WO2018025576A1 - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
WO2018025576A1
WO2018025576A1 PCT/JP2017/024901 JP2017024901W WO2018025576A1 WO 2018025576 A1 WO2018025576 A1 WO 2018025576A1 JP 2017024901 W JP2017024901 W JP 2017024901W WO 2018025576 A1 WO2018025576 A1 WO 2018025576A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic layer
electrode
light emitting
emitting device
sub
Prior art date
Application number
PCT/JP2017/024901
Other languages
French (fr)
Japanese (ja)
Inventor
秀雄 工藤
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Publication of WO2018025576A1 publication Critical patent/WO2018025576A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • H05B33/28Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode of translucent electrodes

Definitions

  • the present invention relates to a light emitting device.
  • This light-emitting device is used as a lighting device or a display device, and has a configuration in which an organic layer is sandwiched between a first electrode and a second electrode.
  • a transparent material is used for the first electrode
  • a metal material is used for the second electrode.
  • One of light-emitting devices using organic EL is a technique described in Patent Document 1.
  • the second electrode is provided only in a part of the pixel so that the display device using the organic EL has light transmittance (see-through).
  • the display device since the region positioned between the plurality of second electrodes transmits light, the display device can have light transmittance.
  • a transmissive light-emitting device that wants to extract light only from one side (front side), a first electrode and a second electrode caused by a short circuit between the first electrode and the second electrode, an edge of the patterned first electrode, or the like
  • an organic layer may be formed. However, in that case, the light transmissivity of the translucent part is lowered.
  • a transmissive light emitting device for example, securing a high light transmittance while suppressing a short circuit between electrodes and a leakage current can be cited.
  • Each of the plurality of light emitting units includes an organic layer including a first sub organic layer and a second sub organic layer, In the light emitting unit, the first sub-organic layer and the second sub-organic layer overlap each other, In the light transmissive part, the area of the first sub organic layer is a light emitting device larger than the area of the second sub organic layer.
  • FIG. 1 is a cross-sectional view showing a configuration of a light emitting device according to a first embodiment. It is the figure which expanded the light emission part.
  • 1 is a plan view of a light emitting device according to a first embodiment.
  • 6 is a cross-sectional view illustrating a configuration of a light emitting device according to Modification Example 1.
  • FIG. FIG. 11 is a cross-sectional view illustrating a configuration of a light emitting device according to Modification 2.
  • FIG. 11 is a cross-sectional view illustrating a configuration of a light emitting device according to Modification 3. It is sectional drawing which shows the structure of the light-emitting device which concerns on the modification 4.
  • FIG. 6 is a cross-sectional view illustrating a configuration of a light emitting device according to Modification Example 1.
  • FIG. FIG. 11 is a cross-sectional view illustrating a configuration of a light emitting device according to Modification 2.
  • FIG. 11 is a cross-sectional view illustrating a configuration of a light emitting device according to Modification 3.
  • FIG. 10 is a cross-sectional view illustrating a configuration of a light emitting device according to Modification Example 5. It is sectional drawing of the light-emitting device which concerns on the modification 6.
  • FIG. 11 is a cross-sectional view illustrating a configuration of a light emitting device according to Modification Example 1.
  • FIG. 6 is a cross-sectional view illustrating a configuration of a light emitting device according to Modification Example 1.
  • FIG. FIG. 11 is a cross-sectional view illustrating a configuration of a light emitting device according to Modification 2.
  • FIG. 11 is a cross-sectional view illustrating a configuration of a light emitting device according to Modification 3. It is sectional drawing which shows the structure of the light-emitting device which concerns on the modification 4. It is sectional drawing which shows the structure of the light-emitting device which concerns on an Example.
  • FIG. It is a top view of the light-emitting device shown in FIG. It is the figure which remove
  • FIG. 1 is a cross-sectional view illustrating a configuration of a light emitting device 10 according to the first embodiment.
  • the supervisor P looks at the light emission surface of the light emitting device 10 from a direction perpendicular to the substrate 100 in FIG.
  • FIG. 2 is an enlarged view of the light emitting unit 140.
  • the light emitting device 10 according to the present embodiment is, for example, a lighting device or a display device.
  • the light emitting device 10 according to the present embodiment includes a plurality of light emitting units 140 and a light transmitting unit 104.
  • the light transmitting unit 104 is located between the plurality of light emitting units 140.
  • Each of the plurality of light emitting units 140 includes an organic layer 120 including a first sub organic layer 121 and a second sub organic layer 122.
  • the first sub organic layer 121 and the second sub organic layer 122 overlap each other.
  • the area of the first sub organic layer 121 is larger than the area of the second sub organic layer 122. Is also big. This will be described in detail below.
  • each of the plurality of light emitting units 140 includes a stacked structure of the first electrode 110 and the second electrode 130. At least a part of the first sub organic layer 121 and at least a part of the second sub organic layer 122 are located between the first electrode 110 and the second electrode 130.
  • the light emitting device 10 further includes a substrate 100.
  • the light emitting unit 140 is formed on at least the first surface 101 of the substrate 100.
  • the substrate 100 is a light-transmitting substrate such as a glass substrate or a resin substrate.
  • the substrate 100 may have flexibility. In the case of flexibility, the thickness of the substrate 100 is, for example, not less than 10 ⁇ m and not more than 1000 ⁇ m.
  • the substrate 100 is, for example, a polygon such as a rectangle or a circle.
  • the substrate 100 is formed using, for example, PEN (polyethylene naphthalate), PES (polyethersulfone), PET (polyethylene terephthalate), or polyimide.
  • an inorganic barrier film such as SiN x or SiON is formed on at least one surface (preferably both surfaces) of the substrate 100 in order to prevent moisture from permeating the substrate 100. It is preferable.
  • the light emitting unit 140 has a configuration in which the first electrode 110, the organic layer 120, and the second electrode 130 are stacked in this order.
  • the plurality of light emitting units 140 may extend in a line shape.
  • the plurality of light emitting units 140 are arranged so as to form a matrix, or form a segment or display a predetermined shape (for example, display icons). It may be.
  • the plurality of light emitting units 140 are formed for each pixel.
  • the first electrode 110 is a transparent electrode having translucency.
  • the transparent conductive material constituting the transparent electrode is a metal-containing material, for example, a metal oxide such as ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), IWZO (Indium Tungsten Zinc Oxide), ZnO (Zinc Oxide), and the like. is there.
  • the thickness of the first electrode 110 is, for example, not less than 10 nm and not more than 500 nm.
  • the first electrode 110 is formed using, for example, a sputtering method or a vapor deposition method.
  • the first electrode 110 may be a carbon nanotube or a conductive organic material such as PEDOT / PSS.
  • the first electrode 110 is, for example, an anode.
  • the second electrode 130 is made of, for example, a metal selected from the first group consisting of Al, Au, Ag, Pt, Mg, Sn, Zn, and In or an alloy of a metal selected from the first group. Contains a metal layer. In this case, the second electrode 130 has a light shielding property.
  • the thickness of the second electrode 130 is, for example, not less than 10 nm and not more than 500 nm. However, the second electrode 130 may be formed using the material exemplified as the material of the first electrode 110.
  • the second electrode 130 is formed using, for example, a sputtering method or a vapor deposition method.
  • the second electrode 130 is, for example, a cathode.
  • the materials of the first electrode 110 and the second electrode 130 described above are used when light is transmitted through the substrate 100, that is, when light emission from the light emitting device 10 is performed through the substrate 100 (that is, bottom emission type). It is an example. In other cases, light may pass through the side opposite to the substrate 100. That is, the light emission from the light emitting device 10 is performed without passing through the substrate 100 (top emission type).
  • top emission type one of two types of stacked structures of a reverse product type and a forward product type can be adopted. In the reverse product type, the material of the first electrode 110 and the material of the second electrode 130 are opposite to those of the bottom emission type.
  • the material of the second electrode 130 is used as the material of the first electrode 110, and the material of the first electrode 110 is used as the material of the second electrode 130.
  • the material of the first electrode 110 is formed on the material of the second electrode 130 described above, the organic layer 120 is further formed thereon, and the second electrode 130 is further formed thinly thereon.
  • the material for forming the thin film is, for example, the material exemplified as the material of the second electrode 130 or an MgAg alloy.
  • the thickness of the second electrode 130 is preferably 30 nm or less.
  • the light emitting device 10 according to the present embodiment may be of any structure of a bottom emission type and the two types of top emission types described above.
  • 1 and 2 show an example of a bottom emission type light emitting device 10.
  • the 1st electrode 110 has translucency.
  • the substrate 100 is opposed to the second electrode 130 with the first electrode 110 interposed therebetween.
  • the second electrode 130 has a light shielding property.
  • the first electrode 110 is located between the substrate 100 and the second electrode 130.
  • the organic layer 120 has a configuration in which a plurality of sub organic layers including the first sub organic layer 121 and the second sub organic layer 122 are stacked.
  • first sub organic layer 121, the second sub organic layer 122, and the other sub organic layers are collectively referred to simply as “sub organic layers”.
  • each sub organic layer functions as at least one of a hole injection layer, a light emitting layer, an electron injection layer, a hole transport layer, an electron transport layer, a hole block layer, and an electron block layer, for example.
  • One sub-organic layer may also serve as a plurality of layers among them.
  • the sub organic layer can be said to be a layer having the function.
  • a material constituting a layer for example, a hole injection layer
  • a certain layer for example, the first sub-organic layer 121
  • you may confirm the function of each sub organic layer by confirming the combination of the material which comprises each sub organic layer among the organic layers 120, and its electrical property.
  • the organic layer 120 of the light emitting unit 140 includes a first sub organic layer 121, a second sub organic layer 122, and a third sub organic layer 123 stacked in this order from the first electrode 110 side. It has a configuration.
  • the first electrode 110 is light transmissive.
  • the first sub organic layer 121 is in contact with the first electrode 110.
  • the first sub organic layer 121 functions as a hole injection layer
  • the second sub organic layer 122 functions as a light emitting layer
  • the third sub organic layer 123 functions as an electron injection layer.
  • a sub organic layer that functions as a hole transport layer may be further formed between the first sub organic layer 121 and the second sub organic layer 122.
  • a sub organic layer that functions as an electron transport layer may be further formed between the second sub organic layer 122 and the third sub organic layer 123.
  • the organic layer 120 may be formed by a vapor deposition method.
  • at least one sub-organic layer in the organic layer 120 for example, a layer in contact with the first electrode 110 may be formed by a coating method such as an inkjet method, a printing method, a spin coating method, or a spray method.
  • the remaining layers of the organic layer 120 may be formed by a vapor deposition method.
  • all the layers of the organic layer 120 may be formed using the apply
  • the first sub organic layer 121 is located between the second sub organic layer 122 and the first electrode 110. In the light emitting unit 140, the first sub organic layer 121 is in contact with the first electrode 110.
  • the first sub organic layer 121 functions as a hole injection layer in the light emitting unit 140.
  • the first sub organic layer 121 preferably contains an aromatic amine compound such as an aromatic tertiary amine polymer compound.
  • FIG. 3 is a plan view of the light emitting device 10 according to the present embodiment.
  • FIG. 1 corresponds to the AA cross section of FIG.
  • the light emitting device 10 has a plurality of linear light emitting portions 140.
  • the plurality of light emitting units 140 are disposed apart from each other on the first surface 101 of the substrate 100.
  • the translucent part 104 is located between the plurality of light emitting parts 140.
  • the light emitting units 140 and the light transmitting units 104 are linear and extend in the same direction.
  • the light emitting portions 140 and the light transmitting portions 104 are alternately arranged.
  • the first sub organic layer 121 is also formed on the light transmitting part 104 located between the light emitting parts 140 on the first surface 101 of the substrate 100.
  • the light emitting device 10 has a first region 102.
  • the first region 102 is a region overlapping with the second electrode 130.
  • the second electrode 130 has a light shielding property
  • the first region 102 is a region that does not transmit light.
  • the translucent portion 104 is a region that does not overlap the second electrode 130. Since the light transmittance of the second electrode 130 is lower than the light transmittance of the first electrode 110, the light transmittance of the light transmitting portion 104 is higher than the light transmittance of the first region 102.
  • the area of the first region 102 may be smaller than the area of the translucent part 104.
  • the area of the substrate 100 where the light emitting part 140 is formed (in other words, the area of the light emitting part) is the area of the substrate 100 where the light emitting part 140 is not formed (in other words, the area of the non-light emitting part). ) May be smaller.
  • the area of the first sub-organic layer 121 in the light-transmitting portion 104 is larger than the area of the second sub-organic layer 122 in the light-transmitting portion 104.
  • the second sub organic layer 122 is not formed on at least a part of the light transmitting portion 104.
  • the light transmittance can be increased by reducing the area of the second sub-organic layer 122 in the light transmitting portion 104.
  • the first sub-organic layer 121 is formed on the entire light transmitting portion 104.
  • the first sub organic layer 121 is formed continuously with the plurality of light emitting units 140 and the light transmitting unit 104 therebetween.
  • the edge of the first electrode 110 When viewed from the direction parallel to the thickness direction of the first electrode 110, that is, when viewed from the direction perpendicular to the substrate 100, at least a part of the edge of the first electrode 110 does not overlap the second sub organic layer 122. . As described above, by making the width of the second sub-organic layer 122 smaller than the width of the first electrode 110, the light transmittance of the light transmitting part 104 can be further improved.
  • Thickness d 1 of the first sub organic layer is preferably thinner than the thickness d 2 of the second sub-organic layer.
  • the translucency of the second sub organic layer 122 is lower than the translucency of the first sub organic layer 121. Therefore, the light transmittance of the light emitting device 10 can be more effectively increased by reducing the area of the second sub-organic layer 122 having low translucency.
  • the first sub organic layer 121 covers at least part of the edge of the first electrode 110.
  • the width of the first sub-organic layer 121 in a cross section (corresponding to FIGS. 1 and 2) perpendicular to the extending direction of the light emitting unit 140 and perpendicular to the substrate 100 is larger than the width of the first electrode 110. .
  • the first sub-organic layer 121 is interposed between the edge of the first electrode 110 and the second electrode 130, and edge leakage that may occur at the edge of the first electrode 110 can be suppressed.
  • the edge of the second sub organic layer 122 does not overlap the second electrode 130.
  • the width of the second sub organic layer 122 in the cross section perpendicular to the extending direction of the light emitting unit 140 and perpendicular to the substrate 100 is larger than the width of the second electrode 130.
  • the first sub organic layer 121 is preferably a coating film.
  • the first sub organic layer 121 preferably includes a polymer.
  • the first sub organic layer 121 preferably includes a polymer having a weight average molecular weight larger than that of the second sub organic layer 122.
  • the first sub organic layer 121 may include a compound having a weight average molecular weight of 3000 or more or a number average molecular weight of 500 or more. In these cases, the edge covering property of the first sub organic layer 121 and the embedding property of foreign matters are enhanced. As a result, it is possible to further reduce the leakage current caused by the edges and foreign matters.
  • the first sub organic layer 121 is a coating film that functions as a hole injection layer
  • the first sub organic layer 121 preferably includes an aromatic amine compound such as an aromatic tertiary amine polymer compound.
  • the first sub-organic layer 121 is a coating film formed by a coating method
  • the second sub-organic layer 122 is a deposition film formed by a deposition method.
  • the vapor deposition film is easier to pattern using a mask or the like than the coating film. Therefore, if the first sub organic layer 121 is formed widely over the light emitting part 140 and the light transmitting part 104, the second sub organic layer 122 and other vapor deposition films are formed by patterning in a region narrower than the first sub organic layer 121. The production efficiency of the light emitting device 10 can be improved.
  • the first sub organic layer 121 is preferably formed in a lower layer than the second sub organic layer 122. That is, the first sub organic layer 121 is preferably located between the substrate 100 and the second sub organic layer 122. Then, the second sub-organic layer 122 can be patterned after the formation of the first sub-organic layer 121, and the film quality is higher than when the first sub-organic layer 121 is formed by coating on the second sub-organic layer 122. A second sub-organic layer 122 with good quality can be obtained.
  • the first sub organic layer 121 is formed on the entire light transmitting portion 104 is shown, but the first sub organic layer 121 is formed on a part of the light transmitting portion 104. It does not have to be.
  • the example of this figure has shown the example in which the 2nd sub organic layer 122 and the 3rd sub organic layer 123 are formed with the same pattern, the area
  • the first electrode 110 is formed on the substrate 100 by using, for example, a sputtering method.
  • the first electrode 110 is formed into a predetermined pattern using a photolithography method.
  • the first sub organic layer 121 is formed by, for example, a coating method.
  • the second sub organic layer 122, the third sub organic layer 123, and the second electrode 130 are formed in this order.
  • the second sub organic layer 122 and the third sub organic layer 123 can be formed by, for example, a vapor deposition method.
  • These layers are formed in a predetermined pattern using, for example, a mask.
  • the second electrode 130 is also formed in a predetermined pattern using, for example, a mask.
  • the light emitting unit 140 is sealed using a sealing film or a sealing member (not shown).
  • the area of the first sub organic layer 121 is larger than the area of the second sub organic layer 122 in the light transmitting portion 104.
  • the area of the second sub organic layer 122 is smaller than the area of the first sub organic layer 121. Therefore, high light transmittance of the light emitting device 10 can be ensured. In addition, leakage current between the first electrode 110 and the second electrode 130 can be suppressed.
  • FIG. 4 is a cross-sectional view illustrating a configuration of the light emitting device 10 according to the first modification.
  • FIG. 4 corresponds to FIG. 2 of the embodiment.
  • the light emitting device 10 of the present modification is the same as the light emitting device 10 according to the embodiment except that at least a part of the edge of the second sub organic layer 122 does not overlap with either the first electrode 110 or the second electrode 130. It is.
  • the width of the second sub organic layer 122 is greater than either the width of the first electrode 110 or the width of the second electrode 130. wide.
  • the edge of the first electrode 110 is covered with the second sub organic layer 122.
  • the area of the first sub organic layer 121 is larger than the area of the second sub organic layer 122 in the light transmitting portion 104. Therefore, high light transmittance of the light emitting device 10 can be ensured. In addition, since at least a part of the edge of the first electrode 110 is covered with the second sub organic layer 122, the leakage current between the first electrode 110 and the second electrode 130 can be further suppressed.
  • FIG. 5 is a cross-sectional view illustrating a configuration of the light emitting device 10 according to the second modification.
  • FIG. 5 corresponds to FIG. 2 of the embodiment.
  • the light emitting device 10 according to the present modification is the same as the light emitting device 10 according to the embodiment except that the second sub organic layer 122 is located between the first sub organic layer 121 and the substrate 100.
  • the first sub organic layer 121 is in contact with the second electrode 130.
  • the first sub organic layer 121 functions as an electron injection layer
  • the second sub organic layer 122 functions as a light emitting layer
  • the third sub organic layer 123 functions as a hole injection layer.
  • the area of the first sub organic layer 121 is larger than the area of the second sub organic layer 122 in the light transmitting portion 104. Therefore, high light transmittance of the light emitting device 10 can be ensured. In addition, leakage current between the first electrode 110 and the second electrode 130 can be suppressed.
  • FIG. 6 is a cross-sectional view illustrating a configuration of the light emitting device 10 according to the third modification.
  • FIG. 6 corresponds to FIG. 2 of the embodiment.
  • the light emitting device 10 of the present modification is the same as the light emitting device 10 according to the embodiment except that the conductive portion 170 is provided.
  • the conductive part 170 is, for example, an auxiliary electrode of the first electrode 110 and is in contact with the first electrode 110.
  • the conductive portion 170 is formed of a material having a lower resistance value than that of the first electrode 110, and is formed using, for example, at least one metal layer.
  • the conductive portion 170 has a configuration in which, for example, a first metal layer such as Mo or Mo alloy, a second metal layer such as Al or Al alloy, and a third metal layer such as Mo or Mo alloy are stacked in this order. Yes. Of these three metal layers, for example, the second metal layer is the thickest.
  • the conductive part 170 is covered with the first sub organic layer 121. For this reason, the conductive part 170 is not directly connected to the second electrode 130.
  • the first sub organic layer 121 is particularly preferably a coating film. By doing so, the embedding property of the first sub-organic layer 121 with respect to the unevenness is high, and the edge of the conductive part 170 can be covered and edge leakage can be suppressed.
  • the conductive part 170 can be formed after forming the first electrode 110 and before forming the first sub-organic layer 121.
  • the conductive portion 170 is formed as follows, for example. First, a conductive layer to be the conductive portion 170 is formed using a film formation method such as a sputtering method. Next, a resist pattern (not shown) is formed on the conductive layer, and the conductive layer is etched (for example, wet etching) using the resist pattern as a mask. Thereby, the conductive part 170 is formed.
  • the conductive portion 170 may be formed between the substrate 100 and the first electrode 110. In that case, the conductive portion 170 is formed on the first surface 101 of the substrate 100 before the first electrode 110 is formed.
  • the area of the first sub organic layer 121 is larger than the area of the second sub organic layer 122 in the light transmitting portion 104. Therefore, high light transmittance of the light emitting device 10 can be ensured. In addition, leakage current between the first electrode 110 and the second electrode 130 can be suppressed.
  • the light emitting device 10 since the light emitting device 10 includes the conductive portion 170, the wiring resistance of the first electrode 110 can be reduced.
  • FIG. 7 is a cross-sectional view illustrating a configuration of a light emitting device 10 according to Modification 4.
  • FIG. 7 corresponds to FIG. 2 of the embodiment.
  • the light emitting device 10 of this modification is the same as the light emitting device 10 according to the embodiment except that the insulating film 150 is provided.
  • the insulating film 150 is located between the first electrode 110 and the organic layer 120.
  • the edge of the first electrode 110 is covered with an insulating film 150.
  • the insulating film 150 surrounds a portion of the first electrode 110 that becomes the light emitting unit 140 and defines the light emitting unit 140.
  • the edge in the width direction of the second electrode 130 is located on the insulating film 150.
  • a part of the insulating film 150 protrudes from the second electrode 130 when viewed from a direction perpendicular to the substrate 100.
  • the first sub organic layer 121 is also formed on the insulating film 150 and on the side surface. The insulating film 150 is formed after the first electrode 110 is formed and before the organic layer 120 is formed.
  • the insulating film 150 preferably contains an inorganic material.
  • the insulating film 150 is preferably made of at least one of silicon oxide such as SiO 2 , silicon nitride such as SiN x , and silicon oxynitride such as SiON.
  • silicon oxide such as SiO 2
  • silicon nitride such as SiN x
  • silicon oxynitride such as SiON.
  • the insulating film 150 is made of a resin material, a gas generated by irradiating the resin material with ultraviolet rays or the like may damage the organic layer 120.
  • the insulating film 150 contains an inorganic material, the light emitting device 10 that is resistant to ultraviolet rays and excellent in weather resistance can be obtained.
  • the insulating film 150 can be formed by a vacuum film formation method such as a sputtering method, a CVD method, an ALD method, or an EB vapor deposition method. Further, the insulating film 150 is formed in a predetermined pattern by using a mask.
  • the insulating film 150 may be formed of a photosensitive resin material such as polyimide.
  • the insulating film 150 is formed of a photosensitive resin, the insulating film 150 is formed in a predetermined pattern through an exposure and development process.
  • the edge of the first electrode 110 is covered with the insulating film 150, the edge leak between the first electrode 110 and the second electrode 130 can be prevented.
  • the first electrode 110 is further covered with the first sub organic layer 121, the thickness of the insulating film 150 can be reduced as compared with the case where it is not covered with the first sub organic layer 121. Therefore, high translucency can be ensured. Further, even when the insulating film 150 is formed including a resin material, the weather resistance can be improved.
  • the area of the first sub organic layer 121 is larger than the area of the second sub organic layer 122 in the light transmitting portion 104. Therefore, high light transmittance of the light emitting device 10 can be ensured. In addition, since the light emitting device 10 includes the insulating film 150, the leakage current between the first electrode 110 and the second electrode 130 can be further suppressed.
  • FIG. 8 is a cross-sectional view illustrating a configuration of the light emitting device 10 according to the second embodiment.
  • a description will be given focusing on differences from the light emitting device 10 according to the first embodiment.
  • the light emitting device 10 when viewed from a direction parallel to the thickness direction of the first electrode 110, at least a part of the edge of the first sub organic layer 121 is formed by the first electrode 110 and the second electrode 130. Does not overlap at least one. Further, the edge of the second sub organic layer 122 overlaps the second electrode 130 and the first electrode 110. However, when the light emitting device 10 is a lighting device, the light emitting unit 140 may be formed on almost the entire surface of the substrate 100.
  • the stack position of the first sub organic layer 121 is not particularly limited, and the first sub organic layer 121 may be positioned between the second sub organic layer 122 and the second electrode 130.
  • the third sub organic layer 123 is located between the second sub organic layer 122 and the second electrode 130.
  • the second sub organic layer 122 and the third sub organic layer 123 overlap the second electrode 130 and the first electrode 110 when viewed from the direction parallel to the thickness direction of the first electrode 110, and the second sub organic layer 122.
  • at least one edge of the third sub organic layer 123 coincides with the edge of the light emitting unit 140.
  • at least part of the third sub organic layer 123 may protrude from the first electrode 110 and the second electrode 130. That is, at least a part of the edge of the third sub organic layer 123 does not overlap with at least one of the first electrode 110 and the second electrode 130 when viewed from the direction parallel to the thickness direction of the first electrode 110. good.
  • the edge of the first sub-organic layer 121 overlaps both the first electrode 110 and the second electrode 130. Absent. Further, the edge of the second sub organic layer 122 overlaps the second electrode 130 and the first electrode 110. In addition, at least part of the edge of the first electrode 110 does not overlap the second electrode 130.
  • the edge of the first sub-organic layer 121 includes the first electrode 110 and the first electrode 110. It does not overlap at least one of the two electrodes 130. Further, the edge of the second sub organic layer 122 overlaps the second electrode 130 and the first electrode 110. By doing so, the edge of the light emitting unit 140 is positioned inside the first electrode 110 and the second electrode 130, that is, the light-shielding electrode extends to the outside of the edge of the light emitting unit 140.
  • the light emitted from the light emitting unit 140 does not leak to the back surface side (side where the light shielding electrode is located) near the edge, but is reflected by the light shielding electrode and the front surface side (where the transparent electrode is located). Output efficiently).
  • the first sub organic layer 121 is interposed between the first electrode 110 and the second electrode 130, a short circuit between the first electrode 110 and the second electrode 130 can be prevented.
  • at least the first sub organic layer 121 is located between the first electrode 110 and the second electrode 130 outside the light emitting unit 140.
  • another sub organic layer may be further positioned between the first electrode 110 and the second electrode 130.
  • at least a part of the sub organic layer is not formed outside the light emitting unit 140. Therefore, on the outside of the light emitting unit 140, electrons injected from one of the first electrode 110 and the second electrode 130 and holes injected from the other of the first electrode 110 and the second electrode 130 are either sub The phenomenon of bonding within the organic layer is unlikely to occur. Therefore, a short circuit between the first electrode 110 and the second electrode 130 can be prevented. Further, it is not necessary to separately provide an insulating layer or the like in order to prevent a short circuit between the first electrode 110 and the second electrode 130.
  • the edge of the first sub organic layer 121 is at least one of the first electrode 110 and the second electrode 130. There is no overlap. Further, the edge of the second sub organic layer 122 overlaps the second electrode 130 and the first electrode 110. Therefore, backside leakage light near the edge of the light emitting unit 140 can be prevented, and light can be efficiently output to the front side. Further, it is not necessary to separately provide an insulating layer or the like in order to prevent a short circuit between the first electrode 110 and the second electrode 130.
  • FIG. 9 is a cross-sectional view illustrating a configuration of the light emitting device 10 according to the first modification.
  • the light emitting device 10 of this modification is the same as the light emitting device 10 according to the embodiment except that the width of the second electrode 130 is larger than the width of the first electrode 110.
  • the edge of the first sub organic layer 121 when viewed from a direction parallel to the thickness direction of the first electrode 110, at least a part of the edge of the first sub organic layer 121 does not overlap with either the first electrode 110 or the second electrode 130. . Further, the edge of the second sub organic layer 122 overlaps the second electrode 130 and the first electrode 110. In addition, at least a part of the edge of the second electrode 130 does not overlap the first electrode 110.
  • the first sub organic layer 121 preferably covers at least a part of the edge of the first electrode 110. Then, the edge of the first electrode 110 can be blunted by the first sub organic layer 121. Therefore, edge leakage can be suppressed even when at least one of the second electrode 130 and the sub-organic layer is stacked on the upper edge of the first electrode 110 as shown in FIG.
  • an insulating film containing a resin material or the like is sometimes provided so as to cover the edge of the first electrode 110, but the gas generated by irradiating the resin material with ultraviolet rays or the like is generated in the organic layer. 120 may be damaged.
  • the light emitting device 10 of this modification it is not necessary to separately provide such an insulating film, and the light emitting device 10 having excellent weather resistance can be obtained.
  • the first sub organic layer 121 is preferably a coating film containing a polymer. If it does so, the embedding property of an edge can be improved.
  • the first sub organic layer 121 preferably includes a polymer having a weight average molecular weight larger than that of the second sub organic layer 122.
  • the first sub organic layer 121 may include a compound having a weight average molecular weight of 3000 or more or a number average molecular weight of 500 or more.
  • the edge of the second electrode 130 may not overlap the first sub organic layer 121. That is, the second electrode 130 may cover the entire first sub organic layer 121 when viewed from a direction parallel to the thickness direction of the first electrode 110.
  • At least a part of the edge of the first sub organic layer 121 is at least one of the first electrode 110 and the second electrode 130 when viewed from the direction parallel to the thickness direction of the first electrode 110. Does not overlap. Further, the edge of the second sub organic layer 122 overlaps the second electrode 130 and the first electrode 110. Therefore, backside leakage light near the edge of the light emitting unit 140 can be prevented, and light can be efficiently output to the front side. Further, it is not necessary to separately provide an insulating layer or the like in order to prevent a short circuit between the first electrode 110 and the second electrode 130.
  • FIG. 10 is a cross-sectional view illustrating a configuration of the light emitting device 10 according to the second modification.
  • the light emitting device 10 of the present modification is the same as the light emitting device 10 according to the embodiment except that the width of the first sub organic layer 121 is smaller than the width of the first electrode 110.
  • At least a part of the edge of the first sub-organic layer 121 does not overlap the second electrode 130 when viewed from the direction parallel to the thickness direction of the first electrode 110. Further, the edge of the second sub organic layer 122 overlaps the second electrode 130 and the first electrode 110. In addition, at least part of the edge of the first electrode 110 does not overlap the second electrode 130.
