WO2018062136A1 - テラヘルツ波生成装置、光パラメトリック増幅器、テラヘルツ波検出器、および非線形光学素子 - Google Patents
テラヘルツ波生成装置、光パラメトリック増幅器、テラヘルツ波検出器、および非線形光学素子 Download PDFInfo
- Publication number
- WO2018062136A1 WO2018062136A1 PCT/JP2017/034659 JP2017034659W WO2018062136A1 WO 2018062136 A1 WO2018062136 A1 WO 2018062136A1 JP 2017034659 W JP2017034659 W JP 2017034659W WO 2018062136 A1 WO2018062136 A1 WO 2018062136A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pump light
- light
- vector
- wave
- optical element
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 140
- 239000013598 vector Substances 0.000 claims abstract description 204
- 230000010287 polarization Effects 0.000 claims abstract description 93
- 230000000737 periodic effect Effects 0.000 claims abstract description 87
- 239000013078 crystal Substances 0.000 claims abstract description 38
- 238000001514 detection method Methods 0.000 claims description 24
- 238000004134 energy conservation Methods 0.000 claims description 16
- 230000007246 mechanism Effects 0.000 claims description 13
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical group [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 claims description 6
- 230000001902 propagating effect Effects 0.000 claims description 6
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 abstract description 28
- ORQBXQOJMQIAOY-UHFFFAOYSA-N nobelium Chemical compound [No] ORQBXQOJMQIAOY-UHFFFAOYSA-N 0.000 description 54
- 230000010355 oscillation Effects 0.000 description 21
- 238000010586 diagram Methods 0.000 description 19
- 238000005259 measurement Methods 0.000 description 10
- 238000000034 method Methods 0.000 description 10
- 238000002474 experimental method Methods 0.000 description 8
- 238000001228 spectrum Methods 0.000 description 8
- 230000003321 amplification Effects 0.000 description 7
- 230000008859 change Effects 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 238000003199 nucleic acid amplification method Methods 0.000 description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 238000003384 imaging method Methods 0.000 description 6
- 230000003993 interaction Effects 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- 238000012790 confirmation Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 230000005284 excitation Effects 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 4
- 230000009471 action Effects 0.000 description 4
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 4
- 230000014509 gene expression Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 229910013641 LiNbO 3 Inorganic materials 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000001427 coherent effect Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000005670 electromagnetic radiation Effects 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- WYOHGPUPVHHUGO-UHFFFAOYSA-K potassium;oxygen(2-);titanium(4+);phosphate Chemical compound [O-2].[K+].[Ti+4].[O-]P([O-])([O-])=O WYOHGPUPVHHUGO-UHFFFAOYSA-K 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 230000010356 wave oscillation Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/35—Non-linear optics
- G02F1/39—Non-linear optics for parametric generation or amplification of light, infrared or ultraviolet waves
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/35—Non-linear optics
- G02F1/353—Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/35—Non-linear optics
- G02F1/37—Non-linear optics for second-harmonic generation
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/35—Non-linear optics
- G02F1/39—Non-linear optics for parametric generation or amplification of light, infrared or ultraviolet waves
- G02F1/392—Parametric amplification
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/106—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
- H01S3/108—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2203/00—Function characteristic
- G02F2203/13—Function characteristic involving THZ radiation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/005—Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
- H01S3/0092—Nonlinear frequency conversion, e.g. second harmonic generation [SHG] or sum- or difference-frequency generation outside the laser cavity
Definitions
- the present invention relates to a terahertz wave generation device, an optical parametric amplifier, a terahertz wave detector, and a nonlinear optical element. More specifically, the present invention relates to a terahertz wave generating device, an optical parametric amplifier, a terahertz wave detector, and a nonlinear optical element excellent in efficiency suitable for them, which can generate a terahertz wave with high efficiency with a simple configuration.
- phase matching In wavelength conversion based on nonlinear optical phenomena, the condition that imposes a momentum conservation law between propagating light waves is known as phase matching between wave vector, and has played a very large role so far.
- phase matching methods such as forward / backward phase matching, collinear / non-collinear phase matching, and quasi phase matching (QPM) in birefringent phase matching have been proposed to achieve improved wavelength conversion efficiency and expansion of the wavelength region.
- OPO optical parametric oscillation
- This special phase matching realizes a quantum conversion efficiency as high as possible while employing an extremely simple optical system (Non-Patent Documents 2 to 4). It is the feedback effect that occurs between the light waves propagating in opposite directions in the nonlinear optical crystal.
- electromagnetic waves in the frequency range of about 0.1 THz to 100 THz are also called terahertz waves and are expected to have a wide range of applications. Therefore, high output, efficient generation methods, and wide-band frequency variable Improvements in practical aspects such as light sources and room temperature operation are being sought.
- coherent terahertz waves can be expected to have a strong interaction with a substance, and the wavelength range includes a so-called fingerprint region, which is considered promising, and an efficient generation method is being searched for applications such as detection of trace substances.
- Current coherent terahertz waves are often obtained by nonlinear wavelength conversion using a near-infrared laser light source.
- Nonlinear wavelength conversion In order to realize nonlinear wavelength conversion, a nonlinear optical crystal is disposed in an external resonator having a mirror or the like, and pump light for excitation is supplied thereto. Many of these devices require laser light sources with multiple wavelengths and are large-scale. Nonlinear wavelength conversion is an effective technique even in the terahertz wave region, and so far terahertz waves have been generated mainly by stimulated polariton scattering, difference frequency generation, optical rectification effect, and the like.
- the present invention achieves high-efficiency generation of terahertz waves with a simple configuration and parametric amplification of terahertz waves by using a novel phase matching condition.
- the present invention contributes to the development of various applications using a terahertz wave by providing a terahertz wave generating device with a simple configuration, a terahertz wave balametric amplifier, a detection device, and a nonlinear optical element. .
- the inventor has obtained detailed knowledge about phase matching suitable for generation of terahertz waves. I realized that optical parametric oscillation and generation of terahertz waves are realistic with a simple device configuration. In fact, we have experimentally confirmed for the first time that terahertz waves can be generated by backward optical parametric oscillation under the special phase matching conditions. That is, conventionally, even when trying to generate a terahertz wave by backward optical parametric oscillation, a general bulk crystal or a periodically poled device could not be used due to the specificity of the backward phase matching condition itself. . In response to this problem, the present inventors have found a new condition for realizing backward optical parametric oscillation.
- the wave vector obtained by reflecting the periodic inversion structure provided in the nonlinear optical crystal in the wave number vector of the pump light (through this application, “virtual pump The collinear phase matching condition is established for the light wave vector).
- the signal light (terahertz wave) generated by the optical parametric oscillation is in the reverse direction with respect to the virtual pump light wave vector, and generally in the reverse direction when viewed from the direction of the pump light (hereinafter referred to as “ Called "backward waves”).
- Called "backward waves” the principle is extended to the general case.
- a pump light source that generates pump light having a single wavelength, and a nonlinear optical element having a periodic structure in which polarization or crystal orientation is inverted at a certain inversion period, the pump light is When incident, the collinear phase matching condition for the virtual pump light wave number vector obtained by adding or subtracting the grating vector corresponding to the inversion period to the pump light wave number vector in the nonlinear optical element and the energy conservation law for the pump light are satisfied.
- a terahertz wave generation device including a non-linear optical element that generates idler light and signal light.
- an optical parametric amplifier and a terahertz wave detection device are also provided.
- a nonlinear optical element is also provided.
- the above-described virtual pump light wave vector is a vector in which the lattice vector reflecting the periodicity of the periodic polarization inversion is a vector-like one. Is added or subtracted.
- the direction of the virtual pump light wave vector is almost the same as the direction of the pump light wave vector, the directions are not always completely matched under general conditions.
- the virtual pump light wave vector is introduced to clearly describe the invention. For this reason, the expression “virtual pump light” is used only to describe a wave vector called a virtual pump light wave vector. Whether or not an electromagnetic wave corresponding to this wave vector is actually generated or intervened is not particularly limited in the present invention.
- the terminology used in the field to which the present invention belongs is used.
- electromagnetic waves and electromagnetic radiation that are not visible light such as infrared radiation and terahertz radiation
- expressions used in the optical field such as “light”, “light source”, “light emission”, and “refraction” are used.
- the signal light that is a terahertz wave indicates electromagnetic radiation in the terahertz range.
- the wavelengths of light and terahertz waves are in vacuum unless otherwise specified.
- idler light is usually used for light that is often a by-product and is often not used, in this application it is used as it is regardless of whether it is used effectively or not in order to unify the explanation. Sometimes.
- the apparatus of this embodiment described as a terahertz wave generation apparatus functions also as an apparatus which generates idler light, it can also be an idler light generation apparatus.
- the terahertz wave generation device, optical parametric amplifier, terahertz wave detection device, and nonlinear optical element according to the present invention can generate or amplify a terahertz wave with high efficiency with a simple configuration.
- FIG. 1A is a perspective view schematically showing a typical arrangement of a nonlinear optical element and pump light, signal light, and idler light employed in an embodiment of the present invention
- FIG. It is a momentum schematic diagram (FIG. 1C) which shows the relationship between the wave vector inside. It is the graph of the theoretical calculation which plotted the characteristic which shows the idler light and signal light wavelength which are obtained with respect to pump light wavelength with respect to various inversion periods for the PPLN of the polarization inversion structure for embodiment of this invention. It is a graph which shows the power of the detector output and idler light corresponding to the power of the terahertz wave measured by changing the pump light intensity in the embodiment of the present invention.
- FIG. 9A is a plan view schematically showing a typical arrangement of FIG. 9A
- FIG. 9B is a momentum schematic diagram showing the relationship between wave vectors. It is a schematic diagram which shows the structure of the frequency scanning terahertz wave generation apparatus provided with the rotation mechanism for the periodic polarization reversal element in embodiment of this invention, and it is a signal by a backward wave and a forward wave in order of FIG.
- FIG. 13 is a schematic diagram showing the configuration of the optical parametric amplifier of the present embodiment in the embodiment of the present invention, and shows the optical parametric amplifier having the arrangement of the backward wave and the forward wave in the order of FIGS. 12A and 12B. It is a schematic diagram which shows the structure of the terahertz wave detection apparatus in embodiment of this invention, and the direction of a terahertz wave is each of a backward wave (FIG. 13A) and a forward wave (FIG. 13B).
- FIG. 15A is a schematic plan view (FIG. 15A) showing a configuration of a periodic polarization reversal element having a plurality of periods in the embodiment of the present invention, and a graph of a frequency calculation value of a terahertz wave (FIG. 15B).
- phase matching condition 1-1 Typical example of phase matching condition reflecting grating vector In difference frequency generation (DFG) or barametric oscillation using a nonlinear optical crystal, signal light having a target wavelength such as terahertz wave is generated from pump light. Phase matching greatly affects the efficiency.
- Nonlinear optical elements whose polarization direction or crystal orientation is periodically reversed have also been used for QPM (quasi phase matching), which is one of the conventional phase matching.
- QPM employs a nonlinear optical element having a polarization direction or crystal orientation inversion structure in which the inversion period is twice the coherence length.
- parametric wavelength conversion is generated using a nonlinear optical element in which the polarization direction or crystal orientation is periodically reversed.
- the nonlinear optical element of the present embodiment has a reversal structure similar to that for QPM, it is manufactured so as to satisfy the new phase matching condition found by the present inventor.
- a typical example of the phase matching condition found by the present inventor will be described first, and a general theory will be described later.
- FIG. 1 is a schematic diagram illustrating a configuration of a terahertz wave generation device 100 according to the present embodiment.
- a periodic polarization reversal element 102 that is a typical example of a nonlinear optical element according to the present embodiment, pump light LP, and signal light L THz.
- a perspective view schematically showing a typical arrangement of idler light LI (FIG. 1A), a plan view (FIG. 1B), and a momentum schematic diagram showing the relationship between wave vectors in the periodic polarization reversal element 102 (FIG. 1C). ).
- the pump light LP is a single wavelength light from the pump light source 104 which is typically a laser such as an Nd: YAG laser or a semiconductor laser, and the wavelength is selected from various ones.
- the pump light LP is suitable for a wavelength region in which the periodic polarization reversal element 102 does not absorb, and is preferably an infrared or visible laser beam having a wavelength of about 1 to 10 ⁇ m.
- the pump light LP is incident on the periodic polarization inverting element 102 through an appropriate telescope optical system (not shown). In the present embodiment, only one pump light LP having a single wavelength is used, and a plurality of light sources are not required.
- a CW laser or the like can be employed in addition to the pulse laser.
- the periodic polarization reversal element 102 has a periodic structure in which the polarization direction is reversed at a certain inversion period ⁇ . Even in a nonlinear optical element having a periodic structure by reversal of crystal orientation, an action equivalent to that of the periodic polarization reversal element 102 is realized. Therefore, any explanation based on the periodic polarization reversal element 102 is a description of the periodic structure by reversal of crystal orientation. Shall be part of The periodic polarization inverting element 102 is preferably made of a material that does not absorb the pump light LP and the signal light LTHz .
- the periodic polarization reversal element 102 is PPLN (Periodically Poled Lithium Niobate; LiNbO 3 ) whose polarization direction is reversed, and OP-GaAs (Orientation-Patterned Gallium Arsenide) whose crystal orientation is reversed. It is.
- the wavelength in the respective periodic polarization reversal elements 102 the vacuum wavelength divided by the refractive index indicated by the periodic polarization reversal element at the wavelength
- the wavefront It is possible to assume a wave vector that expresses the traveling direction of the wave.
- phase matching condition of the present embodiment is not a phase matching condition defined only between the wave number vectors k p , k i , and k THz of the pump light LP, idler light LI, and signal light L THz. , Up to the lattice vector k ⁇ .
- a virtual wave vector (virtual pump light wave vector k ′ p ) defined by the following equation is introduced.
- k ′ p k p ⁇ k ⁇ (3)
- FIG. 1C (b) reflects the antiparallel arrangement of equation (2) in addition to equation (4) (collinear phase matching). Since the actual wave vector lengths of k ⁇ and k THz are extremely shorter than others, the central portion in the direction along the k p (x-axis direction) is omitted.
- Virtual pump wavenumber vector k in Figure 1C 'of p and the idler wavenumber vector k i is depicted to have a y-direction shift across the omission unit, virtual pump wavenumber vector k' p and the pump The difference in direction from the light wave vector k p is reflected. However, the deviation of the direction of the virtual pump light wave vector k ′ p from the pump light wave vector k p in the periodic polarization reversal element 102 is at most about 0.5 ° in actual values.
- Equation (4) stipulates that a virtual pump light wave vector k ′ p is obtained by vector subtraction of the signal light wave vector k THz from the idler light wave vector k i .
- This expresses the momentum conservation law by a wave vector. That is, in the periodic polarization reversal element 102 (FIG. 1B) in which the inversion structure is inclined by the angle ⁇ from the direction of the pump light, the equation (4) preserves the momentum with respect to the light propagating due to the periodicity and direction of the inversion structure. This reflects the need to revise the law.
- equation (4) merely requires that the signal light wave vector k THz and the idler light wave vector k i be the same as the virtual pump light wave vector k ′ p after vector subtraction. .
- the collinear phase matching is not achieved until the relationship of the equation (2) in which the signal light wave vector k THz and the idler light wave vector k i should be anti-parallel to each other is added.
- the requirement to be collinear (coaxial) is a condition for actually causing parametric wavelength conversion efficiently.
- the signal light in the periodic polarization inverting element 102 having the wave number vector is virtual
- the direction is opposite to the pump light wave vector k ′ p and is almost opposite to the pump light wave vector k p , that is, the backward wave.
- Virtual pump wavenumber vector k 'p is the grating vector k lambda virtual pump wavenumber vector k when tilted from the pump wavenumber vector k p' nor anti-parallel in parallel to each other and the p and the pump wavenumber vector k p.
- Equation (4) differs from the conventional backward phase matching (conditions for the pump light wave vector k p ) in that the virtual pump light wave vector k ′ p is the object.
- the terahertz wave that is the signal light LTHz is also pump light outside the periodic polarization reversal element 102. It can be said that it is almost opposite to LP. For this reason, in the present application, there is no particular distinction between the inside and the outside of the periodic polarization inverting element 102.
- the signal light L THz is a backward wave having a deviation of about 0.5 ° with respect to the pump light LP
- the advantage that can be expected when a collinear arrangement is adopted by backward phase matching is also provided in this embodiment. Realize as it is. That is, the phase matching condition for the virtual pump light wave vector k ′ p defined in the equations (2) and (4) of this embodiment can be expected to have high conversion efficiency. As long as the lattice vector k ⁇ is small, this phase matching condition sufficiently increases the volume (“interaction volume”) in the crystal that causes an interaction in which the pump light LP z is converted into the idler light LI and the signal light LTHz. Because it can be said to be a thing.
- parametric oscillation often requires a feedback optical system such as an external resonator for operation, but in this embodiment, oscillation has been confirmed experimentally without adding such an optical system.
- the generated terahertz wave signal light L THz acts as seed light for the parametric amplification operation while propagating in a generally reverse direction toward the incident direction of the pump light LP.
- k p ⁇ k ⁇ which is the vector subtraction on the left side of Equation (1), can also be expressed by k p + k ⁇ and vector addition in the case of a definition in which the lattice vector k ⁇ is inverted. Since the definition of the lattice vector k ⁇ can be defined by inverting itself, the virtual pump light wave vector k ′ p is defined by both vector addition and subtraction accordingly.
- a nonlinear optical element an oblique periodic polarization reversal element in which a periodic structure in which polarization and crystal orientation are reversed is inclined is used.
- the resulting parametric oscillation (backward terahertz wave parametric oscillation) to obtain a backward terahertz wave is a single-wavelength (monochromatic) pump light LP whose intensity exceeds a certain threshold for an appropriately designed nonlinear optical element.
- the terahertz wave obtained by simply supplying is advantageous in that it can be generated with high efficiency.
- the present embodiment also has an advantage that parametric oscillation can be realized without using a feedback optical system such as a separate external resonator that requires precise adjustment, so that an automatic feedback action is also realized.
- the terahertz wave generation device of the present embodiment is a terahertz wave light source having a greatly simplified structure that does not require an optical element such as an external resonator for oscillation operation, and therefore has high mechanical accuracy and setting conditions. There are few parts that require accuracy, and it is highly practical to construct a system that can operate stably.
- the following relationship can be found in the collinear phase matching condition of the present embodiment which is established with respect to the virtual pump light wave vector k ′ p shown in FIG. 1C.
- the idler light wave vector k i is larger than the virtual pump light wave vector k ′ p in parallel arrangement with the virtual pump light wave vector k ′ p .
- the signal light wave vector k TH has an anti-parallel arrangement with respect to both the virtual pump light wave vector k ′ p and the idler light wave vector k i . For this reason, the signal light, which is a terahertz wave, becomes a backward wave that travels in the opposite direction when viewed from the pump light LP.
- the conditions of equations (2) and (4) are derived from the spatial properties of collinear phase matching for efficiently generating a nonlinear optical phenomenon, the periodicity of the inversion structure of the periodic polarization inversion element 102, and the periodicity of electromagnetic waves.
- the combination of the signal light wave vector k THz and the idler light wave vector k i cannot be specified only by these.
- the signal light wave vector k THz and the idler light wave vector k i are determined including the magnitude only after the energy conservation law is added. That is, the condition that the sum of their photon energies must match the photon energy of the pump light is added to the signal light and idler light, and as a result, the magnitude of the wave number vector of the signal light and idler light.
- Constraints are added to It can be said that the combination of the magnitudes (norms) of the signal light wave vector k THz and idler light wave vector k i in FIG. 1C is determined so as to satisfy the energy conservation law. Under such conditions that the backward signal light wave vector k THz is generated, the virtual pump light wave vector k ′ p has a smaller norm than the pump light wave vector k p . It should be noted that the collinear phase matching is intended for the virtual pump light wave vector k ′ p , whereas the energy conservation law is intended for the pump light before the vector addition or subtraction of the lattice vector.
- FIG. 2 shows a graph of theoretical calculation in which the wavelength of idler light and signal light obtained with respect to the pump light wavelength is plotted for PPLN (with 5 mol% MgO added) having a domain-inverted structure having various periods.
- Non-patent document 4 The numerical value attached to each dashed curve indicates the value of the inversion period ⁇ (unit: ⁇ m), the horizontal axis is the pump light, and the vertical axis is the wavelength of the signal light and idler light.
- Each curve indicates that when one or more vertical axis values are indicated with respect to the horizontal axis of pump light, signal light and idler light having the vertical axis value as a wavelength can be output.
- the pump light having a wavelength of 1.064 ⁇ m illustrated by a one-dot chain line in the vertical direction on the paper surface will be described.
- a straight line with a two-dot chain line that rises to the right in the drawing shows the SHG condition, and corresponds to a position where the two intersections with a straight line extending in parallel with the vertical axis overlap (a position where the curve has a tangent in the vertical direction).
- This means that when the inversion period ⁇ 32 ⁇ m, 29 ⁇ m, and 26 ⁇ m with respect to the wavelength 1.064 ⁇ m pump light, the signal light and idler light are generated in the light wave band, that is, in the short wavelength region outside the wavelength 3 ⁇ m to 3 mm. It shows that the second harmonic is generated under the condition (not shown) that is slightly larger than 32 ⁇ m.
- an inversion period ⁇ that gives the pump light a curve that also has an intersection in the light waveband wavelength such as the infrared region, a parametric wavelength conversion process or SHG occurs at an unintended wavelength.
- Such a condition consumes energy in an unnecessary light wave band, and is not desirable as long as it intends to generate a terahertz wave.
- conditions that do not satisfy the undesired parametric wavelength conversion process and phase matching for SHG (especially phase matching in the optical waveband) in this embodiment are the wavelength of the pump light and the crystal used for it. Can be determined by calculation. In addition, such conditions can be determined by appropriate preliminary experiments.
- the inversion period ⁇ of the periodic polarization inversion element 102 is appropriately set as in the example shown here. In addition to the adjustment, it is effective to change the nonlinear optical material or crystal orientation of the periodic polarization inverting element 102, change the wavelength of the pump light, and the like.
- the range of both directions (FIG. 1B, angle ⁇ ) of the lattice vector k ⁇ of the inversion structure and the wave number vector k p of the pump light is limited from the principle side. There is no.
- the lattice vector k ⁇ of the inversion structure of the periodically poled element 102 forms an angle that is neither 90 ° nor ⁇ 90 ° with the direction of the wave vector k p of the pump light incident thereon. .
- the wave vector k p and orientation of the virtual pump wavenumber vector k 'p of the pump light in periodically poled device 102 becomes arranged nor anti-parallel in parallel to each other.
- the frequency of the generated terahertz wave is affected by the angle ⁇ .
- the wavelength of the terahertz wave that is the signal light can be adjusted by the angle ⁇ with respect to the pump light of the inversion structure of the nonlinear optical element. This means that the wavelength can be easily changed by changing the direction of the periodically poled element 102 with respect to the pump light.
- the wavelength of the signal light (terahertz wave) and idler light, which are backward waves is determined by the energy conservation law while the wave number vector satisfies the collinear phase matching conditions (Equations (2) and (4)). Because of these conditions, the angle ⁇ has an influence on the wavelength of the terahertz wave.
- the propagation direction of the terahertz wave is backward terahertz wave parametric oscillation that completely faces the pump light.
- the general theory of changing the angle ⁇ will be described later with reference to FIG.
- Nonlinear Optical Material Various nonlinear optical materials can be adopted for the periodically poled element 102 of the present embodiment.
- a general non-linear optical element that is manufactured so as to have an inversion structure for QPM or that is manufactured by inverting the crystal orientation itself.
- the inversion period ⁇ shown in FIG. 1B has undergone the necessary changes from those of polarization or crystal orientation.
- Non-limiting examples of preferred nonlinear optical materials in this embodiment are PPLN (Periodically Poled Lithium Niobate, LiNbO 3 ), PPKTP (Periodically Poled Potassium Titanyl Phosphate, KTiOPO 4 ), PPSLT (Periodically Poled Stoichiometric, LiTaO 3 And OP-GaAs (Orientation-Patterned Gallium Arsenide).
- PPLN Periodically Poled Lithium Niobate, LiNbO 3
- PPKTP Periodically Poled Potassium Titanyl Phosphate, KTiOPO 4
- PPSLT Periodically Poled Stoichiometric, LiTaO 3 And OP-GaAs (Orientation-Patterned Gallium Arsenide).
- the nonlinear optical element has an action of a waveguide for propagating terahertz waves as signal light therein.
- the nonlinear optical element is typically manufactured in a rectangular parallelepiped as shown in FIG. 1A and the like. Since the nonlinear optical element having a high refractive index of about 5 with respect to the terahertz wave itself acts as a waveguide, the terahertz wave moves backward while being confined inside the waveguide in the ⁇ x-axis direction.
- This confined terahertz wave acts as seed light for the pump light when traveling backward.
- a nonlinear optical element having a high refractive index becomes a waveguide, which is advantageous because the interaction volume can be increased.
- Various types of terahertz wave waveguide structures can be employed. For example, it is advantageous to provide a silicon guide around the structure.
- the pump light source has a relatively large pulse width compared to a conventional femtosecond laser or the like.
- a light source having a pulse width for example, femtosecond pulse
- the pump light source of the present embodiment is a laser light source that generates a coherent pump light pulse, and in particular, one having a pulse width of 30 picoseconds or more and 1 nanosecond or less is preferable.
- the pump light pulse is an extremely short pulse, the distance that contributes to the interaction is shortened when the backward signal light (terahertz wave) returns to the pump light.
- the relatively wide pulse width is advantageous in that a good monochromatic light source can be obtained that can be applied to applications that require a narrow frequency width, such as spectroscopic applications, because the frequency line width, which is the Fourier limit, is narrowed. is there.
- the pump light source can be expected to operate even with a continuous wave (CW) laser. If a sufficiently large periodic polarization reversal element 102 is used, it is possible to secure time for the backward signal light (terahertz wave) to interact with the pump light, and the Fourier limit itself that determines the narrowness of the frequency width. Changes. Therefore, it is advantageous in that a continuous wave terahertz wave having higher monochromaticity can be generated.
- CW continuous wave
- the periodic polarization reversal element 102 is equipped with a temperature control device for maintaining the periodic polarization reversal element 102 at an appropriate temperature because the linear optical constant (absorption, etc.) and nonlinear optical constant of the material itself generally depend on the temperature. This is preferable for realizing a desired operation.
- the periodic polarization reversal element 102 has heat, so that the temperature of the periodic polarization reversal element 102 itself is controlled even in continuing a desired operation over a necessary period. Is useful.
- the periodic polarization reversal element 102 when the periodic polarization reversal element 102 is made of Lithium Niobate (LiNbO 3, lithium niobate, hereinafter referred to as “LN”), it includes elements, members, and a temperature control device for cooling the periodic polarization reversal element 102. If such a temperature control device can be added to increase the temperature, the absorption coefficient can be maintained at a small value, and the nonlinear optical constant can also be maintained at a desired value. For this reason, it is advantageous to equip additional means for cooling in the operation
- LN Lithium Niobate
- the pump light source employs an Nd: YAG laser (manufactured by Hamamatsu Photonics) with a longitudinal single mode, a wavelength of 1064.34 nm, a power of 0.5 mJ, a pulse width of 660 ps, and a repetition frequency of 100 Hz, and the output is Nd: YAG all-solid-state light.
- An amplifier amplified up to about 8 mJ was used.
- the pump light was collimated using a telescope optical system so as to have a diameter of 0.6 mm (FWHM), and was incident on the periodically poled element 102.
- the pump light was linearly polarized parallel to the z-axis of the crystal.
- the terahertz wave generated by parametric generation was spatially separated from the pump light using a perforated parabolic mirror. These conditions are conditions having no intersection as shown in FIG.
- FIG. 3 is a graph showing the detector output and the idler light power corresponding to the terahertz wave power measured by changing the pump light intensity.
- the generation threshold of idler light was pump light intensity of 3.0 GW / cm 2 .
- the output of idler light and terahertz wave increased exponentially with respect to the excitation intensity, and the output of idler light reached 0.733 mJ in terms of pulse energy when the excitation intensity was 4.04 GW / cm 2 .
- the quantum conversion efficiency at this time was 10% or more. It should be noted that such high efficiency is realized with a simple configuration using only one laser light source having a single wavelength without using an external resonator. Since no saturation was observed in the output in the range of the excitation intensity in the experiment, it is possible to expect further increase in output by increasing the excitation intensity of the pump light.
- FIG. 4 A scanning etalon with two silicon plates was used to measure the wavelength of the terahertz wave.
- the horizontal axis of the graph of FIG. 4 indicates the moving distance (mm) of the silicon plate, and the vertical axis indicates the intensity of the terahertz wave transmitted through the etalon.
- peaks that should occur every integer multiple of ⁇ / 2 were obtained at intervals of 0.5 mm, and the wavelength of the output terahertz wave was 1 mm (0.3 THz).
- the idler wavelength at this time is 1065.51 nm as measured by the spectrum analyzer, and the frequency difference between the pump light and the idler light is converted to 0.31 THz. Thus, it was confirmed that the frequency difference between the pump light and the idler light was in good agreement with the frequency of the output terahertz wave.
- the terahertz wave frequency line width (FWHM) was 7 GHz.
- the frequency line width of the terahertz wave may have a smaller value. Therefore, the frequency line width of the parametrically generated idler light, which is a value that can be expected as it is for the corresponding terahertz wave, was measured with an optical spectrum analyzer and found to be 2.6 GHz (FWHM). This value can be said to be close to the Fourier transform limit.
- the wavelength and frequency of the generated terahertz wave can be modulated by adjusting the direction of the periodic polarization inverting element 102 with respect to the pump light LP.
- the frequency of the terahertz wave can be changed by controlling the phase matching condition by rotating the periodic polarization reversal element 102, which is a periodic polarization reversal element, relative to the pump light LP.
- the rotation is performed in any direction around the z axis so as to increase or decrease the angle ⁇ in FIG.
- FIG. 5 is a graph showing the spectrum of idler light when the crystal is rotated together with that of the pump light source.
- the measurement was performed using an optical spectrum analyzer (Advantest, Q8384, resolution 0.01 nm).
- the pump light has a peak at a wavelength of 1064.34 nm.
- the wavelength of the idler light could be adjusted from 1065.33 nm to 1065.70 nm by increasing or decreasing the angle ⁇ in the range of ⁇ 2.8 ° centered on 23 °.
- FIG. 5 also shows the spectrum at the upper and lower limits of the angle ⁇ .
- the frequency variable range of the THz wave corresponding to the adjustment range of the idler light is 310 GHz ⁇ 50 GHz. It can be said that the modulation width of ⁇ 50 GHz is considerably wide for a slight rotation of the angle ⁇ of ⁇ 2.8 °.
- the wavelength width of the idler light was 0.01 nm (FWHM) of the spectrum analyzer resolution. Since the pulse width of this idler light was 330 ps, narrow linewidth parametric wavelength conversion close to the Fourier transform limit was obtained. It is worthy of special note that such narrow linewidth parametric wavelength conversion has been realized without using any seed light in the operation of optical parametric wavelength conversion.
- FIG. 6 is a graph showing experimental results and theoretical calculation results regarding the angle dependence of the periodically poled element 102. The theoretical calculation was calculated for the wavelength of 1064.34 nm, which is the pump light, from the relationship of equations (2) and (4) and the energy conservation law.
- FIG. 6 also shows a schematic diagram of the periodic polarization reversal element 102 showing how the angle ⁇ is changed. As can be seen from the graph, with respect to the frequency or wavelength of the signal light and idler light, the experimental results do not deviate from the calculation result curve C2 in accordance with the experimental conditions.
- the backward wave output of the terahertz wave having the expected wavelength was experimentally confirmed under the special phase matching condition found by the present inventor. That is, the frequency of the terahertz wave was adjusted by controlling the phase matching condition by controlling the lattice vector. Furthermore, the frequency modulation capability was confirmed, and it was confirmed that the frequency of the terahertz wave actually changed dramatically by the lattice vector control. In particular, it has been clarified by calculation of the phase matching condition that the frequency variable band that is the range of the vertical axis of the graph of FIG. 6 is the entire frequency band in the sub-terahertz region.
- the expected modulation width depends on the inversion cycle ⁇ even when the conditions are limited such that the pump light is output from the Nd: YAG laser in the PPLN crystal.
- the frequency adjustment width itself can be adjusted by changing the inversion period ⁇ . At that time, it is also advantageous that the frequency can be adjusted continuously by adjusting only the angle ⁇ of the periodically poled element 102. In any inversion period ⁇ , the output terahertz wave frequency becomes maximum when the angle ⁇ is 90 °. As described above, the frequency of the output terahertz wave can be easily adjusted in a wide range.
- a terahertz wave having an arbitrary frequency in a frequency range from sub THz to 1.2 THz can be generated.
- the frequency range of the terahertz wave that can be actually output is affected by absorption or the like indicated by the material of the periodically poled element 102.
- the collinear phase matching conditions in the equations (2) and (4) and the arrangement of the wave vector in FIG. 1C can be generalized. Specifically, the same operation can be expected not only by the backward wave but also by the forward wave. The operation for obtaining the forward wave signal light will be described in more detail.
- FIG. 7 is a schematic diagram of momentum in the xy plane (FIG. 1) under various conditions including those described in FIG. 1C, and all satisfy the phase matching conditions proposed in the present embodiment. .
- the wave number vectors k p , k ′ p , and k i of the pump light, virtual pump light, and idler light respectively coincide with each other at the base portion and are large in size, and therefore, only the vicinity of the tip portion is shown in each drawing.
- Each figure is divided into (a) and (b) as in FIG. 1C.
- (a) shows the pump light wave vector wave number vector k p and the lattice vector k ⁇ , and the virtual pump light wave vector k ′ p determined from these, and corresponds to Equation (3).
- (b) satisfies the momentum conservation law with respect to the virtual pump light wave vector k ′ p, the idler light determined to satisfy the energy conservation law for the pump light while taking an efficient collinear arrangement.
- the wave number vectors k i and k THz of the signal light (terahertz wave) are shown and correspond to the equations (2) and (4).
- the pump light wave vector k p is the same, and the lattice vector k ⁇ having a constant size changes in the order of right, upper right, upper, upper left, and left in this order. I want to be.
- This orientation corresponds to the angle ⁇ (FIG. 1B).
- the vector of the lattice vector k ⁇ is added to the virtual pump light wave vector k ′ p to obtain the pump light wave vector k p .
- the idler light is parallel to the virtual pump light wave vector k ′ p .
- the angle ⁇ is 90 °.
- the virtual pump light wave vector k ′ p is also parallel to the pump light wave vector k p .
- the idler light wave vector k i and the signal light wave vector k THz satisfying the energy conservation law are opposite to each other.
- a terahertz wave that is a signal light that is a backward wave with respect to the pump light is generated.
- FIG. 7B shows an angle ⁇ of 45 °, which corresponds to the configuration shown in FIG.
- virtual pump wavenumber vector k 'p is the slope slightly with respect to the pump wavenumber vector k p, with small norm than the pump wavenumber vector k p.
- the idler wave wave vector k i and the signal light wave vector k THz are opposite to each other.
- a terahertz wave that is signal light is generated.
- the signal light wave number vector k THz is shortened, and the frequency of the terahertz wave as the signal light is decreased.
- the angle ⁇ is 0 °.
- the virtual pump light wave vector k ′ p is inclined with substantially the same norm with respect to the pump light wave vector k p .
- the angle ⁇ is 0 °, terahertz waves and idler light are not generated. For this reason, terahertz waves and idler light are not drawn in FIG. 7C.
- FIG. 7D shows an angle ⁇ of ⁇ 45 °.
- Virtual pump wavenumber vector k 'p is the slope slightly with respect to the pump wavenumber vector k p, virtual pump wavenumber vector k' having a larger norm than p.
- the idler light wave vector k i and the signal light wave vector k THz are oriented in the same direction. For this reason, the terahertz wave which is signal light is produced
- the angle ⁇ is ⁇ 90 °.
- Virtual pump wavenumber vector k 'p is parallel to the pump wavenumber vector k p, with larger norm than that.
- the idler light wave vector k i and the signal light wave vector k THz satisfying the collinear phase matching with the virtual pump light wave vector k ′ p and satisfying the energy conservation law are both parallel to the pump light wave vector k p and moved forward.
- a terahertz wave that is a signal light to be a wave is generated.
- FIGS. 7A to 7C shows the frequency change of the terahertz wave and the wavelength change of idler light shown in FIG.
- the calculation results are shown for the ranges of FIGS. 7C to 7E (FIG. 8).
- the horizontal axis in FIG. 8 takes the angle as a positive value.
- the vertical axis that is, the modulation width of the frequency of the terahertz wave and the wavelength of the idler light is large. This corresponds to the fact that the relative magnitudes of the virtual pump light wave vector k ′ p with respect to the pump light wave vector k p are different.
- FIG. 9 is a schematic diagram illustrating a configuration of a terahertz wave generation device 110 that generates terahertz wave signal light that is a forward wave, which is employed in the present embodiment, and includes a nonlinear optical element, pump light, and signal light.
- FIG. 9B is a plan view schematically showing a typical arrangement of idler light (FIG. 9A), and a momentum schematic diagram showing the relationship between wave vector vectors (FIG. 9B).
- a periodic polarization reversal element 112 similar to the periodic polarization reversal element 102 can be adopted.
- the direction in which the signal light (terahertz wave) is generated with respect to the pump light LP from the pump light source 114 is substantially opposite from the case of FIG. 1B across the nonlinear optical element, and the signal light and idler light are within the crystal. Become parallel. However, since the refractive index of the crystal has wavelength dependency, the extracted signal light (terahertz wave) and idler light are not always parallel after emission of the crystal.
- a terahertz wave is generated as a forward wave signal light with respect to the pump light. Even in this case, it is advantageous that the interaction volume by collinear phase matching is large, and a terahertz wave can be generated without using a feedback optical system such as an external resonator. Furthermore, the frequency modulation of the terahertz wave by the angle can be realized also in the case of the forward wave.
- the frequency of the terahertz wave is modulated simply by adjusting the relative direction of the pump light and the periodic polarization reversal element 102. I understand that it is possible. Based on theoretical predictions, the modulation width is relatively large. Therefore, in the present embodiment, if the terahertz wave generation device is provided with a mechanism that changes the mutual direction of the incident direction of the pump light LP and the periodic polarization inverting element 102, it is preferable to generate a terahertz wave having a variable frequency. It will be a thing.
- a typical example of such a mechanism is a stage capable of adjusting the direction of the periodic polarization inverting element 102 or an arbitrary beam scanning means for changing the irradiation direction of the pump light LP with respect to the periodic polarization inverting element 102.
- FIG. 10 is a schematic diagram showing a configuration of frequency scanning terahertz wave generation devices 120 and 130 having a rotation mechanism for a periodic polarization reversal element.
- FIG. 10A and FIG. In this configuration, terahertz waves as signal light are generated.
- FIG. 11 is a perspective view showing the shapes of periodic polarization reversal elements 122 and 132 suitable for use in a rotating mechanism.
- the periodic polarization reversal elements 122 and 132 used in the rotation mechanism have a generally disk shape, and a mechanical rotation axis of a rotation mechanism (not shown) is aligned with the rotation center axis of the shape.
- the pump light LP is incident from the pump light sources 124 and 134, and the generated signal light L THz (terahertz wave) and idler light LI are emitted from the cylindrical surface C that forms the outer extension of the disk. Accordingly, an antireflection coating for controlling the Fresnel reflection is applied.
- the frequency of the signal light L THz is scanned four times because it reciprocates twice in the range of 0 ° to 90 ° of the angle ⁇ per rotation.
- the frequency scanning width at that time can be about 100 GHz or about 1 THz.
- the disk-shaped crystal can be easily rotated at a high speed, and can function as a light source for scanning the frequency very rapidly.
- Such a light source with a high scanning speed has not been obtained with a terahertz light source, and is useful for terahertz wave spectroscopy.
- the terahertz wave that is the signal light LTHz is generated in two arrangements of the backward wave and the forward wave with respect to the pump light LP.
- the signal light wave vector is anti-parallel or parallel to the virtual pump light wave vector, and at a general angle ⁇ , the signal light wave vector is slightly in the direction of the pump light wave vector. There is a shift, and the shift depends on the angle.
- FIG. 12 is a schematic diagram showing the configuration of the optical parametric amplifier according to the present embodiment, and shows optical parametric amplifiers 140 and 150 that are arrangements of backward waves and forward waves in the order of FIGS. 12A and 12B.
- Terahertz waves to be amplified are incident on the periodic polarization reversal elements 142 and 152 simultaneously with the pump light LP from the pump light sources 144 and 154 according to the arrangement of the backward wave and the forward wave, respectively.
- the nonlinear optical effect in the periodic polarization inverting elements 142 and 152 is the same as that already described with reference to FIGS. That is, the period polarization vector of the lattice vector k lambda pump wavenumber vector k p incident to the inverting element 142 and 152 adds or subtracts a virtual pump wavenumber vector k 'p obtained is assumed to have the grating vector k lambda Is done.
- the target of amplification is an input of a terahertz wave that satisfies the collinear phase matching condition for this virtual pump light wave vector k ′ p .
- the collinear phase matching conditions, virtual pump wavenumber with respect to the vector k 'p antiparallel Fig.
- the terahertz wave that satisfies the conditions becomes seed light and is amplified by receiving energy from the pump light LP.
- pump light having a reduced intensity is transmitted through the periodic polarization inversion element 102, and idler light is output together with the passing pump light. Since the pump light wave vector k p and the virtual pump light wave vector k ′ p are generally slightly different in direction, the terahertz wave that is most efficiently used as seed light and has a high amplification factor is generally viewed from the pump light.
- the amplified signal light has the same wavelength as the input terahertz wave and is generated while maintaining coherence with respect to the input terahertz wave.
- the amplification operation is adapted to the frequency of the terahertz wave, or is amplified while performing the spectrum over the wavelength range of the terahertz wave. Can do.
- the optical parametric amplifiers 140 and 150 of the present embodiment can be used as a terahertz wave detection device by adding detectors 146 and 156. Also in this case, the arrangement of both the backward wave and the forward wave can be adopted.
- the detector may be a terahertz wave detector (for example, a bolometer). .
- a detection device by adjusting or rotating the direction of the nonlinear optical element, a detection device showing high sensitivity adapted to the frequency of the terahertz wave detected by the detectors 146 and 156 is configured. Can do.
- FIG. 13 is a schematic diagram showing the configuration of the terahertz wave detection devices 160 and 170, where the directions of the terahertz waves are those of the backward wave (FIG. 13A) and the forward wave (FIG. 13B).
- the pump light LP from the pump light sources 164 and 174 is incident on the periodic polarization inversion elements 162 and 172, and at the same time, the direction in which the terahertz wave becomes a backward wave with respect to the pump light LP via the mirror M having an appropriate reflection region. (FIG. 13A) and the direction (FIG.
- Up-conversion is a technique for generating high-frequency light, which is idler light, using terahertz wave input as seed light, and is advantageous in terms of detector selection. That is, in the idler light band, a silicon detector having higher sensitivity and faster response than a detector for terahertz waves can be easily obtained, so that it can be adopted. Since idler light has a difference frequency between the frequency of the pump light and the frequency of the terahertz wave serving as the signal light due to the requirement of the law of conservation of energy, for example, even if the terahertz wave is detected at a wavelength near 1 ⁇ m, the idler light Has a wavelength slightly longer than the pump light in the vicinity of 1 ⁇ m (FIGS.
- the idler light is detected by the detectors 166 and 176 after being separated from the pump light, for example, through the wavelength filter F.
- the terahertz wave detection devices 160 and 170 also adjust the direction of the periodic polarization inversion elements 162 and 172, or adopt the periodic polarization inversion elements 122 and 132 shown in FIG. 11 instead of the periodic polarization inversion elements 162 and 172. By rotating and rotating, it is possible to configure a detection device exhibiting high sensitivity adapted to the frequency of the detected terahertz wave.
- FIG. 14 is a schematic diagram illustrating a configuration of an imaging detection apparatus 180 using up-conversion.
- the terahertz wave may have an intensity distribution that has different intensities depending on the position as a result of, for example, irradiation of an object.
- terahertz waves having intensities L THz -A and L THz -B corresponding to different positions are shown.
- Such a terahertz wave is incident on a periodic polarization reversal element 182 having a sufficient magnitude via an appropriate mirror M as necessary.
- the pump light LP is incident after a beam is expanded to some extent by, for example, a telescope optical system (not shown), or the position is scanned.
- the pump light LP maintains a constant angle with the reversal structure, and the terahertz wave is incident from substantially the opposite side of the pump light (FIG. 14A).
- the intensities L THz -A and L THz -B reflecting the distribution of the terahertz wave are signals of the virtual pump light wave vector k ′ p and the terahertz wave, respectively, in the polarization inversion regions 182A and 182B of the periodic polarization inversion element 182 crystal.
- FIG. 14B is a momentum schematic diagram showing how collinear phase matching is established in the domain-inverted regions 182A and 182B inside the crystal, and the phase-matching conditions in the domain-inverted regions 182A and 182B are the same as those shown in FIG. 7B. is there.
- the idler light is emitted in a direction in which collinear phase matching is established in each of the polarization inversion regions 182A and 182B, and the idler light is generated according to the intensity L THz ⁇ A and L THz ⁇ B.
- the detector 186 is a one-dimensional array type detector, for example, the intensity of the idler light LI-A and LI-B output and separated from the pump light by the wavelength filter F is used as the intensity of the terahertz wave L THz -A, L THz- B, ie the intensity distribution is detected.
- Such an arrangement is advantageous for imaging because an array-type detector is more readily available in the idler wavelength region than in the terahertz wave frequency region.
- FIG. 14 shows only the configuration of the detection device for imaging by the arrangement of the backward wave, but in the case of the forward wave, the surface of the periodic polarization inverting element 182 on which the terahertz wave is incident is made to be an opposing surface.
- an imaging detection apparatus (not shown) can be configured.
- FIG. 15 is a schematic plan view (FIG. 15A) showing the configuration of such a periodically poled element 192 having a plurality of periods, and a graph of terahertz wave frequencies calculated at four types of periods and four types of angles ⁇ (FIG.
- the pump light is incident on an optical path that passes through one of the domain-inverted regions 192A to 192D having an inversion structure with a different period and extending in the x direction.
- the polarization inversion regions 192A to 192D can be switched with each other only by shifting the periodic polarization inversion element 192 in the y direction, for example, and the inversion period ⁇ can be easily set. You can choose. This makes it possible to modulate the frequency over a wide range.
- each of the domain-inverted regions 192A to 192D may be narrow as illustrated, or may be configured to be widened to some extent so that the angle of the inversion structure with respect to the pump light LP can be adjusted.
- the wide frequency range obtained by switching the inversion period ⁇ has the advantage of expanding the frequency range of the terahertz wave generated by the terahertz wave generator, and expanding the frequency range that can be amplified by the optical parametric amplifier. is there.
- the frequency of the terahertz wave generated using the property that the refractive index changes depending on the temperature of the periodic polarization inversion element 102 that is a nonlinear optical element. Can be adjusted precisely.
- the frequency drift of the generated terahertz wave can be suppressed by controlling the temperature to the target temperature.
- terahertz wave generation device optical parametric amplifier, terahertz wave detection device, and nonlinear optical element of the present embodiment can be applied to the entire technical field that utilizes and detects terahertz waves.
- a non-limiting list of such fields includes, for example, nondestructive inspection, gas sensing, terahertz OCT (optical CT), and can include terahertz communications.
- terahertz communication any of the nonlinear crystals described in the present embodiment can be employed as a part of an optical parametric amplifier, a position sensitive amplifier, a phase detector, or the like.
- the current detection device of the present invention can be used for any device that generates a charged particle beam.
- Optical parametric amplifier 160 170, 180 Terahertz wave detection device 102, 112, 122, 132, 142, 152, 162, 172, 182, 192 Periodic polarization inversion element 182A , 182B, 192A to 192D Polarization inversion region 104, 114, 124, 134, 144, 154, 164, 174 Pump light source 146, 156, 166, 176, 186 Detector
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Abstract
簡便な構成でテラヘルツ波のための高効率な非線形光学波長変換を実現するために、本発明のある実施形態では、単一波長のポンプ光LPを生成するポンプ光光源104と非線形光学素子(周期分極反転素子)102とを備えるテラヘルツ波生成装置100が提供される。この非線形光学素子は、ある反転周期Λで分極または結晶方位が反転した周期構造をもつ。ポンプ光が非線形光学素子に入射されると、アイドラー光LIおよびシグナル光LTHzが生成される。アイドラー光およびシグナル光は、反転周期に対応する格子ベクトルkΛを非線形光学素子中のポンプ光波数ベクトルkpにベクトル加算または減算した仮想ポンプ光波数ベクトルk'pに対するコリニア位相整合条件およびポンプ光に対するエネルギー保存則を満たす。本発明の実施形態では、光パラメトリック増幅器、テラヘルツ波検出器および非線形光学素子も提供される。
Description
本発明はテラヘルツ波生成装置、光パラメトリック増幅器、テラヘルツ波検出器、および非線形光学素子に関する。さらに詳細には本発明は、簡便な構成により高い効率でテラヘルツ波を生成することができるテラヘルツ波生成装置、光パラメトリック増幅器、テラヘルツ波検出器、およびこれらに適する効率に優れた非線形光学素子に関する。
非線形光学現象に基づく波長変換において、伝播する光波間に運動量保存則を課す条件は波数ベクトル間の位相整合として知られ、これまで非常に大きな役割を果たしてきている。例えば複屈折性位相整合におけるフォワード/バックワード位相整合、コリニア/ノンコリニア位相整合、そして疑似位相整合(QPM)など、多くの位相整合が提案され、波長変換効率の向上や波長領域の拡大が達成されてきた。なかでもバックワード位相整合による光パラメトリック発振(OPO)は、1966年にHarrisによって提示されたユニークな特性を持つ非線形光学波長変換として知られている(非特許文献1)。この特殊な位相整合は、きわめて簡便な光学系を採用しつつ極限まで高い量子変換効率を実現するものである(非特許文献2~4)。それをもたらすのは、非線形光学結晶中にて反対方向に伝搬する光波間で生じるフィードバック効果である。
ところで、周波数0.1THz~100THz(波長3μm~3mm)程度の周波数範囲の電磁波はテラヘルツ波とも呼ばれ広範な応用が期待されることから、高い出力や効率のよい生成法、広い帯域の周波数可変光源、室温動作可能性など主に実用面での改善が模索されている。特にコヒーレントなテラヘルツ波は、物質との強い相互作用が期待でき、波長域がいわゆる指紋領域を含むことからも有望視され、微量物質の検出などの用途で効率的な生成手法が探索されている。現在のコヒーレントなテラヘルツ波は、多くの場合近赤外域のレーザーの光源を利用した非線形波長変換により得られる。非線形波長変換の実現のためには、ミラー等をもつ外部共振器中に非線形光学結晶を配置し、そこに励起のためのポンプ光が供給される。これらの装置の多くは複数の波長のレーザー光源を必要とし、大がかりなものである。非線形波長変換はテラヘルツ波領域においても効果的な手法であり、これまで主に誘導ポラリトン散乱や差周波発生、光整流効果などによるテラヘルツ波生成が行われてきた。
S. E. Harris, "Proposed Backward Wave Oscillation in the Infrared," Appl. Phys. Lett. 9, 114-116 (1966).
Y. J. Ding and J. B. Khurgin, "Mirrorless optical parametric oscillators," J. Nonlinear Optic. Phys. Mat., 5, (2), 223-246, (1996); doi: 10.1142/S0218863596000179
C. Canalias and V. Pasiskevicius, "Mirrorless optical parametric oscillator," Nature Photonics, Vol.1, No.8, 459-462, (2007); doi: 10.1038/nphoton.2007.137
N. Umemura et al., "Sellmeier and thermo-optic dispersion formulas for the extraordinary ray of 5 mol.% MgO-doped congruent LiNbO3 in the visible, infrared, and terahertz regions," Appl. Opt., Vol.53, No.25, 5726-5732 (2014); doi: 10.1364/AO.53.005726
本発明は、新規な位相整合条件を利用することにより、簡便な構成での高効率なテラヘルツ波の生成や、テラヘルツ波のパラメトリック増幅を達成するものである。本発明は、簡便な構成でのテラヘルツ波生成装置、ならびにテラヘルツ波のバラメトリック増幅器、検出装置および非線形光学素子を提供することにより、テラヘルツ波を利用する様々な用途の発展に寄与するものである。
本発明者は、テラヘルツ波の生成などに適する位相整合について詳細な知見を得た。そして簡便な機器構成によってテラへルツ波に関する光パラメトリック発振やその生成が現実的であることに気付いた。そして実際にも、その特殊な位相整合条件でバックワード光パラメトリック発振によりテラヘルツ波を生成しうることを初めて実験的に確認した。すなわち、従来、バックワード光パラメトリック発振によりテラヘルツ波を生成させようとしても、バックワード位相整合条件自体の特異性のために、一般的なバルク結晶や周期分極反転素子を利用することができなかった。この課題に対し本発明者らはバックワード光パラメトリック発振が実現できる新たな条件を見出した。それは、ポンプ光の波数ベクトルそれ自体を対象とするのに代え、ポンプ光の波数ベクトルに非線形光学結晶に設けた周期的な反転構造をも反映させて得られる波数ベクトル(本出願を通じ「仮想ポンプ光波数ベクトル」という)を対象にしてコリニア位相整合条件を成立させる、というものである。なお、その場合の光パラメトリック発振にて生成されるシグナル光(テラヘルツ波)は、仮想ポンプ光波数ベクトルに対し逆向きとなり、ポンプ光の向きとからみると一般には概ね逆向きに向かう(以後「後進波」と呼ぶ)。加えて、上記原理は一般的な場合まで拡張される。結果、仮想ポンプ光波数ベクトルを利用して仮想ポンプ光波数ベクトルポンプ光に対して概ね同じ向きに向かう光(「前進波」)も本発明により実施可能であり、実際にテラヘルツ波を生成できることを確認した。このように本発明は、発明者が見出した新規な位相整合条件に基づくものである。
すなわち、本発明のある態様においては、単一波長のポンプ光を生成するポンプ光光源と、ある反転周期で分極または結晶方位が反転した周期構造をもつ非線形光学素子であって、前記ポンプ光が入射されると、該反転周期に対応する格子ベクトルを該非線形光学素子中のポンプ光波数ベクトルにベクトル加算または減算した仮想ポンプ光波数ベクトルに対するコリニア位相整合条件および前記ポンプ光に対するエネルギー保存則を満たすアイドラー光およびシグナル光を生成する、非線形光学素子とを備えるテラヘルツ波生成装置が提供される。
さらに本発明の別の態様では、光パラメトリック増幅器、テラへルツ波検出装置も提供される。加えて、本発明のさらに別の態様では非線形光学素子も提供される。
テラヘルツ波を後進波により生成するかまたは前進波により生成するかにかかわらず、上述した仮想ポンプ光波数ベクトルは、ポンプ光の波数ベクトルに、周期分極反転の周期性を反映する格子ベクトルがベクトル的に加算または減算されたものである。仮想ポンプ光波数ベクトルの向きはポンプ光波数ベクトルの向きと概ね同じであるものの、一般の条件において完全に向きが一致するとは限らない。なお、仮想ポンプ光波数ベクトルは、発明を明確に説明するために導入されるものである。このため、仮想ポンプ光との表現は、仮想ポンプ光波数ベクトルという波数ベクトルを説明するためのみに用いる。この波数ベクトルに対応する電磁波が実際に生成されるかどうか、または介在しているかどうかは本発明において特段問われない。
なお、本出願においては不明瞭にならない限り本発明の属する分野における慣用に従った用語法を利用する。たとえば赤外放射やテラヘルツ域の放射といった可視光ではない電磁波や電磁放射に対しても、「光」、「光源」、「発光」、「屈折」等と光学分野で使用される表現を用いる。このためテラヘルツ波であるシグナル光は、テラヘルツ域の電磁放射を指す。また慣用に従い、光やテラへルツ波の波長は特に明示のない限り真空中の値である。さらに、アイドラー光との表現は、通常は副産物であり利用されないことが多い光に対し用いられるものの、本出願においては説明を統一するために、有効に利用されるかどうかにかかわらずそのまま使用することがある。また、テラへルツ波生成装置として説明される本実施形態の装置は、アイドラー光を生成する装置としても機能するため、アイドラー光生成装置ともなりうる。
本発明のテラヘルツ波生成装置、光パラメトリック増幅器、テラへルツ波検出装置および非線形光学素子により、簡便な構成により高効率でテラヘルツ波を生成または増幅することが可能となる。
以下、本発明に係る原理を説明し、さらにテラヘルツ波生成装置、テラヘルツ波バラメトリック増幅器、検出装置、および非線形光学素子の実施形態を図面を参照して説明する。当該説明に際し特に言及がない限り、共通する部分または要素には共通する参照符号が付されている。
1.新規な位相整合条件によるテラヘルツ波の生成
1-1.格子ベクトルを反映する位相整合条件の典型例
非線形光学結晶を利用する差周波生成(DFG)またはバラメトリック発振では、ポンプ光からテラヘルツ波など目的の波長のシグナル光が生成される。その効率に大きく影響するのが位相整合である。従来の位相整合の一つであるQPM(擬似位相整合)のためにも、分極の向きまたは結晶方位が周期的に反転する非線形光学素子が利用されてきた。QPMでは、コヒーレンス長の二倍を反転周期とする分極の向きまたは結晶方位の反転構造をもつ非線形光学素子が採用される。本実施形態でも、分極の向きまたは結晶方位が周期的に反転している非線形光学素子を利用してパラメトリック波長変換が生起される。本実施形態の非線形光学素子は、QPMのためのものと類似した反転構造を持つものの、本発明者が見出した新たな位相整合条件を満たすように作製されている。本発明者が見出した当該位相整合条件について、最初にその典型例を説明し、一般論は後述する。
1-1.格子ベクトルを反映する位相整合条件の典型例
非線形光学結晶を利用する差周波生成(DFG)またはバラメトリック発振では、ポンプ光からテラヘルツ波など目的の波長のシグナル光が生成される。その効率に大きく影響するのが位相整合である。従来の位相整合の一つであるQPM(擬似位相整合)のためにも、分極の向きまたは結晶方位が周期的に反転する非線形光学素子が利用されてきた。QPMでは、コヒーレンス長の二倍を反転周期とする分極の向きまたは結晶方位の反転構造をもつ非線形光学素子が採用される。本実施形態でも、分極の向きまたは結晶方位が周期的に反転している非線形光学素子を利用してパラメトリック波長変換が生起される。本実施形態の非線形光学素子は、QPMのためのものと類似した反転構造を持つものの、本発明者が見出した新たな位相整合条件を満たすように作製されている。本発明者が見出した当該位相整合条件について、最初にその典型例を説明し、一般論は後述する。
図1は、本実施形態のテラへルツ波生成装置100の構成を示す模式図であり、本実施形態における非線形光学素子の典型例である周期分極反転素子102とポンプ光LP、シグナル光LTHz、アイドラー光LIの典型的な配置を概略的に示す斜視図(図1A)、平面図(図1B)、および周期分極反転素子102内での波数ベクトル相互の関係を示す運動量模式図(図1C)である。
ポンプ光LPは、典型的にはNd:YAGレーザー、半導体レーザーなどのレーザーであるポンプ光光源104からの単一波長の光であり、波長は種々のものから選択される。ポンプ光LPとして適するのは、周期分極反転素子102が吸収を示さない波長域のものであり、好ましくは波長1~10μm程度の赤外域または可視域のレーザー光である。ポンプ光LPは、適当なテレスコープ光学系(図示しない)を通じて周期分極反転素子102に入射される。本実施形態では、ポンプ光LPは単一波長のもの1つのみ用いられ、複数の光源は必要ない。ポンプ光LPは、パルスレーザー以外にも、CWレーザーなども採用することができる。
周期分極反転素子102は、ある反転周期Λで分極の向きが反転した周期構造をもつ。結晶方位の反転による周期構造を持つ非線形光学素子においても周期分極反転素子102と同等の作用が成り立つため、以降の周期分極反転素子102に基づくいずれの説明も、結晶方位の反転による周期構造の説明の一部をなすものとする。周期分極反転素子102は、ポンプ光LPおよびシグナル光LTHzに対し吸収を示さない材質のものが好ましい。なお、本出願ではシグナル光の典型がテラへルツ波であることから、LTHz等のTHzとの添え字を用いる。またベクトル記号であってもシンボル文字への矢印の明示または太字表示は省略する。周期分極反転素子102を例示すれば、分極の向きが反転しているものはPPLN(Periodically Poled Lithium Niobate; LiNbO3)であり、結晶方位が反転したものはOP-GaAs(Orientation-Patterned Gallium Arsenide)である。電極構造や基板の構造を利用して分極の向きまたは結晶方位が反転された様子は、本出願の図では微小な点を付加した領域と付加しない領域で描き分けている。本実施形態において、ある閾値を超す強度のポンプ光LPが周期分極反転素子102に入射すると、ポンプ光LPにほぼ沿った向きのアイドラー光LIと、ポンプ光LPとはほぼ逆向きのシグナル光LTHzが生成される(図1A)。その動作のためには、上述したように、ポンプ光以外の追加の光源は要さない。反転周期Λに対応する格子ベクトルkΛは、大きさがkΛ=2π/Λで与えられ、向きが反転周期の向きつまり反転構造をなす層の法線方向となるようなベクトルである。ポンプ光LP、アイドラー光LI、シグナル光LTHzについて、それぞれの周期分極反転素子102中における波長(真空の波長を、当該波長での周期分極反転素子の示す屈折率にて除したもの)と波面の進行方向とを表現する波数ベクトル(wave vector)を想定することができる。
本実施形態の一つの典型的な位相整合条件は、ポンプ光LP、アイドラー光LI、シグナル光LTHzそれぞれの波数ベクトルkp、ki、kTHzの間のみに規定される位相整合条件ではなく、格子ベクトルkΛまで加えたものである。当該位相整合条件は、周期分極反転素子102において高効率な光パラメトリック発振が生じるためのものであり、次の関係が周期分極反転素子102内で同時に成り立つこと、として表される(図1C):
kp - kΛ=ki - kTHz (1)
kTHz∥ - ki (2)。
ここで、記号「∥」はそれによりつなげられる両辺のベクトルが同じ向きで平行(パラレル)な関係にあることを示している。よって(2)はkTHzとkiが互いに反平行(アンチパラレル)であることを表現している。
kp - kΛ=ki - kTHz (1)
kTHz∥ - ki (2)。
ここで、記号「∥」はそれによりつなげられる両辺のベクトルが同じ向きで平行(パラレル)な関係にあることを示している。よって(2)はkTHzとkiが互いに反平行(アンチパラレル)であることを表現している。
この際、次式で定義される仮想的な波数ベクトル(仮想ポンプ光波数ベクトルk′p)を導入する。
k′p=kp - kΛ (3)
これにより、式(1)は、
k′p=ki - kTHz (4)
と書き換えられる。式(3)および式(4)のベクトルの配置を図1Cの(a)および(b)に示す。図1C(b)には、式(4)に加え式(2)のアンチパラレルの配置も反映されている(コリニア位相整合)。実際の波数ベクトルの長さはkΛとkTHzのみが他よりも極端に短いため、kpに沿う方向(x軸方向)の中央部を省略している。図1Cにおいて仮想ポンプ光波数ベクトルk′pとアイドラー光波数ベクトルkiとが省略部を挟んでy方向のずれを持つように描かれているのは、仮想ポンプ光波数ベクトルk′pとポンプ光波数ベクトルkpとの間の方向の違いが反映されたものである。ただし、周期分極反転素子102中での仮想ポンプ光波数ベクトルk′pのポンプ光波数ベクトルkpからの方向のずれは、実際の値では高々0.5°程度である。
k′p=kp - kΛ (3)
これにより、式(1)は、
k′p=ki - kTHz (4)
と書き換えられる。式(3)および式(4)のベクトルの配置を図1Cの(a)および(b)に示す。図1C(b)には、式(4)に加え式(2)のアンチパラレルの配置も反映されている(コリニア位相整合)。実際の波数ベクトルの長さはkΛとkTHzのみが他よりも極端に短いため、kpに沿う方向(x軸方向)の中央部を省略している。図1Cにおいて仮想ポンプ光波数ベクトルk′pとアイドラー光波数ベクトルkiとが省略部を挟んでy方向のずれを持つように描かれているのは、仮想ポンプ光波数ベクトルk′pとポンプ光波数ベクトルkpとの間の方向の違いが反映されたものである。ただし、周期分極反転素子102中での仮想ポンプ光波数ベクトルk′pのポンプ光波数ベクトルkpからの方向のずれは、実際の値では高々0.5°程度である。
式(4)は、シグナル光波数ベクトルkTHzをアイドラー光波数ベクトルkiからベクトル減算することにより仮想ポンプ光波数ベクトルk′pになることを規定している。これは、波数ベクトルにより運動量保存則を表現したものである。つまり式(4)は、ポンプ光の向きから角度αだけ反転構造が傾いているような周期分極反転素子102(図1B)では、反転構造の周期性と向きのために伝播する光に対する運動量保存則に修正が必要となることを反映したものである。しかし、式(4)は、シグナル光波数ベクトルkTHzとアイドラー光波数ベクトルkiに対し、ベクトル減算した後に仮想ポンプ光波数ベクトルk′pと同じであることのみを要請しているにすぎない。シグナル光波数ベクトルkTHzとアイドラー光波数ベクトルkiが互いにアンチパラレルであるべき式(2)の関係が追加されて初めてコリニア位相整合となる。このコリニア(同軸)であるべき要請は、実際に効率良くパラメトリック波長変換が生じるための条件である。つまり、周期分極反転素子102内では仮想ポンプ光波数ベクトルk′pに対しシグナル光の波数ベクトルkTHzが逆向きであるため、その波数ベクトルをもつ周期分極反転素子102内のシグナル光は、仮想ポンプ光波数ベクトルk′pに対し逆向きとなって、ポンプ光波数ベクトルkpに対しても概ね逆向き、つまり後進波となっている。仮想ポンプ光波数ベクトルk′pは格子ベクトルkΛがポンプ光波数ベクトルkpから傾いているとき仮想ポンプ光波数ベクトルk′pとポンプ光波数ベクトルkpとは互いにパラレルでもアンチパラレルでもない。そうであるものの、本実施形態では格子ベクトルkΛが小さいために、シグナル光であるテラへルツ波がポンプ光に対し概ね後進波となっているのである。なお、式(4)は、仮想ポンプ光波数ベクトルk′pが対象となっている点で従来のバックワード位相整合(ポンプ光波数ベクトルkpを対象としている条件)とは異なる。周期分極反転素子102から外部に出射する際に屈折により方向が変わるものの、図1Bの配置ではその値も小さく、周期分極反転素子102の外部でもシグナル光LTHzであるテラへルツ波はポンプ光LPに対し概ね逆向きといえる。このため、本出願では、周期分極反転素子102の内部か外部かを特段区別しない。
さらに、シグナル光LTHzはポンプ光LPに対し、0.5°程度のずれを持つ後進波となっているために、バックワード位相整合でコリニア配置をとる場合に期待できる利点が本実施形態でも実質的にそのまま実現する。つまり、本実施形態の式(2)、(4)に規定される仮想ポンプ光波数ベクトルk′pに対する位相整合条件は高い変換効率が期待できるものである。格子ベクトルkΛが小さい限り、この位相整合条件はポンプ光LPzがアイドラー光LI、シグナル光LTHzに変換される相互作用を生じる結晶中の体積(「相互作用体積」)を十分に大きくするものといえるためである。特にパラメトリック発振は、多くの場合、外部共振器等のフィードバック光学系が動作上必要となるが、本実施形態では実験的にもそのような光学系を追加しなくとも発振が確認されている。これはバックワード光パラメトリック発振においてコリニア配置となっていることが役立っていることの一つの証拠である。つまり、ポンプ光LPがある程度以上の強度で周期分極反転素子102へ入射すると、パラメトリック波長変換によってテラヘルツ波のシグナル光LTHzとアイドラー光LIとが生成される。生成されたテラヘルツ波のシグナル光LTHzは、ポンプ光LPの入射方向に向かって概ね逆方向に伝搬しながら、パラメトリック増幅動作のためのシード光として作用する。
なお、式(1)左辺のベクトル減算であるkp-kΛは、格子ベクトルkΛを反転させた定義の場合にはkp+kΛとベクトル加算により表現することもできる。格子ベクトルkΛの定義はそれ自体を反転させた定義も可能であるため、これに応じ仮想ポンプ光波数ベクトルk′pはベクトル加算および減算のいずれによっても定義される。
このように、本実施形態では、分極や結晶方位が反転する周期構造が傾くような非線形光学素子(斜周期分極反転素子)を用いる。これにより実際にもテラヘルツ波パラメトリック発振が実現される。その結果得られる後進波のテラヘルツ波を得るパラメトリック発振(バックワードテラヘルツ波パラメトリック発振)は、適切に設計された非線形光学素子に対しある閾値を超す強さの単一波長(単色)のポンプ光LPを供給するだけで実現し、得られるテラヘルツ波も高効率で生成される利点をもつ。しかも、精密な調整を要する別途の外部共振器等のフィードバック光学系によらずにパラメトリック発振が実現できるという利点をも本実施形態にもたらし、いわば自動的なフィードバック作用も実現する。すなわち、本実施形態のテラヘルツ波生成装置は、発振動作のために外部共振器などの光学素子が必要ない大幅な簡略化された構造のテラヘルツ波の光源となるため、機械精度や設定条件に高い精度を要求する部品が少なく、安定した動作が可能なシステムを構築できる実用性が高いものである。
図1Cに示した仮想ポンプ光波数ベクトルk′pに対して成立する本実施形態のコリニア位相整合条件には次の関係が見出せる。アイドラー光波数ベクトルkiは、仮想ポンプ光波数ベクトルk′pに対しパラレル配置で該仮想ポンプ光波数ベクトルk′pより大きい。これに対し、シグナル光波数ベクトルkTHは、仮想ポンプ光波数ベクトルk′pおよびアイドラー光波数ベクトルkiの両者に対しアンチパラレル配置となる。このため、テラヘルツ波であるシグナル光が、ポンプ光LPからみて概ね逆方向に向かう後進波となるのである。
なお、式(2)、(4)の条件は、効率良く非線形光学現象が生じるためのコリニア位相整合と、周期分極反転素子102の反転構造の周期性と電磁波の周期性という空間の性質に由来する運動量保存則とが反映されたものであるものの、それらのみでシグナル光波数ベクトルkTHzとアイドラー光波数ベクトルkiの組合せは特定できない。実際にはエネルギー保存則が追加されて初めてシグナル光波数ベクトルkTHzとアイドラー光波数ベクトルkiのそれぞれが、大きさまで含めて決定される。すなわち、シグナル光とアイドラー光とには、それらの光子エネルギーの合計がポンプ光の光子エネルギーと一致しなくてはならないとの条件が追加され、その結果シグナル光とアイドラー光の波数ベクトルの大きさに制約が追加される。図1Cのシグナル光の波数ベクトルkTHzとアイドラー光波数ベクトルkiそれぞれのベクトルの大きさ(ノルム)の組合せはエネルギー保存則を満たすように決まるといえる。このような後進波のシグナル光波数ベクトルkTHzが生じる条件では、仮想ポンプ光波数ベクトルk′pは、ポンプ光波数ベクトルkpよりもノルムが小さくなる。コリニア位相整合が仮想ポンプ光波数ベクトルk′pを対象としていたのに対し、エネルギー保存則は格子ベクトルがベクトル加算または減算される前のポンプ光が対象である点には留意すべきである。
1-2.不要な非線形波長変換の抑制
本実施形態では、図1に示した構成において、発振を望まないパラメトリック波長変換過程については抑制することが好ましい。具体的には、周期分極反転素子102の反転構造を、望まないパラメトリック波長変換や、望まないSHG(第2高調波発生)のための位相整合(特に光波帯の位相整合)を満たすことのないような構造とすることが好ましい。上述した式(2)、(4)の関係を満たしつつそのような構造を実現することは実際にも可能である。図2に、様々な周期を持つ分極反転構造のPPLN(5mol%MgO添加のもの)を対象に、ポンプ光波長に対し得られるアイドラー光およびシグナル光の波長をプロットした理論計算のグラフを示す。この理論計算は、異常光線のセルマイヤー方程式と温度特性を考慮したものであり、図2は特に温度が20℃で特に垂直入射(α=90°)の場合を例に計算したものである(非特許文献4)。各破線の曲線に付された数値は反転周期Λの値(単位:μm)を示し、横軸がポンプ光、縦軸はシグナル光およびアイドラー光の、それぞれの波長である。各曲線は、横軸のポンプ光に対し、1つ以上の縦軸の値を示すときに、その縦軸の値を波長に持つシグナル光およびアイドラー光が出力可能であることを示している。例示のために一点鎖線の紙面上下方向の直線で図示した波長1.064μmのポンプ光のものを説明すれば、反転周期Λ=32μm、29μm、26μmを示す曲線それぞれは、Xマークにより明示した2つの交点を持つ。また、紙面において右上がりの2点鎖線の直線はSHGの条件を示しており、縦軸に平行に延びる直線との2つの交点が重なる位置(曲線が縦方向の接線を持つ位置)に相当する。このことは、波長1.064μmポンプ光に対し、反転周期Λ=32μm、29μm、26μmの場合には光波帯域すなわち波長3μm~3mmを外れる短い波長域にシグナル光およびアイドラー光が生じること、またΛが僅かに32μmより大きい条件(図示しない)では第2高調波が生成されること、をそれぞれ示している。つまり、ポンプ光に対して赤外域などの光波帯の波長にも交点をもつような曲線を与えるような反転周期Λを採用すると、意図しない波長でパラメトリック波長変換過程やSHGが生起してしまう。このような条件は、不要な光波帯域にてエネルギーが消費されるものであり、テラへルツ波の生成を企図する限りは望ましくない。これに対し、たとえば周期分極反転素子102が反転周期Λ=35μmとなっていれば、波長1.064μmのポンプ光に対し光波帯に同時に含まれるシグナル光およびアイドラー光は存在しない。このため、そのような反転周期をもつ周期分極反転素子102により目的とするテラヘルツ波を効率良く得ることができる。なお、図2の曲線が描けないような条件も、光波帯域でエネルギーが消費されないため本実施形態にとっては好ましいといえる。また、上記説明から分るように、本実施形態での望まないパラメトリック波長変換過程やSHGのための位相整合(特に光波帯の位相整合)を満たさない条件は、ポンプ光の波長やそれに用いる結晶によって、計算によって決定することができる。加えて、適当な予備実験によってもそのような条件を決定することができる。望まないパラメトリック波長変換過程やSHGのための位相整合(特に光波帯の位相整合)を満たさないようにするためには、ここに示した例のように周期分極反転素子102の反転周期Λを適切に調整することのほか、周期分極反転素子102の非線形光学材料や結晶方位を変更すること、ポンプ光の波長を変更することなどが有効である。
本実施形態では、図1に示した構成において、発振を望まないパラメトリック波長変換過程については抑制することが好ましい。具体的には、周期分極反転素子102の反転構造を、望まないパラメトリック波長変換や、望まないSHG(第2高調波発生)のための位相整合(特に光波帯の位相整合)を満たすことのないような構造とすることが好ましい。上述した式(2)、(4)の関係を満たしつつそのような構造を実現することは実際にも可能である。図2に、様々な周期を持つ分極反転構造のPPLN(5mol%MgO添加のもの)を対象に、ポンプ光波長に対し得られるアイドラー光およびシグナル光の波長をプロットした理論計算のグラフを示す。この理論計算は、異常光線のセルマイヤー方程式と温度特性を考慮したものであり、図2は特に温度が20℃で特に垂直入射(α=90°)の場合を例に計算したものである(非特許文献4)。各破線の曲線に付された数値は反転周期Λの値(単位:μm)を示し、横軸がポンプ光、縦軸はシグナル光およびアイドラー光の、それぞれの波長である。各曲線は、横軸のポンプ光に対し、1つ以上の縦軸の値を示すときに、その縦軸の値を波長に持つシグナル光およびアイドラー光が出力可能であることを示している。例示のために一点鎖線の紙面上下方向の直線で図示した波長1.064μmのポンプ光のものを説明すれば、反転周期Λ=32μm、29μm、26μmを示す曲線それぞれは、Xマークにより明示した2つの交点を持つ。また、紙面において右上がりの2点鎖線の直線はSHGの条件を示しており、縦軸に平行に延びる直線との2つの交点が重なる位置(曲線が縦方向の接線を持つ位置)に相当する。このことは、波長1.064μmポンプ光に対し、反転周期Λ=32μm、29μm、26μmの場合には光波帯域すなわち波長3μm~3mmを外れる短い波長域にシグナル光およびアイドラー光が生じること、またΛが僅かに32μmより大きい条件(図示しない)では第2高調波が生成されること、をそれぞれ示している。つまり、ポンプ光に対して赤外域などの光波帯の波長にも交点をもつような曲線を与えるような反転周期Λを採用すると、意図しない波長でパラメトリック波長変換過程やSHGが生起してしまう。このような条件は、不要な光波帯域にてエネルギーが消費されるものであり、テラへルツ波の生成を企図する限りは望ましくない。これに対し、たとえば周期分極反転素子102が反転周期Λ=35μmとなっていれば、波長1.064μmのポンプ光に対し光波帯に同時に含まれるシグナル光およびアイドラー光は存在しない。このため、そのような反転周期をもつ周期分極反転素子102により目的とするテラヘルツ波を効率良く得ることができる。なお、図2の曲線が描けないような条件も、光波帯域でエネルギーが消費されないため本実施形態にとっては好ましいといえる。また、上記説明から分るように、本実施形態での望まないパラメトリック波長変換過程やSHGのための位相整合(特に光波帯の位相整合)を満たさない条件は、ポンプ光の波長やそれに用いる結晶によって、計算によって決定することができる。加えて、適当な予備実験によってもそのような条件を決定することができる。望まないパラメトリック波長変換過程やSHGのための位相整合(特に光波帯の位相整合)を満たさないようにするためには、ここに示した例のように周期分極反転素子102の反転周期Λを適切に調整することのほか、周期分極反転素子102の非線形光学材料や結晶方位を変更すること、ポンプ光の波長を変更することなどが有効である。
1-3.角度の作用
本実施形態の周期分極反転素子102では、反転構造の格子ベクトルkΛとポンプ光の波数ベクトルkpとの両者の方向(図1B、角度α)の範囲には原理面からの制限はない。典型的な場合においては、周期分極反転素子102の反転構造の格子ベクトルkΛは、そこに入射されるポンプ光の波数ベクトルkpの向きと90°でも-90°でもない角度をなしている。この場合、周期分極反転素子102でポンプ光の波数ベクトルkpと仮想ポンプ光波数ベクトルk′pの向きは互いにパラレルでもアンチパラレルでもない配置となる。
本実施形態の周期分極反転素子102では、反転構造の格子ベクトルkΛとポンプ光の波数ベクトルkpとの両者の方向(図1B、角度α)の範囲には原理面からの制限はない。典型的な場合においては、周期分極反転素子102の反転構造の格子ベクトルkΛは、そこに入射されるポンプ光の波数ベクトルkpの向きと90°でも-90°でもない角度をなしている。この場合、周期分極反転素子102でポンプ光の波数ベクトルkpと仮想ポンプ光波数ベクトルk′pの向きは互いにパラレルでもアンチパラレルでもない配置となる。
生成されるテラへルツ波の周波数は角度αの影響を受ける。逆にシグナル光であるテラヘルツ波の波長を、非線形光学素子の反転構造のポンプ光に対する角度αにより調整することもできる。このことは、ポンプ光に対し周期分極反転素子102の向きを変更すれば波長が容易に変更できることを意味している。上述したとおり、後進波となるシグナル光(テラヘルツ波)とアイドラー光は、波数ベクトルがコリニア位相整合条件(式(2)および(4))を満たしつつ、波長がエネルギー保存則により決定される。これらの条件のために、角度αがテラヘルツ波の波長へ影響をもつ。本実施形態では、特に角度αが90°のときは、テラヘルツ波の伝搬方向はポンプ光に対して完全に対向するバックワードテラヘルツ波パラメトリック発振となる。角度αを変更した一般論は図6等を参照して後述する。
1-4.非線形光学材料
本実施形態の周期分極反転素子102のためには種々の非線形光学材料を採用することができる。本実施形態のためには、QPMのために反転構造をもつように作製されたり、結晶方位自体を反転させて作製されたりしている一般の非線形光学素子を採用することができる。図1Bに示した反転周期Λはこれらにおける分極または結晶方位のものから必要な変更を受けたものである。本実施形態において好ましい非線形光学材料を非限定的な例として列挙すれば、PPLN(Periodically Poled Lithium Niobate, LiNbO3)、PPKTP(Periodically Poled Potassium Titanyl Phosphate, KTiOPO4)、PPSLT(Periodically Poled Stoichiometric, LiTaO3)、およびOP-GaAs(Orientation-Patterned Gallium Arsenide)を挙げることができる。
本実施形態の周期分極反転素子102のためには種々の非線形光学材料を採用することができる。本実施形態のためには、QPMのために反転構造をもつように作製されたり、結晶方位自体を反転させて作製されたりしている一般の非線形光学素子を採用することができる。図1Bに示した反転周期Λはこれらにおける分極または結晶方位のものから必要な変更を受けたものである。本実施形態において好ましい非線形光学材料を非限定的な例として列挙すれば、PPLN(Periodically Poled Lithium Niobate, LiNbO3)、PPKTP(Periodically Poled Potassium Titanyl Phosphate, KTiOPO4)、PPSLT(Periodically Poled Stoichiometric, LiTaO3)、およびOP-GaAs(Orientation-Patterned Gallium Arsenide)を挙げることができる。
1-5.高効率なテラヘルツ波生成条件
本実施形態のテラヘルツ生成手法では、ポンプ波からの変換効率を高める様々な工夫を追加して採用することができる。その一つが、非線形光学素子の構造を、その内部にシグナル光であるテラヘルツ波を伝播させる導波路の作用をもつようなものにすることである。非線形光学素子は図1A等に示すように典型的には直方体に作製される。テラヘルツ波に対する屈折率が5程度と高い非線形光学素子は、それ自体が導波路として作用するため、テラヘルツ波が-x軸方向に導波路内部に閉じ込められながら後進する。この閉じ込められたテラヘルツ波は後進のときにポンプ光に対してシード光として作用する。このように屈折率が高い非線形光学素子が導波路となると、相互作用体積を増大させることができて有利である。テラへルツ波の導波路構造として種々の形式のものを採用することができ、例えばシリコンのガイドを周囲に設けることも有利である。
本実施形態のテラヘルツ生成手法では、ポンプ波からの変換効率を高める様々な工夫を追加して採用することができる。その一つが、非線形光学素子の構造を、その内部にシグナル光であるテラヘルツ波を伝播させる導波路の作用をもつようなものにすることである。非線形光学素子は図1A等に示すように典型的には直方体に作製される。テラヘルツ波に対する屈折率が5程度と高い非線形光学素子は、それ自体が導波路として作用するため、テラヘルツ波が-x軸方向に導波路内部に閉じ込められながら後進する。この閉じ込められたテラヘルツ波は後進のときにポンプ光に対してシード光として作用する。このように屈折率が高い非線形光学素子が導波路となると、相互作用体積を増大させることができて有利である。テラへルツ波の導波路構造として種々の形式のものを採用することができ、例えばシリコンのガイドを周囲に設けることも有利である。
さらに本実施形態ではポンプ光光源が、従来のフェムト秒レーザーなどに比べて比較的大きいパルス幅を持っていることが有利である。従来、非線形光学効果を高めるために圧縮したパルス幅(例えばフェムト秒パルス)を持つ光源がポンプ光に採用されることがある。これに対し本実施形態のポンプ光光源が、コヒーレントポンプ光パルスを生成するレーザー光源であり、とりわけ、30ピコ秒以上1ナノ秒以下のパルス幅をもつものが好ましい。ポンプ光パルスが極度に短いパルスであると、後進波のシグナル光(テラヘルツ波)がポンプ光に対して戻るとき相互作用に寄与する距離が短くなる。このため後進波などによる自動フィードバックを利用する本実施形態の動作ではむしろ比較的大きいパルス幅を持っていることが有利となる。この点は、大掛かりで高価なフェムト秒バルスレーザーが不要となることから実用性の高さにもつながる。また、バルス幅が比較的広いことは、フーリエ限界となる周波数線幅が狭くなるため、分光用途など周波数幅の狭さが必要な用途に適用しうる良好な単色光源が得られる点でも有利である。
さらに、本実施形態ではポンプ光光源は、連続発振(CW)レーザーでも動作が期待できる。十分な大きさの周期分極反転素子102を用いれば、後進波のシグナル光(テラヘルツ波)がポンプ光に対して相互作用をするための時間を確保でき、周波数幅の狭さを決めるフーリエ限界自体が変わる。このため、より単色性の高い連続波のテラへルツ波も生成できる点で有利である。
加えて、本実施形態では周期分極反転素子102の温度を適切な範囲に制御することが有利である。周期分極反転素子102は、その材質自体の線形光学定数(吸収など)や非線形光学定数は一般に温度に依存するため、適切な温度に周期分極反転素子102を維持するための温度制御装置を装備することは所望の動作を実現する上で好ましい。また、吸収を伴う波長域で動作する場合には、周期分極反転素子102が熱をもつことから、必要な期間にわたり所望の動作を継続させる上でも周期分極反転素子102自体の温度を制御することが有用である。例えば周期分極反転素子102がLithium Niobate(LiNbO3、ニオブ酸リチウム、以下「LN」と記す)により作製されている場合、周期分極反転素子102を冷却するための素子や部材、温度調整装置を含むような温度制御装置を追加し温度上昇をすることができれば、吸収係数を小さい値に維持でき、かつ非線形光学定数も所望の値に保たれる。このため、LNの周期分極反転素子102で高い効率でテラへルツ波を生成する動作において冷却のための追加の手段を装備することは有利である。
2.実験的確認(1)
2-1.テラヘルツ波生成の確認
次に、本実施形態の新規な位相整合条件の典型的なもので実際のテラヘルツ波発振を確認した実験について説明する。本実施形態の確認では、上述した特殊な位相整合条件を満たす周期分極反転素子102のためにLNが採用された。詳細には、反転周期Λ=53μm、角度α=23°に設定した周期分極反転ニオブ酸リチウム(サイズ50mm(L)×5mm(W)×1mm(T))のものを採用した。ポンプ光は、ポンプ光に適合した反射防止コーティングを施した5mm×1mmのサイズを持つ端面に入射させた。ポンプ光光源は、縦シングルモード、波長1064.34nm、パワー0.5mJ,パルス幅660ps、繰り替えし周波数100HzのNd:YAGレーザー(浜松ホトニクス製)を採用し、その出力をNd:YAG全固体光増幅器により約8mJまで増幅したものを利用した。さらにポンプ光はテレスコープ光学系を用いて直径0.6mm(FWHM)となるようコリメートし周期分極反転素子102に入射された。そのポンプ光の偏光は結晶のz軸に平行な直線偏光とした。パラメトリック発生により生成されたテラヘルツ波は、穴あき放物面鏡を利用してポンプ光と空間的に分離した。これらの条件は、図2に示したような交点を持たない条件である。
2-1.テラヘルツ波生成の確認
次に、本実施形態の新規な位相整合条件の典型的なもので実際のテラヘルツ波発振を確認した実験について説明する。本実施形態の確認では、上述した特殊な位相整合条件を満たす周期分極反転素子102のためにLNが採用された。詳細には、反転周期Λ=53μm、角度α=23°に設定した周期分極反転ニオブ酸リチウム(サイズ50mm(L)×5mm(W)×1mm(T))のものを採用した。ポンプ光は、ポンプ光に適合した反射防止コーティングを施した5mm×1mmのサイズを持つ端面に入射させた。ポンプ光光源は、縦シングルモード、波長1064.34nm、パワー0.5mJ,パルス幅660ps、繰り替えし周波数100HzのNd:YAGレーザー(浜松ホトニクス製)を採用し、その出力をNd:YAG全固体光増幅器により約8mJまで増幅したものを利用した。さらにポンプ光はテレスコープ光学系を用いて直径0.6mm(FWHM)となるようコリメートし周期分極反転素子102に入射された。そのポンプ光の偏光は結晶のz軸に平行な直線偏光とした。パラメトリック発生により生成されたテラヘルツ波は、穴あき放物面鏡を利用してポンプ光と空間的に分離した。これらの条件は、図2に示したような交点を持たない条件である。
測定は、まず出力テラヘルツ波およびアイドラー光の特性についてテラヘルツ波パラメトリック発振の入出力特性を調べた。テラヘルツ波は、リレー光学系を経由させ極低温シリコンボロメータ検出器にて測定し、アイドラー光は光パワーメータにて測定した。図3は、ポンプ光強度を変更して実測されたテラヘルツ波のパワーに対応する検出器出力およびアイドラー光のパワーを示すグラフである。アイドラー光の生成閾値はポンプ光の強度3.0GW/cm2であった。アイドラー光およびテラヘルツ波の出力は、励起強度に対して指数関数的に上昇し、4.04GW/cm2の励起強度のときアイドラー光の出力は、パルスエネルギーの値で0.733mJに達した。このときの量子変換効率は10%以上であった。特筆すべきは、このような高い効率が、外部共振器を用いず、また単一波長の1つのレーザー光源のみを用いる簡便な構成で実現していることである。実験の励起強度の範囲では出力に飽和はみられなかったため、ポンプ光の励起強度の増加によりさらなる高出力化を期待することもできる。
次にテラヘルツ波の波長測定を行った結果を図4に示す。テラヘルツ波の波長測定には2枚のシリコンプレートによるスキャニングエタロンを利用した。図4のグラフの横軸はシリコンプレートの移動距離(mm)、縦軸はエタロンを透過したテラヘルツ波の強度を示す。測定の結果、移動距離がλ/2の整数倍毎に生じるべきピークが0.5mm間隔で得られ、出力テラヘルツ波の波長が1mm(0.3THz)であることを確認した。このときのアイドラー光波長は、スペクトルアナライザの測定から1065.51nmであり、ポンプ光とアイドラー光の周波数差は0.31THzと換算される。こうしてポンプ光とアイドラー光の周波数差が出力テラヘルツ波の周波数とよい一致を示したことを確認した。
つづけて、生成されたテラヘルツ波の周波数線幅を図4のスキャニングエタロンによる測定結果に基づいて見積もったところ、テラヘルツ波周波数線幅(FWHM)は7GHzであった。ただし、測定に用いたエタロンのシリコンプレートの反射率に起因する低いQ値を考慮すると測定可能な下限値自体がこの程度である。このため、テラヘルツ波の周波数線幅はそれよりも小さい値となっている可能性も残る。そこで、対応するテラヘルツ波についてもそのまま期待できる値であるパラメトリック発生させたアイドラー光の周波数線幅を光スペクトラムアナライザで測定したところ、2.6GHz(FWHM)であった。この値は、フーリエ変換限界に近い値といえる。この解析から、テラヘルツ波についても、フーリエ変換限界に近い周波数線幅を持つ単色性に優れた出力が得られたものと判断した。なお、このようなきわめて細い周波数線幅が得られた理由について、本発明者は、コリニア位相整合のための自動フィードバック効果のためと考えている。
さらに、本実施形態においてポンプ光LPに対する周期分極反転素子102の方向を調整することにより、生成されるテラヘルツ波の波長や周波数を変調させうることを確認した。テラヘルツ波の周波数は周期分極反転素子である周期分極反転素子102をポンプ光LPに対し相対的に回転させ、位相整合条件を制御することによって変更することができる。回転は、例えば図1の角度αを増減させるようz軸周りのいずれかの向きに回転させる。図5は、結晶を回転させたときのアイドラー光のスペクトルを、ポンプ光光源のものと合わせて示すグラフである。測定は、光スペクトラムアナライザ(Advantest社, Q8384, resolution 0.01nm)によった。ポンプ光は波長1064.34nmの位置にピークを持つ。これに対しアイドラー光のピークは、反転構造とポンプ光の光軸のなす角αに対し変化し、α=23°において1065.51nmであった。当該角度αを23°を中心に±2.8°の範囲で増減することにより、アイドラー光の波長は1065.33nmから1065.70nmまで調節できた。図5には角度αの範囲上限および下限におけるスペクトルも示している。そのアイドラー光の調節範囲に対応するTHz波の周波数可変範囲は310GHz±50GHzである。角度αを±2.8°のわずかな回転に対して±50GHzもの変調幅は相当に広いと言える。なお、測定の範囲内においてアイドラー光の波長幅はスペクトルアナライザ分解能の0.01nm(FWHM)であった。このアイドラー光のパルス幅は330psであったので、フーリエ変換限界に近い狭線幅パラメトリック波長変換が得られた。光パラメトリック波長変換の動作で、何らシード光を用いずにこれほどの狭線幅パラメトリック波長変換が実現したことは特筆に値する。
2-2.テラヘルツ波の周波数変調の確認と理論との比較
次に、実験にて観察された事実と発明者による着想との関係を明確にするため、上述した角度による周波数調節の挙動や、上述したコリニア位相整合における後進波のシグナル光(テラヘルツ波)およびアイドラー光の挙動が理論計算から期待される通りのものであるかを調査した。図6は、周期分極反転素子102の角度依存性に関する実験結果と理論計算結果を示すグラフである。理論計算は式(2)、(4)の関係とエネルギー保存則から、ポンプ光である1064.34nmの波長を対象にして算出した。比較のため、上記実験で採用した53μmの反転周期Λに加え、図2に関連し説明した光波帯で位相整合条件を満たさず本実施形態の用途に適する範囲の典型例として、35、80、100μmのものも示す。横軸は反転構造とポンプ光のなす角αであり、90°の時にポンプ光は反転構造に対して垂直に透過する。縦軸は、曲線一つひとつがシグナル光の周波数とアイドラー光の波長を同時に与えることから、左右軸にこれらの目盛を付した。曲線C1~C4は、順に、反転周期Λ=35、53、80、100μmのものである。同じグラフに白抜き円マークによりプロットした実験結果は上記実験のものであり、角度α=20.2°、23.0°、25.8°の各値に対してアイドラー光およびシグナル光(テラヘルツ波)の値である。図6には角度αを変更した様子を示す周期分極反転素子102の模式図も描いている。グラフから分るように、シグナル光およびアイドラー光の周波数または波長について、実験結果はその実験条件に合わせた計算結果の曲線C2上から外れてはいない。
次に、実験にて観察された事実と発明者による着想との関係を明確にするため、上述した角度による周波数調節の挙動や、上述したコリニア位相整合における後進波のシグナル光(テラヘルツ波)およびアイドラー光の挙動が理論計算から期待される通りのものであるかを調査した。図6は、周期分極反転素子102の角度依存性に関する実験結果と理論計算結果を示すグラフである。理論計算は式(2)、(4)の関係とエネルギー保存則から、ポンプ光である1064.34nmの波長を対象にして算出した。比較のため、上記実験で採用した53μmの反転周期Λに加え、図2に関連し説明した光波帯で位相整合条件を満たさず本実施形態の用途に適する範囲の典型例として、35、80、100μmのものも示す。横軸は反転構造とポンプ光のなす角αであり、90°の時にポンプ光は反転構造に対して垂直に透過する。縦軸は、曲線一つひとつがシグナル光の周波数とアイドラー光の波長を同時に与えることから、左右軸にこれらの目盛を付した。曲線C1~C4は、順に、反転周期Λ=35、53、80、100μmのものである。同じグラフに白抜き円マークによりプロットした実験結果は上記実験のものであり、角度α=20.2°、23.0°、25.8°の各値に対してアイドラー光およびシグナル光(テラヘルツ波)の値である。図6には角度αを変更した様子を示す周期分極反転素子102の模式図も描いている。グラフから分るように、シグナル光およびアイドラー光の周波数または波長について、実験結果はその実験条件に合わせた計算結果の曲線C2上から外れてはいない。
このように、シグナル光の周波数またはアイドラー光の波長の角度αへの依存性は実験結果と計算結果がよく一致しており、本実施形態の位相整合条件に従って実際のパラメトリック波長変換が生起することが確認できた。さらに、角度αの変化である±2.8°に対しテラヘルツ波の周波数に±50GHzもの大きな変調幅が得られた理由も理論計算に合致したものである。また図6の角度αに対し正弦波的に変化する様子から、例えばテラヘルツ波の周波数は、角度αが小さい範囲では角度に対して線型に変化することもわかる。また、角度αに対し周波数変化が少ないテラへルツ波を得るためには、角度αを大きくして90°付近とすることが有効である。
以上のように、本発明者により見出された特殊な位相整合条件について、予測通りの波長のテラヘルツ波の後進波出力が実験的に確認された。すなわち、テラヘルツ波の周波数が格子ベクトルのコントロールによる位相整合条件制御によって調節された。さらにその周波数変調能力も確認され、テラヘルツ波の周波数は格子ベクトル制御によって実際に劇的に変化することが確認できた。特に図6のグラフの縦軸の範囲である周波数可変帯域はサブテラヘルツ領域の全周波数帯域であることが位相整合条件の計算によって明らかになった。
2-3.実験および理論からの追加の知見
上述した通り、バックワードテラヘルツ波パラメトリック発振の位相整合条件を解明したことによって、革新的な高効率・単色・広帯域周波数可変テラヘルツ波光源が実現した。その動作についての実験結果と理論解析が良好に対応しているため、本実施形態の着想の正しさは確認されている。また、反転周期Λや角度αによって決定される位相整合条件(運動量保存則)およびエネルギー保存則に基づいて角度αに対しシグナル光の周波数とアイドラー光の波長が決定されることを考えれば、理論的予測も全般的に妥当といえる。そこで、本実施形態の着想に関する追加の知見を上記理論計算により裏付けられる範囲で説明する。
上述した通り、バックワードテラヘルツ波パラメトリック発振の位相整合条件を解明したことによって、革新的な高効率・単色・広帯域周波数可変テラヘルツ波光源が実現した。その動作についての実験結果と理論解析が良好に対応しているため、本実施形態の着想の正しさは確認されている。また、反転周期Λや角度αによって決定される位相整合条件(運動量保存則)およびエネルギー保存則に基づいて角度αに対しシグナル光の周波数とアイドラー光の波長が決定されることを考えれば、理論的予測も全般的に妥当といえる。そこで、本実施形態の着想に関する追加の知見を上記理論計算により裏付けられる範囲で説明する。
まず、予想される変調幅は、PPLN結晶でポンプ光をNd:YAGレーザーの出力というように条件を限定した場合でも反転周期Λに依存する。さらにその反転周期Λを変更することにより、周波数の調節幅自体も調整できる。その際、周期分極反転素子102の角度αのみの調整で連続的に周波数を調節可能であることも有利である。また、いずれの反転周期Λの場合でも、出力テラヘルツ波周波数は角度αが90°のとき最大となる。このように、出力のテラヘルツ波の周波数は、広い範囲で容易に調整可能である。特に反転周期Λが35μmであるPPLN結晶を用い、波長1μmの光源を利用する場合には、サブTHzから1.2THzの周波数範囲で任意の周波数をもつテラヘルツ波を生成することができる。なお、実際に出力可能なテラヘルツ波の周波数範囲は、周期分極反転素子102の材質の示す吸収等の影響を受ける。
さらに、式(2)、(4)におけるコリニア位相整合条件と図1Cの波数ベクトルの配置についても一般化できることがわかる。具体的には、後進波だけでなく前進波によっても同様の動作が期待できる。前進波のシグナル光を得る動作についてさらに詳述する。
3.格子ベクトルを反映したコリニア位相整合条件(一般論)
図7は、図1Cに記載したものも含む様々な条件でのxy面内(図1)での運動量模式図であり、いずれも本実施形態にて提案される位相整合条件を満たすものである。ポンプ光、仮想ポンプ光、アイドラー光それぞれの波数ベクトルkp、k′p、kiは、その基部で互いに一致しておりその大きさが大きいため各図では先端部付近のみを示している。また各図は、図1Cと同様に(a)と(b)に分けている。すなわち(a)はポンプ光波数ベクトル波数ベクトルkpおよび格子ベクトルkΛ、そしてこれらから決定される仮想ポンプ光波数ベクトルk′pを示しており、式(3)に対応する。これに対し(b)は、その仮想ポンプ光波数ベクトルk′pに対し運動量保存則を満たし、効率のよいコリニア配置をとりつつ、ポンプ光に対するエネルギー保存則も満たすように決定されるアイドラー光およびシグナル光(テラヘルツ波)それぞれの波数ベクトルki、kTHzを示しており、式(2)および(4)に対応する。図7A~Eにおいて、ポンプ光波数ベクトルkpは同一であり、大きさ一定の格子ベクトルkΛが、この順に紙面上で右、右上、上、左上、左と向きを変えていることに注目されたい。この向きは角度α(図1B)に対応したものである。各図を通じ、仮想ポンプ光波数ベクトルk′pに格子ベクトルkΛをベクトル加算するとポンプ光波数ベクトルkpとなる。また、仮想ポンプ光波数ベクトルk′pに対しアイドラー光はパラレルである。
図7は、図1Cに記載したものも含む様々な条件でのxy面内(図1)での運動量模式図であり、いずれも本実施形態にて提案される位相整合条件を満たすものである。ポンプ光、仮想ポンプ光、アイドラー光それぞれの波数ベクトルkp、k′p、kiは、その基部で互いに一致しておりその大きさが大きいため各図では先端部付近のみを示している。また各図は、図1Cと同様に(a)と(b)に分けている。すなわち(a)はポンプ光波数ベクトル波数ベクトルkpおよび格子ベクトルkΛ、そしてこれらから決定される仮想ポンプ光波数ベクトルk′pを示しており、式(3)に対応する。これに対し(b)は、その仮想ポンプ光波数ベクトルk′pに対し運動量保存則を満たし、効率のよいコリニア配置をとりつつ、ポンプ光に対するエネルギー保存則も満たすように決定されるアイドラー光およびシグナル光(テラヘルツ波)それぞれの波数ベクトルki、kTHzを示しており、式(2)および(4)に対応する。図7A~Eにおいて、ポンプ光波数ベクトルkpは同一であり、大きさ一定の格子ベクトルkΛが、この順に紙面上で右、右上、上、左上、左と向きを変えていることに注目されたい。この向きは角度α(図1B)に対応したものである。各図を通じ、仮想ポンプ光波数ベクトルk′pに格子ベクトルkΛをベクトル加算するとポンプ光波数ベクトルkpとなる。また、仮想ポンプ光波数ベクトルk′pに対しアイドラー光はパラレルである。
図7Aは、角度αが90°となっているものである。この場合、格子ベクトルkΛがポンプ光波数ベクトルkpに対しパラレルであるから、仮想ポンプ光波数ベクトルk′pもポンプ光波数ベクトルkpに対しパラレルである。その仮想ポンプ光波数ベクトルk′pに対しコリニア位相整合を満たすことにより、エネルギー保存則をみたすアイドラー光波数ベクトルkiおよびシグナル光波数ベクトルkTHzは互いに逆向きとなる。結果、ポンプ光に対し後進波となるシグナル光であるテラヘルツ波が生成される。
図7Bは角度αが45°のものであり、図1の構成に対応している。この場合、仮想ポンプ光波数ベクトルk′pはポンプ光波数ベクトルkpに対しわずかながら傾き、ポンプ光波数ベクトルkpよりも小さなノルムを持つ。この例でも、仮想ポンプ光波数ベクトルk′pに対しコリニア位相整合を満たしエネルギー保存則をみたすことにより、アイドラー光波数ベクトルkiおよびシグナル光波数ベクトルkTHzは互いに逆向きであり、後進波となるシグナル光であるテラヘルツ波が生成される。図7Aとの比較においてシグナル光波数ベクトルkTHzが短くなってシグナル光であるテラへルツ波の周波数が小さくなっている。
図7Cは角度αが0°のものである。仮想ポンプ光波数ベクトルk′pは、ポンプ光波数ベクトルkpに対しほぼ同じノルムを持ち傾いている。この場合、仮想ポンプ光波数ベクトルk′pに対しコリニア位相整合となる位相整合条件を満たすシグナル光およびアイドラー光の組み合わせは存在しない。結果、角度αが0°のものではテラヘルツ波およびアイドラー光は生成されない。このため図7Cにはテラヘルツ波およびアイドラー光を描いていない。
図7Dは角度αが-45°のものである。仮想ポンプ光波数ベクトルk′pは、ポンプ光波数ベクトルkpに対しわずかながら傾き、仮想ポンプ光波数ベクトルk′pよりも大きなノルムを持つ。コリニア位相整合を満たしつつこの大きなノルムを担うために、アイドラー光波数ベクトルkiおよびシグナル光波数ベクトルkTHzは互いに同じ方向を向く。このため、シグナル光であるテラヘルツ波はポンプ光に対し概ね前進波となる向きに生成される。また、仮想ポンプ光波数ベクトルk′pがポンプ光波数ベクトルkpよりも大きなノルムをもっていても、格子ベクトルkΛがごく小さいことから、ポンプ光に対しエネルギー保存則を満たす前進波のテラヘルツ波を生成することは可能である。
図7Eは角度αが-90°のものである。仮想ポンプ光波数ベクトルk′pは、ポンプ光波数ベクトルkpに対しパラレルであり、それよりも大きいノルムを持つ。そして、仮想ポンプ光波数ベクトルk′pに対しコリニア位相整合を満たしエネルギー保存則をみたすアイドラー光波数ベクトルkiおよびシグナル光波数ベクトルkTHzはいずれもポンプ光波数ベクトルkpに対しパラレルとなり、前進波となるシグナル光であるテラヘルツ波が生成される。
図7A~Cの範囲は、図6に示したテラヘルツ波の周波数変化およびアイドラー光の波長変化を示すものである。同様に、図7C~Eの範囲についても計算結果を示す(図8)。図8の横軸は角度を正の値にとっている。また曲線C5~C8は、順に、反転周期Λ=35、53、80、100μmのものである。図6との比較において、図8では、縦軸つまりテラヘルツ波の周波数およびアイドラー光の波長の変調幅が大きい。これは、仮想ポンプ光波数ベクトルk′pのポンプ光波数ベクトルkpを対象にした相対的な大きさが異なることに対応したものである。
図9は、本実施形態にて採用される、前進波となるテラヘルツ波のシグナル光を生成するテラへルツ波生成装置110の構成を示す模式図であり、非線形光学素子とポンプ光、シグナル光、アイドラー光の典型的な配置を概略的に示す平面図(図9A)、および波数ベクトル相互の関係を示す運動量模式図(図9B)である。非線形光学素子は、周期分極反転素子102と同様の周期分極反転素子112を採用することができる。ポンプ光光源114からのポンプ光LPに対し、シグナル光(テラヘルツ波)が生成される方向は、図1Bの場合から非線形光学素子を挟んで概ね反対側となり、シグナル光とアイドラー光は結晶内でパラレルとなる。ただし、結晶の屈折率が波長依存性をもつことから、取り出されたシグナル光(テラへルツ波)とアイドラー光が結晶の出射後に平行であるとは限らない。
4.実験的確認(2)
上述した前進波について、後進波の場合と同様に動作を実験により確認した。採用したポンプ光、PPLN結晶、測定装置は同様とし、検出されるシグナル光(テラヘルツ波)の方向が異なることに対応し必要な変更を行った。また、前進波でのテラヘルツ波の生成を角度α=23°で確認した。確認されたテラへルツ波の測定値を白抜き円マークによりを図8に示している。
上述した前進波について、後進波の場合と同様に動作を実験により確認した。採用したポンプ光、PPLN結晶、測定装置は同様とし、検出されるシグナル光(テラヘルツ波)の方向が異なることに対応し必要な変更を行った。また、前進波でのテラヘルツ波の生成を角度α=23°で確認した。確認されたテラへルツ波の測定値を白抜き円マークによりを図8に示している。
以上のように、本実施形態ではポンプ光に対して前進波のシグナル光としてテラヘルツ波が生成されるような動作を行うこともできる。この場合においても、コリニア位相整合による相互作用体積が大きいことが利点となり、また、外部共振器等のフィードバック光学系を用いなくともテラヘルツ波を生成することができる。さらに角度によるテラヘルツ波の周波数変調は、前進波の場合にも実現することができる。
5.角度による変調の利用
本実施形態の図6、図8に示した測定データや理論解析の結果から、ポンプ光と周期分極反転素子102の相対的な方向を調整するだけでテラヘルツ波の周波数を変調しうることがわかる。理論的予測に基づけばその変調幅も比較的大きい。したがって、本実施形態では、テラヘルツ波生成装置にポンプ光LPの入射方向と周期分極反転素子102との相互の向きを変化させる機構を備えていれば、周波数可変のテラへルツ波を生成する好ましいものとなる。このような機構の典型例は、周期分極反転素子102の方向調整可能なステージや、ポンプ光LPの周期分極反転素子102に対する照射方向を変更する任意のビーム走査手段である。
本実施形態の図6、図8に示した測定データや理論解析の結果から、ポンプ光と周期分極反転素子102の相対的な方向を調整するだけでテラヘルツ波の周波数を変調しうることがわかる。理論的予測に基づけばその変調幅も比較的大きい。したがって、本実施形態では、テラヘルツ波生成装置にポンプ光LPの入射方向と周期分極反転素子102との相互の向きを変化させる機構を備えていれば、周波数可変のテラへルツ波を生成する好ましいものとなる。このような機構の典型例は、周期分極反転素子102の方向調整可能なステージや、ポンプ光LPの周期分極反転素子102に対する照射方向を変更する任意のビーム走査手段である。
加えて、上記機構を回転機構とすると、回転位相に合わせて周波数が走査されたテラヘルツ波が形成され好ましい。図10は、周期分極反転素子のための回転機構を備える周波数走査型のテラヘルツ波生成装置120、130の構成を示す模式図であり、図10A、Bの順に、それぞれ後進波および前進波にてシグナル光としてのテラヘルツ波が生成される構成である。また、図11は、回転機構にて使用されるのに適する周期分極反転素子122、132の形状を示す斜視図である。回転機構にて使用される周期分極反転素子122、132は、概して円板状の形状であり、その形状の回転中心軸に回転機構(図示しない)の機械的な回転軸が位置合せされる。ポンプ光LPがポンプ光光源124、134から入射され、また生成したシグナル光LTHz(テラヘルツ波)やアイドラー光LIが出射されるのは当該円板の外延をなす円筒面Cであり、必要に応じフレネル反射を制御する反射防止コートが施されている。このような円板状結晶が回転されると1回転当たり角度αの0°~90°の範囲を2往復するため、シグナル光LTHzの周波数は4回走査される。その際の周波数走査幅は、100GHz程度または1THz程度となり得る。また、円板状結晶は高速回転させることも容易であり、周波数を非常に高速に走査する光源としても機能させることができる。このような走査速度が速い光源は、テラヘルツ波光源では得られておらず、テラへルツ波の分光用途において有用である。図10Aおよび10Bに示すように、シグナル光LTHzであるテラへルツ波は、ポンプ光LPに対して後進波および前進波の二つの配置にて生成される。何れの場合も、シグナル光波数ベクトルがアンチパラレルまたはパラレルとなるのは仮想ポンプ光波数ベクトルに対してであり、一般の角度αではシグナル光波数ベクトルはポンプ光波数ベクトルに対しそれらの向き僅かにずれており、そのずれは角度に依存する。
6.光パラメトリック増幅器
本実施形態にて提案される位相整合条件は、高い効率で光パラメトリック増幅効果を生じさせる条件ともなる。このため本実施形態は、テラヘルツ波を光パラメトリック効果により増幅する光パラメトリック増幅器としても実施することができる。図12は、本実施形態の光パラメトリック増幅器の構成を示す模式図であり、図12A、図12Bの順に、後進波および前進波の配置である光パラメトリック増幅器140および150を示す。周期分極反転素子142、152には、増幅されるべきテラヘルツ波が、それぞれ後進波または前進波の配置によって、ポンプ光光源144、154からのポンプ光LPと同時に入射される。周期分極反転素子142、152における非線形光学効果は、すでに図1、図9を通じ説明したものと同様である。すなわち、格子ベクトルkΛをもつ周期分極反転素子142、152に入射されたポンプ光波数ベクトルkpにその格子ベクトルkΛをベクトル加算または減算して得られる仮想ポンプ光波数ベクトルk′pが想定される。増幅の対象となるのは、この仮想ポンプ光波数ベクトルk′pに対しコリニア位相整合条件を満たすようなテラヘルツ波の入力である。このコリニア位相整合条件は、仮想ポンプ光波数ベクトルk′pに対しアンチパラレル(図12A;後進波の場合)またはパラレル(図12B;前進波の場合)のそれぞれで成立するため、これらのいずれかを満たすテラヘルツ波が、シード光となってポンプ光LPからのエネルギーを受けて増幅される。テラヘルツ波において増幅が実現する場合、一般には、強度が低下したポンプ光が周期分極反転素子102を透過し、通過するポンプ光とともにアイドラー光も出力される。ポンプ光波数ベクトルkpと仮想ポンプ光波数ベクトルk′pとが一般にはわずかに方向が異なるために、シード光として最も効率良く利用され増幅率の高いテラヘルツ波は、一般にはポンプ光からみると完全なアンチパラレルまたは完全なパラレルの向きから僅かにずれている。増幅されたシグナル光は入力されるテラヘルツ波と同じ波長をもち、かつ、入力されるテラヘルツ波に対しコヒーレンスを保って生成される。さらに光パラメトリック増幅器140、150においても、非線形光学素子の方向を調節したり、回転させることにより、増幅動作をテラヘルツ波の周波数に適合させたり、テラヘルツ波の波長域にわたり、分光しながら増幅することができる。
本実施形態にて提案される位相整合条件は、高い効率で光パラメトリック増幅効果を生じさせる条件ともなる。このため本実施形態は、テラヘルツ波を光パラメトリック効果により増幅する光パラメトリック増幅器としても実施することができる。図12は、本実施形態の光パラメトリック増幅器の構成を示す模式図であり、図12A、図12Bの順に、後進波および前進波の配置である光パラメトリック増幅器140および150を示す。周期分極反転素子142、152には、増幅されるべきテラヘルツ波が、それぞれ後進波または前進波の配置によって、ポンプ光光源144、154からのポンプ光LPと同時に入射される。周期分極反転素子142、152における非線形光学効果は、すでに図1、図9を通じ説明したものと同様である。すなわち、格子ベクトルkΛをもつ周期分極反転素子142、152に入射されたポンプ光波数ベクトルkpにその格子ベクトルkΛをベクトル加算または減算して得られる仮想ポンプ光波数ベクトルk′pが想定される。増幅の対象となるのは、この仮想ポンプ光波数ベクトルk′pに対しコリニア位相整合条件を満たすようなテラヘルツ波の入力である。このコリニア位相整合条件は、仮想ポンプ光波数ベクトルk′pに対しアンチパラレル(図12A;後進波の場合)またはパラレル(図12B;前進波の場合)のそれぞれで成立するため、これらのいずれかを満たすテラヘルツ波が、シード光となってポンプ光LPからのエネルギーを受けて増幅される。テラヘルツ波において増幅が実現する場合、一般には、強度が低下したポンプ光が周期分極反転素子102を透過し、通過するポンプ光とともにアイドラー光も出力される。ポンプ光波数ベクトルkpと仮想ポンプ光波数ベクトルk′pとが一般にはわずかに方向が異なるために、シード光として最も効率良く利用され増幅率の高いテラヘルツ波は、一般にはポンプ光からみると完全なアンチパラレルまたは完全なパラレルの向きから僅かにずれている。増幅されたシグナル光は入力されるテラヘルツ波と同じ波長をもち、かつ、入力されるテラヘルツ波に対しコヒーレンスを保って生成される。さらに光パラメトリック増幅器140、150においても、非線形光学素子の方向を調節したり、回転させることにより、増幅動作をテラヘルツ波の周波数に適合させたり、テラヘルツ波の波長域にわたり、分光しながら増幅することができる。
7.テラヘルツ波検出装置
さらに、本実施形態の上記光パラメトリック増幅器140、150は、検出器146、156を追加することにより、テラヘルツ波検出装置としても利用することができる。この場合にも後進波および前進波の双方の配置を採用することができる。テラヘルツ波検出装置のために追加される検出器146、156で図12Aおよび図12Bの増幅されたシグナル光を検出する場合、検出器はテラヘルツ波の検出器(例えばボロメーター)とすることができる。さらにこのテラヘルツ波検出装置においても、非線形光学素子の方向を調節したり、回転させることにより、検出器146、156で検出されるテラヘルツ波の周波数に適合した高い感度を示す検出装置を構成することができる。
さらに、本実施形態の上記光パラメトリック増幅器140、150は、検出器146、156を追加することにより、テラヘルツ波検出装置としても利用することができる。この場合にも後進波および前進波の双方の配置を採用することができる。テラヘルツ波検出装置のために追加される検出器146、156で図12Aおよび図12Bの増幅されたシグナル光を検出する場合、検出器はテラヘルツ波の検出器(例えばボロメーター)とすることができる。さらにこのテラヘルツ波検出装置においても、非線形光学素子の方向を調節したり、回転させることにより、検出器146、156で検出されるテラヘルツ波の周波数に適合した高い感度を示す検出装置を構成することができる。
これとは異なり、アイドラー光のための検出器を採用すれば、アップコンバージョンによるテラヘルツ波検出装置も構成することができる。図13はテラヘルツ波検出装置160、170の構成を示す模式図であり、テラヘルツ波の向きが後進波(図13A)および前進波(図13B)それぞれのものである。ポンプ光光源164、174からのポンプ光LPは、周期分極反転素子162、172に入射され、それと同時にテラヘルツ波が、適当な反射域を持つミラーMを介しポンプ光LPに対し後進波となる向き(図13A)および前進波となる向き(図13B)に入射される。アップコンバージョンとはテラへルツ波の入力をシード光として、アイドラー光である高い周波数の光を生成させる手法であり、検出器の選択の点で有利な手法である。つまり、アイドラー光の帯域では、テラヘルツ波のための検出器よりも高い感度や応答の速いシリコン検出器などが容易に入手できることから、これを採用できる。アイドラー光は、エネルギー保存則の要請からポンプ光の周波数とシグナル光となるテラヘルツ波の周波数との差周波数をもつため、例えばポンプ光が1μm付近の波長でテラヘルツ波が検出されても、アイドラー光は1μm付近でポンプ光よりも僅かに長い波長を持つ(図5、図6、図8)。このため、例えば波長フィルターFを通過させるなど、ポンプ光と分離した後にアイドラー光を、検出器166、176により検出することが好ましい。さらにテラヘルツ波検出装置160、170においても、周期分極反転素子162、172の方向を調節したり、周期分極反転素子162、172に代えて図11に示した周期分極反転素子122、132を採用して回転させたりすることにより、検出されるテラヘルツ波の周波数に適合した高い感度を示す検出装置を構成することができる。
さらに、アップコンバージョンでは、コリニア位相整合条件を利用するイメージングも可能である。図14は、アップコンバージョンを利用したイメージング検出装置180の構成を示す模式図である。テラヘルツ波は、例えば物体に照射されるなどの結果、位置に応じ異なる強度となるような強度分布を持つことがある。図では異なる位置に対応した強度LTHz-A、LTHz-Bをもつようなテラヘルツ波を示している。そのようなテラヘルツ波を、必要に応じ適当なミラーMを介し十分な大きさをもつ周期分極反転素子182に入射させる。ポンプ光LPは、例えばテレスコープ光学系(図示しない)によりある程度ビームを広げてから入射させたり、または位置をスキャンさせたりする。こうして周期分極反転素子182中にてポンプ光LPが反転構造と一定の角度を保ち、テラヘルツ波がポンプ光とは概ね逆側から入射する配置とする(図14A)。テラヘルツ波の分布を反映する強度LTHz-A、LTHz-Bは、それぞれが周期分極反転素子182結晶の分極反転領域182A、182Bで、仮想ポンプ光波数ベクトルk′pとテラヘルツ波であるシグナル光波数ベクトルkTHzとに対しコリニア位相整合を満たすアイドラー光を生成するように機能する。図14Bはその結晶内部の分極反転領域182A、182Bでコリニア位相整合が成り立つ様子を示す運動量模式図であり、分極反転領域182A、182Bでの位相整合条件は、図7Bに示したものと同じである。アイドラー光は、分極反転領域182A、182Bそれぞれにおいてコリニア位相整合が成立する方向に出射され、アイドラー光は、強度LTHz-A、LTHz-Bに応じて生成される。検出器186を例えば1次元アレイ型検出器としておけば、出力され波長フィルターFによりポンプ光と分けられたアイドラー光の強度LI-A、LI-Bとして、テラヘルツ波の強度LTHz-A、LTHz-Bすなわち強度分布が検出される。アイドラー光の波長域ではテラヘルツ波の周波数域よりもアレイ型検出器が容易に入手できるため、このような構成はイメージングのために有利である。なお、図14は後進波の配置によるイメージングのための検出装置の構成のみを示しているが、前進波の場合にはテラヘルツ波を入射させる周期分極反転素子182の面を対向する面にすることにより同様にイメージング検出装置(図示しない)を構成することができる。
9.複数周期デバイスの利用
本実施形態において提案されるテラヘルツ波の生成装置、光パラメトリック増幅器、および検出装置においては、反転周期Λにより生成されるテラヘルツ波の周波数を調整することができる。そのため、例えば分極反転を利用する場合に、電極パターンを工夫して反転周期が位置により変更できるような複数周期の周期分極反転素子を作製することにより、簡便な構成によって広範な範囲で周波数を調整することができる。図15はこのような複数周期をもつ周期分極反転素子192の構成を示す模式平面図(図15A)ならびに4種類の周期および4種類の角度αにおいて計算したテラヘルツ波の周波数のグラフ(図15B)である。ポンプ光は、周期の異なる反転構造を持ちx方向に延びる分極反転領域192A~192Dのいずれかを通るような光路に入射させる。ポンプ光LPの光軸が固定されているとき、このような周期分極反転素子192を例えばy方向にシフトさせるだけで、分極反転領域192A~192Dを互いに切り替えることができ、反転周期Λを簡易に選択できる。これにより広い範囲で周波数を変調することが可能となる。分極反転領域192A~192Dそれぞれのy方向の幅は、図示したもののように狭く構成してもよいし、またはある程度広くして、ポンプ光LPに対する反転構造の角度を調整できるように構成することも好ましい。反転周期Λを切り替えることにより得られる広い周波数範囲は、テラヘルツ波の生成装置では生成されるテラヘルツ波の周波数範囲の拡大、また、光パラメトリック増幅器では増幅可能な周波数範囲の拡大という効果をもたらし有利である。
本実施形態において提案されるテラヘルツ波の生成装置、光パラメトリック増幅器、および検出装置においては、反転周期Λにより生成されるテラヘルツ波の周波数を調整することができる。そのため、例えば分極反転を利用する場合に、電極パターンを工夫して反転周期が位置により変更できるような複数周期の周期分極反転素子を作製することにより、簡便な構成によって広範な範囲で周波数を調整することができる。図15はこのような複数周期をもつ周期分極反転素子192の構成を示す模式平面図(図15A)ならびに4種類の周期および4種類の角度αにおいて計算したテラヘルツ波の周波数のグラフ(図15B)である。ポンプ光は、周期の異なる反転構造を持ちx方向に延びる分極反転領域192A~192Dのいずれかを通るような光路に入射させる。ポンプ光LPの光軸が固定されているとき、このような周期分極反転素子192を例えばy方向にシフトさせるだけで、分極反転領域192A~192Dを互いに切り替えることができ、反転周期Λを簡易に選択できる。これにより広い範囲で周波数を変調することが可能となる。分極反転領域192A~192Dそれぞれのy方向の幅は、図示したもののように狭く構成してもよいし、またはある程度広くして、ポンプ光LPに対する反転構造の角度を調整できるように構成することも好ましい。反転周期Λを切り替えることにより得られる広い周波数範囲は、テラヘルツ波の生成装置では生成されるテラヘルツ波の周波数範囲の拡大、また、光パラメトリック増幅器では増幅可能な周波数範囲の拡大という効果をもたらし有利である。
10.温度調整
本実施形態にて提案されたテラへルツ波生成装置100などにおいて、非線形光学素子である周期分極反転素子102の温度により屈折率が変化する性質を利用し、生成されるテラヘルツ波の周波数を精密に調整することができる。また、温度を目的の温度に制御することにより、生成されるテラヘルツ波の周波数ドリフトを抑制することもできる。
本実施形態にて提案されたテラへルツ波生成装置100などにおいて、非線形光学素子である周期分極反転素子102の温度により屈折率が変化する性質を利用し、生成されるテラヘルツ波の周波数を精密に調整することができる。また、温度を目的の温度に制御することにより、生成されるテラヘルツ波の周波数ドリフトを抑制することもできる。
11.応用
本実施形態のテラへルツ波生成装置、光パラメトリック増幅器、テラヘルツ波検出装置や非線形光学素子は、テラヘルツ波を利用したり検したりする技術分野全般に適用することができる。そのような分野を非限定的なリストとして挙げれば、例えば非破壊検査、ガスセンシング、テラヘルツOCT(光CT)を含んでおり,テラへルツ通信も含んできる。テラヘルツ通信では、光パラメトリック増幅器や、位置感応増幅器、位相検出器などの一部として本実施形態に説明したいずれかの非線形結晶も採用することができる。
本実施形態のテラへルツ波生成装置、光パラメトリック増幅器、テラヘルツ波検出装置や非線形光学素子は、テラヘルツ波を利用したり検したりする技術分野全般に適用することができる。そのような分野を非限定的なリストとして挙げれば、例えば非破壊検査、ガスセンシング、テラヘルツOCT(光CT)を含んでおり,テラへルツ通信も含んできる。テラヘルツ通信では、光パラメトリック増幅器や、位置感応増幅器、位相検出器などの一部として本実施形態に説明したいずれかの非線形結晶も採用することができる。
以上、本発明の実施形態を具体的に説明した。テラヘルツ波パラメトリック発振のためのコリニア位相整合の詳細を解明したことによって、革新的な高効率・単色・広帯域周波数可変テラヘルツ波生成装置が実現された。上述の各実施形態および構成例は、発明を説明するために記載されたものであり、本出願の発明の範囲は、請求の範囲の記載に基づいて定められるべきものである。また、各実施形態の他の組合せを含む本発明の範囲内に存在する変形例もまた請求の範囲に含まれるものである。
本発明の電流検知装置は荷電粒子ビームを生成する任意の機器に利用可能である。
100、110、120、130 テラヘルツ波生成装置
140、150 光パラメトリック増幅器
160、170、180 テラヘルツ波検出装置
102、112、122、132、142、152、162、172、182、192 周期分極反転素子
182A、182B、192A~192D 分極反転領域
104、114、124、134、144、154、164、174 ポンプ光光源
146、156、166、176、186 検出器
140、150 光パラメトリック増幅器
160、170、180 テラヘルツ波検出装置
102、112、122、132、142、152、162、172、182、192 周期分極反転素子
182A、182B、192A~192D 分極反転領域
104、114、124、134、144、154、164、174 ポンプ光光源
146、156、166、176、186 検出器
Claims (20)
- 単一波長のポンプ光を生成するポンプ光光源と、
ある反転周期で分極または結晶方位が反転した周期構造をもつ非線形光学素子であって、前記ポンプ光が入射されると、該反転周期に対応する格子ベクトルを該非線形光学素子中のポンプ光波数ベクトルにベクトル加算または減算した仮想ポンプ光波数ベクトルに対するコリニア位相整合条件および前記ポンプ光に対するエネルギー保存則を満たすアイドラー光およびシグナル光を生成する、非線形光学素子と
を備えるテラヘルツ波生成装置。 - 前記非線形光学素子は、該非線形光学素子中の前記ポンプ光が前記周期構造に対し傾く向きにされ、前記周期構造の前記格子ベクトルが該非線形光学素子中の前記ポンプ光の波数ベクトルに対しパラレルでもアンチパラレルでもない配置となっているものである、
請求項1に記載のテラヘルツ波生成装置。 - 前記非線形光学素子の前記反転周期は、前記ポンプ光が光波またはテラヘルツ波に対し位相整合を満たさないような範囲の値を持つものである、
請求項1に記載のテラヘルツ波生成装置。 - 前記コリニア位相整合条件が、
前記仮想ポンプ光波数ベクトルと、
該仮想ポンプ光波数ベクトルに対しパラレル配置で該仮想ポンプ光波数ベクトルより大きいアイドラー光波数ベクトルと、
前記仮想ポンプ光波数ベクトルに対しアンチパラレル配置のシグナル光波数ベクトルと
の間に成り立ち、
前記シグナル光が前記ポンプ光に対し概ね逆方向に向かう後進波のテラヘルツ波である、
請求項1に記載のテラヘルツ波生成装置。 - 前記仮想ポンプ光波数ベクトルが、前記ポンプ光波数ベクトルよりも小さいものである、
請求項4に記載のテラヘルツ波生成装置。 - 前記コリニア位相整合条件が、
前記仮想ポンプ光波数ベクトルと、
該仮想ポンプ光波数ベクトルに対しパラレル配置で該仮想ポンプ光波数ベクトルより小さいアイドラー光波数ベクトルと、
前記仮想ポンプ光波数ベクトルに対しパラレル配置のシグナル光波数ベクトルと
の間に成り立ち、
前記シグナル光が前記ポンプ光に対し概ね同方向に向かう前進波のテラヘルツ波である、
請求項1に記載のテラヘルツ波生成装置。 - 前記仮想ポンプ光波数ベクトルが、前記ポンプ光波数ベクトルよりも大きいものである、
請求項6に記載のテラヘルツ波生成装置。 - 前記シグナル光であるテラヘルツ波の波長が、前記ポンプ光に対する前記非線形光学素子の角度により調整される、
請求項1に記載のテラヘルツ波生成装置。 - 前記ポンプ光の入射方向と前記非線形光学素子との相互の向きを変化させる機構をさらに有している
請求項8に記載のテラヘルツ波生成装置。 - 前記機構が回転機構であり、前記ポンプ光の入射方向または前記非線形光学素子の少なくともいずれかを回転させることにより、前記テラヘルツ波の波長が変調されるものである、
請求項9に記載のテラヘルツ波生成装置。 - 前記非線形光学素子がPPLN、PPKTP、PPSLT、およびOP-GaAsからなる群に含まれる少なくとも1種の周期構造を持つ結晶である、
請求項1に記載のテラヘルツ波生成装置。 - 前記非線形光学素子がその内部にテラヘルツ波を伝播させる導波路構造となっている、 請求項1に記載のテラヘルツ波生成装置。
- 前記非線形光学素子の温度制御装置をさらに備える
請求項1に記載のテラヘルツ波生成装置。 - 前記非線形光学素子がニオブ酸リチウムであり、
前記温度制御装置が前記非線形光学素子を冷却するものである、
請求項13に記載のテラヘルツ波生成装置。 - 単一波長のポンプ光を生成するポンプ光光源と、
ある反転周期で分極または結晶方位が反転した周期構造をもつ非線形光学素子であって、前記ポンプ光が入射され、該反転周期に対応する格子ベクトルを該非線形光学素子中のポンプ光波数ベクトルにベクトル加算または減算した仮想ポンプ光波数ベクトルに対するコリニア位相整合条件および前記ポンプ光に対するエネルギー保存則を満たすテラヘルツ波である入射光が入射されると、前記入射光と同一波長のシグナル光と、前記ポンプ光および該シグナル光との間で該コリニア位相整合条件および該エネルギー保存則を満たすべきアイドラー光とのうちのいずれかまたは両方を出力する非線形光学素子と
を備える光パラメトリック増幅器。 - 請求項15に記載の光パラメトリック増幅器と、
該光パラメトリック増幅器への前記入射光となり、前記ポンプ光波数ベクトルおよび前記格子ベクトルに対し前記コリニア位相整合条件を満たすテラヘルツ波に応じ、前記非線形光学素子からの出力である前記入射光と同一波長のシグナル光または前記アイドラー光を検出する検出器と
を備えるテラヘルツ波検出装置。 - ある反転周期で分極または結晶方位が反転した周期構造をもつ非線形光学素子であって、該周期構造が、単一波長のポンプ光が該非線形光学素子中に入射されると、該反転周期に対応する格子ベクトルを該非線形光学素子中のポンプ光波数ベクトルにベクトル加算または減算した仮想ポンプ光波数ベクトルに対するコリニア位相整合条件および該ポンプ光に対しエネルギー保存則を満たすアイドラー光およびシグナル光のうちのいずれかまたは両方を生成するようなものである、非線形光学素子。
- 前記非線形光学素子中の前記ポンプ光が前記周期構造に対し傾く向きにされ、前記周期構造の前記格子ベクトルが該非線形光学素子中の前記ポンプ光の波数ベクトルに対しパラレルでもアンチパラレルでもない配置となっているときに、前記アイドラー光およびシグナル光のうちのいずれかまたは両方を生成するものである、請求項17に記載の非線形光学素子。
- 前記非線形光学素子の前記反転周期は、前記ポンプ光が光波またはテラヘルツ波に対し位相整合を満たさないような範囲の値を持つものである請求項17に記載の非線形光学素子。
- 円筒面の端面を持つ円板形状の請求項17に記載の非線形光学素子。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/338,134 US10725359B2 (en) | 2016-09-30 | 2017-09-26 | Terahertz wave generating device, optical parametric amplifier, terahertz wave detector, and nonlinear optical element |
EP17856086.8A EP3521921B1 (en) | 2016-09-30 | 2017-09-26 | Terahertz wave generating device, optical parametric amplifier, terahertz wave detector, and nonlinear optical element |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-192374 | 2016-09-30 | ||
JP2016192374A JP6810954B2 (ja) | 2016-09-30 | 2016-09-30 | テラヘルツ波生成装置、光パラメトリック増幅器、テラヘルツ波検出器、および非線形光学素子 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018062136A1 true WO2018062136A1 (ja) | 2018-04-05 |
Family
ID=61759660
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/034659 WO2018062136A1 (ja) | 2016-09-30 | 2017-09-26 | テラヘルツ波生成装置、光パラメトリック増幅器、テラヘルツ波検出器、および非線形光学素子 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10725359B2 (ja) |
EP (1) | EP3521921B1 (ja) |
JP (1) | JP6810954B2 (ja) |
WO (1) | WO2018062136A1 (ja) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019144435A (ja) * | 2018-02-21 | 2019-08-29 | 沖電気工業株式会社 | テラヘルツ波検出素子 |
JP7232498B2 (ja) * | 2018-08-31 | 2023-03-03 | 国立研究開発法人理化学研究所 | テラヘルツ波を用いた検査装置と検査方法 |
CN109167236B (zh) * | 2018-10-11 | 2020-12-01 | 华北水利水电大学 | 一种三维太赫兹波参量振荡器 |
CN109119871B (zh) * | 2018-10-11 | 2020-12-01 | 华北水利水电大学 | 一种环形腔太赫兹波参量振荡器 |
CN109301681B (zh) * | 2018-10-11 | 2021-01-29 | 华北水利水电大学 | 一种高效率太赫兹波参量振荡器 |
CN109193315B (zh) * | 2018-10-11 | 2021-03-30 | 华北水利水电大学 | 一种双频太赫兹波参量振荡器 |
CN109244800B (zh) * | 2018-10-11 | 2021-02-26 | 华北水利水电大学 | 一种准相位匹配太赫兹波参量振荡器 |
JP7446323B2 (ja) * | 2018-10-31 | 2024-03-08 | ペーチ チュードマニゲエテム | 高エネルギテラヘルツパルスを発生させるための反射及び/又は回折ベースの方法及び装置 |
CN110380326B (zh) * | 2019-07-29 | 2020-10-23 | 武汉电信器件有限公司 | 一种光信号输出装置及方法、存储介质 |
WO2022240577A2 (en) * | 2021-04-26 | 2022-11-17 | Massachusetts Institute Of Technology | Methods and apparatus to generate terahertz waves through cascaded nonlinear processes |
CN113540933B (zh) * | 2021-06-15 | 2022-05-20 | 深圳大学 | 一种基于同步双光参量过程的中红外参量激光器 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5128948A (en) * | 1990-03-30 | 1992-07-07 | Thomson-Csf | Laser device with monolithically integrated frequency changer |
JP2004279604A (ja) * | 2003-03-13 | 2004-10-07 | Fuji Xerox Co Ltd | 波長変換装置 |
JP2006091802A (ja) * | 2004-09-21 | 2006-04-06 | Semiconductor Res Found | テラヘルツ電磁波発生装置及び方法 |
JP2012203013A (ja) * | 2011-03-23 | 2012-10-22 | Sophia School Corp | 電磁波発生装置 |
JP2014203025A (ja) * | 2013-04-09 | 2014-10-27 | 独立行政法人理化学研究所 | テラヘルツ波検出装置と方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6711183B1 (en) * | 1998-05-18 | 2004-03-23 | Matsushita Electric Industrial Co., Ltd. | Optical wavelength conversion device, coherent light generator, and optical information processing apparatus |
JP2002072269A (ja) * | 2000-08-30 | 2002-03-12 | Inst Of Physical & Chemical Res | テラヘルツ波発生方法及び装置 |
GB0416673D0 (en) * | 2004-07-27 | 2004-08-25 | Univ St Andrews | Parametric generation with lateral beam coupling |
GB201008073D0 (en) * | 2010-05-14 | 2010-06-30 | Univ St Andrews | Parametric generation with optimised lateral beam output coupling |
GB201010023D0 (en) * | 2010-06-16 | 2010-07-21 | Univ St Andrews | An improved parametric generator |
US8970944B2 (en) * | 2012-04-19 | 2015-03-03 | The Board Of Trustees Of The Leland Stanford Junior University | Ultrabright long biphoton generation with non-linear optical material |
JP2015203714A (ja) * | 2014-04-11 | 2015-11-16 | アイシン精機株式会社 | テラヘルツ波発生装置及び方法 |
-
2016
- 2016-09-30 JP JP2016192374A patent/JP6810954B2/ja active Active
-
2017
- 2017-09-26 US US16/338,134 patent/US10725359B2/en active Active
- 2017-09-26 EP EP17856086.8A patent/EP3521921B1/en active Active
- 2017-09-26 WO PCT/JP2017/034659 patent/WO2018062136A1/ja unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5128948A (en) * | 1990-03-30 | 1992-07-07 | Thomson-Csf | Laser device with monolithically integrated frequency changer |
JP2004279604A (ja) * | 2003-03-13 | 2004-10-07 | Fuji Xerox Co Ltd | 波長変換装置 |
JP2006091802A (ja) * | 2004-09-21 | 2006-04-06 | Semiconductor Res Found | テラヘルツ電磁波発生装置及び方法 |
JP2012203013A (ja) * | 2011-03-23 | 2012-10-22 | Sophia School Corp | 電磁波発生装置 |
JP2014203025A (ja) * | 2013-04-09 | 2014-10-27 | 独立行政法人理化学研究所 | テラヘルツ波検出装置と方法 |
Also Published As
Publication number | Publication date |
---|---|
JP6810954B2 (ja) | 2021-01-13 |
EP3521921B1 (en) | 2020-12-23 |
EP3521921A1 (en) | 2019-08-07 |
US20200166822A1 (en) | 2020-05-28 |
US10725359B2 (en) | 2020-07-28 |
EP3521921A4 (en) | 2019-10-16 |
JP2018054959A (ja) | 2018-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018062136A1 (ja) | テラヘルツ波生成装置、光パラメトリック増幅器、テラヘルツ波検出器、および非線形光学素子 | |
Kawase et al. | Terahertz wave parametric source | |
Minck et al. | Nonlinear optics | |
Nawata et al. | Tunable backward terahertz-wave parametric oscillation | |
US20110026103A1 (en) | Crystal for optical conversion | |
Zhang et al. | Bandwidth tunable THz wave generation in large-area periodically poled lithium niobate | |
Niu et al. | Widely tunable, high-energy, mid-infrared (2.2–4.8 µm) laser based on a multi-grating MgO: PPLN optical parametric oscillator | |
Takeya et al. | Wide spectrum Terahertz-wave generation from nonlinear waveguides | |
US6775054B1 (en) | Image-rotating, 4-mirror, ring optical parametric oscillator | |
Suizu et al. | Monochromatic-tunable terahertz-wave sources based on nonlinear frequency conversion using lithium niobate crystal | |
Tokizane et al. | Tunable terahertz waves from 4-dimethylamino-N′-methyl-4′-stibazolium tosylate pumped with dual-wavelength injection-seeded optical parametric generation | |
Liu et al. | Multi-optical parametric oscillator based on electro-optical polarization mode conversion at 3.3 μm and 3.84 μm | |
Lan et al. | Tuning of second-harmonic generation in waveguides induced by photorefractive spatial solitons | |
Avetisyan et al. | Analysis of linewidth tunable terahertz wave generation in periodically poled lithium niobate | |
Li et al. | Investigation on terahertz generation at polariton resonance of MgO: LiNbO3 by difference frequency generation | |
Medhi et al. | Analytical study of broadband second harmonic generation by total internal reflection-quasi phase matching using the concept of highly multimodal nonlinear guided wave approach in a tapered isotropic slab of zinc telluride crystal | |
Panyaev et al. | Difference frequency generation of narrow-band THz radiation on the basis of a parametric three-wave interaction in a ZnTe crystal | |
Ulvila | New method to generate mid-infrared optical frequency combs for molecular spectroscopy | |
Li et al. | Theoretical analysis of terahertz parametric oscillator using KTiOPO4 crystal | |
Huang et al. | Tunable terahertz generation via a cascaded optical parametric device | |
Liu et al. | Cascaded continuous-wave singly resonant optical parametric oscillator pumped by a single-frequency fiber laser | |
Kumar | High-power, fiber-laser-pumped optical parametric oscillators from the visible to mid-infrared | |
TWI225948B (en) | Single-fanout cascaded grating quasi-phase-matched nonlinear optical crystal and wavelength conversion and tunable laser system using the same | |
Devi | Continuous-wave optical parametric oscillators and frequency conversion sources from the ultraviolet to the mid-infrared | |
Iadanza et al. | Novel Thermo-Optical Dynamics of Silicon μ-Cavities and Demonstration of On-Chip Thermo-Optically Induced Transparency |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17856086 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017856086 Country of ref document: EP Effective date: 20190430 |