surface 182c faces the outside of the light emitting unit 150. The side surface 182d is on the opposite side of the side surface 182c and faces the inside of the light emitting unit 150. The insulating layer 184 includes an end portion 184a, an end portion 184b, a side surface 184c, and a side surface 184d. The end portion 184a faces the outside of the light emitting unit 150. The end 184 b is on the opposite side of the end 184 a and faces the inside of the light emitting unit 150. The side surface 184 c faces the outside of the light emitting unit 150. The side surface 184d is on the opposite side of the side surface 184c and faces the inside of the light emitting unit 150.
 一例において、絶縁層182及び絶縁層184は、有機絶縁材料、具体的には例えばポリイミドを含んでいる。他の例において、絶縁層182及び絶縁層184は、無機絶縁材料、具体的には、例えば、シリコン酸化物(SiO)、シリコン酸窒化物(SiON)又はシリコン窒化物(SiN)を含んでいてもよい。 In one example, the insulating layer 182 and the insulating layer 184 include an organic insulating material, specifically, for example, polyimide. In other examples, the insulating layer 182 and the insulating layer 184 include an inorganic insulating material, specifically, for example, silicon oxide (SiO x ), silicon oxynitride (SiON), or silicon nitride (SiN x ). You may go out.
 絶縁層182及び絶縁層184は、基板100の第1面102上にある。絶縁層182及び絶縁層184は、それぞれ、第1電極110の端部110a及び端部110bよりも外側にあり、それぞれ、絶縁層140の端部140a及び端部140bから離間している。第2電極130は、絶縁層140の端部140aと絶縁層182の端部182bの間で基板100の第1面102に接しており、絶縁層140の端部140bと絶縁層184の端部184bの間で基板100の第1面102に接している。 The insulating layer 182 and the insulating layer 184 are on the first surface 102 of the substrate 100. The insulating layer 182 and the insulating layer 184 are located outside the end portion 110a and the end portion 110b of the first electrode 110, respectively, and are separated from the end portion 140a and the end portion 140b of the insulating layer 140, respectively. The second electrode 130 is in contact with the first surface 102 of the substrate 100 between the end portion 140 a of the insulating layer 140 and the end portion 182 b of the insulating layer 182, and the end portion 140 b of the insulating layer 140 and the end portion of the insulating layer 184. It is in contact with the first surface 102 of the substrate 100 between 184b.
 本図に示す例においては、第2電極130を形成する場合に、メタルマスクを絶縁層182の上面及び絶縁層184の上面に突き当てて第2電極130を蒸着させることができる。このため、第2電極130の幅を精密に制御することができる。さらに、本図に示す例においては、絶縁層182の厚さと絶縁層184の厚さとが互いにほぼ等しい。このため、メタルマスクを用いて第2電極130を蒸着する場合に、メタルマスクが基板100の第1面102とほぼ平行になるようにメタルマスクを絶縁層182の上面及び絶縁層184の上面に突き当てることができる。さらに、本図に示す例においては、メタルマスクを絶縁層182の上面及び絶縁層184の上面に突き当てるため、メタルマスクを絶縁層140の上面に突き当てる必要がない。仮に、メタルマスクを絶縁層140の上面に突き当てると、絶縁層140及び発光部150にダメージを与える可能性がある。本図に示す例においては、このようなダメージが生じる可能性を極力低減することができる。 In the example shown in this drawing, when the second electrode 130 is formed, the second electrode 130 can be deposited by abutting a metal mask against the upper surface of the insulating layer 182 and the upper surface of the insulating layer 184. For this reason, the width of the second electrode 130 can be precisely controlled. Furthermore, in the example shown in this drawing, the thickness of the insulating layer 182 and the thickness of the insulating layer 184 are substantially equal to each other. Therefore, when the second electrode 130 is deposited using a metal mask, the metal mask is placed on the upper surface of the insulating layer 182 and the upper surface of the insulating layer 184 so that the metal mask is substantially parallel to the first surface 102 of the substrate 100. You can hit it. Furthermore, in the example shown in this drawing, since the metal mask is abutted against the upper surface of the insulating layer 182 and the upper surface of the insulating layer 184, it is not necessary to abut the metal mask against the upper surface of the insulating layer 140. If the metal mask is abutted against the upper surface of the insulating layer 140, the insulating layer 140 and the light emitting unit 150 may be damaged. In the example shown in the figure, the possibility of such damage can be reduced as much as possible.
