WO2018061236A1 - Light-emitting device - Google Patents

Light-emitting device Download PDF

Info

Publication number
WO2018061236A1
WO2018061236A1 PCT/JP2017/003848 JP2017003848W WO2018061236A1 WO 2018061236 A1 WO2018061236 A1 WO 2018061236A1 JP 2017003848 W JP2017003848 W JP 2017003848W WO 2018061236 A1 WO2018061236 A1 WO 2018061236A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
layer
emitting device
light
intermediate layer
Prior art date
Application number
PCT/JP2017/003848
Other languages
French (fr)
Japanese (ja)
Inventor
二郎 藤森
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Publication of WO2018061236A1 publication Critical patent/WO2018061236A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present invention relates to a light emitting device.
  • OLEDs organic light emitting diodes
  • the OLED has an organic layer that emits light by organic electroluminescence.
  • organic layer is easily deteriorated by, for example, water or oxygen.
  • the sealing part for sealing a light emission part (namely, organic layer) may be provided.
  • Patent Document 1 describes an example of an OLED sealing portion.
  • a first coating film AlO x film
  • an intermediate film SiN film
  • CVD Chemical Vapor Deposition
  • AlO x film a second coating film
  • the sealing part of patent document 1 contains the laminated structure of a 1st coating film, an intermediate film, and a 2nd coating film.
  • Patent Document 2 describes an example of an OLED sealing portion.
  • a first barrier film for example, aluminum oxide
  • an organic film is formed by CVD
  • a second barrier film for example, silicon nitride
  • the second barrier film may be formed by ALD.
  • the second barrier film includes, for example, aluminum oxide.
  • the sealing part of patent document 2 contains the laminated structure of a 1st barrier film
  • Patent Document 3 describes an example of an OLED sealing portion. This sealing part has the sealing thin film which has translucency. The sealing thin film has a first film, and the first film contains silicon oxide or silicon oxynitride. Patent Document 3 describes that polysilazane may be applied on the first film in order to block water.
  • the organic layer in the OLED may include a plurality of layers.
  • the organic layer described in Patent Document 4 includes a first layer made of ⁇ -NPD and a second layer made of Alq 3 .
  • the first layer is located on the anode side, and the second layer is located on the cathode side.
  • Patent Document 4 describes that the ductility of the first layer (layer made of ⁇ -NPD) is low and the ductility of the second layer (layer made of Alq 3 ) is high.
  • the light emitting part may be covered with a coating layer formed by ALD.
  • the coating layer may contact the organic layer of the light emitting part.
  • An example of a problem to be solved by the present invention is to prevent the coating layer from being broken by the organic layer of the light emitting portion when the light emitting portion is covered with a coating layer formed by ALD.
  • the invention described in claim 1 A plurality of light-emitting portions each having a laminated structure including a first electrode, an organic layer, and a second electrode, located on the first surface side of the substrate; A plurality of translucent parts; The middle layer, A first coating layer containing an insulating inorganic material; With Each of the plurality of light emitting portions is located between the light transmitting portions adjacent to each other, The intermediate layer is a light emitting device having a first surface in contact with the organic layer at the light transmitting portion and a second surface in contact with the first coating layer on the opposite side of the first surface.
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG. It is a figure for demonstrating an example of the edge part of the sealing part shown in FIG. 4, and its periphery. It is a figure which shows the 1st modification of FIG. It is a figure which shows the 2nd modification of FIG. It is a figure which shows the 3rd modification of FIG. It is a figure which shows the 4th modification of FIG. It is a figure which shows the 5th modification of FIG. FIG.
  • FIG. 11 is a cross-sectional view showing a light emitting device according to modification example 1; It is a figure which shows the modification of FIG.
  • FIG. 11 is a cross-sectional view showing a light emitting device according to Modification 2.
  • 12 is a cross-sectional view showing a light emitting device according to Modification 3.
  • FIG. 1 is a plan view showing a light emitting device 10 according to the embodiment.
  • FIG. 2 is a diagram in which the second electrode 130 is removed from FIG. 1.
  • FIG. 3 is a diagram in which the insulating layer 140 is removed from FIG. 4 is a cross-sectional view taken along the line AA in FIG.
  • the organic layer 120 (FIG. 4) and the sealing portion 200 (FIG. 4) are not shown in FIGS.
  • the light emitting device 10 includes a plurality of light emitting units 152, a plurality of light transmitting units 154, an intermediate layer 210, and a coating layer 220.
  • the plurality of light emitting units 152 are located on the first surface 102 side of the substrate 100.
  • Each of the light emitting units 152 has a stacked structure of the first electrode 110, the organic layer 120, and the second electrode 130.
  • the organic layer 120 includes a light emitting layer.
  • Each of the plurality of light emitting units 152 is located between the light transmitting units 154 adjacent to each other. In other words, the plurality of light emitting units 152 and the plurality of light transmitting units 154 are alternately arranged.
  • the covering layer 220 is a layer formed by ALD (Atomic Layer Deposition), and includes an insulating inorganic material.
  • the intermediate layer 210 has a surface that faces the first surface 102 side of the substrate 100 and contacts the organic layer 120 at the light transmitting portion 154, that is, a first surface.
  • the intermediate layer 210 has a surface opposite to the first surface of the intermediate layer 210 and in contact with the covering layer 220, that is, a second surface.
  • the first surface of the intermediate layer 210 is the lower surface of the intermediate layer 210.
  • the second surface of the intermediate layer 210 is the upper surface of the intermediate layer 210.
  • the ductility of the material of the intermediate layer 210 is high.
  • the organic layer 120 includes a plurality of layers.
  • the organic layer 120 includes a layer in contact with the intermediate layer 210, that is, a first partial layer (in the above example, the first partial layer serves as an electron injection layer).
  • the ductility of the material of the intermediate layer 210 is higher than the ductility of the material of the first partial layer of the organic layer 120 and the ductility of the material of the coating layer 220.
  • the intermediate layer 210 extends over the plurality of light emitting portions 152 and the plurality of light transmitting portions 154. In other words, the intermediate layer 210 covers the plurality of light emitting units 152 and covers the first surface 102 of the substrate 100 between the light emitting units 152 adjacent to each other.
  • the intermediate layer 210 When the intermediate layer 210 is located between the organic layer 120 and the coating layer 220, it is possible to prevent the coating layer 220 from cracking with high reliability. Specifically, as a result of investigation by the present inventor, it was found that when the coating layer 220 is formed on the organic layer 120 without providing the intermediate layer 210, the coating layer 220 may break. As a result of investigation by the present inventor, it has been clarified that the crack of the coating layer 220 may be caused by the difference between the linear expansion coefficient of the organic layer 120 and the linear expansion coefficient of the coating layer 220.
  • the coating layer is heated by heating during the manufacturing process of the light emitting device 10. Stress is generated at 220.
  • the crack of the covering layer 220 may be caused by this stress.
  • the intermediate layer 210 is located between the organic layer 120 and the coating layer 220. For this reason, even when the difference between the linear expansion coefficient of the organic layer 120 (particularly, the first partial layer of the organic layer 120) and the linear expansion coefficient of the covering layer 220 is large, the intermediate layer 210 exerts stress on the covering layer 220. Can be relaxed. In this way, it is possible to prevent the covering layer 220 from cracking with high reliability.
  • the ductility of the material of the intermediate layer 210 is high. Specifically, when the ductility of the material of the first partial layer of the organic layer 120 and the ductility of the material of the coating layer 220 are higher, it is more reliable that the coating layer 220 is cracked. Can be prevented. Specifically, when the material of the intermediate layer 210 has high ductility, the intermediate layer 210 can be flexibly deformed. For this reason, even if the difference between the linear expansion coefficient of the organic layer 120 (particularly, the first partial layer of the organic layer 120) and the linear expansion coefficient of the covering layer 220 is large, the intermediate layer 210 has a stress of the covering layer 220. It can be deformed to relax. In this way, it is possible to prevent the coating layer 220 from cracking with higher reliability.
  • the covering layer 220 can be prevented from being cracked with high reliability. Specifically, when the intermediate layer 210 extends over the plurality of light emitting portions 152 and the plurality of light transmitting portions 154, the covering layer 220 is in contact with the intermediate layer 210 in any region. In this case, the linear expansion coefficient of the region under the covering layer 220 (that is, the intermediate layer 210) is constant over the plurality of light emitting units 152 and the plurality of light transmitting units 154.
  • the light emitting device 10 includes a substrate 100, a plurality of first electrodes 110, a plurality of first connection portions 112, a plurality of first terminals 114, a first wiring 116, a plurality of second electrodes 130, a plurality of second connection portions 132, A plurality of second terminals 134, a second wiring 136, and a plurality of insulating layers 140 are provided.
  • the shape of the substrate 100 is a rectangle having a pair of long sides and a pair of short sides when viewed from a direction perpendicular to the first surface 102.
  • the shape of the substrate 100 is not limited to the example shown in this figure.
  • the shape of the substrate 100 may be, for example, a circle or a polygon other than a rectangle when viewed from a direction perpendicular to the first surface 102.
  • the plurality of first electrodes 110 are spaced apart from each other, and are specifically arranged in a line along the long side of the substrate 100. Each of the plurality of first electrodes 110 extends along the short side of the substrate 100.
  • Each of the plurality of first electrodes 110 is connected to each of the plurality of first terminals 114 via each of the plurality of first connection portions 112.
  • the plurality of first terminals 114 are connected to each other by the first wiring 116.
  • the first wiring 116 extends along one of the pair of long sides of the substrate 100.
  • An external voltage is supplied to the first electrode 110 via the first wiring 116, the first terminal 114, and the first connection portion 112.
  • the first electrode 110, the first connection portion 112, and the first terminal 114 are integrated with each other.
  • the light emitting device 10 includes a conductive layer having a region functioning as the first electrode 110, a region functioning as the first connection portion 112, and a region functioning as the first terminal 114.
  • Each of the plurality of second electrodes 130 overlaps each of the plurality of first electrodes 110.
  • the plurality of second electrodes 130 are spaced apart from each other, specifically, aligned in a line along the long side of the substrate 100.
  • Each of the plurality of second electrodes 130 extends along the short side of the substrate 100, specifically, along a pair of long sides extending along the short side of the substrate 100 and a long side of the substrate 100. And a pair of short sides extending.
  • Each of the plurality of second electrodes 130 is connected to each of the plurality of second terminals 134 via each of the plurality of second connection portions 132.
  • the plurality of second terminals 134 are connected to each other by the second wiring 136.
  • the second wiring 136 is opposed to the first wiring 116 across the plurality of first electrodes 110 and the plurality of second electrodes 130, and extends along the other of the pair of long sides of the substrate 100.
  • An external voltage is supplied to the second electrode 130 via the second wiring 136, the second terminal 134, and the second connection part 132.
  • the second connection portion 132 and the second terminal 134 are integrated with each other.
  • the light emitting device 10 includes a conductive layer having a region functioning as the second connection portion 132 and a region functioning as the second terminal 134.
  • Each of the plurality of insulating layers 140 overlaps each of the plurality of first electrodes 110.
  • the plurality of insulating layers 140 are spaced apart from each other, and specifically are arranged in a line along the long side of the substrate 100.
  • Each of the plurality of insulating layers 140 extends along the short side of the substrate 100, specifically, along the pair of long sides extending along the short side of the substrate 100 and the long side of the substrate 100. It has a pair of short sides that extend.
  • Each of the plurality of insulating layers 140 has an opening 142.
  • the first electrode 110, the organic layer 120, and the second electrode 130 are regions that function as the light emitting unit 152 (the first electrode 110, the organic layer 120, and the second electrode 130 laminated structures).
  • the insulating layer 140 defines the light emitting portion 152.
  • the light emitting unit 152 extends along the short side of the substrate 100, specifically, along a pair of long sides extending along the short side of the substrate 100 and a long side of the substrate 100. It has a pair of short sides that extend.
  • the light emitting device 10 includes a substrate 100, a first electrode 110, an organic layer 120, a second electrode 130, an insulating layer 140, and a sealing unit 200.
  • the substrate 100 has a first surface 102 and a second surface 104.
  • the second surface 104 is on the opposite side of the first surface 102.
  • the first electrode 110, the organic layer 120, the second electrode 130, and the insulating layer 140 are on the first surface 102 of the substrate 100.
  • the first electrode 110 functions as an anode
  • the second electrode 130 functions as a cathode.
  • the first electrode 110, the organic layer 120, and the second electrode 130 have a region that functions as the light emitting unit 152. In this region, the first electrode 110, the organic layer 120, and The second electrodes 130 overlap each other.
  • the sealing unit 200 includes an intermediate layer 210 and a covering layer 220.
  • the substrate 100 has translucency.
  • the substrate 100 includes glass.
  • the substrate 100 may include a resin.
  • the first electrode 110 has translucency and conductivity.
  • the first electrode 110 includes a material having translucency and conductivity.
  • a metal oxide for example, ITO (Indium Tin Oxide) and IZO (Indium Zinc Oxide) are used. Contains at least one. Accordingly, light from the organic layer 120 can pass through the first electrode 110.
  • the organic layer 120 includes, for example, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer.
  • the hole injection layer and the hole transport layer are connected to the first electrode 110.
  • the electron transport layer and the electron injection layer are connected to the second electrode 130.
  • the light emitting layer emits light by a voltage between the first electrode 110 and the second electrode 130.
  • the organic layer 120 extends over the plurality of light emitting portions 152 and the plurality of light transmitting portions 154. For this reason, the organic layer 120 is common among the plurality of light emitting units 152. Further, the first surface 102 of the substrate 100 is covered with the organic layer 120 between the light emitting units 152 adjacent to each other.
  • the second electrode 130 has light reflectivity and conductivity.
  • the second electrode 130 includes a material having light reflectivity and conductivity, and includes, for example, a metal, specifically, for example, at least one of Al, Ag, and MgAg.
  • the light emitting device 10 is bottom emission, and most of the light from the organic layer 120 is emitted from the second surface 104 side.
  • the second electrode 130 has a light shielding property. For this reason, in the example shown to this figure, it is suppressed that the light from the organic layer 120 leaks from the 2nd electrode 130.
  • the insulating layer 140 has translucency.
  • the insulating layer 140 includes an organic insulating material, specifically, for example, polyimide.
  • the insulating layer 140 may include an inorganic insulating material, specifically, for example, silicon oxide (SiO x ), silicon oxynitride (SiON), or silicon nitride (SiN x ).
  • the intermediate layer 210 is provided to relieve the stress of the coating layer 220.
  • the intermediate layer 210 is an organic layer, more specifically a resin layer.
  • the intermediate layer 210 preferably has high ductility.
  • the hard vinyl chloride resin, AS resin, glass fiber reinforced thermoplastic resin (for example, polycarbonate resin or styrene resin), glass fiber reinforced polyester resin Contains at least one selected from the group consisting of soft vinyl chloride resin, low density polyethylene, ABS resin, fluororesin, polypropylene, high density polyethylene, high impact polystyrene, acetal resin, polyamide resin, polycarbonate and cellulose acetate .
  • the intermediate layer 210 has electrical insulation. For this reason, the plurality of second electrodes 130 are not connected to each other through the intermediate layer 210. Specifically, in the example shown in the drawing, the intermediate layer 210 is in contact with the plurality of intermediate layers 210. Even in such a case, the plurality of second electrodes 130 are not connected to each other through the intermediate layer 210.
  • the intermediate layer 210 has translucency. For this reason, the light transmittance of the light emitting device 10 can be increased. Specifically, in the example shown in this drawing, a part of the intermediate layer 210 is located in the light transmitting portion 154. Even in such a case, the light transmittance of the light emitting device 10 can be increased.
  • the intermediate layer 210 flattens the unevenness generated on the first surface 102 of the substrate 100 due to the presence of the plurality of light emitting portions 152.
  • the second surface (upper surface) of the intermediate layer 210 is located at a height h1 (first height) from the first surface 102 of the substrate 100 in a region overlapping with the light emitting unit 152, and thus the light transmitting portion.
  • the height h2 (second height) is located from the first surface 102 of the substrate 100.
  • the upper end of the light emitting unit 152 (the upper end of the second electrode 130) is located at a height h3 (third height) from the first surface 102 of the substrate 100.
  • the absolute value of the difference between the height h1 and the height h2 is smaller than the height h3. In this way, the intermediate layer 210 flattens the unevenness generated on the first surface 102 of the substrate 100 due to the presence of the plurality of light emitting portions 152.
  • the height h2 of the intermediate layer 210 is not less than 1.5 times the height h3 of the light emitting portion 152 and not more than 300 times the height h3 of the light emitting portion 152.
  • the above-described height h2 of the intermediate layer 210 is preferably high to some extent, and as described above, 1.5 times or more, preferably high, of the height h3. It is more than 5 times the length h3.
  • the height h2 of the intermediate layer 210 is preferably low to some extent, and as described above, not more than 300 times the height h3, preferably high. It is 100 times or less of h3.
  • the thickness of the intermediate layer 210 is 1 nm or more in one example. From the viewpoint of relieving the stress of the covering layer 220, the thickness of the intermediate layer 210 in the light transmitting portion 154 is preferably somewhat thick, and as described above, it is 1 nm or more, preferably 5 ⁇ m or more. Note that when the intermediate layer 210 is a resin layer, the intermediate layer 210 has a certain degree of translucency. For this reason, when the intermediate layer 210 is a resin layer, the intermediate layer 210 has high translucency even if the thickness of the intermediate layer 210 is, for example, 300 ⁇ m or more.
  • the covering layer 220 is provided to prevent a substance (for example, water or oxygen) that degrades the light emitting unit 152 from entering the light emitting unit 152, particularly the organic layer 120.
  • the covering layer 220 is a layer formed by ALD and includes an insulating inorganic material.
  • the coating layer 220 is an oxide, specifically, aluminum oxide (Al 2 O 3 ), hafnium oxide (HfO 2 ), hafnium silicate (HfSiO), lanthanum oxide (La 2 O 3 ), It includes at least one selected from the group consisting of silicon oxide (SiO 2 ), strontium titanate (STO), tantalum oxide (Ta 2 O 5 ), titanium oxide (TiO 2 ), and zinc oxide (ZnO).
  • Al 2 O 3 aluminum oxide
  • HfO 2 hafnium oxide
  • HfSiO hafnium silicate
  • La 2 O 3 lanthanum oxide
  • It includes at least one selected from the group consisting of silicon oxide (SiO 2 ), strontium titanate (STO), tantalum oxide (Ta 2 O 5 ), titanium oxide (TiO 2 ), and zinc oxide (ZnO).
