WO2018199024A1 - Internal-combustion engine piston, and method for manufacturing internal-combustion engine piston - Google Patents

Internal-combustion engine piston, and method for manufacturing internal-combustion engine piston Download PDF

Info

Publication number
WO2018199024A1
WO2018199024A1 PCT/JP2018/016463 JP2018016463W WO2018199024A1 WO 2018199024 A1 WO2018199024 A1 WO 2018199024A1 JP 2018016463 W JP2018016463 W JP 2018016463W WO 2018199024 A1 WO2018199024 A1 WO 2018199024A1
Authority
WO
WIPO (PCT)
Prior art keywords
piston
combustion engine
internal combustion
engine according
layer
Prior art date
Application number
PCT/JP2018/016463
Other languages
French (fr)
Japanese (ja)
Inventor
一等 杉本
直也 沖崎
和也 野々村
助川 義寛
高橋 智一
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2018199024A1 publication Critical patent/WO2018199024A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/10Pistons  having surface coverings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/10Pistons  having surface coverings
    • F02F3/12Pistons  having surface coverings on piston heads
    • F02F3/14Pistons  having surface coverings on piston heads within combustion chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J1/00Pistons; Trunk pistons; Plungers
    • F16J1/01Pistons; Trunk pistons; Plungers characterised by the use of particular materials

Definitions

  • the present invention relates to a piston for an internal combustion engine and a method for manufacturing a piston for an internal combustion engine.
  • Patent Document 1 a heat insulating layer is provided on the surface of a member facing the engine combustion chamber, and the heat insulating layer is made of a hollow particle made of an inorganic oxide, a filler material, and a vitreous mainly composed of silicic acid.
  • a structure is disclosed in which the vitreous material is in a non-finished state, covering the hollow particles and the filler material, and bonding.
  • the hollow particles can improve the heat insulating performance of the heat insulating layer, prevent the penetration of fuel into the heat insulating layer, and maintain high heat insulating properties over a long period of time. .
  • the metal and ceramics (glass) which comprise the conventional heat insulation layer have a large volumetric specific heat
  • the base temperature of the base material constituting the engine the temperature of the base material when the gas temperature in the combustion chamber is the lowest
  • the thermal responsiveness (followability) of the temperature of the combustion chamber wall surface with respect to the gas temperature decreases.
  • the thermal response is low, becomes a cause of increase in knocking and NO x, the fuel combustion efficiency is lowered. Therefore, the heat insulating layer having a large volume specific heat is not provided on the entire surface of the internal combustion engine member constituting a part of the wall surface of the combustion chamber, and needs to be used in a limited range.
  • a heat insulating layer that can be used in a larger area is required on the combustion chamber wall surface.
  • a material constituting the heat insulating layer in addition to low thermal conductivity, low What has a volume specific heat is calculated
  • Patent Document 2 discloses a heat insulating film composed of an anodized film having a porous structure including a large number of pores, and a plurality of particles enclosed in the pores of the heat insulating film, and adjacent particles.
  • An internal combustion engine is disclosed that includes a plurality of encapsulated particles that are encapsulated so that a gap between them becomes a gap of a preset size.
  • Patent Document 2 describes that the heat insulating film uses a heat insulating material having a lower thermal conductivity and a lower heat capacity per unit volume than the base material, and a heat insulating material having a hollow structure is used as the material. It is described that it is suitable.
  • the heat insulating layer has both low thermal conductivity and low volume specific heat.
  • Patent Document 1 and Patent Document 2 described above all achieve sufficient levels for all items of porous porosity, durability, adhesion to a substrate, low thermal conductivity, and low volume specific heat. It was not a thing.
  • the present invention provides a piston for an internal combustion engine having a porous structure capable of ensuring adhesion and durability with a substrate and realizing low thermal conductivity and low volume specific heat. It aims at providing the manufacturing method of a piston.
  • an insert having a base material and a sintered layer provided on the base material, and having a lower melting point than the piston base material between the sintered layer and the base material. It was set as the structure which has the osmosis
  • the method for manufacturing a piston for an internal combustion engine according to the present invention includes a method of forming a permeation diffusion layer by using a metal having a melting point lower than that of the base material as an insert material, and the insert material permeates the pores of the sintered body. did.
  • the manufacturing method of the piston for internal combustion engines which can ensure the adhesiveness and durability with a base material, and can implement
  • FIG. (A) is a perspective view which shows typically an example of the piston which concerns on this invention
  • (b) is the sectional view on the AA 'line of (a).
  • (A) shows the enlarged view of the cross section of the crown surface 101 of the piston 100 which concerns on this invention
  • (b) is an enlarged view of the metal particle 32 which comprises the metal layer 30 of Fig.2 (a).
  • 6 is a cross-sectional view schematically showing an example of a sintered layer constituting a piston according to Example 2.
  • FIG. (A) is sectional drawing which shows the 1st example of the piston concerning this invention
  • (b) is sectional drawing which shows the 2nd example of the piston concerning this invention
  • (c) is 3rd of the piston concerning this invention.
  • FIG. 6 is a cross-sectional view schematically showing an example of a sintered layer constituting a piston according to Example 3.
  • FIG. It is a flowchart which shows an example of the manufacturing method of the sintered layer 2 used for the piston which concerns on this invention. It is a flowchart which shows an example of joining with the base material 1 and the sintered layer 2 of the piston which concerns on this invention.
  • FIG. 10 is a flowchart showing another example of the method for manufacturing the piston according to the second embodiment. It is a figure which shows an example of a pulse electricity supply apparatus typically.
  • (A) is a cross-sectional SEM observation photograph of a hollow particle according to Experimental Example 1
  • (b) is a cross-sectional SEM observation photograph of the sintered layer 2 according to Experimental Example 1
  • (c) is an enlarged photograph of (b), (d).
  • (A) is a graph showing the relationship between the output of laser light and time in the thermal response evaluation test of the experimental example
  • FIG. 10 (b) shows the relationship between the surface temperature of the test piece and time in the thermal response evaluation test of the experimental example. It is a graph to show.
  • FIG. 1A is a perspective view schematically showing an example of a piston according to the present invention
  • FIG. 1B is a cross-sectional view taken along the line AA ′ of FIG.
  • the piston 100 for an internal combustion engine according to the present invention (hereinafter also simply referred to as “piston”) has a crown surface 101 on the upper surface and a piston receiving portion 102 on the side surface.
  • the crown surface 101 is a part which becomes a part of the inner wall of the combustion chamber, and is a part where a heat insulating layer is provided in order to improve combustion efficiency.
  • a “surface layer” having both low thermal conductivity and low volume specific heat characteristics is provided on the crown surface (surface) of the piston 100.
  • this surface layer will be described in detail.
  • FIG. 2A shows an enlarged view of a cross section of the crown surface 101 of the piston 100 according to the present invention.
  • the crown surface 101 of the piston 100 according to the present invention includes a piston base material 1 (hereinafter simply referred to as “base material”) and a firing provided on the surface of the base material 1. It has a tie layer 2.
  • the sintered layer 2 includes a metal layer 30 formed by bonding a plurality of metal particles and a void surrounded by a portion other than the bonded portion of the metal particles (in other words, a void formed between the metal particles). ) 31.
  • the metal layer 30 is composed of a sintered metal in which metal particles are bonded by sintering.
  • the metal layer 30 and the gap 31 are collectively referred to as a parent phase 3.
  • FIG. 2 (b) is an enlarged view of the metal particles 32 constituting the metal layer 30 of FIG. 2 (a).
  • FIG. 2B it is preferable that some of the metal particles 32 are bonded together by sintering and have a neck 33.
  • the space between the metal particles 32 can be secured by the neck 33 and the gap 31 can be formed.
  • the ratio of the voids 31 can be controlled by controlling the sintering density. A method for producing such a sintered metal will be described later.
  • the permeation diffusion layer 4 is a layer in which an insert material having a melting point lower than that of the base material is dissolved in a part of one side of the matrix 3 and is permeated and diffused, and a part of the void 31 provided in the original sintered body. Is buried by absorbing the insert material.
  • FIG. 2A shows a structure in which the parent phase 3 exists up to the BB part.
  • permeation diffusion layer 4 contain the same metal as each main component.
  • the base material 1 is preferably an aluminum (Al) alloy
  • the permeation diffusion layer 4 is preferably an Al alloy.
  • the permeation diffusion layer 4 and the sintered layer 2 preferably contain the same metal as their main component.
  • the metal layer 30 that constitutes the main part of the permeation diffusion layer 4 and the sintered layer 2 With the same metal, a solid phase bonded portion can be formed at the interface between the permeation diffusion layer 4 and the sintered layer 2 having a porous structure. It is possible to provide the sintered layer 2 which is formed to ensure adhesion and is excellent in durability.
  • the volume specific heat of the sintered layer 2 is preferably 1000 kJ / m 3 ⁇ K or less.
  • the thermal conductivity is preferably 1 W / mK or less.
  • the piston 100 there is no particular limitation as long as the above-described sintered layer 2 is formed on the crown surface 101 of the piston 100.
  • the example of the location which forms the sintered layer 2 in the piston 100 is shown below.
  • FIG. 4A is a cross-sectional view showing a first example of the piston according to the present invention, in which a concave portion is provided on the crown surface 101 of the piston 100, and the sintered layer 2 is arranged in the concave portion.
  • FIG. 4B is a sectional view showing a second example of the piston according to the present invention, in which the sintered layer 2 is disposed on the entire crown surface 101.
  • FIG. 4C is a cross-sectional view showing a third example of the piston according to the present invention, in which a recess is provided along the shape of the crown surface 101, and the sintered layer 2 is disposed in the recess 101. is there.
  • the place where the sintered layer 2 is formed is not particularly limited, and as shown in FIG. It may be formed, may be formed on the entire surface of the crown surface 101 as shown in FIG. 4B, and has a thickness along the surface shape of the sintered layer 2 on the crown surface 101 as shown in FIG. You may form so that may become constant.
  • FIG. 6A is a flowchart showing an example of a method for producing the sintered layer 2 used in the piston according to the present invention
  • FIG. 6B shows the substrate 1 and the sintered layer 2 of the piston according to the present invention. It is a flowchart which shows an example of joining.
  • the metal particles 32 as the raw material of the metal layer 30 and the powder of the hollow particles 5 are mixed (S10: metal particle powder (raw material mixed powder) preparation step).
  • S10 metal particle powder (raw material mixed powder) preparation step
  • S11 sintered
  • S12 sintered body
  • the method for sintering the mixed powder is not particularly limited as long as it is a method capable of sintering metal particles so that voids 31 are formed in the mother phase 3, but pulse current sintering, hot press sintering, Isotropic pressure sintering and cold isotropic pressure sintering are preferred. Among these, it is preferable to use pressure sintering capable of controlling the load and temperature, and the pulse current sintering method is preferable.
  • Pulse electric current sintering Pulse Electric Current Sintering
  • spark Plasma Sintering spark plasma sintering
  • the reaction on the powder surface is activated, so that sintering in an environment with a relatively small load is possible.
  • the parent phase 3 It is possible to control the ratio of the voids 31 of the above.
  • FIG. 6B a piston base material is produced by casting (S13).
  • a rough material of a piston base material made of an Al alloy is cast by a conventional method.
  • machining laand part outer diameter cutting, pin hole machining, etc.
  • an insert material having a low melting point is placed on the surface of the substrate (S14a).
  • the sintered body produced in the process shown in FIG. 6A is placed in contact with the surface of the substrate (S15).
  • the base material and the sintered body are joined (S16).
  • a joining method a technique is preferred in which the insert material is heated and melted, diffused between the sintered body and the base material, and in particular, permeated and diffused into the voids of the sintered body.
  • the heating method include, but are not limited to, heat treatment, friction stir welding, laser welding, arc welding, and the like.
  • a heat treatment step is performed (S17). This heat treatment is intended to remove strain generated in the joining process and make the strength uniform. For example, solution aging treatment or artificial aging treatment is performed. After the heat treatment step, finishing machining is performed as a secondary machining step (S18), and the product piston is completed (S19).
  • Example 2 will be described.
  • This embodiment is different from the first embodiment in that the hollow particles 5 are arranged inside the matrix phase 3.
  • the hollow particles 5 are contained in the voids 31 of the matrix 3 and the voids 31 of the matrix 3 and the voids 50 of the hollow particles 5 are combined, whereby the porosity of the sintered layer 2 as a whole.
  • the strength of the sintered layer 2 was maintained while ensuring sufficient.
  • FIG. 3 is a cross-sectional view schematically showing a case where the hollow particles 5 are included in the parent phase 3 as described above, and the hollow particles 5 are included in the parent phase 3.
  • the hollow particles 5 are particles having pores (fine pores) 50 inside.
  • a combination of the voids 31 included in the matrix 3 and the voids 50 included in the hollow particles 5 is a volume ratio of voids (hereinafter referred to as “porosity”) occupying the sintered layer 2.
  • the porosity of the entire sintered layer 2 is increased to 50% by volume by combining both the void 31 of the matrix 3 and the void 50 of the hollow particle 5.
  • hollow particles 5 are also included in the permeation diffusion layer 4. If the hole 50 of the hollow particle 5 is a closed hole, an insert material does not enter and the hole is maintained as it is. Further, even if the hole 50 is an open hole, the insert material is less likely to enter compared to the gap 31, and the hole remains. As a result, the permeation diffusion layer 4 has a structure having pores and a structure having a lower porosity than the sintered layer 2.
  • various porous oxides such as silica (SiO 2 ), alumina (Al 2 O 3 ), and zirconia (ZrO 2 ) can be used, but in order to ensure the heat insulating performance of the sintered layer 2. It is preferable to use a material having a low thermal conductivity, and it is particularly preferable to use silica.
  • Silica has a relatively low thermal conductivity among ceramics and is a material having a relatively high strength even when hollow.
  • the hollow particles mainly composed of silica include ceramic beads, silica airgel, porous glass, glass beads, volcanic white sand, diatomaceous earth, and processed powders thereof, but are not limited thereto.
  • the particle diameter of the metal particles constituting the metal layer 30 and the particle diameter of the hollow particles 5 are preferably substantially the same.
  • the particle diameter of the hollow particles 5 is larger than the particle diameter of the metal particles 32, the bonds between the metal particles 32 are hardly formed, and the strength of the metal layer 30 that is a sintered body may be reduced.
  • the particle diameter of the hollow particles 5 is smaller than the particle diameter of the metal particles 32, there is a possibility that the formation of the voids 31 between the metal particles 32 is hindered and a high porosity cannot be realized. Therefore, in this embodiment, the particle diameter of the metal particles 32 and the particle diameter of the hollow particles 5 are substantially the same.
  • FIG.6 (c) is a flowchart which shows another example of the manufacturing method of the piston which concerns on a present Example.
  • the insert material or the mixed powder may be powdered and placed on the surface of the substrate 1, but the powder is preliminarily formed by applying pressure to a molded body having a predetermined shape, for example, powder.
  • the green compact may be pressed into a biscuit shape and placed on the surface of the base material 1 (piston crown surface).
  • the pulse current sintering method was used as in Example 1.
  • the reaction on the powder surface is activated, it is possible to sinter in an environment where the load is relatively small, and the shape of the hollow particles can be contained without breaking.
  • a metal layer (sintered metal) 30 in which the metal particles are connected to each other is formed, and the void 31 is formed in a portion other than the joint portion between the metal particles.
  • the hollow particles 5 can be included without breaking the shape.
  • the porosity of the sintered layer 2 is not particularly limited but is preferably 50% or more.
  • Example 3 will be described.
  • This embodiment is different from the second embodiment in that a sealing layer 51 made of a sealing material is provided on the surface of the sintered layer 2.
  • FIG. 5 is a cross-sectional view schematically showing an example of a sintered layer constituting the piston according to the present embodiment.
  • the gap 31 is sealed on the surface of the sintered layer 2 with a sealing layer 51 made of a sealing material, and the fuel soaks into the back of the sintered layer 2 (base 1 side). It is preferable to prevent this.
  • the sealing layer 51 is provided on the surface of the sintered layer 2
  • the sealing material is not only the surface of the sintered layer 2 (portion indicated by 52 in FIG. 5), but also the gap 31 (53 in FIG. 5) near the surface.
  • the sintered layer 2 secures the porosity of the entire sintered layer 2 with the voids 31 of the parent phase 3 and the pores 50 of the hollow particles 5. Since the sealing material does not enter the pores 50 inside the particles 5, even if a part of the void 31 of the mother phase 3 is sealed by the sealing material, the entire sintered layer 2 is sufficient. The porosity can be ensured.
  • sealing material examples include, but are not limited to, polysilazane, polysiloxane, silica alkoxide, polyamide, polyamideimide, polyimide, and various resins.
  • a piston having an excellent thermal response characteristic and having a structure that can withstand long-term use, and assists in combustion of fuel to contribute to improvement of fuel consumption of the internal combustion engine. It also contributes to suppressing deposits and smoke emissions from the internal combustion engine.
  • the sealing material forming step is the step of joining the sintered body and the base material (S16 or S16 ′) in the steps of FIGS. 6B and 6C described in the first and second embodiments and the heat treatment step. (S17) or the secondary machining process (S18) is performed between the processes.
  • the sealing layer 51 may be formed before the heat treatment step (S17), may be formed before the secondary machining step (S18), or the secondary machining step (S18). It may be formed later.
  • a heat treatment process may be further added to fix the applied sealing material on the piston surface. Further, the heat treatment step (S17) may also serve as drying of the sealing material after application.
  • the sealing layer 51 for example, when polysilazane is used as a sealing material, a coating solution containing a polysilazane precursor is applied to the surface of the sintered body, and dried by heating at 400 to 500 ° C. for 1 to 2 hours. By doing so, it can be formed.
  • a base material was prepared as if it were a piston crown surface, and test pieces having a surface layer in which the ratio of hollow particles was changed on the surface thereof were prepared (Experimental Examples 1-3, Reference Examples 1 and 2).
  • the obtained test piece was evaluated for its sintered state, porosity and thermal responsiveness.
  • a disk-shaped test piece (diameter: 75 mm, thickness: 10 mm) was prepared using an Al alloy (JIS (Japan Industrial Standards) 4032-T6) close to the actual piston material. A recess having a thickness of 5 mm was formed.
  • JIS Japanese Industrial Standards
  • a raw material mixed powder constituting the sintered layer 2 (a raw material powder for the surface layer)
  • a raw material mixed powder prepared by mixing Al particles as the metal particles 32 constituting the metal layer 30 and SiO 2 particles as the hollow particles 5 was prepared. All particles were prepared with an average particle size of 30 ⁇ m.
  • This raw material mixed powder was sintered by a pulse current sintering method to produce a sintered body.
  • FIG. 7 is a diagram schematically showing an example of the pulse energization device used in the examples.
  • the above-mentioned mixed powder sintered layer raw material powder 61
  • the carbon punch 63 is driven in the direction of the arrow in FIG.
  • a pulse energization was applied to the mixed powder through 67 and the electrodes (upper electrode 65 and lower electrode 66), and the mixture was heated and sintered.
  • the temperature, the load and the indentation amount of the carbon punch 63 were monitored.
  • the obtained sintered body was processed so as to have a shape with a diameter of 30 mm and a thickness of 3 mm, and placed in the recess of the aluminum alloy test piece described above.
  • the sintered body and the aluminum alloy test piece were fixed using a restraining jig, and both were diffusion-bonded by heating in a heat treatment furnace.
  • Reference Example 1 uses pure aluminum having a melting point lower than that of a sintered body as an insert material in joining of sintered layers according to the present invention.
  • Reference Example 2 is a test piece made of only an aluminum base material having no sintered layer.
  • Table 1 the porosity P of the sintered layer and the porosity Q of the permeation diffusion layer were calculated from the following formulas (1) and (2), respectively.
  • D m is the measured density (g / cm 3 ), and was calculated by measuring the volume and weight from a rectangular parallelepiped piece taken from the test piece.
  • D i is the ideal density of the bulk material does not contain pores (g / cm 3), was determined in consideration of the content ratio of the metal particles (Al) hollow particles (SiO 2).
  • is the volume ratio of the remaining portion of the voids of the sintered body, and ⁇ is the portion of the void portion of the hollow particle remaining. Volume ratio.
  • X is a volume ratio indicating the ratio of voids of the sintered body in the pores of the original sintered layer
  • 1-X is a volume ratio indicating the ratio of voids of the hollow particles.
  • hole in a hollow particle can be measured with the true density meter using helium gas, The average ratio of the void
  • FIG. 8A is a cross-sectional SEM observation photograph of the hollow particles according to Experimental Example 1
  • FIG. 8B is a cross-sectional SEM observation photograph of the sintered layer 2 according to Experimental Example 1
  • FIG. FIG. 8B is an enlarged photograph
  • FIG. 8D is an optical micrograph observing a cross section of the surface layer portion including the sintered layer 2 and the permeation diffusion layer.
  • the white portion is Al
  • the gray portion is SiO 2
  • the black portion is voids and holes.
  • FIGS. 8B and 8C it can be seen that in the sintered layer, the hollow silica 72 is contained in the void 73 formed between the Al particles 71 while maintaining its shape.
  • the sintered bodies used in Experimental Examples 1 to 3 and Reference Example 1 were made of a porous sintered body using a raw material containing 50% by volume of hollow silica so that the void ratio during sintering was 32% by volume. .
  • the ratio x of voids in the sintered layer was 0.59.
  • the bonding temperature was 470 ° C. as the temperature at which the aluminum base material was not softened.
  • Example 1 In Examples 1 to 3 in which an aluminum alloy powder having a melting point lower than that of aluminum was used as an insert material, a good bonding state could be secured by forming a permeation diffusion layer, whereas a reference using pure aluminum powder as an insert material In Example 1, the insert material was fixed in a sintered state without melting, and the permeation diffusion layer was not formed.
  • FIG. 9 is a schematic diagram of an apparatus used in a thermal responsiveness evaluation test of an experimental example. As shown in FIG. 9, the evaluation apparatus irradiates a test piece 81 installed in a vacuum chamber 82 with a laser beam using a laser heat source 84, and determines the surface temperature of the test piece 81 at that time using an infrared camera. 83 is used for measurement.
  • FIG. 10A is a graph showing the relationship between laser light output and time in the thermal response evaluation test of the experimental example
  • FIG. 10B is a graph showing the surface temperature and time of the test piece in the thermal response evaluation test of the experimental example. It is a graph which shows a relationship.
  • FIG. 10B shows the surface temperature at the time of laser irradiation in FIG.
  • the peak temperature recorded at the first laser irradiation is T 1
  • the peak temperature recorded at the third laser irradiation is T 3 .
  • Laser irradiation was carried out by applying a black body paint for absorbing laser to the test piece.
  • the thermal response evaluation test to simulate the First engine environment, as the peak temperature T 1 of the aluminum test piece of Reference Example 2 provided with no surface layer, the 200 ° C. approximately close to the actual engine environmental, Laser irradiation conditions were selected. Specifically, as shown in FIG. 10 (a), an 800W laser was irradiated for 1 second and naturally cooled for 5 seconds was set as one set, and a total of 3 sets of irradiation were performed. Since the upper limit of the temperature that can be quantitatively evaluated by the infrared camera 83 is 500 ° C., when it exceeds 500 ° C., it is described as “over 500 ° C.”. In order to instantly burn the fuel at the piston crown surface, it is necessary to heat to about 400 ° C.
  • a piston having a surface layer having the same configuration as Experimental Example 1 was manufactured by the method shown in FIGS. 6 (a) and 6 (b).
  • the sintered body was produced in the same manner as in Example 1 by the pulse current sintering method according to the manufacturing process of FIG. 6A, and was processed into a diameter of 70 mm and a thickness of 3 mm.
  • primary machining S14 is applied to the aluminum alloy piston rough material (JIS AC8A) produced in the piston casting process (S13). A recess having a diameter of 70 mm was formed.
  • a powder that serves as an insert material is laid in the recess, a pre-sintered sintered body is placed in the recess of the piston crown surface, and the sintered body and the piston base material are sufficiently brought into contact with a restraining jig (S15), and a heat treatment furnace Was joined (S16). Thereafter, solution treatment and artificial aging treatment (S17) were performed, and a piston having a predetermined shape was fabricated by processing into a finished shape by secondary machining (S18) (S19). This piston is referred to as Experimental Example 4.
  • the sealing layer formation process was implemented with respect to the piston surface after the secondary machining (S18) with respect to the piston produced by the said method. Specifically, after secondary machining (S18), polyamide imide was applied to the piston crown surface and subjected to a dry heat treatment so that voids near the surface were sealed. However, the pores originally contained in the hollow silica have a closed structure and remain as pores.
  • This piston is referred to as Experimental Example 5.
  • Example 7 in which the sealing layer is provided, higher combustion efficiency can be realized by preventing the fuel from entering the voids in the surface layer. It was confirmed that the sealing layer contributes to fuel efficiency.
  • a piston 100 for an internal combustion engine according to the present invention includes a base material 1 and a sintered layer 2 provided on the base material 1, and the base material 1 is interposed between the sintered layer 2 and the base material 1.
  • a permeation diffusion layer was formed on the sintered body side with an insert material having a melting point lower than that of (1).
  • the metal that is the main component of the permeation diffusion layer 4 and the sintered body 2 is aluminum, and the main component of the base material is also aluminum.
  • the base layer 1, the permeation diffusion layer 4 and the metal layer 30 constituting the main part of the sintered layer 2 can be composed of the same metal, and the base layer 1 and the permeation diffusion having a porous structure. It is possible to form a solid phase bonded portion at the interface between the layer 4 and the sintered layer 2 to ensure adhesion, and to make the sintered layer 2 excellent in durability.
  • the piston 100 for an internal combustion engine according to the present invention includes hollow particles 5 in the sintered body 2.
  • the strength of the sintered layer 2 can be increased while ensuring the porosity of the entire sintered layer 2 by combining the voids 31 in the matrix 3 and the voids 50 of the hollow particles 5. It becomes possible to keep.
  • the sintered body 2 preferably has a porosity of 50% or more.
  • the insert material includes at least an aluminum alloy.
  • the aluminum alloy contained in the insert material is an Al—Mg alloy.
  • the Al—Mg alloy contained in the insert material is Al 12 Mg 17 .
  • the thickness of the permeation diffusion layer is at least twice the average particle diameter of the metal particles contained in the sintered body.
  • the porosity of the permeation diffusion layer is lower than that of the sintered body.
  • the porosity of the permeation diffusion layer may be inclined.
  • the volume specific heat of the sintered layer is 1000 kJ / m 3 ⁇ K or less, and the thermal conductivity is 1 W / mK or less.
  • the thickness of the sintered layer is preferably 50 ⁇ m or more and 100 ⁇ m or less.
  • a metal having a melting point lower than that of the base material is used as the insert material, and the insert material penetrates into the pores of the sintered body to form the permeation diffusion layer. It is characterized by.
  • the method for manufacturing a piston for an internal combustion engine uses a pulse current joining method when the insert material is melted and joined.
  • the method for manufacturing a piston for an internal combustion engine according to the present invention may use an external heat source when the insert material is melted and joined.
  • the insert material is powder.
  • the powder of the insert material contains an Al alloy.
  • Al contained in the insert material is an Al—Mg alloy.
  • the Al—Mg alloy contained in the insert material is Al 12 Mg 17 .
  • the insert material is a sheet-like material.
  • the sheet material of the insert material contains an Al alloy.
  • the piston for an internal combustion engine according to the present invention can ensure durability and adhesion to the base material, and can realize low thermal conductivity and low volume specific heat. It was done.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • DESCRIPTION OF SYMBOLS 1 Base material, 2 ... Sintered layer, 3 ... Mother phase, 30 ... Metal layer, 31 ... Void, 32 ... Metal particle, 33 ... Neck, 4 ... Penetration diffusion layer, 5 ... Hollow particle, 50 ... Hole, DESCRIPTION OF SYMBOLS 51 ... Sealing layer, 52 ... Sealing material on the surface of a sintered layer, 53 ... Sealing material which penetrate
  • Pulse power supply 71 ... Al particle, 72 ... Hollow silica, 73 ... Air gap, 81 ... Test piece, 82 ... Vacuum chamber, 83 ... Infrared camera, 84 ... Laser heat source, 100, 100a, 100b, 100c ... piston, 101 ... piston crown surface, 102 ... piston pin receiving part

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)

Abstract

Provided is an internal-combustion engine piston having a porous structure with which both adhesion to a base material and durability can be maintained, and with which low thermal conductivity and low volumetric specific heat can be achieved. Also provided is a method for manufacturing an internal-combustion engine piston. Provided is an internal-combustion engine piston characterized by comprising a base material (1) and a sintered layer (2) provided on a surface of the base material, wherein a penetration diffusion layer (4) formed by means of an insert material having a lower melting point than the base material is provided between the sintered layer and the base material. Also provided is a method for manufacturing an internal-combustion engine piston, characterized in that: a stacked body is fabricated by stacking, in this order, a base material, an insert material comprising a metal having a lower melting point than the base material, and metal powder or a metal sintered body; and a penetration diffusion layer is formed by heating the stacked body to melt the insert material, and causing the insert material to penetrate into the sintered body formed from the metal powder, or into pores in the sintered body.

Description

内燃機関用ピストンおよび内燃機関用ピストンの製造方法Piston for internal combustion engine and method for manufacturing piston for internal combustion engine
 本発明は内燃機関用のピストンおよび内燃機関用ピストンの製造方法に関する。 The present invention relates to a piston for an internal combustion engine and a method for manufacturing a piston for an internal combustion engine.
 内燃機関の低燃費性能へ寄与する熱効率を高めるために、従来、燃焼室内部の壁面に断熱層を設ける技術が知られており、様々な断熱層の構成が提案されている。断熱層が設けられた内燃機関用の部材として、例えば特許文献1に記載されたものが知られている。この特許文献1によれば、エンジン燃焼室に臨む部材表面に断熱層が設けられており、該断熱層は、無機酸化物からなる中空粒子と、フィラー材と、ケイ酸を主体とするガラス質材とを含み、ガラス質材は非末状態であり、中空粒子とフィラー材とを覆うと共に結合している構成が開示されている。特許文献1によれば、中空粒子によって断熱層の断熱性能を向上し、かつ、断熱層内への燃料の浸み込みを防止でき、長期にわたって高い断熱性を維持することができるとされている。 In order to increase the thermal efficiency that contributes to the low fuel consumption performance of an internal combustion engine, a technique for providing a heat insulating layer on the wall surface in the combustion chamber is conventionally known, and various configurations of the heat insulating layer have been proposed. As a member for an internal combustion engine provided with a heat insulating layer, for example, one described in Patent Document 1 is known. According to Patent Document 1, a heat insulating layer is provided on the surface of a member facing the engine combustion chamber, and the heat insulating layer is made of a hollow particle made of an inorganic oxide, a filler material, and a vitreous mainly composed of silicic acid. In other words, a structure is disclosed in which the vitreous material is in a non-finished state, covering the hollow particles and the filler material, and bonding. According to Patent Document 1, it is said that the hollow particles can improve the heat insulating performance of the heat insulating layer, prevent the penetration of fuel into the heat insulating layer, and maintain high heat insulating properties over a long period of time. .
 ところで、従来の断熱層を構成する金属およびセラミックス(ガラス)などは、体積比熱が大きいことから、エンジンを構成する基材のベース温度(燃焼室内部のガス温度が最も低いときの基材の温度)を上昇させやすく、ガス温度に対する燃焼室壁面の温度の熱応答性(追従性)が低下する。この熱応答性が低いと、ノッキングやNOの増大を引き起こす原因となり、燃料の燃焼効率が低下する。そのため、体積比熱が大きい断熱層は、燃焼室壁面の一部を構成する内燃機関の部材全面へ設けず、範囲を限定して使用する必要がある。しかしながら、内燃機関の高い熱効率を実現するためには、燃焼室壁面において、より大きい面積で使用できる断熱層が必要であり、そのためには断熱層を構成する材料として、低熱伝導性に加えて低体積比熱を有するものが求められている。 By the way, since the metal and ceramics (glass) which comprise the conventional heat insulation layer have a large volumetric specific heat, the base temperature of the base material constituting the engine (the temperature of the base material when the gas temperature in the combustion chamber is the lowest) ) And the thermal responsiveness (followability) of the temperature of the combustion chamber wall surface with respect to the gas temperature decreases. When the thermal response is low, becomes a cause of increase in knocking and NO x, the fuel combustion efficiency is lowered. Therefore, the heat insulating layer having a large volume specific heat is not provided on the entire surface of the internal combustion engine member constituting a part of the wall surface of the combustion chamber, and needs to be used in a limited range. However, in order to realize high thermal efficiency of the internal combustion engine, a heat insulating layer that can be used in a larger area is required on the combustion chamber wall surface. For this purpose, as a material constituting the heat insulating layer, in addition to low thermal conductivity, low What has a volume specific heat is calculated | required.
 低熱伝導および低体積比熱を両立するために、固体材料に気孔を含ませた構造が好適であると考えられる。例えば、特許文献2には、多数の空孔を含むポーラス構造を有する陽極酸化膜から構成される断熱膜と、断熱膜の空孔の内部に封入される複数の粒子であって、隣接する粒子の間の隙間が予め設定される大きさの空隙となるように封入される複数の封入粒子を備える内燃機関が開示されている。 In order to achieve both low heat conduction and low volume specific heat, a structure in which pores are included in a solid material is considered suitable. For example, Patent Document 2 discloses a heat insulating film composed of an anodized film having a porous structure including a large number of pores, and a plurality of particles enclosed in the pores of the heat insulating film, and adjacent particles. An internal combustion engine is disclosed that includes a plurality of encapsulated particles that are encapsulated so that a gap between them becomes a gap of a preset size.
 また、特許文献2には、断熱膜は母材よりも低い熱伝導率および低い単位体積当たりの熱容量を有する断熱材を使用することが記載されており、その素材として中空構造を持つ断熱材が好適であることが記載されている。 Patent Document 2 describes that the heat insulating film uses a heat insulating material having a lower thermal conductivity and a lower heat capacity per unit volume than the base material, and a heat insulating material having a hollow structure is used as the material. It is described that it is suitable.
特開2015-68302号公報Japanese Patent Laying-Open No. 2015-68302 特開2012-47110号公報JP 2012-47110 A
 上述したように、内燃機関の熱効率を高めるために、断熱層は低熱伝導性および低体積比熱を両立することが望まれ、そのために気孔率の高いポーラス構造を有する表面層を設けることが重要である。さらに、耐久性および基材(断熱層が設けられる内燃機関の部材)との密着性を十分に確保することも重要である。しかし、上述した特許文献1および特許文献2は、いずれも、ポーラスの気孔率、耐久性、基材との密着性、低熱伝導性および低体積比熱のすべての項目について、十分なレベルを達成するものではなかった。 As described above, in order to increase the thermal efficiency of the internal combustion engine, it is desired that the heat insulating layer has both low thermal conductivity and low volume specific heat. For this purpose, it is important to provide a surface layer having a porous structure with a high porosity. is there. It is also important to ensure sufficient durability and adhesion to the base material (member of the internal combustion engine provided with the heat insulating layer). However, Patent Document 1 and Patent Document 2 described above all achieve sufficient levels for all items of porous porosity, durability, adhesion to a substrate, low thermal conductivity, and low volume specific heat. It was not a thing.
 本発明は、上記事情に鑑み、基材との密着性および耐久性を確保し、かつ、低熱伝導性および低体積比熱を実現することが可能なポーラス構造を有する内燃機関用ピストンおよび内燃機関用ピストンの製造方法を提供することを目的する。 In view of the above circumstances, the present invention provides a piston for an internal combustion engine having a porous structure capable of ensuring adhesion and durability with a substrate and realizing low thermal conductivity and low volume specific heat. It aims at providing the manufacturing method of a piston.
 本発明にかかる上記目的を達成するため、基材と、基材上に設けられた焼結層とを有し、焼結層と基材との間にはピストン基材よりも融点の低いインサート材により形成された浸透拡散層を有する構成とした。 In order to achieve the above-mentioned object according to the present invention, an insert having a base material and a sintered layer provided on the base material, and having a lower melting point than the piston base material between the sintered layer and the base material. It was set as the structure which has the osmosis | permeation diffusion layer formed with the material.
 また、本発明に係る内燃機関用ピストンの製造方法は、基材よりも低融点の金属をインサート材とし、インサート材が焼結体の空孔に浸透することで浸透拡散層を形成する方法とした。 Further, the method for manufacturing a piston for an internal combustion engine according to the present invention includes a method of forming a permeation diffusion layer by using a metal having a melting point lower than that of the base material as an insert material, and the insert material permeates the pores of the sintered body. did.
 本発明によれば、基材との密着性および耐久性を確保し、かつ、低熱伝導性および低体積比熱を実現することが可能な内燃機関用ピストンおよび内燃機関用ピストンの製造方法を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the piston for internal combustion engines which can ensure the adhesiveness and durability with a base material, and can implement | achieve low thermal conductivity and low volume specific heat, and a piston for internal combustion engines is provided. be able to.
(a)は本発明に係るピストンの一例を模式的に示す斜視図であり、(b)は(a)のA-A´線断面図である。(A) is a perspective view which shows typically an example of the piston which concerns on this invention, (b) is the sectional view on the AA 'line of (a). (a)は本発明に係るピストン100の冠面101の断面の拡大図を示すものであり、(b)は図2(a)の金属層30を構成する金属粒子32の拡大図である。(A) shows the enlarged view of the cross section of the crown surface 101 of the piston 100 which concerns on this invention, (b) is an enlarged view of the metal particle 32 which comprises the metal layer 30 of Fig.2 (a). 実施例2に係るピストンを構成する焼結層の一例を模式的に示す断面図である。6 is a cross-sectional view schematically showing an example of a sintered layer constituting a piston according to Example 2. FIG. (a)は本発明に係るピストンの第1の例を示す断面図、(b)は本発明に係るピストンの第2の例を示す断面図、(c)は本発明に係るピストンの第3の例を示す断面図である。(A) is sectional drawing which shows the 1st example of the piston concerning this invention, (b) is sectional drawing which shows the 2nd example of the piston concerning this invention, (c) is 3rd of the piston concerning this invention. FIG. 実施例3に係るピストンを構成する焼結層の一例を模式的に示す断面図である。6 is a cross-sectional view schematically showing an example of a sintered layer constituting a piston according to Example 3. FIG. 本発明に係るピストンに用いる焼結層2の製造方法の一例を示すフロー図である。It is a flowchart which shows an example of the manufacturing method of the sintered layer 2 used for the piston which concerns on this invention. 本発明に係るピストンの基材1と焼結層2との接合の一例を示すフロー図である。It is a flowchart which shows an example of joining with the base material 1 and the sintered layer 2 of the piston which concerns on this invention. 実施例2に係るピストンの製造方法の他の一例を示すフロー図である。FIG. 10 is a flowchart showing another example of the method for manufacturing the piston according to the second embodiment. パルス通電装置の一例を模式的に示す図である。It is a figure which shows an example of a pulse electricity supply apparatus typically. (a)は実験例1に係る中空粒子の断面SEM観察写真、(b)は実験例1に係る焼結層2の断面SEM観察写真、(c)は(b)の拡大写真、(d)は焼結層2および浸透拡散層を含む表層部断面を観察した光学顕微鏡写真。(A) is a cross-sectional SEM observation photograph of a hollow particle according to Experimental Example 1, (b) is a cross-sectional SEM observation photograph of the sintered layer 2 according to Experimental Example 1, (c) is an enlarged photograph of (b), (d). Is an optical micrograph of the surface layer section including the sintered layer 2 and the permeation diffusion layer. 実験例の熱応答性評価試験に用いた装置の模式図である。It is a schematic diagram of the apparatus used for the thermal responsiveness evaluation test of the experiment example. (a)は実験例の熱応答評価試験におけるレーザー光の出力と時間の関係を示すグラフであり、図10(b)は実験例の熱応答評価試験における試験片の表面温度と時間の関係を示すグラフである。(A) is a graph showing the relationship between the output of laser light and time in the thermal response evaluation test of the experimental example, and FIG. 10 (b) shows the relationship between the surface temperature of the test piece and time in the thermal response evaluation test of the experimental example. It is a graph to show.
 以下、本発明の実施形態について図面を参照しながら詳細に説明する。図1(a)は本発明に係るピストンの一例を模式的に示す斜視図であり、図1(b)は図1(a)のA‐A´線断面図である。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1A is a perspective view schematically showing an example of a piston according to the present invention, and FIG. 1B is a cross-sectional view taken along the line AA ′ of FIG.
 本発明に係る内燃機関用ピストン100(以下、単に「ピストン」とも称する。)は、上面には冠面101を、側面にはピストン受け部102を有している。冠面101は、燃焼室の内壁の一部となる部分であり、燃焼効率を向上するために断熱層が設けられる部分である。本発明では、ピストン100の冠面(表面)に、低熱伝導性および低体積比熱の特性を併せ持つ「表面層」を設けた。以下、この表面層について詳述する。 The piston 100 for an internal combustion engine according to the present invention (hereinafter also simply referred to as “piston”) has a crown surface 101 on the upper surface and a piston receiving portion 102 on the side surface. The crown surface 101 is a part which becomes a part of the inner wall of the combustion chamber, and is a part where a heat insulating layer is provided in order to improve combustion efficiency. In the present invention, a “surface layer” having both low thermal conductivity and low volume specific heat characteristics is provided on the crown surface (surface) of the piston 100. Hereinafter, this surface layer will be described in detail.
 図2(a)は本発明に係るピストン100の冠面101の断面の拡大図を示すものである。図2(a)に示すように、本発明に係るピストン100の冠面101は、ピストン基材1(以下、単に「基材」と称する。)と、基材1の表面に設けられた焼結層2を有する。 FIG. 2A shows an enlarged view of a cross section of the crown surface 101 of the piston 100 according to the present invention. As shown in FIG. 2 (a), the crown surface 101 of the piston 100 according to the present invention includes a piston base material 1 (hereinafter simply referred to as “base material”) and a firing provided on the surface of the base material 1. It has a tie layer 2.
 焼結層2は、複数の金属粒子が結合して構成された金属層30と、金属粒子の結合部分以外の部分で囲まれて構成された空隙(言い換えると、金属粒子間に形成された空隙)31とを有す。金属層30は、金属粒子が焼結によって結合された焼結金属で構成される。なお、便宜上、金属層30と空隙31を合わせて母相3と呼ぶ。 The sintered layer 2 includes a metal layer 30 formed by bonding a plurality of metal particles and a void surrounded by a portion other than the bonded portion of the metal particles (in other words, a void formed between the metal particles). ) 31. The metal layer 30 is composed of a sintered metal in which metal particles are bonded by sintering. For convenience, the metal layer 30 and the gap 31 are collectively referred to as a parent phase 3.
 図2(b)は図2(a)の金属層30を構成する金属粒子32の拡大図である。図2(b)に示すように、金属粒子32の一部同士が焼結によって結合し、ネック33を有していることが好ましい。このネック33によって金属粒子32間の空間を確保し、空隙31を形成することができる。また、焼結密度を制御することで空隙31の割合を制御することができる。このような焼結金属の作製方法については、後述する。 FIG. 2 (b) is an enlarged view of the metal particles 32 constituting the metal layer 30 of FIG. 2 (a). As shown in FIG. 2B, it is preferable that some of the metal particles 32 are bonded together by sintering and have a neck 33. The space between the metal particles 32 can be secured by the neck 33 and the gap 31 can be formed. Further, the ratio of the voids 31 can be controlled by controlling the sintering density. A method for producing such a sintered metal will be described later.
 焼結層2と基材1との間には、浸透拡散層4を有する。浸透拡散層4は、基材よりも低融点のインサート材を母相3の片面の一部に溶かして浸透拡散させた層であり、元来の焼結体に設けられた空隙31の一部はインサート材を吸収することで埋まった状態となる。図2(a)では、B-B部まで母相3が存在している構造になっている。このような構造にすることによって、空隙を焼結層2で確保しつつ、焼結層2より密度の高い浸透拡散層4によって基材1との密着性を確保することができる。したがって、基材との密着性および耐久性を確保し、かつ、低熱伝導性および低体積比熱を実現することが可能となる。 Between the sintered layer 2 and the substrate 1, there is a permeation diffusion layer 4. The permeation diffusion layer 4 is a layer in which an insert material having a melting point lower than that of the base material is dissolved in a part of one side of the matrix 3 and is permeated and diffused, and a part of the void 31 provided in the original sintered body. Is buried by absorbing the insert material. FIG. 2A shows a structure in which the parent phase 3 exists up to the BB part. By adopting such a structure, it is possible to ensure adhesion with the base material 1 by the permeation diffusion layer 4 having a higher density than the sintered layer 2 while ensuring voids in the sintered layer 2. Therefore, it is possible to ensure adhesion and durability with the substrate, and to achieve low thermal conductivity and low volume specific heat.
 また、基材1と浸透拡散層4は、同じ金属をそれぞれの主成分として含むことが好ましい。具体的には、基材1をアルミニウム(Al)合金とし、浸透拡散層4をAl合金とすることが好ましい。このように基材1と浸透拡散層4とを同じ金属で構成することによって、基材1とポーラス構造を有する浸透拡散層4の界面で強固な固相接合部を形成して密着性を確保し、耐久性に優れたピストンを提供することができる。同様に、浸透拡散層4と焼結層2は、同じ金属をそれぞれの主成分として含むことが好ましい。浸透拡散層4と焼結層2の主要部分を構成する金属層30を同じ金属で構成することによって、浸透拡散層4とポーラス構造を有する焼結層2の界面で強固な固相接合部を形成して密着性を確保し、耐久性に優れた焼結層2を提供することができる。 Moreover, it is preferable that the base material 1 and the osmosis | permeation diffusion layer 4 contain the same metal as each main component. Specifically, the base material 1 is preferably an aluminum (Al) alloy, and the permeation diffusion layer 4 is preferably an Al alloy. In this way, by forming the base material 1 and the permeation diffusion layer 4 with the same metal, a strong solid-phase junction is formed at the interface between the base material 1 and the permeation diffusion layer 4 having a porous structure to ensure adhesion. In addition, a piston having excellent durability can be provided. Similarly, the permeation diffusion layer 4 and the sintered layer 2 preferably contain the same metal as their main component. By forming the metal layer 30 that constitutes the main part of the permeation diffusion layer 4 and the sintered layer 2 with the same metal, a solid phase bonded portion can be formed at the interface between the permeation diffusion layer 4 and the sintered layer 2 having a porous structure. It is possible to provide the sintered layer 2 which is formed to ensure adhesion and is excellent in durability.
 焼結層2の体積比熱は、1000kJ/m・K以下であることが好ましい。また熱伝導率は1W/mK以下であることが好ましい。焼結層2の熱特性をこのように構成することにより、内燃機関内部でのベース温度の上昇がほとんど発生しない水準となる。すなわち、焼結層2のガス温度に対する熱応答性が十分高いものとなり、燃焼室内部のガス温度の変化に合わせて瞬時に低温から高温へ、または高温から低温へ変化できる。これにより、ピストン100の冠面101の全面に焼結層2を施工したとしても、より高い燃焼効率を得ることができる。 The volume specific heat of the sintered layer 2 is preferably 1000 kJ / m 3 · K or less. The thermal conductivity is preferably 1 W / mK or less. By configuring the thermal characteristics of the sintered layer 2 in this way, the base temperature is hardly increased in the internal combustion engine. That is, the thermal responsiveness with respect to the gas temperature of the sintered layer 2 is sufficiently high, and can be instantaneously changed from a low temperature to a high temperature or from a high temperature to a low temperature in accordance with a change in the gas temperature in the combustion chamber. Thereby, even if the sintered layer 2 is applied to the entire surface of the crown surface 101 of the piston 100, higher combustion efficiency can be obtained.
 なお、本発明に係るピストン100において、上述した焼結層2が形成される箇所はピストン100の冠面101上であれば特に限定はない。具体的なものとしてピストン100において焼結層2を形成する箇所の例を以下に示す。 In the piston 100 according to the present invention, there is no particular limitation as long as the above-described sintered layer 2 is formed on the crown surface 101 of the piston 100. As an example, the example of the location which forms the sintered layer 2 in the piston 100 is shown below.
 図4(a)は本発明に係るピストンの第1の例を示す断面図であり、ピストン100の冠面101に凹部を設け、その凹部に焼結層2を配置したものである。 FIG. 4A is a cross-sectional view showing a first example of the piston according to the present invention, in which a concave portion is provided on the crown surface 101 of the piston 100, and the sintered layer 2 is arranged in the concave portion.
 また、図4(b)は本発明に係るピストンの第2の例を示す断面図であり、冠面101の全面に焼結層2を配置したものである。 FIG. 4B is a sectional view showing a second example of the piston according to the present invention, in which the sintered layer 2 is disposed on the entire crown surface 101.
 また、図4(c)は本発明に係るピストンの第3の例を示す断面図であり、冠面101の形状に沿って凹部を設け、その凹部101に焼結層2を配置したものである。 FIG. 4C is a cross-sectional view showing a third example of the piston according to the present invention, in which a recess is provided along the shape of the crown surface 101, and the sintered layer 2 is disposed in the recess 101. is there.
 図4(a)から(c)に示すように、ピストン100aから100cにおいて、焼結層2を形成する場所は特に限定されず、図4(a)のように、冠面101の中央部に形成しても良く、図4(b)のように冠面101の全面に形成しても良く、また図4(c)のように冠面101の焼結層2の表面形状に沿って厚さが一定となるように形成してもよい。 As shown in FIGS. 4 (a) to 4 (c), in the pistons 100a to 100c, the place where the sintered layer 2 is formed is not particularly limited, and as shown in FIG. It may be formed, may be formed on the entire surface of the crown surface 101 as shown in FIG. 4B, and has a thickness along the surface shape of the sintered layer 2 on the crown surface 101 as shown in FIG. You may form so that may become constant.
 図6(a)は本発明に係るピストンに用いる焼結層2の製造方法の一例を示すフロー図であり、図6(b)は本発明に係るピストンの基材1と焼結層2との接合の一例を示すフロー図である。まず、図6(a)において、金属層30の原料となる金属粒子32と中空粒子5の粉末を混合する(S10:金属粒子粉末(原料混合粉末)準備工程)。次に、S10で得られた混合粉末を加熱し、焼結して(S11:焼結工程)焼結体を得る(S12)。混合粉末の焼結方法としては、母相3に空隙31が形成されるように金属粒子を焼結可能な方法であれば特に限定は無いが、パルス通電焼結、ホットプレス焼結、熱間等方加圧焼結および冷間等方加圧焼結等が好適である。これらのなかでも特に荷重および温度を制御可能な加圧焼結とすることが好ましく、パルス通電焼結法が好適である。 FIG. 6A is a flowchart showing an example of a method for producing the sintered layer 2 used in the piston according to the present invention, and FIG. 6B shows the substrate 1 and the sintered layer 2 of the piston according to the present invention. It is a flowchart which shows an example of joining. First, in FIG. 6A, the metal particles 32 as the raw material of the metal layer 30 and the powder of the hollow particles 5 are mixed (S10: metal particle powder (raw material mixed powder) preparation step). Next, the mixed powder obtained in S10 is heated and sintered (S11: sintering process) to obtain a sintered body (S12). The method for sintering the mixed powder is not particularly limited as long as it is a method capable of sintering metal particles so that voids 31 are formed in the mother phase 3, but pulse current sintering, hot press sintering, Isotropic pressure sintering and cold isotropic pressure sintering are preferred. Among these, it is preferable to use pressure sintering capable of controlling the load and temperature, and the pulse current sintering method is preferable.
 パルス通電焼結(Pulse Electric Current Sintering)は、放電プラズマ焼結(Spark Plasma Sintering)とも呼ばれる焼結手法である。原料混合粉末に加圧しながらパルス通電を印加すると、粉末表面では抵抗発熱とスパーク放電による発熱が発生し、粉末表面での反応を活性化し、図2(b)に示すように、金属粒子間接触部にネック33を形成しやすい。空隙を多く含む多孔焼結体であっても、ネック33部分で金属粒子同士を強度に結合させることができる。 Pulse electric current sintering (Pulse Electric Current Sintering) is a sintering technique also called spark plasma sintering (Spark Plasma Sintering). When applying pulse current while applying pressure to the raw material mixed powder, resistance heat generation and spark discharge are generated on the powder surface, and the reaction on the powder surface is activated. As shown in FIG. It is easy to form the neck 33 at the part. Even in the case of a porous sintered body containing a large amount of voids, the metal particles can be strongly bonded at the neck 33 portion.
 パルス通電焼結法では、粉末表面での反応が活発化するため、比較的荷重負荷が小さい環境での焼結が可能であり、荷重または押込み量を制御して加圧することにより、母相3の空隙31の割合を制御することが可能である。 In the pulse current sintering method, the reaction on the powder surface is activated, so that sintering in an environment with a relatively small load is possible. By controlling the load or the amount of indentation and pressurizing, the parent phase 3 It is possible to control the ratio of the voids 31 of the above.
 続いて図6(b)について説明する。図6(b)では、まず始めに、ピストン基材を鋳造によって作製する(S13)。この鋳造工程では、例えば、Al合金製のピストン母材の粗材を従来の方法で鋳造する。続いて、得られた粗材に対して機械加工(ランド部外径切削およびピン穴加工等)を施す(S14)。次に、低融点のインサート材を基材表面に設置する(S14a)。次に先の図6(a)に示した工程で作製した焼結体を、基材の表面に接触させて設置する(S15)。 Subsequently, FIG. 6B will be described. In FIG. 6B, first, a piston base material is produced by casting (S13). In this casting process, for example, a rough material of a piston base material made of an Al alloy is cast by a conventional method. Subsequently, machining (land part outer diameter cutting, pin hole machining, etc.) is performed on the obtained rough material (S14). Next, an insert material having a low melting point is placed on the surface of the substrate (S14a). Next, the sintered body produced in the process shown in FIG. 6A is placed in contact with the surface of the substrate (S15).
 そして、基材と焼結体とを接合する(S16)。接合方法として、インサート材を加熱して溶融させ、焼結体および基材との間に拡散させ、特に焼結体の空隙に浸透拡散させて接合する手法が好ましい。加熱方法の分類として、熱処理、摩擦撹拌接合、レーザー溶接およびアーク溶接等が挙げられるが、これらに限定されるものではない。 Then, the base material and the sintered body are joined (S16). As a joining method, a technique is preferred in which the insert material is heated and melted, diffused between the sintered body and the base material, and in particular, permeated and diffused into the voids of the sintered body. Examples of the heating method include, but are not limited to, heat treatment, friction stir welding, laser welding, arc welding, and the like.
 焼結体と基材1の接合後の後処理として、熱処理工程を実施する(S17)。この熱処理は、接合工程で発生する歪を除去し、強度を均一化することを目的とするものであり、例えば溶体化時効処理または人工時効処理を行う。熱処理工程後、二次機械加工工程として仕上げの切削加工を施し(S18)、製品であるピストンが完成する(S19)。 As a post-treatment after joining the sintered body and the substrate 1, a heat treatment step is performed (S17). This heat treatment is intended to remove strain generated in the joining process and make the strength uniform. For example, solution aging treatment or artificial aging treatment is performed. After the heat treatment step, finishing machining is performed as a secondary machining step (S18), and the product piston is completed (S19).
 続いて実施例2について説明する。本実施例が実施例1と異なる点は、母相3内部に中空粒子5を配置した点である。 Subsequently, Example 2 will be described. This embodiment is different from the first embodiment in that the hollow particles 5 are arranged inside the matrix phase 3.
 十分な低熱伝導性を得るためには、母相3の空隙31を増大させることが有効であると考えられるが、空隙31を増大させすぎると母相3の強度が低下し、焼結層2が内燃機関の中の過酷な環境(温度および圧力)に耐えられない。 In order to obtain a sufficient low thermal conductivity, it is considered effective to increase the gap 31 of the matrix 3. However, if the gap 31 is increased too much, the strength of the matrix 3 is lowered, and the sintered layer 2 is reduced. Cannot withstand the harsh environment (temperature and pressure) in an internal combustion engine.
 そこで、本実施例では母相3の空隙31中に中空粒子5を含有させ、母相3中の空隙31と中空粒子5の空孔50とを合わせることで、焼結層2全体の気孔率を十分に確保しつつ、焼結層2の強度を保つようにした。 Therefore, in this embodiment, the hollow particles 5 are contained in the voids 31 of the matrix 3 and the voids 31 of the matrix 3 and the voids 50 of the hollow particles 5 are combined, whereby the porosity of the sintered layer 2 as a whole. The strength of the sintered layer 2 was maintained while ensuring sufficient.
 図3は上述の通り、中空粒子5を母相3に含む場合を模式的に示した断面図であり、母相3に中空粒子5が含まれている。中空粒子5は、内部に空孔(微細な気孔)50を有する粒子である。母相3が有する空隙31と、中空粒子5が有する空孔50とを合わせたものが、焼結層2を占める空隙の体積割合(以下「気孔率」と称する)となる。 FIG. 3 is a cross-sectional view schematically showing a case where the hollow particles 5 are included in the parent phase 3 as described above, and the hollow particles 5 are included in the parent phase 3. The hollow particles 5 are particles having pores (fine pores) 50 inside. A combination of the voids 31 included in the matrix 3 and the voids 50 included in the hollow particles 5 is a volume ratio of voids (hereinafter referred to as “porosity”) occupying the sintered layer 2.
 本発明では、母相3が有する空隙31と、中空粒子5が有する空孔50の両方を合わせることで、焼結層2全体の気孔率を50体積%まで高めることを実現している。 In the present invention, the porosity of the entire sintered layer 2 is increased to 50% by volume by combining both the void 31 of the matrix 3 and the void 50 of the hollow particle 5.
 また、浸透拡散層4の中にも中空粒子5が含まれることが好ましい。中空粒子5の空孔50は閉空孔であれば、インサート材が入り込まず、そのまま空孔を保つことになる。また、空孔50が開空孔であったとしても、空隙31に比べてインサート材が侵入しにくく、空孔を残すような形となる。その結果、浸透拡散層4が気孔を有した構造となり、かつ、焼結層2に比べて気孔率が低い構造を有する。 Further, it is preferable that hollow particles 5 are also included in the permeation diffusion layer 4. If the hole 50 of the hollow particle 5 is a closed hole, an insert material does not enter and the hole is maintained as it is. Further, even if the hole 50 is an open hole, the insert material is less likely to enter compared to the gap 31, and the hole remains. As a result, the permeation diffusion layer 4 has a structure having pores and a structure having a lower porosity than the sintered layer 2.
 中空粒子5として、シリカ(SiO)、アルミナ(Al)およびジルコニア(ZrO)等、種々の多孔質酸化物を用いることができるが、焼結層2の断熱性能を確保するために熱伝導率が低い材料とすることが好ましく、特にシリカを用いることが好ましい。 As the hollow particles 5, various porous oxides such as silica (SiO 2 ), alumina (Al 2 O 3 ), and zirconia (ZrO 2 ) can be used, but in order to ensure the heat insulating performance of the sintered layer 2. It is preferable to use a material having a low thermal conductivity, and it is particularly preferable to use silica.
 シリカはセラミックスの中でも比較的熱伝導性が低く、なおかつ中空状あっても強度が比較的高い材料である。シリカを主成分とする中空粒子としては、セラミックビーズ、シリカエアロゲル、多孔ガラス、ガラスビーズ、火山性白砂、珪藻土およびそれらの加工粉末等があるが、これらに限定されるものではない。 Silica has a relatively low thermal conductivity among ceramics and is a material having a relatively high strength even when hollow. Examples of the hollow particles mainly composed of silica include ceramic beads, silica airgel, porous glass, glass beads, volcanic white sand, diatomaceous earth, and processed powders thereof, but are not limited thereto.
 金属層30を構成する金属粒子の粒子径と中空粒子5の粒子径は、略同一であることが好ましい。中空粒子5の粒子径が金属粒子32の粒子径に比べて大きい場合、金属粒子32同士の結合が形成されにくくなり、焼結体である金属層30の強度が低下するおそれがある。一方、中空粒子5の粒子径が金属粒子32の粒子径に比べて小さい場合、金属粒子32間の空隙31の形成を妨げて高い気孔率を実現することができない恐れがある。そのため、本実施形態では金属粒子32の粒子径と中空粒子5の粒子径が略同一である構成とした。 The particle diameter of the metal particles constituting the metal layer 30 and the particle diameter of the hollow particles 5 are preferably substantially the same. When the particle diameter of the hollow particles 5 is larger than the particle diameter of the metal particles 32, the bonds between the metal particles 32 are hardly formed, and the strength of the metal layer 30 that is a sintered body may be reduced. On the other hand, when the particle diameter of the hollow particles 5 is smaller than the particle diameter of the metal particles 32, there is a possibility that the formation of the voids 31 between the metal particles 32 is hindered and a high porosity cannot be realized. Therefore, in this embodiment, the particle diameter of the metal particles 32 and the particle diameter of the hollow particles 5 are substantially the same.
 次に、本発明に係るピストンの製造方法について説明する。基材1への焼結層2の形成方法としては、まず金属層30を構成する金属粒子32と中空粒子5を焼結して事前に焼結体を形成し、この焼結体を基材1と接合する方法と、焼結層2の原料粉末となる金属粒子32と中空粒子5の混合粉末を基材1の表面に設置し、金属粒子32の焼結と基材1への接合を同時に行う方法が挙げられる。図6(c)は本実施例に係るピストンの製造方法の他の一例を示すフロー図である。図6(c)では、焼結体の作製(図6(a)のS1)と、焼結体と基材との接合(図6(b)のS2)を同時に実施している。ピストン基材の鋳造(S13)および一次機械加工(S14)については、図6(b)と同様である。一次機械加工工程を施した基材1の表面に、浸透拡散層を形成するインサート材を設置し(S14a)、その上に焼結層2の原料粉末となる金属粒子と中空粒子5の混合粉末を設置する(S15´)。この際に、インサート材や混合粉末を粉末状にして基材1の表面に設置しても良いが、粉末を所定の形状を有する成形体、例えば粉末に予め圧力を加えて予備成形を行うことでビスケット状に押し固めた圧粉体とし、この圧粉体を基材1表面(ピストン冠面)に設置してもよい。 Next, a method for manufacturing a piston according to the present invention will be described. As a method of forming the sintered layer 2 on the base material 1, first, the metal particles 32 and the hollow particles 5 constituting the metal layer 30 are sintered to form a sintered body in advance, and this sintered body is used as the base material. 1 and the mixed powder of the metal particles 32 and the hollow particles 5 that are the raw material powder of the sintered layer 2 are placed on the surface of the substrate 1, and the sintering of the metal particles 32 and the bonding to the substrate 1 are performed. The method of performing simultaneously is mentioned. FIG.6 (c) is a flowchart which shows another example of the manufacturing method of the piston which concerns on a present Example. In FIG. 6C, the production of the sintered body (S1 in FIG. 6A) and the joining of the sintered body and the base material (S2 in FIG. 6B) are performed simultaneously. The piston base material casting (S13) and the primary machining (S14) are the same as in FIG. 6B. An insert material for forming a permeation diffusion layer is placed on the surface of the base material 1 subjected to the primary machining process (S14a), and a mixed powder of metal particles and hollow particles 5 serving as a raw material powder for the sintered layer 2 thereon Is installed (S15 '). At this time, the insert material or the mixed powder may be powdered and placed on the surface of the substrate 1, but the powder is preliminarily formed by applying pressure to a molded body having a predetermined shape, for example, powder. The green compact may be pressed into a biscuit shape and placed on the surface of the base material 1 (piston crown surface).
 そして、混合粉末の上部から荷重をかけて加熱することで、混合粉末を焼結すると同時に混合粉末とピストン基材とを接合させる(S16´)。なお、その後の熱処理(S17)からピストン完成(S19)までは実施例1と同様の工程となるため、説明を割愛する。 Then, by applying a load from the upper part of the mixed powder and heating it, the mixed powder is sintered and at the same time the mixed powder and the piston base material are joined (S16 ′). Since the subsequent heat treatment (S17) to piston completion (S19) are the same steps as in the first embodiment, the description thereof is omitted.
 なお、本実施例では実施例1同様、パルス通電焼結法を用いた。パルス通電焼結法では、粉末表面での反応が活発化するため、比較的荷重負荷が小さい環境での焼結が可能であり、中空粒子の形状を破壊せずに含有させることが可能である。本発明においては、混合粉末にパルス通電を印加することにより、金属粒子同士が互いに繋がった金属層(焼結金属)30を形成し、かつ金属粒子同士の結合部分以外で構成された空隙31に、中空粒子5をその形状を壊すことなく包含することができる。 In this example, the pulse current sintering method was used as in Example 1. In the pulse current sintering method, since the reaction on the powder surface is activated, it is possible to sinter in an environment where the load is relatively small, and the shape of the hollow particles can be contained without breaking. . In the present invention, by applying pulse current to the mixed powder, a metal layer (sintered metal) 30 in which the metal particles are connected to each other is formed, and the void 31 is formed in a portion other than the joint portion between the metal particles. The hollow particles 5 can be included without breaking the shape.
 また、焼結層2の気孔率については特に限定はないが50%以上が好ましい。 Further, the porosity of the sintered layer 2 is not particularly limited but is preferably 50% or more.
 続いて実施例3について説明する。本実施例が実施例2と異なる点は、焼結層2の表面に封止材からなる封止層51を設けた点である。 Subsequently, Example 3 will be described. This embodiment is different from the second embodiment in that a sealing layer 51 made of a sealing material is provided on the surface of the sintered layer 2.
 図5は本実施例に係るピストンを構成する焼結層の一例を模式的に示す断面図である。 FIG. 5 is a cross-sectional view schematically showing an example of a sintered layer constituting the piston according to the present embodiment.
 焼結層2の空隙31に燃料が浸み込むと、燃焼に寄与する燃料が減少し、燃焼効率が悪くなる。そこで、図5に示すように焼結層2の表面に封止材からなる封止層51で空隙31を封止し、燃料が焼結層2の奥(基材1側)まで浸みこむことを防止することが好ましい。焼結層2の表面に封止層51を設ける際に、封止材は焼結層2の表面(図5の52で示す部分)のみならず、表面近くの空隙31(図5の53で示す部分)にも侵入するが、本実施例に係る焼結層2は母相3の空隙31と中空粒子5の空孔50とで焼結層2全体の気孔率を確保しており、中空粒子5の内部の空孔50には封止材が侵入することは無いため、母相3の空隙31の一部が封止材によって封止されたとしても、焼結層2全体では十分な気孔率を確保することができる。 If the fuel soaks into the gap 31 of the sintered layer 2, the fuel that contributes to combustion decreases and the combustion efficiency deteriorates. Therefore, as shown in FIG. 5, the gap 31 is sealed on the surface of the sintered layer 2 with a sealing layer 51 made of a sealing material, and the fuel soaks into the back of the sintered layer 2 (base 1 side). It is preferable to prevent this. When the sealing layer 51 is provided on the surface of the sintered layer 2, the sealing material is not only the surface of the sintered layer 2 (portion indicated by 52 in FIG. 5), but also the gap 31 (53 in FIG. 5) near the surface. The sintered layer 2 according to the present example secures the porosity of the entire sintered layer 2 with the voids 31 of the parent phase 3 and the pores 50 of the hollow particles 5. Since the sealing material does not enter the pores 50 inside the particles 5, even if a part of the void 31 of the mother phase 3 is sealed by the sealing material, the entire sintered layer 2 is sufficient. The porosity can be ensured.
 なお封止材としては、具体的には、ポリシラザン、ポリシロキサン、シリカアルコキシド、ポリアミド、ポリアミドイミド、ポリイミドおよび各種樹脂が挙げられるが、これらに限定されるものではない。 Specific examples of the sealing material include, but are not limited to, polysilazane, polysiloxane, silica alkoxide, polyamide, polyamideimide, polyimide, and various resins.
 本発明の上記構成によれば、優れた熱応答特性を有してなおかつ長期の使用に耐えうる構造をもったピストンを提供し、燃料の燃焼を助けて内燃機関の燃費改善に寄与する。また、内燃機関からのデポジットやスモークの排出を抑制することに寄与する。 According to the above configuration of the present invention, it is possible to provide a piston having an excellent thermal response characteristic and having a structure that can withstand long-term use, and assists in combustion of fuel to contribute to improvement of fuel consumption of the internal combustion engine. It also contributes to suppressing deposits and smoke emissions from the internal combustion engine.
 続いて封止層51の形成方法について説明する。封止材形成工程は、実施例1及び実施例2に記載の図6(b)および図6(c)の工程において、焼結体と基材の接合工程(S16またはS16´)、熱処理工程(S17)あるいは二次機械加工工程(S18)のいずれかの工程間で実施することとなる。本発明によれば、熱処理工程(S17)の前に封止層51を形成してもよく、二次機械加工工程(S18)の前に形成しても良く、二次機械加工工程(S18)後に形成してもよい。これらの塗布工程において、塗布した封止材をピストン表面に定着させるために熱処理工程をさらに追加しても良い。また、熱処理工程(S17)が、塗布後の封止材の乾燥を兼ねていてもよい。 Then, the formation method of the sealing layer 51 is demonstrated. The sealing material forming step is the step of joining the sintered body and the base material (S16 or S16 ′) in the steps of FIGS. 6B and 6C described in the first and second embodiments and the heat treatment step. (S17) or the secondary machining process (S18) is performed between the processes. According to the present invention, the sealing layer 51 may be formed before the heat treatment step (S17), may be formed before the secondary machining step (S18), or the secondary machining step (S18). It may be formed later. In these application processes, a heat treatment process may be further added to fix the applied sealing material on the piston surface. Further, the heat treatment step (S17) may also serve as drying of the sealing material after application.
 封止層51の形成方法としては、例えば封止材としてポリシラザンを用いる場合、焼結体表面にポリシラザンの前駆体を含む塗布液を塗布し、400~500℃で1~2時間加熱して乾燥することで形成することができる。 As a method for forming the sealing layer 51, for example, when polysilazane is used as a sealing material, a coating solution containing a polysilazane precursor is applied to the surface of the sintered body, and dried by heating at 400 to 500 ° C. for 1 to 2 hours. By doing so, it can be formed.
 [ピストン試験片の作製および評価]
 ピストン冠面に見立てた基材を準備し、その表面に中空粒子の比率を変えた表面層を形成した試験片を作製した(実験例1~3、参考例1および2)。得られた試験片の焼結状態、気孔率および熱応答性を評価した。
[Production and evaluation of piston specimen]
A base material was prepared as if it were a piston crown surface, and test pieces having a surface layer in which the ratio of hollow particles was changed on the surface thereof were prepared (Experimental Examples 1-3, Reference Examples 1 and 2). The obtained test piece was evaluated for its sintered state, porosity and thermal responsiveness.
 まず、実機のピストン材料に近いAl合金(JIS(Japanese Industrial Standards) 4032‐T6)を用いて円盤状の試験片(直径:75mm、厚さ:10mm)を作製し、その表面に直径30mm、深さ5mmの凹部を形成した。 First, a disk-shaped test piece (diameter: 75 mm, thickness: 10 mm) was prepared using an Al alloy (JIS (Japan Industrial Standards) 4032-T6) close to the actual piston material. A recess having a thickness of 5 mm was formed.
 焼結層2を構成する原料混合粉末(表面層の原料粉末)として、金属層30を構成する金属粒子32としてAl粒子と、中空粒子5としてSiO粒子を混合した原料混合粉末を準備した。いずれの粒子も、平均粒子径が30μmのものを用意した。この原料混合粉末をパルス通電焼結法によって焼結し、焼結体を作製した。 As a raw material mixed powder constituting the sintered layer 2 (a raw material powder for the surface layer), a raw material mixed powder prepared by mixing Al particles as the metal particles 32 constituting the metal layer 30 and SiO 2 particles as the hollow particles 5 was prepared. All particles were prepared with an average particle size of 30 μm. This raw material mixed powder was sintered by a pulse current sintering method to produce a sintered body.
 図7は実施例で用いたパルス通電装置の一例を模式的に示す図である。真空チャンバ64内で、円環状のカーボンダイ62の中に上述した混合粉末(焼結層原料粉末61)を入れ、カーボンパンチ63を図6の矢印方向に駆動して荷重を負荷し、パルス電源67および電極(上部電極65および下部電極66)を介して混合粉末にパルス通電を印加し、加熱して焼結した。パルス通電焼結中は、温度、荷重およびカーボンパンチ63の押込み量をモニタリングした。 FIG. 7 is a diagram schematically showing an example of the pulse energization device used in the examples. In the vacuum chamber 64, the above-mentioned mixed powder (sintered layer raw material powder 61) is placed in an annular carbon die 62, the carbon punch 63 is driven in the direction of the arrow in FIG. A pulse energization was applied to the mixed powder through 67 and the electrodes (upper electrode 65 and lower electrode 66), and the mixture was heated and sintered. During the pulse electric current sintering, the temperature, the load and the indentation amount of the carbon punch 63 were monitored.
 得られた焼結体を、直径30mm、厚さ3mmの形状となるように加工し、上述したアルミニウム合金試験片の凹部に設置した。焼結体とアルミニウム合金試験片とを拘束ジグを用いて固定し、熱処理炉で加熱することで両者を拡散接合した。 The obtained sintered body was processed so as to have a shape with a diameter of 30 mm and a thickness of 3 mm, and placed in the recess of the aluminum alloy test piece described above. The sintered body and the aluminum alloy test piece were fixed using a restraining jig, and both were diffusion-bonded by heating in a heat treatment furnace.
 実験例1~3および参考例1の焼結層の原料粉末の組成と、焼結状態および気孔率(P)の評価結果を後述する表1に示す。 The composition of the raw material powder of the sintered layers of Experimental Examples 1 to 3 and Reference Example 1, and the evaluation results of the sintered state and the porosity (P) are shown in Table 1 described later.
 本明細書において、参考例1は、本発明に係る焼結層の接合において、インサート材に焼結体よりも融点が低い純アルミニウムを用いたものである。 In this specification, Reference Example 1 uses pure aluminum having a melting point lower than that of a sintered body as an insert material in joining of sintered layers according to the present invention.
 また参考例2は焼結層を持たないアルミニウム基材のみの試験片である。表1中、焼結層の気孔率Pおよび浸透拡散層の気孔率Qは、それぞれ下記の式(1)および式(2)から算出した。 Further, Reference Example 2 is a test piece made of only an aluminum base material having no sintered layer. In Table 1, the porosity P of the sintered layer and the porosity Q of the permeation diffusion layer were calculated from the following formulas (1) and (2), respectively.
 
 P=100-D/D×100…式(1) 
 Q=P×{αX+β(1-X)…式(2)

P = 100−D m / D i × 100 Formula (1)
Q = P × {αX + β (1-X) (2)
Figure JPOXMLDOC01-appb-T000001
 ここで、Dは測定した密度(g/cm)であり、試験片から採取した直方体の小片から体積と重さを測定して算出した。Dは気孔を含まないバルク体の理想密度(g/cm)であり、金属粒子(Al)と中空粒子(SiO)の含有比率を考慮して決定した。またインサート材により気孔の一部が埋まった浸透拡散層において、αは焼結体の空隙のうちで残存している箇所の体積比率、βは中空粒子の空孔部が残存している箇所の体積比率である。Xは元の焼結層の気孔の中で焼結体の空隙が占める割合を示した体積比率であり、1-Xは中空粒子の空孔が占める割合を示した体積比率である。なお、中空粒子の中の空孔の比率はヘリウムガスを用いた真密度計により測定することができ、本実施例で用いた中空シリカの空孔の平均比率は59.6%であった。
Figure JPOXMLDOC01-appb-T000001
Here, D m is the measured density (g / cm 3 ), and was calculated by measuring the volume and weight from a rectangular parallelepiped piece taken from the test piece. D i is the ideal density of the bulk material does not contain pores (g / cm 3), was determined in consideration of the content ratio of the metal particles (Al) hollow particles (SiO 2). Further, in the permeation diffusion layer in which part of the pores are filled with the insert material, α is the volume ratio of the remaining portion of the voids of the sintered body, and β is the portion of the void portion of the hollow particle remaining. Volume ratio. X is a volume ratio indicating the ratio of voids of the sintered body in the pores of the original sintered layer, and 1-X is a volume ratio indicating the ratio of voids of the hollow particles. In addition, the ratio of the void | hole in a hollow particle can be measured with the true density meter using helium gas, The average ratio of the void | hole of the hollow silica used in the present Example was 59.6%.
 図8(a)は実験例1に係る中空粒子の断面SEM観察写真であり、図8(b)は実験例1に係る焼結層2の断面SEM観察写真であり、図8(c)は図8(b)の拡大写真であり、図8(d)は焼結層2および浸透拡散層を含む表層部断面を観察した光学顕微鏡写真である。図8(b)および8(c)のSEM写真では、白色部分がAlであり、灰色部分がSiOであり、黒色部分が空隙および空孔である。図8(b)および8(c)に示すように、焼結層ではAl粒子71間に形成された空隙73中に、中空シリカ72がその形状を保持したまま含まれていることがわかる。 8A is a cross-sectional SEM observation photograph of the hollow particles according to Experimental Example 1, FIG. 8B is a cross-sectional SEM observation photograph of the sintered layer 2 according to Experimental Example 1, and FIG. FIG. 8B is an enlarged photograph, and FIG. 8D is an optical micrograph observing a cross section of the surface layer portion including the sintered layer 2 and the permeation diffusion layer. In the SEM photographs of FIGS. 8B and 8C, the white portion is Al, the gray portion is SiO 2 , and the black portion is voids and holes. As shown in FIGS. 8B and 8C, it can be seen that in the sintered layer, the hollow silica 72 is contained in the void 73 formed between the Al particles 71 while maintaining its shape.
 実験例1~3および参考例1で用いた焼結体は中空シリカを50体積%含ませた原料を用いて焼結時の空隙比率が32体積%となるように多孔焼結体を作製した。 The sintered bodies used in Experimental Examples 1 to 3 and Reference Example 1 were made of a porous sintered body using a raw material containing 50% by volume of hollow silica so that the void ratio during sintering was 32% by volume. .
 その結果、焼結層に占める空隙の割合xは0.59となった。実験例1~3で作製した試験片の断面を観察したところ、浸透拡散層では空隙が完全に埋まっているのに対して空孔が全て残っている状況が確認された(α=0およびβ=1)。このことから、焼結層の気孔率Pは54%であり、浸透拡散層の気孔率は22%であった。なお、接合時の温度はアルミニウム基材が軟化しない温度としていずれも470℃とした。 As a result, the ratio x of voids in the sintered layer was 0.59. Observation of the cross-sections of the test specimens prepared in Experimental Examples 1 to 3 confirmed that the osmotic diffusion layer was completely filled with voids but all the pores remained (α = 0 and β = 1). From this, the porosity P of the sintered layer was 54%, and the porosity of the permeation diffusion layer was 22%. The bonding temperature was 470 ° C. as the temperature at which the aluminum base material was not softened.
 アルミニウムよりも融点が低いアルミ合金粉末をインサート材に用いた実施例1~3では、浸透拡散層の形成により良好な接合状態を確保できたのに対し、純アルミニウム粉末をインサート材に用いた参考例1では、インサート材が溶融せずに焼結された状態で固定され、浸透拡散層は形成されなかった。 In Examples 1 to 3 in which an aluminum alloy powder having a melting point lower than that of aluminum was used as an insert material, a good bonding state could be secured by forming a permeation diffusion layer, whereas a reference using pure aluminum powder as an insert material In Example 1, the insert material was fixed in a sintered state without melting, and the permeation diffusion layer was not formed.
 また、表面層における熱応答特性を評価するために、レーザー熱源を用いて表面層の温度を評価する熱応答評価試験を実施した。図9は実験例の熱応答性評価試験に用いた装置の模式図である。図9に示すように、評価装置は、真空チャンバ82内に設置した試験片81に対して、レーザー熱源84を用いてレーザー光を照射し、その際の試験片81の表面温度を、赤外線カメラ83を用いて測定する構成を有する。 In addition, in order to evaluate the thermal response characteristics in the surface layer, a thermal response evaluation test was performed to evaluate the temperature of the surface layer using a laser heat source. FIG. 9 is a schematic diagram of an apparatus used in a thermal responsiveness evaluation test of an experimental example. As shown in FIG. 9, the evaluation apparatus irradiates a test piece 81 installed in a vacuum chamber 82 with a laser beam using a laser heat source 84, and determines the surface temperature of the test piece 81 at that time using an infrared camera. 83 is used for measurement.
 図10(a)は実験例の熱応答評価試験におけるレーザー光の出力と時間の関係を示すグラフであり、図10(b)は実験例の熱応答評価試験における試験片の表面温度と時間の関係を示すグラフである。 FIG. 10A is a graph showing the relationship between laser light output and time in the thermal response evaluation test of the experimental example, and FIG. 10B is a graph showing the surface temperature and time of the test piece in the thermal response evaluation test of the experimental example. It is a graph which shows a relationship.
 図10(b)は、図10(a)におけるレーザー照射時の表面温度を表している。図10(b)において、1回目のレーザー照射時に記録されるピーク温度をT、3回目のレーザー照射時に記録されるピーク温度をTとした。試験片にレーザーを吸収するための黒体塗料を塗ってレーザー照射を実施した。 FIG. 10B shows the surface temperature at the time of laser irradiation in FIG. In FIG. 10B, the peak temperature recorded at the first laser irradiation is T 1 , and the peak temperature recorded at the third laser irradiation is T 3 . Laser irradiation was carried out by applying a black body paint for absorbing laser to the test piece.
 熱応答評価試験では、まず初めにエンジン環境を模擬するため、表面層を設けていない参考例2のアルミニウム試験片のピーク温度Tが、実際のエンジン環境に近い200℃程度となるように、レーザー照射の条件を選定した。具体的には、図10(a)に示すように、800Wのレーザーを1秒間照射して5秒間自然冷却する工程を1セットとし、合計3セットの照射を実施した。なお、赤外線カメラ83が定量的に評価できる温度の上限は500℃であるので、500℃を超えた場合は「500℃超」と表記する。ピストン冠面において燃料を瞬時に燃焼させるためには、燃料の発火点(300℃)よりも十分に高い400℃程度に加熱される必要がある。よって、この試験において、ピーク温度が400℃以上となる昇温効果を持つ表面層を選定した。実施例1~3および参考例1~2の熱応答性評価試験におけるTおよびTの値を表1に併記する。 The thermal response evaluation test, to simulate the First engine environment, as the peak temperature T 1 of the aluminum test piece of Reference Example 2 provided with no surface layer, the 200 ° C. approximately close to the actual engine environmental, Laser irradiation conditions were selected. Specifically, as shown in FIG. 10 (a), an 800W laser was irradiated for 1 second and naturally cooled for 5 seconds was set as one set, and a total of 3 sets of irradiation were performed. Since the upper limit of the temperature that can be quantitatively evaluated by the infrared camera 83 is 500 ° C., when it exceeds 500 ° C., it is described as “over 500 ° C.”. In order to instantly burn the fuel at the piston crown surface, it is necessary to heat to about 400 ° C. which is sufficiently higher than the ignition point (300 ° C.) of the fuel. Therefore, in this test, a surface layer having a temperature raising effect with a peak temperature of 400 ° C. or higher was selected. The values of T 1 and T 3 in the thermal response evaluation tests of Examples 1 to 3 and Reference Examples 1 to 2 are also shown in Table 1.
 熱応答評価試験の結果、実験例1~3はTおよびTともに500℃以上であったのに対し、参考例1では焼結層が一度目のレーザー照射直後に接合部で剥離して結果が得られなかった。実施例1~3について、熱応答性評価試験後も試験片からの表面層の剥離は観測されず、良好な密着性を有することが確認された。 As a result of the thermal response evaluation test, in Experimental Examples 1 to 3, both T 1 and T 3 were 500 ° C. or higher, whereas in Reference Example 1, the sintered layer peeled off at the joint immediately after the first laser irradiation. No result was obtained. In Examples 1 to 3, peeling of the surface layer from the test piece was not observed even after the thermal responsiveness evaluation test, and it was confirmed that the film had good adhesion.
 実験例1~3および参考例1について、示差走査熱量法(DSC(Differential scanning calorimetry)法)を用いて重量比熱を測定し、別途測定した密度から体積比熱を算出した。体積比熱が1000kJ/m・K以下のものを「合格」と評価した。いずれも800kJ/m・K以下であり、合格であった。評価の結果を表1に併記する。 For Experimental Examples 1 to 3 and Reference Example 1, weight specific heat was measured using a differential scanning calorimetry (DSC (Differential scanning calorimetry) method), and volume specific heat was calculated from separately measured densities. Those having a volume specific heat of 1000 kJ / m 3 · K or less were evaluated as “pass”. All were 800 kJ / m 3 · K or less, and passed. The evaluation results are also shown in Table 1.
 [ピストンの作製と燃料効率評価]
 図6(a)および図6(b)に示す方法で実験例1と同じ構成を有する表面層を有するピストンを作製した。焼結体は、図6(a)の製造工程に沿って、パルス通電焼結法により、実施例1と同様に作製し、直径70mm、厚さ3mmに加工した。図6(b)の製造工程に沿って、ピストン鋳造工程(S13)で作製したアルミ合金製のピストン粗材(JIS AC8A)に一次機械加工(S14)を施し、一次機械加工時に、ピストン冠面に直径70mmの凹部を形成した。凹部にインサート材となる粉末を敷き、予め作製した焼結体を、このピストン冠面の凹部に設置し、拘束ジグにより焼結体とピストン基材とを十分に接触させ(S15)、熱処理炉で接合を実施した(S16)。その後、溶体化処理と人口時効処理(S17)を施し、二次機械加工(S18)により仕上げ形状に加工して所定の形状を有するピストンを作製した(S19)。このピストンを実験例4とする。
[Production of piston and fuel efficiency evaluation]
A piston having a surface layer having the same configuration as Experimental Example 1 was manufactured by the method shown in FIGS. 6 (a) and 6 (b). The sintered body was produced in the same manner as in Example 1 by the pulse current sintering method according to the manufacturing process of FIG. 6A, and was processed into a diameter of 70 mm and a thickness of 3 mm. In accordance with the manufacturing process of FIG. 6B, primary machining (S14) is applied to the aluminum alloy piston rough material (JIS AC8A) produced in the piston casting process (S13). A recess having a diameter of 70 mm was formed. A powder that serves as an insert material is laid in the recess, a pre-sintered sintered body is placed in the recess of the piston crown surface, and the sintered body and the piston base material are sufficiently brought into contact with a restraining jig (S15), and a heat treatment furnace Was joined (S16). Thereafter, solution treatment and artificial aging treatment (S17) were performed, and a piston having a predetermined shape was fabricated by processing into a finished shape by secondary machining (S18) (S19). This piston is referred to as Experimental Example 4.
 また、上記方法で作製したピストンに対して、二次機械加工(S18)後のピストン表面に、封止層形成工程を実施した。具体的には、二次機械加工(S18)後に、ピストン冠面にポリアミドイミドを塗布して乾燥熱処理を行い、表面付近の空隙が封孔された状態とした。ただし、元々中空シリカに含まれる空孔は閉構造であり、気孔として残存している状態である。このピストンを実験例5とする。 Moreover, the sealing layer formation process was implemented with respect to the piston surface after the secondary machining (S18) with respect to the piston produced by the said method. Specifically, after secondary machining (S18), polyamide imide was applied to the piston crown surface and subjected to a dry heat treatment so that voids near the surface were sealed. However, the pores originally contained in the hollow silica have a closed structure and remain as pores. This piston is referred to as Experimental Example 5.
 作製したピストンを、エンジン試験に供して燃費効率を確認した。いずれも表面層を持たないピストンに比べて燃費効率が改善したが、封止層を設けた実施例5の方が封止層を設けていない実験例4より燃料の消費が少ないことが確認できた。これは、封止層を設けた実施例7では、表面層の空隙に燃料が浸み込むことを防止することで、より高い燃焼効率が実現できるためであると考えられる。封止層が燃費効率に寄与することが確認された。 The produced piston was subjected to an engine test to confirm fuel efficiency. In either case, the fuel efficiency was improved compared to the piston without the surface layer, but it was confirmed that the fuel consumption of Example 5 with the sealing layer was less than that of Experimental Example 4 with no sealing layer. It was. This is considered to be because, in Example 7 in which the sealing layer is provided, higher combustion efficiency can be realized by preventing the fuel from entering the voids in the surface layer. It was confirmed that the sealing layer contributes to fuel efficiency.
 以上、本発明について簡単にまとめる。 The above is a brief summary of the present invention.
 本発明に記載の内燃機関用ピストン100は、基材1と、基材1上に設けられた焼結層2とを有し、焼結層2と基材1との間には前記基材(1)よりも低融点のインサート材により焼結体側に浸透拡散層を形成させた。このような構造にすることによって、空隙を焼結層2で確保したうえで基材1との密着性を確保することができる。したがって、基材との密着性および耐久性を確保し、かつ、低熱伝導性および低体積比熱を実現することが可能となる。また、本発明に記載の内燃機関用ピストン100は、浸透拡散層4と焼結体2の主成分となる金属はアルミニウムであり、基材の主成分もアルミニウムである。このような構成にすることによって基材1、浸透拡散層4および焼結層2の主要部分を構成する金属層30を同じ金属で構成することができ、基材1とポーラス構造を有する浸透拡散層4および焼結層2の界面で強固な固相接合部を形成して密着性を確保し、かつ耐久性に優れた焼結層2を作ることができる。 A piston 100 for an internal combustion engine according to the present invention includes a base material 1 and a sintered layer 2 provided on the base material 1, and the base material 1 is interposed between the sintered layer 2 and the base material 1. A permeation diffusion layer was formed on the sintered body side with an insert material having a melting point lower than that of (1). By adopting such a structure, it is possible to ensure adhesion with the base material 1 after securing the voids in the sintered layer 2. Therefore, it is possible to ensure adhesion and durability with the substrate, and to achieve low thermal conductivity and low volume specific heat. In the piston 100 for an internal combustion engine according to the present invention, the metal that is the main component of the permeation diffusion layer 4 and the sintered body 2 is aluminum, and the main component of the base material is also aluminum. By adopting such a configuration, the base layer 1, the permeation diffusion layer 4 and the metal layer 30 constituting the main part of the sintered layer 2 can be composed of the same metal, and the base layer 1 and the permeation diffusion having a porous structure. It is possible to form a solid phase bonded portion at the interface between the layer 4 and the sintered layer 2 to ensure adhesion, and to make the sintered layer 2 excellent in durability.
 また、本発明に記載の内燃機関用ピストン100は、焼結体2には中空粒子5を含む。このような構成にすることによって、母相3中の空隙31と中空粒子5の空孔50とを合わせて焼結層2全体の気孔率を十分に確保しつつ、焼結層2の強度を保つことが可能となる。 Moreover, the piston 100 for an internal combustion engine according to the present invention includes hollow particles 5 in the sintered body 2. By adopting such a configuration, the strength of the sintered layer 2 can be increased while ensuring the porosity of the entire sintered layer 2 by combining the voids 31 in the matrix 3 and the voids 50 of the hollow particles 5. It becomes possible to keep.
 また、本発明に記載の内燃機関用ピストン100は、焼結体2の気孔率が50%以上であることが好ましい。 In the internal combustion engine piston 100 according to the present invention, the sintered body 2 preferably has a porosity of 50% or more.
 また、本発明に記載の内燃機関用ピストン100は、インサート材が少なくともアルミ合金を含む。 In the internal combustion engine piston 100 according to the present invention, the insert material includes at least an aluminum alloy.
 また、本発明に記載の内燃機関用ピストン100は、インサート材に含まれるアルミ合金がAl-Mg合金である。 Further, in the piston 100 for an internal combustion engine according to the present invention, the aluminum alloy contained in the insert material is an Al—Mg alloy.
 また、本発明に記載の内燃機関用ピストン100は、インサート材に含まれるAl-Mg合金がAl12Mg17である。 In the piston 100 for an internal combustion engine according to the present invention, the Al—Mg alloy contained in the insert material is Al 12 Mg 17 .
 また、本発明に記載の内燃機関用ピストン100は、浸透拡散層の厚さが焼結体に含まれる金属粒子の平均粒径の2倍以上である方が、強度的に好ましい。 Moreover, in the piston 100 for an internal combustion engine according to the present invention, it is preferable in terms of strength that the thickness of the permeation diffusion layer is at least twice the average particle diameter of the metal particles contained in the sintered body.
 また、本発明に記載の内燃機関用ピストン100は、浸透拡散層の気孔率が焼結体に比べて低くなっている。 Further, in the piston 100 for an internal combustion engine according to the present invention, the porosity of the permeation diffusion layer is lower than that of the sintered body.
 また、本発明に記載の内燃機関用ピストン100は、浸透拡散層の気孔率が傾斜していてもよい。 In the internal combustion engine piston 100 according to the present invention, the porosity of the permeation diffusion layer may be inclined.
 また、本発明に記載の内燃機関用ピストン100は、焼結層の体積比熱が1000kJ/m・K以下であり,熱伝導率は1W/mK以下である。 In the piston 100 for an internal combustion engine according to the present invention, the volume specific heat of the sintered layer is 1000 kJ / m 3 · K or less, and the thermal conductivity is 1 W / mK or less.
 また、焼結層の厚さは50μm以上、100μm以下であることが好ましい。 The thickness of the sintered layer is preferably 50 μm or more and 100 μm or less.
 また、本発明に記載の内燃機関用ピストンの製造方法は、基材よりも低融点の金属をインサート材用い、インサート材が焼結体の空孔に浸透することで浸透拡散層を形成することを特徴とする。 Further, in the method for manufacturing a piston for an internal combustion engine according to the present invention, a metal having a melting point lower than that of the base material is used as the insert material, and the insert material penetrates into the pores of the sintered body to form the permeation diffusion layer. It is characterized by.
 また、本発明に記載の内燃機関用ピストンの製造方法は、インサート材を溶融させて接合する際にパルス通電接合法を用いる。 Further, the method for manufacturing a piston for an internal combustion engine according to the present invention uses a pulse current joining method when the insert material is melted and joined.
 また、本発明に記載の内燃機関用ピストンの製造方法は、インサート材を溶融させて接合する際には外部熱源を用いてもよい。 Also, the method for manufacturing a piston for an internal combustion engine according to the present invention may use an external heat source when the insert material is melted and joined.
 また、本発明に記載の内燃機関用ピストンの製造方法は、インサート材が粉末である。 In the method for manufacturing a piston for an internal combustion engine according to the present invention, the insert material is powder.
 また、本発明に記載の内燃機関用ピストンの製造方法は、インサート材の粉末がAl合金を含む。 Further, in the method for manufacturing a piston for an internal combustion engine according to the present invention, the powder of the insert material contains an Al alloy.
 また、本発明に記載の内燃機関用ピストンの製造方法は、インサート材に含まれるAlはAl-Mg合金である。
また、本発明に記載の内燃機関用ピストンの製造方法は、インサート材に含まれるAl-Mg合金がAl12Mg17である。
In the method for manufacturing a piston for an internal combustion engine according to the present invention, Al contained in the insert material is an Al—Mg alloy.
In the method for manufacturing a piston for an internal combustion engine according to the present invention, the Al—Mg alloy contained in the insert material is Al 12 Mg 17 .
 また、本発明に記載の内燃機関用ピストンの製造方法は、インサート材がシート状材料である。 In the method for manufacturing a piston for an internal combustion engine according to the present invention, the insert material is a sheet-like material.
 また、本発明に記載の内燃機関用ピストンの製造方法は、インサート材のシート状材料にはAl合金を含む。 Also, in the method for manufacturing a piston for an internal combustion engine according to the present invention, the sheet material of the insert material contains an Al alloy.
 以上、説明したように、本発明に係る内燃機関用ピストンは、耐久性および基材との密着性を確保し、かつ、低熱伝導性および低体積比熱を実現することが可能であることが実証された。 As described above, it is demonstrated that the piston for an internal combustion engine according to the present invention can ensure durability and adhesion to the base material, and can realize low thermal conductivity and low volume specific heat. It was done.
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 In addition, this invention is not limited to the above-mentioned Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
1…基材、2…焼結層、3…母相、30…金属層、31…空隙、32…金属粒子、33…ネック、4…浸透拡散層、5…中空粒子、50…空孔、51…封止層、52…焼結層の表面の封止材、53…母相の空隙に侵入した封止材、61…焼結層原料粉末、62…カーボンダイ、63…カーボンパンチ、64…真空チャンバ、65…上部電極、66…下部電極、67…パルス電源、71…Al粒子、72…中空シリカ、73…空隙、81…試験片、82…真空チャンバ、83…赤外線カメラ、84…レーザー熱源、100,100a,100b,100c…ピストン、101…ピストン冠面、102…ピストンピン受け部 DESCRIPTION OF SYMBOLS 1 ... Base material, 2 ... Sintered layer, 3 ... Mother phase, 30 ... Metal layer, 31 ... Void, 32 ... Metal particle, 33 ... Neck, 4 ... Penetration diffusion layer, 5 ... Hollow particle, 50 ... Hole, DESCRIPTION OF SYMBOLS 51 ... Sealing layer, 52 ... Sealing material on the surface of a sintered layer, 53 ... Sealing material which penetrate | invaded the space | gap of a mother phase, 61 ... Sintered layer raw material powder, 62 ... Carbon die, 63 ... Carbon punch, 64 DESCRIPTION OF SYMBOLS ... Vacuum chamber, 65 ... Upper electrode, 66 ... Lower electrode, 67 ... Pulse power supply, 71 ... Al particle, 72 ... Hollow silica, 73 ... Air gap, 81 ... Test piece, 82 ... Vacuum chamber, 83 ... Infrared camera, 84 ... Laser heat source, 100, 100a, 100b, 100c ... piston, 101 ... piston crown surface, 102 ... piston pin receiving part

Claims (22)

  1.  基材と、前記基材の表面に設けられた焼結層とを有し、
     前記焼結層と前記基材との間に、前記基材よりも融点が低いインサート材により形成された浸透拡散層を有することを特徴とする内燃機関用ピストン。
    A substrate and a sintered layer provided on the surface of the substrate;
    A piston for an internal combustion engine having an infiltration diffusion layer formed of an insert material having a melting point lower than that of the base material between the sintered layer and the base material.
  2.  前記焼結層および前記浸透拡散層は気孔を有し、
     下記式(1)で表される前記焼結層の気孔率Pは、下記式(2)で表される前記浸透拡散層の気孔率Qよりも大きいことを特徴とする請求項1に記載の内燃機関用ピストン。
     P=100-D/D×100…式(1)
     (Dは測定した密度(g/cm)、Dは気孔を含まないバルク体の理想密度)
     Q=P×{αX+β(1-X)…式(2)
     (αは焼結体の空隙の体積比率、βは中空粒子の空孔部の体積比率)
    The sintered layer and the permeation diffusion layer have pores,
    The porosity P of the sintered layer represented by the following formula (1) is larger than the porosity Q of the permeation diffusion layer represented by the following formula (2). Piston for internal combustion engine.
    P = 100−D m / D i × 100 Formula (1)
    (D m is the measured density (g / cm 3 ), D i is the ideal density of the bulk material without pores)
    Q = P × {αX + β (1-X) (2)
    (Α is the volume ratio of the voids in the sintered body, β is the volume ratio of the voids of the hollow particles)
  3.  前記焼結層の主成分は金属であることを特徴とする請求項1に記載の内燃機関用ピストン。 2. The piston for an internal combustion engine according to claim 1, wherein a main component of the sintered layer is a metal.
  4.  前記金属はアルミニウムであることを特徴とする請求項3に記載の内燃機関用ピストン。 The piston for an internal combustion engine according to claim 3, wherein the metal is aluminum.
  5.  前記焼結層に中空粒子を含むことを特徴とする請求項1乃至請求項4のいずれか1項に記載の内燃機関用ピストン。 The piston for an internal combustion engine according to any one of claims 1 to 4, wherein the sintered layer includes hollow particles.
  6.  前記焼結層の気孔率は50%以上であることを特徴とする請求項1に記載の内燃機関用ピストン。 The piston for an internal combustion engine according to claim 1, wherein the porosity of the sintered layer is 50% or more.
  7.  前記インサート材は少なくともアルミニウム合金を含むことを特徴とする請求項1に記載の内燃機関用ピストン。 The piston for an internal combustion engine according to claim 1, wherein the insert material includes at least an aluminum alloy.
  8.  前記アルミニウム合金はAl-Mg合金であることを特徴とする請求項7に記載の内燃機関用ピストン。 The piston for an internal combustion engine according to claim 7, wherein the aluminum alloy is an Al-Mg alloy.
  9.  前記Al-Mg合金はAl12Mg17であることを特徴とする請求項8に記載の内燃機関用ピストン。 9. The piston for an internal combustion engine according to claim 8, wherein the Al—Mg alloy is Al 12 Mg 17 .
  10.  前記浸透拡散層の厚さは前記焼結層に含まれる金属粒子の平均粒径の2倍以上であることを特徴とする請求項1に記載の内燃機関用ピストン。 2. The piston for an internal combustion engine according to claim 1, wherein the thickness of the permeation diffusion layer is at least twice the average particle diameter of the metal particles contained in the sintered layer.
  11.  浸透拡散層の気孔率は傾斜していることを特徴とする請求項1に記載の内燃機関用ピストン。 2. The piston for an internal combustion engine according to claim 1, wherein the porosity of the permeation diffusion layer is inclined.
  12.  前記焼結層の体積比熱は、1000kJ/m・K以下であり、熱伝導率は1W/mK以下であることを特徴とする請求項1に記載の内燃機関用ピストン。 2. The piston for an internal combustion engine according to claim 1, wherein the sintered layer has a volume specific heat of 1000 kJ / m 3 · K or less and a thermal conductivity of 1 W / mK or less.
  13.  前記焼結層の厚さは50μm以上100μm以下であることを特徴とする請求項1に記載の内燃機関用ピストン。 The piston for an internal combustion engine according to claim 1, wherein the sintered layer has a thickness of 50 µm or more and 100 µm or less.
  14.  基材と、前記基材よりも融点の低い金属からなるインサート材と、金属の粉末または金属の焼結体とをこの順で積層して積層体を作製し、
     前記積層体を加熱して前記インサート材を溶融し、前記インサート材を前記金属の粉末から形成される焼結体または前記焼結体の空孔に浸透することで浸透拡散層を形成することを特徴とする内燃機関用ピストンの製造方法。
    A base material, an insert material made of a metal having a melting point lower than that of the base material, and a metal powder or a metal sintered body are laminated in this order to produce a laminate,
    Heating the laminated body to melt the insert material, and forming a permeation diffusion layer by infiltrating the insert material into a sintered body formed from the metal powder or pores of the sintered body; A method for manufacturing a piston for an internal combustion engine, which is characterized.
  15.  前記インサート材を溶融する際にパルス通電接合法を用いることを特徴とする請求項14に記載の内燃機関用ピストンの製造方法。 The method for manufacturing a piston for an internal combustion engine according to claim 14, wherein a pulse current joining method is used when the insert material is melted.
  16.  前記インサート材を溶融する際に外部熱源を用いることを特徴とする請求項15に記載の内燃機関用ピストンの製造方法。 The method for manufacturing a piston for an internal combustion engine according to claim 15, wherein an external heat source is used when the insert material is melted.
  17.  前記インサート材は粉末であることを特徴とする請求項15乃至請求項16のいずれか1項に記載の内燃機関用ピストンの製造方法。 The method for manufacturing a piston for an internal combustion engine according to any one of claims 15 to 16, wherein the insert material is powder.
  18.  前記インサート材の粉末はAl合金を含むことを特徴とする請求項17に記載の内燃機関用ピストンの製造方法。 The method for manufacturing a piston for an internal combustion engine according to claim 17, wherein the powder of the insert material contains an Al alloy.
  19.  前記Al合金はAl-Mg合金であることを特徴とする請求項18に記載の内燃機関用ピストンの製造方法。 The method for manufacturing a piston for an internal combustion engine according to claim 18, wherein the Al alloy is an Al-Mg alloy.
  20.  前記Al-Mg合金はAl12Mg17であることを特徴とする請求項19に記載の内燃機関用ピストンの製造方法。 The method for manufacturing a piston for an internal combustion engine according to claim 19, wherein the Al-Mg alloy is Al 12 Mg 17 .
  21.  前記インサート材はシート状材料であることを特徴とする請求項14乃至請求項16のいずれか1項に記載の内燃機関用ピストンの製造方法。 The method for manufacturing a piston for an internal combustion engine according to any one of claims 14 to 16, wherein the insert material is a sheet-like material.
  22.  前記シート状材料はAl合金を含むことを特徴とする請求項21に記載の内燃機関用ピストンの製造方法。 The method for manufacturing a piston for an internal combustion engine according to claim 21, wherein the sheet-like material contains an Al alloy.
PCT/JP2018/016463 2017-04-25 2018-04-23 Internal-combustion engine piston, and method for manufacturing internal-combustion engine piston WO2018199024A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-085778 2017-04-25
JP2017085778A JP2020109257A (en) 2017-04-25 2017-04-25 Piston for internal combustion engine and method for manufacturing piston for internal combustion engine

Publications (1)

Publication Number Publication Date
WO2018199024A1 true WO2018199024A1 (en) 2018-11-01

Family

ID=63920406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016463 WO2018199024A1 (en) 2017-04-25 2018-04-23 Internal-combustion engine piston, and method for manufacturing internal-combustion engine piston

Country Status (2)

Country Link
JP (1) JP2020109257A (en)
WO (1) WO2018199024A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04220195A (en) * 1990-12-14 1992-08-11 Komatsu Ltd Joining insert material
JPH09268304A (en) * 1996-03-29 1997-10-14 Kawasaki Heavy Ind Ltd Metallic member having gradient composition type insulating layer and its production
JP2010070792A (en) * 2008-09-17 2010-04-02 Toyota Central R&D Labs Inc Thin film forming method, and method of manufacturing internal combustion engine
WO2013081150A1 (en) * 2011-12-02 2013-06-06 日本碍子株式会社 Engine combustion chamber structure, and inner wall structure of flow path

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04220195A (en) * 1990-12-14 1992-08-11 Komatsu Ltd Joining insert material
JPH09268304A (en) * 1996-03-29 1997-10-14 Kawasaki Heavy Ind Ltd Metallic member having gradient composition type insulating layer and its production
JP2010070792A (en) * 2008-09-17 2010-04-02 Toyota Central R&D Labs Inc Thin film forming method, and method of manufacturing internal combustion engine
WO2013081150A1 (en) * 2011-12-02 2013-06-06 日本碍子株式会社 Engine combustion chamber structure, and inner wall structure of flow path

Also Published As

Publication number Publication date
JP2020109257A (en) 2020-07-16

Similar Documents

Publication Publication Date Title
US8813734B2 (en) Heat-insulating structure
JP5402380B2 (en) Method for producing porous aluminum sintered body
WO2016076341A1 (en) Heat-resistant member provided with heat-shielding coating, and method for manufacturing same
WO2018061591A1 (en) Piston for internal combustion engine and method for manufacturing piston for internal combustion engine
JP5136629B2 (en) Thermal barrier film and method for forming the same
CN111085688B (en) Tungsten/silicon nitride/tungsten symmetrical layered gradient composite material and rapid preparation method and application thereof
JP6694301B2 (en) Joined body and method for manufacturing joined body
JP5470278B2 (en) Sealing mechanism for high temperature fuel cell stacks
CN105473521B (en) Thermal isolation film and the method for forming thermal isolation film
CN107117986A (en) Ceramic-on-ceramic fastener and correlation technique
JP2012030215A (en) Honeycomb structure body and method of producing the same
JP5764506B2 (en) Ceramic porous body-metal heat insulating material and manufacturing method thereof
JP6173829B2 (en) TiAl bonded body and manufacturing method of TiAl bonded body
JP2947739B2 (en) Carbonate fuel cell matrix
WO2018199024A1 (en) Internal-combustion engine piston, and method for manufacturing internal-combustion engine piston
JP2008267158A (en) Piston for internal combustion engine and method for manufacturing the same
JP2884068B2 (en) Manufacturing method of thermoelectric conversion element
WO2019187273A1 (en) Internal combustion engine piston and manufacturing method for internal combustion engine piston
WO2021166714A1 (en) Composite heat transfer member and method for producing composite heat transfer member
JPH11298052A (en) Thermoelectric element, thermoelectric material and manufacture thereof
JP2013129899A (en) Method for manufacturing heat insulating member, and internal combustion engine manufactured therewith
WO2020170635A1 (en) Internal combustion engine piston, and method for manufacturing same
JP2010207831A (en) JOINING MATERIAL FOR Al ALLOY AND CERAMIC COMPOUND MATERIAL, AND METHOD FOR MANUFACTURING THE SAME
JP2019169534A (en) Thermoelectric device, thermoelectric conversion module and method for manufacturing thermoelectric device
JP2000286466A (en) Si-ge semiconductor device and manufacture of the same, and thermoelectric conversion module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18790921

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18790921

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP