WO2018061591A1 - Piston for internal combustion engine and method for manufacturing piston for internal combustion engine - Google Patents

Piston for internal combustion engine and method for manufacturing piston for internal combustion engine Download PDF

Info

Publication number
WO2018061591A1
WO2018061591A1 PCT/JP2017/031163 JP2017031163W WO2018061591A1 WO 2018061591 A1 WO2018061591 A1 WO 2018061591A1 JP 2017031163 W JP2017031163 W JP 2017031163W WO 2018061591 A1 WO2018061591 A1 WO 2018061591A1
Authority
WO
WIPO (PCT)
Prior art keywords
piston
internal combustion
combustion engine
surface layer
base material
Prior art date
Application number
PCT/JP2017/031163
Other languages
French (fr)
Japanese (ja)
Inventor
一等 杉本
勝煥 朴
高橋 智一
正登 佐々木
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2018061591A1 publication Critical patent/WO2018061591A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/10Pistons  having surface coverings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J1/00Pistons; Trunk pistons; Plungers
    • F16J1/01Pistons; Trunk pistons; Plungers characterised by the use of particular materials

Definitions

  • the present invention relates to a piston for an internal combustion engine and a method for manufacturing a piston for an internal combustion engine.
  • Patent Document 1 a heat insulating layer is provided on the surface of a member facing the engine combustion chamber, and the heat insulating layer is made of a hollow particle made of an inorganic oxide, a filler material, and a vitreous mainly composed of silicic acid.
  • a structure is disclosed in which the vitreous material is in a non-finished state, covering the hollow particles and the filler material, and bonding.
  • the hollow particles can improve the heat insulating performance of the heat insulating layer, prevent the penetration of fuel into the heat insulating layer, and maintain high heat insulating properties over a long period of time. .
  • the metal and ceramics (glass) which comprise the conventional heat insulation layer have a large volumetric specific heat
  • the base temperature of the base material constituting the engine the temperature of the base material when the gas temperature in the combustion chamber is the lowest
  • the thermal responsiveness (followability) of the temperature of the combustion chamber wall surface with respect to the gas temperature decreases.
  • the thermal response is low, becomes a cause of increase in knocking and NO x, the fuel combustion efficiency is lowered. Therefore, the heat insulating layer having a large volume specific heat is not provided on the entire surface of the internal combustion engine member constituting a part of the wall surface of the combustion chamber, and needs to be used in a limited range.
  • a heat insulating layer that can be used in a larger area is required on the combustion chamber wall surface.
  • a material constituting the heat insulating layer in addition to low thermal conductivity, low What has a volume specific heat is calculated
  • Patent Document 2 discloses a heat insulating film composed of an anodized film having a porous structure including a large number of pores, and a plurality of particles enclosed in the pores of the heat insulating film, and adjacent particles.
  • An internal combustion engine is disclosed that includes a plurality of encapsulated particles that are encapsulated so that a gap between them becomes a gap of a preset size.
  • Patent Document 2 describes that the heat insulating film uses a heat insulating material having a lower thermal conductivity and a lower heat capacity per unit volume than the base material, and a heat insulating material having a hollow structure is suitable as the material. It is described that there is.
  • the heat insulating layer is desired to have both low thermal conductivity and low volume specific heat.
  • the durability and the base material are further provided. It is also important to ensure sufficient adhesion. None of Patent Documents 1 and 2 described above achieve a sufficient level for all items of durability, adhesion to a substrate, low thermal conductivity, and low volume specific heat.
  • the present invention provides a piston for an internal combustion engine capable of ensuring adhesion and durability with a base material, and realizing low thermal conductivity and low volume specific heat, and a method for manufacturing the piston for an internal combustion engine The purpose is to provide.
  • a piston for an internal combustion engine has a base material and a surface layer provided on the surface of the base material, and the surface layer is configured by combining metal particles. It has a void surrounded by the metal phase and a portion other than the bonded portion of the metal particles, and the voids are included in the void.
  • the internal combustion engine piston manufacturing method is a method for manufacturing an internal combustion engine piston in which a surface layer is provided on a surface of a base material.
  • the raw material is obtained by mixing metal particles and hollow particles constituting the surface layer.
  • a raw material mixed powder preparation step for obtaining a mixed powder, a sintering step for obtaining a sintered body by sintering the raw material mixed powder, and a joining step for joining the sintered body and the base material are included. More specific configurations of the present invention are described in the claims.
  • the manufacturing method of the piston for internal combustion engines which can ensure the adhesiveness and durability with a base material, and can implement
  • FIG. 2 is a cross-sectional perspective view taken along line AA ′ of FIG. It is sectional drawing which shows typically the 1st example of the surface layer which comprises the piston which concerns on this invention. It is an enlarged view of the metal particle which comprises the metal phase of Fig.2 (a). It is sectional drawing which shows the 1st example of the piston which concerns on this invention. It is sectional drawing which shows the 2nd example of the piston which concerns on this invention. It is sectional drawing which shows the 3rd example of the piston which concerns on this invention. It is sectional drawing which shows typically the 2nd example of the surface layer which comprises the piston which concerns on this invention.
  • FIG. 2 is a cross-sectional SEM observation photograph of a hollow particle according to Example 1.
  • FIG. 2 is a cross-sectional SEM observation photograph of a surface layer according to Example 1.
  • FIG.7 (b) It is a schematic diagram of the apparatus used for the thermal responsiveness evaluation test of an Example. It is a graph which shows the relationship of the output of the laser beam and time in the thermal response evaluation test of an Example. It is a graph which shows the relationship between the surface temperature of a test piece and time in the thermal response evaluation test of an Example.
  • FIG. 1A is a perspective view schematically showing an example of a piston according to the present invention
  • FIG. 1B is a cross-sectional view taken along the line AA ′ of FIG.
  • a crown surface 101 constituting the upper surface of a piston for internal combustion engine (hereinafter, also simply referred to as “piston”) 100 according to the present invention is a portion that becomes a part of the inner wall of the combustion chamber, so as to improve combustion efficiency. This is a portion where a conventional heat insulating layer is provided.
  • a “surface layer” having both low thermal conductivity and low volume specific heat is provided on the surface of the piston.
  • this surface layer will be described in detail.
  • FIG. 2A is a cross-sectional view schematically showing a first example of the surface layer constituting the piston according to the present invention.
  • the piston according to the present invention has a piston base material (hereinafter simply referred to as “base material”) 1 and a surface layer 2 provided on the surface of the base material 1.
  • the surface layer 2 includes a mother phase 3 and hollow particles 4 dispersed in the mother phase 3.
  • the hollow particles 4 are particles having pores (fine pores) 40 inside.
  • the parent phase 3 is composed of a metal phase 30 formed by bonding a plurality of metal particles and a void surrounded by a portion other than the bonded portion of the metal particles (in other words, formed between the metal particles).
  • the voids 31 have a configuration in which the hollow particles 4 are included.
  • the volume ratio in which the voids 31 of the matrix 3 and the pores 40 of the hollow particles 4 occupy the surface layer 2 is referred to as “porosity”.
  • porosity In the present invention, the porosity of the entire surface layer 2 is increased to 50% by volume by combining both the void 31 of the matrix 3 and the void 40 of the hollow particle 4.
  • the heat insulating layer has a sufficient heat insulating performance and at the same time minimizes heat storage. It is important not to raise the temperature inside the internal combustion engine. That is, it is necessary to achieve both low thermal conductivity and low volume specific heat, and it is considered suitable for such a layer to have a porous structure incorporating pores.
  • Patent Document 1 and Patent Document 2 when a porous body such as ceramics is bonded to a metal piston base material, the adhesion at the interface cannot be maintained sufficiently, and sufficient durability is achieved. It cannot be realized. Therefore, in the present invention, the parent phase 3 constituting the main part of the surface layer 2 that is a porous body is the metal phase 30, thereby ensuring adhesion and durability with the base material 1 made of metal. did.
  • the hollow particles 4 are contained in the voids 31 of the matrix 3 and the voids 31 in the matrix 3 and the pores 40 of the hollow particles 4 are combined to reduce the porosity of the entire surface layer 2. The strength of the surface layer 2 is maintained while suppressing the amount of voids 31 in the mother phase 3 while ensuring sufficient.
  • the metal phase 30 is preferably composed of a sintered metal in which metal particles are bonded by sintering.
  • FIG. 2B is an enlarged view of the metal particles constituting the metal phase 30 of FIG. As shown in FIG. 2B, it is preferable that some of the metal particles 32 are bonded together by sintering and have a neck 33. The neck 33 can secure a space between the metal particles and form the gap 31. Further, the ratio of the voids 31 can be controlled by controlling the sintering density. A method for producing such a sintered metal will be described in detail later.
  • the base material 1 and the metal phase 30 preferably contain the same metal as their main component.
  • the base material 1 is an aluminum (Al) alloy and the metal phase 30 is Al.
  • Al aluminum
  • the metal phase 30 is Al.
  • the hollow particles 4 various porous oxides such as silica (SiO 2 ), alumina (Al 2 O 3 ), and zirconia (ZrO 2 ) can be used, but in order to ensure the heat insulation performance of the surface layer 2. It is preferable to use a material having low thermal conductivity, and it is particularly preferable to use silica. Silica is a material having relatively low thermal conductivity among ceramics and having a relatively high strength even when hollow. Examples of the hollow particles mainly composed of silica include ceramic beads, silica airgel, porous glass, glass beads, volcanic white sand, diatomaceous earth, and processed powders thereof, but are not limited thereto.
  • the ratio of the hollow particles 4 to the metal phase 30 is preferably in the range of 30 to 70% by volume (30 to 70% by volume).
  • the volume is smaller than 30% by volume, it is difficult to ensure a sufficient porosity in the entire surface layer 2, and when the volume is larger than 70% by volume, the binding between the metal particles constituting the metal phase 30 is inhibited. As a result, the strength of the surface layer 2 is impaired.
  • the particle diameter of the metal particles constituting the metal phase 30 and the particle diameter of the hollow particles 4 are preferably the same.
  • the particle diameter of the hollow particles 4 is larger than the particle diameter of the metal particles, it is difficult to form a bond between the metal particles, and the strength of the metal phase 30 that is a sintered body may be reduced.
  • the particle diameter of the hollow particles 4 is smaller than the particle diameter of the metal particles, the formation of the voids 31 between the metal particles is hindered and a high porosity cannot be realized.
  • the porosity of the surface layer 2 is the sum of the ratio of the voids 31 of the parent phase and the voids 40 of the hollow particles 4.
  • the volume of the voids 40 of the hollow particles 4 is Is preferably larger than the volume of the void 31 of the parent phase 3.
  • the bond between the metal particles of the metal phase 30 becomes weak, and the strength (durability) of the surface layer 2 cannot be maintained.
  • the porosity of the surface layer 2 is preferably greater than 40% by volume and 63% by volume or less. If it is 40% by volume or less, a sufficiently low volume specific heat cannot be realized, and if it is more than 63% by volume, it is difficult to maintain the strength of the surface layer 2.
  • the surface layer 2 is composed only of the parent phase 3 including the voids 31 and does not include the hollow particles 4, the strength is maintained when the porosity (ratio of the voids 31) of the surface layer 2 is 40% by volume or more. It becomes difficult.
  • the parent phase 3 does not include the voids 31 and includes only the hollow particles 4, the voids 31 that become the spaces including the hollow particles 4 are eliminated, so that the volume ratio of the hollow particles 4 is limited, and the pores of 30 volume% or more It becomes difficult to ensure the rate.
  • the voids 31 included in the matrix 3 and the voids 40 of the hollow particles 4 it is possible to ensure a porosity greater than 40% by volume.
  • the volume specific heat of the surface layer 2 is preferably 1000 kJ / m 3 ⁇ K or less.
  • the base temperature is hardly increased in the internal combustion engine. That is, the thermal responsiveness with respect to the gas temperature of the surface layer 2 is sufficiently high, and can be instantaneously changed from a low temperature to a high temperature or from a high temperature to a low temperature in accordance with a change in the gas temperature in the combustion chamber.
  • the surface layer 2 can be applied to the entire surface of the piston crown surface 101, and higher combustion efficiency can be obtained.
  • the place where the surface layer 2 described above is formed is not particularly limited.
  • the example of the location which forms the surface layer 2 in the piston 100 is shown below.
  • 3A is a cross-sectional view showing a first example of the piston according to the present invention
  • FIG. 3B is a cross-sectional view showing a second example of the piston according to the present invention.
  • the location where the surface layer 2 is formed in the pistons 100a to 100C is not particularly limited, and is formed in the central portion of the crown surface 101 as shown in FIG. Alternatively, it may be formed on the entire surface of the crown surface 101 as shown in FIG. 3B, and the thickness may be constant along the surface shape of the crown surface 101 as shown in FIG. You may form in.
  • FIG. 4 is a sectional view schematically showing a second example of the surface layer constituting the piston according to the present invention.
  • a sealing layer 50 made of a sealing material is formed on the surface of the surface layer 2.
  • the sealing material is not only the surface of the surface layer 2 (portion indicated by reference numeral 51 in FIG.
  • the surface layer 2 secures the porosity of the entire surface layer 2 with the voids 31 of the matrix 3 and the pores 40 of the hollow particles 4. Since the sealing material does not enter the internal pores 40, even if a part of the gap 31 of the matrix 3 is sealed with the sealing material, the entire surface layer 2 has a sufficient porosity. can do.
  • the sealing material is not particularly limited, but an insulating paint is suitable. By constituting the sealing material with an insulating material, adhesion of carbon deposits can be suppressed. More specifically, examples of the sealing material include, but are not limited to, polysilazane, polysiloxane, silica alkoxide, polyamide, polyamideimide, polyimide, and various resins. A method for forming the sealing layer 50 will be described in detail later. According to the above configuration of the present invention, it is possible to provide a piston having an excellent thermal response characteristic and having a structure that can withstand long-term use, and assists combustion of fuel to contribute to improvement of fuel consumption of the internal combustion engine. It also contributes to suppressing deposits and smoke emissions from the internal combustion engine.
  • FIG. 5A is a flowchart showing an example of a method for manufacturing a piston (surface layer) according to the present invention
  • FIG. 5B is a method for manufacturing a piston according to the present invention (joining of a base material and a surface layer). It is a flowchart which shows an example.
  • S10 raw material mixed powder preparation step
  • S11 sintered powder
  • the method for sintering the mixed powder is not particularly limited as long as it is a method capable of sintering metal particles so that voids 31 are formed in the mother phase 3, but pulse current sintering, hot press sintering, Isotropic pressure sintering and cold isotropic pressure sintering are preferred. Among these, it is preferable to use pressure sintering capable of controlling the load and temperature, and it is considered that the pulse current sintering method is suitable. Pulse electric current sintering (Pulse Electric Current Sintering) is a sintering method also called spark plasma sintering (Spark Plasma Sintering).
  • the neck 33 can be easily formed. Even in the case of a porous sintered body containing a large amount of voids, the metal particles can be strongly bonded at the neck 33 portion.
  • the pulse current sintering method since the reaction on the powder surface is activated, it is possible to sinter in an environment where the load is relatively small, and the shape of the hollow particles can be contained without breaking. .
  • a metal phase (sintered metal) 30 in which the metal particles are connected to each other is formed, and in the void 31 configured other than the bonded portion between the metal particles.
  • the hollow particles 4 can be included without breaking the shape. If the pulse current sintering method is used, it is possible to control the ratio of the voids 31 in the mother phase 3 by controlling the load or the amount of indentation and pressurizing.
  • a piston base material is manufactured by casting (S13).
  • a rough material of a piston base material made of an Al alloy is cast by a conventional method.
  • machining laand part outer diameter cutting, pin hole machining, etc.
  • the sintered body produced in the process shown in FIG. 5A is placed in contact with the surface of the substrate (S15).
  • a base material and a sintered compact are joined (S16).
  • a joining method it is preferable to use a joining method in which a metal constituting the sintered body and a metal constituting the substrate are directly bonded to each other. Specific examples include diffusion bonding, friction stir welding, laser welding, and arc welding, but are not limited thereto.
  • a heat treatment step is performed (S17). This heat treatment is intended to remove the strain generated in the joining process and to make the strength uniform. For example, solution aging treatment or artificial aging treatment is performed. After the heat treatment step, finishing machining is performed as a secondary machining step (S18), and the product piston is completed (S19).
  • FIG. 5 (c) is a flowchart showing another example of the manufacturing method of the piston according to the present invention.
  • preparation of a sintered compact S1 of Fig.5 (a)) and joining of a sintered compact and a base material (S2 of FIG.5 (b)) are implemented simultaneously.
  • the piston base material casting (S13) and primary machining (S14) are the same as in FIG. 5B.
  • the mixed powder of the metal particles and the hollow particles 4 as the raw material powder of the surface layer 2 is placed (S15 ′). At this time, the mixed powder may be placed on the surface of the substrate 1 in the form of powder.
  • the mixed powder is formed into a molded body having a predetermined shape, for example, a pre-molding by applying pressure in advance to the powder.
  • a green compact pressed into a shape may be used, and this green compact may be placed on the surface of the substrate 1 (piston crown surface).
  • the mixed powder is sintered, and at the same time, the mixed powder and the piston base material are joined (S16 ′).
  • the joining method is the same as S16 described above.
  • a sealing layer forming step may be included in any step after the formation of the sintered body.
  • a method for forming the sealing layer for example, when polysilazane is used as a sealing material, a coating solution containing a polysilazane precursor is applied to the surface of the sintered body, and heated at 400 to 500 ° C. for 1 to 2 hours to be dried. Can be formed.
  • the sealing material forming step is a step of joining the sintered body and the base material (S16 or S16 ′), heat treatment step (S17), or secondary machining step ( It is possible to carry out between any steps of S18).
  • the sealing layer 50 may be formed before the heat treatment step (S17), may be formed before the secondary machining step (S18), or the secondary machining step (S18). It may be formed later.
  • a heat treatment process may be further added to fix the applied sealing material on the piston surface. Further, the heat treatment step (S17) may also serve as drying of the sealing material after application.
  • a base material was prepared as if it were a piston crown surface, and test pieces having a surface layer in which the ratio of hollow particles was changed on the surface thereof were prepared (Examples 1 to 3, Reference Examples 1 and 2).
  • the obtained test piece was evaluated for its sintered state, porosity and thermal responsiveness.
  • a disk-shaped test piece (diameter: 75 mm, thickness: 10 mm) was prepared using an Al alloy (JIS (Japan Industrial Standards) 4032-T6) close to the actual piston material. A recess having a thickness of 5 mm was formed.
  • FIG. 6 is a diagram schematically illustrating an example of the pulse energization device used in the example.
  • the above-mentioned mixed powder (raw material powder) 61 is placed in an annular carbon die 62, and the carbon punch 63 is driven in the direction of the arrow in FIG.
  • a pulse current was applied to the mixed powder through (the upper electrode 65 and the lower electrode 66), and the mixture was heated and sintered.
  • the temperature, the load and the indentation amount of the carbon punch 63 were monitored.
  • the obtained sintered body was processed so as to have a shape with a diameter of 30 mm and a thickness of 3 mm, and placed in the recess of the aluminum alloy test piece described above.
  • the sintered body and the aluminum alloy test piece were fixed using a restraining jig, and both were diffusion-bonded by heating in a heat treatment furnace.
  • the composition of the raw material powders of the surface layers of Examples 1 to 3 and Reference Examples 1 to 2, and the evaluation results of the sintered state and the porosity (P) are shown in Table 1 described later.
  • the “reference example” has a surface layer according to the present invention, but the ratio of hollow particles is not within the preferred range (30 to 70% by volume) of the present invention.
  • the porosity P of the surface layer was calculated from the following formula.
  • D m is the measured density (g / cm 3 ), and was calculated by measuring the volume and weight from a rectangular parallelepiped piece taken from the test piece.
  • D i is the ideal density of the bulk material does not contain pores (g / cm 3), was determined in consideration of the content ratio of the metal particles (Al) hollow particles (SiO 2).
  • hole in a hollow particle can be measured with the true density meter using helium gas, The average ratio of the void
  • FIG. 7A is a cross-sectional SEM observation photograph of the hollow particles according to Example 1
  • FIG. 7B is a cross-sectional SEM observation photograph of the surface layer according to Example 1
  • FIG. It is an enlarged photograph of (b).
  • 7B and 7C the white part is Al
  • the gray part is SiO 2
  • the black part is voids and holes.
  • FIGS. 7B and 7C it can be seen that the hollow silica 72 is contained in the void 73 formed between the Al particles 71 while maintaining its shape.
  • FIG. 8 is a schematic view of an apparatus used in the thermal responsiveness evaluation test of the example. As shown in FIG. 8, the evaluation apparatus irradiates a test piece 81 installed in a vacuum chamber 82 with a laser beam using a laser heat source 84, and determines the surface temperature of the test piece 81 at that time using an infrared camera. 83 is used for measurement.
  • FIG. 9A is a graph showing the relationship between laser light output and time in the thermal response evaluation test of the example.
  • FIG. 9B is a graph showing the surface temperature and time of the test piece in the thermal response evaluation test of the example. It is a graph which shows a relationship.
  • FIG. 9B shows the surface temperature at the time of laser irradiation in FIG. In FIG. 9B, the peak temperature recorded during the first laser irradiation was T 1 , and the peak temperature recorded during the third laser irradiation was T 3 .
  • Laser irradiation was carried out by applying a black body paint for absorbing laser to the test piece.
  • the laser irradiation conditions are set so that the peak temperature of the aluminum alloy test piece without the surface layer is about 200 ° C. which is close to the actual engine environment. Selected. Specifically, as shown in FIG. 9 (a), a step of irradiating an 800 W laser for 1 second and naturally cooling for 5 seconds was taken as one set, and a total of three sets of irradiation were performed. Since the upper limit of the temperature that can be quantitatively evaluated by the infrared camera 83 is 500 ° C., when the temperature exceeds 500 ° C., “over 500 ° C.” is described.
  • test pieces in which the porosity of the surface layer was changed under the condition that the hollow particle ratio was fixed to 50% were prepared (Examples 4 and 5 and Reference Example 3).
  • the sintered state of the obtained test piece was evaluated.
  • the composition of the raw material powder of the surface layers of Examples 4 and 5 and Reference Example 3, and the evaluation results of the pores and the sintered state are shown in Table 2 described later.
  • Table 2 also shows the evaluation results of the composition, pores, and sintered state of the raw material powder of Example 1. In Examples 1, 4 and 5, the sintered state was good, whereas in Reference Example 3 having a porosity of 67%, the shape of the sintered body could not be maintained, and the sintered state was poor. became.
  • the porosity is preferably 63% or less. Further, from the results of Table 1, it can be said that Reference Example 1 having a porosity of 40% did not exhibit sufficient thermal responsiveness, so that the porosity is preferably controlled to a range of more than 40% and not more than 63%. .
  • Example 1 For Examples 1 to 3 and Reference Examples 1 to 2, the specific heat capacity was measured using a differential scanning calorimetry (DSC (Differential Scanning calorimetry) method), and the specific volume heat was calculated from the density measured separately. A sample having a volume specific heat of 1000 kJ / m 3 ⁇ K or less was evaluated as “pass”, and a sample having a volume specific heat exceeding 1000 kJ / m 3 ⁇ K was evaluated as “fail”. The evaluation results are also shown in Table 1. Volume specific heat greatly depends on the porosity. Reference Example 1 with a porosity of 40% exceeded 1000 kJ / m 3 ⁇ K, but Examples 1 to 3 with a porosity of 48% or more had 1000 kJ / m 3 ⁇ K. The evaluation results were “passed” as follows. In Reference Example 2, measurement was not performed because the sintered body shape could not be maintained.
  • DSC Different Scanning calorimetry
  • a piston having a surface layer having the same configuration as that of Example 1 was manufactured by the method shown in FIGS. 5A and 5B (Example 6).
  • the sintered body was produced in the same manner as in Example 1 by the pulse current sintering method according to the manufacturing process of FIG. 5A and processed into a diameter of 70 mm and a thickness of 3 mm.
  • primary machining S14 is applied to the aluminum alloy piston rough material (JIS AC8A) produced in the piston casting process (S13).
  • a recess having a diameter of 70 mm was formed.
  • a sintered body prepared in advance was placed in the concave portion of the crown surface of the piston, and the sintered body and the piston base material were sufficiently brought into contact with a restraining jig (S15), and diffusion bonding was performed in a heat treatment furnace (S16). Thereafter, solution treatment and artificial aging treatment (S17) were performed, and a piston having a predetermined shape was fabricated by processing into a finished shape by secondary machining (S18) (S19).
  • Example 7 a sealing layer forming step was performed on the piston surface after the secondary machining (S18) for the piston produced in Example 6. Specifically, after secondary machining (S18), polyamide imide was applied to the piston crown surface and subjected to a dry heat treatment so that voids near the surface were sealed. However, the pores originally contained in the hollow silica have a closed structure and remain as pores.
  • Example 7 The produced pistons of Examples 6 and 7 were subjected to an engine test to confirm fuel efficiency. In either case, the fuel efficiency was improved as compared with the piston without the surface layer, but it was confirmed that the fuel consumption was less in Example 7 in which the sealing layer was provided. This is considered to be because, in Example 7 in which the sealing layer is provided, higher combustion efficiency can be realized by preventing the fuel from entering the voids in the surface layer. It was confirmed that the sealing layer contributes to fuel efficiency.
  • the piston for an internal combustion engine according to the present invention can ensure durability and adhesion to the base material, and can realize low thermal conductivity and low volume specific heat. It was done.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

Provided are: a piston for an internal combustion engine with which the adhesion with a substrate and the durability can be secured and low heat conductivity and low volume specific heat can be achieved; and a method for manufacturing the piston for an internal combustion engine. This piston for an internal combustion engine is characterized by the following: comprising a substrate (1), and a surface layer (2) provided on the surface of the substrate (1); the surface layer (2) including a matrix phase (3), and hollow particles (4) that are dispersed in the matrix phase (3) and that have a void inside thereof; the matrix phase (3) comprising a metallic phase (30) constituted by a plurality of metallic particles being bonded together, and gaps (31) surrounded by portions other than the bonding portions of the metallic particles; and the hollow particles (4) being included in the gaps (31).

Description

内燃機関用ピストンおよび内燃機関用ピストンの製造方法Piston for internal combustion engine and method for manufacturing piston for internal combustion engine
 本発明は、内燃機関用ピストンおよび内燃機関用ピストンの製造方法に関する。 The present invention relates to a piston for an internal combustion engine and a method for manufacturing a piston for an internal combustion engine.
 内燃機関の低燃費性能へ寄与する熱効率を高めるために、従来、燃焼室内部の壁面に断熱層を設ける技術が知られており、様々な断熱層の構成が提案されている。断熱層が設けられた内燃機関用の部材として、例えば特許文献1に記載されたものが知られている。この特許文献1によれば、エンジン燃焼室に臨む部材表面に断熱層が設けられており、該断熱層は、無機酸化物からなる中空粒子と、フィラー材と、ケイ酸を主体とするガラス質材とを含み、ガラス質材は非末状態であり、中空粒子とフィラー材とを覆うと共に結合している構成が開示されている。特許文献1によれば、中空粒子によって断熱層の断熱性能を向上し、かつ、断熱層内への燃料の浸み込みを防止でき、長期にわたって高い断熱性を維持することができるとされている。 In order to increase the thermal efficiency that contributes to the low fuel consumption performance of an internal combustion engine, a technique for providing a heat insulating layer on the wall surface in the combustion chamber is conventionally known, and various configurations of the heat insulating layer have been proposed. As a member for an internal combustion engine provided with a heat insulating layer, for example, one described in Patent Document 1 is known. According to Patent Document 1, a heat insulating layer is provided on the surface of a member facing the engine combustion chamber, and the heat insulating layer is made of a hollow particle made of an inorganic oxide, a filler material, and a vitreous mainly composed of silicic acid. In other words, a structure is disclosed in which the vitreous material is in a non-finished state, covering the hollow particles and the filler material, and bonding. According to Patent Document 1, it is said that the hollow particles can improve the heat insulating performance of the heat insulating layer, prevent the penetration of fuel into the heat insulating layer, and maintain high heat insulating properties over a long period of time. .
 ところで、従来の断熱層を構成する金属およびセラミックス(ガラス)などは、体積比熱が大きいことから、エンジンを構成する基材のベース温度(燃焼室内部のガス温度が最も低いときの基材の温度)を上昇させやすく、ガス温度に対する燃焼室壁面の温度の熱応答性(追従性)が低下する。この熱応答性が低いと、ノッキングやNOの増大を引き起こす原因となり、燃料の燃焼効率が低下する。そのため、体積比熱が大きい断熱層は、燃焼室壁面の一部を構成する内燃機関の部材全面へ設けず、範囲を限定して使用する必要がある。しかしながら、内燃機関の高い熱効率を実現するためには、燃焼室壁面において、より大きい面積で使用できる断熱層が必要であり、そのためには断熱層を構成する材料として、低熱伝導性に加えて低体積比熱を有するものが求められている。 By the way, since the metal and ceramics (glass) which comprise the conventional heat insulation layer have a large volumetric specific heat, the base temperature of the base material constituting the engine (the temperature of the base material when the gas temperature in the combustion chamber is the lowest) ) And the thermal responsiveness (followability) of the temperature of the combustion chamber wall surface with respect to the gas temperature decreases. When the thermal response is low, becomes a cause of increase in knocking and NO x, the fuel combustion efficiency is lowered. Therefore, the heat insulating layer having a large volume specific heat is not provided on the entire surface of the internal combustion engine member constituting a part of the wall surface of the combustion chamber, and needs to be used in a limited range. However, in order to realize high thermal efficiency of the internal combustion engine, a heat insulating layer that can be used in a larger area is required on the combustion chamber wall surface. For this purpose, as a material constituting the heat insulating layer, in addition to low thermal conductivity, low What has a volume specific heat is calculated | required.
 低熱伝導および低体積比熱を両立するために、固体材料に気孔を含ませた構造が好適であると考えられる。例えば、特許文献2には、多数の空孔を含むポーラス構造を有する陽極酸化膜から構成される断熱膜と、断熱膜の空孔の内部に封入される複数の粒子であって、隣接する粒子の間の隙間が予め設定される大きさの空隙となるように封入される複数の封入粒子を備える内燃機関が開示されている。特許文献2には、断熱膜は母材よりも低い熱伝導率および低い単位体積当たりの熱容量を有する断熱材を使用することが記載されており、その素材として中空構造を持つ断熱材が好適であることが記載されている。 In order to achieve both low heat conduction and low volume specific heat, a structure in which pores are included in a solid material is considered suitable. For example, Patent Document 2 discloses a heat insulating film composed of an anodized film having a porous structure including a large number of pores, and a plurality of particles enclosed in the pores of the heat insulating film, and adjacent particles. An internal combustion engine is disclosed that includes a plurality of encapsulated particles that are encapsulated so that a gap between them becomes a gap of a preset size. Patent Document 2 describes that the heat insulating film uses a heat insulating material having a lower thermal conductivity and a lower heat capacity per unit volume than the base material, and a heat insulating material having a hollow structure is suitable as the material. It is described that there is.
特開2015‐68302号公報JP 2015-68302 A 特開2012‐47110号公報JP 2012-47110 A
 上述したように、内燃機関の熱効率を高めるために、断熱層は低熱伝導性および低体積比熱を両立することが望まれるが、さらに、耐久性および基材(断熱層が設けられる内燃機関の部材)との密着性を十分に確保することも重要である。上述した特許文献1および2は、いずれも、耐久性、基材との密着性、低熱伝導性および低体積比熱のすべての項目について、十分なレベルを達成するものではなかった。 As described above, in order to increase the thermal efficiency of the internal combustion engine, the heat insulating layer is desired to have both low thermal conductivity and low volume specific heat. However, the durability and the base material (the member of the internal combustion engine provided with the heat insulating layer are further provided. It is also important to ensure sufficient adhesion. None of Patent Documents 1 and 2 described above achieve a sufficient level for all items of durability, adhesion to a substrate, low thermal conductivity, and low volume specific heat.
 本発明は、上記事情に鑑み、基材との密着性および耐久性を確保し、かつ、低熱伝導性および低体積比熱を実現することが可能な内燃機関用ピストンおよび内燃機関用ピストンの製造方法を提供することを目的する。 In view of the above circumstances, the present invention provides a piston for an internal combustion engine capable of ensuring adhesion and durability with a base material, and realizing low thermal conductivity and low volume specific heat, and a method for manufacturing the piston for an internal combustion engine The purpose is to provide.
 本発明に係る内燃機関用ピストンは、上記目的を達成するため、基材と、基材の表面に設けられた表面層とを有し、この表面層は、金属粒子が結合して構成された金属相と、金属粒子の結合部分以外の部分で囲まれて構成された空隙を有し、この空隙に中空粒子を含む構成とした。 In order to achieve the above object, a piston for an internal combustion engine according to the present invention has a base material and a surface layer provided on the surface of the base material, and the surface layer is configured by combining metal particles. It has a void surrounded by the metal phase and a portion other than the bonded portion of the metal particles, and the voids are included in the void.
 また、本発明に係る内燃機関用ピストンの製造方法は、基材の表面に表面層が設けられた内燃機関用ピストンの製造方法において、表面層を構成する金属粒子および中空粒子を混合して原料混合粉末を得る原料混合粉末準備工程と、原料混合粉末を焼結して焼結体を得る焼結工程と、この焼結体と基材とを接合する接合工程を含む。本発明のより具体的な構成は、特許請求の範囲に記載される。 The internal combustion engine piston manufacturing method according to the present invention is a method for manufacturing an internal combustion engine piston in which a surface layer is provided on a surface of a base material. The raw material is obtained by mixing metal particles and hollow particles constituting the surface layer. A raw material mixed powder preparation step for obtaining a mixed powder, a sintering step for obtaining a sintered body by sintering the raw material mixed powder, and a joining step for joining the sintered body and the base material are included. More specific configurations of the present invention are described in the claims.
 本発明によれば、基材との密着性および耐久性を確保し、かつ、低熱伝導性および低体積比熱を実現することが可能な内燃機関用ピストンおよび内燃機関用ピストンの製造方法を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the piston for internal combustion engines which can ensure the adhesiveness and durability with a base material, and can implement | achieve low thermal conductivity and low volume specific heat, and a piston for internal combustion engines is provided. be able to.
 上記した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。 Issues, configurations, and effects other than those described above will be clarified by the following description of embodiments.
本発明に係るピストンの一例を模式的に示す斜視図である。It is a perspective view showing typically an example of the piston concerning the present invention. 図1(a)のA‐A´線断面斜視図である。FIG. 2 is a cross-sectional perspective view taken along line AA ′ of FIG. 本発明に係るピストンを構成する表面層の第一の例を模式的に示す断面図である。It is sectional drawing which shows typically the 1st example of the surface layer which comprises the piston which concerns on this invention. 図2(a)の金属相を構成する金属粒子の拡大図である。It is an enlarged view of the metal particle which comprises the metal phase of Fig.2 (a). 本発明に係るピストンの第一の例を示す断面図である。It is sectional drawing which shows the 1st example of the piston which concerns on this invention. 本発明に係るピストンの第二の例を示す断面図である。It is sectional drawing which shows the 2nd example of the piston which concerns on this invention. 本発明に係るピストンの第三の例を示す断面図である。It is sectional drawing which shows the 3rd example of the piston which concerns on this invention. 本発明に係るピストンを構成する表面層の第二の例を模式的に示す断面図である。It is sectional drawing which shows typically the 2nd example of the surface layer which comprises the piston which concerns on this invention. 本発明に係るピストン(表面層)の製造方法の一例を示すフロー図である。It is a flowchart which shows an example of the manufacturing method of the piston (surface layer) which concerns on this invention. 本発明に係るピストンの製造方法(基材と表面層の接合)の一例を示すフロー図である。It is a flowchart which shows an example of the manufacturing method (joining of a base material and a surface layer) of the piston which concerns on this invention. 本発明に係るピストンの製造方法の他の一例を示すフロー図である。It is a flowchart which shows another example of the manufacturing method of the piston which concerns on this invention. 実施例で用いたパルス通電装置の一例を模式的に示す図である。It is a figure which shows typically an example of the pulse electricity supply apparatus used in the Example. 実施例1に係る中空粒子の断面SEM観察写真である。2 is a cross-sectional SEM observation photograph of a hollow particle according to Example 1. FIG. 実施例1に係る表面層の断面SEM観察写真である。2 is a cross-sectional SEM observation photograph of a surface layer according to Example 1. 図7(b)の拡大写真である。It is an enlarged photograph of FIG.7 (b). 実施例の熱応答性評価試験に用いた装置の模式図である。It is a schematic diagram of the apparatus used for the thermal responsiveness evaluation test of an Example. 実施例の熱応答評価試験におけるレーザー光の出力と時間の関係を示すグラフである。It is a graph which shows the relationship of the output of the laser beam and time in the thermal response evaluation test of an Example. 実施例の熱応答評価試験における試験片の表面温度と時間の関係を示すグラフである。It is a graph which shows the relationship between the surface temperature of a test piece and time in the thermal response evaluation test of an Example.
 [内燃機関用ピストン]
 以下、本発明の実施形態について図面を参照しながら詳細に説明する。図1(a)は本発明に係るピストンの一例を模式的に示す斜視図であり、図1(b)は図1(a)のA‐A´線断面図である。本発明に係る内燃機関用ピストン(以下、単に「ピストン」とも称する。)100の上面を構成する冠面101は、燃焼室の内壁の一部となる部分であり、燃焼効率を向上するために従来断熱層が設けられる部分である。本発明では、ピストンの表面に、低熱伝導性および低体積比熱を併せ持つ「表面層」を設ける。以下、この表面層について詳述する。
[Piston for internal combustion engine]
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1A is a perspective view schematically showing an example of a piston according to the present invention, and FIG. 1B is a cross-sectional view taken along the line AA ′ of FIG. A crown surface 101 constituting the upper surface of a piston for internal combustion engine (hereinafter, also simply referred to as “piston”) 100 according to the present invention is a portion that becomes a part of the inner wall of the combustion chamber, so as to improve combustion efficiency. This is a portion where a conventional heat insulating layer is provided. In the present invention, a “surface layer” having both low thermal conductivity and low volume specific heat is provided on the surface of the piston. Hereinafter, this surface layer will be described in detail.
 図2(a)は本発明に係るピストンを構成する表面層の第一の例を模式的に示す断面図である。図2(a)に示すように、本発明に係るピストンは、ピストン基材(以下、単に「基材」と称する。)1と、基材1の表面に設けられた表面層2を有する。表面層2は、母相3と、母相3に分散された中空粒子4を含む。中空粒子4は、内部に空孔(微細な気孔)40を有する粒子である。そして、母相3は、複数の金属粒子が結合して構成された金属相30と、金属粒子の結合部分以外の部分で囲まれて構成された空隙(言い換えると、金属粒子間に形成された空隙)31とを有し、この空隙31に中空粒子4が含まれている構成を有する。母相3が有する空隙31と、中空粒子4が有する空孔40が表面層2を占める体積割合を「気孔率」と称する。本発明では、母相3が有する空隙31と、中空粒子4が有する空孔40の両方を合わせることで、表面層2全体の気孔率を50体積%まで高めることを実現している。 FIG. 2A is a cross-sectional view schematically showing a first example of the surface layer constituting the piston according to the present invention. As shown in FIG. 2 (a), the piston according to the present invention has a piston base material (hereinafter simply referred to as “base material”) 1 and a surface layer 2 provided on the surface of the base material 1. The surface layer 2 includes a mother phase 3 and hollow particles 4 dispersed in the mother phase 3. The hollow particles 4 are particles having pores (fine pores) 40 inside. The parent phase 3 is composed of a metal phase 30 formed by bonding a plurality of metal particles and a void surrounded by a portion other than the bonded portion of the metal particles (in other words, formed between the metal particles). The voids 31 have a configuration in which the hollow particles 4 are included. The volume ratio in which the voids 31 of the matrix 3 and the pores 40 of the hollow particles 4 occupy the surface layer 2 is referred to as “porosity”. In the present invention, the porosity of the entire surface layer 2 is increased to 50% by volume by combining both the void 31 of the matrix 3 and the void 40 of the hollow particle 4.
 上述したように、燃料の燃焼を促進すべく、ピストンの冠面101に広い範囲に渡って断熱層を設けるためには、断熱層が十分な断熱性能を有すると同時に、蓄熱を最小限にして内燃機関内部の温度上昇を起こさないようにすることが重要である。すなわち、低熱伝導および低体積比熱を両立する必要があり、このような層としては、気孔を取り込んだポーラス構造とすることが好適であると考えられる。しかしながら、特許文献1および特許文献2のように、セラミックス等のポーラス体を金属製のピストン基材へ接合させた場合、界面での密着性を十分に保つことができず、十分な耐久性を実現することができない。そこで、本発明では、ポーラス体である表面層2の主要部分を構成する母相3を金属相30とすることで、金属からなる基材1との密着性および耐久性を確保することを実現した。 As described above, in order to promote the combustion of fuel, in order to provide a heat insulating layer over a wide range on the crown surface 101 of the piston, the heat insulating layer has a sufficient heat insulating performance and at the same time minimizes heat storage. It is important not to raise the temperature inside the internal combustion engine. That is, it is necessary to achieve both low thermal conductivity and low volume specific heat, and it is considered suitable for such a layer to have a porous structure incorporating pores. However, as in Patent Document 1 and Patent Document 2, when a porous body such as ceramics is bonded to a metal piston base material, the adhesion at the interface cannot be maintained sufficiently, and sufficient durability is achieved. It cannot be realized. Therefore, in the present invention, the parent phase 3 constituting the main part of the surface layer 2 that is a porous body is the metal phase 30, thereby ensuring adhesion and durability with the base material 1 made of metal. did.
 また、高い低熱伝導性を得るためには、母相3の空隙31を増大させることが有効であると考えられるが、空隙31を増大させすぎると母相3の強度が低下し、表面層2が内燃機関の中の過酷な環境(温度および圧力)に耐えられない。そこで、本発明では、母相3の空隙31中に中空粒子4を含有させ、母相3中の空隙31と中空粒子4の空孔40とを合わせることで、表面層2全体の気孔率を十分に確保しつつ、母相3中の空隙31量を抑えて、表面層2の強度を保つ構成としている。 In order to obtain high low thermal conductivity, it is considered effective to increase the gap 31 of the matrix 3. However, if the gap 31 is excessively increased, the strength of the matrix 3 is reduced and the surface layer 2 is reduced. Cannot withstand the harsh environment (temperature and pressure) in an internal combustion engine. Therefore, in the present invention, the hollow particles 4 are contained in the voids 31 of the matrix 3 and the voids 31 in the matrix 3 and the pores 40 of the hollow particles 4 are combined to reduce the porosity of the entire surface layer 2. The strength of the surface layer 2 is maintained while suppressing the amount of voids 31 in the mother phase 3 while ensuring sufficient.
 金属相30は、金属粒子が焼結によって結合された焼結金属で構成することが好ましい。図2(b)は図2(a)の金属相30を構成する金属粒子の拡大図である。図2(b)に示すように、金属粒子32の一部同士が焼結によって結合し、ネック33を有していることが好ましい。このネック33によって金属粒子間の空間を確保し、空隙31を形成することができる。また、焼結密度を制御することで空隙31の割合を制御することができる。このような焼結金属の作製方法については、追って詳述する。 The metal phase 30 is preferably composed of a sintered metal in which metal particles are bonded by sintering. FIG. 2B is an enlarged view of the metal particles constituting the metal phase 30 of FIG. As shown in FIG. 2B, it is preferable that some of the metal particles 32 are bonded together by sintering and have a neck 33. The neck 33 can secure a space between the metal particles and form the gap 31. Further, the ratio of the voids 31 can be controlled by controlling the sintering density. A method for producing such a sintered metal will be described in detail later.
 基材1と金属相30は、同じ金属をそれぞれの主成分として含むことが好ましい。具体的には、基材1をアルミニウム(Al)合金とし、金属相30をAlとすることが好ましい。このように基材1と表面層2の主要部分を構成する金属相30を同じ金属で構成することによって、基材1とポーラス構造を有する表面層2の界面で強固な固相接合部を形成して密着性を確保し、耐久性に優れた表面層2を提供することができる。 The base material 1 and the metal phase 30 preferably contain the same metal as their main component. Specifically, it is preferable that the base material 1 is an aluminum (Al) alloy and the metal phase 30 is Al. In this way, by forming the metal phase 30 constituting the main part of the base material 1 and the surface layer 2 with the same metal, a strong solid phase junction is formed at the interface between the base material 1 and the surface layer 2 having a porous structure. Thus, it is possible to provide the surface layer 2 that ensures adhesion and is excellent in durability.
 中空粒子4として、シリカ(SiO)、アルミナ(Al)およびジルコニア(ZrO)等、種々の多孔質酸化物を用いることができるが、表面層2の断熱性能を確保するために熱伝導率が低い材料とすることが好ましく、特にシリカを用いることが好ましい。シリカはセラミックスの中でも比較的熱伝導性が低く、なおかつ中空状あっても強度が比較的高い材料である。シリカを主成分とする中空粒子としては、セラミックビーズ、シリカエアロゲル、多孔ガラス、ガラスビーズ、火山性白砂、珪藻土およびそれらの加工粉末等があるが、これらに限定されるものではない。 As the hollow particles 4, various porous oxides such as silica (SiO 2 ), alumina (Al 2 O 3 ), and zirconia (ZrO 2 ) can be used, but in order to ensure the heat insulation performance of the surface layer 2. It is preferable to use a material having low thermal conductivity, and it is particularly preferable to use silica. Silica is a material having relatively low thermal conductivity among ceramics and having a relatively high strength even when hollow. Examples of the hollow particles mainly composed of silica include ceramic beads, silica airgel, porous glass, glass beads, volcanic white sand, diatomaceous earth, and processed powders thereof, but are not limited thereto.
 表面層2において、金属相30に対する中空粒子4の比率は、30~70体積%(30体積%以上70体積%以下)の範囲であることが好ましい。30体積%よりも小さい場合は、表面層2全体で十分な気孔率を確保することが困難となり、70体積%よりも大きい場合は、金属相30を構成する金属粒子同士の結合を阻害して表面層2の強度を損ねる結果となる。 In the surface layer 2, the ratio of the hollow particles 4 to the metal phase 30 is preferably in the range of 30 to 70% by volume (30 to 70% by volume). When the volume is smaller than 30% by volume, it is difficult to ensure a sufficient porosity in the entire surface layer 2, and when the volume is larger than 70% by volume, the binding between the metal particles constituting the metal phase 30 is inhibited. As a result, the strength of the surface layer 2 is impaired.
 金属相30を構成する金属粒子の粒子径と中空粒子4の粒子径は、同一であることが好ましい。中空粒子4の粒子径が金属粒子の粒子径に比べて大きい場合、金属粒子同士の結合が形成されにくくなり、焼結体である金属相30の強度が低下するおそれがある。一方、中空粒子4の粒子径が金属粒子の粒子径に比べて小さい場合、金属粒子間の空隙31の形成を妨げて高い気孔率を実現することができない。 The particle diameter of the metal particles constituting the metal phase 30 and the particle diameter of the hollow particles 4 are preferably the same. When the particle diameter of the hollow particles 4 is larger than the particle diameter of the metal particles, it is difficult to form a bond between the metal particles, and the strength of the metal phase 30 that is a sintered body may be reduced. On the other hand, when the particle diameter of the hollow particles 4 is smaller than the particle diameter of the metal particles, the formation of the voids 31 between the metal particles is hindered and a high porosity cannot be realized.
 上述したように、表面層2の気孔率は、母相の空隙31と中空粒子4の空孔40との比率を足し合わせたものとなるが、このうち、中空粒子4の空孔40の体積を、母相3の空隙31の体積よりも大きくすることが好ましい。母相3の空隙が増大すると、金属相30の金属粒子同士の結合が弱くなり、表面層2の強度(耐久性)を保つことができない。中空粒子4の空孔40の体積を母相3の空隙31の体積よりも大きくすることで、表面層2の所定の気孔率と強度とを両立することが可能となる。 As described above, the porosity of the surface layer 2 is the sum of the ratio of the voids 31 of the parent phase and the voids 40 of the hollow particles 4. Of these, the volume of the voids 40 of the hollow particles 4 is Is preferably larger than the volume of the void 31 of the parent phase 3. When the voids in the mother phase 3 increase, the bond between the metal particles of the metal phase 30 becomes weak, and the strength (durability) of the surface layer 2 cannot be maintained. By making the volume of the voids 40 of the hollow particles 4 larger than the volume of the voids 31 of the matrix 3, it becomes possible to achieve both a predetermined porosity and strength of the surface layer 2.
 本発明において、表面層2の気孔率は、40体積%より大きく、63体積%以下でることが好ましい。40体積%以下である場合は、十分に低い体積比熱を実現することができず、63体積%より大きい場合は、表面層2の強度を保つことが困難となる。なお、表面層2を、空隙31を含む母相3のみで構成し、中空粒子4を含まない場合、表面層2の気孔率(空隙31の比率)が40体積%以上となると強度を保つことが困難となる。また、母相3が空隙31を含まず、中空粒子4のみを含む場合、中空粒子4を含むスペースとなる空隙31が無くなるため、中空粒子4の体積比率が限定され、30体積%以上の気孔率を確保することが困難となる。本発明では、母相3に含まれる空隙31と、中空粒子4が有する空孔40を合わせることで、40体積%より大きい気孔率を確保することが可能となる。 In the present invention, the porosity of the surface layer 2 is preferably greater than 40% by volume and 63% by volume or less. If it is 40% by volume or less, a sufficiently low volume specific heat cannot be realized, and if it is more than 63% by volume, it is difficult to maintain the strength of the surface layer 2. In addition, when the surface layer 2 is composed only of the parent phase 3 including the voids 31 and does not include the hollow particles 4, the strength is maintained when the porosity (ratio of the voids 31) of the surface layer 2 is 40% by volume or more. It becomes difficult. Further, when the parent phase 3 does not include the voids 31 and includes only the hollow particles 4, the voids 31 that become the spaces including the hollow particles 4 are eliminated, so that the volume ratio of the hollow particles 4 is limited, and the pores of 30 volume% or more It becomes difficult to ensure the rate. In the present invention, by combining the voids 31 included in the matrix 3 and the voids 40 of the hollow particles 4, it is possible to ensure a porosity greater than 40% by volume.
 表面層2の体積比熱は、1000kJ/m・K以下であることが好ましい。表面層2の体積比熱を1000kJ/m・K以下にすることにより、内燃機関内部でのベース温度の上昇がほとんど発生しない水準となる。すなわち、表面層2のガス温度に対する熱応答性が十分高いものとなり、燃焼室内部のガス温度の変化に合わせて瞬時に低温から高温へ、または高温から低温へ変化できる。これにより、ピストン冠面101の全面に表面層2を施工することが可能となり、より高い燃焼効率を得ることができる。 The volume specific heat of the surface layer 2 is preferably 1000 kJ / m 3 · K or less. By setting the volume specific heat of the surface layer 2 to 1000 kJ / m 3 · K or less, the base temperature is hardly increased in the internal combustion engine. That is, the thermal responsiveness with respect to the gas temperature of the surface layer 2 is sufficiently high, and can be instantaneously changed from a low temperature to a high temperature or from a high temperature to a low temperature in accordance with a change in the gas temperature in the combustion chamber. As a result, the surface layer 2 can be applied to the entire surface of the piston crown surface 101, and higher combustion efficiency can be obtained.
 本発明に係るピストン100において、上述した表面層2が形成される箇所に特に限定はない。ピストン100において表面層2を形成する箇所の例を以下に示す。図3(a)は本発明に係るピストンの第一の例を示す断面図であり、図3(b)は本発明に係るピストンの第二の例を示す断面図であり、図3(c)は本発明に係るピストンの第三の例を示す断面図である。図3(a)~(c)に示すように、ピストン100a~cにおいて、表面層2を形成する場所は特に限定されず、図3(a)のように、冠面101の中央部に形成しても良く、図3(b)のように冠面101の全面に形成しても良く、また図3(c)のように冠面101の表面形状に沿って厚さが一定となるように形成してもよい。 In the piston 100 according to the present invention, the place where the surface layer 2 described above is formed is not particularly limited. The example of the location which forms the surface layer 2 in the piston 100 is shown below. 3A is a cross-sectional view showing a first example of the piston according to the present invention, and FIG. 3B is a cross-sectional view showing a second example of the piston according to the present invention. ) Is a cross-sectional view showing a third example of the piston according to the present invention. As shown in FIGS. 3A to 3C, the location where the surface layer 2 is formed in the pistons 100a to 100C is not particularly limited, and is formed in the central portion of the crown surface 101 as shown in FIG. Alternatively, it may be formed on the entire surface of the crown surface 101 as shown in FIG. 3B, and the thickness may be constant along the surface shape of the crown surface 101 as shown in FIG. You may form in.
 図4は本発明に係るピストンを構成する表面層の第二の例を模式的に示す断面図である。図4に示すように、第ニの例では、表面層2の表面に封止材からなる封止層50が形成されている。表面層2の空隙31に燃料が浸み込むと、燃焼に寄与する燃料が減少し、燃焼効率が悪くなる。そこで、図4に示すように表面層2の表面の空隙を封止し、燃料が表面層2の奥(基材1側)まで浸みこむことを防止することが好ましい。表面層2の表面に封止層50を設ける際に、封止材は表面層2の表面(図4の符号51で示す部分)のみならず、表面近くの空隙31(図4の符号52で示す部分)にも侵入するが、本発明に係る表面層2は母相3の空隙31と中空粒子4の空孔40とで表面層2全体の気孔率を確保しており、中空粒子4の内部の空孔40には封止材が侵入することは無いため、母相3の空隙31の一部が封止材によって封止されたとしても、表面層2全体では十分な気孔率を確保することができる。 FIG. 4 is a sectional view schematically showing a second example of the surface layer constituting the piston according to the present invention. As shown in FIG. 4, in the second example, a sealing layer 50 made of a sealing material is formed on the surface of the surface layer 2. When the fuel soaks into the gap 31 of the surface layer 2, the fuel that contributes to combustion decreases, and the combustion efficiency deteriorates. Therefore, it is preferable to seal the voids on the surface of the surface layer 2 as shown in FIG. 4 to prevent the fuel from penetrating to the back of the surface layer 2 (base material 1 side). When the sealing layer 50 is provided on the surface of the surface layer 2, the sealing material is not only the surface of the surface layer 2 (portion indicated by reference numeral 51 in FIG. 4), but also the gap 31 near the surface (reference numeral 52 in FIG. 4). The surface layer 2 according to the present invention secures the porosity of the entire surface layer 2 with the voids 31 of the matrix 3 and the pores 40 of the hollow particles 4. Since the sealing material does not enter the internal pores 40, even if a part of the gap 31 of the matrix 3 is sealed with the sealing material, the entire surface layer 2 has a sufficient porosity. can do.
 封止材として、特に限定は無いが、絶縁塗料が好適である。封止材を絶縁材料で構成することで、カーボンデポジットの付着を抑止することができる。封止材として、より具体的には、ポリシラザン、ポリシロキサン、シリカアルコキシド、ポリアミド、ポリアミドイミド、ポリイミドおよび各種樹脂が挙げられるが、これらに限定されるものではない。封止層50の形成方法については、追って詳述する。本発明の上記構成によれば、優れた熱応答特性を有してなおかつ長期の使用に耐えうる構造をもったピストンを提供し、燃料の燃焼を助けて内燃機関の燃費改善に寄与する。また、内燃機関からのデポジットやスモークの排出を抑制することに寄与する。 The sealing material is not particularly limited, but an insulating paint is suitable. By constituting the sealing material with an insulating material, adhesion of carbon deposits can be suppressed. More specifically, examples of the sealing material include, but are not limited to, polysilazane, polysiloxane, silica alkoxide, polyamide, polyamideimide, polyimide, and various resins. A method for forming the sealing layer 50 will be described in detail later. According to the above configuration of the present invention, it is possible to provide a piston having an excellent thermal response characteristic and having a structure that can withstand long-term use, and assists combustion of fuel to contribute to improvement of fuel consumption of the internal combustion engine. It also contributes to suppressing deposits and smoke emissions from the internal combustion engine.
 [内燃機関用ピストンの製造方法]
 次に、本発明に係るピストンの製造方法について説明する。基材1への表面層2の形成方法としては、まず金属相を構成する金属粒子と中空粒子4を焼結して焼結体を形成し、該焼結体を基材1と接合する方法と、表面層2の原料粉末となる金属粒子と中空粒子4の混合粉末を基材1の表面に設置し、金属粒子の焼結と基材1への接合を同時に行う方法が挙げられる。まず始めに、前者の例について説明する。
[Method of manufacturing piston for internal combustion engine]
Next, a method for manufacturing a piston according to the present invention will be described. As a method for forming the surface layer 2 on the substrate 1, first, a sintered body is formed by sintering the metal particles and the hollow particles 4 constituting the metal phase, and the sintered body is joined to the substrate 1. And the method of installing the mixed powder of the metal particle used as the raw material powder of the surface layer 2, and the hollow particle 4 on the surface of the base material 1, and sintering the metal particle and joining to the base material 1 simultaneously is mentioned. First, the former example will be described.
 図5(a)は本発明に係るピストン(表面層)の製造方法の一例を示すフロー図であり、図5(b)は本発明に係るピストンの製造方法(基材と表面層の接合)の一例を示すフロー図である。まず、図5(a)において、金属相30の原料となる金属粒子と中空粒子4の粉末を混合する(S10:原料混合粉末準備工程)。次に、S10で得られた混合粉末を加熱し、焼結して(S11:焼結工程)焼結体を得る(S12)。混合粉末の焼結方法としては、母相3に空隙31が形成されるように金属粒子を焼結可能な方法であれば特に限定は無いが、パルス通電焼結、ホットプレス焼結、熱間等方加圧焼結および冷間等方加圧焼結等が好適である。これらのなかでも特に荷重および温度を制御可能な加圧焼結とすることが好ましく、パルス通電焼結法が好適であると考えられる。パルス通電焼結(Pulse Electric Current Sintering)は、放電プラズマ焼結(Spark Plasma Sintering)とも呼ばれる焼結手法である。原料粉末に加圧しながらパルス通電を印加すると、粉末表面では抵抗発熱とスパーク放電による発熱が発生し、粉末表面での反応を活性化し、図2(b)に示すように、金属粒子間接触部にネック33を形成しやすい。空隙を多く含む多孔焼結体であっても、ネック33部分で金属粒子同士を強度に結合させることができる。 FIG. 5A is a flowchart showing an example of a method for manufacturing a piston (surface layer) according to the present invention, and FIG. 5B is a method for manufacturing a piston according to the present invention (joining of a base material and a surface layer). It is a flowchart which shows an example. First, in FIG. 5A, the metal particles that are the raw material of the metal phase 30 and the powder of the hollow particles 4 are mixed (S10: raw material mixed powder preparation step). Next, the mixed powder obtained in S10 is heated and sintered (S11: sintering process) to obtain a sintered body (S12). The method for sintering the mixed powder is not particularly limited as long as it is a method capable of sintering metal particles so that voids 31 are formed in the mother phase 3, but pulse current sintering, hot press sintering, Isotropic pressure sintering and cold isotropic pressure sintering are preferred. Among these, it is preferable to use pressure sintering capable of controlling the load and temperature, and it is considered that the pulse current sintering method is suitable. Pulse electric current sintering (Pulse Electric Current Sintering) is a sintering method also called spark plasma sintering (Spark Plasma Sintering). When pulse current is applied while pressing the raw material powder, resistance heat generation and spark discharge are generated on the powder surface, and the reaction on the powder surface is activated. As shown in FIG. The neck 33 can be easily formed. Even in the case of a porous sintered body containing a large amount of voids, the metal particles can be strongly bonded at the neck 33 portion.
 パルス通電焼結法では、粉末表面での反応が活発化するため、比較的荷重負荷が小さい環境での焼結が可能であり、中空粒子の形状を破壊せずに含有させることが可能である。本発明においては、混合粉末にパルス通電を印加することにより、金属粒子同士が互いに繋がった金属相(焼結金属)30を形成し、かつ金属粒子同士の結合部分以外で構成された空隙31に、中空粒子4をその形状を壊すことなく包含することができる。パルス通電焼結法を用いれば、荷重または押込み量を制御して加圧することにより、母相3の空隙31の割合を制御することが可能である。 In the pulse current sintering method, since the reaction on the powder surface is activated, it is possible to sinter in an environment where the load is relatively small, and the shape of the hollow particles can be contained without breaking. . In the present invention, by applying pulse current to the mixed powder, a metal phase (sintered metal) 30 in which the metal particles are connected to each other is formed, and in the void 31 configured other than the bonded portion between the metal particles. The hollow particles 4 can be included without breaking the shape. If the pulse current sintering method is used, it is possible to control the ratio of the voids 31 in the mother phase 3 by controlling the load or the amount of indentation and pressurizing.
 図5(b)では、まず始めに、ピストン基材を鋳造によって作製する(S13)。この鋳造工程では、例えば、Al合金製のピストン母材の粗材を従来の方法で鋳造する。続いて、得られた粗材に対して機械加工(ランド部外径切削およびピン穴加工等)を施す(S14)。次に、先の図5(a)に示した工程で作製した焼結体を、基材の表面に接触させて設置する(S15)。そして、基材と焼結体とを接合する(S16)。接合方法として、焼結体を構成する金属と基材を構成する金属同士が直接結合する接合法を用いることが好ましい。具体的には、拡散接合、摩擦撹拌接合、レーザー溶接およびアーク溶接等が挙げられるが、これらに限定されるものではない。 In FIG. 5B, first, a piston base material is manufactured by casting (S13). In this casting process, for example, a rough material of a piston base material made of an Al alloy is cast by a conventional method. Subsequently, machining (land part outer diameter cutting, pin hole machining, etc.) is performed on the obtained rough material (S14). Next, the sintered body produced in the process shown in FIG. 5A is placed in contact with the surface of the substrate (S15). And a base material and a sintered compact are joined (S16). As a joining method, it is preferable to use a joining method in which a metal constituting the sintered body and a metal constituting the substrate are directly bonded to each other. Specific examples include diffusion bonding, friction stir welding, laser welding, and arc welding, but are not limited thereto.
 焼結体と基材の接合後の後処理として、熱処理工程を実施する(S17)。この熱処理は、接合工程で発生する歪を除去し、強度を均一化することを目的とするものであり、例えば溶体化時効処理または人口時効処理を行う。熱処理工程後、二次機械加工工程として仕上げの切削加工を施し(S18)、製品であるピストンが完成する(S19)。 As a post-treatment after joining the sintered body and the substrate, a heat treatment step is performed (S17). This heat treatment is intended to remove the strain generated in the joining process and to make the strength uniform. For example, solution aging treatment or artificial aging treatment is performed. After the heat treatment step, finishing machining is performed as a secondary machining step (S18), and the product piston is completed (S19).
 図5(c)は本発明に係るピストンの製造方法の他の一例を示すフロー図である。図5(c)では、焼結体の作製(図5(a)のS1)と、焼結体と基材との接合(図5(b)のS2)を同時に実施している。ピストン基材の鋳造(S13)および一次機械加工(S14)については、図5(b)と同様である。一次機械加工工程を施した基材1の表面に、表面層2の原料粉末となる金属粒子と中空粒子4の混合粉末を設置する(S15´)。この際に、混合粉末を粉末状のまま基材1の表面に設置しても良いが、混合粉末を所定の形状を有する成形体、例えば粉末に予め圧力を加えて予備成形を行うことでビスケット状に押し固めた圧粉体とし、この圧粉体を基材1表面(ピストン冠面)に設置してもよい。 FIG. 5 (c) is a flowchart showing another example of the manufacturing method of the piston according to the present invention. In FIG.5 (c), preparation of a sintered compact (S1 of Fig.5 (a)) and joining of a sintered compact and a base material (S2 of FIG.5 (b)) are implemented simultaneously. The piston base material casting (S13) and primary machining (S14) are the same as in FIG. 5B. On the surface of the base material 1 subjected to the primary machining process, the mixed powder of the metal particles and the hollow particles 4 as the raw material powder of the surface layer 2 is placed (S15 ′). At this time, the mixed powder may be placed on the surface of the substrate 1 in the form of powder. However, the mixed powder is formed into a molded body having a predetermined shape, for example, a pre-molding by applying pressure in advance to the powder. A green compact pressed into a shape may be used, and this green compact may be placed on the surface of the substrate 1 (piston crown surface).
 次に、混合粉末の上部から荷重をかけて加熱することで、混合粉末を焼結すると同時に混合粉末とピストン基材とを接合させる(S16´)。接合方法は、上述したS16と同様である。 Next, by applying a load from the upper part of the mixed powder and heating it, the mixed powder is sintered, and at the same time, the mixed powder and the piston base material are joined (S16 ′). The joining method is the same as S16 described above.
 さらに、図示していないが、上述した封止層50を形成するために、焼結体形成後のいずれかの工程において、封止層形成工程を有していてもよい。封止層の形成方法としては、例えば封止材としてポリシラザンを用いる場合、焼結体表面にポリシラザンの前駆体を含む塗布液を塗布し、400~500℃で1~2時間加熱して乾燥することで形成することができる。 Furthermore, although not shown, in order to form the sealing layer 50 described above, a sealing layer forming step may be included in any step after the formation of the sintered body. As a method for forming the sealing layer, for example, when polysilazane is used as a sealing material, a coating solution containing a polysilazane precursor is applied to the surface of the sintered body, and heated at 400 to 500 ° C. for 1 to 2 hours to be dried. Can be formed.
 図5(b)および図5(c)の工程において、封止材形成工程は、焼結体と基材の接合工程(S16またはS16´)、熱処理工程(S17)あるいは二次機械加工工程(S18)のいずれかの工程間で実施することが可能である。本発明によれば、熱処理工程(S17)の前に封止層50を形成してもよく、二次機械加工工程(S18)の前に形成しても良く、二次機械加工工程(S18)後に形成してもよい。これらの塗布工程において、塗布した封止材をピストン表面に定着させるために熱処理工程をさらに追加しても良い。また、熱処理工程(S17)が、塗布後の封止材の乾燥を兼ねていてもよい。 5 (b) and FIG. 5 (c), the sealing material forming step is a step of joining the sintered body and the base material (S16 or S16 ′), heat treatment step (S17), or secondary machining step ( It is possible to carry out between any steps of S18). According to the present invention, the sealing layer 50 may be formed before the heat treatment step (S17), may be formed before the secondary machining step (S18), or the secondary machining step (S18). It may be formed later. In these application processes, a heat treatment process may be further added to fix the applied sealing material on the piston surface. Further, the heat treatment step (S17) may also serve as drying of the sealing material after application.
 以下、実施例に基づいて、本発明についてさらに詳述する。 Hereinafter, the present invention will be described in more detail based on examples.
 [中空粒子の比率と焼結状態、気孔率および熱応答性の評価]
 ピストン冠面に見立てた基材を準備し、その表面に中空粒子の比率を変えた表面層を形成した試験片を作製した(実施例1~3、参考例1および2)。得られた試験片の焼結状態、気孔率および熱応答性を評価した。まず、実機のピストン材料に近いAl合金(JIS(Japanese Industrial Standards) 4032‐T6)を用いて円盤状の試験片(直径:75mm、厚さ:10mm)を作製し、その表面に直径30mm、深さ5mmの凹部を形成した。
[Evaluation of hollow particle ratio and sintering state, porosity and thermal response]
A base material was prepared as if it were a piston crown surface, and test pieces having a surface layer in which the ratio of hollow particles was changed on the surface thereof were prepared (Examples 1 to 3, Reference Examples 1 and 2). The obtained test piece was evaluated for its sintered state, porosity and thermal responsiveness. First, a disk-shaped test piece (diameter: 75 mm, thickness: 10 mm) was prepared using an Al alloy (JIS (Japan Industrial Standards) 4032-T6) close to the actual piston material. A recess having a thickness of 5 mm was formed.
 表面層2を構成する原料混合粉末(表面層の原料粉末)として、金属相30を構成する金属粒子としてAl粒子と、中空粒子としてSiO粒子を混合した原料混合粉末を準備した。いずれの粒子も、平均粒子径が30μmのものを用意した。この原料混合粉末をパルス通電焼結法によって焼結し、焼結体を作製した。図6は実施例で用いたパルス通電装置の一例を模式的に示す図である。真空チャンバ64内で、円環状のカーボンダイ62の中に上述した混合粉末(原料粉末)61を入れ、カーボンパンチ63を図6の矢印方向に駆動して荷重を負荷し、パルス電源67および電極(上部電極65および下部電極66)を介して混合粉末にパルス通電を印加し、加熱して焼結した。パルス通電焼結中は、温度、荷重およびカーボンパンチ63の押込み量をモニタリングした。 As a raw material mixed powder constituting the surface layer 2 (a raw material powder for the surface layer), a raw material mixed powder prepared by mixing Al particles as metal particles constituting the metal phase 30 and SiO 2 particles as hollow particles was prepared. All particles were prepared with an average particle size of 30 μm. This raw material mixed powder was sintered by a pulse current sintering method to produce a sintered body. FIG. 6 is a diagram schematically illustrating an example of the pulse energization device used in the example. In the vacuum chamber 64, the above-mentioned mixed powder (raw material powder) 61 is placed in an annular carbon die 62, and the carbon punch 63 is driven in the direction of the arrow in FIG. A pulse current was applied to the mixed powder through (the upper electrode 65 and the lower electrode 66), and the mixture was heated and sintered. During the pulse electric current sintering, the temperature, the load and the indentation amount of the carbon punch 63 were monitored.
 得られた焼結体を、直径30mm、厚さ3mmの形状となるように加工し、上述したアルミニウム合金試験片の凹部に設置した。焼結体とアルミニウム合金試験片とを拘束ジグを用いて固定し、熱処理炉で加熱することで両者を拡散接合した。 The obtained sintered body was processed so as to have a shape with a diameter of 30 mm and a thickness of 3 mm, and placed in the recess of the aluminum alloy test piece described above. The sintered body and the aluminum alloy test piece were fixed using a restraining jig, and both were diffusion-bonded by heating in a heat treatment furnace.
 実施例1~3および参考例1~2の表面層の原料粉末の組成と、焼結状態および気孔率(P)の評価結果を後述する表1に示す。本明細書において「参考例」とは、本発明に係る表面層を有しているが、中空粒子の比率が本発明の好ましい範囲(30~70体積%)にないものである。表1中、表面層の気孔率Pは、下記の式から算出した。 The composition of the raw material powders of the surface layers of Examples 1 to 3 and Reference Examples 1 to 2, and the evaluation results of the sintered state and the porosity (P) are shown in Table 1 described later. In the present specification, the “reference example” has a surface layer according to the present invention, but the ratio of hollow particles is not within the preferred range (30 to 70% by volume) of the present invention. In Table 1, the porosity P of the surface layer was calculated from the following formula.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、Dは測定した密度(g/cm)であり、試験片から採取した直方体の小片から体積と重さを測定して算出した。Dは気孔を含まないバルク体の理想密度(g/cm)であり、金属粒子(Al)と中空粒子(SiO)の含有比率を考慮して決定した。なお、中空粒子中の空孔の比率はヘリウムガスを用いた真密度計により測定することができ、本実施例で用いた中空シリカの空孔の平均比率は59.6%であった。 Here, D m is the measured density (g / cm 3 ), and was calculated by measuring the volume and weight from a rectangular parallelepiped piece taken from the test piece. D i is the ideal density of the bulk material does not contain pores (g / cm 3), was determined in consideration of the content ratio of the metal particles (Al) hollow particles (SiO 2). In addition, the ratio of the void | hole in a hollow particle can be measured with the true density meter using helium gas, The average ratio of the void | hole of the hollow silica used in the present Example was 59.6%.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 図7(a)は実施例1に係る中空粒子の断面SEM観察写真であり、図7(b)は実施例1に係る表面層の断面SEM観察写真であり、図7(c)は図7(b)の拡大写真である。図7(b)および7(c)において、白色部分がAlであり、灰色部分がSiOであり、黒色部分が空隙および空孔である。図7(b)および7(c)に示すように、Al粒子71間に形成された空隙73中に、中空シリカ72がその形状を保持したまま含まれていることがわかる。 FIG. 7A is a cross-sectional SEM observation photograph of the hollow particles according to Example 1, FIG. 7B is a cross-sectional SEM observation photograph of the surface layer according to Example 1, and FIG. It is an enlarged photograph of (b). 7B and 7C, the white part is Al, the gray part is SiO 2 , and the black part is voids and holes. As shown in FIGS. 7B and 7C, it can be seen that the hollow silica 72 is contained in the void 73 formed between the Al particles 71 while maintaining its shape.
 実施例1~3および参考例1では良好な焼結状態を確保できたのに対し、中空粒子の含有率を75%まで増大させた参考例2では、中空粒子が過剰となり、金属粒子同士の結合が阻害されて焼結不良となり、焼結体形状を保つことができなかった。 In Examples 1 to 3 and Reference Example 1, a good sintered state could be secured, whereas in Reference Example 2 in which the content of the hollow particles was increased to 75%, the hollow particles became excessive, and the metal particles Bonding was inhibited, resulting in poor sintering, and the sintered body shape could not be maintained.
 表面層における熱応答特性を評価するために、レーザー熱源を用いて表面層の温度を評価する熱応答評価試験を実施した。図8は実施例の熱応答性評価試験に用いた装置の模式図である。図8に示すように、評価装置は、真空チャンバ82内に設置した試験片81に対して、レーザー熱源84を用いてレーザー光を照射し、その際の試験片81の表面温度を、赤外線カメラ83を用いて測定する構成を有する。 In order to evaluate the thermal response characteristics in the surface layer, a thermal response evaluation test was performed in which the temperature of the surface layer was evaluated using a laser heat source. FIG. 8 is a schematic view of an apparatus used in the thermal responsiveness evaluation test of the example. As shown in FIG. 8, the evaluation apparatus irradiates a test piece 81 installed in a vacuum chamber 82 with a laser beam using a laser heat source 84, and determines the surface temperature of the test piece 81 at that time using an infrared camera. 83 is used for measurement.
 図9(a)は実施例の熱応答評価試験におけるレーザー光の出力と時間の関係を示すグラフであり、図9(b)は実施例の熱応答評価試験における試験片の表面温度と時間の関係を示すグラフである。図9(b)は、図9(a)におけるレーザー照射時の表面温度を表している。図9(b)において、1回目のレーザー照射時に記録されるピーク温度をT、3回目のレーザー照射時に記録されるピーク温度をTとした。試験片にレーザーを吸収するための黒体塗料を塗ってレーザー照射を実施した。 FIG. 9A is a graph showing the relationship between laser light output and time in the thermal response evaluation test of the example. FIG. 9B is a graph showing the surface temperature and time of the test piece in the thermal response evaluation test of the example. It is a graph which shows a relationship. FIG. 9B shows the surface temperature at the time of laser irradiation in FIG. In FIG. 9B, the peak temperature recorded during the first laser irradiation was T 1 , and the peak temperature recorded during the third laser irradiation was T 3 . Laser irradiation was carried out by applying a black body paint for absorbing laser to the test piece.
 熱応答評価試験では、まず初めにエンジン環境を模擬するため、表面層を設けていないアルミ合金試験片のピーク温度が、実際のエンジン環境に近い200℃程度となるように、レーザー照射の条件を選定した。具体的には、図9(a)に示すように、800Wのレーザーを1秒間照射して5秒間自然冷却する工程を1セットとし、合計3セットの照射を実施した。なお、赤外線カメラ83が定量的に評価できる温度の上限は500℃であるので、500℃を超えた場合は「500℃超」と表記する。ピストン冠面において燃料を瞬時に燃焼させるためには、燃料の発火点(300℃)よりも十分に高い400℃程度に加熱される必要がある。よって、この試験において、ピーク温度が400℃以上となる昇温効果を持つ表面層を選定した。実施例1~3および参考例1~2の熱応答性評価試験におけるTおよびTの値を表1に併記する。 In the thermal response evaluation test, in order to simulate the engine environment first, the laser irradiation conditions are set so that the peak temperature of the aluminum alloy test piece without the surface layer is about 200 ° C. which is close to the actual engine environment. Selected. Specifically, as shown in FIG. 9 (a), a step of irradiating an 800 W laser for 1 second and naturally cooling for 5 seconds was taken as one set, and a total of three sets of irradiation were performed. Since the upper limit of the temperature that can be quantitatively evaluated by the infrared camera 83 is 500 ° C., when the temperature exceeds 500 ° C., “over 500 ° C.” is described. In order to instantly burn the fuel at the piston crown surface, it is necessary to heat to about 400 ° C., which is sufficiently higher than the ignition point (300 ° C.) of the fuel. Therefore, in this test, a surface layer having a temperature raising effect with a peak temperature of 400 ° C. or higher was selected. The values of T 1 and T 3 in the thermal response evaluation tests of Examples 1 to 3 and Reference Examples 1 to 2 are also shown in Table 1.
 熱応答評価試験の結果、実施例1~3はTおよびTともに400℃以上であったのに対し、参考例1では十分な昇温効果が得られず、熱応答性が十分ではなかった。参考例2は試験前に焼結体形状が崩れたため、試験を実施できなった。実施例1~3について、熱応答性評価試験後も試験片からの表面層の剥離は観測されず、良好な密着性を有することが確認された。 As a result of the thermal response evaluation test, in Examples 1 to 3, both T 1 and T 3 were 400 ° C. or higher, whereas in Reference Example 1, a sufficient temperature rising effect was not obtained, and the thermal responsiveness was not sufficient. It was. Reference Example 2 could not be tested because the shape of the sintered body collapsed before the test. In Examples 1 to 3, peeling of the surface layer from the test piece was not observed even after the thermal responsiveness evaluation test, and it was confirmed that the film had good adhesion.
 以上の結果から、中空粒子の含有率は30~70体積%の範囲とすることで熱応答性が高い表面層が得られることが示された。 From the above results, it was shown that a surface layer having high thermal responsiveness can be obtained by setting the hollow particle content in the range of 30 to 70% by volume.
 [気孔率と焼結状態の評価]
 次に、中空粒子の比率を50%に固定した条件で、表面層の気孔率を変えた試験片を作製した(実施例4、5および参考例3)。得られた試験片の焼結状態を評価した。実施例4、5および参考例3の表面層の原料粉末の組成と、気孔および焼結状態の評価結果を後述する表2に示す。また、実施例1の原料粉末の組成、気孔および焼結状態の評価結果も表2に併記する。実施例1、4および5では焼結状態が良好であったのに対し、気孔率が67%の参考例3は、焼結体の形状を保持することができず、焼結状態が不良となった。この結果、気孔率は63%以下であることが好ましいことがわかった。また、表1の結果から、気孔率40%の参考例1は十分な熱応答性を示さなかったことから、気孔率は40%より大きく、63%以下の範囲に制御することが好ましいと言える。
[Evaluation of porosity and sintered state]
Next, test pieces in which the porosity of the surface layer was changed under the condition that the hollow particle ratio was fixed to 50% were prepared (Examples 4 and 5 and Reference Example 3). The sintered state of the obtained test piece was evaluated. The composition of the raw material powder of the surface layers of Examples 4 and 5 and Reference Example 3, and the evaluation results of the pores and the sintered state are shown in Table 2 described later. Table 2 also shows the evaluation results of the composition, pores, and sintered state of the raw material powder of Example 1. In Examples 1, 4 and 5, the sintered state was good, whereas in Reference Example 3 having a porosity of 67%, the shape of the sintered body could not be maintained, and the sintered state was poor. became. As a result, it was found that the porosity is preferably 63% or less. Further, from the results of Table 1, it can be said that Reference Example 1 having a porosity of 40% did not exhibit sufficient thermal responsiveness, so that the porosity is preferably controlled to a range of more than 40% and not more than 63%. .
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実施例1~3および参考例1~2について、示差走査熱量法(DSC(Differential scanning calorimetry)法)を用いて重量比熱を測定し、別途測定した密度から体積比熱を算出した。体積比熱が1000kJ/m・K以下のものを「合格」と評価し、1000kJ/m・Kを超えるものを「不合格」と評価した。評価の結果を表1に併記する。体積比熱は気孔率に大きく依存し、気孔率40%の参考例1は1000kJ/m・Kを超えたが、気孔率が48%以上の実施例1~3は、1000kJ/m・K以下になり、評価結果が「合格」となった。参考例2については、焼結体形状を保持できなかったため、測定していない。 For Examples 1 to 3 and Reference Examples 1 to 2, the specific heat capacity was measured using a differential scanning calorimetry (DSC (Differential Scanning calorimetry) method), and the specific volume heat was calculated from the density measured separately. A sample having a volume specific heat of 1000 kJ / m 3 · K or less was evaluated as “pass”, and a sample having a volume specific heat exceeding 1000 kJ / m 3 · K was evaluated as “fail”. The evaluation results are also shown in Table 1. Volume specific heat greatly depends on the porosity. Reference Example 1 with a porosity of 40% exceeded 1000 kJ / m 3 · K, but Examples 1 to 3 with a porosity of 48% or more had 1000 kJ / m 3 · K. The evaluation results were “passed” as follows. In Reference Example 2, measurement was not performed because the sintered body shape could not be maintained.
 [ピストンの作製と燃料効率評価]
 図5(a)および図5(b)に示す方法で実施例1と同じ構成を有する表面層を有するピストンを作製した(実施例6)。焼結体は、図5(a)の製造工程に沿って、パルス通電焼結法により、実施例1と同様に作製し、直径70mm、厚さ3mmに加工した。図5(b)の製造工程に沿って、ピストン鋳造工程(S13)で作製したアルミ合金製のピストン粗材(JIS AC8A)に一次機械加工(S14)を施し、一次機械加工時に、ピストン冠面に直径70mmの凹部を形成した。予め作製した焼結体を、このピストン冠面の凹部に設置し、拘束ジグにより焼結体とピストン基材とを十分に接触させ(S15)、熱処理炉で拡散接合を実施した(S16)。その後、溶体化処理と人口時効処理(S17)を施し、二次機械加工(S18)により仕上げ形状に加工して所定の形状を有するピストンを作製した(S19)。
[Production of piston and fuel efficiency evaluation]
A piston having a surface layer having the same configuration as that of Example 1 was manufactured by the method shown in FIGS. 5A and 5B (Example 6). The sintered body was produced in the same manner as in Example 1 by the pulse current sintering method according to the manufacturing process of FIG. 5A and processed into a diameter of 70 mm and a thickness of 3 mm. In accordance with the manufacturing process of FIG. 5B, primary machining (S14) is applied to the aluminum alloy piston rough material (JIS AC8A) produced in the piston casting process (S13). A recess having a diameter of 70 mm was formed. A sintered body prepared in advance was placed in the concave portion of the crown surface of the piston, and the sintered body and the piston base material were sufficiently brought into contact with a restraining jig (S15), and diffusion bonding was performed in a heat treatment furnace (S16). Thereafter, solution treatment and artificial aging treatment (S17) were performed, and a piston having a predetermined shape was fabricated by processing into a finished shape by secondary machining (S18) (S19).
 また、実施例7として、実施例6で作製したピストンに対して、二次機械加工(S18)後のピストン表面に、封止層形成工程を実施した。具体的には、二次機械加工(S18)後に、ピストン冠面にポリアミドイミドを塗布して乾燥熱処理を行い、表面付近の空隙が封孔された状態とした。ただし、元々中空シリカに含まれる空孔は閉構造であり、気孔として残存している状態である。 Also, as Example 7, a sealing layer forming step was performed on the piston surface after the secondary machining (S18) for the piston produced in Example 6. Specifically, after secondary machining (S18), polyamide imide was applied to the piston crown surface and subjected to a dry heat treatment so that voids near the surface were sealed. However, the pores originally contained in the hollow silica have a closed structure and remain as pores.
 作製した実施例6および7のピストンを、エンジン試験に供して燃費効率を確認した。いずれも表面層を持たないピストンに比べて燃費効率が改善したが、封止層を設けた実施例7の方がより燃料の消費が少ないことが確認できた。これは、封止層を設けた実施例7では、表面層の空隙に燃料が浸み込むことを防止することで、より高い燃焼効率が実現できるためであると考えられる。封止層が燃費効率に寄与することが確認された。 The produced pistons of Examples 6 and 7 were subjected to an engine test to confirm fuel efficiency. In either case, the fuel efficiency was improved as compared with the piston without the surface layer, but it was confirmed that the fuel consumption was less in Example 7 in which the sealing layer was provided. This is considered to be because, in Example 7 in which the sealing layer is provided, higher combustion efficiency can be realized by preventing the fuel from entering the voids in the surface layer. It was confirmed that the sealing layer contributes to fuel efficiency.
 以上、説明したように、本発明に係る内燃機関用ピストンは、耐久性および基材との密着性を確保し、かつ、低熱伝導性および低体積比熱を実現することが可能であることが実証された。 As described above, it is demonstrated that the piston for an internal combustion engine according to the present invention can ensure durability and adhesion to the base material, and can realize low thermal conductivity and low volume specific heat. It was done.
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 In addition, this invention is not limited to the above-mentioned Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
 100,100a,100b,100c…ピストン、101…ピストン冠面、1…基材、2…表面層、3…母相、30…金属相、31…空隙、32…金属粒子、33…ネック、4…中空粒子、40…空孔、5…ピストンピン受け部、50…封止層、51…表面層の表面の封止材、52…母相の空隙に侵入した封止材、61…表面層原料粉末、62…カーボンダイ、63…カーボンパンチ、64…真空チャンバ、65…上部電極、66…下部電極、67…パルス電源、71…Al粒子、72…中空シリカ、73…空隙、81…試験片、82…真空チャンバ、83…赤外線カメラ、84…レーザー熱源。 100, 100a, 100b, 100c ... piston, 101 ... piston crown surface, 1 ... base material, 2 ... surface layer, 3 ... parent phase, 30 ... metal phase, 31 ... void, 32 ... metal particles, 33 ... neck, 4 ... hollow particles, 40 ... holes, 5 ... piston pin receiving part, 50 ... sealing layer, 51 ... sealing material on the surface layer, 52 ... sealing material that has entered the voids of the mother phase, 61 ... surface layer Raw material powder, 62 ... carbon die, 63 ... carbon punch, 64 ... vacuum chamber, 65 ... upper electrode, 66 ... lower electrode, 67 ... pulse power supply, 71 ... Al particles, 72 ... hollow silica, 73 ... void, 81 ... test Piece 82 ... Vacuum chamber 83 ... Infrared camera 84 ... Laser heat source.

Claims (22)

  1.  基材と、前記基材の表面に設けられた表面層と、を有し、
     前記表面層は、母相と、前記母相に分散され、内部に空孔を有する中空粒子と、を含み、
     前記母相は、複数の金属粒子が結合して構成された金属相と、前記金属粒子の結合部分以外の部分で囲まれて構成された空隙と、を有し、前記空隙に前記中空粒子が含まれていることを特徴とする内燃機関用ピストン。
    A base material, and a surface layer provided on the surface of the base material,
    The surface layer includes a parent phase and hollow particles dispersed in the parent phase and having pores therein,
    The parent phase has a metal phase configured by combining a plurality of metal particles, and a void surrounded by a portion other than the bonded portion of the metal particles, and the hollow particles are in the void. A piston for an internal combustion engine, characterized in that it is included.
  2.  前記金属相は、焼結金属からなることを特徴とする請求項1記載の内燃機関用ピストン。 2. The piston for an internal combustion engine according to claim 1, wherein the metal phase is made of sintered metal.
  3.  前記焼結金属は、前記基材を構成する金属と同じ金属からなり、前記焼結金属と前記基材とが接合されていることを特徴とする請求項2記載の内燃機関用ピストン。 3. The piston for an internal combustion engine according to claim 2, wherein the sintered metal is made of the same metal as that constituting the base material, and the sintered metal and the base material are joined.
  4.  前記焼結金属は、アルミニウムからなることを特徴とする請求項2記載の内燃機関用ピストン。 3. The piston for an internal combustion engine according to claim 2, wherein the sintered metal is made of aluminum.
  5.  前記中空粒子は、シリカ、アルミナまたはジルコニアからなることを特徴とする請求項1ないし4のいずれか1項に記載の内燃機関用ピストン。 The piston for an internal combustion engine according to any one of claims 1 to 4, wherein the hollow particles are made of silica, alumina, or zirconia.
  6.  前記金属相に対する前記中空粒子の比率は、30~70体積%であることを特徴とする請求項1ないし4のいずれか1項に記載の内燃機関用ピストン。 The internal combustion engine piston according to any one of claims 1 to 4, wherein a ratio of the hollow particles to the metal phase is 30 to 70% by volume.
  7.  前記金属粒子の結合部分がネックを有することを特徴とする請求項1ないし4のいずれか1項に記載の内燃機関用ピストン。 The piston for an internal combustion engine according to any one of claims 1 to 4, wherein a joint portion of the metal particles has a neck.
  8.  前記金属相を構成する前記金属粒子の粒子径と前記中空粒子の粒子径は同一であることを特徴とする請求項1ないし4のいずれか1項に記載の内燃機関用ピストン。 The piston for an internal combustion engine according to any one of claims 1 to 4, wherein a particle diameter of the metal particles constituting the metal phase and a particle diameter of the hollow particles are the same.
  9.  前記表面層において、前記空孔の体積は、前記空隙の体積よりも大きいことを特徴とする請求項1ないし4のいずれか1項に記載の内燃機関用ピストン。 5. The piston for an internal combustion engine according to claim 1, wherein in the surface layer, the volume of the holes is larger than the volume of the gap.
  10.  前記表面層に対する前記空隙と前記空孔の比率の合計は、40体積%より大きく、63体積%以下であることを特徴とする請求項1ないし4のいずれか1項に記載の内燃機関用ピストン。 5. The piston for an internal combustion engine according to claim 1, wherein the sum of the ratio of the air gap and the air hole to the surface layer is greater than 40% by volume and equal to or less than 63% by volume. .
  11.  前記表面層の体積比熱は、1000kJ/m・K以下であることを特徴とする請求項1ないし4のいずれか1項に記載の内燃機関用ピストン。 5. The internal combustion engine piston according to claim 1, wherein the volumetric heat of the surface layer is 1000 kJ / m 3 · K or less.
  12.  さらに、前記表面層の表面に封止層を有することを特徴とする請求項1ないし4のいずれか1項に記載の内燃機関用ピストン。 The piston for an internal combustion engine according to any one of claims 1 to 4, further comprising a sealing layer on a surface of the surface layer.
  13.  前記封止層は、ポリシラザン、ポリシロキサン、シリカアルコキシド、ポリアミド、ポリアミドイミドまたはポリイミドからなることを特徴とする請求項12記載の内燃機関用ピストン。 The piston for an internal combustion engine according to claim 12, wherein the sealing layer is made of polysilazane, polysiloxane, silica alkoxide, polyamide, polyamideimide, or polyimide.
  14.  ピストンを構成する基材の表面に表面層が設けられた内燃機関用ピストンの製造方法において、
     前記表面層を構成する金属粒子および中空粒子を混合して原料混合粉末を得る原料混合粉末準備工程と、
     前記原料混合粉末を焼結して焼結体を得る焼結工程と、
     前記焼結体と前記基材とを接合する接合工程と、を含むことを特徴とする内燃機関用ピストンの製造方法。
    In the method for manufacturing a piston for an internal combustion engine in which a surface layer is provided on the surface of a base material constituting the piston,
    Raw material mixed powder preparation step for obtaining a raw material mixed powder by mixing metal particles and hollow particles constituting the surface layer,
    A sintering step of sintering the raw material mixed powder to obtain a sintered body;
    A method for manufacturing a piston for an internal combustion engine, comprising: a bonding step of bonding the sintered body and the base material.
  15.  前記焼結工程で得られた前記焼結体を前記基材の上に設置し、前記焼結体と前記基材とを接合することを特徴とする請求項14記載の内燃機関用ピストンの製造方法。 The said sintered compact obtained at the said sintering process is installed on the said base material, The said sintered compact and the said base material are joined, The manufacturing of the piston for internal combustion engines of Claim 14 characterized by the above-mentioned. Method.
  16.  前記原料混合粉末を前記基材の上に設置し、前記基材の表面で前記焼結工程および前記接合工程を同時に実施することを特徴とする請求項14記載の内燃機関用ピストンの製造方法。 The method for manufacturing a piston for an internal combustion engine according to claim 14, wherein the raw material mixed powder is placed on the base material, and the sintering step and the joining step are simultaneously performed on the surface of the base material.
  17.  前記原料混合粉末を加圧成形した成形体を前記基材の上に設置し、前記基材の表面で前記焼結工程および前記接合工程を同時に実施することを特徴とする請求項16記載の内燃機関用ピストンの製造方法。 17. The internal combustion engine according to claim 16, wherein a molded body obtained by pressure-molding the raw material mixed powder is placed on the base material, and the sintering step and the joining step are simultaneously performed on the surface of the base material. Manufacturing method of piston for engine.
  18.  さらに、前記焼結体の表面に封止材を塗布して乾燥する封止層形成工程を有することを特徴とする請求項14記載の内燃機関用ピストンの製造方法。 15. The method for producing a piston for an internal combustion engine according to claim 14, further comprising a sealing layer forming step of applying a sealing material to the surface of the sintered body and drying the sealing material.
  19.  前記封止材は、ポリシラザン、ポリシロキサン、シリカアルコキシド、ポリアミド、ポリアミドイミドまたはポリイミドであることを特徴とする請求項18記載の内燃機関用ピストンの製造方法。 The method for manufacturing a piston for an internal combustion engine according to claim 18, wherein the sealing material is polysilazane, polysiloxane, silica alkoxide, polyamide, polyamideimide, or polyimide.
  20.  前記焼結工程は、パルス通電焼結法によって実施することを特徴とする請求項14記載の内燃機関用ピストンの製造方法。 The method for manufacturing a piston for an internal combustion engine according to claim 14, wherein the sintering step is performed by a pulse current sintering method.
  21.  前記接合工程は、拡散接合、摩擦撹拌接合、レーザー溶接またはアーク溶接によって実施することを特徴とする請求項14記載の内燃機関用ピストンの製造方法。 The method for manufacturing a piston for an internal combustion engine according to claim 14, wherein the joining step is performed by diffusion welding, friction stir welding, laser welding, or arc welding.
  22.  前記焼結工程および前記接合工程をパルス通電加圧焼結によって同時に実施することを特徴とする請求項16または17に記載の内燃機関用ピストンの製造方法。 The method for manufacturing a piston for an internal combustion engine according to claim 16 or 17, wherein the sintering step and the joining step are simultaneously performed by pulsed current pressure sintering.
PCT/JP2017/031163 2016-09-30 2017-08-30 Piston for internal combustion engine and method for manufacturing piston for internal combustion engine WO2018061591A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016194109A JP6760812B2 (en) 2016-09-30 2016-09-30 Manufacturing method of piston for internal combustion engine and piston for internal combustion engine
JP2016-194109 2016-09-30

Publications (1)

Publication Number Publication Date
WO2018061591A1 true WO2018061591A1 (en) 2018-04-05

Family

ID=61762779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/031163 WO2018061591A1 (en) 2016-09-30 2017-08-30 Piston for internal combustion engine and method for manufacturing piston for internal combustion engine

Country Status (2)

Country Link
JP (1) JP6760812B2 (en)
WO (1) WO2018061591A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020012413A (en) * 2018-07-18 2020-01-23 日立オートモティブシステムズ株式会社 Manufacturing method of piston for internal combustion engine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7055066B2 (en) * 2018-06-08 2022-04-15 株式会社アイシン piston
JP2020133492A (en) * 2019-02-20 2020-08-31 日立オートモティブシステムズ株式会社 Piston for internal combustion engine and method for manufacturing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60184950A (en) * 1984-03-02 1985-09-20 Isuzu Motors Ltd Internal-combustion engine having wall face of combustion chamber applied with heat insulating material
JPH04342478A (en) * 1991-05-21 1992-11-27 Isuzu Ceramics Kenkyusho:Kk Ceramic piston head and its production
JP2001335814A (en) * 2000-05-26 2001-12-04 Hiroshi Horikoshi Composite compacting method for superlight, high strength and high cooling piston
JP2012072746A (en) * 2010-09-30 2012-04-12 Mazda Motor Corp Heat-insulating structure
JP2012117482A (en) * 2010-12-02 2012-06-21 Toyota Motor Corp Heat-shielding film and method of forming the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002356753A (en) * 2001-03-30 2002-12-13 Nippon Piston Ring Co Ltd Porous metallic sintered compact for wear resistant member, and wear resistant ring
EP3219827A4 (en) * 2014-11-14 2018-04-11 Hitachi, Ltd. Heat-resistant member provided with heat-shielding coating, and method for manufacturing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60184950A (en) * 1984-03-02 1985-09-20 Isuzu Motors Ltd Internal-combustion engine having wall face of combustion chamber applied with heat insulating material
JPH04342478A (en) * 1991-05-21 1992-11-27 Isuzu Ceramics Kenkyusho:Kk Ceramic piston head and its production
JP2001335814A (en) * 2000-05-26 2001-12-04 Hiroshi Horikoshi Composite compacting method for superlight, high strength and high cooling piston
JP2012072746A (en) * 2010-09-30 2012-04-12 Mazda Motor Corp Heat-insulating structure
JP2012117482A (en) * 2010-12-02 2012-06-21 Toyota Motor Corp Heat-shielding film and method of forming the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020012413A (en) * 2018-07-18 2020-01-23 日立オートモティブシステムズ株式会社 Manufacturing method of piston for internal combustion engine
WO2020017192A1 (en) * 2018-07-18 2020-01-23 日立オートモティブシステムズ株式会社 Method for manufacturing internal-combustion engine piston

Also Published As

Publication number Publication date
JP6760812B2 (en) 2020-09-23
JP2018053879A (en) 2018-04-05

Similar Documents

Publication Publication Date Title
WO2018061591A1 (en) Piston for internal combustion engine and method for manufacturing piston for internal combustion engine
US8813734B2 (en) Heat-insulating structure
JP6356823B2 (en) Heat-resistant member with thermal barrier coating and method for manufacturing the same
WO2010116679A1 (en) Process for producing porous sintered aluminum, and porous sintered aluminum
JP6178303B2 (en) Internal combustion engine
JP6694301B2 (en) Joined body and method for manufacturing joined body
JP5470278B2 (en) Sealing mechanism for high temperature fuel cell stacks
CN105473521B (en) Thermal isolation film and the method for forming thermal isolation film
JP2008267158A (en) Piston for internal combustion engine and method for manufacturing the same
JP5013756B2 (en) Method for manufacturing ceramic laminate
WO2018199024A1 (en) Internal-combustion engine piston, and method for manufacturing internal-combustion engine piston
US20180369954A1 (en) Piston for internal combustion engine and method of manufacturing piston for internal combustion engine
KR101323097B1 (en) Thermoelectric device with copper electrode and manufacturing method of the same
JPS60182341A (en) Internal-combustion engine covering combustion chamber wall surface with porous heat insulating material
WO2019187273A1 (en) Internal combustion engine piston and manufacturing method for internal combustion engine piston
WO2020170635A1 (en) Internal combustion engine piston, and method for manufacturing same
JP2013129899A (en) Method for manufacturing heat insulating member, and internal combustion engine manufactured therewith
JP2001240902A (en) Low thermal conductivity aluminum sintered material, its producing method and piston top material
JP2021070607A (en) Method for producing ceramic sintered compact
WO2018029903A1 (en) Internal combustion engine piston and method for manufacturing internal combustion engine piston
JP4883858B2 (en) Bottomed cylindrical body and sensor
JP2000233979A (en) Silicon nitride sintered body and its production
WO2018198898A1 (en) Piston
JP2018021452A (en) Heat insulation film
JP2017179417A (en) Aluminum sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17855549

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17855549

Country of ref document: EP

Kind code of ref document: A1