  • the covering layer 220 is made of nitride, specifically, aluminum nitride (AlN), hafnium nitride (HfN), silicon nitride (SiN x ), tantalum nitride (TaN), and titanium nitride (TiN). Including at least one selected from the group.
  • the thickness of the coating layer 220 is 10 nm or more and 300 nm or less in one example. From the viewpoint of sealing the light emitting unit 152 with high reliability, the thickness of the covering layer 220 is preferably thick to some extent, and is 10 nm or more, preferably 40 nm or more as described above. On the other hand, from the viewpoint of reducing the stress of the coating layer 220 and shortening the time required for the deposition of the coating layer 220, the thickness of the coating layer 220 is preferably thin to some extent, and is 300 nm or less as described above. The thickness is preferably 100 nm or less.
  • the second electrode 130 has an end portion 130a and an end portion 130b
  • the insulating layer 140 has an end portion 140a and an end portion 140b.
  • the end part 130a and the end part 140a face the same direction.
  • the end portion 130b and the end portion 140b face the same direction, and are on the opposite sides of the end portion 130a and the end portion 140a, respectively.
  • the first surface 102 of the substrate 100 has a plurality of regions 102a, a plurality of regions 102b, and a plurality of regions 102c.
  • Each of the plurality of regions 102a extends from a position overlapping with the end portion 130a of the second electrode 130 to overlap with the end portion 130b.
  • Each of the plurality of regions 102b extends from a position overlapping the end portion 130a of the second electrode 130 to a position overlapping the end portion 140a of the insulating layer 140 (or from a position overlapping the end portion 130b of the second electrode 130 to the end of the insulating layer 140. (Up to a position overlapping the portion 140b).
  • Each of the plurality of regions 102c extends from a position overlapping one end 140a of one insulating layer 140 of two adjacent insulating layers 140 to a position overlapping the end 140b of the other insulating layer 140.
  • the region 102a overlaps with the second electrode 130, and thus the light emitting device 10 has the lowest light transmittance in the region overlapping with the region 102a among the regions overlapping with the region 102a, the region 102b, and the region 102c. ing.
  • the region 102c does not overlap with any of the second electrode 130 and the insulating layer 140. Therefore, the light-emitting device 10 is the most overlapping region with the region 102c among the regions 102a, 102b, and 102c. High light transmittance.
  • the region 102b does not overlap with the second electrode 130 but overlaps the insulating layer 140.
  • the light emitting device 10 has higher light transmittance in the region overlapping with the region 102a, and The light transmittance is lower than the light transmittance in a region overlapping with the region 102c.
  • the light transmittance of the light emitting device 10 as a whole is high.
  • the width of the region having a high light transmittance that is, the width d3 of the region 102c is widened.
  • the width d3 of the region 102c is the width d2 of the region 102b. (D3> d2). In this way, the light transmittance of the light emitting device 10 as a whole is high.
  • the light emitting device 10 is prevented from absorbing a large amount of light having a specific wavelength.
  • the width of the region where light is transmitted through the insulating layer 140 that is, the width d2 of the region 102b is narrowed.
  • the width d2 of the region 102b is the region 102c. Is smaller than the width d3 (d2 ⁇ d3).
  • the insulating layer 140 may absorb light having a specific wavelength. Even in such a case, the amount of light transmitted through the insulating layer 140 is small in the example shown in FIG. In this way, the light emitting device 10 is prevented from absorbing much light of a specific wavelength.
  • the ratio d2 / d1 of the width d2 of the region 102b to the width d1 of the region 102a is 0 or more and 0.2 or less (0 ⁇ d2 / d1 ⁇ 0.2), and the ratio of the region 102c to the width d1 of the region 102a is
  • the ratio d3 / d1 of the width d3 is not less than 0.3 and not more than 2 (0.3 ⁇ d3 / d1 ⁇ 2).
  • the width d1 of the region 102a is 50 ⁇ m or more and 500 ⁇ m or less
  • the width d2 of the region 102b is 0 ⁇ m or more and 100 ⁇ m or less
  • the width d3 of the region 102c is 15 ⁇ m or more and 1000 ⁇ m or less.
  • the light emitting device 10 functions as a transflective OLED. Specifically, a region that does not overlap with the second electrode 130 functions as the light transmitting portion 154. In this way, in the light emitting device 10, the plurality of light emitting units 152 and the plurality of light transmitting units 154 are alternately arranged. When light is not emitted from the plurality of light emitting units 152, an object on the first surface 102 side can be seen through from the second surface 104 side, and an object on the second surface 104 side is visible on the first surface 102 side. See through. Furthermore, light from the plurality of light emitting units 152 is mainly output from the second surface 104 side, and is hardly output from the first surface 102 side. When light is emitted from the plurality of light emitting units 152, an object on the second surface 104 side can be seen through from the first surface 102 side in human vision.
  • the light emitting device 10 can be used as a high-mount stop lamp of an automobile.
  • the light emitting device 10 can be attached to the rear window of the automobile. Further, in this case, the light emitting device 10 emits red light, for example.
  • FIG. 5 is a view for explaining an example of the end portion E of the sealing portion 200 shown in FIG. 4 and its surroundings.
  • the intermediate layer 210 extends outward from the organic layer 120 and covers the end of the organic layer 120. In this way, the intermediate layer 210 is in contact with the first surface 102 of the substrate 100 outside the edge of the organic layer 120. In other words, the end portion of the organic layer 120 is not exposed from the intermediate layer 210.
  • the covering layer 220 extends outward from the intermediate layer 210 and covers the end of the intermediate layer 210. Thus, the covering layer 220 is in contact with the first surface 102 of the substrate 100 outside the end of the intermediate layer 210. In other words, the end portion of the intermediate layer 210 is not exposed from the end portion E of the sealing portion 200.
  • the end portion of the organic layer 120 When the end portion of the organic layer 120 is not exposed from the intermediate layer 210, it is possible to prevent the coating layer 220 from cracking with high reliability. Specifically, when the end portion of the organic layer 120 is not exposed from the intermediate layer 210, the end portion of the organic layer 120 can be prevented from coming into contact with the coating layer 220. In this case, even if the difference between the linear expansion coefficient at the end of the organic layer 120 and the linear expansion coefficient of the coating layer 220 is large, it is possible to prevent stress from being generated in the coating layer 220. In this way, it is possible to prevent the covering layer 220 from cracking with high reliability.
  • the coating layer 220 is a layer formed by ALD, and therefore, high sealing performance is ensured.
  • the intermediate layer 210 is an organic layer, the intermediate layer 210 easily transmits a substance that degrades the light emitting unit 152. In the example shown in the drawing, the end of the intermediate layer 210 is not exposed from the end E of the sealing portion 200 and is covered with the coating layer 220. For this reason, it can prevent with high reliability that the substance which degrades the light emission part 152 permeates into the light emission part 152 from the edge part E of the sealing part 200.
  • the first electrode 110, the first connection part 112, the first terminal 114, the second connection part 132, and the second terminal 134 are formed on the first surface 102 of the substrate 100.
  • the first electrode 110, the first connection part 112, the first terminal 114, the second connection part 132, and the second terminal 134 are formed by patterning a conductive layer formed by sputtering.
  • the insulating layer 140 is formed.
  • the insulating layer 140 is formed by patterning a photosensitive resin applied on the first surface 102 of the substrate 100.
  • the organic layer 120 is formed.
  • the organic layer 120 is formed by vapor deposition.
  • the organic layer 120 may be formed by application. In this case, the material of the organic layer 120 is applied in the opening 142 of the insulating layer 140.
  • the second electrode 130 is formed. In one example, the second electrode 130 is formed by vacuum deposition using a mask.
  • the intermediate layer 210 is formed.
  • the intermediate layer 210 is formed by CVD (Chemical Vapor Deposition).
  • the coating layer 220 is formed by ALD.
  • the light emitting device 10 shown in FIGS. 1 to 5 is manufactured.
  • FIG. 6 is a diagram showing a first modification of FIG.
  • the second surface (upper surface) of the intermediate layer 210 is substantially flat across the plurality of light emitting portions 152 and the plurality of light transmitting portions 154. It is substantially parallel to the first surface 102. More specifically, in the example shown in the figure, the above-described height h1 of the intermediate layer 210 is substantially equal to the above-described height h2 of the intermediate layer 210, and in one example, the above-described height h2 of the intermediate layer 210. 1.0 times to 1.1 times (1.0 ⁇ h1 / h2 ⁇ 1.1).
  • the covering layer 220 is highly likely to crack. It can be prevented with reliability. Specifically, when the second surface (upper surface) of the intermediate layer 210 is substantially parallel to the first surface 102 of the substrate 100 across the plurality of light emitting portions 152 and the plurality of light transmitting portions 154, the intermediate layer 210. And the covering layer 220 are flat across the plurality of light emitting portions 152 and the plurality of light transmitting portions 154.
  • FIG. 7 is a diagram showing a second modification of FIG.
  • a plurality of organic layers 120 may be arranged on the first surface 102 of the substrate 100.
  • the organic layer 120 does not spread over the plurality of light emitting portions 152 and the plurality of light transmitting portions 154.
  • the first surface 102 of the substrate 100 has a region exposed from the organic layer 120 between the light emitting units 152 adjacent to each other.
  • the organic layer 120 extends outward from the second electrode 130.
  • the intermediate layer 210 is located between the organic layer 120 and the coating layer 220. For this reason, it is possible to prevent the covering layer 220 from cracking with high reliability.
  • FIG. 8 is a diagram showing a third modification of FIG.
  • the first electrode 110 may extend over the plurality of light emitting portions 152 and the plurality of light transmitting portions 154.
  • the first electrode 110 is common among the plurality of light emitting units 152.
  • the first surface 102 of the substrate 100 is covered with the first electrode 110 between the light emitting units 152 adjacent to each other.
  • the intermediate layer 210 is located between the organic layer 120 and the coating layer 220. For this reason, it is possible to prevent the covering layer 220 from cracking with high reliability.
  • FIG. 9 is a diagram showing a fourth modification of FIG.
  • the light emitting device 10 does not have to include the insulating layer 140 (FIG. 4).
  • the plurality of first electrodes 110 and the plurality of second electrodes 130 are arranged on the first surface 102 of the substrate 100 in the same manner as the example shown in FIG.
  • the organic layer 120 extends over the plurality of light emitting units 152 and the plurality of light transmitting units 154 in the same manner as the example shown in FIG.
  • the organic layer 120 covers the end of the first electrode 110. For this reason, it is prevented that the 2nd electrode 130 contacts the 1st electrode 110, ie, the 2nd electrode 130 is short-circuited with the 1st electrode 110.
  • the intermediate layer 210 is located between the organic layer 120 and the coating layer 220. For this reason, it is possible to prevent the covering layer 220 from cracking with high reliability.
  • FIG. 10 is a diagram showing a fifth modification of FIG.
  • the light emitting device 10 shown in this figure is the same as the light emitting device 10 shown in FIG. 9 except that each of the plurality of organic layers 120 overlaps each of the plurality of first electrodes 110.
  • the organic layer 120 does not spread over the plurality of light emitting portions 152 and the plurality of light transmitting portions 154.
  • the first surface 102 of the substrate 100 has a region exposed from the organic layer 120 between the light emitting units 152 adjacent to each other.
  • the organic layer 120 extends outward from the second electrode 130.
  • the intermediate layer 210 is located between the organic layer 120 and the coating layer 220. For this reason, it is possible to prevent the covering layer 220 from cracking with high reliability.
  • the intermediate layer 210 is located between the organic layer 120 and the coating layer 220. For this reason, even when the difference between the linear expansion coefficient of the organic layer 120 (particularly, the first partial layer of the organic layer 120) and the linear expansion coefficient of the covering layer 220 is large, the intermediate layer 210 exerts stress on the covering layer 220. Can be relaxed. In this way, it is possible to prevent the covering layer 220 from cracking with high reliability.
  • FIG. 11 is a cross-sectional view showing a light emitting device 10 according to Modification 1, and corresponds to FIG. 4 of the embodiment.
  • the light emitting device 10 according to this modification is the same as the light emitting device 10 according to the embodiment except for the following points.
  • the light emitting device 10 includes a plurality of intermediate layers 210.
  • Each of the plurality of intermediate layers 210 is defined by insulating layers 140 that are between the light emitting portions 152 adjacent to each other and adjacent to each other.
  • the coating layer 220 is prevented from coming into contact with the organic layer 120.
  • the covering layer 220 covers the organic layer 120 between the insulating layers 140 adjacent to each other. This prevents the covering layer 220 from contacting the organic layer 120 between the insulating layers 140 adjacent to each other. Further, the covering layer 220 covers the organic layer 120 in a region overlapping with the insulating layer 140. For this reason, the coating layer 220 is prevented from coming into contact with the organic layer 120 in a region overlapping with the insulating layer 140. In this way, it is possible to prevent the covering layer 220 from cracking with high reliability.
  • the covering layer 220 is in contact with the second electrode 130. Even in this case, the coating layer 220 can be prevented from cracking.
  • the second electrode 130 is a metal layer
  • the second electrode 130 has high ductility. In this case, even if the organic layer 120 expands due to heating during the manufacturing process of the light emitting device 10, the second electrode 130 can be deformed so as to relieve the stress of the coating layer 220. For this reason, even if the coating layer 220 is in contact with the second electrode 130, the coating layer 220 can be prevented from cracking.
  • the intermediate layer 210 flattens the unevenness generated on the first surface 102 of the substrate 100 due to the presence of the plurality of light emitting portions 152.
  • the second surface (upper surface) of the intermediate layer 210 is located at a height h2 (first height) from the first surface 102.
  • the upper end of the light emitting unit 152 (the upper end of the second electrode 130) is located at a height h3 (second height) from the first surface 102 of the substrate 100.
  • the absolute value of the difference between the height h2 and the height h3 is smaller than the height h3. In this way, the intermediate layer 210 flattens the unevenness generated on the first surface 102 of the substrate 100 due to the presence of the plurality of light emitting portions 152.
  • each second surface (upper surface) of the plurality of intermediate layers 210 is substantially flat, and specifically, substantially parallel to the first surface 102 of the substrate 100.
  • stress is prevented from concentrating on a specific position of the coating layer 220. In this way, it is possible to prevent the covering layer 220 from cracking with high reliability.
  • the intermediate layer 210 is located between the organic layer 120 and the covering layer 220. For this reason, even when the difference between the linear expansion coefficient of the organic layer 120 (particularly, the first partial layer of the organic layer 120) and the linear expansion coefficient of the covering layer 220 is large, the intermediate layer 210 exerts stress on the covering layer 220. Can be relaxed. In this way, it is possible to prevent the covering layer 220 from cracking with high reliability.
  • FIG. 12 is a diagram showing a modification of FIG.
  • the light emitting device 10 shown in the figure is the same as the light emitting device 10 shown in FIG. 11 except that each of the plurality of organic layers 120 overlaps each of the plurality of first electrodes 110.
  • the organic layer 120 does not spread over the plurality of light emitting portions 152 and the plurality of light transmitting portions 154.
  • the first surface 102 of the substrate 100 has a region exposed from the organic layer 120 between the light emitting units 152 adjacent to each other.
  • the organic layer 120 extends outward from the second electrode 130.
  • the intermediate layer 210 is located between the organic layer 120 and the coating layer 220. For this reason, it is possible to prevent the covering layer 220 from cracking with high reliability.
  • FIG. 13 is a cross-sectional view illustrating a light emitting device 10 according to Modification Example 2, and corresponds to FIG. 4 of the embodiment.
  • the light emitting device 10 according to this modification is the same as the light emitting device 10 according to the embodiment except for the following points.
  • the intermediate layer 210 is provided to relieve the stress of the coating layer 220.
  • the intermediate layer 210 is a metal layer (that is, a layer having high ductility), and specifically includes, for example, aluminum, and more specifically, for example, an aluminum layer or It is an aluminum alloy layer (for example, an Al / Mn alloy layer). From the viewpoint of cost, the intermediate layer 210 is preferably an aluminum layer. In this example, the intermediate layer 210 can be deformed to relieve the stress of the covering layer 220.
  • a metal layer is not limited to the case where aluminum is included.
  • the intermediate layer 210 may include at least one of gold, iron, copper, silver, zinc, tin, nickel, and manganese.
  • the ductility of the material of the intermediate layer 210 may be higher than the ductility of the material of the first partial layer of the organic layer 120 and the ductility of the material of the coating layer 220.
  • the intermediate layer 210 is also provided to prevent a gas that deteriorates the light emitting unit 152 from entering the light emitting unit 152.
  • the coating layer 220 is a metal layer, the coating layer 220 has gas barrier properties. For this reason, the covering layer 220 can function so as to prevent a gas that deteriorates the light emitting unit 152 from entering the light emitting unit 152.
  • the thickness of the intermediate layer 210 is 1 nm or more and 50 nm or less in one example.
  • the thickness of the intermediate layer 210 (metal layer) is preferably somewhat thick, and as described above, it is 1 nm or more, preferably 5 nm or more. is there.
  • the thickness of the intermediate layer 210 (metal layer) is preferably thin to some extent, and as described above, is 50 nm or less, preferably 20 nm or less. .
  • the intermediate layer 210 has conductivity. For this reason, the plurality of second electrodes 130 can be connected to each other via the intermediate layer 210. Specifically, in the example shown in the drawing, the intermediate layer 210 is in contact with the plurality of intermediate layers 210. Even in such a case, the plurality of second electrodes 130 can be connected to each other through the intermediate layer 210.
  • FIG. 14 is a cross-sectional view showing a light emitting device 10 according to Modification 3, and corresponds to FIG. 4 of the embodiment.
  • the light emitting device 10 according to this modification is the same as the light emitting device 10 according to the embodiment except for the following points.
  • the intermediate layer 210 includes a light-transmitting inorganic material.
  • the inorganic material is a compound containing Si, more specifically, silicon oxynitride (SiON), silicon oxide (SiO 2 ), or silicon nitride (SiN).
  • the intermediate layer 210 is formed by vapor deposition or CVD, for example.
  • both high light transmittance and high gas barrier properties can be realized.
  • the intermediate layer 210 has translucency. Therefore, even if a part of the intermediate layer 210 is located in the light transmitting portion 154, the light transmittance of the light transmitting portion 154 can be increased.
  • the intermediate layer 210 includes an inorganic material. In general, the gas barrier properties of inorganic materials are high. Therefore, high gas barrier properties can be realized.
  • the thickness of the intermediate layer 210 is preferably somewhat thick, and in one example, it can be set to 1 ⁇ m or more, preferably 3 ⁇ m or more.
  • the thickness of the intermediate layer 210 is preferably thin to some extent, and in one example, can be 100 ⁇ m or less, preferably 10 ⁇ m or less.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