 第2電極130の端部130aは、発光部150の幅方向において絶縁層184の端部182aと端部182bとの間にあり、本図に示す例では、絶縁層182の上面上にある。このようにして、第2電極130は、絶縁層182の少なくとも一部を覆っている。これにより、絶縁層140の端部140aと絶縁層182の端部182bとの間において、第2電極130は、基板100の第1面102を覆うようになり、このため、基板100の第1面102に確実に接するようになる。 The end portion 130a of the second electrode 130 is between the end portion 182a and the end portion 182b of the insulating layer 184 in the width direction of the light emitting unit 150, and is on the upper surface of the insulating layer 182 in the example shown in this drawing. In this way, the second electrode 130 covers at least a part of the insulating layer 182. Accordingly, the second electrode 130 covers the first surface 102 of the substrate 100 between the end portion 140 a of the insulating layer 140 and the end portion 182 b of the insulating layer 182. It comes in contact with the surface 102 reliably.
 第2電極130の端部130bは、発光部150の幅方向において絶縁層184の端部184aと端部184bとの間にあり、本図に示す例では、絶縁層184の上面上にある。このようにして、第2電極130は、絶縁層184の少なくとも一部を覆っている。これにより、絶縁層140の端部140bと絶縁層184の端部184bとの間において、第2電極130は、基板100の第1面102を覆うようになり、このため、基板100の第1面102に確実に接するようになる。 The end portion 130b of the second electrode 130 is between the end portion 184a and the end portion 184b of the insulating layer 184 in the width direction of the light emitting unit 150, and is on the upper surface of the insulating layer 184 in the example shown in this drawing. In this way, the second electrode 130 covers at least a part of the insulating layer 184. Accordingly, the second electrode 130 covers the first surface 102 of the substrate 100 between the end portion 140b of the insulating layer 140 and the end portion 184b of the insulating layer 184. It comes in contact with the surface 102 reliably.
 絶縁層182の側面182dは、第2電極130の一部によって覆われている。側面182dは、絶縁層182の上面から下面に向かうにつれて絶縁層182の外側に傾いている。これにより、第2電極130は、側面182dに沿いやすくなる。このため、第2電極130と側面182dの間に隙間が形成されることが抑制される。なお、本図に示す例では、側面182cも、絶縁層182の上面から下面に向かうにつれて絶縁層182の外側に傾いている。 The side surface 182 d of the insulating layer 182 is covered with a part of the second electrode 130. The side surface 182d is inclined to the outside of the insulating layer 182 as it goes from the upper surface to the lower surface of the insulating layer 182. Thereby, the 2nd electrode 130 becomes easy to follow along side 182d. For this reason, the formation of a gap between the second electrode 130 and the side surface 182d is suppressed. In the example shown in this figure, the side surface 182c is also inclined to the outside of the insulating layer 182 from the upper surface to the lower surface of the insulating layer 182.
 絶縁層184の側面184dは、第2電極130の一部によって覆われている。側面184dは、絶縁層184の上面から下面に向かうにつれて絶縁層184の外側に傾いている。これにより、第2電極130は、側面184dに沿いやすくなる。このため、第2電極130と側面184dの間に隙間が形成されることが抑制される。なお、本図に示す例では、側面184cも、絶縁層184の上面から下面に向かうにつれて絶縁層184の外側に傾いている。 The side surface 184 d of the insulating layer 184 is covered with a part of the second electrode 130. The side surface 184d is inclined to the outside of the insulating layer 184 as it goes from the upper surface to the lower surface of the insulating layer 184. Thereby, the 2nd electrode 130 becomes easy to follow along side 184d. For this reason, the formation of a gap between the second electrode 130 and the side surface 184d is suppressed. In the example shown in this figure, the side surface 184c is also inclined to the outside of the insulating layer 184 as it goes from the upper surface to the lower surface of the insulating layer 184.
 基板100の第1面102は、複数の領域102a、複数の領域102b及び複数の領域102cを有している。複数の領域102aのそれぞれは、遮光部材(本図に示す例では、第2電極130)と重なっており、本図に示す例では、第2電極130の端部130aから端部130bまで広がっている。複数の領域102bのそれぞれは、遮光部材(本図に示す例では、第2電極130)と重なっておらず、透光部材(本図に示す例では、絶縁層180)と重なっており、本図に示す例では、第2電極130の端部130aから絶縁層182の端部182aまで(又は第2電極130の端部130bから絶縁層184の端部184aまで)広がっている。複数の領域102cのそれぞれは、遮光部材(本図に示す例では、第2電極130)及び透光部材(本図に示す例では、絶縁層180)と重なっておらず、本図に示す例では、互いに隣接する2つの発光部150の一方の絶縁層182の端部182aから他方の絶縁層184の端部184aまで広がっている。 The first surface 102 of the substrate 100 has a plurality of regions 102a, a plurality of regions 102b, and a plurality of regions 102c. Each of the plurality of regions 102a overlaps the light shielding member (second electrode 130 in the example shown in the figure), and in the example shown in the figure, extends from the end part 130a to the end part 130b of the second electrode 130. Yes. Each of the plurality of regions 102b does not overlap with the light shielding member (second electrode 130 in the example shown in this figure) but overlaps with the light transmitting member (insulating layer 180 in the example shown in this figure). In the example shown in the figure, it extends from the end 130a of the second electrode 130 to the end 182a of the insulating layer 182 (or from the end 130b of the second electrode 130 to the end 184a of the insulating layer 184). Each of the plurality of regions 102c does not overlap with the light shielding member (second electrode 130 in the example shown in this figure) and the light transmitting member (insulating layer 180 in the example shown in this figure), and the example shown in this figure. Then, it extends from the end 182 a of one insulating layer 182 of the two light emitting units 150 adjacent to each other to the end 184 a of the other insulating layer 184.
 複数の領域102aのそれぞれは、複数の第1電極110のそれぞれと重なっている。複数の領域102cのそれぞれは、複数の第1電極110と重なっていない。複数の領域102a、複数の領域102b及び複数の領域102cのうち複数の領域102a及び複数の領域102cのみを見た場合、複数の領域102aと複数の領域102cは、交互に並んでいる。 Each of the plurality of regions 102 a overlaps each of the plurality of first electrodes 110. Each of the plurality of regions 102 c does not overlap with the plurality of first electrodes 110. When only the plurality of regions 102a and the plurality of regions 102c are viewed among the plurality of regions 102a, the plurality of regions 102b, and the plurality of regions 102c, the plurality of regions 102a and the plurality of regions 102c are alternately arranged.
 本図に示す例において、領域102bの幅d2は、領域102cの幅d3よりも短い。このため、図13を用いて説明した理由と同様の理由により、発光装置10の光線透過率が高くなっている。さらに、発光装置10が特定の波長の光を遮断するフィルタとして機能することが抑制されている。 In the example shown in the figure, the width d2 of the region 102b is shorter than the width d3 of the region 102c. For this reason, the light transmittance of the light emitting device 10 is high for the same reason as described with reference to FIG. Furthermore, it is suppressed that the light emitting device 10 functions as a filter that blocks light of a specific wavelength.
 本図に示す例において、第2電極130(封止部160)の端部130a及び端部130bは、それぞれ、絶縁層140の端部140a及び端部140bの外側において、非発光部154と重なっている。このようにして、複数の封止部160のそれぞれは、複数の発光部152のそれぞれを封止している。このため、複数の発光部152の配列方向において、複数の封止部160のそれぞれの長さが短くなっている。これにより、複数の発光部152の配列方向に沿って基板100を湾曲させても、複数の封止部160のそれぞれに発生する曲げ応力は小さいものになる。 In the example shown in this figure, the end part 130a and the end part 130b of the second electrode 130 (sealing part 160) overlap the non-light emitting part 154 on the outside of the end part 140a and the end part 140b of the insulating layer 140, respectively. ing. In this way, each of the plurality of sealing portions 160 seals each of the plurality of light emitting portions 152. For this reason, the length of each of the plurality of sealing portions 160 is shortened in the arrangement direction of the plurality of light emitting portions 152. Thereby, even if the board | substrate 100 is curved along the sequence direction of the some light emission part 152, the bending stress which generate | occur | produces in each of the some sealing part 160 becomes a small thing.
(実施例6)
 図19は、実施例6に係る発光装置10を示す平面図であり、実施例5の図17に対応する。図20は、図19のB-B断面図であり、実施例5の図18に対応する。本実施例に係る発光装置10は、以下の点を除いて、実施例5に係る発光装置10と同様である。
(Example 6)
FIG. 19 is a plan view illustrating the light emitting device 10 according to the sixth embodiment, which corresponds to FIG. 17 of the fifth embodiment. 20 is a cross-sectional view taken along the line BB in FIG. 19 and corresponds to FIG. 18 in the fifth embodiment. The light emitting device 10 according to the present example is the same as the light emitting device 10 according to the example 5 except for the following points.
 図19に示すように、発光装置10は、複数のダミー電極190(ダミー電極191、ダミー電極192、ダミー電極193、ダミー電極194、ダミー電極195及びダミー電極196)を備えている。複数のダミー電極190は、発光部150の長さ方向に沿って延伸している。 As shown in FIG. 19, the light emitting device 10 includes a plurality of dummy electrodes 190 (a dummy electrode 191, a dummy electrode 192, a dummy electrode 193, a dummy electrode 194, a dummy electrode 195, and a dummy electrode 196). The plurality of dummy electrodes 190 extend along the length direction of the light emitting unit 150.