  • At least a part of the edge of the first sub organic layer 121 is at least one of the first electrode 110 and the second electrode 130 when viewed from the direction parallel to the thickness direction of the first electrode 110. Does not overlap. Further, the edge of the second sub organic layer 122 overlaps the second electrode 130 and the first electrode 110. Therefore, backside leakage light near the edge of the light emitting unit 140 can be prevented, and light can be efficiently output to the front side. Further, it is not necessary to separately provide an insulating layer or the like in order to prevent a short circuit between the first electrode 110 and the second electrode 130.
  • FIG. 11 is a cross-sectional view illustrating a configuration of a light emitting device 10 according to Modification 3.
  • the light emitting device 10 of the present modification is the same as the light emitting device 10 according to the embodiment except that the conductive portion 170 is provided.
  • the conductive part 170 is, for example, an auxiliary electrode of the first electrode 110 and is in contact with the first electrode 110.
  • the conductive portion 170 is formed of a material having a lower resistance value than that of the first electrode 110, and is formed using, for example, at least one metal layer.
  • the conductive portion 170 has a configuration in which, for example, a first metal layer such as Mo or Mo alloy, a second metal layer such as Al or Al alloy, and a third metal layer such as Mo or Mo alloy are stacked in this order. Yes. Of these three metal layers, the second metal layer is the thickest.
  • the conductive part 170 is covered with the first sub organic layer 121. For this reason, the conductive part 170 is not directly connected to the second electrode 130.
  • the first sub organic layer 121 is preferably a coating film. By doing so, the embedding property of the first sub organic layer 121 with respect to the unevenness is high, and the edge of the conductive portion 170 can be covered and edge leakage can be suppressed.
  • the timing for forming the conductive portion 170 is after the first electrode 110 is formed and before the first sub-organic layer 121 is formed.
  • the conductive portion 170 is formed as follows, for example. First, a conductive layer to be the conductive portion 170 is formed using a film formation method such as a sputtering method. Next, a resist pattern (not shown) is formed on the conductive layer, and the conductive layer is etched (for example, wet etching) using the resist pattern as a mask. Thereby, the conductive part 170 is formed.
  • the conductive portion 170 may be formed between the substrate 100 and the first electrode 110.
  • At least a part of the edge of the first sub organic layer 121 is at least one of the first electrode 110 and the second electrode 130 when viewed from the direction parallel to the thickness direction of the first electrode 110. Does not overlap. Further, the edge of the second sub organic layer 122 overlaps the second electrode 130 and the first electrode 110. Therefore, backside leakage light near the edge of the light emitting unit 140 can be prevented, and light can be efficiently output to the front side. Further, it is not necessary to separately provide an insulating layer or the like in order to prevent a short circuit between the first electrode 110 and the second electrode 130.
  • the light emitting device 10 since the light emitting device 10 includes the conductive portion 170, the wiring resistance of the first electrode 110 can be reduced.
  • FIG. 12 is a cross-sectional view illustrating a configuration of a light emitting device 10 according to Modification 4.
  • the light emitting device 10 of the present modification is the same as the light emitting device 10 according to the embodiment except for the points described below.
  • the organic layer 120 of the light emitting unit 140 has a configuration in which a first sub organic layer 121, a second sub organic layer 122, and a third sub organic layer 123 are stacked in this order from the second electrode 130 side.
  • the first sub organic layer 121 functions as an electron injection layer
  • the second sub organic layer 122 functions as a light emitting layer
  • the third sub organic layer 123 functions as a hole injection layer.
  • a sub organic layer functioning as an electron transport layer may be further formed between the first sub organic layer 121 and the second sub organic layer 122.
  • a sub organic layer functioning as a hole transport layer may be further formed between the second sub organic layer 122 and the third sub organic layer 123.
  • the organic layer 120 may be formed by a vapor deposition method.
  • at least one sub organic layer of the organic layer 120 for example, the first sub organic layer 121 may be formed by a coating method such as an inkjet method, a printing method, a spin coating method, or a spray method.
  • the remaining layers of the organic layer 120 may be formed by a vapor deposition method.
  • all the layers of the organic layer 120 may be formed using the apply
  • the first electrode 110 is formed on the substrate 100 by using, for example, a sputtering method.
  • the first electrode 110 is formed into a predetermined pattern using a photolithography method.
  • the third sub organic layer 123 and the second sub organic layer 122 are formed in this order.
  • the second sub organic layer 122 and the third sub organic layer 123 can be formed by, for example, a vapor deposition method. These layers are formed in a predetermined pattern using, for example, a mask.
  • the first sub organic layer 121 is formed by, for example, a coating method.
  • the second electrode 130 is formed.
  • the second electrode 130 is also formed in a predetermined pattern using, for example, a mask.
  • the light emitting unit 140 is sealed using a sealing film or a sealing member (not shown).
  • At least a part of the edge of the first sub organic layer 121 is at least one of the first electrode 110 and the second electrode 130 when viewed from the direction parallel to the thickness direction of the first electrode 110. Does not overlap. Further, the edge of the second sub organic layer 122 overlaps the second electrode 130 and the first electrode 110. Therefore, backside leakage light near the edge of the light emitting unit 140 can be prevented, and light can be efficiently output to the front side. Further, it is not necessary to separately provide an insulating layer or the like in order to prevent a short circuit between the first electrode 110 and the second electrode 130.
  • FIG. 13 is a cross-sectional view illustrating a configuration of a light emitting device 10 according to Modification 5.
  • the light emitting device 10 of the present modification is the same as the light emitting device 10 according to the embodiment except for the points described below.
  • the organic layer 120 includes a third sub-organic layer 123.
  • the third sub organic layer 123 functions as a hole blocking layer or an electron blocking layer in the light emitting unit 140. By doing so, the leakage current between the first electrode 110 and the second electrode 130 can be further suppressed outside the light emitting unit 140.
  • the organic layer 120 of the light emitting unit 140 includes a first sub organic layer 121, a fourth sub organic layer 124, a second sub organic layer 122, a third sub organic layer 123, and a fifth sub organic layer 125.
  • the first electrode 110 side is laminated in this order.
  • the first sub organic layer 121 is a hole injection layer
  • the fourth sub organic layer 124 is an electron blocking layer
  • the second sub organic layer 122 is a light emitting layer
  • the third sub organic layer 123 is a hole blocking layer
  • a fifth sub organic layer is a layer that functions as an electron injection layer.
  • the third sub organic layer 123 is located between the second electrode 130 and the first electrode 110 in the region outside the light emitting unit 140. Therefore, even if holes are injected from the first electrode 110 into the first sub organic layer 121, the holes are blocked by the third sub organic layer 123 and do not reach the second electrode 130. Therefore, leakage current can be suppressed.
  • a fourth sub-organic layer 124 may be positioned between the second electrode 130 and the first electrode 110 in a region outside the light emitting unit 140. That is, when viewed from the direction parallel to the thickness direction of the first electrode 110, at least a part of the edge of the first electrode 110 and at least a part of the edge of the second electrode 130 overlap the fourth sub organic layer 124. May be. By doing so, the progress of electrons to the first sub organic layer 121 is suppressed, and the leakage current can be further suppressed.
  • At least a part of the edge of the first sub organic layer 121 is at least one of the first electrode 110 and the second electrode 130 when viewed from the direction parallel to the thickness direction of the first electrode 110. Does not overlap. Further, the edge of the second sub organic layer 122 overlaps the second electrode 130 and the first electrode 110. Therefore, backside leakage light near the edge of the light emitting unit 140 can be prevented, and light can be efficiently output to the front side. Further, it is not necessary to separately provide an insulating layer or the like in order to prevent a short circuit between the first electrode 110 and the second electrode 130.
  • FIG. 14 is a cross-sectional view of the light emitting device 10 according to Modification 6.
  • FIG. 15 is a plan view of the light emitting device 10 shown in FIG. FIG. 14 corresponds to the AA cross section of FIG.
  • the light-emitting device 10 according to this modification has the same configuration as that of at least one of the light-emitting devices 10 according to the second embodiment or modifications 1 to 5 thereof, except that a plurality of light-emitting units 140 are provided. .
  • the light emitting device 10 is a lighting device, and includes a plurality of light emitting units 140 on the first surface side of the substrate 100.
  • the plurality of light emitting units 140 are each linear, and are disposed on the first surface of the substrate 100 so as to be separated from each other.
  • the plurality of light emitting units 140 are linear and extend in the same direction.
  • the light emitting device 10 includes a light transmitting portion between the plurality of light emitting portions 140.
  • the light emitting device 10 When viewed from a direction perpendicular to the substrate 100, the light emitting device 10 includes a first region 102 and a second region 104 (translucent portion).
  • the first region 102 is a region overlapping with the second electrode 130.
  • the second electrode 130 has a light shielding property
  • the first region 102 is a region that does not transmit light.
  • the second region 104 is a region that does not overlap with the second electrode 130. Since the light transmittance of the second electrode 130 is lower than the light transmittance of the first electrode 110, the light transmittance of the second region 104 is higher than the light transmittance of the first region 102.
  • the area of the first region 102 may be smaller than the area of the second region 104.
  • the area of the substrate 100 where the light emitting part 140 is formed is the area of the substrate 100 where the light emitting part 140 is not formed (in other words, the area of the non-light emitting part).
  • the first sub organic layer 121 is also formed in a region located between the light emitting units 140 on the first surface of the substrate 100. In other words, the first sub organic layer 121 is continuously formed in the plurality of light emitting units 140 and a region between them.
  • the edge of the first sub-organic layer 121 may be located between the plurality of light emitting units 140. By doing so, the first sub organic layer 121 is not positioned in at least a part of the second region 104, and the translucency of the second region 104 can be improved.
  • an edge of the first electrode may be covered with an insulating layer in order to suppress a short circuit between the first electrode and the second electrode.
  • part of the light is absorbed when passing through the insulating layer.
  • the light transmittance of the light emitting device is lowered.
  • the organic layer 120 only a part of the sub-organic layers are located in the second region 104 at most, so that higher light transmittance can be obtained as compared with the case where all of the organic layers 120 are located.
  • the width of the second sub organic layer 122 of each light emitting unit 140 is equal to the width of the first electrode 110 and the second. It is smaller than any width of the electrode 130.
  • the width of the first sub organic layer 121 of each light emitting unit 140 is larger than at least one of the width of the first electrode 110 and the width of the second electrode 130.
  • At least a part of the edge of the first sub organic layer 121 is at least one of the first electrode 110 and the second electrode 130 when viewed from the direction parallel to the thickness direction of the first electrode 110. Does not overlap. Further, the edge of the second sub organic layer 122 overlaps the second electrode 130 and the first electrode 110. Therefore, backside leakage light near the edge of the light emitting unit 140 can be prevented, and light can be efficiently output to the front side. Further, it is not necessary to separately provide an insulating layer or the like in order to prevent a short circuit between the first electrode 110 and the second electrode 130.
  • FIG. 16 is a cross-sectional view illustrating a configuration of the light emitting device 10 according to the third embodiment.
  • FIG. 17 is an enlarged view of the light emitting unit 140.
  • a description will be given focusing on differences from the light emitting device 10 according to the first embodiment.
  • the light emitting unit 140 is located on the first surface 101 side of the substrate 100.
  • the coating film 180 covers the light emitting unit 140 and is formed after the second electrode 130 is formed.
  • the light emitting unit 140 includes the first electrode 110, the second electrode 130, and the organic layer 120.
  • the organic layer 120 of the light emitting unit 140 is located between the first electrode 110 and the second electrode 130 and includes the first sub organic layer 121 and the second sub organic layer 122.
  • the covering film 180 is in contact with the first sub organic layer 121 in a region where the second sub organic layer 122 is not located when viewed from the direction perpendicular to the substrate 100 in the light transmitting portion 104. Further, the second sub organic layer 122 is not formed in at least a part of the light transmitting portion 104.
  • the coating film 180 covers the light emitting unit 140. Specifically, the coating film 180 covers all of the plurality of light emitting units 140.
  • the covering film 180 is, for example, a sealing film.
  • an inorganic barrier film such as SiN x , SiON x , SiO 2 , Al 2 O 3 , TiO 2 , a barrier laminated film including them, or a mixed film thereof can be used. These can be formed by, for example, a vacuum film forming method such as a sputtering method, a CVD method, an ALD method, or an EB vapor deposition method.
  • the coating film 180 has translucency and is continuously formed over the light emitting unit 140 and the translucent unit 104.
  • the minimum film thickness d 4 of the organic layer 120 in the light transmitting part 104 can be made smaller than the film thickness d 3 of the organic layer 120 in the light emitting part 140.
  • a thickness d 3 is less than the organic layer 120 in the light emitting portion 140 It means that it is smaller than the average film thickness of the organic layer 120 in the light emitting part 140.
  • the coating film 180 is in contact with the first sub-organic layer 121 in the region where the second sub-organic layer 122 is not located in the translucent part 104 when viewed from the direction perpendicular to the substrate 100. That is, the coating film 180 in contact with the thin portion of the organic layer 120 in the light transmitting portion 104.
  • the coating film 180 since the propagation of stress is suppressed in the thin organic layer 120, the coating film 180 is not easily peeled off or cracked in the light transmitting portion 104.
  • the average film thickness of the organic layer 120 in the translucent part 104 can be made smaller, and the peeling of the coating film 180 and the occurrence of cracks can be further suppressed.
  • the first sub organic layer 121 is preferably a coating film. Furthermore, the first sub organic layer 121 preferably includes a polymer. Specifically, for example, the first sub organic layer 121 includes a polymer having a weight average molecular weight larger than that of the second sub organic layer 122. The first sub organic layer 121 may include a compound having a weight average molecular weight of 3000 or more or a number average molecular weight of 500 or more. In particular, when the first sub organic layer 121 functions as a hole injection layer, the first sub organic layer 121 preferably includes an aromatic amine compound such as an aromatic tertiary amine polymer compound.
  • the adhesion and intermolecular bonding force are improved in the heat-crosslinking during the film formation. And the elasticity of the first sub-organic layer 121 can be increased. Accordingly, it is possible to further prevent the coating film 180 from peeling off or cracking due to local stress concentration due to thermal expansion difference or film stress.
  • the coating film 180 is in contact with the first sub organic layer 121 in a region where the second sub organic layer 122 is not located when viewed from the direction perpendicular to the substrate 100 in the light transmitting portion 104. ing. That is, the coating film 180 in contact with the thin portion of the organic layer 120 in the light transmitting portion 104. Therefore, peeling or cracking of the coating film 180 in the light transmitting portion 104 is difficult to occur.
  • the edge of the first electrode 110 does not overlap with the second sub organic layer 122. That is, the width of the second sub organic layer 122 in a cross section perpendicular to the extending direction of the light emitting unit 140 and perpendicular to the substrate 100 (corresponding to FIGS. 16 and 17) is smaller than the width of the first electrode 110. By doing so, the average film thickness of the organic layer 120 in the translucent portion 104 can be further reduced, and peeling of the coating film 180 and generation of cracks can be further suppressed.
  • FIG. 18 is a cross-sectional view illustrating a configuration of the light emitting device 10 according to the first modification.
  • FIG. 18 corresponds to FIG. 17 of the embodiment.
  • the light emitting device 10 of the present modification is the same as the light emitting device 10 according to the embodiment except that at least a part of the edge of the second sub organic layer 122 does not overlap with either the first electrode 110 or the second electrode 130. It is.
  • the light emitting device 10 according to this modification has a configuration in which the coating film 180 is added to Modification 1 of the first embodiment.
  • the coating film 180 is in contact with the first sub organic layer 121 in a region where the second sub organic layer 122 is not located in the light transmitting portion 104 when viewed from the direction perpendicular to the substrate 100. That is, the coating film 180 in contact with the thin portion of the organic layer 120 in the light transmitting portion 104. Therefore, peeling or cracking of the coating film 180 in the light transmitting portion 104 is difficult to occur.
  • At least a part of the edge of the second sub organic layer 122 does not overlap with either the first electrode 110 or the second electrode 130. Therefore, the leakage current between the first electrode 110 and the second electrode 130 can be further suppressed.
  • FIG. 19 is a cross-sectional view illustrating a configuration of the light emitting device 10 according to the second modification.
  • FIG. 19 corresponds to FIG. 17 of the embodiment.
  • the light emitting device 10 according to the present modification is the same as the light emitting device 10 according to the embodiment except that the second sub organic layer 122 is located between the first sub organic layer 121 and the substrate 100.
  • the light emitting device 10 according to this modification has a configuration in which the coating film 180 is added to Modification 2 of the first embodiment.
  • the coating film 180 is in contact with the first sub organic layer 121 in a region where the second sub organic layer 122 is not located in the light transmitting portion 104 when viewed from the direction perpendicular to the substrate 100. That is, the coating film 180 in contact with the thin portion of the organic layer 120 in the light transmitting portion 104. Therefore, peeling or cracking of the coating film 180 in the light transmitting portion 104 is difficult to occur.
  • FIG. 20 is a cross-sectional view illustrating a configuration of a light emitting device 10 according to Modification 3.
  • FIG. 20 corresponds to FIG. 17 of the embodiment.
  • the light emitting device 10 of the present modification is the same as the light emitting device 10 according to the embodiment except that the conductive portion 170 is provided.
  • the light emitting device 10 according to this modification has a configuration in which the coating film 180 is added to the modification 3 of the first embodiment.
  • the coating film 180 is in contact with the first sub organic layer 121 in a region where the second sub organic layer 122 is not located in the light transmitting portion 104 when viewed from the direction perpendicular to the substrate 100. That is, the coating film 180 in contact with the thin portion of the organic layer 120 in the light transmitting portion 104. Therefore, peeling or cracking of the coating film 180 in the light transmitting portion 104 is difficult to occur.
  • the light emitting device 10 since the light emitting device 10 includes the conductive portion 170, the wiring resistance of the first electrode 110 can be reduced.
  • FIG. 21 is a cross-sectional view illustrating a configuration of a light emitting device 10 according to Modification 4.
  • FIG. 21 corresponds to FIG. 17 of the embodiment.
  • the light emitting device 10 of this modification is the same as the light emitting device 10 according to the embodiment except that the insulating film 150 is provided.
  • the light-emitting device 10 according to this modification has a configuration in which the coating film 180 is added to Modification 4 of the first embodiment.
  • the coating film 180 is in contact with the first sub organic layer 121 in a region where the second sub organic layer 122 is not located in the light transmitting portion 104 when viewed from the direction perpendicular to the substrate 100. That is, the coating film 180 in contact with the thin portion of the organic layer 120 in the light transmitting portion 104. Therefore, peeling or cracking of the coating film 180 in the light transmitting portion 104 is difficult to occur.
  • FIG. 22 is a cross-sectional view illustrating a configuration of the light-emitting device 10 according to the example.
  • FIG. 23 is a plan view of the light-emitting device 10 shown in FIG. However, in FIG. 23, the coating film 180 is indicated by a broken line.
  • FIG. 24 is a view obtained by removing the first sub organic layer 121, the second sub organic layer 122, and the third sub organic layer 123 from FIG. In FIG. 24, the second electrode 130 is indicated by a broken line.
  • FIG. 22 corresponds to the BB cross section of FIG.
  • the light-emitting device 10 according to the present example has the configuration of the light-emitting device 10 according to any of the above-described embodiments and modifications. This figure shows a case similar to that of the third embodiment.
  • the light emitting device 10 includes a first terminal 112, a first lead wire 114, and a second terminal 132.
  • the first terminal 112, the first lead wire 114, and the second terminal 132 are all formed on the same surface of the substrate 100 as the light emitting unit 140. At least a part of the first terminal 112 and the second terminal 132 is located outside the coating film 180, that is, not covered with the coating film 180.
  • the first lead wiring 114 connects the first terminal 112 and the first electrode 110, and the second terminal 132 is connected to the second electrode 130.
  • the substrate 100 is rectangular, and the first terminal 112 is located between the plurality of light emitting units 140 and the first side 106 of the substrate 100 and extends in parallel with the first side 106. ing.
  • the second terminal 132 is located between the plurality of light emitting units 140 and the second side 107 of the substrate 100, and extends in parallel with the second side 107.
  • the second side 107 and the first side 106 are parallel to each other, and both are sides that are perpendicular to the extending direction of the linear light emitting unit 140.
  • the first terminal 112 is provided with a recess 113.
  • the first terminal 112 is provided with a plurality of recesses 113 along the extending direction of the first terminal 112.
  • the first sub organic layer 121 is a coating film formed by a coating method
  • the spread of the liquid material for forming the first sub organic layer 121 is stopped by the surface tension in the vicinity of the recess 113. That is, the first sub organic layer 121 is mainly formed inside the substrate 100 with respect to the pattern of the recess 113. Therefore, a separate patterning process for preventing the entire first terminal 112 from being covered with the first sub organic layer 121 is not necessary.
  • the light emitting device 10 includes a bank 115 between the plurality of light emitting units 140 and the second terminal 132.
  • the first sub organic layer 121 is a coating film formed by a coating method
  • the spread of the liquid material for forming the first sub organic layer 121 is stopped by the surface tension in the vicinity of the bank 115. That is, the first sub organic layer 121 is formed inside the substrate 100 with respect to the bank 115. Therefore, a separate patterning process for preventing the entire second terminal 132 from being covered with the first sub organic layer 121 is not necessary.
  • the first sub organic layer 121 overlaps a part of the first terminal 112 and does not overlap the second terminal 132 when viewed from the direction perpendicular to the substrate 100.
  • the bank 115 extends along the second terminal 132.
  • the bank 115 is located between the plurality of light emitting units 140 and the second terminals 132 and between the plurality of light transmitting units 104 and the second terminals 132.
  • the second electrode 130 and the bank 115 intersect.
  • a plurality of banks 115 parallel to each other may be positioned between the plurality of light emitting units 140 and the second terminals 132 and between the plurality of light transmitting units 104 and the second terminals 132.
  • the bank 115 and the second electrode 130 are in contact with each other and are electrically connected.
  • the bank 115 and the first electrode 110 are not electrically connected.
  • the bank 115 is also located between the plurality of light emitting units 140 and the third side 108 of the substrate 100 and between the plurality of light emitting units 140 and the fourth side 109 of the substrate 100.
  • the third side 108 and the fourth side 109 of the substrate 100 are parallel to the extending direction of the light emitting unit 140.
  • the bank 115 includes a light emitting unit 140 between the light emitting unit 140 closest to the third side 108 and the third side 108 and a light emitting unit 140 closest to the fourth side 109 among the plurality of light emitting units 140. It is located between the fourth side 109. By doing so, it is possible to prevent the liquid material for forming the first sub organic layer 121 from spreading to the outside of the substrate 100 in the film forming process of the first sub organic layer 121.
  • the first terminal 112, the second terminal 132, the first lead wiring 114, and the bank 115 have, for example, a layer formed of the same material as the first electrode 110. Further, at least a part of at least one of the first terminal 112, the second terminal 132, the first lead-out wiring 114, and the bank 115 is formed on this layer with a metal film having a lower resistance than the first electrode 110 (for example, a conductive film). The same film as the portion 170 may be included. This metal film does not need to be formed on all of the first terminal 112, the second terminal 132, the first extraction wiring 114, and the bank 115.
  • the first lead wiring 114, the second terminal 132, and the bank 115 a layer formed of the same material as the first electrode 110 is formed in the same process as the first electrode 110. For this reason, the first electrode 110 is integrated with at least a part of the layer of the first terminal 112. Further, when these have a metal film, the metal film is formed in the same process as that of the conductive portion 170 described above, for example.
  • one first extraction wiring 114 is formed for each light emitting unit 140 one by one.
  • the plurality of first lead wires 114 are all connected to the same first terminal 112.
  • the second electrodes 130 of the plurality of light emitting units 140 are electrically connected to the second terminal 132 across the bank 115. When viewed from a direction perpendicular to the substrate 100, the bank 115 intersects the second electrode 130.
  • the first terminal 112 is connected to a positive terminal of a control circuit via a conductive member such as a bonding wire or a lead terminal, and the second terminal 132 is controlled via a conductive member such as a bonding wire or a lead terminal.
  • the negative terminal of the circuit is connected.
  • the first sub organic layer 121 is in contact with the coating film 180 in at least a part of the region.
  • the adhesion and intermolecular bonding force are improved in the heat crosslinking at the time of film formation, so that compared with the case where the first sub organic layer 121 is made of a low molecule. Therefore, the bond between molecules is strong and the elasticity of the first sub-organic layer 121 can be increased. Accordingly, it is possible to make it difficult for the coating film 180 to be peeled off or cracked due to local stress concentration due to thermal expansion difference or film stress.
  • the number of sub-organic layers included in the organic layer 120 in at least a part of the light transmitting portion 104 is greater than the number of sub-organic layers included in the organic layer 120 in the first region 102 (light emitting portion 140).
  • the average thickness of the organic layer 120 in the light transmitting part 104 is smaller than the thickness of the organic layer 120 in the light emitting part 140. Therefore, the propagation of stress in the organic layer 120 is suppressed, and peeling or cracking of the coating film 180 in the light transmitting portion 104 is unlikely to occur.
  • FIG. 25 is a diagram illustrating a first modification of the light emitting device 10 according to the embodiment.
  • FIG. 25 corresponds to FIG. 24 of the embodiment.
  • at least a part of the bank 115 is formed along the second terminal 132.
  • the bank 115 is located between the light transmitting portion 104 between the light emitting portions 140 and the second terminal 132.
  • the bank 115 is not formed between the light emitting unit 140 and the second terminal 132. That is, the bank 115 does not overlap the second electrode 130 when viewed from the direction perpendicular to the substrate 100.
  • the bank 115 is not electrically connected to either the first terminal 112 or the second terminal 132.
  • the liquid material for forming the first sub-organic layer 121 has surface tension with the bank 115, and the wetting and spreading of the liquid material in the vicinity of the bank 115 is suppressed. Therefore, the second terminal 132 can be prevented from being covered with the first sub organic layer 121.
  • FIG. 26 is a diagram illustrating a second modification of the light emitting device 10 according to the embodiment.
  • FIG. 26 corresponds to FIG. 24 of the embodiment.
  • the bank 115 is not formed between the light emitting unit 140 and the second terminal 132 and between the light transmitting unit 104 and the second terminal 132 between the light emitting unit 140.
  • the end of each bank 115 extending along the third side 108 and the fourth side 109 is connected to the second terminal 132.
  • the end of each bank 115 extending along the third side 108 and the fourth side 109 may be connected to the first terminal 112 instead of being connected to the second terminal 132.
  • the bank 115 may not be connected to either the first terminal 112 or the second terminal 132.
  • FIG. 27 is a diagram illustrating a third modification of the light emitting device 10 according to the embodiment.
  • FIG. 27 corresponds to FIG. 24 of the embodiment.
  • at least a part of the bank 115 is formed along the second terminal 132.
  • the bank 115 is located between the light emitting unit 140 and the second terminal 132.
  • the bank 115 is not formed at least at a part between the light transmitting portion 104 and the second terminal 132.
  • the bank 115 intersects the second electrode 130.
  • the bank 115 and the second electrode 130 are in contact with each other and are electrically connected.
  • the bank 115 and the first electrode 110 are not electrically connected.
  • the area of the first sub organic layer 121 is larger than the area of the second sub organic layer 122 in the light transmitting portion 104. Is also big. Therefore, high light transmittance of the light emitting device 10 can be ensured. In addition, leakage current between the first electrode 110 and the second electrode 130 can be suppressed.
  • At least a part of the edge of the first sub organic layer 121 is viewed from a direction parallel to the thickness direction of the first electrode 110. It does not overlap with at least one of the first electrode 110 and the second electrode 130. Further, the edge of the second sub organic layer 122 overlaps the second electrode 130 and the first electrode 110. Therefore, backside leakage light near the edge of the light emitting unit 140 can be prevented, and light can be efficiently output to the front side. Further, it is not necessary to separately provide an insulating layer or the like in order to prevent a short circuit between the first electrode 110 and the second electrode 130.
  • the light transmitting portion 104 is covered with a region where the second sub organic layer 122 is not located when viewed from the direction perpendicular to the substrate 100.
  • the film 180 is in contact with the first sub organic layer 121. That is, the coating film 180 in contact with the thin portion of the organic layer 120 in the light transmitting portion 104. Therefore, peeling or cracking of the coating film 180 in the light transmitting portion 104 is difficult to occur.
  • a light emitting unit including a first electrode, a second electrode, and an organic layer located between the first electrode and the second electrode;
  • the organic layer includes a first sub organic layer and a second sub organic layer, When viewed from a direction parallel to the thickness direction of the first electrode, at least a part of the edge of the first sub-organic layer does not overlap at least one of the first electrode and the second electrode,
  • the edge of 2 sub organic layers is a light-emitting device with which the said 2nd electrode and the said 1st electrode have overlapped.
  • the first electrode has translucency
  • the first sub organic layer is a light emitting device positioned between the second sub organic layer and the first electrode.
  • the first sub organic layer is a light emitting device positioned between the second sub organic layer and the first electrode.
  • the first sub organic layer covers at least a part of an edge of the first electrode.
  • the first sub organic layer is a light emitting device that functions as a hole injection layer in the light emitting unit.
  • the organic layer further includes a third sub-organic layer, When viewed from a direction parallel to the thickness direction of the first electrode, at least a part of the edge of the first electrode and at least a part of the edge of the second electrode overlap the third sub-organic layer,
  • the third sub-organic layer is a light emitting device that functions as a hole blocking layer or an electron blocking layer in the light emitting unit.
  • Appendix 6 In the light-emitting device according to any one of appendices 1 to 5, Further comprising a substrate facing the second electrode via the first electrode;
  • the second electrode is a light emitting device having a light shielding property.
  • Appendix 7 In the light emitting device according to appendix 6, A light emitting device comprising a plurality of the light emitting units on the first surface side of the substrate.
  • the light emitting unit includes a first electrode, a second electrode, and an organic layer located between the first electrode and the second electrode and including a first sub organic layer and a second sub organic layer.
  • the light emitting device wherein the coating film is in contact with the first sub organic layer in a region where the second sub organic layer is not positioned when viewed from a direction perpendicular to the substrate in the light transmitting portion.
  • the first sub-organic layer is a light emitting device including an aromatic amine compound.
  • the light emitting device in which the minimum film thickness of the organic layer in the light transmitting part is smaller than the film thickness of the organic layer in the light emitting part.
  • the first electrode has translucency, The second electrode has a light shielding property; The first electrode is a light emitting device positioned between the substrate and the second electrode.

Abstract

A light emitting device (10) is, for instance, an illuminating device or a display device. According to the embodiment of the present invention, the light emitting device (10) is provided with a plurality of light emitting sections (140) and translucent sections (104). The translucent sections (104) are positioned among the light emitting sections (140). Each of the light emitting sections (140) has an organic layer 120, including a first sub organic layer (121) and a second sub organic layer (122). In each of the light emitting sections (140), the first sub organic layer (121) and the second sub organic layer (122) overlap each other, and in each of the translucent sections (104), the area of the first sub organic layer (121) is larger than the area of the second sub organic layer (122).

Description

発光装置Light emitting device
 本発明は、発光装置に関する。 The present invention relates to a light emitting device.
 近年は有機ELを利用した発光装置の開発が進んでいる。この発光装置は、照明装置や表示装置として使用されており、第1電極と第2電極の間に有機層を挟んだ構成を有している。そして、一般的には第1電極には透明材料が用いられており、第2電極には金属材料が用いられている。 In recent years, the development of light-emitting devices using organic EL has progressed. This light-emitting device is used as a lighting device or a display device, and has a configuration in which an organic layer is sandwiched between a first electrode and a second electrode. In general, a transparent material is used for the first electrode, and a metal material is used for the second electrode.
 有機ELを利用した発光装置の一つに、特許文献1に記載の技術がある。特許文献1の技術は、有機ELを利用した表示装置に光透過性(シースルー)を持たせるために、第2電極を画素の一部にのみ設けている。このような構造において、複数の第2電極の間に位置する領域は光を透過させるため、表示装置は光透過性を有することができる。 One of light-emitting devices using organic EL is a technique described in Patent Document 1. In the technique of Patent Document 1, the second electrode is provided only in a part of the pixel so that the display device using the organic EL has light transmittance (see-through). In such a structure, since the region positioned between the plurality of second electrodes transmits light, the display device can have light transmittance.
特開2011-23336号公報JP 2011-23336 A
 片面(おもて面)からのみ光を取り出したい透過型の発光装置において、第1電極と第2電極との短絡や、パターニングした第1電極のエッジ等に起因する第1電極と第2電極との間のリーク電流を防ぐために、透光部にも有機層を形成することが考えられる。しかし、その場合、透光部の光透過性が低下してしまう。 In a transmissive light-emitting device that wants to extract light only from one side (front side), a first electrode and a second electrode caused by a short circuit between the first electrode and the second electrode, an edge of the patterned first electrode, or the like In order to prevent a leakage current between the light transmitting portion and the light transmitting portion, an organic layer may be formed. However, in that case, the light transmissivity of the translucent part is lowered.
 本発明が解決しようとする課題としては、透過型の発光装置において、電極間の短絡やリーク電流を抑制しつつ、高い光透過性を確保することが一例として挙げられる。 As a problem to be solved by the present invention, in a transmissive light emitting device, for example, securing a high light transmittance while suppressing a short circuit between electrodes and a leakage current can be cited.
 請求項1に記載の発明は、
 複数の発光部と
 前記複数の発光部の間に位置する透光部と、を備え、
 前記複数の発光部の各々は、第1サブ有機層および第2サブ有機層を含む有機層を有し、
 前記発光部において、前記第1サブ有機層と前記第2サブ有機層とは重なっており、
 前記透光部において、前記第1サブ有機層の面積は前記第2サブ有機層の面積よりも大きい発光装置である。
The invention described in claim 1
A plurality of light emitting units, and a light transmitting unit located between the plurality of light emitting units,
Each of the plurality of light emitting units includes an organic layer including a first sub organic layer and a second sub organic layer,
In the light emitting unit, the first sub-organic layer and the second sub-organic layer overlap each other,
In the light transmissive part, the area of the first sub organic layer is a light emitting device larger than the area of the second sub organic layer.
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。 The above-described object and other objects, features, and advantages will be further clarified by a preferred embodiment described below and the following drawings attached thereto.
第1の実施形態に係る発光装置の構成を示す断面図である。1 is a cross-sectional view showing a configuration of a light emitting device according to a first embodiment. 発光部を拡大した図である。It is the figure which expanded the light emission part. 第1の実施形態に係る発光装置の平面図である。1 is a plan view of a light emitting device according to a first embodiment. 変形例1に係る発光装置の構成を示す断面図である。6 is a cross-sectional view illustrating a configuration of a light emitting device according to Modification Example 1. FIG. 変形例2に係る発光装置の構成を示す断面図である。FIG. 11 is a cross-sectional view illustrating a configuration of a light emitting device according to Modification 2. 変形例3に係る発光装置の構成を示す断面図である。FIG. 11 is a cross-sectional view illustrating a configuration of a light emitting device according to Modification 3. 変形例4に係る発光装置の構成を示す断面図である。It is sectional drawing which shows the structure of the light-emitting device which concerns on the modification 4. 第2の実施形態に係る発光装置の構成を示す断面図である。It is sectional drawing which shows the structure of the light-emitting device which concerns on 2nd Embodiment. 変形例1に係る発光装置の構成を示す断面図である。6 is a cross-sectional view illustrating a configuration of a light emitting device according to Modification Example 1. FIG. 変形例2に係る発光装置の構成を示す断面図である。FIG. 11 is a cross-sectional view illustrating a configuration of a light emitting device according to Modification 2. 変形例3に係る発光装置の構成を示す断面図である。FIG. 11 is a cross-sectional view illustrating a configuration of a light emitting device according to Modification 3. 変形例4に係る発光装置の構成を示す断面図である。It is sectional drawing which shows the structure of the light-emitting device which concerns on the modification 4. 変形例5に係る発光装置の構成を示す断面図である。FIG. 10 is a cross-sectional view illustrating a configuration of a light emitting device according to Modification Example 5. 変形例6に係る発光装置の断面図である。It is sectional drawing of the light-emitting device which concerns on the modification 6. FIG. 図14に示した発光装置の平面図である。It is a top view of the light-emitting device shown in FIG. 第3の実施形態に係る発光装置の構成を示す断面図である。It is sectional drawing which shows the structure of the light-emitting device which concerns on 3rd Embodiment. 発光部を拡大した図である。It is the figure which expanded the light emission part. 変形例1に係る発光装置の構成を示す断面図である。6 is a cross-sectional view illustrating a configuration of a light emitting device according to Modification Example 1. FIG. 変形例2に係る発光装置の構成を示す断面図である。FIG. 11 is a cross-sectional view illustrating a configuration of a light emitting device according to Modification 2. 変形例3に係る発光装置の構成を示す断面図である。FIG. 11 is a cross-sectional view illustrating a configuration of a light emitting device according to Modification 3. 変形例4に係る発光装置の構成を示す断面図である。It is sectional drawing which shows the structure of the light-emitting device which concerns on the modification 4. 実施例に係る発光装置の構成を示す断面図である。It is sectional drawing which shows the structure of the light-emitting device which concerns on an Example. 図22に示した発光装置の平面図である。It is a top view of the light-emitting device shown in FIG. 図23から第1サブ有機層,第2サブ有機層,第3サブ有機層を除いた図である。It is the figure which remove | excluded the 1st sub organic layer, the 2nd sub organic layer, and the 3rd sub organic layer from FIG. 実施例に係る発光装置の第1の変形例を示す図である。It is a figure which shows the 1st modification of the light-emitting device which concerns on an Example. 実施例に係る発光装置の第2の変形例を示す図である。It is a figure which shows the 2nd modification of the light-emitting device which concerns on an Example. 実施例に係る発光装置の第3の変形例を示す図である。It is a figure which shows the 3rd modification of the light-emitting device which concerns on an Example.
 以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate.
(第1の実施形態)
 図1は、第1の実施形態に係る発光装置10の構成を示す断面図である。監視者Pは、図1の基板100に垂直な方向から発光装置10の光射出面を見ている。図2は、発光部140を拡大した図である。本実施形態に係る発光装置10は、例えば照明装置または表示装置である。本実施形態に係る発光装置10は、複数の発光部140、および透光部104を備える。透光部104は、複数の発光部140の間に位置する。複数の発光部140の各々は、第1サブ有機層121および第2サブ有機層122を含む有機層120を有する。そして、発光部140において、第1サブ有機層121と第2サブ有機層122とは重なっており、透光部104において、第1サブ有機層121の面積は第2サブ有機層122の面積よりも大きい。以下に詳しく説明する。
(First embodiment)
FIG. 1 is a cross-sectional view illustrating a configuration of a light emitting device 10 according to the first embodiment. The supervisor P looks at the light emission surface of the light emitting device 10 from a direction perpendicular to the substrate 100 in FIG. FIG. 2 is an enlarged view of the light emitting unit 140. The light emitting device 10 according to the present embodiment is, for example, a lighting device or a display device. The light emitting device 10 according to the present embodiment includes a plurality of light emitting units 140 and a light transmitting unit 104. The light transmitting unit 104 is located between the plurality of light emitting units 140. Each of the plurality of light emitting units 140 includes an organic layer 120 including a first sub organic layer 121 and a second sub organic layer 122. In the light emitting unit 140, the first sub organic layer 121 and the second sub organic layer 122 overlap each other. In the light transmitting unit 104, the area of the first sub organic layer 121 is larger than the area of the second sub organic layer 122. Is also big. This will be described in detail below.
 発光装置10において、複数の発光部140の各々は、第1電極110及び第2電極130の積層構造を含む。そして、第1サブ有機層121の少なくとも一部及び第2サブ有機層122の少なくとも一部は、第1電極110及び第2電極130の間に位置する。 In the light emitting device 10, each of the plurality of light emitting units 140 includes a stacked structure of the first electrode 110 and the second electrode 130. At least a part of the first sub organic layer 121 and at least a part of the second sub organic layer 122 are located between the first electrode 110 and the second electrode 130.
 本実施形態に係る発光装置10は、基板100をさらに備える。発光部140は、少なくとも基板100の第1面101に形成されている。 The light emitting device 10 according to this embodiment further includes a substrate 100. The light emitting unit 140 is formed on at least the first surface 101 of the substrate 100.
 基板100は、例えばガラス基板や樹脂基板などの透光性を有する基板である。基板100は可撓性を有していてもよい。可撓性を有している場合、基板100の厚さは、例えば10μm以上1000μm以下である。基板100は、例えば矩形などの多角形や円形である。基板100が樹脂基板である場合、基板100は、例えばPEN(ポリエチレンナフタレート)、PES(ポリエーテルサルホン)、PET(ポリエチレンテレフタラート)、又はポリイミドを用いて形成されている。また、基板100が樹脂基板である場合、水分が基板100を透過することを抑制するために、基板100の少なくとも一面(好ましくは両面)に、SiNやSiONなどの無機バリア膜が形成されているのが好ましい。 The substrate 100 is a light-transmitting substrate such as a glass substrate or a resin substrate. The substrate 100 may have flexibility. In the case of flexibility, the thickness of the substrate 100 is, for example, not less than 10 μm and not more than 1000 μm. The substrate 100 is, for example, a polygon such as a rectangle or a circle. When the substrate 100 is a resin substrate, the substrate 100 is formed using, for example, PEN (polyethylene naphthalate), PES (polyethersulfone), PET (polyethylene terephthalate), or polyimide. When the substrate 100 is a resin substrate, an inorganic barrier film such as SiN x or SiON is formed on at least one surface (preferably both surfaces) of the substrate 100 in order to prevent moisture from permeating the substrate 100. It is preferable.
 発光部140は、第1電極110、有機層120、及び第2電極130をこの順に積層させた構成を有している。発光装置10が照明装置の場合、複数の発光部140はライン状に延在していてもよい。一方、発光装置10が表示装置の場合、複数の発光部140はマトリクスを構成するように配置されているか、セグメントを構成したり所定の形状を表示したりするように(例えばアイコンを表示するように)なっていてもよい。そして複数の発光部140は、画素別に形成されている。 The light emitting unit 140 has a configuration in which the first electrode 110, the organic layer 120, and the second electrode 130 are stacked in this order. When the light emitting device 10 is a lighting device, the plurality of light emitting units 140 may extend in a line shape. On the other hand, when the light emitting device 10 is a display device, the plurality of light emitting units 140 are arranged so as to form a matrix, or form a segment or display a predetermined shape (for example, display icons). It may be. The plurality of light emitting units 140 are formed for each pixel.
 第1電極110は、透光性を有する透明電極である。透明電極を構成する透明導電材料は、金属を含む材料、例えば、ITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)、IWZO(Indium Tungsten Zinc Oxide)、ZnO(Zinc Oxide)等の金属酸化物である。第1電極110の厚さは、例えば10nm以上500nm以下である。第1電極110は、例えばスパッタリング法又は蒸着法を用いて形成される。なお、第1電極110は、カーボンナノチューブ、又はPEDOT/PSSなどの導電性有機材料であってもよい。第1電極110はたとえばアノードである。 The first electrode 110 is a transparent electrode having translucency. The transparent conductive material constituting the transparent electrode is a metal-containing material, for example, a metal oxide such as ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), IWZO (Indium Tungsten Zinc Oxide), ZnO (Zinc Oxide), and the like. is there. The thickness of the first electrode 110 is, for example, not less than 10 nm and not more than 500 nm. The first electrode 110 is formed using, for example, a sputtering method or a vapor deposition method. The first electrode 110 may be a carbon nanotube or a conductive organic material such as PEDOT / PSS. The first electrode 110 is, for example, an anode.
 第2電極130は、例えば、Al、Au、Ag、Pt、Mg、Sn、Zn、及びInからなる第1群の中から選択される金属又はこの第1群から選択される金属の合金からなる金属層を含んでいる。この場合、第2電極130は遮光性を有している。第2電極130の厚さは、例えば10nm以上500nm以下である。ただし、第2電極130は、第1電極110の材料として例示した材料を用いて形成されていてもよい。第2電極130は、例えばスパッタリング法又は蒸着法を用いて形成される。第2電極130はたとえばカソードである。 The second electrode 130 is made of, for example, a metal selected from the first group consisting of Al, Au, Ag, Pt, Mg, Sn, Zn, and In or an alloy of a metal selected from the first group. Contains a metal layer. In this case, the second electrode 130 has a light shielding property. The thickness of the second electrode 130 is, for example, not less than 10 nm and not more than 500 nm. However, the second electrode 130 may be formed using the material exemplified as the material of the first electrode 110. The second electrode 130 is formed using, for example, a sputtering method or a vapor deposition method. The second electrode 130 is, for example, a cathode.
 なお、上記した第1電極110及び第2電極130の材料は、基板100を光が透過する場合、すなわち発光装置10からの発光が基板100を透過して行われる場合(すなわちボトムエミッション型)の例である。他の場合として、基板100とは逆側を光が透過する場合がある。すなわち、発光装置10からの発光が基板100を透過しないで行われる場合(トップエミッション型)である。トップエミッション型では、逆積型と、順積型との2種類の積層構造のいずれかを採用できる。逆積型では、第1電極110の材料と第2電極130の材料はボトムエミッション型と逆になる。すなわち第1電極110の材料には上記した第2電極130の材料が用いられ、第2電極130の材料には上記した第1電極110の材料が用いられる。他方の順積型では、上記した第2電極130の材料の上に第1電極110の材料を形成し、更にその上に有機層120、さらにその上に薄く成膜した第2電極130を形成することで、基板100とは逆側から光を取出す構造である。なお、薄く成膜する材料は、例えば第2電極130の材料として例示した材料やMgAg合金などである。AlやAgで第2電極130を形成する場合、第2電極130の厚さは、30nm以下であるのが好ましい。本実施形態にかかる発光装置10は、ボトムエミッション型、及び上記した2種類のトップエミッション型のいずれの構造であってもよい。 Note that the materials of the first electrode 110 and the second electrode 130 described above are used when light is transmitted through the substrate 100, that is, when light emission from the light emitting device 10 is performed through the substrate 100 (that is, bottom emission type). It is an example. In other cases, light may pass through the side opposite to the substrate 100. That is, the light emission from the light emitting device 10 is performed without passing through the substrate 100 (top emission type). In the top emission type, one of two types of stacked structures of a reverse product type and a forward product type can be adopted. In the reverse product type, the material of the first electrode 110 and the material of the second electrode 130 are opposite to those of the bottom emission type. That is, the material of the second electrode 130 is used as the material of the first electrode 110, and the material of the first electrode 110 is used as the material of the second electrode 130. In the other stacking type, the material of the first electrode 110 is formed on the material of the second electrode 130 described above, the organic layer 120 is further formed thereon, and the second electrode 130 is further formed thinly thereon. Thus, the light is extracted from the side opposite to the substrate 100. The material for forming the thin film is, for example, the material exemplified as the material of the second electrode 130 or an MgAg alloy. When the second electrode 130 is formed of Al or Ag, the thickness of the second electrode 130 is preferably 30 nm or less. The light emitting device 10 according to the present embodiment may be of any structure of a bottom emission type and the two types of top emission types described above.
 図1および図2では、ボトムエミッション型の発光装置10の例を示している。本図の例では、第1電極110は透光性を有する。また、基板100は第1電極110を介して第2電極130と対向する。そして、第2電極130は遮光性を有する。そして、第1電極110は基板100と第2電極130との間に位置する。 1 and 2 show an example of a bottom emission type light emitting device 10. In the example of this figure, the 1st electrode 110 has translucency. The substrate 100 is opposed to the second electrode 130 with the first electrode 110 interposed therebetween. The second electrode 130 has a light shielding property. The first electrode 110 is located between the substrate 100 and the second electrode 130.
 発光部140において有機層120は、第1サブ有機層121および第2サブ有機層122を含む複数のサブ有機層が積層された構成を有している。なお以下では、第1サブ有機層121、第2サブ有機層122、およびその他のサブ有機層を総称して、単に「サブ有機層」とも呼ぶ。発光部140において各サブ有機層はたとえば正孔注入層、発光層、電子注入層、正孔輸送層、電子輸送層、正孔ブロック層、および電子ブロック層のうち、少なくともいずれかとして機能する。一つのサブ有機層が、これらのうち複数の層の機能を兼ねていても良い。なお、サブ有機層が、正孔注入層、発光層、電子注入層、正孔輸送層、電子輸送層、正孔ブロック層、および電子ブロック層のうち、少なくともいずれかとして機能させるための材料を含む場合、そのサブ有機層はその機能を有する層と言える。具体的にはたとえば、分析装置で各層の原子量を分析したとき、ある層(たとえば第1サブ有機層121)にある機能を有する層(たとえば正孔注入層)を構成する材料に含まれる原子が存在することを確認することにより、その層がその機能を有する層であると特定できる。また、有機層120のうち各サブ有機層を構成する材料の組み合わせ、およびその電気的特性を確認することにより、各サブ有機層の機能を確認してもよい。 In the light emitting unit 140, the organic layer 120 has a configuration in which a plurality of sub organic layers including the first sub organic layer 121 and the second sub organic layer 122 are stacked. Hereinafter, the first sub organic layer 121, the second sub organic layer 122, and the other sub organic layers are collectively referred to simply as “sub organic layers”. In the light emitting unit 140, each sub organic layer functions as at least one of a hole injection layer, a light emitting layer, an electron injection layer, a hole transport layer, an electron transport layer, a hole block layer, and an electron block layer, for example. One sub-organic layer may also serve as a plurality of layers among them. Note that a material for allowing the sub organic layer to function as at least one of a hole injection layer, a light emitting layer, an electron injection layer, a hole transport layer, an electron transport layer, a hole block layer, and an electron block layer is used. When included, the sub organic layer can be said to be a layer having the function. Specifically, for example, when the atomic weight of each layer is analyzed by an analyzer, atoms contained in a material constituting a layer (for example, a hole injection layer) having a function in a certain layer (for example, the first sub-organic layer 121) By confirming the presence, the layer can be identified as a layer having the function. Moreover, you may confirm the function of each sub organic layer by confirming the combination of the material which comprises each sub organic layer among the organic layers 120, and its electrical property.
 図1および図2に示す例において、発光部140の有機層120は、第1サブ有機層121、第2サブ有機層122および第3サブ有機層123が第1電極110側からこの順に積層した構成を有している。上記した通り、第1電極110は、光透過性を有する。また、第1サブ有機層121は、第1電極110と接する。発光部140においてたとえば第1サブ有機層121は正孔注入層として機能し、第2サブ有機層122は発光層として機能し、第3サブ有機層123は電子注入層として機能する。第1サブ有機層121と第2サブ有機層122との間には正孔輸送層として機能するサブ有機層がさらに形成されていてもよい。また、第2サブ有機層122と第3サブ有機層123との間には電子輸送層として機能するサブ有機層がさらに形成されていてもよい。有機層120は蒸着法で形成されてもよい。また、有機層120のうち少なくとも一つのサブ有機層、例えば第1電極110と接触する層は、インクジェット法、印刷法、スピンコート法、又はスプレー法などの塗布法によって形成されてもよい。なお、この場合、有機層120の残りの層は、蒸着法によって形成されていてもよい。また、有機層120のすべての層が、塗布法を用いて形成されていてもよい。 In the example shown in FIGS. 1 and 2, the organic layer 120 of the light emitting unit 140 includes a first sub organic layer 121, a second sub organic layer 122, and a third sub organic layer 123 stacked in this order from the first electrode 110 side. It has a configuration. As described above, the first electrode 110 is light transmissive. The first sub organic layer 121 is in contact with the first electrode 110. In the light emitting unit 140, for example, the first sub organic layer 121 functions as a hole injection layer, the second sub organic layer 122 functions as a light emitting layer, and the third sub organic layer 123 functions as an electron injection layer. A sub organic layer that functions as a hole transport layer may be further formed between the first sub organic layer 121 and the second sub organic layer 122. Further, a sub organic layer that functions as an electron transport layer may be further formed between the second sub organic layer 122 and the third sub organic layer 123. The organic layer 120 may be formed by a vapor deposition method. In addition, at least one sub-organic layer in the organic layer 120, for example, a layer in contact with the first electrode 110 may be formed by a coating method such as an inkjet method, a printing method, a spin coating method, or a spray method. In this case, the remaining layers of the organic layer 120 may be formed by a vapor deposition method. Moreover, all the layers of the organic layer 120 may be formed using the apply | coating method.
 本図の例において、発光部140では第1サブ有機層121は第2サブ有機層122と第1電極110との間に位置する。また、発光部140において第1サブ有機層121は第1電極110と接している。第1サブ有機層121が発光部140における正孔注入層として機能する。この場合、第1サブ有機層121は芳香族三級アミン高分子化合物等の芳香族アミン系化合物を含むことが好ましい。 In the example of this drawing, in the light emitting unit 140, the first sub organic layer 121 is located between the second sub organic layer 122 and the first electrode 110. In the light emitting unit 140, the first sub organic layer 121 is in contact with the first electrode 110. The first sub organic layer 121 functions as a hole injection layer in the light emitting unit 140. In this case, the first sub organic layer 121 preferably contains an aromatic amine compound such as an aromatic tertiary amine polymer compound.
 図3は、本実施形態に係る発光装置10の平面図である。図1は、図3のA-A断面に対応している。本図の例において、発光装置10は複数の線状の発光部140を有している。これら複数の発光部140は、基板100の第1面101に互いに離れて配置されている。 FIG. 3 is a plan view of the light emitting device 10 according to the present embodiment. FIG. 1 corresponds to the AA cross section of FIG. In the example of this figure, the light emitting device 10 has a plurality of linear light emitting portions 140. The plurality of light emitting units 140 are disposed apart from each other on the first surface 101 of the substrate 100.
 上記した通り、複数の発光部140の間には透光部104が位置している。本図の例では、複数の発光部140および透光部104は線状かつ同一方向に延在している。基板100に垂直な方向から見て、発光部140と透光部104は交互に配置されている。そして第1サブ有機層121は、基板100の第1面101のうち、複数の発光部140の間に位置する透光部104にも形成されている。 As described above, the translucent part 104 is located between the plurality of light emitting parts 140. In the example of the figure, the light emitting units 140 and the light transmitting units 104 are linear and extend in the same direction. When viewed from the direction perpendicular to the substrate 100, the light emitting portions 140 and the light transmitting portions 104 are alternately arranged. The first sub organic layer 121 is also formed on the light transmitting part 104 located between the light emitting parts 140 on the first surface 101 of the substrate 100.
 また、基板100に垂直な方向から見た場合において、発光装置10は、第1領域102を有している。第1領域102は第2電極130と重なる領域である。第2電極130が遮光性を有している場合、第1領域102は光を通さない領域である。透光部104は、第2電極130と重ならない領域である。第2電極130の光線透過率は第1電極110の光線透過率よりも低いため、透光部104の光線透過率は、第1領域102の光線透過率と比較して高い。第1領域102の面積は透光部104の面積よりも小さくてもよい。また、基板100のうち発光部140が形成されている領域の面積(言い換えると発光部の面積)は、基板100のうち発光部140が形成されていない領域の面積(言い換えると非発光部の面積)よりも小さくてもよい。 Further, when viewed from a direction perpendicular to the substrate 100, the light emitting device 10 has a first region 102. The first region 102 is a region overlapping with the second electrode 130. When the second electrode 130 has a light shielding property, the first region 102 is a region that does not transmit light. The translucent portion 104 is a region that does not overlap the second electrode 130. Since the light transmittance of the second electrode 130 is lower than the light transmittance of the first electrode 110, the light transmittance of the light transmitting portion 104 is higher than the light transmittance of the first region 102. The area of the first region 102 may be smaller than the area of the translucent part 104. Further, the area of the substrate 100 where the light emitting part 140 is formed (in other words, the area of the light emitting part) is the area of the substrate 100 where the light emitting part 140 is not formed (in other words, the area of the non-light emitting part). ) May be smaller.
 基板100に垂直な方向から見て、透光部104における第1サブ有機層121の面積は、透光部104における第2サブ有機層122の面積よりも大きい。いいかえると、透光部104の少なくとも一部には、第2サブ有機層122は形成されていない。このように、透光部104における第2サブ有機層122の面積を小さくすることによって、光の透過率を高めることができる。本図の例において、具体的には、第1サブ有機層121は、透光部104の全体に形成されている。言い換えると、第1サブ有機層121は、複数の発光部140及びこれらの間の透光部104に連続して形成されている。 When viewed from a direction perpendicular to the substrate 100, the area of the first sub-organic layer 121 in the light-transmitting portion 104 is larger than the area of the second sub-organic layer 122 in the light-transmitting portion 104. In other words, the second sub organic layer 122 is not formed on at least a part of the light transmitting portion 104. Thus, the light transmittance can be increased by reducing the area of the second sub-organic layer 122 in the light transmitting portion 104. In the example of this figure, specifically, the first sub-organic layer 121 is formed on the entire light transmitting portion 104. In other words, the first sub organic layer 121 is formed continuously with the plurality of light emitting units 140 and the light transmitting unit 104 therebetween.
 第1電極110の厚さ方向に平行な方向から見て、すなわち、基板100に垂直な方向から見て、第1電極110の縁の少なくとも一部は、第2サブ有機層122と重なっていない。このように、第2サブ有機層122の幅を第1電極110の幅よりも小さくすることによって、透光部104の光透過性をさらに高めることができる。 When viewed from the direction parallel to the thickness direction of the first electrode 110, that is, when viewed from the direction perpendicular to the substrate 100, at least a part of the edge of the first electrode 110 does not overlap the second sub organic layer 122. . As described above, by making the width of the second sub-organic layer 122 smaller than the width of the first electrode 110, the light transmittance of the light transmitting part 104 can be further improved.
 第1サブ有機層の膜厚dは、第2サブ有機層の膜厚dより薄いことが好ましい。その場合、第2サブ有機層122の透光性が第1サブ有機層121の透光性よりも低い。したがって、透光性の低い第2サブ有機層122の面積を小さくして、発光装置10の光の透過率をより効果的に高めることができる。 Thickness d 1 of the first sub organic layer is preferably thinner than the thickness d 2 of the second sub-organic layer. In that case, the translucency of the second sub organic layer 122 is lower than the translucency of the first sub organic layer 121. Therefore, the light transmittance of the light emitting device 10 can be more effectively increased by reducing the area of the second sub-organic layer 122 having low translucency.
 図1~図3に示した例において、第1サブ有機層121は、第1電極110の縁の少なくとも一部を覆っている。具体的には、発光部140の延在方向に垂直かつ基板100に垂直な断面(図1および図2に相当)における第1サブ有機層121の幅は、第1電極110の幅よりも大きい。こうすることにより、第1電極110の縁と第2電極130との間に第1サブ有機層121が介在し、第1電極110のエッジで生じ得るエッジリークを抑制することができる。また、第1電極110の厚さ方向に平行な方向から見て、第2サブ有機層122の縁の少なくとも一部は、第2電極130と重なっていない。具体的には、発光部140の延在方向に垂直かつ基板100に垂直な断面における第2サブ有機層122の幅は、第2電極130の幅よりも大きい。こうすることにより、第2電極130の縁と第1電極110との間に第2サブ有機層122がさらに介在することとなり、第1電極110と第2電極130との間の短絡をより抑制することができる。また、多少のマスクずれを許容できる。 In the example shown in FIGS. 1 to 3, the first sub organic layer 121 covers at least part of the edge of the first electrode 110. Specifically, the width of the first sub-organic layer 121 in a cross section (corresponding to FIGS. 1 and 2) perpendicular to the extending direction of the light emitting unit 140 and perpendicular to the substrate 100 is larger than the width of the first electrode 110. . By doing so, the first sub-organic layer 121 is interposed between the edge of the first electrode 110 and the second electrode 130, and edge leakage that may occur at the edge of the first electrode 110 can be suppressed. In addition, when viewed from a direction parallel to the thickness direction of the first electrode 110, at least a part of the edge of the second sub organic layer 122 does not overlap the second electrode 130. Specifically, the width of the second sub organic layer 122 in the cross section perpendicular to the extending direction of the light emitting unit 140 and perpendicular to the substrate 100 is larger than the width of the second electrode 130. By doing so, the second sub-organic layer 122 is further interposed between the edge of the second electrode 130 and the first electrode 110, and a short circuit between the first electrode 110 and the second electrode 130 is further suppressed. can do. Further, some mask displacement can be allowed.
 第1サブ有機層121は、塗布膜であることが好ましい。第1サブ有機層121は高分子を含むことが好ましく、特に第1サブ有機層121は、第2サブ有機層122の重量平均分子量よりも大きい重量平均分子量を有する高分子を含むことが好ましい。また、第1サブ有機層121は重量平均分子量が3000以上、または、数平均分子量が500以上の化合物を含んでもよい。これらの場合、第1サブ有機層121のエッジ被覆性や、異物の埋包性が高まる。ひいては、エッジや異物に起因するリーク電流をより低減できる。第1サブ有機層121が正孔注入層として機能する塗布膜である場合、第1サブ有機層121は芳香族三級アミン高分子化合物等の芳香族アミン系化合物を含むことが好ましい。 The first sub organic layer 121 is preferably a coating film. The first sub organic layer 121 preferably includes a polymer. In particular, the first sub organic layer 121 preferably includes a polymer having a weight average molecular weight larger than that of the second sub organic layer 122. The first sub organic layer 121 may include a compound having a weight average molecular weight of 3000 or more or a number average molecular weight of 500 or more. In these cases, the edge covering property of the first sub organic layer 121 and the embedding property of foreign matters are enhanced. As a result, it is possible to further reduce the leakage current caused by the edges and foreign matters. When the first sub organic layer 121 is a coating film that functions as a hole injection layer, the first sub organic layer 121 preferably includes an aromatic amine compound such as an aromatic tertiary amine polymer compound.
 また、有機層120を構成する複数のサブ有機層のうち、第1サブ有機層121が塗布法で形成される塗布膜であり、第2サブ有機層122が蒸着法で形成される蒸着膜である場合がある。この場合、蒸着膜は、塗布膜に比べてマスク等を用いたパターニングを行いやすい。そこで、第1サブ有機層121を発光部140と透光部104にわたって広く形成し、第2サブ有機層122およびその他の蒸着膜を第1サブ有機層121より狭い領域にパターニングして形成すれば、発光装置10の生産効率を向上させることができる。また、この場合、第1サブ有機層121は第2サブ有機層122よりも下層に形成されていることが好ましい。すなわち、第1サブ有機層121は基板100と第2サブ有機層122との間に位置することが好ましい。そうすれば、第1サブ有機層121の形成後に第2サブ有機層122をパターン成膜でき、第2サブ有機層122の上に第1サブ有機層121を塗布形成する場合に比べて、膜質のよい第2サブ有機層122を得られる。 Of the plurality of sub-organic layers constituting the organic layer 120, the first sub-organic layer 121 is a coating film formed by a coating method, and the second sub-organic layer 122 is a deposition film formed by a deposition method. There may be. In this case, the vapor deposition film is easier to pattern using a mask or the like than the coating film. Therefore, if the first sub organic layer 121 is formed widely over the light emitting part 140 and the light transmitting part 104, the second sub organic layer 122 and other vapor deposition films are formed by patterning in a region narrower than the first sub organic layer 121. The production efficiency of the light emitting device 10 can be improved. In this case, the first sub organic layer 121 is preferably formed in a lower layer than the second sub organic layer 122. That is, the first sub organic layer 121 is preferably located between the substrate 100 and the second sub organic layer 122. Then, the second sub-organic layer 122 can be patterned after the formation of the first sub-organic layer 121, and the film quality is higher than when the first sub-organic layer 121 is formed by coating on the second sub-organic layer 122. A second sub-organic layer 122 with good quality can be obtained.
 なお、本図の例では、透光部104の全体に第1サブ有機層121が形成されている例を示しているが、透光部104の一部には第1サブ有機層121が形成されていなくても良い。 In the example of this figure, an example in which the first sub organic layer 121 is formed on the entire light transmitting portion 104 is shown, but the first sub organic layer 121 is formed on a part of the light transmitting portion 104. It does not have to be.
 また、本図の例では、第2サブ有機層122と第3サブ有機層123が同じパターンで形成されている例を示しているが、第2サブ有機層122が形成されている領域と第3サブ有機層123が形成されている領域とは互いに異なっていても良い。 Moreover, although the example of this figure has shown the example in which the 2nd sub organic layer 122 and the 3rd sub organic layer 123 are formed with the same pattern, the area | region in which the 2nd sub organic layer 122 is formed, and 1st The region where the three sub organic layers 123 are formed may be different from each other.
 次に、発光装置10の製造方法について説明する。まず、基板100に第1電極110を、例えばスパッタリング法を用いて形成する。次いで、第1電極110を、フォトリソグラフィー法を利用して所定のパターンにする。次いで、第1サブ有機層121をたとえば塗布法により形成する。次いで、第2サブ有機層122、第3サブ有機層123及び第2電極130をこの順に形成する。第2サブ有機層122および第3サブ有機層123はたとえば蒸着法で形成できる。これらの層は、例えばマスクを用いるなどして所定のパターンに形成される。第2電極130も、例えばマスクを用いるなどして所定のパターンに形成される。その後、封止膜または封止部材(図示せず)を用いて発光部140を封止する。 Next, a method for manufacturing the light emitting device 10 will be described. First, the first electrode 110 is formed on the substrate 100 by using, for example, a sputtering method. Next, the first electrode 110 is formed into a predetermined pattern using a photolithography method. Next, the first sub organic layer 121 is formed by, for example, a coating method. Next, the second sub organic layer 122, the third sub organic layer 123, and the second electrode 130 are formed in this order. The second sub organic layer 122 and the third sub organic layer 123 can be formed by, for example, a vapor deposition method. These layers are formed in a predetermined pattern using, for example, a mask. The second electrode 130 is also formed in a predetermined pattern using, for example, a mask. Thereafter, the light emitting unit 140 is sealed using a sealing film or a sealing member (not shown).
 以上、本実施形態によれば、透光部104において、第1サブ有機層121の面積が第2サブ有機層122の面積よりも大きい。言い換えると、第2サブ有機層122の面積が、第1サブ有機層121の面積よりも小さい。したがって、発光装置10の高い光透過性を確保することができる。くわえて、第1電極110と第2電極130との間のリーク電流を抑制できる。 As described above, according to the present embodiment, the area of the first sub organic layer 121 is larger than the area of the second sub organic layer 122 in the light transmitting portion 104. In other words, the area of the second sub organic layer 122 is smaller than the area of the first sub organic layer 121. Therefore, high light transmittance of the light emitting device 10 can be ensured. In addition, leakage current between the first electrode 110 and the second electrode 130 can be suppressed.
(第1の実施形態の変形例1)
 図4は、変形例1に係る発光装置10の構成を示す断面図である。図4は、実施形態の図2に相当する。本変形例の発光装置10は、第2サブ有機層122の縁の少なくとも一部が第1電極110および第2電極130のいずれとも重なっていない点を除いて実施形態に係る発光装置10と同じである。
(Modification 1 of the first embodiment)
FIG. 4 is a cross-sectional view illustrating a configuration of the light emitting device 10 according to the first modification. FIG. 4 corresponds to FIG. 2 of the embodiment. The light emitting device 10 of the present modification is the same as the light emitting device 10 according to the embodiment except that at least a part of the edge of the second sub organic layer 122 does not overlap with either the first electrode 110 or the second electrode 130. It is.
 具体的には、発光部140の延在方向に垂直かつ基板100に垂直な断面において、第2サブ有機層122の幅は、第1電極110の幅および第2電極130の幅のいずれよりも広い。また、第1電極110の縁は、第2サブ有機層122に覆われている。こうすることにより、第1電極110と第2電極130との間のリーク電流をさらに抑制できる。 Specifically, in the cross section perpendicular to the extending direction of the light emitting unit 140 and perpendicular to the substrate 100, the width of the second sub organic layer 122 is greater than either the width of the first electrode 110 or the width of the second electrode 130. wide. The edge of the first electrode 110 is covered with the second sub organic layer 122. By doing so, the leakage current between the first electrode 110 and the second electrode 130 can be further suppressed.
 以上、本変形例においても、透光部104において、第1サブ有機層121の面積が第2サブ有機層122の面積よりも大きい。したがって、発光装置10の高い光透過性を確保することができる。くわえて、第1電極110の縁の少なくとも一部が第2サブ有機層122に覆われていることにより、第1電極110と第2電極130との間のリーク電流をさらに抑制できる。 As described above, also in this modification, the area of the first sub organic layer 121 is larger than the area of the second sub organic layer 122 in the light transmitting portion 104. Therefore, high light transmittance of the light emitting device 10 can be ensured. In addition, since at least a part of the edge of the first electrode 110 is covered with the second sub organic layer 122, the leakage current between the first electrode 110 and the second electrode 130 can be further suppressed.
(第1の実施形態の変形例2)
 図5は、変形例2に係る発光装置10の構成を示す断面図である。図5は、実施形態の図2に相当する。本変形例の発光装置10は、第2サブ有機層122が第1サブ有機層121と基板100との間に位置する点を除いて実施形態に係る発光装置10と同じである。
(Modification 2 of the first embodiment)
FIG. 5 is a cross-sectional view illustrating a configuration of the light emitting device 10 according to the second modification. FIG. 5 corresponds to FIG. 2 of the embodiment. The light emitting device 10 according to the present modification is the same as the light emitting device 10 according to the embodiment except that the second sub organic layer 122 is located between the first sub organic layer 121 and the substrate 100.
 本変形例の発光部140において、第1サブ有機層121は第2電極130と接している。そして、たとえば、第1サブ有機層121は電子注入層として機能し、第2サブ有機層122は発光層として機能し、第3サブ有機層123は、正孔注入層として機能する。 In the light emitting unit 140 of this modification, the first sub organic layer 121 is in contact with the second electrode 130. For example, the first sub organic layer 121 functions as an electron injection layer, the second sub organic layer 122 functions as a light emitting layer, and the third sub organic layer 123 functions as a hole injection layer.
 以上、本変形例においても、透光部104において、第1サブ有機層121の面積が第2サブ有機層122の面積よりも大きい。したがって、発光装置10の高い光透過性を確保することができる。くわえて、第1電極110と第2電極130との間のリーク電流を抑制できる。 As described above, also in this modification, the area of the first sub organic layer 121 is larger than the area of the second sub organic layer 122 in the light transmitting portion 104. Therefore, high light transmittance of the light emitting device 10 can be ensured. In addition, leakage current between the first electrode 110 and the second electrode 130 can be suppressed.
(第1の実施形態の変形例3)
 図6は、変形例3に係る発光装置10の構成を示す断面図である。図6は、実施形態の図2に相当する。本変形例の発光装置10は、導電部170を備える点を除いて実施形態に係る発光装置10と同じである。
(Modification 3 of the first embodiment)
FIG. 6 is a cross-sectional view illustrating a configuration of the light emitting device 10 according to the third modification. FIG. 6 corresponds to FIG. 2 of the embodiment. The light emitting device 10 of the present modification is the same as the light emitting device 10 according to the embodiment except that the conductive portion 170 is provided.
 導電部170は、例えば第1電極110の補助電極であり、第1電極110に接触している。導電部170は第1電極110よりも抵抗値が低い材料によって形成されており、例えば少なくとも一つの金属層を用いて形成されている。導電部170は、例えばMo又はMo合金などの第1金属層、Al又はAl合金などの第2金属層、及びMo又はMo合金などの第3金属層をこの順に積層させた構成を有している。これら3つの金属層のうちたとえば第2金属層が最も厚い。 The conductive part 170 is, for example, an auxiliary electrode of the first electrode 110 and is in contact with the first electrode 110. The conductive portion 170 is formed of a material having a lower resistance value than that of the first electrode 110, and is formed using, for example, at least one metal layer. The conductive portion 170 has a configuration in which, for example, a first metal layer such as Mo or Mo alloy, a second metal layer such as Al or Al alloy, and a third metal layer such as Mo or Mo alloy are stacked in this order. Yes. Of these three metal layers, for example, the second metal layer is the thickest.
 そして導電部170は第1サブ有機層121によって覆われている。このため、導電部170は第2電極130に直接接続していない。この場合、第1サブ有機層121は塗布膜であることが特に好ましい。そうすれば凹凸に対する第1サブ有機層121の埋包性が高く、導電部170のエッジをカバーしてエッジリークを抑制することができる。 The conductive part 170 is covered with the first sub organic layer 121. For this reason, the conductive part 170 is not directly connected to the second electrode 130. In this case, the first sub organic layer 121 is particularly preferably a coating film. By doing so, the embedding property of the first sub-organic layer 121 with respect to the unevenness is high, and the edge of the conductive part 170 can be covered and edge leakage can be suppressed.
 導電部170は、第1電極110を形成した後、第1サブ有機層121を形成する前に形成できる。導電部170は、例えば以下のようにして形成される。まず、導電部170となる導電層を、例えばスパッタリング法などの成膜法を用いて形成する。次いで、この導電層上にレジストパターン(図示せず)を形成し、このレジストパターンをマスクとして導電層をエッチング(例えばウェットエッチング)する。これにより、導電部170は形成される。 The conductive part 170 can be formed after forming the first electrode 110 and before forming the first sub-organic layer 121. The conductive portion 170 is formed as follows, for example. First, a conductive layer to be the conductive portion 170 is formed using a film formation method such as a sputtering method. Next, a resist pattern (not shown) is formed on the conductive layer, and the conductive layer is etched (for example, wet etching) using the resist pattern as a mask. Thereby, the conductive part 170 is formed.
 なお、導電部170は、基板100と第1電極110との間に形成されていても良い。その場合、導電部170は、第1電極110が形成される前に基板100の第1面101に形成される。 Note that the conductive portion 170 may be formed between the substrate 100 and the first electrode 110. In that case, the conductive portion 170 is formed on the first surface 101 of the substrate 100 before the first electrode 110 is formed.
 以上、本変形例においても、透光部104において、第1サブ有機層121の面積が第2サブ有機層122の面積よりも大きい。したがって、発光装置10の高い光透過性を確保することができる。くわえて、第1電極110と第2電極130との間のリーク電流を抑制できる。 As described above, also in this modification, the area of the first sub organic layer 121 is larger than the area of the second sub organic layer 122 in the light transmitting portion 104. Therefore, high light transmittance of the light emitting device 10 can be ensured. In addition, leakage current between the first electrode 110 and the second electrode 130 can be suppressed.
 くわえて、発光装置10が導電部170を備えることにより、第1電極110の配線抵抗を小さくすることができる。 In addition, since the light emitting device 10 includes the conductive portion 170, the wiring resistance of the first electrode 110 can be reduced.
(第1の実施形態の変形例4)
 図7は、変形例4に係る発光装置10の構成を示す断面図である。図7は、実施形態の図2に相当する。本変形例の発光装置10は、絶縁膜150を備える点を除いて実施形態に係る発光装置10と同じである。
(Modification 4 of the first embodiment)
FIG. 7 is a cross-sectional view illustrating a configuration of a light emitting device 10 according to Modification 4. FIG. 7 corresponds to FIG. 2 of the embodiment. The light emitting device 10 of this modification is the same as the light emitting device 10 according to the embodiment except that the insulating film 150 is provided.
 本変形例の発光装置10において、絶縁膜150の少なくとも一部は第1電極110と有機層120との間に位置する。そして、第1電極110の縁は絶縁膜150で覆われている。言い換えると、絶縁膜150は第1電極110のうち発光部140となる部分を囲んでおり、発光部140を画定している。本図に示す例において、第2電極130の幅方向の縁は、絶縁膜150上に位置している。言い換えると、基板100に垂直な方向から見た場合において、絶縁膜150の一部は第2電極130からはみ出ている。また本図に示す例において、第1サブ有機層121は絶縁膜150の上及び側面にも形成されている。絶縁膜150は第1電極110の形成後、有機層120の成膜前に形成される。 In the light emitting device 10 of the present modification, at least a part of the insulating film 150 is located between the first electrode 110 and the organic layer 120. The edge of the first electrode 110 is covered with an insulating film 150. In other words, the insulating film 150 surrounds a portion of the first electrode 110 that becomes the light emitting unit 140 and defines the light emitting unit 140. In the example shown in this drawing, the edge in the width direction of the second electrode 130 is located on the insulating film 150. In other words, a part of the insulating film 150 protrudes from the second electrode 130 when viewed from a direction perpendicular to the substrate 100. In the example shown in the drawing, the first sub organic layer 121 is also formed on the insulating film 150 and on the side surface. The insulating film 150 is formed after the first electrode 110 is formed and before the organic layer 120 is formed.
 絶縁膜150は、無機材料を含むことが好ましい。具体的には、絶縁膜150はSiO等の酸化シリコン、SiN等の窒化シリコン、およびSiON等の酸化窒化シリコンの少なくともいずれかからなることが好ましい。絶縁膜150が樹脂材料からなる場合、紫外線等が樹脂材料に照射されることによって生じるガスが有機層120に損傷を与える場合がある。それに対し、絶縁膜150が無機材料を含むことにより、紫外線に強く、耐候性に優れる発光装置10を得られる。この場合、絶縁膜150はスパッタリング法、CVD法、ALD法、EB蒸着法などの真空成膜法で形成することができる。また、マスクを用いることにより、絶縁膜150は所定のパターンに形成される。 The insulating film 150 preferably contains an inorganic material. Specifically, the insulating film 150 is preferably made of at least one of silicon oxide such as SiO 2 , silicon nitride such as SiN x , and silicon oxynitride such as SiON. When the insulating film 150 is made of a resin material, a gas generated by irradiating the resin material with ultraviolet rays or the like may damage the organic layer 120. On the other hand, when the insulating film 150 contains an inorganic material, the light emitting device 10 that is resistant to ultraviolet rays and excellent in weather resistance can be obtained. In this case, the insulating film 150 can be formed by a vacuum film formation method such as a sputtering method, a CVD method, an ALD method, or an EB vapor deposition method. Further, the insulating film 150 is formed in a predetermined pattern by using a mask.
 ただし、絶縁膜150はポリイミドなどの感光性の樹脂材料によって形成されていてもよい。絶縁膜150が感光性の樹脂で形成されている場合、絶縁膜150は、露光及び現像工程を経ることにより、所定のパターンに形成される。 However, the insulating film 150 may be formed of a photosensitive resin material such as polyimide. When the insulating film 150 is formed of a photosensitive resin, the insulating film 150 is formed in a predetermined pattern through an exposure and development process.
 本変形例において、第1電極110の縁は絶縁膜150に覆われているため、第1電極110と第2電極130との間のエッジリークを防ぐことができる。一方、第1電極110はさらに第1サブ有機層121に覆われているため、第1サブ有機層121に覆われていない場合に比べて絶縁膜150の厚さを小さくできる。したがって、高い透光性を確保できる。また、絶縁膜150が樹脂材料を含んで形成される場合でも、耐候性を高めることができる。 In this modification, since the edge of the first electrode 110 is covered with the insulating film 150, the edge leak between the first electrode 110 and the second electrode 130 can be prevented. On the other hand, since the first electrode 110 is further covered with the first sub organic layer 121, the thickness of the insulating film 150 can be reduced as compared with the case where it is not covered with the first sub organic layer 121. Therefore, high translucency can be ensured. Further, even when the insulating film 150 is formed including a resin material, the weather resistance can be improved.
 以上、本変形例においても、透光部104において、第1サブ有機層121の面積が第2サブ有機層122の面積よりも大きい。したがって、発光装置10の高い光透過性を確保することができる。くわえて、発光装置10が絶縁膜150を備えることにより、第1電極110と第2電極130との間のリーク電流をより抑制できる。 As described above, also in this modification, the area of the first sub organic layer 121 is larger than the area of the second sub organic layer 122 in the light transmitting portion 104. Therefore, high light transmittance of the light emitting device 10 can be ensured. In addition, since the light emitting device 10 includes the insulating film 150, the leakage current between the first electrode 110 and the second electrode 130 can be further suppressed.
(第2の実施形態)
 図8は、第2の実施形態に係る発光装置10の構成を示す断面図である。以下、第1の実施形態に係る発光装置10と違う点を中心に説明を行う。
(Second Embodiment)
FIG. 8 is a cross-sectional view illustrating a configuration of the light emitting device 10 according to the second embodiment. Hereinafter, a description will be given focusing on differences from the light emitting device 10 according to the first embodiment.
 本実施形態に係る発光装置10において、第1電極110の厚さ方向に平行な方向から見て、第1サブ有機層121の縁の少なくとも一部は、第1電極110および第2電極130の少なくとも一方と重なっていない。また、第2サブ有機層122の縁は第2電極130および第1電極110と重なっている。ただし、発光装置10が照明装置の場合、基板100のほぼ全面に発光部140が形成されていてもよい。また、第1サブ有機層121の積層位置は特に限定されず、第1サブ有機層121は第2サブ有機層122と第2電極130との間に位置していても良い。 In the light emitting device 10 according to the present embodiment, when viewed from a direction parallel to the thickness direction of the first electrode 110, at least a part of the edge of the first sub organic layer 121 is formed by the first electrode 110 and the second electrode 130. Does not overlap at least one. Further, the edge of the second sub organic layer 122 overlaps the second electrode 130 and the first electrode 110. However, when the light emitting device 10 is a lighting device, the light emitting unit 140 may be formed on almost the entire surface of the substrate 100. The stack position of the first sub organic layer 121 is not particularly limited, and the first sub organic layer 121 may be positioned between the second sub organic layer 122 and the second electrode 130.
 本図の例において、第3サブ有機層123は第2サブ有機層122と第2電極130との間に位置する。第2サブ有機層122および第3サブ有機層123は第1電極110の厚さ方向に平行な方向から見て、第2電極130および第1電極110と重なっており、第2サブ有機層122および第3サブ有機層123の少なくとも一方の縁が発光部140の縁に一致している。なお、第3サブ有機層123の少なくとも一部は、第1電極110および第2電極130からはみ出していても良い。すなわち、第1電極110の厚さ方向に平行な方向から見て、第3サブ有機層123の縁の少なくとも一部は、第1電極110および第2電極130の少なくとも一方と重なっていなくても良い。 In the example of this figure, the third sub organic layer 123 is located between the second sub organic layer 122 and the second electrode 130. The second sub organic layer 122 and the third sub organic layer 123 overlap the second electrode 130 and the first electrode 110 when viewed from the direction parallel to the thickness direction of the first electrode 110, and the second sub organic layer 122. In addition, at least one edge of the third sub organic layer 123 coincides with the edge of the light emitting unit 140. Note that at least part of the third sub organic layer 123 may protrude from the first electrode 110 and the second electrode 130. That is, at least a part of the edge of the third sub organic layer 123 does not overlap with at least one of the first electrode 110 and the second electrode 130 when viewed from the direction parallel to the thickness direction of the first electrode 110. good.
 本図の例において、第1電極110の厚さ方向に平行な方向から見て、第1サブ有機層121の縁の少なくとも一部は、第1電極110および第2電極130のいずれとも重なっていない。また、第2サブ有機層122の縁は第2電極130および第1電極110と重なっている。くわえて、第1電極110の縁の少なくとも一部は第2電極130とは重なっていない。 In the example of this figure, when viewed from the direction parallel to the thickness direction of the first electrode 110, at least part of the edge of the first sub-organic layer 121 overlaps both the first electrode 110 and the second electrode 130. Absent. Further, the edge of the second sub organic layer 122 overlaps the second electrode 130 and the first electrode 110. In addition, at least part of the edge of the first electrode 110 does not overlap the second electrode 130.
 上記した通り、第1電極110の厚さ方向に平行な方向(すなわち、基板100に垂直な方向)から見て、第1サブ有機層121の縁の少なくとも一部は、第1電極110および第2電極130の少なくとも一方と重なっていない。また、第2サブ有機層122の縁は第2電極130および第1電極110と重なっている。こうすることにより、発光部140の縁が第1電極110および第2電極130の内側に位置することとなり、すなわち、発光部140の縁よりも外側まで遮光性の電極が延びることとなる。したがって、発光部140で発せられた光が、縁付近で裏面側(遮光性の電極が位置する側)に漏れることなく、遮光性の電極で反射されておもて面側(透明電極が位置する側)に効率良く出力される。 As described above, when viewed from the direction parallel to the thickness direction of the first electrode 110 (that is, the direction perpendicular to the substrate 100), at least part of the edge of the first sub-organic layer 121 includes the first electrode 110 and the first electrode 110. It does not overlap at least one of the two electrodes 130. Further, the edge of the second sub organic layer 122 overlaps the second electrode 130 and the first electrode 110. By doing so, the edge of the light emitting unit 140 is positioned inside the first electrode 110 and the second electrode 130, that is, the light-shielding electrode extends to the outside of the edge of the light emitting unit 140. Therefore, the light emitted from the light emitting unit 140 does not leak to the back surface side (side where the light shielding electrode is located) near the edge, but is reflected by the light shielding electrode and the front surface side (where the transparent electrode is located). Output efficiently).
 くわえて、第1電極110と第2電極130との間には、第1サブ有機層121が介在するため、第1電極110と第2電極130の短絡を防ぐことができる。具体的には、発光部140の外側において、第1電極110と第2電極130との間には、少なくとも第1サブ有機層121が位置する。また、第1電極110と第2電極130との間には、その他のサブ有機層がさらに位置していても良い。ただし、発光部140の外側において、少なくとも一部のサブ有機層は形成されていない。そのため、発光部140の外側において、第1電極110および第2電極130の一方から注入された電子と、第1電極110および第2電極130の他方から注入された正孔とがいずれかのサブ有機層内で結合するという現象は生じ難い。よって、第1電極110と第2電極130の短絡を防ぐことができる。また、第1電極110と第2電極130の短絡を防ぐために、絶縁層等を別途設ける必要が無い。 In addition, since the first sub organic layer 121 is interposed between the first electrode 110 and the second electrode 130, a short circuit between the first electrode 110 and the second electrode 130 can be prevented. Specifically, at least the first sub organic layer 121 is located between the first electrode 110 and the second electrode 130 outside the light emitting unit 140. Further, another sub organic layer may be further positioned between the first electrode 110 and the second electrode 130. However, at least a part of the sub organic layer is not formed outside the light emitting unit 140. Therefore, on the outside of the light emitting unit 140, electrons injected from one of the first electrode 110 and the second electrode 130 and holes injected from the other of the first electrode 110 and the second electrode 130 are either sub The phenomenon of bonding within the organic layer is unlikely to occur. Therefore, a short circuit between the first electrode 110 and the second electrode 130 can be prevented. Further, it is not necessary to separately provide an insulating layer or the like in order to prevent a short circuit between the first electrode 110 and the second electrode 130.
 以上、本実施形態において、第1電極110の厚さ方向に平行な方向から見て、第1サブ有機層121の縁の少なくとも一部は、第1電極110および第2電極130の少なくとも一方と重なっていない。また、第2サブ有機層122の縁は第2電極130および第1電極110と重なっている。したがって、発光部140の縁付近での裏面漏れ光を防ぐことができ、おもて面側に効率良く光を出力できる。また、第1電極110と第2電極130の短絡を防ぐために、絶縁層等を別途設ける必要が無い。 As described above, in the present embodiment, when viewed from the direction parallel to the thickness direction of the first electrode 110, at least a part of the edge of the first sub organic layer 121 is at least one of the first electrode 110 and the second electrode 130. There is no overlap. Further, the edge of the second sub organic layer 122 overlaps the second electrode 130 and the first electrode 110. Therefore, backside leakage light near the edge of the light emitting unit 140 can be prevented, and light can be efficiently output to the front side. Further, it is not necessary to separately provide an insulating layer or the like in order to prevent a short circuit between the first electrode 110 and the second electrode 130.
(第2の実施形態の変形例1)
 図9は、変形例1に係る発光装置10の構成を示す断面図である。本変形例の発光装置10は、第2電極130の幅が第1電極110の幅よりも大きい点を除いて実施形態に係る発光装置10と同じである。
(Modification 1 of 2nd Embodiment)
FIG. 9 is a cross-sectional view illustrating a configuration of the light emitting device 10 according to the first modification. The light emitting device 10 of this modification is the same as the light emitting device 10 according to the embodiment except that the width of the second electrode 130 is larger than the width of the first electrode 110.
 本変形例において、第1電極110の厚さ方向に平行な方向から見て、第1サブ有機層121の縁の少なくとも一部は、第1電極110および第2電極130のいずれとも重なっていない。また、第2サブ有機層122の縁は第2電極130および第1電極110と重なっている。くわえて、第2電極130の縁の少なくとも一部は第1電極110とは重なっていない。 In this modification, when viewed from a direction parallel to the thickness direction of the first electrode 110, at least a part of the edge of the first sub organic layer 121 does not overlap with either the first electrode 110 or the second electrode 130. . Further, the edge of the second sub organic layer 122 overlaps the second electrode 130 and the first electrode 110. In addition, at least a part of the edge of the second electrode 130 does not overlap the first electrode 110.
 第1サブ有機層121は、第1電極110の縁の少なくとも一部を覆っていることが好ましい。そうすれば、第1電極110のエッジを第1サブ有機層121で鈍化することができる。したがって、本図のように第1電極110の縁の上部に第2電極130およびサブ有機層の少なくともいずれかが積層されている場合にも、エッジリークを抑制することができる。通常、エッジリークを抑制する目的で、樹脂材料等を含む絶縁膜を第1電極110の縁を覆うように設けることがあるが、紫外線等が樹脂材料に照射されることによって生じるガスが有機層120に損傷を与える場合がある。それに対し、本変形例の発光装置10ではそのような絶縁膜を別途設ける必要が無く、耐候性に優れる発光装置10を得られる。 The first sub organic layer 121 preferably covers at least a part of the edge of the first electrode 110. Then, the edge of the first electrode 110 can be blunted by the first sub organic layer 121. Therefore, edge leakage can be suppressed even when at least one of the second electrode 130 and the sub-organic layer is stacked on the upper edge of the first electrode 110 as shown in FIG. Usually, for the purpose of suppressing edge leakage, an insulating film containing a resin material or the like is sometimes provided so as to cover the edge of the first electrode 110, but the gas generated by irradiating the resin material with ultraviolet rays or the like is generated in the organic layer. 120 may be damaged. On the other hand, in the light emitting device 10 of this modification, it is not necessary to separately provide such an insulating film, and the light emitting device 10 having excellent weather resistance can be obtained.
 また、第1サブ有機層121は高分子を含む塗布膜であることが好ましい。そうすれば、エッジの埋包性を高めることができる。特に第1サブ有機層121は、第2サブ有機層122の重量平均分子量よりも大きい重量平均分子量を有する高分子を含むことが好ましい。また、第1サブ有機層121は重量平均分子量が3000以上、または、数平均分子量が500以上の化合物を含んでもよい。 The first sub organic layer 121 is preferably a coating film containing a polymer. If it does so, the embedding property of an edge can be improved. In particular, the first sub organic layer 121 preferably includes a polymer having a weight average molecular weight larger than that of the second sub organic layer 122. The first sub organic layer 121 may include a compound having a weight average molecular weight of 3000 or more or a number average molecular weight of 500 or more.
 なお、本変形例において、第2電極130の縁の少なくとも一部が第1サブ有機層121と重なっていなくても良い。すなわち、第1電極110の厚さ方向に平行な方向から見て、第2電極130は第1サブ有機層121の全体を覆っていても良い。 In this modification, at least a part of the edge of the second electrode 130 may not overlap the first sub organic layer 121. That is, the second electrode 130 may cover the entire first sub organic layer 121 when viewed from a direction parallel to the thickness direction of the first electrode 110.
 以上、本変形例においても、第1電極110の厚さ方向に平行な方向から見て、第1サブ有機層121の縁の少なくとも一部は、第1電極110および第2電極130の少なくとも一方と重なっていない。また、第2サブ有機層122の縁は第2電極130および第1電極110と重なっている。したがって、発光部140の縁付近での裏面漏れ光を防ぐことができ、おもて面側に効率良く光を出力できる。また、第1電極110と第2電極130の短絡を防ぐために、絶縁層等を別途設ける必要が無い。 As described above, also in this modification, at least a part of the edge of the first sub organic layer 121 is at least one of the first electrode 110 and the second electrode 130 when viewed from the direction parallel to the thickness direction of the first electrode 110. Does not overlap. Further, the edge of the second sub organic layer 122 overlaps the second electrode 130 and the first electrode 110. Therefore, backside leakage light near the edge of the light emitting unit 140 can be prevented, and light can be efficiently output to the front side. Further, it is not necessary to separately provide an insulating layer or the like in order to prevent a short circuit between the first electrode 110 and the second electrode 130.
(第2の実施形態の変形例2)
 図10は、変形例2に係る発光装置10の構成を示す断面図である。本変形例の発光装置10は、第1サブ有機層121の幅が第1電極110の幅よりも小さい点を除いて実施形態に係る発光装置10と同じである。
(Modification 2 of the second embodiment)
FIG. 10 is a cross-sectional view illustrating a configuration of the light emitting device 10 according to the second modification. The light emitting device 10 of the present modification is the same as the light emitting device 10 according to the embodiment except that the width of the first sub organic layer 121 is smaller than the width of the first electrode 110.
 本変形例において、第1電極110の厚さ方向に平行な方向から見て、第1サブ有機層121の縁の少なくとも一部は、第2電極130と重なっていない。また、第2サブ有機層122の縁は第2電極130および第1電極110と重なっている。くわえて、第1電極110の縁の少なくとも一部は第2電極130とは重なっていない。 In this modification, at least a part of the edge of the first sub-organic layer 121 does not overlap the second electrode 130 when viewed from the direction parallel to the thickness direction of the first electrode 110. Further, the edge of the second sub organic layer 122 overlaps the second electrode 130 and the first electrode 110. In addition, at least part of the edge of the first electrode 110 does not overlap the second electrode 130.
 以上、本変形例においても、第1電極110の厚さ方向に平行な方向から見て、第1サブ有機層121の縁の少なくとも一部は、第1電極110および第2電極130の少なくとも一方と重なっていない。また、第2サブ有機層122の縁は第2電極130および第1電極110と重なっている。したがって、発光部140の縁付近での裏面漏れ光を防ぐことができ、おもて面側に効率良く光を出力できる。また、第1電極110と第2電極130の短絡を防ぐために、絶縁層等を別途設ける必要が無い。 As described above, also in this modification, at least a part of the edge of the first sub organic layer 121 is at least one of the first electrode 110 and the second electrode 130 when viewed from the direction parallel to the thickness direction of the first electrode 110. Does not overlap. Further, the edge of the second sub organic layer 122 overlaps the second electrode 130 and the first electrode 110. Therefore, backside leakage light near the edge of the light emitting unit 140 can be prevented, and light can be efficiently output to the front side. Further, it is not necessary to separately provide an insulating layer or the like in order to prevent a short circuit between the first electrode 110 and the second electrode 130.
(第2の実施形態の変形例3)
 図11は、変形例3に係る発光装置10の構成を示す断面図である。本変形例の発光装置10は、導電部170を備える点を除いて実施形態に係る発光装置10と同じである。
(Modification 3 of the second embodiment)
FIG. 11 is a cross-sectional view illustrating a configuration of a light emitting device 10 according to Modification 3. The light emitting device 10 of the present modification is the same as the light emitting device 10 according to the embodiment except that the conductive portion 170 is provided.
 導電部170は、例えば第1電極110の補助電極であり、第1電極110に接触している。導電部170は第1電極110よりも抵抗値が低い材料によって形成されており、例えば少なくとも一つの金属層を用いて形成されている。導電部170は、例えばMo又はMo合金などの第1金属層、Al又はAl合金などの第2金属層、及びMo又はMo合金などの第3金属層をこの順に積層させた構成を有している。これら三つの金属層のうち第2金属層が最も厚い。 The conductive part 170 is, for example, an auxiliary electrode of the first electrode 110 and is in contact with the first electrode 110. The conductive portion 170 is formed of a material having a lower resistance value than that of the first electrode 110, and is formed using, for example, at least one metal layer. The conductive portion 170 has a configuration in which, for example, a first metal layer such as Mo or Mo alloy, a second metal layer such as Al or Al alloy, and a third metal layer such as Mo or Mo alloy are stacked in this order. Yes. Of these three metal layers, the second metal layer is the thickest.
 そして導電部170は第1サブ有機層121によって覆われている。このため、導電部170は第2電極130に直接接続していない。この場合、第1サブ有機層121は塗布膜であることが好ましい。そうすれば第1サブ有機層121の凹凸に対する埋包性が高く、導電部170のエッジをカバーしてエッジリークを抑制することができる。 The conductive part 170 is covered with the first sub organic layer 121. For this reason, the conductive part 170 is not directly connected to the second electrode 130. In this case, the first sub organic layer 121 is preferably a coating film. By doing so, the embedding property of the first sub organic layer 121 with respect to the unevenness is high, and the edge of the conductive portion 170 can be covered and edge leakage can be suppressed.
 導電部170を形成するタイミングは、第1電極110を形成した後、第1サブ有機層121を形成する前である。導電部170は、例えば以下のようにして形成される。まず、導電部170となる導電層を、例えばスパッタリング法などの成膜法を用いて形成する。次いで、この導電層上にレジストパターン(図示せず)を形成し、このレジストパターンをマスクとして導電層をエッチング(例えばウェットエッチング)する。これにより、導電部170は形成される。 The timing for forming the conductive portion 170 is after the first electrode 110 is formed and before the first sub-organic layer 121 is formed. The conductive portion 170 is formed as follows, for example. First, a conductive layer to be the conductive portion 170 is formed using a film formation method such as a sputtering method. Next, a resist pattern (not shown) is formed on the conductive layer, and the conductive layer is etched (for example, wet etching) using the resist pattern as a mask. Thereby, the conductive part 170 is formed.
 なお、導電部170は、基板100と第1電極110との間に形成されていても良い。 Note that the conductive portion 170 may be formed between the substrate 100 and the first electrode 110.
 以上、本変形例においても、第1電極110の厚さ方向に平行な方向から見て、第1サブ有機層121の縁の少なくとも一部は、第1電極110および第2電極130の少なくとも一方と重なっていない。また、第2サブ有機層122の縁は第2電極130および第1電極110と重なっている。したがって、発光部140の縁付近での裏面漏れ光を防ぐことができ、おもて面側に効率良く光を出力できる。また、第1電極110と第2電極130の短絡を防ぐために、絶縁層等を別途設ける必要が無い。 As described above, also in this modification, at least a part of the edge of the first sub organic layer 121 is at least one of the first electrode 110 and the second electrode 130 when viewed from the direction parallel to the thickness direction of the first electrode 110. Does not overlap. Further, the edge of the second sub organic layer 122 overlaps the second electrode 130 and the first electrode 110. Therefore, backside leakage light near the edge of the light emitting unit 140 can be prevented, and light can be efficiently output to the front side. Further, it is not necessary to separately provide an insulating layer or the like in order to prevent a short circuit between the first electrode 110 and the second electrode 130.
 くわえて、発光装置10が導電部170を備えることにより、第1電極110の配線抵抗を小さくすることができる。 In addition, since the light emitting device 10 includes the conductive portion 170, the wiring resistance of the first electrode 110 can be reduced.
(第2の実施形態の変形例4)
 図12は、変形例4に係る発光装置10の構成を示す断面図である。本変形例の発光装置10は、以下に説明する点を除いて実施形態に係る発光装置10と同じである。
(Modification 4 of the second embodiment)
FIG. 12 is a cross-sectional view illustrating a configuration of a light emitting device 10 according to Modification 4. The light emitting device 10 of the present modification is the same as the light emitting device 10 according to the embodiment except for the points described below.
 本変形例において、発光部140の有機層120は、第1サブ有機層121、第2サブ有機層122および第3サブ有機層123が第2電極130側からこの順に積層した構成を有している。発光部140においてたとえば第1サブ有機層121は電子注入層として機能し、第2サブ有機層122は発光層として機能し、第3サブ有機層123は正孔注入層として機能する。第1サブ有機層121と第2サブ有機層122との間には電子輸送層として機能するサブ有機層がさらに形成されていてもよい。また、第2サブ有機層122と第3サブ有機層123との間には正孔輸送層として機能するサブ有機層がさらに形成されていてもよい。有機層120は蒸着法で形成されてもよい。また、有機層120のうち少なくとも一つのサブ有機層、例えば第1サブ有機層121は、インクジェット法、印刷法、スピンコート法、又はスプレー法などの塗布法によって形成されてもよい。なお、この場合、有機層120の残りの層は、蒸着法によって形成されていてもよい。また、有機層120のすべての層が、塗布法を用いて形成されていてもよい。 In this modification, the organic layer 120 of the light emitting unit 140 has a configuration in which a first sub organic layer 121, a second sub organic layer 122, and a third sub organic layer 123 are stacked in this order from the second electrode 130 side. Yes. In the light emitting unit 140, for example, the first sub organic layer 121 functions as an electron injection layer, the second sub organic layer 122 functions as a light emitting layer, and the third sub organic layer 123 functions as a hole injection layer. A sub organic layer functioning as an electron transport layer may be further formed between the first sub organic layer 121 and the second sub organic layer 122. Further, a sub organic layer functioning as a hole transport layer may be further formed between the second sub organic layer 122 and the third sub organic layer 123. The organic layer 120 may be formed by a vapor deposition method. In addition, at least one sub organic layer of the organic layer 120, for example, the first sub organic layer 121 may be formed by a coating method such as an inkjet method, a printing method, a spin coating method, or a spray method. In this case, the remaining layers of the organic layer 120 may be formed by a vapor deposition method. Moreover, all the layers of the organic layer 120 may be formed using the apply | coating method.
 本変形例の発光装置10の製造方法について説明する。まず、基板100に第1電極110を、例えばスパッタリング法を用いて形成する。次いで、第1電極110を、フォトリソグラフィー法を利用して所定のパターンにする。次いで、第3サブ有機層123および第2サブ有機層122をこの順に形成する。第2サブ有機層122および第3サブ有機層123はたとえば蒸着法で形成できる。これらの層は、例えばマスクを用いるなどして所定のパターンに形成される。次いで、第1サブ有機層121をたとえば塗布法により形成する。そして、第2電極130を形成する。第2電極130も、例えばマスクを用いるなどして所定のパターンに形成される。その後、封止膜または封止部材(図示せず)を用いて発光部140を封止する。 A method for manufacturing the light emitting device 10 of the present modification will be described. First, the first electrode 110 is formed on the substrate 100 by using, for example, a sputtering method. Next, the first electrode 110 is formed into a predetermined pattern using a photolithography method. Next, the third sub organic layer 123 and the second sub organic layer 122 are formed in this order. The second sub organic layer 122 and the third sub organic layer 123 can be formed by, for example, a vapor deposition method. These layers are formed in a predetermined pattern using, for example, a mask. Next, the first sub organic layer 121 is formed by, for example, a coating method. Then, the second electrode 130 is formed. The second electrode 130 is also formed in a predetermined pattern using, for example, a mask. Thereafter, the light emitting unit 140 is sealed using a sealing film or a sealing member (not shown).
 以上、本変形例においても、第1電極110の厚さ方向に平行な方向から見て、第1サブ有機層121の縁の少なくとも一部は、第1電極110および第2電極130の少なくとも一方と重なっていない。また、第2サブ有機層122の縁は第2電極130および第1電極110と重なっている。したがって、発光部140の縁付近での裏面漏れ光を防ぐことができ、おもて面側に効率良く光を出力できる。また、第1電極110と第2電極130の短絡を防ぐために、絶縁層等を別途設ける必要が無い。 As described above, also in this modification, at least a part of the edge of the first sub organic layer 121 is at least one of the first electrode 110 and the second electrode 130 when viewed from the direction parallel to the thickness direction of the first electrode 110. Does not overlap. Further, the edge of the second sub organic layer 122 overlaps the second electrode 130 and the first electrode 110. Therefore, backside leakage light near the edge of the light emitting unit 140 can be prevented, and light can be efficiently output to the front side. Further, it is not necessary to separately provide an insulating layer or the like in order to prevent a short circuit between the first electrode 110 and the second electrode 130.
(第2の実施形態の変形例5)
 図13は、変形例5に係る発光装置10の構成を示す断面図である。本変形例の発光装置10は、以下に説明する点を除いて実施形態に係る発光装置10と同じである。
(Modification 5 of the second embodiment)
FIG. 13 is a cross-sectional view illustrating a configuration of a light emitting device 10 according to Modification 5. The light emitting device 10 of the present modification is the same as the light emitting device 10 according to the embodiment except for the points described below.
 本変形例において、有機層120は第3サブ有機層123を含む。そして、第1電極110の厚さ方向に平行な方向から見て、第1電極110の縁の少なくとも一部および第2電極130の縁の少なくとも一部は、第3サブ有機層123と重なっている。さらに、第3サブ有機層123は、発光部140において正孔ブロック層または電子ブロック層として機能する。そうすることにより、発光部140の外側において、第1電極110と第2電極130の間のリーク電流をさらに抑えることができる。 In this modification, the organic layer 120 includes a third sub-organic layer 123. When viewed from a direction parallel to the thickness direction of the first electrode 110, at least a part of the edge of the first electrode 110 and at least a part of the edge of the second electrode 130 overlap with the third sub organic layer 123. Yes. Further, the third sub organic layer 123 functions as a hole blocking layer or an electron blocking layer in the light emitting unit 140. By doing so, the leakage current between the first electrode 110 and the second electrode 130 can be further suppressed outside the light emitting unit 140.
 本図の例において、発光部140の有機層120は、第1サブ有機層121、第4サブ有機層124、第2サブ有機層122、第3サブ有機層123、第5サブ有機層125をこの順に第1電極110側から積層させた構造を有する。たとえば第1サブ有機層121は正孔注入層、第4サブ有機層124は電子ブロック層、第2サブ有機層122は発光層、第3サブ有機層123は正孔ブロック層、第5サブ有機層125は電子注入層として機能する層である。本変形例において、発光部140の外側の領域の、第2電極130と第1電極110の間には、第1サブ有機層121に加えて第3サブ有機層123が位置する。したがって、第1電極110から第1サブ有機層121に正孔が注入されても、その正孔が第3サブ有機層123でブロックされて第2電極130に至らない。したがって、リーク電流を抑制できる。 In the example of the figure, the organic layer 120 of the light emitting unit 140 includes a first sub organic layer 121, a fourth sub organic layer 124, a second sub organic layer 122, a third sub organic layer 123, and a fifth sub organic layer 125. The first electrode 110 side is laminated in this order. For example, the first sub organic layer 121 is a hole injection layer, the fourth sub organic layer 124 is an electron blocking layer, the second sub organic layer 122 is a light emitting layer, the third sub organic layer 123 is a hole blocking layer, and a fifth sub organic layer. The layer 125 is a layer that functions as an electron injection layer. In the present modification, in addition to the first sub organic layer 121, the third sub organic layer 123 is located between the second electrode 130 and the first electrode 110 in the region outside the light emitting unit 140. Therefore, even if holes are injected from the first electrode 110 into the first sub organic layer 121, the holes are blocked by the third sub organic layer 123 and do not reach the second electrode 130. Therefore, leakage current can be suppressed.
 なお、発光部140の外側の領域の、第2電極130と第1電極110の間には、さらに第4サブ有機層124が位置しても良い。すなわち、第1電極110の厚さ方向に平行な方向から見て、第1電極110の縁の少なくとも一部および第2電極130の縁の少なくとも一部は、第4サブ有機層124と重なっていてもよい。そうすることにより第1サブ有機層121への電子の進行が抑制され、リーク電流をさらに抑制できる。 Note that a fourth sub-organic layer 124 may be positioned between the second electrode 130 and the first electrode 110 in a region outside the light emitting unit 140. That is, when viewed from the direction parallel to the thickness direction of the first electrode 110, at least a part of the edge of the first electrode 110 and at least a part of the edge of the second electrode 130 overlap the fourth sub organic layer 124. May be. By doing so, the progress of electrons to the first sub organic layer 121 is suppressed, and the leakage current can be further suppressed.