A coating layer (220) is formed by Atomic Layer Deposition (ALD) and includes an insulating inorganic material. An intermediate layer (210) faces a first surface (102) side of a substrate (100) and has a first surface in contact with an organic layer (120) in light-transmitting sections (154). The intermediate layer (210) has a second surface on the opposite side to the first surface of the intermediate layer (210) and in contact with the coating layer (220). The material in the intermediate surface (210) has high ductility. The intermediate surface (210) spreads across a plurality of light-emitting sections (152) and a plurality of light-transmitting sections (154).

Description

発光装置Light emitting device
 本発明は、発光装置に関する。 The present invention relates to a light emitting device.
 近年、発光装置として、有機発光ダイオード(OLED)が開発されている。OLEDは、有機エレクトロルミネッセンスにより光を発する有機層を有している。一般に、このような有機層は、例えば、水又は酸素によって劣化しやすい。OLEDでは、有機層を劣化させる物質から有機層を保護するため、発光部(すなわち、有機層)を封止するための封止部を設けることがある。 Recently, organic light emitting diodes (OLEDs) have been developed as light emitting devices. The OLED has an organic layer that emits light by organic electroluminescence. In general, such an organic layer is easily deteriorated by, for example, water or oxygen. In OLED, in order to protect an organic layer from the substance which degrades an organic layer, the sealing part for sealing a light emission part (namely, organic layer) may be provided.
 特許文献1には、OLEDの封止部の一例について記載されている。特許文献1では、まず、ALD(Atomic Layer Deposition)によって第1被覆膜(AlO膜)を形成し、次いで、CVD(Chemical Vapor Deposition)によって中間膜(SiN膜)を形成し、次いで、ALDによって第2被覆膜(AlO膜)を形成する。このようにして、特許文献1の封止部は、第1被覆膜、中間膜及び第2被覆膜の積層構造を含んでいる。 Patent Document 1 describes an example of an OLED sealing portion. In Patent Document 1, first, a first coating film (AlO x film) is formed by ALD (Atomic Layer Deposition), then an intermediate film (SiN film) is formed by CVD (Chemical Vapor Deposition), and then ALD. To form a second coating film (AlO x film). Thus, the sealing part of patent document 1 contains the laminated structure of a 1st coating film, an intermediate film, and a 2nd coating film.
 特許文献2には、OLEDの封止部の一例について記載されている。特許文献2では、まず、ALDによって第1バリア膜(例えば、酸化アルミニウム)を形成し、次いで、CVDによって有機膜を形成し、次いで、CVDによって第2バリア膜(例えば、窒化シリコン)を形成する。なお、第2バリア膜は、ALDによって形成してもよく、この場合、第2バリア膜は、例えば、酸化アルミニウムを含んでいる。このようにして、特許文献2の封止部は、第1バリア膜、有機層及び第2バリア膜の積層構造を含んでいる。 Patent Document 2 describes an example of an OLED sealing portion. In Patent Document 2, first, a first barrier film (for example, aluminum oxide) is formed by ALD, then an organic film is formed by CVD, and then a second barrier film (for example, silicon nitride) is formed by CVD. . Note that the second barrier film may be formed by ALD. In this case, the second barrier film includes, for example, aluminum oxide. Thus, the sealing part of patent document 2 contains the laminated structure of a 1st barrier film | membrane, an organic layer, and a 2nd barrier film | membrane.
 特許文献3には、OLEDの封止部の一例について記載されている。この封止部は、透光性を有する封止薄膜を有している。封止薄膜は、第1の膜を有しており、この第1の膜は、酸化シリコン又は酸化窒化シリコンを含んでいる。特許文献3には、水を遮断するため、第1の膜の上にポリシラザンを塗布してもよいことが記載されている。 Patent Document 3 describes an example of an OLED sealing portion. This sealing part has the sealing thin film which has translucency. The sealing thin film has a first film, and the first film contains silicon oxide or silicon oxynitride. Patent Document 3 describes that polysilazane may be applied on the first film in order to block water.
 一方、OLED中の有機層は、複数の層を含んでいることがある。例えば特許文献4に記載の有機層は、α-NPDからなる第1の層及びAlqからなる第2の層を含んでいる。第1の層は、陽極側に位置しており、第2の層は、陰極側に位置している。特許文献4には、第1の層(α-NPDからなる層)の延性は低く、第2の層(Alqからなる層)の延性は高いことが記載されている。 On the other hand, the organic layer in the OLED may include a plurality of layers. For example, the organic layer described in Patent Document 4 includes a first layer made of α-NPD and a second layer made of Alq 3 . The first layer is located on the anode side, and the second layer is located on the cathode side. Patent Document 4 describes that the ductility of the first layer (layer made of α-NPD) is low and the ductility of the second layer (layer made of Alq 3 ) is high.
特開2016-4760号公報Japanese Unexamined Patent Publication No. 2016-4760 特開2015-176717号公報Japanese Patent Laying-Open No. 2015-176717 特開2011-23336号公報JP 2011-23336 A 特開2015-204403号公報JP2015-204403A
 OLEDでは、ALDによって形成された被覆層によって発光部を覆うことがある。この場合、被覆層が発光部の有機層に接することがある。本発明者が検討したところ、被覆層が発光部の有機層に接している場合、被覆層が割れることがあることが明らかとなった。 In OLED, the light emitting part may be covered with a coating layer formed by ALD. In this case, the coating layer may contact the organic layer of the light emitting part. As a result of investigation by the present inventor, it was found that when the coating layer is in contact with the organic layer of the light emitting portion, the coating layer may be broken.
 本発明が解決しようとする課題としては、ALDによって形成された被覆層によって発光部を覆う場合に、被覆層が発光部の有機層によって割れることを防止することが一例として挙げられる。 An example of a problem to be solved by the present invention is to prevent the coating layer from being broken by the organic layer of the light emitting portion when the light emitting portion is covered with a coating layer formed by ALD.
 請求項1に記載の発明は、
 基板の第1面側に位置し、第1電極、有機層及び第2電極を含む積層構造からそれぞれなる複数の発光部と、
 複数の透光部と、
 中間層と、
 絶縁性の無機材料を含む第1被覆層と、
を備え、
 前記複数の発光部のそれぞれは、互いに隣接する透光部の間に位置し、
 前記中間層は、前記透光部で前記有機層に接する第1面と、前記第1面の反対側にあって前記第1被覆層に接する第2面と、を有する発光装置である。
The invention described in claim 1
A plurality of light-emitting portions each having a laminated structure including a first electrode, an organic layer, and a second electrode, located on the first surface side of the substrate;
A plurality of translucent parts;
The middle layer,
A first coating layer containing an insulating inorganic material;
With
Each of the plurality of light emitting portions is located between the light transmitting portions adjacent to each other,
The intermediate layer is a light emitting device having a first surface in contact with the organic layer at the light transmitting portion and a second surface in contact with the first coating layer on the opposite side of the first surface.
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。 The above-described object and other objects, features, and advantages will be further clarified by a preferred embodiment described below and the following drawings attached thereto.
実施形態に係る発光装置を示す平面図である。It is a top view which shows the light-emitting device which concerns on embodiment. 図1から第2電極を取り除いた図である。It is the figure which removed the 2nd electrode from FIG. 図2から絶縁層を取り除いた図である。It is the figure which removed the insulating layer from FIG. 図1のA-A断面図である。FIG. 2 is a cross-sectional view taken along the line AA in FIG. 図4に示した封止部の端部及びその周辺の一例を説明するための図である。It is a figure for demonstrating an example of the edge part of the sealing part shown in FIG. 4, and its periphery. 図4の第1の変形例を示す図である。It is a figure which shows the 1st modification of FIG. 図4の第2の変形例を示す図である。It is a figure which shows the 2nd modification of FIG. 図4の第3の変形例を示す図である。It is a figure which shows the 3rd modification of FIG. 図4の第4の変形例を示す図である。It is a figure which shows the 4th modification of FIG. 図4の第5の変形例を示す図である。It is a figure which shows the 5th modification of FIG. 変形例1に係る発光装置を示す断面図である。FIG. 11 is a cross-sectional view showing a light emitting device according to modification example 1; 図11の変形例を示す図である。It is a figure which shows the modification of FIG. 変形例2に係る発光装置を示す断面図である。FIG. 11 is a cross-sectional view showing a light emitting device according to Modification 2. 変形例3に係る発光装置を示す断面図である。12 is a cross-sectional view showing a light emitting device according to Modification 3. FIG.
 以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate.
 図1は、実施形態に係る発光装置10を示す平面図である。図2は、図1から第2電極130を取り除いた図である。図3は、図2から絶縁層140を取り除いた図である。図4は、図1のA-A断面図である。なお、説明のため、図1~図3では、有機層120(図4)及び封止部200(図4)を図示していない。 FIG. 1 is a plan view showing a light emitting device 10 according to the embodiment. FIG. 2 is a diagram in which the second electrode 130 is removed from FIG. 1. FIG. 3 is a diagram in which the insulating layer 140 is removed from FIG. 4 is a cross-sectional view taken along the line AA in FIG. For the sake of explanation, the organic layer 120 (FIG. 4) and the sealing portion 200 (FIG. 4) are not shown in FIGS.
 図4を用いて発光装置10の概要について説明する。発光装置10は、複数の発光部152、複数の透光部154、中間層210及び被覆層220を備えている。複数の発光部152は、基板100の第1面102側に位置している。複数の発光部152のそれぞれは、第1電極110、有機層120及び第2電極130の積層構造からなっている。有機層120は、発光層を含んでいる。複数の発光部152のそれぞれは、互いに隣接する透光部154の間に位置しており、言い換えると、複数の発光部152及び複数の透光部154は、交互に並んでいる。被覆層220は、ALD(Atomic Layer Deposition)によって形成された層であり、絶縁性の無機材料を含んでいる。中間層210は、基板100の第1面102側を向いていて透光部154で有機層120に接する面、すなわち第1面を有している。中間層210は、中間層210の第1面の反対側にあって被覆層220に接する面、すなわち第2面を有している。本図に示す例において、中間層210の第1面は、中間層210の下面である。これに対して、中間層210の第2面は、中間層210の上面である。 The outline of the light emitting device 10 will be described with reference to FIG. The light emitting device 10 includes a plurality of light emitting units 152, a plurality of light transmitting units 154, an intermediate layer 210, and a coating layer 220. The plurality of light emitting units 152 are located on the first surface 102 side of the substrate 100. Each of the light emitting units 152 has a stacked structure of the first electrode 110, the organic layer 120, and the second electrode 130. The organic layer 120 includes a light emitting layer. Each of the plurality of light emitting units 152 is located between the light transmitting units 154 adjacent to each other. In other words, the plurality of light emitting units 152 and the plurality of light transmitting units 154 are alternately arranged. The covering layer 220 is a layer formed by ALD (Atomic Layer Deposition), and includes an insulating inorganic material. The intermediate layer 210 has a surface that faces the first surface 102 side of the substrate 100 and contacts the organic layer 120 at the light transmitting portion 154, that is, a first surface. The intermediate layer 210 has a surface opposite to the first surface of the intermediate layer 210 and in contact with the covering layer 220, that is, a second surface. In the example shown in this drawing, the first surface of the intermediate layer 210 is the lower surface of the intermediate layer 210. On the other hand, the second surface of the intermediate layer 210 is the upper surface of the intermediate layer 210.
 中間層210の材料の延性は、高いものとなっている。具体的には、有機層120は、複数の層を含んでおり、一例において、第1電極110側から第2電極130側に向けて正孔注入層、正孔輸送層、発光層、電子輸送層及び電子注入層を含んでいる。この例において、有機層120は、中間層210に接する層、すなわち第1部分層(上記した例では、第1部分層は、電子注入層となる。)を含んでいる。中間層210の材料の延性は、有機層120の第1部分層の材料の延性及び被覆層220の材料の延性より高いものとなっている。 The ductility of the material of the intermediate layer 210 is high. Specifically, the organic layer 120 includes a plurality of layers. In one example, the hole injection layer, the hole transport layer, the light emitting layer, and the electron transport from the first electrode 110 side toward the second electrode 130 side. A layer and an electron injection layer. In this example, the organic layer 120 includes a layer in contact with the intermediate layer 210, that is, a first partial layer (in the above example, the first partial layer serves as an electron injection layer). The ductility of the material of the intermediate layer 210 is higher than the ductility of the material of the first partial layer of the organic layer 120 and the ductility of the material of the coating layer 220.
 本図に示す例において、中間層210は、複数の発光部152及び複数の透光部154に亘って広がっている。言い換えると、中間層210は、複数の発光部152を覆っており、互いに隣接する発光部152の間で基板100の第1面102を覆っている。 In the example shown in the figure, the intermediate layer 210 extends over the plurality of light emitting portions 152 and the plurality of light transmitting portions 154. In other words, the intermediate layer 210 covers the plurality of light emitting units 152 and covers the first surface 102 of the substrate 100 between the light emitting units 152 adjacent to each other.
 有機層120と被覆層220の間に中間層210が位置する場合、被覆層220が割れることを高い信頼性で防止することができる。具体的には、本発明者が検討したところ、中間層210を設けずに有機層120上に被覆層220を形成した場合、被覆層220が割れることがあることが明らかとなった。本発明者が検討したところ、被覆層220の割れは、有機層120の線膨張係数と被覆層220の線膨張係数の差に起因している可能性が明らかとなった。具体的には、有機層120(特に、有機層120の第1部分層)の線膨張係数と被覆層220の線膨張係数の差が大きい場合、発光装置10の製造プロセス中の加熱によって被覆層220に応力が発生する。被覆層220の割れは、この応力に起因している可能性がある。本図に示す例では、有機層120と被覆層220の間に中間層210が位置している。このため、有機層120(特に、有機層120の第1部分層)の線膨張係数と被覆層220の線膨張係数の差が大きい場合であっても、中間層210が被覆層220の応力を緩和することができる。このようにして、被覆層220が割れることを高い信頼性で防止することができる。 When the intermediate layer 210 is located between the organic layer 120 and the coating layer 220, it is possible to prevent the coating layer 220 from cracking with high reliability. Specifically, as a result of investigation by the present inventor, it was found that when the coating layer 220 is formed on the organic layer 120 without providing the intermediate layer 210, the coating layer 220 may break. As a result of investigation by the present inventor, it has been clarified that the crack of the coating layer 220 may be caused by the difference between the linear expansion coefficient of the organic layer 120 and the linear expansion coefficient of the coating layer 220. Specifically, when the difference between the linear expansion coefficient of the organic layer 120 (particularly, the first partial layer of the organic layer 120) and the linear expansion coefficient of the coating layer 220 is large, the coating layer is heated by heating during the manufacturing process of the light emitting device 10. Stress is generated at 220. The crack of the covering layer 220 may be caused by this stress. In the example shown in this figure, the intermediate layer 210 is located between the organic layer 120 and the coating layer 220. For this reason, even when the difference between the linear expansion coefficient of the organic layer 120 (particularly, the first partial layer of the organic layer 120) and the linear expansion coefficient of the covering layer 220 is large, the intermediate layer 210 exerts stress on the covering layer 220. Can be relaxed. In this way, it is possible to prevent the covering layer 220 from cracking with high reliability.
 中間層210の材料の延性が高く、具体的には、有機層120の第1部分層の材料の延性及び被覆層220の材料の延性より高い場合、被覆層220が割れることをさらに高い信頼性で防止することができる。具体的には、中間層210の材料の延性が高い場合、中間層210は、柔軟に変形可能である。このため、有機層120(特に、有機層120の第1部分層)の線膨張係数と被覆層220の線膨張係数の差が大きい場合であっても、中間層210は、被覆層220の応力を緩和するように変形可能である。このようにして、被覆層220が割れることをさらに高い信頼性で防止することができる。 The ductility of the material of the intermediate layer 210 is high. Specifically, when the ductility of the material of the first partial layer of the organic layer 120 and the ductility of the material of the coating layer 220 are higher, it is more reliable that the coating layer 220 is cracked. Can be prevented. Specifically, when the material of the intermediate layer 210 has high ductility, the intermediate layer 210 can be flexibly deformed. For this reason, even if the difference between the linear expansion coefficient of the organic layer 120 (particularly, the first partial layer of the organic layer 120) and the linear expansion coefficient of the covering layer 220 is large, the intermediate layer 210 has a stress of the covering layer 220. It can be deformed to relax. In this way, it is possible to prevent the coating layer 220 from cracking with higher reliability.
 中間層210が複数の発光部152及び複数の透光部154に亘って広がっている場合、被覆層220が割れることを高い信頼性で防止することができる。具体的には、中間層210が複数の発光部152及び複数の透光部154に亘って広がっている場合、被覆層220は、いずれの領域においても、中間層210に接することになる。この場合、被覆層220の下の領域(すなわち、中間層210)の線膨張係数は、複数の発光部152及び複数の透光部154に亘って一定となっている。このため、発光装置10の製造プロセス中の加熱によって中間層210が膨張しても、被覆層220が割れるように中間層210が膨張することを防止することができる。このようにして、被覆層220が割れることを高い信頼性で防止することができる。 When the intermediate layer 210 extends over the plurality of light emitting portions 152 and the plurality of light transmitting portions 154, the covering layer 220 can be prevented from being cracked with high reliability. Specifically, when the intermediate layer 210 extends over the plurality of light emitting portions 152 and the plurality of light transmitting portions 154, the covering layer 220 is in contact with the intermediate layer 210 in any region. In this case, the linear expansion coefficient of the region under the covering layer 220 (that is, the intermediate layer 210) is constant over the plurality of light emitting units 152 and the plurality of light transmitting units 154. For this reason, even if the intermediate layer 210 expands due to heating during the manufacturing process of the light emitting device 10, it is possible to prevent the intermediate layer 210 from expanding so that the covering layer 220 is broken. In this way, it is possible to prevent the covering layer 220 from cracking with high reliability.
 次に、図1~図3を用いて、発光装置10の平面レイアウトの詳細について説明する。発光装置10は、基板100、複数の第1電極110、複数の第1接続部112、複数の第1端子114、第1配線116、複数の第2電極130、複数の第2接続部132、複数の第2端子134、第2配線136及び複数の絶縁層140を備えている。 Next, details of the planar layout of the light emitting device 10 will be described with reference to FIGS. The light emitting device 10 includes a substrate 100, a plurality of first electrodes 110, a plurality of first connection portions 112, a plurality of first terminals 114, a first wiring 116, a plurality of second electrodes 130, a plurality of second connection portions 132, A plurality of second terminals 134, a second wiring 136, and a plurality of insulating layers 140 are provided.
 基板100の形状は、第1面102に垂直な方向から見た場合、一対の長辺及び一対の短辺を有する矩形である。ただし、基板100の形状は、本図に示す例に限定されるものではない。基板100の形状は、第1面102に垂直な方向から見た場合、例えば円でもよいし、又は矩形以外の多角形であってもよい。 The shape of the substrate 100 is a rectangle having a pair of long sides and a pair of short sides when viewed from a direction perpendicular to the first surface 102. However, the shape of the substrate 100 is not limited to the example shown in this figure. The shape of the substrate 100 may be, for example, a circle or a polygon other than a rectangle when viewed from a direction perpendicular to the first surface 102.
 複数の第1電極110は、互いに離間して位置しており、具体的には、基板100の長辺に沿って一列に並んでいる。複数の第1電極110のそれぞれは、基板100の短辺に沿って延伸している。 The plurality of first electrodes 110 are spaced apart from each other, and are specifically arranged in a line along the long side of the substrate 100. Each of the plurality of first electrodes 110 extends along the short side of the substrate 100.
 複数の第1電極110のそれぞれは、複数の第1接続部112のそれぞれを介して、複数の第1端子114のそれぞれに接続している。複数の第1端子114は、第1配線116によって互いに接続している。第1配線116は、基板100の一対の長辺の一方に沿って延伸している。外部からの電圧は、第1配線116、第1端子114及び第1接続部112を介して第1電極110に供給される。なお、本図に示す例において、第1電極110、第1接続部112及び第1端子114は、互いに一体となっている。言い換えると、発光装置10は、第1電極110として機能する領域、第1接続部112として機能する領域及び第1端子114として機能する領域を有する導電層を備えている。 Each of the plurality of first electrodes 110 is connected to each of the plurality of first terminals 114 via each of the plurality of first connection portions 112. The plurality of first terminals 114 are connected to each other by the first wiring 116. The first wiring 116 extends along one of the pair of long sides of the substrate 100. An external voltage is supplied to the first electrode 110 via the first wiring 116, the first terminal 114, and the first connection portion 112. In the example shown in the figure, the first electrode 110, the first connection portion 112, and the first terminal 114 are integrated with each other. In other words, the light emitting device 10 includes a conductive layer having a region functioning as the first electrode 110, a region functioning as the first connection portion 112, and a region functioning as the first terminal 114.
 複数の第2電極130のそれぞれは、複数の第1電極110のそれぞれに重なっている。複数の第2電極130は、互いに離間して位置しており、具体的には、基板100の長辺に沿って一列に並んでいる。複数の第2電極130のそれぞれは、基板100の短辺に沿って延伸しており、具体的には、基板100の短辺に沿って延伸する一対の長辺及び基板100の長辺に沿って延伸する一対の短辺を有している。 Each of the plurality of second electrodes 130 overlaps each of the plurality of first electrodes 110. The plurality of second electrodes 130 are spaced apart from each other, specifically, aligned in a line along the long side of the substrate 100. Each of the plurality of second electrodes 130 extends along the short side of the substrate 100, specifically, along a pair of long sides extending along the short side of the substrate 100 and a long side of the substrate 100. And a pair of short sides extending.
 複数の第2電極130のそれぞれは、複数の第2接続部132のそれぞれを介して、複数の第2端子134のそれぞれに接続している。複数の第2端子134は、第2配線136によって互いに接続している。第2配線136は、複数の第1電極110及び複数の第2電極130を挟んで第1配線116と対向しており、基板100の一対の長辺の他方に沿って延伸している。外部からの電圧は、第2配線136、第2端子134及び第2接続部132を介して第2電極130に供給される。なお、本図に示す例において、第2接続部132及び第2端子134は、互いに一体となっている。言い換えると、発光装置10は、第2接続部132として機能する領域及び第2端子134として機能する領域を有する導電層を備えている。 Each of the plurality of second electrodes 130 is connected to each of the plurality of second terminals 134 via each of the plurality of second connection portions 132. The plurality of second terminals 134 are connected to each other by the second wiring 136. The second wiring 136 is opposed to the first wiring 116 across the plurality of first electrodes 110 and the plurality of second electrodes 130, and extends along the other of the pair of long sides of the substrate 100. An external voltage is supplied to the second electrode 130 via the second wiring 136, the second terminal 134, and the second connection part 132. In the example shown in the figure, the second connection portion 132 and the second terminal 134 are integrated with each other. In other words, the light emitting device 10 includes a conductive layer having a region functioning as the second connection portion 132 and a region functioning as the second terminal 134.
 複数の絶縁層140のそれぞれは、複数の第1電極110のそれぞれに重なっている。複数の絶縁層140は、互いに離間して位置しており、具体的には、基板100の長辺に沿って一列に並んでいる。複数の絶縁層140のそれぞれは、基板100の短辺に沿って延伸しており、具体的には、基板100の短辺に沿って延伸する一対の長辺及び基板100の長辺に沿って延伸する一対の短辺を有している。 Each of the plurality of insulating layers 140 overlaps each of the plurality of first electrodes 110. The plurality of insulating layers 140 are spaced apart from each other, and specifically are arranged in a line along the long side of the substrate 100. Each of the plurality of insulating layers 140 extends along the short side of the substrate 100, specifically, along the pair of long sides extending along the short side of the substrate 100 and the long side of the substrate 100. It has a pair of short sides that extend.
 複数の絶縁層140のそれぞれは、開口142を有している。図4を用いて後述するように、開口142内において、第1電極110、有機層120及び第2電極130は、発光部152として機能する領域(第1電極110、有機層120及び第2電極130の積層構造)を有している。言い換えると、絶縁層140は、発光部152を画定している。発光部152(開口142)は、基板100の短辺に沿って延伸しており、具体的には、基板100の短辺に沿って延伸する一対の長辺及び基板100の長辺に沿って延伸する一対の短辺を有している。 Each of the plurality of insulating layers 140 has an opening 142. As will be described later with reference to FIG. 4, in the opening 142, the first electrode 110, the organic layer 120, and the second electrode 130 are regions that function as the light emitting unit 152 (the first electrode 110, the organic layer 120, and the second electrode 130 laminated structures). In other words, the insulating layer 140 defines the light emitting portion 152. The light emitting unit 152 (opening 142) extends along the short side of the substrate 100, specifically, along a pair of long sides extending along the short side of the substrate 100 and a long side of the substrate 100. It has a pair of short sides that extend.
 次に、図4を用いて、発光装置10の断面の詳細を説明する。発光装置10は、基板100、第1電極110、有機層120、第2電極130、絶縁層140及び封止部200を備えている。基板100は、第1面102及び第2面104を有している。第2面104は、第1面102の反対側にある。第1電極110、有機層120、第2電極130及び絶縁層140は、基板100の第1面102上にある。第1電極110は、陽極として機能しており、第2電極130は、陰極として機能している。絶縁層140の開口142内において、第1電極110、有機層120及び第2電極130は、発光部152として機能する領域を有しており、この領域において、第1電極110、有機層120及び第2電極130は、互いに重なっている。封止部200は、中間層210及び被覆層220を有している。 Next, the details of the cross section of the light emitting device 10 will be described with reference to FIG. The light emitting device 10 includes a substrate 100, a first electrode 110, an organic layer 120, a second electrode 130, an insulating layer 140, and a sealing unit 200. The substrate 100 has a first surface 102 and a second surface 104. The second surface 104 is on the opposite side of the first surface 102. The first electrode 110, the organic layer 120, the second electrode 130, and the insulating layer 140 are on the first surface 102 of the substrate 100. The first electrode 110 functions as an anode, and the second electrode 130 functions as a cathode. In the opening 142 of the insulating layer 140, the first electrode 110, the organic layer 120, and the second electrode 130 have a region that functions as the light emitting unit 152. In this region, the first electrode 110, the organic layer 120, and The second electrodes 130 overlap each other. The sealing unit 200 includes an intermediate layer 210 and a covering layer 220.
 基板100は、透光性を有している。一例において、基板100は、ガラスを含んでいる。他の例において、基板100は、樹脂を含んでいてもよい。 The substrate 100 has translucency. In one example, the substrate 100 includes glass. In another example, the substrate 100 may include a resin.
 第1電極110は、透光性及び導電性を有している。具体的には、第1電極110は、透光性及び導電性を有する材料を含んでおり、例えば金属酸化物、具体的には例えば、ITO(Indium Tin Oxide)及びIZO(Indium Zinc Oxide)の少なくとも1つを含んでいる。これにより、有機層120からの光は、第1電極110を透過することができる。 The first electrode 110 has translucency and conductivity. Specifically, the first electrode 110 includes a material having translucency and conductivity. For example, a metal oxide, for example, ITO (Indium Tin Oxide) and IZO (Indium Zinc Oxide) are used. Contains at least one. Accordingly, light from the organic layer 120 can pass through the first electrode 110.
 有機層120は、例えば、正孔注入層、正孔輸送層、発光層、電子輸送層及び電子注入層を含んでいる。正孔注入層及び正孔輸送層は、第1電極110に接続している。電子輸送層及び電子注入層は、第2電極130に接続している。発光層は、第1電極110と第2電極130の間の電圧によって光を発する。 The organic layer 120 includes, for example, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer. The hole injection layer and the hole transport layer are connected to the first electrode 110. The electron transport layer and the electron injection layer are connected to the second electrode 130. The light emitting layer emits light by a voltage between the first electrode 110 and the second electrode 130.
 本図に示す例において、有機層120は、複数の発光部152及び複数の透光部154に亘って広がっている。このため、有機層120は、複数の発光部152の間で共通している。さらに、互いに隣接する発光部152の間で、基板100の第1面102は、有機層120によって覆われている。 In the example shown in the drawing, the organic layer 120 extends over the plurality of light emitting portions 152 and the plurality of light transmitting portions 154. For this reason, the organic layer 120 is common among the plurality of light emitting units 152. Further, the first surface 102 of the substrate 100 is covered with the organic layer 120 between the light emitting units 152 adjacent to each other.
 第2電極130は、光反射性及び導電性を有している。具体的には、第2電極130は、光反射性及び導電性を有する材料を含んでおり、例えば金属、具体的には例えば、Al、Ag及びMgAgの少なくとも1つを含んでいる。これにより、有機層120からの光は、第2電極130をほとんど透過することなく、第2電極130で反射される。言い換えると、本図に示す例において、発光装置10は、ボトムエミッションであり、有機層120からの光のほとんどは、第2面104側から出射される。 The second electrode 130 has light reflectivity and conductivity. Specifically, the second electrode 130 includes a material having light reflectivity and conductivity, and includes, for example, a metal, specifically, for example, at least one of Al, Ag, and MgAg. Thereby, the light from the organic layer 120 is reflected by the second electrode 130 with hardly passing through the second electrode 130. In other words, in the example shown in this drawing, the light emitting device 10 is bottom emission, and most of the light from the organic layer 120 is emitted from the second surface 104 side.
 なお、第2電極130の光反射性に起因して、第2電極130は、遮光性を有している。このため、本図に示す例では、有機層120からの光が第2電極130から漏れることが抑制されている。 Note that due to the light reflectivity of the second electrode 130, the second electrode 130 has a light shielding property. For this reason, in the example shown to this figure, it is suppressed that the light from the organic layer 120 leaks from the 2nd electrode 130. FIG.
 絶縁層140は、透光性を有している。一例において、絶縁層140は、有機絶縁材料、具体的には例えばポリイミドを含んでいる。他の例において、絶縁層140は、無機絶縁材料、具体的には例えば、シリコン酸化物(SiO)、シリコン酸窒化物(SiON)又はシリコン窒化物(SiN)を含んでいてもよい。 The insulating layer 140 has translucency. In one example, the insulating layer 140 includes an organic insulating material, specifically, for example, polyimide. In another example, the insulating layer 140 may include an inorganic insulating material, specifically, for example, silicon oxide (SiO x ), silicon oxynitride (SiON), or silicon nitride (SiN x ).
 中間層210は、被覆層220の応力を緩和するために設けられている。本図に示す例において、中間層210は、有機層、より具体的には樹脂層である。中間層210は、高い延性を有していることが好ましく、一例において、硬質塩化ビニル樹脂、AS樹脂、ガラス繊維強化熱可塑性樹脂(例えば、ポリカーボネート樹脂又はスチレン系樹脂)、ガラス繊維強化ポリエステル樹脂、軟質塩化ビニル樹脂、低密度ポリエチレン、ABS樹脂、フッ素樹脂、ポリプロピレン、高密度ポリエチレン、耐衝撃性ポリスチレン、アセタール樹脂、ポリアミド樹脂、ポリカーボネート及び酢酸セルロースからなる群から選択される少なくとも一つを含んでいる。 The intermediate layer 210 is provided to relieve the stress of the coating layer 220. In the example shown in the figure, the intermediate layer 210 is an organic layer, more specifically a resin layer. The intermediate layer 210 preferably has high ductility. In one example, the hard vinyl chloride resin, AS resin, glass fiber reinforced thermoplastic resin (for example, polycarbonate resin or styrene resin), glass fiber reinforced polyester resin, Contains at least one selected from the group consisting of soft vinyl chloride resin, low density polyethylene, ABS resin, fluororesin, polypropylene, high density polyethylene, high impact polystyrene, acetal resin, polyamide resin, polycarbonate and cellulose acetate .
 本図に示す例では、中間層210は、電気絶縁性を有している。このため、複数の第2電極130が中間層210を介して互いに接続することはない。具体的には、本図に示す例では、中間層210が複数の中間層210に接している。このような場合であっても、複数の第2電極130が中間層210を介して互いに接続することはない。 In the example shown in this figure, the intermediate layer 210 has electrical insulation. For this reason, the plurality of second electrodes 130 are not connected to each other through the intermediate layer 210. Specifically, in the example shown in the drawing, the intermediate layer 210 is in contact with the plurality of intermediate layers 210. Even in such a case, the plurality of second electrodes 130 are not connected to each other through the intermediate layer 210.
 中間層210は、透光性を有している。このため、発光装置10の光線透過率を高くすることができる。具体的には、本図に示す例では、中間層210の一部が透光部154内に位置している。このような場合であっても、発光装置10の光線透過率を高くすることができる。 The intermediate layer 210 has translucency. For this reason, the light transmittance of the light emitting device 10 can be increased. Specifically, in the example shown in this drawing, a part of the intermediate layer 210 is located in the light transmitting portion 154. Even in such a case, the light transmittance of the light emitting device 10 can be increased.
 本図に示す例において、中間層210は、複数の発光部152の存在により基板100の第1面102上に生じている凹凸を平坦化している。具体的には、中間層210の第2面(上面)は、発光部152と重なる領域で基板100の第1面102から高さh1(第1の高さ)に位置しており、透光部154内で基板100の第1面102から高さh2(第2の高さ)に位置している。発光部152の上端(第2電極130の上端)は、基板100の第1面102から高さh3(第3の高さ)に位置している。高さh1と高さh2の差の絶対値は、高さh3よりも小さいものとなっている。このようにして、中間層210は、複数の発光部152の存在により基板100の第1面102上に生じている凹凸を平坦化している。 In the example shown in the figure, the intermediate layer 210 flattens the unevenness generated on the first surface 102 of the substrate 100 due to the presence of the plurality of light emitting portions 152. Specifically, the second surface (upper surface) of the intermediate layer 210 is located at a height h1 (first height) from the first surface 102 of the substrate 100 in a region overlapping with the light emitting unit 152, and thus the light transmitting portion. Within the portion 154, the height h2 (second height) is located from the first surface 102 of the substrate 100. The upper end of the light emitting unit 152 (the upper end of the second electrode 130) is located at a height h3 (third height) from the first surface 102 of the substrate 100. The absolute value of the difference between the height h1 and the height h2 is smaller than the height h3. In this way, the intermediate layer 210 flattens the unevenness generated on the first surface 102 of the substrate 100 due to the presence of the plurality of light emitting portions 152.
 中間層210の上記した高さh2は、一例において、発光部152の上記した高さh3の1.5倍以上かつ発光部152の上記した高さh3の300倍以下である。中間層210によって発光部152を確実に覆う観点からすると、中間層210の上記した高さh2は、ある程度高いことが好ましく、上記したように、高さh3の1.5倍以上、好ましくは高さh3の5倍以上である。一方、透光部154における光線透過率を高くする観点からすると、中間層210の上記した高さh2は、ある程度低いことが好ましく、上記したように、高さh3の300倍以下、好ましくは高さh3の100倍以下である。 In the example, the height h2 of the intermediate layer 210 is not less than 1.5 times the height h3 of the light emitting portion 152 and not more than 300 times the height h3 of the light emitting portion 152. From the viewpoint of reliably covering the light emitting unit 152 with the intermediate layer 210, the above-described height h2 of the intermediate layer 210 is preferably high to some extent, and as described above, 1.5 times or more, preferably high, of the height h3. It is more than 5 times the length h3. On the other hand, from the viewpoint of increasing the light transmittance in the light transmitting portion 154, the height h2 of the intermediate layer 210 is preferably low to some extent, and as described above, not more than 300 times the height h3, preferably high. It is 100 times or less of h3.
 中間層210が有機層、より具体的には樹脂層である場合、中間層210の厚さは、一例において、1nm以上である。被覆層220の応力を緩和させる観点からすると、透光部154における中間層210の厚さは、ある程度厚いことが好ましく、上記したように、1nm以上、好ましくは5μm以上である。なお、中間層210が樹脂層である場合、中間層210は、ある程度高い透光性を有している。このため、中間層210が樹脂層である場合、中間層210の厚さが例えば300μm以上であっても、中間層210は、高い透光性を有している。 When the intermediate layer 210 is an organic layer, more specifically, a resin layer, the thickness of the intermediate layer 210 is 1 nm or more in one example. From the viewpoint of relieving the stress of the covering layer 220, the thickness of the intermediate layer 210 in the light transmitting portion 154 is preferably somewhat thick, and as described above, it is 1 nm or more, preferably 5 μm or more. Note that when the intermediate layer 210 is a resin layer, the intermediate layer 210 has a certain degree of translucency. For this reason, when the intermediate layer 210 is a resin layer, the intermediate layer 210 has high translucency even if the thickness of the intermediate layer 210 is, for example, 300 μm or more.
 被覆層220は、発光部152を劣化させる物質(例えば、水又は酸素)が発光部152、特に有機層120に侵入することを防ぐために設けられている。被覆層220は、ALDによって形成された層であり、絶縁性の無機材料を含んでいる。第1例において、被覆層220は、酸化物、具体的には、酸化アルミニウム(Al)、酸化ハフニウム(HfO)、ケイ酸ハフニウム(HfSiO)、酸化ランタン(La)、酸化シリコン(SiO)、チタン酸ストロンチウム(STO)、酸化タンタル(Ta)、酸化チタン(TiO)及び酸化亜鉛(ZnO)からなる群から選択された少なくとも一つを含む。第2例において、被覆層220は、窒化物、具体的には、窒化アルミニウム(AlN)、窒化ハフニウム(HfN)、窒化シリコン(SiN)、窒化タンタル(TaN)及び窒化チタン(TiN)からなる群から選択された少なくとも一つを含む。 The covering layer 220 is provided to prevent a substance (for example, water or oxygen) that degrades the light emitting unit 152 from entering the light emitting unit 152, particularly the organic layer 120. The covering layer 220 is a layer formed by ALD and includes an insulating inorganic material. In the first example, the coating layer 220 is an oxide, specifically, aluminum oxide (Al 2 O 3 ), hafnium oxide (HfO 2 ), hafnium silicate (HfSiO), lanthanum oxide (La 2 O 3 ), It includes at least one selected from the group consisting of silicon oxide (SiO 2 ), strontium titanate (STO), tantalum oxide (Ta 2 O 5 ), titanium oxide (TiO 2 ), and zinc oxide (ZnO). In the second example, the covering layer 220 is made of nitride, specifically, aluminum nitride (AlN), hafnium nitride (HfN), silicon nitride (SiN x ), tantalum nitride (TaN), and titanium nitride (TiN). Including at least one selected from the group.