 図20に示すように、複数のダミー電極190は、基板100の第1面102上にある。ダミー電極191及びダミー電極192は、絶縁層140によって覆われており、具体的には、絶縁層140の端部140a及び端部140bがダミー電極191の上面上及びダミー電極192の上面上にそれぞれある。ダミー電極193及びダミー電極194は、絶縁層182によって覆われており、具体的には、絶縁層182の端部182a及び端部182bがダミー電極193の上面上及びダミー電極194の上面上にそれぞれある。ダミー電極195及びダミー電極196は、絶縁層184によって覆われており、具体的には、絶縁層184の端部184a及び端部184bがダミー電極195の上面上及びダミー電極196の上面上にそれぞれある。 As shown in FIG. 20, the plurality of dummy electrodes 190 are on the first surface 102 of the substrate 100. The dummy electrode 191 and the dummy electrode 192 are covered with the insulating layer 140. Specifically, the end portion 140a and the end portion 140b of the insulating layer 140 are on the upper surface of the dummy electrode 191 and the upper surface of the dummy electrode 192, respectively. is there. The dummy electrode 193 and the dummy electrode 194 are covered with an insulating layer 182. Specifically, the end portion 182a and the end portion 182b of the insulating layer 182 are on the upper surface of the dummy electrode 193 and the upper surface of the dummy electrode 194, respectively. is there. The dummy electrode 195 and the dummy electrode 196 are covered with an insulating layer 184. Specifically, the end 184a and the end 184b of the insulating layer 184 are on the upper surface of the dummy electrode 195 and the upper surface of the dummy electrode 196, respectively. is there.
 ダミー電極190は、透光性及び導電性を有している。具体的には、ダミー電極190は、透光性及び導電性を有する材料を含んでおり、例えば金属酸化物、具体的には例えば、ITO、IZO、In、ZnO、AZO、GZO、ATO及びIGZOの少なくとも1つを含んでいる。ダミー電極190は、例えば、第1電極110と同じ材料を含んでいる。 The dummy electrode 190 has translucency and conductivity. Specifically, the dummy electrode 190 includes a material having translucency and conductivity, for example, a metal oxide, specifically, for example, ITO, IZO, In 2 O 3 , ZnO, AZO, GZO, At least one of ATO and IGZO is included. The dummy electrode 190 includes the same material as that of the first electrode 110, for example.
 ダミー電極191及びダミー電極192に対する絶縁層140の密着性は、基板100の第1面102に対する絶縁層140の密着性よりも高い。さらに、基板100の第1面102に対するダミー電極191及びダミー電極192の密着性は、基板100の第1面102に対する絶縁層140の密着性よりも高い。このようにして、ダミー電極191は、絶縁層140の端部140aが基板100の第1面102から剥離することを防止するための接着層として機能しており、ダミー電極192は、絶縁層140の端部140bが基板100の第1面102から剥離することを防止するための接着層として機能している。 The adhesion of the insulating layer 140 to the dummy electrode 191 and the dummy electrode 192 is higher than the adhesion of the insulating layer 140 to the first surface 102 of the substrate 100. Further, the adhesion of the dummy electrode 191 and the dummy electrode 192 to the first surface 102 of the substrate 100 is higher than the adhesion of the insulating layer 140 to the first surface 102 of the substrate 100. In this manner, the dummy electrode 191 functions as an adhesive layer for preventing the end portion 140 a of the insulating layer 140 from peeling from the first surface 102 of the substrate 100, and the dummy electrode 192 is the insulating layer 140. This end portion 140 b functions as an adhesive layer for preventing the end portion 140 b from peeling from the first surface 102 of the substrate 100.
 ダミー電極193及びダミー電極194に対する絶縁層182の密着性は、基板100の第1面102に対する絶縁層182の密着性よりも高い。さらに、基板100の第1面102に対するダミー電極193及びダミー電極194の密着性は、基板100の第1面102に対する絶縁層182の密着性よりも高い。このようにして、ダミー電極193は、絶縁層182の端部182aが基板100の第1面102から剥離することを防止するための接着層として機能しており、ダミー電極194は、絶縁層182の端部182bが基板100の第1面102から剥離することを防止するための接着層として機能している。 The adhesion of the insulating layer 182 to the dummy electrode 193 and the dummy electrode 194 is higher than the adhesion of the insulating layer 182 to the first surface 102 of the substrate 100. Further, the adhesion of the dummy electrode 193 and the dummy electrode 194 to the first surface 102 of the substrate 100 is higher than the adhesion of the insulating layer 182 to the first surface 102 of the substrate 100. In this manner, the dummy electrode 193 functions as an adhesive layer for preventing the end portion 182a of the insulating layer 182 from peeling from the first surface 102 of the substrate 100, and the dummy electrode 194 includes the insulating layer 182. This end portion 182b functions as an adhesive layer for preventing the first surface 102 of the substrate 100 from peeling off.
 ダミー電極195及びダミー電極196に対する絶縁層184の密着性は、基板100の第1面102に対する絶縁層184の密着性よりも高い。さらに、基板100の第1面102に対するダミー電極195及びダミー電極196の密着性は、基板100の第1面102に対する絶縁層184の密着性よりも高い。このようにして、ダミー電極195は、絶縁層184の端部184aが基板100の第1面102から剥離することを防止するための接着層として機能しており、ダミー電極196は、絶縁層184の端部184bが基板100の第1面102から剥離することを防止するための接着層として機能している。 The adhesion of the insulating layer 184 to the dummy electrode 195 and the dummy electrode 196 is higher than the adhesion of the insulating layer 184 to the first surface 102 of the substrate 100. Further, the adhesion of the dummy electrode 195 and the dummy electrode 196 to the first surface 102 of the substrate 100 is higher than the adhesion of the insulating layer 184 to the first surface 102 of the substrate 100. In this manner, the dummy electrode 195 functions as an adhesive layer for preventing the end portion 184a of the insulating layer 184 from peeling from the first surface 102 of the substrate 100, and the dummy electrode 196 includes the insulating layer 184. This end portion 184 b functions as an adhesive layer for preventing the end portion 184 b from peeling from the first surface 102 of the substrate 100.
(実施例7)
 図21は、実施例7に係る発光装置10を示す平面図であり、実施形態の図4に対応する。図22は、図21のE-E断面図である。本実施例に係る発光装置10は、以下の点を除いて、実施形態に係る発光装置10と同様である。
(Example 7)
FIG. 21 is a plan view showing the light emitting device 10 according to Example 7, and corresponds to FIG. 4 of the embodiment. 22 is a cross-sectional view taken along the line EE of FIG. The light emitting device 10 according to this example is the same as the light emitting device 10 according to the embodiment except for the following points.
 図21に示すように、第1電極110は、端部110a、端部110b、端部110c及び端部110dを有している。端部110a及び端部110bは、第1電極110の長さ方向に沿って延伸している。端部110c及び端部110dは、第1電極110の幅方向に沿って延伸している。端部110cは、第1接続部112を介して第1端子114に接続している。第1接続部112の幅は、第1電極110の幅よりも狭い。端部110dは、端部110cの反対側にあり、第2端子134に対向している。 As shown in FIG. 21, the first electrode 110 has an end portion 110a, an end portion 110b, an end portion 110c, and an end portion 110d. The end part 110 a and the end part 110 b extend along the length direction of the first electrode 110. The end portion 110 c and the end portion 110 d extend along the width direction of the first electrode 110. The end portion 110 c is connected to the first terminal 114 via the first connection portion 112. The width of the first connection part 112 is narrower than the width of the first electrode 110. The end portion 110d is on the opposite side of the end portion 110c and faces the second terminal 134.
 図22に示すように、第2電極130は、第1電極110の端部110cよりも外側、より具体的には絶縁層140と第1端子114の間において、基板100の第1面102に接している。これにより、有機層120は、絶縁層140の側面144cから基板100の第1面102に亘って、バリア層(すなわち、基板100及び第2電極130)によって囲まれている。このようにして、有機層120に水蒸気が侵入することが防止されている。 As shown in FIG. 22, the second electrode 130 is formed on the first surface 102 of the substrate 100 outside the end portion 110 c of the first electrode 110, more specifically, between the insulating layer 140 and the first terminal 114. It touches. Thus, the organic layer 120 is surrounded by the barrier layer (that is, the substrate 100 and the second electrode 130) from the side surface 144c of the insulating layer 140 to the first surface 102 of the substrate 100. In this way, water vapor is prevented from entering the organic layer 120.
 さらに、第2電極130は、第1接続部112及び第1端子114に接していない。このため、第2電極130が第1接続部112及び第1端子114と短絡することが防止されている。 Further, the second electrode 130 is not in contact with the first connection part 112 and the first terminal 114. For this reason, the second electrode 130 is prevented from being short-circuited with the first connection portion 112 and the first terminal 114.
(実施例8)
 図23は、実施例8に係る発光装置10を示す断面図であり、実施形態の図6に対応する。本実施例に係る発光装置10は、以下の点を除いて、実施形態に係る発光装置10と同様である。
(Example 8)
FIG. 23 is a cross-sectional view illustrating the light emitting device 10 according to Example 8, and corresponds to FIG. 6 of the embodiment. The light emitting device 10 according to this example is the same as the light emitting device 10 according to the embodiment except for the following points.
 本図に示すように、封止部160は、接着層162及び被覆層164を含んでいてもよい。接着層162は、基板100の第1面102、第1電極110、有機層120、第2電極130及び絶縁層140を覆っている。接着層162は、例えば有機材料を含んでいる。被覆層164は、接着層162を介して基板100の第1面102に取り付けられている。被覆層164は、透光性を有しており、例えばガラス基板である。 As shown in the drawing, the sealing portion 160 may include an adhesive layer 162 and a covering layer 164. The adhesive layer 162 covers the first surface 102 of the substrate 100, the first electrode 110, the organic layer 120, the second electrode 130, and the insulating layer 140. The adhesive layer 162 includes, for example, an organic material. The covering layer 164 is attached to the first surface 102 of the substrate 100 via the adhesive layer 162. The covering layer 164 has translucency, and is a glass substrate, for example.
 封止部160は、端部160a及び端部160bを有している。封止部160の端部160a及び端部160bは、それぞれ、第1電極110の端部110a側及び端部110b側にある。より具体的には、封止部160の端部160a及び端部160bは、それぞれ、絶縁層140の端部140a及び端部140bの外側において、非発光部154と重なっている。このようにして、複数の封止部160のそれぞれは、複数の発光部152のそれぞれを封止している。このため、複数の発光部152の配列方向において、複数の封止部160のそれぞれの長さが短くなっている。これにより、複数の発光部152の配列方向に沿って基板100を湾曲させても、複数の封止部160のそれぞれに発生する曲げ応力は小さいものになる。 The sealing part 160 has an end part 160a and an end part 160b. The end part 160a and the end part 160b of the sealing part 160 are on the end part 110a side and the end part 110b side of the first electrode 110, respectively. More specifically, the end portion 160a and the end portion 160b of the sealing portion 160 overlap the non-light emitting portion 154 on the outside of the end portion 140a and the end portion 140b of the insulating layer 140, respectively. In this way, each of the plurality of sealing portions 160 seals each of the plurality of light emitting portions 152. For this reason, the length of each of the plurality of sealing portions 160 is shortened in the arrangement direction of the plurality of light emitting portions 152. Thereby, even if the board | substrate 100 is curved along the sequence direction of the some light emission part 152, the bending stress which generate | occur | produces in each of the some sealing part 160 becomes a small thing.
(実施例9)
 図24は、実施例9に係る発光装置10を示す断面図であり、実施形態の図6に対応する。本実施例に係る発光装置10は、以下の点を除いて、実施形態に係る発光装置10と同様である。
Example 9
FIG. 24 is a cross-sectional view illustrating the light emitting device 10 according to Example 9, and corresponds to FIG. 6 of the embodiment. The light emitting device 10 according to this example is the same as the light emitting device 10 according to the embodiment except for the following points.
 本図に示すように、封止部160は、封止缶166及び接着層168を含んでいてもよい。封止缶166は、接着層168を介して基板100の第1面102に接合されている。封止缶166は、中空の領域を挟んで、第1電極110、有機層120、第2電極130及び絶縁層140を覆っている。 As shown in the drawing, the sealing portion 160 may include a sealing can 166 and an adhesive layer 168. The sealing can 166 is bonded to the first surface 102 of the substrate 100 through the adhesive layer 168. The sealing can 166 covers the first electrode 110, the organic layer 120, the second electrode 130, and the insulating layer 140 with a hollow region interposed therebetween.
 封止部160は、端部160a及び端部160bを有している。封止部160の端部160a及び端部160bは、それぞれ、第1電極110の端部110a側及び端部110b側にある。より具体的には、封止部160の端部160a及び端部160bは、それぞれ、絶縁層140の端部140a及び端部140bの外側において、非発光部154と重なっている。このようにして、複数の封止部160のそれぞれは、複数の発光部152のそれぞれを封止している。このため、複数の発光部152の配列方向において、複数の封止部160のそれぞれの長さが短くなっている。これにより、複数の発光部152の配列方向に沿って基板100を湾曲させても、複数の封止部160のそれぞれに発生する曲げ応力は小さいものになる。 The sealing part 160 has an end part 160a and an end part 160b. The end part 160a and the end part 160b of the sealing part 160 are on the end part 110a side and the end part 110b side of the first electrode 110, respectively. More specifically, the end portion 160a and the end portion 160b of the sealing portion 160 overlap the non-light emitting portion 154 on the outside of the end portion 140a and the end portion 140b of the insulating layer 140, respectively. In this way, each of the plurality of sealing portions 160 seals each of the plurality of light emitting portions 152. For this reason, the length of each of the plurality of sealing portions 160 is shortened in the arrangement direction of the plurality of light emitting portions 152. Thereby, even if the board | substrate 100 is curved along the sequence direction of the some light emission part 152, the bending stress which generate | occur | produces in each of the some sealing part 160 becomes a small thing.
(実施例10)
 図25は、実施例10に係る発光装置10を示す断面図であり、実施形態の図5に対応する。本実施例に係る発光装置10は、以下の点を除いて、実施形態に係る発光装置10と同様である。
(Example 10)
25 is a cross-sectional view illustrating the light emitting device 10 according to Example 10, and corresponds to FIG. 5 of the embodiment. The light emitting device 10 according to this example is the same as the light emitting device 10 according to the embodiment except for the following points.
 本図に示す例において、第1電極110は、基板100の第1面102上において平面状に延びている。複数の絶縁層140は、第1電極110上にある。複数の絶縁層140のそれぞれは、開口142を有している。複数の有機層120のそれぞれ及び複数の第2電極130のそれぞれは、複数の開口142のそれぞれと重なっている。このようにして、基板100の第1面102上には、複数の発光部152が位置している。言い換えると、共通の第1電極110によって複数の発光部152が構成されている。 In the example shown in the figure, the first electrode 110 extends planarly on the first surface 102 of the substrate 100. The plurality of insulating layers 140 are on the first electrode 110. Each of the plurality of insulating layers 140 has an opening 142. Each of the plurality of organic layers 120 and each of the plurality of second electrodes 130 overlap with each of the plurality of openings 142. In this way, the plurality of light emitting units 152 are positioned on the first surface 102 of the substrate 100. In other words, the plurality of light emitting units 152 are configured by the common first electrode 110.
 封止部160は、第2電極130を覆っており、絶縁層140より外側において、第1電極110に接している。これにより、封止部160は、発光部152(特に有機層120)を封止している。封止部160は、絶縁層であり、より具体的には例えば無機絶縁層である。このため、本図に示す例では、第2電極130が第1電極110に短絡することが防止されている。さらに、封止部160は、透光性を有していてもよい。この場合、発光装置10の光線透過率が封止部160によって阻害されることが抑制される。 The sealing part 160 covers the second electrode 130 and is in contact with the first electrode 110 outside the insulating layer 140. Thereby, the sealing part 160 has sealed the light emission part 152 (especially organic layer 120). The sealing part 160 is an insulating layer, more specifically, for example, an inorganic insulating layer. For this reason, in the example shown in this drawing, the second electrode 130 is prevented from being short-circuited to the first electrode 110. Furthermore, the sealing part 160 may have translucency. In this case, it is suppressed that the light transmittance of the light emitting device 10 is inhibited by the sealing portion 160.
 本図に示す例においては、複数の発光部152の配列方向において、複数の封止部160のそれぞれの長さが短くなっている。このため、複数の発光部152の配列方向に沿って基板100を湾曲させても、複数の封止部160のそれぞれに発生する曲げ応力は小さいものになる。 In the example shown in this drawing, the length of each of the plurality of sealing portions 160 is shortened in the arrangement direction of the plurality of light emitting portions 152. For this reason, even if the substrate 100 is curved along the arrangement direction of the plurality of light emitting portions 152, the bending stress generated in each of the plurality of sealing portions 160 is small.
 以上、図面を参照して実施形態及び実施例について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。 As mentioned above, although embodiment and the Example were described with reference to drawings, these are the illustrations of this invention, Various structures other than the above are also employable.
 この出願は、2016年9月28日に出願された日本出願特願2016-189317号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2016-189317 filed on September 28, 2016, the entire disclosure of which is incorporated herein.

Claims (9)

  1.  第1面を有する基板と、
     前記基板の前記第1面側に位置し、第1電極、有機層及び第2電極の積層構造をそれぞれ含む複数の発光部と、
     前記複数の発光部のうち互いに隣り合う第1発光部と第2発光部の間に位置する非発光部と、
     前記第1発光部を封止する第1封止部と、
     前記第2発光部を封止する第2封止部と、
    を備え、
     前記第1封止部は、前記非発光部と重なる第1端部を有し、
     前記第2封止部は、前記非発光部と重なる第2端部を有する発光装置。
    A substrate having a first surface;
    A plurality of light emitting units located on the first surface side of the substrate and each including a stacked structure of a first electrode, an organic layer, and a second electrode;
    A non-light emitting part located between the first light emitting part and the second light emitting part adjacent to each other among the plurality of light emitting parts;
    A first sealing portion for sealing the first light emitting portion;
    A second sealing portion for sealing the second light emitting portion;
    With
    The first sealing portion has a first end overlapping the non-light emitting portion,
    The second sealing portion is a light emitting device having a second end portion overlapping the non-light emitting portion.
  2.  請求項1に記載の発光装置において、
     前記第1端部は、前記第1発光部と前記第2端部との間に位置しており、
     前記第2端部は、前記第2発光部と前記第1端部との間に位置しており、
     前記第2端部は、前記第1端部から離れている発光装置。
    The light-emitting device according to claim 1.
    The first end portion is located between the first light emitting portion and the second end portion,
    The second end portion is located between the second light emitting portion and the first end portion,
    The light emitting device, wherein the second end is separated from the first end.
  3.  請求項2に記載の発光装置において、
     前記基板の前記第1面は、前記非発光部のうち前記第1端部と前記第2端部との間において、前記第1電極、前記有機層及び前記第2電極のいずれとも重なっていない発光装置。
    The light-emitting device according to claim 2.
    The first surface of the substrate does not overlap any of the first electrode, the organic layer, and the second electrode between the first end and the second end of the non-light emitting portion. Light emitting device.
  4.  請求項2に記載の発光装置において、
     前記第1端部及び前記第2端部の間に基板と垂直方向に光を透過する領域をさらに有する発光装置。
    The light-emitting device according to claim 2.
    A light emitting device further comprising a region that transmits light in a direction perpendicular to the substrate between the first end and the second end.
  5.  請求項1~4のいずれか一項に記載の発光装置において、
     前記第1電極は、透光性を有し、
     前記第2電極は、遮光性を有し、
     前記複数の発光部のそれぞれにおいて、
      前記第1電極は、前記基板と前記有機層の間に位置しており、
      前記第2電極は、前記有機層を挟んで前記第1電極の反対側に位置している発光装置。
    The light emitting device according to any one of claims 1 to 4,
    The first electrode has translucency,
    The second electrode has a light shielding property,
    In each of the plurality of light emitting units,
    The first electrode is located between the substrate and the organic layer;
    The light emitting device, wherein the second electrode is located on the opposite side of the first electrode with the organic layer interposed therebetween.
  6.  請求項1~5のいずれか一項に記載の発光装置において、
     前記基板は、可撓性を有する発光装置。
    The light emitting device according to any one of claims 1 to 5,
    The substrate is a light emitting device having flexibility.
  7.  請求項1~6のいずれか一項に記載の発光装置において、
     前記第1封止部は、遮光性を有し、
     前記第2封止部は、遮光性を有する発光装置。
    The light emitting device according to any one of claims 1 to 6,
    The first sealing portion has a light shielding property,
    The second sealing portion is a light emitting device having a light shielding property.
  8.  請求項1~6のいずれか一項に記載の発光装置において、
     前記第1封止部は、透光性を有し、
     前記第2封止部は、透光性を有する発光装置。
    The light emitting device according to any one of claims 1 to 6,
    The first sealing portion has translucency,
    The second sealing portion is a light emitting device having translucency.
  9.  請求項1~8のいずれか一項に記載の発光装置において、
     前記第1封止部及び前記第2封止部のうちの少なくとも一方を覆う被覆層を備える発光装置。
    The light emitting device according to any one of claims 1 to 8,
    A light-emitting device provided with the coating layer which covers at least one of the said 1st sealing part and the said 2nd sealing part.
PCT/JP2017/034959 2016-09-28 2017-09-27 Light-emitting device WO2018062273A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-189317 2016-09-28
JP2016189317 2016-09-28

Publications (1)

Publication Number Publication Date
WO2018062273A1 true WO2018062273A1 (en) 2018-04-05

Family

ID=61760442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/034959 WO2018062273A1 (en) 2016-09-28 2017-09-27 Light-emitting device

Country Status (1)

Country Link
WO (1) WO2018062273A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014154566A (en) * 2013-02-04 2014-08-25 Toshiba Corp Organic electroluminescent element, illumination device and illumination system
US20150207097A1 (en) * 2012-08-10 2015-07-23 Osram Oled Gmbh Components and method for producing components
JP2016062858A (en) * 2014-09-22 2016-04-25 株式会社東芝 Organic electroluminescent element, illumination device, and illumination system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150207097A1 (en) * 2012-08-10 2015-07-23 Osram Oled Gmbh Components and method for producing components
JP2014154566A (en) * 2013-02-04 2014-08-25 Toshiba Corp Organic electroluminescent element, illumination device and illumination system
JP2016062858A (en) * 2014-09-22 2016-04-25 株式会社東芝 Organic electroluminescent element, illumination device, and illumination system

Similar Documents

Publication Publication Date Title
JP7033679B2 (en) Light emitting device
JP2007179914A (en) El device and method of manufacturing same
WO2018062273A1 (en) Light-emitting device
JP2007179913A (en) El device and method of manufacturing same
WO2021049433A1 (en) Light-emitting device
WO2018062272A1 (en) Light-emitting device
JP6701383B2 (en) Light emitting device
JP6924023B2 (en) Light emitting device
JP6981843B2 (en) Connection structure and light emitting device
WO2017163331A1 (en) Light emitting device, electronic device, and manufacturing method for light emitting device
WO2018179175A1 (en) Display device, display device production method, display device production apparatus, deposition apparatus, and controller
WO2017158767A1 (en) Light-emitting device
WO2017183118A1 (en) Light-emitting device
WO2018061236A1 (en) Light-emitting device
WO2018025576A1 (en) Light emitting device
JP6700013B2 (en) Light emitting device
WO2018151026A1 (en) Light emission device
WO2020202576A1 (en) Display device
WO2017187639A1 (en) Light emission apparatus
JP6640450B2 (en) Light emitting device
WO2018179528A1 (en) Light-emitting device
JP2018133274A (en) Light-emitting device
WO2018151027A1 (en) Light emission device
WO2018139426A1 (en) Light emitting device
JP2018056040A (en) Light-emitting device and sealing part

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17856222

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17856222

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP