JP2000233979A - Silicon nitride sintered body and its production - Google Patents

Silicon nitride sintered body and its production

Info

Publication number
JP2000233979A
JP2000233979A JP11037948A JP3794899A JP2000233979A JP 2000233979 A JP2000233979 A JP 2000233979A JP 11037948 A JP11037948 A JP 11037948A JP 3794899 A JP3794899 A JP 3794899A JP 2000233979 A JP2000233979 A JP 2000233979A
Authority
JP
Japan
Prior art keywords
silicon nitride
molded body
layer
solvent
formed body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11037948A
Other languages
Japanese (ja)
Inventor
Katsunori Akiyama
勝徳 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP11037948A priority Critical patent/JP2000233979A/en
Publication of JP2000233979A publication Critical patent/JP2000233979A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00612Uses not provided for elsewhere in C04B2111/00 as one or more layers of a layered structure

Abstract

PROBLEM TO BE SOLVED: To provide a silicon nitride sintered body which is used as a high-temperature structural material capable of being adopted for use in a part required to be thermally insulated, and also to provide a production process for the sintered body. SOLUTION: This sintered body consists of: a surface layer which is a porous layer; an inner layer which is a dense layer having a lower porosity as compared with the surface layer; and an intermediate layer which is formed between the surface layer and inner layer and has such a composition that porosity of the intermediate layer is continuously increased in the direction toward the surface layer from the inner layer. This production process comprises: forming a first formed body by mixing powdery silicon nitride with a sintering aid and a solvent to obtain a mixture, thereafter evaporating the solvent in the mixture and forming the resulting mixture into a formed body, or alternatively, forming the above mixture before solvent evaporation into a formed body and thereafter evaporating the solvent in the formed body; forming a second formed body by mixing powdery silicon nitride with a solvent to obtain a mixture, thereafter evaporating the solvent in the mixture and forming the resulting mixture into a formed body, or alternatively, forming the above mixture before solvent evaporation into a formed body and thereafter evaporating the solvent in the formed body; then bringing such two second formed bodies into contact with the first formed body so as to interpose the first formed body between them; and in that state, sintering these first and second formed bodies.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、表面近傍のみを多
孔質化して断熱化した高温構造材料用窒化珪素焼結体及
びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon nitride sintered body for a high-temperature structural material in which only the surface is made porous and heat-insulated, and a method for producing the same.

【0002】[0002]

【従来の技術】従来から、内燃機関等において、熱効率
を上げるための一つの手段として断熱化が検討されてい
る。このような高温の部位に用いられる材料には、高い
機械的特性と低い熱伝導率を有することが必要であり、
これら双方の特性を併せ持つことが望ましい。ここで、
材料の熱伝導率を低下させる方法として、比熱の大きな
空気を多く含ませる多孔質化が最も有効であるが、多孔
質化した材料は一般に強度が低いため、強度を必要とす
る部位には適用できない。したがって、高強度の材料を
下地とし、この下地材料の上に溶射等によって多孔質化
した膜を形成し断熱化する方法が広く行われている。し
かし、この方法では、下地材料と膜との熱膨張差や熱伝
導差などにより、材料内部に応力が発生して膜の剥離が
発生するおそれがあった。
2. Description of the Related Art Conventionally, heat insulation has been studied as one means for increasing the thermal efficiency of an internal combustion engine or the like. Materials used for such high-temperature parts need to have high mechanical properties and low thermal conductivity,
It is desirable to have both of these characteristics. here,
The most effective way to lower the thermal conductivity of a material is to make it porous, which contains a lot of air with a large specific heat.However, porous materials generally have low strength, so they are applied to areas that require strength. Can not. Therefore, a method is widely used in which a high-strength material is used as a base, and a porous film is formed on the base material by thermal spraying or the like to provide heat insulation. However, in this method, stress may be generated inside the material due to a difference in thermal expansion or thermal conductivity between the base material and the film, and the film may be peeled.

【0003】一方、高温構造材料には、強度や靱性等の
機械的特性が高い窒化珪素焼結体があるが、該窒化珪素
焼結体は、熱伝導率が比較的高いため、一般的には断熱
化には適さない。さらに、断熱化するために多孔質化し
ようとすると、工業的に有利な溶射等は、窒化珪素が分
解されるために採用することができなかった。したがっ
て、強度や靱性の機械的特性に対して最も優れたセラミ
ックスである窒化珪素セラミックスは、熱伝導率が比較
的高いために断熱化が必要な部材の高温構造材料として
採用できなかった。
On the other hand, among high-temperature structural materials, there are silicon nitride sintered bodies having high mechanical properties such as strength and toughness. However, these silicon nitride sintered bodies generally have a relatively high thermal conductivity and are generally used. Is not suitable for insulation. Furthermore, if it is attempted to make it porous for heat insulation, industrially advantageous thermal spraying or the like cannot be adopted because silicon nitride is decomposed. Therefore, silicon nitride ceramics, which are ceramics having the best mechanical properties of strength and toughness, cannot be used as a high-temperature structural material for members requiring thermal insulation because of their relatively high thermal conductivity.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記課題を
解決し、断熱化が必要な部位に採用できる高温構造材料
としての窒化珪素焼結体及びその製造方法を提供するこ
とを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and to provide a silicon nitride sintered body as a high-temperature structural material which can be employed in a portion requiring heat insulation, and a method for producing the same. .

【0005】[0005]

【課題を解決するための手段】本発明に係る窒化珪素焼
結体は、上記目的を達成するため、多孔質層である表層
と、該表層に比較して多孔率が低い緻密質層である内層
と、これらの表層と内層との間に形成された中間層とを
有し、該中間層の組成を、内層側から表層側に向かうに
つれてその多孔率が連続的に大きくなるように構成して
いる。上記表層の多孔率は、2%〜10%であり、内層
の多孔率は0%〜2%である。また、本発明に係る窒化
珪素焼結体の製造方法は、窒化珪素粉末に焼結助剤と溶
媒を混合したのち溶媒を蒸発させるか、または成型して
から溶媒を蒸発させて成型して第1成型体を作製し、窒
化珪素粉末に溶媒を混合したのち溶媒を蒸発させるか、
または成型してから溶媒を蒸発させて成型して第2成型
体を作製し、次いで、上記第1成型体の表面側に上記第
2成型体を接触させ、この状態でこれらの第1成型体と
第2成型体とを焼成することにより、上記第1成型体の
表面側に多孔質層を形成するものである。
Means for Solving the Problems A silicon nitride sintered body according to the present invention comprises, in order to achieve the above object, a surface layer which is a porous layer and a dense layer having a lower porosity than the surface layer. An inner layer, and an intermediate layer formed between the surface layer and the inner layer, wherein the composition of the intermediate layer is configured such that its porosity continuously increases from the inner layer side to the surface layer side. ing. The porosity of the surface layer is 2% to 10%, and the porosity of the inner layer is 0% to 2%. In addition, the method for producing a silicon nitride sintered body according to the present invention includes mixing a sintering aid and a solvent with silicon nitride powder and then evaporating the solvent, or molding and then evaporating the solvent to form a second mixture. 1 After preparing a molded body, mixing the solvent with the silicon nitride powder and evaporating the solvent,
Or, after molding, the solvent is evaporated to form a second molded body, and then the second molded body is brought into contact with the surface side of the first molded body. And baking the second molded body to form a porous layer on the surface side of the first molded body.

【0006】上記溶媒としては、水、エタノール等のア
ルコール類、トルエン等の非水溶媒系などを用いること
ができるが、このうち安全性やコストの点からは水が最
も好ましい。上記第1及び第2成型体の製造において、
窒化珪素粉末、焼結助剤及び溶媒の混合割合は、第1成
型体では、窒化珪素が85〜92重量%で、焼結助剤が
15〜8重量%が好ましい。第2成型体は、焼結助剤を
含まない窒化珪素が100重量%のものを用いる。ま
た、CIP成型の場合は、冷間静水圧を50〜300k
gf/mm とするのが好ましく、このうち特に100
〜200kgf/mm が好ましい。上記第1成型体と
第2成型体とを焼成する場合において、焼成温度と焼成
時間の好ましい範囲は、窒素雰囲気中、焼成温度160
0〜2000℃、焼成時間10分〜10時間である。上
記方法によって焼結した焼結体は、緻密質層である内層
と多孔質層である表層との界面は、主剤は同じ窒化珪素
であるために機械的強度が高くなるだけでなく、内層の
熱伝導率が比較的高いことから、界面に発生する熱応力
の低下も期待でき、形成された膜の剥離等の問題を解決
することができる。
[0006] Examples of the solvent include water, ethanol and the like.
Use non-aqueous solvents such as rucols and toluene
Of these, water is the best for safety and cost.
Is also preferred. In the production of the first and second molded bodies,
The mixing ratio of silicon nitride powder, sintering aid and solvent
In the mold, the silicon nitride is 85 to 92% by weight, and the sintering aid is
15 to 8% by weight is preferred. The second molded body uses a sintering aid
A silicon nitride containing 100% by weight is used. Ma
In the case of CIP molding, the cold isostatic pressure is 50 to 300 k.
gf / mm 2 And preferably 100
~ 200kgf / mm 2 Is preferred. The first molded body and
When firing the second molded body, firing temperature and firing
The preferred range of time is a baking temperature of 160 in a nitrogen atmosphere.
The temperature is 0 to 2000 ° C. and the baking time is 10 minutes to 10 hours. Up
The sintered body sintered by the above method is a dense layer
The interface between the porous layer and the surface layer is
Not only increases the mechanical strength, but also
Thermal stress generated at the interface due to relatively high thermal conductivity
Can be expected to reduce the problem of peeling of the formed film
can do.

【0007】さらに、本発明に係る窒化珪素焼結体の製
造方法の別の態様は、窒化珪素粉末に焼結助剤と溶媒を
混合したのち溶媒を蒸発させるか、または成型してから
溶媒を蒸発させて第1成型体を作製し、次いで焼結助剤
を添加していない窒化珪素粉末を上記第1成型体の表面
側に接触させ、この状態で、これらの焼結助剤を添加し
ていない窒化珪素粉末と上記第1成型体とを焼成するこ
とにより、上記第1成型体の表面側に多孔質層を形成す
るものである。なお、上記窒化珪素焼結体は、焼成後の
状態では、第1成型体と第2成型体、又は第1成型体と
焼結助剤を添加していない窒化珪素粉末とがその界面近
傍部において条件によっては接合される場合もある。こ
の場合には、窒化珪素焼結体を実際の製品等に採用する
場合は、上記第2成型体や結助剤を添加していない窒化
珪素粉末を除去して、第1成型体のみを用いる。
Further, another aspect of the method for producing a silicon nitride sintered body according to the present invention is to mix a sintering aid and a solvent with silicon nitride powder and then evaporate the solvent, or form the solvent after mixing. Evaporate to produce a first molded body, and then contact the silicon nitride powder, to which no sintering aid has been added, with the surface of the first molded body. In this state, add these sintering aids. The porous layer is formed on the surface side of the first molded body by firing the silicon nitride powder and the first molded body that have not been formed. In the sintered state of the silicon nitride, after firing, the first molded body and the second molded body, or the first molded body and the silicon nitride powder to which the sintering aid is not added, are in the vicinity of the interface. May be joined depending on conditions. In this case, when the silicon nitride sintered body is used for an actual product or the like, the second molded body or the silicon nitride powder to which the binder is not added is removed, and only the first molded body is used. .

【0008】[0008]

【発明の実施の形態】本発明者らは、高温構造材料とし
て有利な特性をもつ窒化珪素焼結体における熱伝導率を
下げるための多孔質化手段として、成膜による方法では
なく、焼結体を製造する過程において焼結体の表面近傍
部のみを多孔質層とする方法を見出し、本発明に至っ
た。具体的には、焼結助剤を添加して成型した窒化珪素
成型体(以下、第1成型体という)において多孔質化し
たい部分を、助剤を添加していない窒化珪素成型体(以
下、第2成型体という)又は助剤無添加の窒化珪素粉末
(以下、無添加粉末という)に接触させた状態で焼成
し、窒化珪素焼結体を作製する。
BEST MODE FOR CARRYING OUT THE INVENTION The inventors of the present invention have proposed, as a means for reducing the thermal conductivity of a silicon nitride sintered body having advantageous properties as a high-temperature structural material, a sintering method instead of a film-forming method. The present inventors have found a method of forming a porous layer only in the vicinity of the surface of the sintered body in the process of manufacturing the body, and have reached the present invention. Specifically, in a silicon nitride molded body (hereinafter, referred to as a first molded body) molded by adding a sintering aid, a portion desired to be made porous is formed by a silicon nitride molded body to which no auxiliary agent is added (hereinafter, referred to as a first molded body). It is fired in a state where it is in contact with a silicon nitride powder without additive (hereinafter, referred to as a second molded body) or a silicon nitride powder without additive (hereinafter, referred to as an additive-free powder) to produce a silicon nitride sintered body.

【0009】以下に、本発明に係る窒化珪素焼結体と製
造方法の実施形態について、詳細に説明する。 [窒化珪素焼結体の作製]第1成型体の作製 窒化珪素粉末に焼結助剤と溶媒を添加し、混合し造粒し
て造粒粉を作製する。この造粒粉を金型に投入し、圧力
をかけて押し固めることによって、第1成型体を作製す
る。上記圧力は等方的であることが望ましく、常温で静
水圧力をかけて成形する冷間静水圧成形が最も好まし
い。これは、冷間等方圧成形、又はCIP(Cold Isosta
tic Pressing)とも呼ばれる成形方法である。この冷間
静水圧成形では、成型体密度を高くするために、通常
は、成型体密度を高める作用を持つバインダーとよばれ
る油脂分を造粒粉に混入させるが、本願では、このバイ
ンダーを入れずに、且つ、静水圧を50〜300kgf
/mm 、好ましくは100〜200kgf/mm
成形する。静水圧が50kgf/mm 以下では形状が
保持できず、300kgf/mm 以上では緻密化して
しまうためである。また、多孔質化をするためには、成
形体密度は極力低い方が良く、形状を保持できる範囲内
で最も低くする必要がある。
Hereinafter, a silicon nitride sintered body according to the present invention and a
An embodiment of the manufacturing method will be described in detail. [Preparation of silicon nitride sintered body]Production of the first molded body Add sintering aid and solvent to silicon nitride powder, mix and granulate
To produce granulated powder. This granulated powder is put into a mold,
To make the first molded body
You. The above pressure is desirably isotropic, and is static at room temperature.
Cold isostatic pressing, which is formed by applying water pressure, is most preferred.
No. This is performed by cold isostatic pressing or CIP (Cold Isosta
tic Pressing). This cold
In hydrostatic molding, in order to increase the density of the molded body, usually
Is called a binder that has the effect of increasing the density of the molded body
Fats and oils are mixed into the granulated powder.
And the hydrostatic pressure is 50-300kgf
/ Mm 2 , Preferably 100 to 200 kgf / mm 2 so
Molding. Hydrostatic pressure is 50kgf / mm 2 Below is the shape
Can not hold, 300kgf / mm 2 Above
This is because Also, in order to make it porous,
The shape density should be as low as possible and within the range that can maintain the shape
Needs to be the lowest.

【0010】第2成型体の作製 第2成型体については、焼結助剤を添加せず、その他の
点については、上記第1成型体と同一手順で作製する。窒化珪素焼結体の作製 上記第1成型体の表面に第2成型体を当接させ、この状
態で、これらの第1成型体の表面と第2成型体を焼成し
て窒化珪素焼結体が得られる。これによって、第1成型
体の表層、つまり、第2成型体との接触部が多孔質化す
る。この表層の多孔率は、2%〜10%であり、多孔質
化の影響を受けていない内層の多孔率は、0%〜2%で
ある。これらの表層と内層との間には中間層が形成さ
れ、表層側から内層側にいくにつれて、多孔率が連続的
に減少している。 [溶媒]溶媒には、水、エタノール等のアルコール類、ト
ルエン等の非水溶媒系などを用いることができるが、こ
のうち、水が最も好ましい。 [焼結助剤]焼結助剤とは、焼成において昇温中に反応し
融解して窒化珪素粒子を相互に接合する作用を有する。
窒化珪素は難焼結性を有するため、焼結助剤を添加する
が、上記焼成プロセスにおいて、助剤のない部位を作れ
ば、焼結が進みにくいためにその部位は多孔質化する。
窒化珪素焼結体の内層は、その組成が緻密質である必要
があるが、焼結体全体の成形体密度が低いため、内層部
は、助剤量を多くすることによって緻密化させる。通常
は、焼結助剤の全添加量は5〜8wt%程度であるが、
本発明の場合には、8〜15wt%程度の多量の助剤を
添加する。添加量が、8wt%よりも少ないと成形体密
度が低いので全体的な強度が保てず、15wt%以上で
あると、表面近傍の多孔質化が進まない。なお、助剤の
種類は特に問わないが、焼成時に粘性が低くなるものの
方が多孔質化の効果が大きく好ましい。
Preparation of the second molded body The second molded body is prepared by adding no sintering aid, and otherwise is manufactured in the same procedure as the first molded body. Preparation of Silicon Nitride Sintered Body The second molded body is brought into contact with the surface of the first molded body, and in this state, the surface of the first molded body and the second molded body are fired to form a silicon nitride sintered body. Is obtained. Thereby, the surface layer of the first molded body, that is, the contact portion with the second molded body is made porous. The porosity of this surface layer is 2% to 10%, and the porosity of the inner layer not affected by the porosity is 0% to 2%. An intermediate layer is formed between the surface layer and the inner layer, and the porosity continuously decreases from the surface layer side to the inner layer side. [Solvent] As the solvent, water, alcohols such as ethanol, non-aqueous solvent systems such as toluene can be used, of which water is most preferable. [Sintering Aid] The sintering aid has a function of reacting and melting during heating to bond the silicon nitride particles to each other during firing.
Since silicon nitride has sintering resistance, a sintering aid is added. However, in the above-described firing process, if a part without an aid is made, the sintering is difficult to proceed, and the part is made porous.
Although the composition of the inner layer of the silicon nitride sintered body needs to be dense, the density of the molded body of the entire sintered body is low. Therefore, the inner layer portion is densified by increasing the amount of the auxiliary agent. Usually, the total amount of the sintering aid is about 5 to 8 wt%,
In the case of the present invention, a large amount of an auxiliary agent of about 8 to 15 wt% is added. If the amount is less than 8 wt%, the overall strength cannot be maintained because the density of the molded body is low, and if the amount is 15 wt% or more, the porosity near the surface does not progress. The type of the auxiliary agent is not particularly limited, but those having a lower viscosity at the time of sintering are preferable because they have a large effect of making the material porous.

【0011】[多孔質化の原理(作用)]上記第1成型体
のうち、第2成型体又は無添加粉末と当接した表層部に
おいて、焼成中に助剤が反応し融解すると、第1成型体
から、上記無添加粉末又は第2成型体へ助剤成分が吸い
込まれるように拡散し、物質移動する。この助剤成分移
動後の第1成型体には、焼結に寄与する駆動力が減少し
ているので、内層部が緻密化する温度に達しても、表層
部は成型体作製時の密度とほとんど違いが無いため、第
1成型体の表層部は、内層部に比較して多孔質化する。
[Principle (Action) of Porousization] In the first molded body, in the surface layer portion in contact with the second molded body or the additive-free powder, the auxiliary reacts and melts during firing, and the first The auxiliary component diffuses from the molded body into the non-added powder or the second molded body so as to be sucked, and undergoes mass transfer. Since the driving force contributing to sintering is reduced in the first molded body after the transfer of the auxiliary component, even if the inner layer reaches a temperature at which the inner layer is densified, the surface layer has the same density as that at the time of producing the molded body. Since there is almost no difference, the surface layer portion of the first molded body is more porous than the inner layer portion.

【0012】[0012]

【実施例】次いで、窒化珪素焼結体の製造方法について
の実施例を説明する。第1成型体の作製 (原料粉末)原材粉末としての窒化珪素粉末は、イミド
合成粉を使用した。ただし、このイミド合成粉の代わり
に、直接窒化法などの他の製造方法で製造した粉末でも
同様である。焼結助剤は、窒化珪素を焼結する場合に一
般的に用いる、Al を5wt%、Y を5w
t%混合したものを用いた。 (製造工程)上記原料粉末と焼結助剤を、水を溶媒とし
て混合して分散処理を行い、スプレードライを用いて造
粒した。この造粒粉を直径60mm、厚みが約10mm
に金型を用いて1次成型し、次に静水圧を200kgf
/cm かけて冷間静水圧成形をして第1成型体を作製
した。
Next, a method for manufacturing a silicon nitride sintered body will be described.
An example will be described.Production of the first molded body (Raw material powder) Silicon nitride powder as raw material powder is imide
Synthetic powder was used. However, instead of this imide synthetic powder,
Also, powders manufactured by other manufacturing methods such as direct nitriding
The same is true. A sintering aid is used when sintering silicon nitride.
Al commonly used 2 O 3 5 wt%, Y 2 O 3 5w
What mixed t% was used. (Manufacturing process) The above-mentioned raw material powder and sintering aid are mixed with water as a solvent.
Mix and disperse, then spray dry
Granulated. This granulated powder has a diameter of 60 mm and a thickness of about 10 mm
Is first molded using a mold, and then the hydrostatic pressure is set to 200 kgf.
/ Cm 2 Cold isostatic pressing to produce the first molded body
did.

【0013】第2成型体の作製 原料粉末は、上記第1成型体と同様のイミド合成粉を用
い、焼結助剤を添加せずに水を媒体として混合して分散
処理を行い、スプレードライを用いて造粒した。この造
粒粉を直径60mm、厚みが約10mmに金型を用いて
1次成型し、次に静水圧を200kgf/cm かけて
冷間静水圧成形したものを2枚作製し、第2成型体とし
た。窒化珪素焼結体の作製 上記第2成型体で第1成型体を上下から挟み込んだ状態
で焼成炉内に配置し、最高圧力が9.5kgf/cm
、温度が1800℃の窒素雰囲気中で焼成を2時間行
って、窒化珪素焼結体を作製した。
[0013]Production of the second molded body As the raw material powder, use the same imide synthetic powder as in the first molded body.
Mix and disperse with water as a medium without adding sintering aid
The treatment was performed, and granulation was performed using spray drying. This structure
Using a mold to make the granules 60 mm in diameter and 10 mm in thickness
Primary molding, then hydrostatic pressure 200kgf / cm 2 Over
Two pieces of cold isostatic pressing are produced and used as a second molded body.
Was.Production of silicon nitride sintered body State where the first molded body is sandwiched from above and below by the second molded body
At the maximum pressure of 9.5kgf / cm
2 Baking in a nitrogen atmosphere at a temperature of 1800 ° C. for 2 hours
Thus, a silicon nitride sintered body was manufactured.

【0014】窒化珪素焼結体の検査 上記によって得られた窒化珪素焼結体のうち、中心部に
配置された第1成型体を取り出して切断、研磨して内部
が判るようにし、工学顕微鏡を用いて気孔の状況を確認
した。また、第1成型体の一部をJIS試験片サイズに
切り出して、インストロン型の試験機を用いて、下スパ
ン間距離が30mm、上スパン間距離が10mmである
4点曲げ試験による強度測定を行った。
Inspection of silicon nitride sintered body From the silicon nitride sintered body obtained as described above, the first molded body disposed at the center is taken out, cut and polished so that the inside can be seen, and an engineering microscope is used. The condition of the pores was confirmed using the method. Further, a part of the first molded body was cut out to the size of a JIS test piece, and the strength was measured by a four-point bending test in which the distance between the lower spans was 30 mm and the distance between the upper spans was 10 mm using an Instron type testing machine. Was done.

【0015】(組織検査の評価)図1は、上記実施例に
よって得られた窒化珪素焼結体の組織を示す図である。
この図1のうち、(b)に示すように、第1成型体のう
ち、第2成型体と接していた界面から深さ約2mm迄の
部分は気孔が多く、多孔質層が形成されたことが判る。
また、(b)(c)などに示すように、界面から約2.
7mm以上深い部位に気孔はほとんどなく、緻密質層が
形成されたことが判る。そして、これらの多孔質層と緻
密質層との間、つまり、界面から深さが2mm〜2.7
mmの間は、気孔の数が徐々に変化する中間層であるこ
とが判る。また、表1に示すように、表面側の多孔質層
における強度は、内部側の緻密質部分と比較して16.
4%ほど低いが、ばらつきを示す標準偏差はほとんど同
じであり、強度特性の低下は最低限に抑制できる。な
お、表1の強度低下率は、緻密質部分における平均曲げ
強さ(97.0kgf/mm )と多孔質層における平
均曲げ強さ(81.1kgf/mm )の差を、緻密質
部分における平均曲げ強さ(97.0kgf/mm
で割った割合である。
(Evaluation of Tissue Inspection) FIG.
It is a figure which shows the structure of the obtained silicon nitride sintered compact.
In FIG. 1, as shown in FIG.
In addition, from the interface in contact with the second molded body to a depth of about 2 mm
The portion has many pores, indicating that a porous layer was formed.
Also, as shown in (b) and (c), about 2..
There are almost no pores in the part deeper than 7mm, and the dense layer
It can be seen that it was formed. And these porous layers and fine
Between the dense layer, that is, a depth of 2 mm to 2.7 from the interface
mm, it is an intermediate layer in which the number of pores changes gradually.
I understand. Also, as shown in Table 1, the porous layer on the surface side
Is higher than that of the dense portion on the inner side.
Although it is about 4% lower, the standard deviation showing the variation is almost the same.
Therefore, a decrease in strength characteristics can be suppressed to a minimum. What
The strength reduction rate in Table 1 indicates the average bending in the dense portion.
Strength (97.0 kgf / mm 2 ) And flat in the porous layer
Uniform bending strength (81.1kgf / mm 2 ) Difference,
Average bending strength (97.0 kgf / mm) 2 )
It is the ratio divided by.

【0016】[0016]

【発明の効果】本発明によれば、特別なプロセスなし
に、断熱化を必要とする部分に助剤なしの窒化珪素と接
するだけで、通常の焼結プロセス中に自然に表面の多孔
質化が達成できる。なお、本発明に係る窒化珪素焼結体
は、以下に説明するように、多岐に亘る分野において適
用できる。
According to the present invention, the surface which needs to be thermally insulated can be spontaneously made porous during the normal sintering process only by contacting it with silicon nitride without an auxiliary agent, without any special process. Can be achieved. The silicon nitride sintered body according to the present invention can be applied in various fields as described below.

【0017】熱流束が問題となる分野 本発明は、例えば、小型レシプロエンジン、発電用ガス
タービン構成部品などに適用できる。小型レシプロエン
ジンは、熱効率が特に低いので、効率を上げることが大
気汚染抑制の対策となる。熱効率を上げるには、エネル
ギーを廃棄することと等価な冷却系の廃止による無冷却
化と、エンジン全体の断熱化が有効な対処法である。無
冷却化には、高温に耐えうる材料を適用すれば良いが、
レシプロエンジンに特有な間欠燃焼によるパルス的熱流
束による熱応力が発生するので、熱膨張係数が小さい
か、又は熱伝導率が高い特性を併せ持つことが必要であ
る。一般的な窒化珪素セラミックスの場合、熱膨張係数
は普通であるが、熱伝導率が高いので、この点では有利
である。
The present invention can be applied to, for example, small reciprocating engines, gas turbine components for power generation, and the like. Since a small reciprocating engine has particularly low thermal efficiency, increasing the efficiency is a measure for suppressing air pollution. In order to increase thermal efficiency, effective measures are to eliminate cooling by eliminating a cooling system equivalent to discarding energy, and to insulate the entire engine. For the non-cooling, a material that can withstand high temperatures may be applied,
Since thermal stress is generated due to pulse heat flux due to intermittent combustion peculiar to the reciprocating engine, it is necessary to have a small coefficient of thermal expansion or high thermal conductivity. In the case of general silicon nitride ceramics, the coefficient of thermal expansion is normal, but the thermal conductivity is high, which is advantageous in this respect.

【0018】しかし、断熱化には、熱伝導率の高い特性
は不利である。この矛盾する両特性を併せ持つ材料とし
て、本発明に係る窒化珪素焼結体が適用できる。この場
合において、緻密な面をシリンダーなどの直接熱応力を
受ける内側面にし、多孔質化した断熱性をもつ面を外側
面にする。これによって、シリンダー部構成材料として
の構造用材料の機能はもとより、熱の流入流出、断熱に
ついての機能性材料の機能をも有する。このようにし
て、エンジンの熱効率向上に必須な無冷却、断熱化が可
能となる。
However, high heat conductivity is disadvantageous for heat insulation. As a material having both of these contradictory characteristics, the silicon nitride sintered body according to the present invention can be applied. In this case, the dense surface is the inner surface of the cylinder or the like that receives direct thermal stress, and the porous surface having heat insulation is the outer surface. Thereby, not only the function of the structural material as the cylinder part constituent material, but also the function of the functional material with respect to heat inflow / outflow and heat insulation are provided. In this way, non-cooling and heat insulation essential for improving the thermal efficiency of the engine can be achieved.

【0019】2)更なる軽量化が必要な分野 本発明に係る窒化珪素焼結体は、例えば、航空機用ガス
タービン、宇宙往還機用エンジン部品などに適用するこ
とができる。窒化珪素の比強度が高い特徴をさらに生か
すには、多孔質化が有利となるが、本発明に係る焼結体
では、多孔質化しても強度低下が最低限に抑制できるの
で、産業上の利用価値が大きい。
2) Fields Needing Further Weight Reduction The silicon nitride sintered body according to the present invention can be applied to, for example, aircraft gas turbines, engine components for spacecraft, and the like. Porosity is advantageous in order to further utilize the feature of high specific strength of silicon nitride. However, in the sintered body according to the present invention, a decrease in strength can be suppressed to a minimum even if the sintered body is made porous. Great use value.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本図のうち、(a)は本発明に係る方法によっ
て作製した窒化珪素焼結体の模式図、(b)は第1成型
体の表面側の組織を示す図、(c)は第1成型体の中心
部の組織を示す図、(d)は第1成型体の裏面側の組織
を示す図、(e)は(b)の多孔質層の組織を示す図、
(f)は(b)(c)(d)の内層の組織を示す図、
(g)は(d)の多孔質層の組織を示す図である。
1A is a schematic diagram of a silicon nitride sintered body produced by a method according to the present invention, FIG. 1B is a diagram showing a surface-side structure of a first molded body, and FIG. Is a diagram showing the structure of the central part of the first molded body, (d) is a diagram showing the structure on the back side of the first molded body, (e) is a diagram showing the structure of the porous layer of (b),
(F) is a diagram showing the organization of the inner layer of (b), (c) and (d),
(G) is a figure which shows the structure of the porous layer of (d).

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 多孔質層である表層と、該表層に比較し
て多孔率が低い緻密質層である内層と、これらの表層と
内層との間に形成された中間層とを有し、該中間層の組
成を、内層側から表層側に向かうにつれてその多孔率が
連続的に大きくなるように構成したことを特徴とする窒
化珪素焼結体。
Claims: 1. It has a surface layer that is a porous layer, an inner layer that is a dense layer having a lower porosity than the surface layer, and an intermediate layer formed between the surface layer and the inner layer, A silicon nitride sintered body characterized in that the composition of the intermediate layer is configured such that its porosity increases continuously from the inner layer side toward the surface layer side.
【請求項2】 窒化珪素と焼結助剤とからなる第1成型
体に、窒化珪素からなる第2成型体を接触させ、この状
態でこれらの第1成型体と第2成型体とを焼成すること
により、上記第1成型体のうち、第2成型体との界面近
傍部に多孔質層を形成することを特徴とする窒化珪素焼
結体の製造方法。
2. A second molded body made of silicon nitride is brought into contact with a first molded body made of silicon nitride and a sintering aid, and the first molded body and the second molded body are fired in this state. A method for producing a silicon nitride sintered body, wherein a porous layer is formed in the vicinity of the interface between the first molded body and the second molded body.
JP11037948A 1999-02-17 1999-02-17 Silicon nitride sintered body and its production Withdrawn JP2000233979A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11037948A JP2000233979A (en) 1999-02-17 1999-02-17 Silicon nitride sintered body and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11037948A JP2000233979A (en) 1999-02-17 1999-02-17 Silicon nitride sintered body and its production

Publications (1)

Publication Number Publication Date
JP2000233979A true JP2000233979A (en) 2000-08-29

Family

ID=12511785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11037948A Withdrawn JP2000233979A (en) 1999-02-17 1999-02-17 Silicon nitride sintered body and its production

Country Status (1)

Country Link
JP (1) JP2000233979A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003031023A1 (en) * 2001-10-09 2003-04-17 Ngk Insulators,Ltd. Honeycomb filter
CN109293385A (en) * 2018-11-08 2019-02-01 航天材料及工艺研究所 A kind of fiber reinforced ceramic matrix composites and preparation method thereof
WO2019188752A1 (en) * 2018-03-29 2019-10-03 京セラ株式会社 Ceramic structure
TWI706930B (en) * 2019-07-24 2020-10-11 日商京瓷股份有限公司 Ceramic article

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003031023A1 (en) * 2001-10-09 2003-04-17 Ngk Insulators,Ltd. Honeycomb filter
US7179516B2 (en) 2001-10-09 2007-02-20 Ngk Insulators, Ltd. Honeycomb filter
WO2019188752A1 (en) * 2018-03-29 2019-10-03 京セラ株式会社 Ceramic structure
JPWO2019188752A1 (en) * 2018-03-29 2021-03-11 京セラ株式会社 Ceramic structure
JP7022817B2 (en) 2018-03-29 2022-02-18 京セラ株式会社 Ceramic structure
CN109293385A (en) * 2018-11-08 2019-02-01 航天材料及工艺研究所 A kind of fiber reinforced ceramic matrix composites and preparation method thereof
CN109293385B (en) * 2018-11-08 2021-09-07 航天材料及工艺研究所 Fiber-reinforced ceramic matrix composite and preparation method thereof
TWI706930B (en) * 2019-07-24 2020-10-11 日商京瓷股份有限公司 Ceramic article

Similar Documents

Publication Publication Date Title
CN109336562B (en) Preparation method of alumina-based ceramic composite material
JP2000233979A (en) Silicon nitride sintered body and its production
Roy Recent developments in processing techniques and morphologies of bulk macroporous ceramics for multifunctional applications
US5834108A (en) Multi-layered ceramic porous body
Stuecker et al. Oxidation protection of carbon-carbon composites by sol-gel ceramic coatings
KR20120064164A (en) Hot press sintering device for manufacturing sintered body and mold of 3d structure and method of manufacture sintered body and mold the same
JP2009137839A (en) Method for manufacturing reaction sintered silicon carbide structure
JP4018488B2 (en) INORGANIC POROUS BODY AND INORGANIC OBJECT USING THE SAME AND PUMP IMPELLER, CASING OR LINER RING
JP2987867B2 (en) Ceramic composition and method for producing ceramic member using the composition
JPS6241191B2 (en)
CN115594507B (en) Low-density microporous silicon nitride combined silicon carbide material and preparation method thereof
JP2543408B2 (en) Ceramic heat insulating member and manufacturing method thereof
CN113634717B (en) Casting process of internal combustion engine accessory
JP3033324B2 (en) Insulated piston
JP2012087347A (en) Porous material
JPH10253259A (en) Material of roller for roller hearth furnace and manufacture thereof
JP2678775B2 (en) Method for manufacturing high-density silicon nitride sintered body
JPH04347329A (en) Ceramics sub-combustion chamber for diesel engine and manufacture thereof
JPH04342478A (en) Ceramic piston head and its production
JPS60141682A (en) Manufacture of porous formed body
US20030176271A1 (en) Porous molded bodies from polycrystalline silicon nitride and method for producing the same
JP2709738B2 (en) Adiabatic piston and method of manufacturing the same
JPH0553753B2 (en)
JPS6369759A (en) Manufacture of silicon nitride sintered body
JPH10157014A (en) Laminated ceramic and its manufacture

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060509