 被覆層220の厚さは、一例において、10nm以上300nm以下である。発光部152を高い信頼性で封止する観点からすると、被覆層220の厚さは、ある程度厚いことが好ましく、上記したように10nm以上、好ましくは40nm以上である。これに対して、被覆層220の応力を小さくし、かつ被覆層220の堆積に要する時間を短くする観点からすると、被覆層220の厚さは、ある程度薄いことが好ましく、上記したように300nm以下、好ましくは100nm以下である。 The thickness of the coating layer 220 is 10 nm or more and 300 nm or less in one example. From the viewpoint of sealing the light emitting unit 152 with high reliability, the thickness of the covering layer 220 is preferably thick to some extent, and is 10 nm or more, preferably 40 nm or more as described above. On the other hand, from the viewpoint of reducing the stress of the coating layer 220 and shortening the time required for the deposition of the coating layer 220, the thickness of the coating layer 220 is preferably thin to some extent, and is 300 nm or less as described above. The thickness is preferably 100 nm or less.
 本図に示すように、第2電極130は端部130a及び端部130bを有し、絶縁層140は端部140a及び端部140bを有している。端部130a及び端部140aは、互いに同じ方向を向いている。端部130b及び端部140bは、互いに同じ方向を向いており、それぞれ、端部130a及び端部140aの反対側にある。 As shown in the figure, the second electrode 130 has an end portion 130a and an end portion 130b, and the insulating layer 140 has an end portion 140a and an end portion 140b. The end part 130a and the end part 140a face the same direction. The end portion 130b and the end portion 140b face the same direction, and are on the opposite sides of the end portion 130a and the end portion 140a, respectively.
 基板100の第1面102は、複数の領域102a、複数の領域102b複数の領域102cを有している。複数の領域102aのそれぞれは、第2電極130の端部130aと重なる位置から端部130bと重なるまで広がっている。複数の領域102bのそれぞれは、第2電極130の端部130aと重なる位置から絶縁層140の端部140aと重なる位置まで(又は第2電極130の端部130bと重なる位置から絶縁層140の端部140bと重なる位置まで)広がっている。複数の領域102cのそれぞれは、互いに隣接する2つの絶縁層140のうちの一方の絶縁層140の端部140aと重なる位置から他方の絶縁層140の端部140bと重なる位置まで広がっている。 The first surface 102 of the substrate 100 has a plurality of regions 102a, a plurality of regions 102b, and a plurality of regions 102c. Each of the plurality of regions 102a extends from a position overlapping with the end portion 130a of the second electrode 130 to overlap with the end portion 130b. Each of the plurality of regions 102b extends from a position overlapping the end portion 130a of the second electrode 130 to a position overlapping the end portion 140a of the insulating layer 140 (or from a position overlapping the end portion 130b of the second electrode 130 to the end of the insulating layer 140. (Up to a position overlapping the portion 140b). Each of the plurality of regions 102c extends from a position overlapping one end 140a of one insulating layer 140 of two adjacent insulating layers 140 to a position overlapping the end 140b of the other insulating layer 140.
 領域102aは、第2電極130と重なっており、このため、発光装置10は、領域102a、領域102b及び領域102cと重なる領域の中で、領域102aと重なる領域で最も低い光線透過率を有している。領域102cは、第2電極130及び絶縁層140のいずれとも重なっておらず、このため、発光装置10は、領域102a、領域102b及び領域102cと重なる領域の中で、領域102cと重なる領域で最も高い光線透過率を有している。領域102bは、第2電極130と重ならず絶縁層140と重なっており、このため、発光装置10は、領域102bと重なる領域においては、領域102aと重なる領域における光線透過率よりも高く、かつ領域102cと重なる領域における光線透過率よりも低い光線透過率を有している。 The region 102a overlaps with the second electrode 130, and thus the light emitting device 10 has the lowest light transmittance in the region overlapping with the region 102a among the regions overlapping with the region 102a, the region 102b, and the region 102c. ing. The region 102c does not overlap with any of the second electrode 130 and the insulating layer 140. Therefore, the light-emitting device 10 is the most overlapping region with the region 102c among the regions 102a, 102b, and 102c. High light transmittance. The region 102b does not overlap with the second electrode 130 but overlaps the insulating layer 140. Therefore, in the region overlapping with the region 102b, the light emitting device 10 has higher light transmittance in the region overlapping with the region 102a, and The light transmittance is lower than the light transmittance in a region overlapping with the region 102c.
 本図に示す例では、発光装置10の全体としての光線透過率が高いものとなっている。詳細には、本図に示す例では、光線透過率の高い領域の幅、すなわち、領域102cの幅d3が広くなっており、具体的には、領域102cの幅d3は、領域102bの幅d2よりも広くなっている(d3>d2)。このようにして、発光装置10の全体としての光線透過率は、高いものとなっている。 In the example shown in this figure, the light transmittance of the light emitting device 10 as a whole is high. Specifically, in the example shown in this figure, the width of the region having a high light transmittance, that is, the width d3 of the region 102c is widened. Specifically, the width d3 of the region 102c is the width d2 of the region 102b. (D3> d2). In this way, the light transmittance of the light emitting device 10 as a whole is high.
 本図に示す例では、発光装置10が特定の波長の光を多く吸収することが防止されている。詳細には、本図に示す例では、光が絶縁層140を透過する領域の幅、すなわち、領域102bの幅d2が狭くなっており、具体的には、領域102bの幅d2は、領域102cの幅d3よりも狭くなっている(d2<d3)。絶縁層140は、特定の波長の光を吸収することがある。このような場合においても、本図に示す例では、絶縁層140を透過する光の量が少ない。このようにして、発光装置10が特定の波長の光を多く吸収することが防止されている。 In the example shown in the figure, the light emitting device 10 is prevented from absorbing a large amount of light having a specific wavelength. Specifically, in the example shown in this figure, the width of the region where light is transmitted through the insulating layer 140, that is, the width d2 of the region 102b is narrowed. Specifically, the width d2 of the region 102b is the region 102c. Is smaller than the width d3 (d2 <d3). The insulating layer 140 may absorb light having a specific wavelength. Even in such a case, the amount of light transmitted through the insulating layer 140 is small in the example shown in FIG. In this way, the light emitting device 10 is prevented from absorbing much light of a specific wavelength.
 なお、領域102cの幅d3は、領域102aの幅d1よりも広くてもよいし(d3>d1)、領域102aの幅d1よりも狭くてもよいし(d3<d1)、又は領域102aの幅d1と等しくてもよい(d3=d1)。 Note that the width d3 of the region 102c may be wider than the width d1 of the region 102a (d3> d1), may be narrower than the width d1 of the region 102a (d3 <d1), or the width of the region 102a. It may be equal to d1 (d3 = d1).
 一例において、領域102aの幅d1に対する領域102bの幅d2の比d2/d1は、0以上0.2以下であり(0≦d2/d1≦0.2)、領域102aの幅d1に対する領域102cの幅d3の比d3/d1は、0.3以上2以下である(0.3≦d3/d1≦2)。より具体的には、一例において、領域102aの幅d1は、50μm以上500μm以下であり、領域102bの幅d2は、0μm以上100μm以下であり、領域102cの幅d3は、15μm以上1000μm以下である。 In one example, the ratio d2 / d1 of the width d2 of the region 102b to the width d1 of the region 102a is 0 or more and 0.2 or less (0 ≦ d2 / d1 ≦ 0.2), and the ratio of the region 102c to the width d1 of the region 102a is The ratio d3 / d1 of the width d3 is not less than 0.3 and not more than 2 (0.3 ≦ d3 / d1 ≦ 2). More specifically, in one example, the width d1 of the region 102a is 50 μm or more and 500 μm or less, the width d2 of the region 102b is 0 μm or more and 100 μm or less, and the width d3 of the region 102c is 15 μm or more and 1000 μm or less. .
 本図に示す例において、発光装置10は、半透過OLEDとして機能している。具体的には、第2電極130と重ならない領域は、透光部154として機能している。このようにして、発光装置10では、複数の発光部152及び複数の透光部154が交互に並んでいる。複数の発光部152から光が発せられていない場合、人間の視覚では、第1面102側の物体が第2面104側から透けて見え、第2面104側の物体が第1面102側から透けて見える。さらに、複数の発光部152からの光は、第2面104側から主に出力され、第1面102側からはほとんど出力されない。複数の発光部152から光が発せられている場合、人間の視覚では、第2面104側の物体が第1面102側から透けて見える。 In the example shown in the figure, the light emitting device 10 functions as a transflective OLED. Specifically, a region that does not overlap with the second electrode 130 functions as the light transmitting portion 154. In this way, in the light emitting device 10, the plurality of light emitting units 152 and the plurality of light transmitting units 154 are alternately arranged. When light is not emitted from the plurality of light emitting units 152, an object on the first surface 102 side can be seen through from the second surface 104 side, and an object on the second surface 104 side is visible on the first surface 102 side. See through. Furthermore, light from the plurality of light emitting units 152 is mainly output from the second surface 104 side, and is hardly output from the first surface 102 side. When light is emitted from the plurality of light emitting units 152, an object on the second surface 104 side can be seen through from the first surface 102 side in human vision.
 一例において、発光装置10は、自動車のハイマウントストップランプとして用いることができる。この場合、発光装置10は、自動車のリアウインドウに貼り付けることができる。さらに、この場合、発光装置10は、例えば、赤色の光を発する。 In one example, the light emitting device 10 can be used as a high-mount stop lamp of an automobile. In this case, the light emitting device 10 can be attached to the rear window of the automobile. Further, in this case, the light emitting device 10 emits red light, for example.
 図5は、図4に示した封止部200の端部E及びその周辺の一例を説明するための図である。本図に示す例において、中間層210は、有機層120より外側に広がっており、有機層120の端部を覆っている。このようにして、中間層210は、有機層120の端部の外側で基板100の第1面102に接している。言い換えると、有機層120の端部は、中間層210から露出していない。さらに、本図に示す例において、被覆層220は、中間層210より外側に広がっており、中間層210の端部を覆っている。このようにして、被覆層220は、中間層210の端部の外側で基板100の第1面102に接している。言い換えると、中間層210の端部は、封止部200の端部Eから露出していない。 FIG. 5 is a view for explaining an example of the end portion E of the sealing portion 200 shown in FIG. 4 and its surroundings. In the example shown in the figure, the intermediate layer 210 extends outward from the organic layer 120 and covers the end of the organic layer 120. In this way, the intermediate layer 210 is in contact with the first surface 102 of the substrate 100 outside the edge of the organic layer 120. In other words, the end portion of the organic layer 120 is not exposed from the intermediate layer 210. Furthermore, in the example shown in this drawing, the covering layer 220 extends outward from the intermediate layer 210 and covers the end of the intermediate layer 210. Thus, the covering layer 220 is in contact with the first surface 102 of the substrate 100 outside the end of the intermediate layer 210. In other words, the end portion of the intermediate layer 210 is not exposed from the end portion E of the sealing portion 200.
 有機層120の端部が中間層210から露出していない場合、被覆層220が割れることを高い信頼性で防止することができる。具体的には、有機層120の端部が中間層210から露出していない場合、有機層120の端部が被覆層220に接触することを防止することができる。この場合、有機層120の端部の線膨張係数と被覆層220の線膨張係数の差が大きくても、被覆層220に応力が発生することを防止することができる。このようにして、被覆層220が割れることを高い信頼性で防止することができる。 When the end portion of the organic layer 120 is not exposed from the intermediate layer 210, it is possible to prevent the coating layer 220 from cracking with high reliability. Specifically, when the end portion of the organic layer 120 is not exposed from the intermediate layer 210, the end portion of the organic layer 120 can be prevented from coming into contact with the coating layer 220. In this case, even if the difference between the linear expansion coefficient at the end of the organic layer 120 and the linear expansion coefficient of the coating layer 220 is large, it is possible to prevent stress from being generated in the coating layer 220. In this way, it is possible to prevent the covering layer 220 from cracking with high reliability.
 中間層210の端部が封止部200の端部Eから露出していない場合、発光部152を劣化させる物質(例えば、水又は酸素)が封止部200の端部Eから発光部152に浸入することを高い信頼性で防止することができる。具体的には、被覆層220は、ALDによって形成された層であり、このため、高い密封性を確保している。これに対して、中間層210が有機層である場合、中間層210は、発光部152を劣化させる物質を透過させやすい。本図に示す例では、中間層210の端部が封止部200の端部Eから露出しておらず、被覆層220によって覆われている。このため、発光部152を劣化させる物質が封止部200の端部Eから発光部152に浸入することを高い信頼性で防止することができる。 When the end portion of the intermediate layer 210 is not exposed from the end portion E of the sealing portion 200, a substance (for example, water or oxygen) that deteriorates the light emitting portion 152 is transferred from the end portion E of the sealing portion 200 to the light emitting portion 152. Intrusion can be prevented with high reliability. Specifically, the coating layer 220 is a layer formed by ALD, and therefore, high sealing performance is ensured. On the other hand, when the intermediate layer 210 is an organic layer, the intermediate layer 210 easily transmits a substance that degrades the light emitting unit 152. In the example shown in the drawing, the end of the intermediate layer 210 is not exposed from the end E of the sealing portion 200 and is covered with the coating layer 220. For this reason, it can prevent with high reliability that the substance which degrades the light emission part 152 permeates into the light emission part 152 from the edge part E of the sealing part 200. FIG.
 次に、図1~図5に示した発光装置10の製造方法について説明する。 Next, a method for manufacturing the light emitting device 10 shown in FIGS. 1 to 5 will be described.
 まず、基板100の第1面102上に第1電極110、第1接続部112、第1端子114及び第2接続部132及び第2端子134を形成する。一例において、第1電極110、第1接続部112、第1端子114、第2接続部132及び第2端子134は、スパッタリングにより形成された導電層をパターニングすることにより形成される。 First, the first electrode 110, the first connection part 112, the first terminal 114, the second connection part 132, and the second terminal 134 are formed on the first surface 102 of the substrate 100. In one example, the first electrode 110, the first connection part 112, the first terminal 114, the second connection part 132, and the second terminal 134 are formed by patterning a conductive layer formed by sputtering.
 次いで、絶縁層140を形成する。一例において、絶縁層140は、基板100の第1面102上に塗布された感光性樹脂をパターニングすることにより形成される。次いで、有機層120を形成する。一例において、有機層120は、蒸着により形成される。他の例において、有機層120は、塗布により形成されてもよい。この場合、絶縁層140の開口142内に有機層120の材料を塗布する。次いで、第2電極130を形成する。一例において、第2電極130は、マスクを用いた真空蒸着により形成される。 Next, the insulating layer 140 is formed. In one example, the insulating layer 140 is formed by patterning a photosensitive resin applied on the first surface 102 of the substrate 100. Next, the organic layer 120 is formed. In one example, the organic layer 120 is formed by vapor deposition. In another example, the organic layer 120 may be formed by application. In this case, the material of the organic layer 120 is applied in the opening 142 of the insulating layer 140. Next, the second electrode 130 is formed. In one example, the second electrode 130 is formed by vacuum deposition using a mask.
 次いで、中間層210を形成する。一例において、中間層210は、CVD(Chemical Vapor Deposition)によって形成される。 Next, the intermediate layer 210 is formed. In one example, the intermediate layer 210 is formed by CVD (Chemical Vapor Deposition).
 次いで、ALDによって被覆層220を形成する。 Next, the coating layer 220 is formed by ALD.
 このようにして、図1~図5に示した発光装置10が製造される。 In this way, the light emitting device 10 shown in FIGS. 1 to 5 is manufactured.
 図6は、図4の第1の変形例を示す図である。本図に示す例において、中間層210の第2面(上面)は、複数の発光部152及び複数の透光部154に亘って、実質的に平坦であり、具体的には、基板100の第1面102と実質的に平行である。より詳細には、本図に示す例では、中間層210の上記した高さh1は、中間層210の上記した高さh2と実質的に等しく、一例において、中間層210の上記した高さh2の1.0倍以上1.1倍以下である(1.0≦h1/h2≦1.1)。 FIG. 6 is a diagram showing a first modification of FIG. In the example shown in this figure, the second surface (upper surface) of the intermediate layer 210 is substantially flat across the plurality of light emitting portions 152 and the plurality of light transmitting portions 154. It is substantially parallel to the first surface 102. More specifically, in the example shown in the figure, the above-described height h1 of the intermediate layer 210 is substantially equal to the above-described height h2 of the intermediate layer 210, and in one example, the above-described height h2 of the intermediate layer 210. 1.0 times to 1.1 times (1.0 ≦ h1 / h2 ≦ 1.1).
 中間層210の第2面(上面)が複数の発光部152及び複数の透光部154に亘って基板100の第1面102と実質的に平行である場合、被覆層220が割れることを高い信頼性で防止することができる。具体的には、中間層210の第2面(上面)が複数の発光部152及び複数の透光部154に亘って基板100の第1面102と実質的に平行である場合、中間層210と被覆層220の界面は、複数の発光部152及び複数の透光部154に亘って平坦となっている。この場合、発光装置10の製造プロセス中の加熱によって有機層120が膨張しても、被覆層220の特定の位置に応力が集中することが防止される。このようにして、被覆層220が割れることを高い信頼性で防止することができる。 When the second surface (upper surface) of the intermediate layer 210 is substantially parallel to the first surface 102 of the substrate 100 across the plurality of light emitting portions 152 and the plurality of light transmitting portions 154, the covering layer 220 is highly likely to crack. It can be prevented with reliability. Specifically, when the second surface (upper surface) of the intermediate layer 210 is substantially parallel to the first surface 102 of the substrate 100 across the plurality of light emitting portions 152 and the plurality of light transmitting portions 154, the intermediate layer 210. And the covering layer 220 are flat across the plurality of light emitting portions 152 and the plurality of light transmitting portions 154. In this case, even if the organic layer 120 expands due to heating during the manufacturing process of the light emitting device 10, stress is prevented from concentrating on a specific position of the coating layer 220. In this way, it is possible to prevent the covering layer 220 from cracking with high reliability.
 図7は、図4の第2の変形例を示す図である。本図に示すように、複数の有機層120が基板100の第1面102上で並んでいてもよい。言い換えると、本図に示す例では、有機層120が複数の発光部152及び複数の透光部154に亘って広がっていない。このため、基板100の第1面102は、互いに隣接する発光部152の間で有機層120から露出する領域を有している。有機層120は、第2電極130よりも外側に広がっている。本図に示す例においても、有機層120と被覆層220の間に中間層210が位置している。このため、被覆層220が割れることを高い信頼性で防止することができる。 FIG. 7 is a diagram showing a second modification of FIG. As shown in the figure, a plurality of organic layers 120 may be arranged on the first surface 102 of the substrate 100. In other words, in the example shown in this drawing, the organic layer 120 does not spread over the plurality of light emitting portions 152 and the plurality of light transmitting portions 154. For this reason, the first surface 102 of the substrate 100 has a region exposed from the organic layer 120 between the light emitting units 152 adjacent to each other. The organic layer 120 extends outward from the second electrode 130. Also in the example shown in this figure, the intermediate layer 210 is located between the organic layer 120 and the coating layer 220. For this reason, it is possible to prevent the covering layer 220 from cracking with high reliability.
 図8は、図4の第3の変形例を示す図である。本図に示すように、第1電極110が複数の発光部152及び複数の透光部154に亘って広がっていてもよい。本図に示す例では、第1電極110は、複数の発光部152の間で共通している。さらに、互いに隣接する発光部152の間で、基板100の第1面102は、第1電極110によって覆われている。本図に示す例においても、有機層120と被覆層220の間に中間層210が位置している。このため、被覆層220が割れることを高い信頼性で防止することができる。 FIG. 8 is a diagram showing a third modification of FIG. As shown in the figure, the first electrode 110 may extend over the plurality of light emitting portions 152 and the plurality of light transmitting portions 154. In the example shown in this drawing, the first electrode 110 is common among the plurality of light emitting units 152. Further, the first surface 102 of the substrate 100 is covered with the first electrode 110 between the light emitting units 152 adjacent to each other. Also in the example shown in this figure, the intermediate layer 210 is located between the organic layer 120 and the coating layer 220. For this reason, it is possible to prevent the covering layer 220 from cracking with high reliability.
 図9は、図4の第4の変形例を示す図である。本図に示すように、発光装置10は、絶縁層140(図4)を備えていなくてもよい。具体的には、複数の第1電極110及び複数の第2電極130は、図4に示した例と同様にして、基板100の第1面102上で並んでいる。有機層120は、図4に示した例と同様にして、複数の発光部152及び複数の透光部154に亘って広がっている。有機層120は、第1電極110の端部を覆っている。このため、第2電極130が第1電極110に接触すること、すなわち、第2電極130が第1電極110と短絡することが防止されている。本図に示す例においても、有機層120と被覆層220の間に中間層210が位置している。このため、被覆層220が割れることを高い信頼性で防止することができる。 FIG. 9 is a diagram showing a fourth modification of FIG. As shown in the figure, the light emitting device 10 does not have to include the insulating layer 140 (FIG. 4). Specifically, the plurality of first electrodes 110 and the plurality of second electrodes 130 are arranged on the first surface 102 of the substrate 100 in the same manner as the example shown in FIG. The organic layer 120 extends over the plurality of light emitting units 152 and the plurality of light transmitting units 154 in the same manner as the example shown in FIG. The organic layer 120 covers the end of the first electrode 110. For this reason, it is prevented that the 2nd electrode 130 contacts the 1st electrode 110, ie, the 2nd electrode 130 is short-circuited with the 1st electrode 110. Also in the example shown in this figure, the intermediate layer 210 is located between the organic layer 120 and the coating layer 220. For this reason, it is possible to prevent the covering layer 220 from cracking with high reliability.
 図10は、図4の第5の変形例を示す図である。本図に示す発光装置10は、複数の有機層120のそれぞれが複数の第1電極110のそれぞれと重なっている点を除いて、図9に示した発光装置10と同様である。言い換えると、本図に示す例では、有機層120が複数の発光部152及び複数の透光部154に亘って広がっていない。このため、基板100の第1面102は、互いに隣接する発光部152の間で有機層120から露出する領域を有している。有機層120は、第2電極130よりも外側に広がっている。本図に示す例においても、有機層120と被覆層220の間に中間層210が位置している。このため、被覆層220が割れることを高い信頼性で防止することができる。 FIG. 10 is a diagram showing a fifth modification of FIG. The light emitting device 10 shown in this figure is the same as the light emitting device 10 shown in FIG. 9 except that each of the plurality of organic layers 120 overlaps each of the plurality of first electrodes 110. In other words, in the example shown in this drawing, the organic layer 120 does not spread over the plurality of light emitting portions 152 and the plurality of light transmitting portions 154. For this reason, the first surface 102 of the substrate 100 has a region exposed from the organic layer 120 between the light emitting units 152 adjacent to each other. The organic layer 120 extends outward from the second electrode 130. Also in the example shown in this figure, the intermediate layer 210 is located between the organic layer 120 and the coating layer 220. For this reason, it is possible to prevent the covering layer 220 from cracking with high reliability.
 以上、本実施形態によれば、有機層120と被覆層220の間に中間層210が位置している。このため、有機層120(特に、有機層120の第1部分層)の線膨張係数と被覆層220の線膨張係数の差が大きい場合であっても、中間層210が被覆層220の応力を緩和することができる。このようにして、被覆層220が割れることを高い信頼性で防止することができる。 As described above, according to the present embodiment, the intermediate layer 210 is located between the organic layer 120 and the coating layer 220. For this reason, even when the difference between the linear expansion coefficient of the organic layer 120 (particularly, the first partial layer of the organic layer 120) and the linear expansion coefficient of the covering layer 220 is large, the intermediate layer 210 exerts stress on the covering layer 220. Can be relaxed. In this way, it is possible to prevent the covering layer 220 from cracking with high reliability.
(変形例1)
 図11は、変形例1に係る発光装置10を示す断面図であり、実施形態の図4に対応する。本変形例に係る発光装置10は、以下の点を除いて、実施形態に係る発光装置10と同様である。
(Modification 1)
FIG. 11 is a cross-sectional view showing a light emitting device 10 according to Modification 1, and corresponds to FIG. 4 of the embodiment. The light emitting device 10 according to this modification is the same as the light emitting device 10 according to the embodiment except for the following points.
 発光装置10は、複数の中間層210を備えている。複数の中間層210のそれぞれは、互いに隣接する発光部152の間にあって、互いに隣接する絶縁層140によって画定されている。 The light emitting device 10 includes a plurality of intermediate layers 210. Each of the plurality of intermediate layers 210 is defined by insulating layers 140 that are between the light emitting portions 152 adjacent to each other and adjacent to each other.
 本図に示す例では、被覆層220が有機層120に接することが防止されている。具体的には、被覆層220は、互いに隣接する絶縁層140の間で有機層120を覆っている。このため、互いに隣接する絶縁層140の間で被覆層220が有機層120に接することが防止されている。さらに、被覆層220は、絶縁層140と重なる領域で有機層120を覆っている。このため、絶縁層140と重なる領域で被覆層220が有機層120に接することが防止されている。このようにして、被覆層220が割れることを高い信頼性で防止することができる。 In the example shown in this figure, the coating layer 220 is prevented from coming into contact with the organic layer 120. Specifically, the covering layer 220 covers the organic layer 120 between the insulating layers 140 adjacent to each other. This prevents the covering layer 220 from contacting the organic layer 120 between the insulating layers 140 adjacent to each other. Further, the covering layer 220 covers the organic layer 120 in a region overlapping with the insulating layer 140. For this reason, the coating layer 220 is prevented from coming into contact with the organic layer 120 in a region overlapping with the insulating layer 140. In this way, it is possible to prevent the covering layer 220 from cracking with high reliability.
 本図に示す例では、被覆層220は、第2電極130に接している。この場合であっても、被覆層220が割れることを防止することができる。具体的には、第2電極130が金属層である場合、第2電極130は、高い延性を有している。この場合、発光装置10の製造プロセス中の加熱によって有機層120が膨張しても、第2電極130は、被覆層220の応力を緩和するように変形可能である。このため、被覆層220が第2電極130に接していても、被覆層220が割れることを防止することができる。 In the example shown in the figure, the covering layer 220 is in contact with the second electrode 130. Even in this case, the coating layer 220 can be prevented from cracking. Specifically, when the second electrode 130 is a metal layer, the second electrode 130 has high ductility. In this case, even if the organic layer 120 expands due to heating during the manufacturing process of the light emitting device 10, the second electrode 130 can be deformed so as to relieve the stress of the coating layer 220. For this reason, even if the coating layer 220 is in contact with the second electrode 130, the coating layer 220 can be prevented from cracking.
 本図に示す例において、中間層210は、複数の発光部152の存在により基板100の第1面102上に生じている凹凸を平坦化している。具体的には、中間層210の第2面(上面)は、第1面102から高さh2(第1の高さ)に位置している。発光部152の上端(第2電極130の上端)は、基板100の第1面102から高さh3(第2の高さ)に位置している。高さh2と高さh3の差の絶対値は、高さh3よりも小さいものとなっている。このようにして、中間層210は、複数の発光部152の存在により基板100の第1面102上に生じている凹凸を平坦化している。 In the example shown in the figure, the intermediate layer 210 flattens the unevenness generated on the first surface 102 of the substrate 100 due to the presence of the plurality of light emitting portions 152. Specifically, the second surface (upper surface) of the intermediate layer 210 is located at a height h2 (first height) from the first surface 102. The upper end of the light emitting unit 152 (the upper end of the second electrode 130) is located at a height h3 (second height) from the first surface 102 of the substrate 100. The absolute value of the difference between the height h2 and the height h3 is smaller than the height h3. In this way, the intermediate layer 210 flattens the unevenness generated on the first surface 102 of the substrate 100 due to the presence of the plurality of light emitting portions 152.
 本図に示す例において、複数の中間層210のそれぞれの第2面(上面)は、実質的に平坦であり、具体的には、基板100の第1面102と実質的に平行である。この場合、発光装置10の製造プロセス中の加熱によって有機層120が膨張しても、被覆層220の特定の位置に応力が集中することが防止される。このようにして、被覆層220が割れることを高い信頼性で防止することができる。 In the example shown in this drawing, each second surface (upper surface) of the plurality of intermediate layers 210 is substantially flat, and specifically, substantially parallel to the first surface 102 of the substrate 100. In this case, even if the organic layer 120 expands due to heating during the manufacturing process of the light emitting device 10, stress is prevented from concentrating on a specific position of the coating layer 220. In this way, it is possible to prevent the covering layer 220 from cracking with high reliability.
 本変形例においても、有機層120と被覆層220の間に中間層210が位置している。このため、有機層120(特に、有機層120の第1部分層)の線膨張係数と被覆層220の線膨張係数の差が大きい場合であっても、中間層210が被覆層220の応力を緩和することができる。このようにして、被覆層220が割れることを高い信頼性で防止することができる。 Also in this modification, the intermediate layer 210 is located between the organic layer 120 and the covering layer 220. For this reason, even when the difference between the linear expansion coefficient of the organic layer 120 (particularly, the first partial layer of the organic layer 120) and the linear expansion coefficient of the covering layer 220 is large, the intermediate layer 210 exerts stress on the covering layer 220. Can be relaxed. In this way, it is possible to prevent the covering layer 220 from cracking with high reliability.
 図12は、図11の変形例を示す図である。本図に示す発光装置10は、複数の有機層120のそれぞれが複数の第1電極110のそれぞれと重なっている点を除いて、図11に示した発光装置10と同様である。言い換えると、本図に示す例では、有機層120が複数の発光部152及び複数の透光部154に亘って広がっていない。このため、基板100の第1面102は、互いに隣接する発光部152の間で有機層120から露出する領域を有している。有機層120は、第2電極130よりも外側に広がっている。本図に示す例においても、有機層120と被覆層220の間に中間層210が位置している。このため、被覆層220が割れることを高い信頼性で防止することができる。 FIG. 12 is a diagram showing a modification of FIG. The light emitting device 10 shown in the figure is the same as the light emitting device 10 shown in FIG. 11 except that each of the plurality of organic layers 120 overlaps each of the plurality of first electrodes 110. In other words, in the example shown in this drawing, the organic layer 120 does not spread over the plurality of light emitting portions 152 and the plurality of light transmitting portions 154. For this reason, the first surface 102 of the substrate 100 has a region exposed from the organic layer 120 between the light emitting units 152 adjacent to each other. The organic layer 120 extends outward from the second electrode 130. Also in the example shown in this figure, the intermediate layer 210 is located between the organic layer 120 and the coating layer 220. For this reason, it is possible to prevent the covering layer 220 from cracking with high reliability.
(変形例2)
 図13は、変形例2に係る発光装置10を示す断面図であり、実施形態の図4に対応する。本変形例に係る発光装置10は、以下の点を除いて、実施形態に係る発光装置10と同様である。
(Modification 2)
FIG. 13 is a cross-sectional view illustrating a light emitting device 10 according to Modification Example 2, and corresponds to FIG. 4 of the embodiment. The light emitting device 10 according to this modification is the same as the light emitting device 10 according to the embodiment except for the following points.
 中間層210は、被覆層220の応力を緩和するために設けられている。本図に示す例において、中間層210は、金属層(すなわち、高い延性を有する層)であり、具体的には、例えば、アルミニウムを含んでおり、より具体的には、例えば、アルミニウム層又はアルミニウム合金層(例えば、Al/Mn系合金層)である。コストの観点から、中間層210は、アルミニウム層であることが好ましい。この例において、中間層210は、被覆層220の応力を緩和するように変形可能である。なお、金属層は、アルミニウムを含む場合に限定されない。他の例において、中間層210は、金、鉄、銅、銀、亜鉛、すず、ニッケル及びマンガンの少なくとも一つを含んでいてもよい。中間層210の材料の延性は、有機層120の第1部分層の材料の延性及び被覆層220の材料の延性より高いものであればよい。 The intermediate layer 210 is provided to relieve the stress of the coating layer 220. In the example shown in the figure, the intermediate layer 210 is a metal layer (that is, a layer having high ductility), and specifically includes, for example, aluminum, and more specifically, for example, an aluminum layer or It is an aluminum alloy layer (for example, an Al / Mn alloy layer). From the viewpoint of cost, the intermediate layer 210 is preferably an aluminum layer. In this example, the intermediate layer 210 can be deformed to relieve the stress of the covering layer 220. In addition, a metal layer is not limited to the case where aluminum is included. In other examples, the intermediate layer 210 may include at least one of gold, iron, copper, silver, zinc, tin, nickel, and manganese. The ductility of the material of the intermediate layer 210 may be higher than the ductility of the material of the first partial layer of the organic layer 120 and the ductility of the material of the coating layer 220.
 中間層210は、発光部152を劣化させるガスが発光部152に侵入することを防ぐためにも設けられている。具体的には、被覆層220が金属層である場合、被覆層220は、ガスバリア性を有している。このため、被覆層220は、発光部152を劣化させるガスが発光部152に侵入することを防ぐように機能することができる。 The intermediate layer 210 is also provided to prevent a gas that deteriorates the light emitting unit 152 from entering the light emitting unit 152. Specifically, when the coating layer 220 is a metal layer, the coating layer 220 has gas barrier properties. For this reason, the covering layer 220 can function so as to prevent a gas that deteriorates the light emitting unit 152 from entering the light emitting unit 152.
 中間層210が金属層であるとき、中間層210の厚さは、一例において、1nm以上50nm以下である。被覆層220の応力を緩和し、かつ高いガスバリア性を実現させる観点からすると、中間層210(金属層)の厚さは、ある程度厚いことが好ましく、上記したように1nm以上、好ましくは5nm以上である。これに対して、発光装置10の光線透過率を高くする観点からすると、中間層210(金属層)の厚さは、ある程度薄いことが好ましく、上記したように50nm以下、好ましくは20nm以下である。 When the intermediate layer 210 is a metal layer, the thickness of the intermediate layer 210 is 1 nm or more and 50 nm or less in one example. From the viewpoint of relaxing the stress of the coating layer 220 and realizing high gas barrier properties, the thickness of the intermediate layer 210 (metal layer) is preferably somewhat thick, and as described above, it is 1 nm or more, preferably 5 nm or more. is there. On the other hand, from the viewpoint of increasing the light transmittance of the light emitting device 10, the thickness of the intermediate layer 210 (metal layer) is preferably thin to some extent, and as described above, is 50 nm or less, preferably 20 nm or less. .
 本図に示す例では、中間層210は、導電性を有している。このため、複数の第2電極130は、中間層210を介して互いに接続することができる。具体的には、本図に示す例では、中間層210が複数の中間層210に接している。このような場合も、複数の第2電極130は、中間層210を介して互いに接続することができる。 In the example shown in the figure, the intermediate layer 210 has conductivity. For this reason, the plurality of second electrodes 130 can be connected to each other via the intermediate layer 210. Specifically, in the example shown in the drawing, the intermediate layer 210 is in contact with the plurality of intermediate layers 210. Even in such a case, the plurality of second electrodes 130 can be connected to each other through the intermediate layer 210.
(変形例3)
 図14は、変形例3に係る発光装置10を示す断面図であり、実施形態の図4に対応する。本変形例に係る発光装置10は、以下の点を除いて、実施形態に係る発光装置10と同様である。
(Modification 3)
FIG. 14 is a cross-sectional view showing a light emitting device 10 according to Modification 3, and corresponds to FIG. 4 of the embodiment. The light emitting device 10 according to this modification is the same as the light emitting device 10 according to the embodiment except for the following points.
 図14に示す例において、中間層210は、透光性を有する無機材料を含んでいる。一例において、この無機材料は、Siを含む化合物、より具体的には、シリコン酸窒化物(SiON)、シリコン酸化物(SiO)又はシリコン窒化物(SiN)である。中間層210は、例えば、蒸着又はCVDによって形成される。 In the example illustrated in FIG. 14, the intermediate layer 210 includes a light-transmitting inorganic material. In one example, the inorganic material is a compound containing Si, more specifically, silicon oxynitride (SiON), silicon oxide (SiO 2 ), or silicon nitride (SiN). The intermediate layer 210 is formed by vapor deposition or CVD, for example.
 図14に示す例においては、高光線透過率及び高ガスバリア性の双方を実現することができる。具体的には、上述したように、中間層210は、透光性を有している。したがって、中間層210の一部が透光部154内に位置していても、透光部154の光線透過率を高くすることができる。さらに、上述したように、中間層210は、無機材料を含んでいる。一般に、無機材料のガスバリア性は高い。したがって、高ガスバリア性を実現することができる。 In the example shown in FIG. 14, both high light transmittance and high gas barrier properties can be realized. Specifically, as described above, the intermediate layer 210 has translucency. Therefore, even if a part of the intermediate layer 210 is located in the light transmitting portion 154, the light transmittance of the light transmitting portion 154 can be increased. Furthermore, as described above, the intermediate layer 210 includes an inorganic material. In general, the gas barrier properties of inorganic materials are high. Therefore, high gas barrier properties can be realized.
 中間層210のガスバリア性を高くする観点からすると、中間層210の厚さは、ある程度厚いことが好ましく、一例において、1μm以上、好ましくは3μm以上とすることができる。 From the viewpoint of increasing the gas barrier properties of the intermediate layer 210, the thickness of the intermediate layer 210 is preferably somewhat thick, and in one example, it can be set to 1 μm or more, preferably 3 μm or more.
 中間層210と重なる領域の光線透過率を高くする観点からすると、中間層210の厚さは、ある程度薄いことが好ましく、一例において、100μm以下、好ましくは10μm以下とすることができる。 From the viewpoint of increasing the light transmittance of the region overlapping with the intermediate layer 210, the thickness of the intermediate layer 210 is preferably thin to some extent, and in one example, can be 100 μm or less, preferably 10 μm or less.
 以上、図面を参照して実施形態及び実施例について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。 As mentioned above, although embodiment and the Example were described with reference to drawings, these are the illustrations of this invention, Various structures other than the above are also employable.
 この出願は、2016年9月30日に出願された日本出願特願2016-192994号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2016-192994 filed on September 30, 2016, the entire disclosure of which is incorporated herein.

Claims (14)

  1.  基板の第1面側に位置し、第1電極、有機層及び第2電極を含む積層構造からそれぞれなる複数の発光部と、
     複数の透光部と、
     中間層と、
     絶縁性の無機材料を含む第1被覆層と、
    を備え、
     前記複数の発光部のそれぞれは、互いに隣接する透光部の間に位置し、
     前記中間層は、前記透光部で前記有機層に接する第1面と、前記第1面の反対側にあって前記第1被覆層に接する第2面と、を有する発光装置。
    A plurality of light-emitting portions each having a laminated structure including a first electrode, an organic layer, and a second electrode, located on the first surface side of the substrate;
    A plurality of translucent parts;
    The middle layer,
    A first coating layer containing an insulating inorganic material;
    With
    Each of the plurality of light emitting portions is located between the light transmitting portions adjacent to each other,
    The intermediate layer has a first surface that contacts the organic layer at the light transmitting portion, and a second surface that is opposite to the first surface and contacts the first coating layer.
  2.  請求項1に記載の発光装置において、
     前記有機層は、前記中間層に接する第1部分層を含み、
     前記中間層の材料の延性は、前記第1部分層の材料の延性及び前記第1被覆層の材料の延性より高い発光装置。
    The light-emitting device according to claim 1.
    The organic layer includes a first partial layer in contact with the intermediate layer,
    The light emitting device has a higher ductility of a material of the intermediate layer than a ductility of a material of the first partial layer and a ductility of a material of the first covering layer.
  3.  請求項1又は2に記載の発光装置において、
     前記中間層は、前記複数の発光部及び前記複数の透光部に亘って広がっている発光装置。
    The light-emitting device according to claim 1 or 2,
    The intermediate layer is a light emitting device that extends over the plurality of light emitting units and the plurality of light transmitting units.
  4.  請求項3に記載の発光装置において、
     前記複数の透光部は、第1透光部を含み、
     前記複数の発光部は、前記第1透光部に隣接する第1発光部を含み、
     前記中間層の前記第2面は、前記第1発光部と重なる領域で前記基板の前記第1面から第1の高さに位置し、
     前記中間層の前記第2面は、前記第1透光部内において前記基板の前記第1面から第2の高さに位置し、
     前記第1発光部の上端は、前記基板の前記第1面から第3の高さに位置し、
     前記第1の高さと前記第2の高さの差の絶対値は、前記第3の高さよりも小さい発光装置。
    The light emitting device according to claim 3.
    The plurality of translucent parts include a first translucent part,
    The plurality of light emitting units include a first light emitting unit adjacent to the first light transmitting unit,
    The second surface of the intermediate layer is located at a first height from the first surface of the substrate in a region overlapping with the first light emitting unit,
    The second surface of the intermediate layer is located at a second height from the first surface of the substrate in the first light transmitting portion,
    An upper end of the first light emitting unit is located at a third height from the first surface of the substrate,
    The absolute value of the difference between the first height and the second height is a light emitting device smaller than the third height.
  5.  請求項4に記載の発光装置において、
     前記中間層の前記第2面は、前記第1発光部から前記第1透光部に亘って、前記基板の前記第1面と実質的に平行である発光装置。
    The light-emitting device according to claim 4.
    The light emitting device, wherein the second surface of the intermediate layer is substantially parallel to the first surface of the substrate from the first light emitting portion to the first light transmitting portion.
  6.  請求項1又は2に記載の発光装置において、
     前記複数の発光部をそれぞれ画定する複数の絶縁層と、
     複数の前記中間層と、
    を備え、
     前記複数の中間層のそれぞれは、互いに隣接する絶縁層によって画定されている発光装置。
    The light-emitting device according to claim 1 or 2,
    A plurality of insulating layers each defining the plurality of light emitting portions;
    A plurality of said intermediate layers;
    With
    Each of the plurality of intermediate layers is a light emitting device defined by insulating layers adjacent to each other.
  7.  請求項6に記載の発光装置において、
     前記複数の発光部は、第1発光部を含み、
     前記複数の中間層は、前記第1発光部に隣接する第1中間層を含み、
     前記第1中間層の前記第2面は、前記基板の前記第1面から第1の高さに位置し、
     前記第1発光部に位置する陰極の上端は、前記基板の前記第1面から第2の高さに位置し、
     前記第1の高さと前記第2の高さの差の絶対値は、前記第2の高さよりも小さい発光装置。
    The light-emitting device according to claim 6.
    The plurality of light emitting units include a first light emitting unit,
    The plurality of intermediate layers include a first intermediate layer adjacent to the first light emitting unit,
    The second surface of the first intermediate layer is located at a first height from the first surface of the substrate;
    An upper end of the cathode located in the first light emitting unit is located at a second height from the first surface of the substrate,
    The absolute value of the difference between the first height and the second height is a light emitting device that is smaller than the second height.
  8.  請求項7に記載の発光装置において、
     前記第1中間層の前記第2面は、前記基板の前記第1面と実質的に平行である発光装置。
    The light-emitting device according to claim 7.
    The light emitting device, wherein the second surface of the first intermediate layer is substantially parallel to the first surface of the substrate.
  9.  請求項1~8のいずれか一項に記載の発光装置において、
     前記第1被覆層は、酸化アルミニウムを含む発光装置。
    The light emitting device according to any one of claims 1 to 8,
    The first covering layer is a light emitting device including aluminum oxide.
  10.  請求項1~9のいずれか一項に記載の発光装置において、
     前記第1被覆層は、ALDによって形成されている発光装置。
    The light emitting device according to any one of claims 1 to 9,
    The first covering layer is a light emitting device formed by ALD.
  11.  請求項1~10のいずれか一項に記載の発光装置において、
     前記中間層は、有機層である発光装置。
    The light-emitting device according to any one of claims 1 to 10,
    The light emitting device, wherein the intermediate layer is an organic layer.
  12.  請求項1に記載の発光装置において、
     前記中間層は、透光性を有する無機材料を含む発光装置。
    The light-emitting device according to claim 1.
    The intermediate layer is a light emitting device including a light-transmitting inorganic material.
  13.  請求項12に記載の発光装置において、
     前記中間層は、1μm以上100μm以下の厚さを有する発光装置。
    The light-emitting device according to claim 12,
    The intermediate layer is a light emitting device having a thickness of 1 μm or more and 100 μm or less.
  14.  請求項1、12及び13のいずれか一項に記載の発光装置において、
     前記中間層は、Siを含む化合物である発光装置。
    The light emitting device according to any one of claims 1, 12, and 13,
    The light emitting device, wherein the intermediate layer is a compound containing Si.
PCT/JP2017/003848 2016-09-30 2017-02-02 Light-emitting device WO2018061236A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-192994 2016-09-30
JP2016192994 2016-09-30