 以上、本変形例においても、第1電極110の厚さ方向に平行な方向から見て、第1サブ有機層121の縁の少なくとも一部は、第1電極110および第2電極130の少なくとも一方と重なっていない。また、第2サブ有機層122の縁は第2電極130および第1電極110と重なっている。したがって、発光部140の縁付近での裏面漏れ光を防ぐことができ、おもて面側に効率良く光を出力できる。また、第1電極110と第2電極130の短絡を防ぐために、絶縁層等を別途設ける必要が無い。 As described above, also in this modification, at least a part of the edge of the first sub organic layer 121 is at least one of the first electrode 110 and the second electrode 130 when viewed from the direction parallel to the thickness direction of the first electrode 110. Does not overlap. Further, the edge of the second sub organic layer 122 overlaps the second electrode 130 and the first electrode 110. Therefore, backside leakage light near the edge of the light emitting unit 140 can be prevented, and light can be efficiently output to the front side. Further, it is not necessary to separately provide an insulating layer or the like in order to prevent a short circuit between the first electrode 110 and the second electrode 130.
(第2の実施形態の変形例6)
 図14は、変形例6に係る発光装置10の断面図である。図15は、図14に示した発光装置10の平面図である。図14は、図15のA-A断面に対応している。本変形例に係る発光装置10は、複数の発光部140を備えている点を除いて、第2の実施形態又はその変形例1~5に係る発光装置10の少なくともいずれかと同様の構成を有する。
(Modification 6 of the second embodiment)
FIG. 14 is a cross-sectional view of the light emitting device 10 according to Modification 6. FIG. 15 is a plan view of the light emitting device 10 shown in FIG. FIG. 14 corresponds to the AA cross section of FIG. The light-emitting device 10 according to this modification has the same configuration as that of at least one of the light-emitting devices 10 according to the second embodiment or modifications 1 to 5 thereof, except that a plurality of light-emitting units 140 are provided. .
 詳細には、発光装置10は照明装置であり、基板100の第1面側に複数の発光部140を備えている。これら複数の発光部140は、それぞれ線状であり、基板100の第1面に互いに離れて配置されている。詳細には、複数の発光部140は線状かつ同一方向に延在している。また、発光装置10は、複数の発光部140の間に透光部を有する。 Specifically, the light emitting device 10 is a lighting device, and includes a plurality of light emitting units 140 on the first surface side of the substrate 100. The plurality of light emitting units 140 are each linear, and are disposed on the first surface of the substrate 100 so as to be separated from each other. Specifically, the plurality of light emitting units 140 are linear and extend in the same direction. In addition, the light emitting device 10 includes a light transmitting portion between the plurality of light emitting portions 140.
 基板100に垂直な方向から見た場合において、発光装置10は、第1領域102及び第2領域104(透光部)を有している。第1領域102は第2電極130と重なる領域である。第2電極130が遮光性を有している場合、第1領域102は光を通さない領域である。第2領域104は、第2電極130と重ならない領域である。第2電極130の光線透過率は第1電極110の光線透過率よりも低いため、第2領域104の光線透過率は、第1領域102の光線透過率と比較して高い。第1領域102の面積は第2領域104の面積よりも小さくしても良い。また、基板100のうち発光部140が形成されている領域の面積(言い換えると発光部の面積)は、基板100のうち発光部140が形成されていない領域の面積(言い換えると非発光部の面積)よりも小さくてよい。 When viewed from a direction perpendicular to the substrate 100, the light emitting device 10 includes a first region 102 and a second region 104 (translucent portion). The first region 102 is a region overlapping with the second electrode 130. When the second electrode 130 has a light shielding property, the first region 102 is a region that does not transmit light. The second region 104 is a region that does not overlap with the second electrode 130. Since the light transmittance of the second electrode 130 is lower than the light transmittance of the first electrode 110, the light transmittance of the second region 104 is higher than the light transmittance of the first region 102. The area of the first region 102 may be smaller than the area of the second region 104. Further, the area of the substrate 100 where the light emitting part 140 is formed (in other words, the area of the light emitting part) is the area of the substrate 100 where the light emitting part 140 is not formed (in other words, the area of the non-light emitting part). ).
 そして第1サブ有機層121は、基板100の第1面のうち、複数の発光部140の間に位置する領域にも形成されている。言い換えると、第1サブ有機層121は、複数の発光部140及びこれらの間の領域に連続して形成されている。 The first sub organic layer 121 is also formed in a region located between the light emitting units 140 on the first surface of the substrate 100. In other words, the first sub organic layer 121 is continuously formed in the plurality of light emitting units 140 and a region between them.
 なお、複数の発光部140の間には、第1サブ有機層121の縁の少なくとも一部が位置していてもよい。そうすれば、第2領域104のうち少なくとも一部の領域には第1サブ有機層121が位置せず、第2領域104の透光性を向上させることができる。 Note that at least a part of the edge of the first sub-organic layer 121 may be located between the plurality of light emitting units 140. By doing so, the first sub organic layer 121 is not positioned in at least a part of the second region 104, and the translucency of the second region 104 can be improved.
 有機層を用いた発光装置において、第1電極と第2電極が短絡することを抑制するために、第1電極の縁を絶縁層で覆う場合がある。このような場合、絶縁層を透過する際に光の一部が吸収されてしまう。この場合、発光装置の光線透過率は低下してしまう。これに対し、本変形例の発光装置10では、そのような絶縁層が形成されておらず、光透過性を損なわない。また、有機層120のうち、第2領域104には、多くても一部のサブ有機層のみが位置するため、有機層120の全てが位置する場合に比べて高い光透過性を得られる。 In a light emitting device using an organic layer, an edge of the first electrode may be covered with an insulating layer in order to suppress a short circuit between the first electrode and the second electrode. In such a case, part of the light is absorbed when passing through the insulating layer. In this case, the light transmittance of the light emitting device is lowered. On the other hand, in the light emitting device 10 of the present modification, such an insulating layer is not formed, and the light transmittance is not impaired. Further, in the organic layer 120, only a part of the sub-organic layers are located in the second region 104 at most, so that higher light transmittance can be obtained as compared with the case where all of the organic layers 120 are located.
 本変形例の発光装置10の、発光部140の延在方向に垂直かつ基板100に垂直な断面において、各発光部140の第2サブ有機層122の幅は第1電極110の幅および第2電極130の幅のいずれよりも小さい。また、この断面において、各発光部140の第1サブ有機層121の幅は、第1電極110の幅および第2電極130の幅の少なくとも一方より大きい。 In the light emitting device 10 of this modification, in the cross section perpendicular to the extending direction of the light emitting unit 140 and perpendicular to the substrate 100, the width of the second sub organic layer 122 of each light emitting unit 140 is equal to the width of the first electrode 110 and the second. It is smaller than any width of the electrode 130. In this cross section, the width of the first sub organic layer 121 of each light emitting unit 140 is larger than at least one of the width of the first electrode 110 and the width of the second electrode 130.
 以上、本変形例においても、第1電極110の厚さ方向に平行な方向から見て、第1サブ有機層121の縁の少なくとも一部は、第1電極110および第2電極130の少なくとも一方と重なっていない。また、第2サブ有機層122の縁は第2電極130および第1電極110と重なっている。したがって、発光部140の縁付近での裏面漏れ光を防ぐことができ、おもて面側に効率良く光を出力できる。また、第1電極110と第2電極130の短絡を防ぐために、絶縁層等を別途設ける必要が無い。 As described above, also in this modification, at least a part of the edge of the first sub organic layer 121 is at least one of the first electrode 110 and the second electrode 130 when viewed from the direction parallel to the thickness direction of the first electrode 110. Does not overlap. Further, the edge of the second sub organic layer 122 overlaps the second electrode 130 and the first electrode 110. Therefore, backside leakage light near the edge of the light emitting unit 140 can be prevented, and light can be efficiently output to the front side. Further, it is not necessary to separately provide an insulating layer or the like in order to prevent a short circuit between the first electrode 110 and the second electrode 130.
(第3の実施形態)
 図16は、第3の実施形態に係る発光装置10の構成を示す断面図である。図17は、発光部140を拡大した図である。以下、第1の実施形態に係る発光装置10と違う点を中心に説明を行う。
(Third embodiment)
FIG. 16 is a cross-sectional view illustrating a configuration of the light emitting device 10 according to the third embodiment. FIG. 17 is an enlarged view of the light emitting unit 140. Hereinafter, a description will be given focusing on differences from the light emitting device 10 according to the first embodiment.
 本実施形態に係る発光装置10において、発光部140は、基板100の第1面101側に位置する。被覆膜180は、発光部140を覆っており、第2電極130を形成した後に形成される。発光部140は、第1電極110と、第2電極130と、有機層120とを有する。発光部140の有機層120は、第1電極110および第2電極130の間に位置し、かつ第1サブ有機層121および第2サブ有機層122を含む。透光部104のうち、基板100に垂直な方向から見て第2サブ有機層122が位置しない領域で、被覆膜180が第1サブ有機層121に接している。また、第2サブ有機層122は透光部104のうち少なくとも一部の領域には形成されていない。 In the light emitting device 10 according to the present embodiment, the light emitting unit 140 is located on the first surface 101 side of the substrate 100. The coating film 180 covers the light emitting unit 140 and is formed after the second electrode 130 is formed. The light emitting unit 140 includes the first electrode 110, the second electrode 130, and the organic layer 120. The organic layer 120 of the light emitting unit 140 is located between the first electrode 110 and the second electrode 130 and includes the first sub organic layer 121 and the second sub organic layer 122. The covering film 180 is in contact with the first sub organic layer 121 in a region where the second sub organic layer 122 is not located when viewed from the direction perpendicular to the substrate 100 in the light transmitting portion 104. Further, the second sub organic layer 122 is not formed in at least a part of the light transmitting portion 104.
 被覆膜180は発光部140を覆っている。具体的には被覆膜180は複数の発光部140の全てを覆っている。被覆膜180は、たとえば封止膜である。被覆膜180としては、例えば、SiN、SiON、SiO、Al、TiOなどの無機バリア膜や、それらを含むバリア積層膜、またはそれらの混合膜を用いることができる。これらは、例えば、スパッタリング法、CVD法、ALD法、EB蒸着法などの真空成膜法で形成することができる。被覆膜180は透光性を有しており、発光部140および透光部104にわたり連続して形成されている。 The coating film 180 covers the light emitting unit 140. Specifically, the coating film 180 covers all of the plurality of light emitting units 140. The covering film 180 is, for example, a sealing film. As the covering film 180, for example, an inorganic barrier film such as SiN x , SiON x , SiO 2 , Al 2 O 3 , TiO 2 , a barrier laminated film including them, or a mixed film thereof can be used. These can be formed by, for example, a vacuum film forming method such as a sputtering method, a CVD method, an ALD method, or an EB vapor deposition method. The coating film 180 has translucency and is continuously formed over the light emitting unit 140 and the translucent unit 104.
 透光部104における有機層120の最小膜厚dは、発光部140における有機層120の膜厚dより小さくすることができる。なお、発光部140における有機層120の膜厚が一定でない場合において、透光部104における有機層120の最小膜厚dが、発光部140における有機層120の膜厚dより小さいとは、発光部140における有機層120の平均膜厚より小さいことをいう。 The minimum film thickness d 4 of the organic layer 120 in the light transmitting part 104 can be made smaller than the film thickness d 3 of the organic layer 120 in the light emitting part 140. Incidentally, in the case the thickness of the organic layer 120 in the light emitting portion 140 is not constant, the minimum thickness d 4 of the organic layer 120 in the transparent portion 104, a thickness d 3 is less than the organic layer 120 in the light emitting portion 140 It means that it is smaller than the average film thickness of the organic layer 120 in the light emitting part 140.
 そして、上記した通り、透光部104のうち、基板100に垂直な方向から見て第2サブ有機層122が位置しない領域で、被覆膜180は第1サブ有機層121に接している。すなわち透光部104において被覆膜180は、有機層120の薄い部分と接することとなる。ここで、薄い有機層120では応力伝搬が抑えられるため、透光部104における被覆膜180の剥がれやクラックが生じにくくなる。このように、透光部104における第2サブ有機層122の面積を小さくすることによって、上述した被覆膜180の密着性を高めるとともに、光の透過率を高めることができる。また、透光部104における有機層120の平均膜厚をより小さくすることができ、被覆膜180の剥離やクラックの発生をさらに抑制できる。 As described above, the coating film 180 is in contact with the first sub-organic layer 121 in the region where the second sub-organic layer 122 is not located in the translucent part 104 when viewed from the direction perpendicular to the substrate 100. That is, the coating film 180 in contact with the thin portion of the organic layer 120 in the light transmitting portion 104. Here, since the propagation of stress is suppressed in the thin organic layer 120, the coating film 180 is not easily peeled off or cracked in the light transmitting portion 104. As described above, by reducing the area of the second sub organic layer 122 in the light transmitting portion 104, it is possible to improve the adhesion of the coating film 180 and to increase the light transmittance. Moreover, the average film thickness of the organic layer 120 in the translucent part 104 can be made smaller, and the peeling of the coating film 180 and the occurrence of cracks can be further suppressed.
 また、第1サブ有機層121は塗布膜であることが好ましい。さらに、第1サブ有機層121は、高分子を含むことが好ましい。具体的にはたとえば、第1サブ有機層121は第2サブ有機層122の重量平均分子量よりも大きい重量平均分子量を有する高分子を含む。また、第1サブ有機層121は、重量平均分子量が3000以上、または、数平均分子量が500以上の化合物を含んでもよい。特に第1サブ有機層121が正孔注入層として機能する場合、第1サブ有機層121は芳香族三級アミン高分子化合物等の芳香族アミン系化合物を含むことが好ましい。 The first sub organic layer 121 is preferably a coating film. Furthermore, the first sub organic layer 121 preferably includes a polymer. Specifically, for example, the first sub organic layer 121 includes a polymer having a weight average molecular weight larger than that of the second sub organic layer 122. The first sub organic layer 121 may include a compound having a weight average molecular weight of 3000 or more or a number average molecular weight of 500 or more. In particular, when the first sub organic layer 121 functions as a hole injection layer, the first sub organic layer 121 preferably includes an aromatic amine compound such as an aromatic tertiary amine polymer compound.
 第1サブ有機層121が高分子を含む場合、成膜時の加熱架橋において密着力および分子間結合力が向上することから、第1サブ有機層121が低分子からなる場合に比べて分子間の結合が強く、第1サブ有機層121の弾性を高くできる。したがって、熱膨張差や膜応力による局所的な応力集中に起因する被覆膜180の剥がれやクラックをさらに生じにくくすることができる。 When the first sub-organic layer 121 contains a polymer, the adhesion and intermolecular bonding force are improved in the heat-crosslinking during the film formation. And the elasticity of the first sub-organic layer 121 can be increased. Accordingly, it is possible to further prevent the coating film 180 from peeling off or cracking due to local stress concentration due to thermal expansion difference or film stress.
 以上、本実施形態によれば、透光部104のうち、基板100に垂直な方向から見て第2サブ有機層122が位置しない領域で、被覆膜180は第1サブ有機層121に接している。すなわち透光部104において被覆膜180は、有機層120の薄い部分と接することとなる。したがって、透光部104における被覆膜180の剥がれやクラックが生じにくくなる。 As described above, according to the present embodiment, the coating film 180 is in contact with the first sub organic layer 121 in a region where the second sub organic layer 122 is not located when viewed from the direction perpendicular to the substrate 100 in the light transmitting portion 104. ing. That is, the coating film 180 in contact with the thin portion of the organic layer 120 in the light transmitting portion 104. Therefore, peeling or cracking of the coating film 180 in the light transmitting portion 104 is difficult to occur.
 また、基板100に垂直な方向から見て、第1電極110の縁の少なくとも一部は、第2サブ有機層122と重なっていない。すなわち、発光部140の延在方向に垂直かつ基板100に垂直な断面(図16および図17に相当)における第2サブ有機層122の幅は、第1電極110の幅よりも小さい。こうすることにより、透光部104における有機層120の平均膜厚をより小さくすることができ、被覆膜180の剥離やクラックの発生をさらに抑制できる。 Further, when viewed from the direction perpendicular to the substrate 100, at least a part of the edge of the first electrode 110 does not overlap with the second sub organic layer 122. That is, the width of the second sub organic layer 122 in a cross section perpendicular to the extending direction of the light emitting unit 140 and perpendicular to the substrate 100 (corresponding to FIGS. 16 and 17) is smaller than the width of the first electrode 110. By doing so, the average film thickness of the organic layer 120 in the translucent portion 104 can be further reduced, and peeling of the coating film 180 and generation of cracks can be further suppressed.
(第3の実施形態の変形例1)
 図18は、変形例1に係る発光装置10の構成を示す断面図である。図18は、実施形態の図17に相当する。本変形例の発光装置10は、第2サブ有機層122の縁の少なくとも一部が第1電極110および第2電極130のいずれとも重なっていない点を除いて実施形態に係る発光装置10と同じである。言い換えると、本変形例に係る発光装置10は、第1の実施形態の変形例1に被覆膜180を追加した構成を有している。
(Modification 1 of 3rd Embodiment)
FIG. 18 is a cross-sectional view illustrating a configuration of the light emitting device 10 according to the first modification. FIG. 18 corresponds to FIG. 17 of the embodiment. The light emitting device 10 of the present modification is the same as the light emitting device 10 according to the embodiment except that at least a part of the edge of the second sub organic layer 122 does not overlap with either the first electrode 110 or the second electrode 130. It is. In other words, the light emitting device 10 according to this modification has a configuration in which the coating film 180 is added to Modification 1 of the first embodiment.
 本変形例においても、透光部104のうち、基板100に垂直な方向から見て第2サブ有機層122が位置しない領域で、被覆膜180は第1サブ有機層121に接している。すなわち透光部104において被覆膜180は、有機層120の薄い部分と接することとなる。したがって、透光部104における被覆膜180の剥がれやクラックが生じにくくなる。 Also in the present modification, the coating film 180 is in contact with the first sub organic layer 121 in a region where the second sub organic layer 122 is not located in the light transmitting portion 104 when viewed from the direction perpendicular to the substrate 100. That is, the coating film 180 in contact with the thin portion of the organic layer 120 in the light transmitting portion 104. Therefore, peeling or cracking of the coating film 180 in the light transmitting portion 104 is difficult to occur.
 くわえて、本変形例によれば、第2サブ有機層122の縁の少なくとも一部が第1電極110および第2電極130のいずれとも重なっていない。したがって、第1電極110と第2電極130との間のリーク電流をさらに抑制できる。 In addition, according to this modification, at least a part of the edge of the second sub organic layer 122 does not overlap with either the first electrode 110 or the second electrode 130. Therefore, the leakage current between the first electrode 110 and the second electrode 130 can be further suppressed.
(第3の実施形態の変形例2)
 図19は、変形例2に係る発光装置10の構成を示す断面図である。図19は、実施形態の図17に相当する。本変形例の発光装置10は、第2サブ有機層122が第1サブ有機層121と基板100との間に位置する点を除いて実施形態に係る発光装置10と同じである。言い換えると、本変形例に係る発光装置10は、第1の実施形態の変形例2に被覆膜180を追加した構成を有している。
(Modification 2 of the third embodiment)
FIG. 19 is a cross-sectional view illustrating a configuration of the light emitting device 10 according to the second modification. FIG. 19 corresponds to FIG. 17 of the embodiment. The light emitting device 10 according to the present modification is the same as the light emitting device 10 according to the embodiment except that the second sub organic layer 122 is located between the first sub organic layer 121 and the substrate 100. In other words, the light emitting device 10 according to this modification has a configuration in which the coating film 180 is added to Modification 2 of the first embodiment.
 本変形例においても、透光部104のうち、基板100に垂直な方向から見て第2サブ有機層122が位置しない領域で、被覆膜180は第1サブ有機層121に接している。すなわち透光部104において被覆膜180は、有機層120の薄い部分と接することとなる。したがって、透光部104における被覆膜180の剥がれやクラックが生じにくくなる。 Also in the present modification, the coating film 180 is in contact with the first sub organic layer 121 in a region where the second sub organic layer 122 is not located in the light transmitting portion 104 when viewed from the direction perpendicular to the substrate 100. That is, the coating film 180 in contact with the thin portion of the organic layer 120 in the light transmitting portion 104. Therefore, peeling or cracking of the coating film 180 in the light transmitting portion 104 is difficult to occur.
(第3の実施形態の変形例3)
 図20は、変形例3に係る発光装置10の構成を示す断面図である。図20は、実施形態の図17に相当する。本変形例の発光装置10は、導電部170を備える点を除いて実施形態に係る発光装置10と同じである。言い換えると、本変形例に係る発光装置10は、第1の実施形態の変形例3に被覆膜180を追加した構成を有している。
(Modification 3 of the third embodiment)
FIG. 20 is a cross-sectional view illustrating a configuration of a light emitting device 10 according to Modification 3. FIG. 20 corresponds to FIG. 17 of the embodiment. The light emitting device 10 of the present modification is the same as the light emitting device 10 according to the embodiment except that the conductive portion 170 is provided. In other words, the light emitting device 10 according to this modification has a configuration in which the coating film 180 is added to the modification 3 of the first embodiment.
 本変形例においても、透光部104のうち、基板100に垂直な方向から見て第2サブ有機層122が位置しない領域で、被覆膜180は第1サブ有機層121に接している。すなわち透光部104において被覆膜180は、有機層120の薄い部分と接することとなる。したがって、透光部104における被覆膜180の剥がれやクラックが生じにくくなる。 Also in the present modification, the coating film 180 is in contact with the first sub organic layer 121 in a region where the second sub organic layer 122 is not located in the light transmitting portion 104 when viewed from the direction perpendicular to the substrate 100. That is, the coating film 180 in contact with the thin portion of the organic layer 120 in the light transmitting portion 104. Therefore, peeling or cracking of the coating film 180 in the light transmitting portion 104 is difficult to occur.
 くわえて、発光装置10が導電部170を備えることにより、第1電極110の配線抵抗を小さくすることができる。 In addition, since the light emitting device 10 includes the conductive portion 170, the wiring resistance of the first electrode 110 can be reduced.
(第3の実施形態の変形例4)
 図21は、変形例4に係る発光装置10の構成を示す断面図である。図21は、実施形態の図17に相当する。本変形例の発光装置10は、絶縁膜150を備える点を除いて実施形態に係る発光装置10と同じである。言い換えると、本変形例に係る発光装置10は、第1の実施形態の変形例4に被覆膜180を追加した構成を有している。
(Modification 4 of the third embodiment)
FIG. 21 is a cross-sectional view illustrating a configuration of a light emitting device 10 according to Modification 4. FIG. 21 corresponds to FIG. 17 of the embodiment. The light emitting device 10 of this modification is the same as the light emitting device 10 according to the embodiment except that the insulating film 150 is provided. In other words, the light-emitting device 10 according to this modification has a configuration in which the coating film 180 is added to Modification 4 of the first embodiment.
 本変形例においても、透光部104のうち、基板100に垂直な方向から見て第2サブ有機層122が位置しない領域で、被覆膜180は第1サブ有機層121に接している。すなわち透光部104において被覆膜180は、有機層120の薄い部分と接することとなる。したがって、透光部104における被覆膜180の剥がれやクラックが生じにくくなる。 Also in the present modification, the coating film 180 is in contact with the first sub organic layer 121 in a region where the second sub organic layer 122 is not located in the light transmitting portion 104 when viewed from the direction perpendicular to the substrate 100. That is, the coating film 180 in contact with the thin portion of the organic layer 120 in the light transmitting portion 104. Therefore, peeling or cracking of the coating film 180 in the light transmitting portion 104 is difficult to occur.
(実施例)
 図22は、実施例に係る発光装置10の構成を示す断面図である。図23は図22に示した発光装置10の平面図である。ただし、図23において被覆膜180は破線で示されている。図24は、図23から第1サブ有機層121,第2サブ有機層122,第3サブ有機層123を除いた図である。図24において第2電極130は破線で示されている。図22は図23のB-B断面に対応している。本実施例に係る発光装置10は、上記実施形態及び変形例のいずれかに係る発光装置10の構成を有する。本図は、第3の実施形態と同様の場合を示している。
(Example)
FIG. 22 is a cross-sectional view illustrating a configuration of the light-emitting device 10 according to the example. FIG. 23 is a plan view of the light-emitting device 10 shown in FIG. However, in FIG. 23, the coating film 180 is indicated by a broken line. FIG. 24 is a view obtained by removing the first sub organic layer 121, the second sub organic layer 122, and the third sub organic layer 123 from FIG. In FIG. 24, the second electrode 130 is indicated by a broken line. FIG. 22 corresponds to the BB cross section of FIG. The light-emitting device 10 according to the present example has the configuration of the light-emitting device 10 according to any of the above-described embodiments and modifications. This figure shows a case similar to that of the third embodiment.
 発光装置10は、第1端子112、第1引出配線114、及び第2端子132を備えている。第1端子112、第1引出配線114、及び第2端子132は、いずれも基板100のうち発光部140と同一面に形成されている。第1端子112及び第2端子132の少なくとも一部は被覆膜180の外部に位置しており、すなわち被覆膜180に覆われていない。第1引出配線114は第1端子112と第1電極110とを接続しており、第2端子132は、第2電極130と接続されている。 The light emitting device 10 includes a first terminal 112, a first lead wire 114, and a second terminal 132. The first terminal 112, the first lead wire 114, and the second terminal 132 are all formed on the same surface of the substrate 100 as the light emitting unit 140. At least a part of the first terminal 112 and the second terminal 132 is located outside the coating film 180, that is, not covered with the coating film 180. The first lead wiring 114 connects the first terminal 112 and the first electrode 110, and the second terminal 132 is connected to the second electrode 130.
 本図の例において基板100は矩形であり、第1端子112は、複数の発光部140と基板100の第1の辺106との間に位置し、第1の辺106と平行に延在している。第2端子132は、複数の発光部140と基板100の第2の辺107との間に位置し、第2の辺107と平行に延在している。第2の辺107と第1の辺106は互いに平行であり、いずれも線状の発光部140の延在方向に垂直な辺である。 In the example of this figure, the substrate 100 is rectangular, and the first terminal 112 is located between the plurality of light emitting units 140 and the first side 106 of the substrate 100 and extends in parallel with the first side 106. ing. The second terminal 132 is located between the plurality of light emitting units 140 and the second side 107 of the substrate 100, and extends in parallel with the second side 107. The second side 107 and the first side 106 are parallel to each other, and both are sides that are perpendicular to the extending direction of the linear light emitting unit 140.
 また、第1端子112は凹部113を備えている。本図の例において、第1端子112には、複数の凹部113が第1端子112の延在方向に沿って設けられている。第1サブ有機層121が塗布法で形成される塗布膜である場合、第1サブ有機層121を形成するための液状材料の広がりは凹部113付近で表面張力によって止められる。すなわち、第1サブ有機層121は、主に凹部113のパターンよりも基板100の内側に形成される。したがって、第1端子112の全体が第1サブ有機層121に覆われることを防ぐための別途のパターニングプロセスが必要ない。 The first terminal 112 is provided with a recess 113. In the example of this figure, the first terminal 112 is provided with a plurality of recesses 113 along the extending direction of the first terminal 112. When the first sub organic layer 121 is a coating film formed by a coating method, the spread of the liquid material for forming the first sub organic layer 121 is stopped by the surface tension in the vicinity of the recess 113. That is, the first sub organic layer 121 is mainly formed inside the substrate 100 with respect to the pattern of the recess 113. Therefore, a separate patterning process for preventing the entire first terminal 112 from being covered with the first sub organic layer 121 is not necessary.
 さらに、発光装置10は、複数の発光部140と第2端子132との間にバンク115を備えている。第1サブ有機層121が塗布法で形成される塗布膜である場合、第1サブ有機層121を形成するための液状材料の広がりはバンク115付近で表面張力によって止められる。すなわち、第1サブ有機層121は、バンク115よりも基板100の内側に形成される。したがって、第2端子132の全体が第1サブ有機層121に覆われることを防ぐための別途のパターニングプロセスが必要ない。特に、第2電極130と第2端子132との接点部分への液状材料の濡れ広がりを抑えることで、配線不良の可能性を低減できる。本図の例では、基板100に垂直な方向から見て、第1サブ有機層121は第1端子112の一部と重なっており、第2端子132とは重なっていない。 Furthermore, the light emitting device 10 includes a bank 115 between the plurality of light emitting units 140 and the second terminal 132. When the first sub organic layer 121 is a coating film formed by a coating method, the spread of the liquid material for forming the first sub organic layer 121 is stopped by the surface tension in the vicinity of the bank 115. That is, the first sub organic layer 121 is formed inside the substrate 100 with respect to the bank 115. Therefore, a separate patterning process for preventing the entire second terminal 132 from being covered with the first sub organic layer 121 is not necessary. In particular, by suppressing the wetting and spreading of the liquid material to the contact portion between the second electrode 130 and the second terminal 132, the possibility of wiring failure can be reduced. In the example of this figure, the first sub organic layer 121 overlaps a part of the first terminal 112 and does not overlap the second terminal 132 when viewed from the direction perpendicular to the substrate 100.
 図22~図24に示す例において、バンク115の少なくとも一部は第2端子132に沿って延在している。具体的には、複数の発光部140と第2端子132の間、および、複数の透光部104と第2端子132の間にはバンク115が位置している。そして、基板100に垂直な方向から見て、第2電極130とバンク115は交差している。なお、複数の発光部140と第2端子132の間、および、複数の透光部104と第2端子132の間には、互いに平行な複数のバンク115が位置していてもよい。 In the example shown in FIGS. 22 to 24, at least a part of the bank 115 extends along the second terminal 132. Specifically, the bank 115 is located between the plurality of light emitting units 140 and the second terminals 132 and between the plurality of light transmitting units 104 and the second terminals 132. When viewed from the direction perpendicular to the substrate 100, the second electrode 130 and the bank 115 intersect. A plurality of banks 115 parallel to each other may be positioned between the plurality of light emitting units 140 and the second terminals 132 and between the plurality of light transmitting units 104 and the second terminals 132.
 図22~図24に示す例において、バンク115と第2電極130とは互いに接しており、電気的に接続されている。一方、バンク115と第1電極110の間には第1サブ有機層121が介在しているため、バンク115と第1電極110とは電気的に接続されていない。 In the example shown in FIGS. 22 to 24, the bank 115 and the second electrode 130 are in contact with each other and are electrically connected. On the other hand, since the first sub organic layer 121 is interposed between the bank 115 and the first electrode 110, the bank 115 and the first electrode 110 are not electrically connected.
 また、複数の発光部140と基板100の第3の辺108との間、および、複数の発光部140と基板100の第4の辺109との間にも、バンク115が位置している。ここで、基板100の第3の辺108および第4の辺109は、発光部140の延在方向に平行である。具体的には、バンク115は、複数の発光部140のうち第3の辺108に最も近い発光部140と第3の辺108との間、および第4の辺109に最も近い発光部140と第4の辺109との間に位置している。こうすることで、第1サブ有機層121の成膜工程で第1サブ有機層121を形成するための液状材料が基板100の外側まで広がることを防げる。 The bank 115 is also located between the plurality of light emitting units 140 and the third side 108 of the substrate 100 and between the plurality of light emitting units 140 and the fourth side 109 of the substrate 100. Here, the third side 108 and the fourth side 109 of the substrate 100 are parallel to the extending direction of the light emitting unit 140. Specifically, the bank 115 includes a light emitting unit 140 between the light emitting unit 140 closest to the third side 108 and the third side 108 and a light emitting unit 140 closest to the fourth side 109 among the plurality of light emitting units 140. It is located between the fourth side 109. By doing so, it is possible to prevent the liquid material for forming the first sub organic layer 121 from spreading to the outside of the substrate 100 in the film forming process of the first sub organic layer 121.
 第1端子112、第2端子132、第1引出配線114、及びバンク115は、例えば、第1電極110と同一の材料で形成された層を有している。また、第1端子112、第2端子132、第1引出配線114、及びバンク115の少なくとも一つの少なくとも一部は、この層の上に、第1電極110よりも低抵抗な金属膜(例えば導電部170と同様の膜)を有していてもよい。この金属膜は、第1端子112、第2端子132、第1引出配線114、及びバンク115のすべてに形成されている必要はない。第1端子112、第1引出配線114、第2端子132、及びバンク115のうち第1電極110と同一の材料で形成された層は、第1電極110と同一工程で形成されている。このため、第1電極110は、第1端子112の少なくとも一部の層と一体になっている。またこれらが金属膜を有している場合、この金属膜は、例えば上記した導電部170と同一工程で形成される。 The first terminal 112, the second terminal 132, the first lead wiring 114, and the bank 115 have, for example, a layer formed of the same material as the first electrode 110. Further, at least a part of at least one of the first terminal 112, the second terminal 132, the first lead-out wiring 114, and the bank 115 is formed on this layer with a metal film having a lower resistance than the first electrode 110 (for example, a conductive film). The same film as the portion 170 may be included. This metal film does not need to be formed on all of the first terminal 112, the second terminal 132, the first extraction wiring 114, and the bank 115. Of the first terminal 112, the first lead wiring 114, the second terminal 132, and the bank 115, a layer formed of the same material as the first electrode 110 is formed in the same process as the first electrode 110. For this reason, the first electrode 110 is integrated with at least a part of the layer of the first terminal 112. Further, when these have a metal film, the metal film is formed in the same process as that of the conductive portion 170 described above, for example.
 本図に示す例において、第1引出配線114は一つの発光部140について一つずつ形成されている。複数の第1引出配線114はいずれも同一の第1端子112に接続されている。複数の発光部140の第2電極130は、バンク115をまたいで第2端子132に電気的に接続されている。基板100に垂直な方向から見て、バンク115は第2電極130と交差している。そして、第1端子112には、ボンディングワイヤ又はリード端子などの導電部材を介して制御回路の正極端子が接続され、第2端子132には、ボンディングワイヤ又はリード端子などの導電部材を介して制御回路の負極端子が接続される。 In the example shown in the figure, one first extraction wiring 114 is formed for each light emitting unit 140 one by one. The plurality of first lead wires 114 are all connected to the same first terminal 112. The second electrodes 130 of the plurality of light emitting units 140 are electrically connected to the second terminal 132 across the bank 115. When viewed from a direction perpendicular to the substrate 100, the bank 115 intersects the second electrode 130. The first terminal 112 is connected to a positive terminal of a control circuit via a conductive member such as a bonding wire or a lead terminal, and the second terminal 132 is controlled via a conductive member such as a bonding wire or a lead terminal. The negative terminal of the circuit is connected.
 本実施例では少なくとも一部の領域において、第1サブ有機層121が被覆膜180と接している。ここで、第1サブ有機層121が高分子を含む場合、成膜時の加熱架橋において密着力および分子間結合力が向上することから、第1サブ有機層121が低分子からなる場合に比べて分子間の結合が強く、第1サブ有機層121の弾性を高くできる。したがって、熱膨張差や膜応力による局所的な応力集中に起因する被覆膜180の剥がれやクラックを生じにくくすることができる。 In the present embodiment, the first sub organic layer 121 is in contact with the coating film 180 in at least a part of the region. Here, in the case where the first sub organic layer 121 includes a polymer, the adhesion and intermolecular bonding force are improved in the heat crosslinking at the time of film formation, so that compared with the case where the first sub organic layer 121 is made of a low molecule. Therefore, the bond between molecules is strong and the elasticity of the first sub-organic layer 121 can be increased. Accordingly, it is possible to make it difficult for the coating film 180 to be peeled off or cracked due to local stress concentration due to thermal expansion difference or film stress.
 また、透光部104の少なくとも一部の領域において有機層120に含まれるサブ有機層の層数は、第1領域102(発光部140)において有機層120に含まれるサブ有機層の層数よりも少ない。すなわち、発光部140の有機層120の厚さに比べて、透光部104における有機層120の平均厚さは小さい。したがって、有機層120での応力伝搬が抑えられ、透光部104における被覆膜180の剥がれやクラックが生じにくい。 In addition, the number of sub-organic layers included in the organic layer 120 in at least a part of the light transmitting portion 104 is greater than the number of sub-organic layers included in the organic layer 120 in the first region 102 (light emitting portion 140). There are few. That is, the average thickness of the organic layer 120 in the light transmitting part 104 is smaller than the thickness of the organic layer 120 in the light emitting part 140. Therefore, the propagation of stress in the organic layer 120 is suppressed, and peeling or cracking of the coating film 180 in the light transmitting portion 104 is unlikely to occur.
 図25は、実施例に係る発光装置10の第1の変形例を示す図である。図25は、実施例の図24に相当する。図25の例において、バンク115の少なくとも一部は、第2端子132に沿って形成されている。具体的には発光部140の間の透光部104と第2端子132との間にはバンク115が位置している。一方、発光部140と第2端子132の間にはバンク115は形成されていない。すなわち、基板100に垂直な方向から見て、バンク115は第2電極130とは重なっていない。そして、バンク115は第1端子112と第2端子132のいずれとも電気的に接続されていない。本変形例においても、第1サブ有機層121を形成するための液状材料には、バンク115との間で表面張力が生じ、バンク115の付近で液状材料の濡れ広がりが抑えられる。したがって、第2端子132が第1サブ有機層121で覆われることが防げる。 FIG. 25 is a diagram illustrating a first modification of the light emitting device 10 according to the embodiment. FIG. 25 corresponds to FIG. 24 of the embodiment. In the example of FIG. 25, at least a part of the bank 115 is formed along the second terminal 132. Specifically, the bank 115 is located between the light transmitting portion 104 between the light emitting portions 140 and the second terminal 132. On the other hand, the bank 115 is not formed between the light emitting unit 140 and the second terminal 132. That is, the bank 115 does not overlap the second electrode 130 when viewed from the direction perpendicular to the substrate 100. The bank 115 is not electrically connected to either the first terminal 112 or the second terminal 132. Also in this modification, the liquid material for forming the first sub-organic layer 121 has surface tension with the bank 115, and the wetting and spreading of the liquid material in the vicinity of the bank 115 is suppressed. Therefore, the second terminal 132 can be prevented from being covered with the first sub organic layer 121.
 図26は、実施例に係る発光装置10の第2の変形例を示す図である。図26は、実施例の図24に相当する。本図の例において、発光部140と第2端子132との間、および発光部140の間の透光部104と第2端子132との間にはいずれもバンク115が形成されていない。本図の例において、第3の辺108および第4の辺109に沿って延在する各バンク115の端部は第2端子132に繋がっている。なお、第3の辺108および第4の辺109に沿って延在する各バンク115の端部は、第2端子132と接続されている代わりに第1端子112と接続されていても良い。また、バンク115は、第1端子112および第2端子132のいずれとも接続されていなくても良い。本変形例においても、第1サブ有機層121を形成するための液状材料の濡れ広がりが第2端子132のエッジ付近で抑えられる。したがって、第2端子132が第1サブ有機層121で覆われることが防げる。また、図24や図25に示した構成に比べて光の透過率が向上する。 FIG. 26 is a diagram illustrating a second modification of the light emitting device 10 according to the embodiment. FIG. 26 corresponds to FIG. 24 of the embodiment. In the example of this figure, the bank 115 is not formed between the light emitting unit 140 and the second terminal 132 and between the light transmitting unit 104 and the second terminal 132 between the light emitting unit 140. In the example of this figure, the end of each bank 115 extending along the third side 108 and the fourth side 109 is connected to the second terminal 132. Note that the end of each bank 115 extending along the third side 108 and the fourth side 109 may be connected to the first terminal 112 instead of being connected to the second terminal 132. The bank 115 may not be connected to either the first terminal 112 or the second terminal 132. Also in this modification, wetting and spreading of the liquid material for forming the first sub organic layer 121 is suppressed in the vicinity of the edge of the second terminal 132. Therefore, the second terminal 132 can be prevented from being covered with the first sub organic layer 121. Further, the light transmittance is improved as compared with the configuration shown in FIGS.
 図27は、実施例に係る発光装置10の第3の変形例を示す図である。図27は、実施例の図24に相当する。図27の例において、バンク115の少なくとも一部は、第2端子132に沿って形成されている。具体的には発光部140と第2端子132との間にはバンク115が位置している。一方、透光部104と第2端子132の間の少なくとも一部にはバンク115は形成されていない。基板100に垂直な方向から見て、バンク115は第2電極130と交差している。そして、バンク115と第2電極130とは互いに接しており、電気的に接続されている。一方、バンク115と第1電極110とは電気的に接続されていない。本変形例においても、第1サブ有機層121を形成するための液状材料の濡れ広がりがバンク115で抑えられる。したがって、第2端子132が第1サブ有機層121で覆われることが防げる。また、図24や図25に示した構成に比べて光の透過率が向上する。 FIG. 27 is a diagram illustrating a third modification of the light emitting device 10 according to the embodiment. FIG. 27 corresponds to FIG. 24 of the embodiment. In the example of FIG. 27, at least a part of the bank 115 is formed along the second terminal 132. Specifically, the bank 115 is located between the light emitting unit 140 and the second terminal 132. On the other hand, the bank 115 is not formed at least at a part between the light transmitting portion 104 and the second terminal 132. When viewed from a direction perpendicular to the substrate 100, the bank 115 intersects the second electrode 130. The bank 115 and the second electrode 130 are in contact with each other and are electrically connected. On the other hand, the bank 115 and the first electrode 110 are not electrically connected. Also in this modification, wetting and spreading of the liquid material for forming the first sub organic layer 121 is suppressed by the bank 115. Therefore, the second terminal 132 can be prevented from being covered with the first sub organic layer 121. Further, the light transmittance is improved as compared with the configuration shown in FIGS.
 以上、本実施例においても、第1の実施形態又はその変形例の構造を有している場合、透光部104において、第1サブ有機層121の面積が第2サブ有機層122の面積よりも大きい。したがって、発光装置10の高い光透過性を確保することができる。くわえて、第1電極110と第2電極130との間のリーク電流を抑制できる。 As described above, also in this example, in the case of having the structure of the first embodiment or the modification thereof, the area of the first sub organic layer 121 is larger than the area of the second sub organic layer 122 in the light transmitting portion 104. Is also big. Therefore, high light transmittance of the light emitting device 10 can be ensured. In addition, leakage current between the first electrode 110 and the second electrode 130 can be suppressed.
 また、第2の実施形態又はその変形例の構造を有している場合、第1電極110の厚さ方向に平行な方向から見て、第1サブ有機層121の縁の少なくとも一部は、第1電極110および第2電極130の少なくとも一方と重なっていない。また、第2サブ有機層122の縁は第2電極130および第1電極110と重なっている。したがって、発光部140の縁付近での裏面漏れ光を防ぐことができ、おもて面側に効率良く光を出力できる。また、第1電極110と第2電極130の短絡を防ぐために、絶縁層等を別途設ける必要が無い。 Further, in the case of having the structure of the second embodiment or the modification thereof, at least a part of the edge of the first sub organic layer 121 is viewed from a direction parallel to the thickness direction of the first electrode 110. It does not overlap with at least one of the first electrode 110 and the second electrode 130. Further, the edge of the second sub organic layer 122 overlaps the second electrode 130 and the first electrode 110. Therefore, backside leakage light near the edge of the light emitting unit 140 can be prevented, and light can be efficiently output to the front side. Further, it is not necessary to separately provide an insulating layer or the like in order to prevent a short circuit between the first electrode 110 and the second electrode 130.
 また、第3の実施形態又はその変形例の構造を有している場合、透光部104のうち、基板100に垂直な方向から見て第2サブ有機層122が位置しない領域で、被覆膜180は第1サブ有機層121に接している。すなわち透光部104において被覆膜180は、有機層120の薄い部分と接することとなる。したがって、透光部104における被覆膜180の剥がれやクラックが生じにくくなる。 Further, in the case of having the structure of the third embodiment or a modification thereof, the light transmitting portion 104 is covered with a region where the second sub organic layer 122 is not located when viewed from the direction perpendicular to the substrate 100. The film 180 is in contact with the first sub organic layer 121. That is, the coating film 180 in contact with the thin portion of the organic layer 120 in the light transmitting portion 104. Therefore, peeling or cracking of the coating film 180 in the light transmitting portion 104 is difficult to occur.
 以上、図面を参照して実施形態及び実施例について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。 As mentioned above, although embodiment and the Example were described with reference to drawings, these are the illustrations of this invention, Various structures other than the above are also employable.
 なお、第2の実施形態によれば、以下の発明が開示されている。
(付記1)
 第1電極、第2電極、および前記第1電極と前記第2電極との間に位置する有機層を含む発光部を備え、
 前記有機層は第1サブ有機層と第2サブ有機層を含み、
 前記第1電極の厚さ方向に平行な方向から見て、前記第1サブ有機層の縁の少なくとも一部は、前記第1電極および前記第2電極の少なくとも一方と重なっておらず、前記第2サブ有機層の縁は前記第2電極および前記第1電極と重なっている発光装置。
(付記2)
 付記1に記載の発光装置において、
 前記第1電極は透光性を有し、
 前記第1サブ有機層は前記第2サブ有機層と前記第1電極との間に位置する発光装置。
(付記3)
 付記1または2に記載の発光装置において、
 前記第1サブ有機層は、前記第1電極の縁の少なくとも一部を覆っている発光装置。
(付記4)
 付記1から3のいずれか1つに記載の発光装置において、
 前記第1サブ有機層は前記発光部において正孔注入層として機能する発光装置。
(付記5)
 付記1から4のいずれか1つに記載の発光装置において、
 前記有機層は第3サブ有機層をさらに含み、
 前記第1電極の厚さ方向に平行な方向から見て、前記第1電極の縁の少なくとも一部および前記第2電極の縁の少なくとも一部は、前記第3サブ有機層と重なっており、
 前記第3サブ有機層は、前記発光部において正孔ブロック層または電子ブロック層として機能する発光装置。
(付記6)
 付記1から5のいずれか1つに記載の発光装置において、
 前記第1電極を介して前記第2電極と対向する基板をさらに備え、
 前記第2電極は遮光性を有する発光装置。
(付記7)
 付記6に記載の発光装置において、
 前記基板の第1面側に複数の前記発光部を備える発光装置。
(付記8)
 付記7に記載の発光装置において、
According to the second embodiment, the following invention is disclosed.
(Appendix 1)
A light emitting unit including a first electrode, a second electrode, and an organic layer located between the first electrode and the second electrode;
The organic layer includes a first sub organic layer and a second sub organic layer,
When viewed from a direction parallel to the thickness direction of the first electrode, at least a part of the edge of the first sub-organic layer does not overlap at least one of the first electrode and the second electrode, The edge of 2 sub organic layers is a light-emitting device with which the said 2nd electrode and the said 1st electrode have overlapped.
(Appendix 2)
In the light emitting device according to attachment 1,
The first electrode has translucency,
The first sub organic layer is a light emitting device positioned between the second sub organic layer and the first electrode.
(Appendix 3)
In the light-emitting device according to appendix 1 or 2,
The light emitting device, wherein the first sub organic layer covers at least a part of an edge of the first electrode.
(Appendix 4)
In the light-emitting device according to any one of appendices 1 to 3,
The first sub organic layer is a light emitting device that functions as a hole injection layer in the light emitting unit.
(Appendix 5)
In the light-emitting device according to any one of appendices 1 to 4,
The organic layer further includes a third sub-organic layer,
When viewed from a direction parallel to the thickness direction of the first electrode, at least a part of the edge of the first electrode and at least a part of the edge of the second electrode overlap the third sub-organic layer,
The third sub-organic layer is a light emitting device that functions as a hole blocking layer or an electron blocking layer in the light emitting unit.
(Appendix 6)
In the light-emitting device according to any one of appendices 1 to 5,
Further comprising a substrate facing the second electrode via the first electrode;
The second electrode is a light emitting device having a light shielding property.
(Appendix 7)
In the light emitting device according to appendix 6,
A light emitting device comprising a plurality of the light emitting units on the first surface side of the substrate.
(Appendix 8)
In the light emitting device according to appendix 7,
 また、第3の実施形態によれば、以下の発明が開示されている。
(付記11)
 基板の第1面側に位置する複数の発光部と、
 前記複数の発光部の間に位置する透光部と、
 前記発光部を覆う被覆膜とを含み、
 前記発光部は、第1電極と、第2電極と、前記第1電極および前記第2電極の間に位置し、かつ第1サブ有機層および第2サブ有機層を含む有機層とを有し、
 前記透光部のうち、前記基板に垂直な方向から見て前記第2サブ有機層が位置しない領域で、前記被覆膜が前記第1サブ有機層に接している発光装置。
(付記12)
 付記11に記載の発光装置において、
 前記基板に垂直な方向から見て、前記第1電極の縁の少なくとも一部は、前記第2サブ有機層と重なっていない発光装置。
(付記13)
 付記11または12に記載の発光装置において、
 前記第1サブ有機層は塗布膜である発光装置。
(付記14)
 付記11から13のいずれか1つに記載の発光装置において、
 前記第1サブ有機層は、前記第2サブ有機層の重量平均分子量よりも大きい重量平均分子量を有する高分子を含む発光装置。
(付記15)
 付記11から14のいずれか1つに記載の発光装置において、
 前記第1サブ有機層は芳香族アミン系化合物を含む発光装置。
(付記16)
 付記11から15のいずれか1つに記載の発光装置において、
 前記透光部における前記有機層の最小膜厚は、前記発光部における前記有機層の膜厚より小さい発光装置。
(付記17)
 付記11から16のいずれか1つに記載の発光装置において、
 前記第1電極は透光性を有し、
 前記第2電極は遮光性を有し、
 前記第1電極は、前記基板と前記第2電極との間に位置する発光装置。
Further, according to the third embodiment, the following invention is disclosed.
(Appendix 11)
A plurality of light emitting units located on the first surface side of the substrate;
A translucent part located between the plurality of light emitting parts;
A coating film covering the light emitting part,
The light emitting unit includes a first electrode, a second electrode, and an organic layer located between the first electrode and the second electrode and including a first sub organic layer and a second sub organic layer. ,
The light emitting device, wherein the coating film is in contact with the first sub organic layer in a region where the second sub organic layer is not positioned when viewed from a direction perpendicular to the substrate in the light transmitting portion.
(Appendix 12)
In the light emitting device according to attachment 11,
A light emitting device in which at least a part of an edge of the first electrode does not overlap the second sub organic layer when viewed from a direction perpendicular to the substrate.
(Appendix 13)
In the light emitting device according to appendix 11 or 12,
The light emitting device, wherein the first sub organic layer is a coating film.
(Appendix 14)
In the light-emitting device according to any one of appendices 11 to 13,
The first sub organic layer is a light emitting device including a polymer having a weight average molecular weight larger than that of the second sub organic layer.
(Appendix 15)
In the light-emitting device according to any one of appendices 11 to 14,
The first sub-organic layer is a light emitting device including an aromatic amine compound.
(Appendix 16)
In the light-emitting device according to any one of appendices 11 to 15,
The light emitting device in which the minimum film thickness of the organic layer in the light transmitting part is smaller than the film thickness of the organic layer in the light emitting part.
(Appendix 17)
In the light-emitting device according to any one of appendices 11 to 16,
The first electrode has translucency,
The second electrode has a light shielding property;
The first electrode is a light emitting device positioned between the substrate and the second electrode.
 この出願は、2016年8月4日に出願された日本出願特願2016-154079号、日本出願特願2016-154080号、及び日本出願特願2016-154081号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2016-1554079, Japanese Application No. 2016-154080, and Japanese Application No. 2016-154081 filed on Aug. 4, 2016. , The entire disclosure of which is incorporated herein.

Claims (13)

  1.  複数の発光部と、
     前記複数の発光部の間に位置する透光部と、を備え、
     前記複数の発光部の各々は、第1サブ有機層および第2サブ有機層を含む有機層を有し、
     前記発光部において、前記第1サブ有機層と前記第2サブ有機層とは重なっており、
     前記透光部において、前記第1サブ有機層の面積は前記第2サブ有機層の面積よりも大きい発光装置。
    A plurality of light emitting units;
    A translucent part located between the plurality of light emitting parts,
    Each of the plurality of light emitting units includes an organic layer including a first sub organic layer and a second sub organic layer,
    In the light emitting unit, the first sub-organic layer and the second sub-organic layer overlap each other,
    In the light transmissive part, the area of the first sub organic layer is larger than the area of the second sub organic layer.
  2.  請求項1に記載の発光装置において、
     前記複数の発光部の各々は、第1電極及び第2電極の積層構造を含み、
     前記第1サブ有機層の少なくとも一部及び前記第2サブ有機層の少なくとも一部は、前記第1電極及び前記第2電極の間に位置する発光装置。
    The light-emitting device according to claim 1.
    Each of the plurality of light emitting units includes a stacked structure of a first electrode and a second electrode,
    At least a part of the first sub-organic layer and at least a part of the second sub-organic layer are light emitting devices positioned between the first electrode and the second electrode.
  3.  請求項2に記載の発光装置において、
     前記第1電極は、光透過性を有し、
     前記第1サブ有機層は、前記第1電極と接する発光装置。
    The light-emitting device according to claim 2.
    The first electrode has optical transparency,
    The first sub organic layer is a light emitting device in contact with the first electrode.
  4.  請求項2または3に記載の発光装置において、
     前記第1サブ有機層は、前記第1電極の縁の少なくとも一部を覆っている発光装置。
    The light-emitting device according to claim 2 or 3,
    The light emitting device, wherein the first sub organic layer covers at least a part of an edge of the first electrode.
  5.  請求項2から4のいずれか一項に記載の発光装置において、
     前記第1電極の厚さ方向に平行な方向から見て、前記第2サブ有機層の縁の少なくとも一部は、前記第2電極と重なっていない発光装置。
    The light emitting device according to any one of claims 2 to 4,
    A light emitting device in which at least a part of the edge of the second sub organic layer does not overlap the second electrode when viewed from a direction parallel to the thickness direction of the first electrode.
  6.  請求項2から5のいずれか一項に記載の発光装置において、
     前記第1電極の厚さ方向に平行な方向から見て、前記第1電極の縁の少なくとも一部は、前記第2サブ有機層と重なっていない発光装置。
    The light emitting device according to any one of claims 2 to 5,
    A light emitting device in which at least a part of the edge of the first electrode does not overlap the second sub organic layer when viewed from a direction parallel to the thickness direction of the first electrode.
  7.  請求項2から6のいずれか一項に記載の発光装置において、
     前記第1電極の縁を覆う絶縁膜をさらに備える発光装置。
    The light emitting device according to any one of claims 2 to 6,
    A light emitting device further comprising an insulating film covering an edge of the first electrode.
  8.  請求項7に記載の発光装置において、
     前記絶縁膜は、無機材料を含む発光装置。
    The light-emitting device according to claim 7.
    The insulating film is a light emitting device including an inorganic material.
  9.  請求項1から8のいずれか一項に記載の発光装置において、
     前記第1サブ有機層は、前記発光部において正孔注入層として機能する発光装置。
    The light emitting device according to any one of claims 1 to 8,
    The first sub organic layer is a light emitting device that functions as a hole injection layer in the light emitting unit.
  10.  請求項1から9のいずれか一項に記載の発光装置において、
     前記第1サブ有機層の膜厚は、前記第2サブ有機層の膜厚より薄い発光装置。
    The light emitting device according to any one of claims 1 to 9,
    The thickness of the first sub organic layer is a light emitting device thinner than the thickness of the second sub organic layer.
  11.  請求項10に記載の発光装置において、
     前記第2サブ有機層は、前記発光部において発光層として機能する発光装置。
    The light-emitting device according to claim 10.
    The second sub organic layer is a light emitting device that functions as a light emitting layer in the light emitting unit.
  12.  請求項1から11のいずれか一項に記載の発光装置において、
     前記第1サブ有機層は、塗布膜である発光装置。
    The light emitting device according to any one of claims 1 to 11,
    The light emitting device, wherein the first sub organic layer is a coating film.
  13.  請求項1から12のいずれか一項に記載の発光装置において、
     前記第1サブ有機層は、前記第2サブ有機層の重量平均分子量よりも大きい重量平均分子量を有する高分子を含む発光装置。
    The light emitting device according to any one of claims 1 to 12,
    The first sub organic layer is a light emitting device including a polymer having a weight average molecular weight larger than that of the second sub organic layer.
PCT/JP2017/024901 2016-08-04 2017-07-07 Light emitting device WO2018025576A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2016-154080 2016-08-04
JP2016-154081 2016-08-04
JP2016154079 2016-08-04
JP2016-154079 2016-08-04
JP2016154080 2016-08-04
JP2016154081 2016-08-04

Publications (1)

Publication Number Publication Date
WO2018025576A1 true WO2018025576A1 (en) 2018-02-08

Family

ID=61073395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024901 WO2018025576A1 (en) 2016-08-04 2017-07-07 Light emitting device

Country Status (1)

Country Link
WO (1) WO2018025576A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07114350A (en) * 1993-10-14 1995-05-02 Pioneer Electron Corp Electroluminescence display device
JP2000294380A (en) * 1999-04-08 2000-10-20 Chisso Corp Organic el element and its manufacture
JP2002367776A (en) * 2001-06-06 2002-12-20 Victor Co Of Japan Ltd Organic electroluminescent element
JP2012230885A (en) * 2011-04-25 2012-11-22 Samsung Mobile Display Co Ltd Display device changing its optical reflectance and driving method thereof
WO2013031076A1 (en) * 2011-09-02 2013-03-07 パナソニック株式会社 Organic el display panel and method for manufacturing same
WO2013179361A1 (en) * 2012-05-31 2013-12-05 パナソニック株式会社 Organic el element, organic el panel, organic el light emitting apparatus, and organic el display apparatus
US20140225078A1 (en) * 2013-02-12 2014-08-14 Samsung Display Co., Ltd. Organic light emitting display device
JP2015079758A (en) * 2013-10-18 2015-04-23 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Organic light-emitting display device
WO2015186748A1 (en) * 2014-06-04 2015-12-10 シャープ株式会社 Organic electroluminescent display device
JP2016062767A (en) * 2014-09-18 2016-04-25 パイオニア株式会社 Light-emitting device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07114350A (en) * 1993-10-14 1995-05-02 Pioneer Electron Corp Electroluminescence display device
JP2000294380A (en) * 1999-04-08 2000-10-20 Chisso Corp Organic el element and its manufacture
JP2002367776A (en) * 2001-06-06 2002-12-20 Victor Co Of Japan Ltd Organic electroluminescent element
JP2012230885A (en) * 2011-04-25 2012-11-22 Samsung Mobile Display Co Ltd Display device changing its optical reflectance and driving method thereof
WO2013031076A1 (en) * 2011-09-02 2013-03-07 パナソニック株式会社 Organic el display panel and method for manufacturing same
WO2013179361A1 (en) * 2012-05-31 2013-12-05 パナソニック株式会社 Organic el element, organic el panel, organic el light emitting apparatus, and organic el display apparatus
US20140225078A1 (en) * 2013-02-12 2014-08-14 Samsung Display Co., Ltd. Organic light emitting display device
JP2015079758A (en) * 2013-10-18 2015-04-23 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Organic light-emitting display device
WO2015186748A1 (en) * 2014-06-04 2015-12-10 シャープ株式会社 Organic electroluminescent display device
JP2016062767A (en) * 2014-09-18 2016-04-25 パイオニア株式会社 Light-emitting device

Similar Documents

Publication Publication Date Title
JP5258412B2 (en) LIGHT EMITTING ELEMENT, DISPLAY DEVICE USING LIGHT EMITTING ELEMENT AND LIGHT EMITTING ELEMENT MANUFACTURING METHOD
CN109841749B (en) Organic light emitting device
KR102105509B1 (en) Encapsulation structure, display panel and manufacturing method thereof
WO2016042638A1 (en) Light emitting device
CN107845737B (en) Display panel, manufacturing method thereof and display device
US11937449B2 (en) Sealing structure and light emitting device
JP2016062767A (en) Light-emitting device
JP2011138635A (en) Organic el device
JP2010170949A (en) Organic el display device
WO2018025576A1 (en) Light emitting device
JP6617024B2 (en) Light emitting device
JP6378769B2 (en) Optical device
WO2018061237A1 (en) Light-emitting device
JP2018037202A (en) Light-emitting device
JP2016072283A (en) Light emission device
JP2021097252A (en) Light-emitting device
JP2024023850A (en) light emitting device
JP6700013B2 (en) Light emitting device
WO2018062272A1 (en) Light-emitting device
JP2016062766A (en) Light emitting device
JP2019133959A (en) Light-emitting device
WO2018062273A1 (en) Light-emitting device
JP2018156722A (en) Organic EL panel
JP2019036758A (en) Light-emitting device
WO2017183118A1 (en) Light-emitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17836683

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 17836683

Country of ref document: EP

Kind code of ref document: A1