Publications (1)

Publication Number Publication Date
WO2018061236A1 true WO2018061236A1 (en) 2018-04-05

Family

ID=61759516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003848 WO2018061236A1 (en) 2016-09-30 2017-02-02 Light-emitting device

Country Status (1)

Country Link
WO (1) WO2018061236A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100164369A1 (en) * 2008-12-30 2010-07-01 Industrial Technology Research Institute Apparatus of organic light emitting diode and packaging method of the same
JP2010199064A (en) * 2009-02-26 2010-09-09 Samsung Mobile Display Co Ltd Organic light-emitting display device
JP2011034996A (en) * 2009-07-29 2011-02-17 Tdk Corp Transmission type organic el display device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100164369A1 (en) * 2008-12-30 2010-07-01 Industrial Technology Research Institute Apparatus of organic light emitting diode and packaging method of the same
JP2010199064A (en) * 2009-02-26 2010-09-09 Samsung Mobile Display Co Ltd Organic light-emitting display device
JP2011034996A (en) * 2009-07-29 2011-02-17 Tdk Corp Transmission type organic el display device

Similar Documents

Publication Publication Date Title
US10566394B2 (en) Organic light-emitting display panel, device and method for manufacturing the same
JP5160754B2 (en) EL device
JP4832781B2 (en) Organic electroluminescence display device
CN107154464B (en) Method of manufacturing display device
JP6506055B2 (en) Thin film transistor element substrate, method of manufacturing the same, and organic EL display device using the thin film transistor element substrate
JP7033679B2 (en) Light emitting device
WO2017154482A1 (en) Sealing structure and light emitting device
JP4823685B2 (en) EL device and manufacturing method thereof
JP2007179914A (en) El device and method of manufacturing same
WO2018061236A1 (en) Light-emitting device
WO2021049433A1 (en) Light-emitting device
JP2017182912A (en) Light emitting device
WO2018163937A1 (en) Light-emitting device
JP2018056040A (en) Light-emitting device and sealing part
JP7198882B2 (en) light emitting device
JP6924023B2 (en) Light emitting device
WO2017158767A1 (en) Light-emitting device
WO2018062273A1 (en) Light-emitting device
WO2017029889A1 (en) Organic el panel, illuminating device, and method for manufacturing organic el panel
WO2018062272A1 (en) Light-emitting device
WO2018139426A1 (en) Light emitting device
JP6644486B2 (en) Light emitting device
WO2018025576A1 (en) Light emitting device
KR20230099140A (en) Display apparatus
JP6700013B2 (en) Light emitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17855195

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17855195

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP