WO2018061492A1 - Hydrogen permeable member - Google Patents

Hydrogen permeable member Download PDF

Info

Publication number
WO2018061492A1
WO2018061492A1 PCT/JP2017/028905 JP2017028905W WO2018061492A1 WO 2018061492 A1 WO2018061492 A1 WO 2018061492A1 JP 2017028905 W JP2017028905 W JP 2017028905W WO 2018061492 A1 WO2018061492 A1 WO 2018061492A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen permeable
hydrogen
permeable sheet
container
sheet
Prior art date
Application number
PCT/JP2017/028905
Other languages
French (fr)
Japanese (ja)
Inventor
恭子 石井
福岡 孝博
圭子 藤原
原田 憲章
知洋 中村
俊輔 正木
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2018061492A1 publication Critical patent/WO2018061492A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/24Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants
    • B65D81/26Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants with provision for draining away, or absorbing, or removing by ventilation, fluids, e.g. exuded by contents; Applications of corrosion inhibitors or desiccators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/14Arrangements or processes for adjusting or protecting hybrid or EDL capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/08Housing; Encapsulation
    • H01G9/12Vents or other means allowing expansion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a hydrogen permeable member, and more particularly to a hydrogen permeable member attached to an opening of a container and capable of releasing hydrogen inside the container to the outside through the hydrogen permeable member.
  • a sealed container if gas is generated in the interior space, the pressure inside the container may increase, and the container may be damaged or explode.
  • a storage element such as a secondary battery, an electrolytic capacitor, an electric double layer capacitor, etc.
  • a specific gas is generated in a container in which an electrode is accommodated, and thus such gas is not discharged outside the container.
  • the container may be damaged or explode. For this reason, various structures for discharging the gas in the container to the outside of the container have been proposed.
  • Patent Literature 1 discloses a gas permeable member that can be attached to a container body, which includes a gas permeable sheet that transmits gas and a holding body that holds the gas permeable sheet.
  • a gas permeable member is attached to the container main body by inserting the gas permeable member into the container main body having a through-hole communicating with the inner space from the opening.
  • the gas generated in the inner space of the container can be discharged to the outer space of the container through the gas permeable sheet.
  • a hydrogen permeable sheet that transmits hydrogen is known.
  • the hydrogen permeable sheet is used, for example, to discharge hydrogen gas generated in the internal space of an aluminum electrolytic capacitor to the external space.
  • Such a hydrogen permeable sheet usually contains a metal that is permeable to hydrogen. The metal can selectively permeate hydrogen through the hydrogen permeable sheet by dissociating hydrogen molecules into hydrogen atoms and diffusing into the hydrogen permeable sheet.
  • the container is heated to a high temperature when attached to the container to release hydrogen from a container that generates hydrogen such as an aluminum electrolytic capacitor.
  • a container that generates hydrogen such as an aluminum electrolytic capacitor.
  • the present invention has been made in view of the above-described problems and the like, and an object thereof is to provide a hydrogen permeable member in which the hydrogen permeability of the hydrogen permeable sheet is hardly lowered even at high temperatures.
  • the hydrogen permeable member according to the present invention is a hydrogen permeable sheet disposed so as to cover an opening provided in the container, the hydrogen permeable sheet containing metal, the container, and the hydrogen permeable sheet.
  • concentration of the sulfur component contained in the gas released from the interposition member when the interposition member is heated at 105 ° C. for 12 hours is less than 0.6 ⁇ g / g And an interposition member.
  • the interposed member may contain a rubber material.
  • the hydrogen permeable member according to the present invention may preferably further include a pressing member for pressing the hydrogen permeable sheet from a surface opposite to the surface on which the interposition member is arranged.
  • the container may include a recess having a bottom surface portion in which the opening is formed, and the pressing member may have a fitting structure.
  • the hydrogen permeable member is mounted on the container by disposing the hydrogen permeable sheet and the interposition member in the recess and fitting the pressing member into the recess through the fitting structure. It may be.
  • the hydrogen permeable member 1 is disposed between the hydrogen permeable sheet 2 disposed so as to cover the opening 15 provided in the container 11 and the container 11 and the hydrogen permeable sheet 2.
  • the interposed member 3 is provided.
  • the interposition member 3 is disposed on the surface of the hydrogen permeable sheet 2 that faces the container 11.
  • the container 11 is an aluminum electrolytic capacitor
  • the opening 15 is provided in the lid 12 of the aluminum electrolytic capacitor. The hydrogen gas generated inside the aluminum electrolytic capacitor 11 passes through the hydrogen permeable sheet 2 and is discharged to the outside of the aluminum electrolytic capacitor 11 through the opening 15.
  • the hydrogen permeable sheet 2 is installed on the lid 12 via the interposition member 3 so as to cover the opening 15 provided in the lid 12 of the container 11 from the outside of the container 11.
  • the lid 12 has a recess 20 formed therein, and the opening 15 is formed in the recess 20.
  • the hydrogen permeable sheet 2 is installed on the bottom surface 21 of the recess 20 so as to cover the opening 15 in the recess 20.
  • the container 11 is provided with one or more engaging protrusions 16 on the surface on the side where the hydrogen permeable sheet 2 and the interposition member 3 are provided.
  • the engagement protrusion 16 is adapted to be engaged with an engagement hole 3a formed in the interposition member 3 described later.
  • one or more engaging protrusions 16 projecting upward from the bottom surface portion 21 are provided on the bottom surface portion 21 of the recess 20 provided in the lid 12.
  • the hydrogen permeable sheet 2 can transmit hydrogen from one surface side of the hydrogen permeable sheet 2 to the other surface side. Therefore, even if the opening 15 of the container 11 is blocked by the hydrogen permeable sheet 2, the hydrogen gas contained in the container 11 passes through the opening 15 and the hydrogen permeable sheet 2 covering the opening 15 in the container 11. Can be discharged to the outside.
  • the hydrogen permeable sheet 2 preferably has a hydrogen permeability of 10 mL / day or more, more preferably 50 to 1500 mL / day, at 105 ° C., a differential pressure of 150 kPa, and an area of 38 mm 2 .
  • the hydrogen permeable sheet 2 contains a metal that allows hydrogen to permeate. Such metal adsorbs hydrogen molecules (H 2 ) on its surface and dissociates the hydrogen molecules into hydrogen atoms (H). The dissociated hydrogen atoms are easily diffused in the hydrogen permeable sheet 2, recombined on the low pressure side surface of the hydrogen permeable sheet 2 to become hydrogen molecules, and are discharged from the hydrogen permeable sheet 2. In this way, the hydrogen permeable sheet 2 containing a metal that allows hydrogen to permeate can easily transmit the hydrogen gas generated inside the container 11, and easily discharge the hydrogen gas to the outside of the container 11. To help.
  • the metal includes, for example, a Group 5 metal such as vanadium or niobium, a Group 9 metal such as iridium, a Group 10 metal such as palladium or platinum, or a Group 11 metal such as gold or silver. Also good.
  • the metal preferably includes a Group 5 metal or a Group 10 metal, more preferably includes palladium, vanadium, or niobium, and most preferably includes palladium.
  • the metal may be a single metal or an alloy of a plurality of metals.
  • the metal is an alloy of palladium and copper, silver, gold, vanadium or niobium, more preferably palladium and gold.
  • the hydrogen permeable sheet 2 may be a sheet material (metal foil) composed of the metal, and the metal may be held on a base material layer such as a resin sheet.
  • the hydrogen permeable sheet 2 may be one in which a metal layer made of the above metal or alloy is sputtered onto a base material layer, and the above-mentioned particulate metal is dispersed inside the base material layer. There may be.
  • the amount of the metal contained in the hydrogen permeable sheet 2 is not particularly limited.
  • the hydrogen permeable sheet 2 is a metal foil
  • the thickness of the metal foil may be 5 to 50 ⁇ m.
  • the hydrogen permeable sheet 2 is a metal layer obtained by sputtering
  • the thickness of the metal layer may be 0.01 to 5 ⁇ m.
  • the base material layer is not particularly limited as long as it is hydrogen permeable and can hold the metal layer. It may be a body or a porous body.
  • the base material layer may be a woven fabric or a non-woven fabric. Examples of the material for forming the base layer include polyolefins such as polyethylene and polypropylene, polyesters such as polyethylene terephthalate and polyethylene naphthalate, polyaryl ether sulfones such as polysulfone and polyethersulfone, polytetrafluoroethylene, and polyvinylidene fluoride.
  • Fluorine resin epoxy resin, polyamide, polyimide, polyamideimide and the like can be mentioned.
  • chemically and thermally stable polysulfone, polytetrafluoroethylene, polyamide, polyimide, polyamideimide, and polyvinylidene fluoride are preferably used.
  • this base material layer may be formed from ceramics, such as an alumina.
  • the base material layer is preferably a porous body having an average pore diameter of 100 ⁇ m or less.
  • the average pore diameter exceeds 100 ⁇ m, the surface smoothness of the porous body is lowered, so that it is difficult to form a metal layer having a uniform thickness on the porous body when a metal layer is produced by sputtering or the like.
  • pinholes or cracks are likely to occur in the metal layer.
  • the hydrogen permeable sheet 2 may be a hydrogen selective permeable sheet that selectively transmits hydrogen but does not transmit other gases, or may be a permeable sheet that can transmit a certain gas other than hydrogen. .
  • the interposition member 3 is a member disposed between the hydrogen permeable sheet 2 and the lid 12 of the container 11.
  • the intervening member 3 is preferably a member arranged between the hydrogen permeable sheet 2 and the container 11 in order to enhance the adhesion.
  • the member etc. which contain the rubber material mentioned later are mentioned, for example.
  • the interposing member 3 has a feature that the amount of released sulfur component is small even at high temperatures.
  • the sulfur component is bonded to the metal, and the hydrogen permeable performance of the hydrogen permeable sheet is greatly deteriorated.
  • the sulfur component is released from the interposition member when the temperature inside the container becomes high. This may reduce the hydrogen permeation performance of the hydrogen permeable sheet.
  • the sulfur component is hardly released from the interposition member 3 even when the temperature inside the container 11 becomes high. Therefore, the hydrogen permeable member 1 has a feature that the hydrogen permeability of the hydrogen permeable sheet 2 is not easily lowered.
  • the concentration of the sulfur component contained in the gas released from the interposition member 3 when the interposition member 3 is heated at 105 ° C. for 12 hours is less than 0.6 ⁇ g / g, preferably 0.5 ⁇ g / g. g or less, more preferably 0.3 ⁇ g / g or less, still more preferably 0.14 ⁇ g / g or less.
  • the concentration of the sulfur component contained in the gas refers to the concentration of the elemental sulfur contained in all the compounds constituting the gas. Examples of the compound containing elemental sulfur include hydrogen sulfide, sulfur dioxide, dimethyl disulfide, and the like.
  • the intervening member 3 may be a member including a rubber material such as silicone rubber, fluorine rubber, urethane rubber, butadiene rubber, isoprene rubber, chloroprene, styrene butadiene rubber, acrylonitrile butadiene rubber, and butyl rubber.
  • the interposed member 3 may be a member whose surface is made of a rubber material, or may be a member whose whole is made of a rubber material. These rubber materials may be used independently and may be used in combination of multiple types.
  • silicone rubber or fluorine rubber that does not contain a sulfur component and has excellent heat resistance can be used.
  • the surface of the interposition member 3 on the container 11 side has at least one engagement hole that engages with the engagement protrusion 16 provided on the container 11 between the inner periphery and the outer periphery. Part 3a is formed.
  • the interposing member 3 is preferably formed in a shape surrounding the opening 15. And in order to ensure that the gas released from the inside of the container 11 to the outside through the opening 15 passes through the hydrogen permeable sheet 2, the interposition member 3 formed in a shape surrounding the opening 15 It is preferable that the hydrogen permeable sheet 2 and the container 11 are in close contact with each other without any gap.
  • the hydrogen permeable member 1 of this embodiment further includes a pressing member 4 for pressing the hydrogen permeable sheet 2 from the surface opposite to the surface on which the interposing member 3 is disposed.
  • a pressing member 4 for pressing the hydrogen permeable sheet 2 from the surface opposite to the surface on which the interposing member 3 is disposed.
  • the pressing member 4 has a fitting structure, and is attached to the container 11 by being fitted into a recess 20 provided in the lid 12 of the container 11 via the fitting structure. Thereby, the pressing member 4 presses the hydrogen permeable sheet 2.
  • the pressing member 4 is opposite to the body 4a that presses the hydrogen permeable sheet 2 from the surface opposite to the surface on which the interposing member 3 is disposed, and the side on which the interposing member 3 is disposed. And a projecting portion 4b projecting in the direction toward the inner wall side of the recess 20 (obliquely upward in FIG. 1).
  • the pressing member 4 is formed so that the tip end portion of the protruding portion 4 b comes into contact with the inner wall of the concave portion 20 when fitted into the concave portion 20.
  • the protruding member 4 b comes into contact with the inner wall of the recess 20, so that the pressing member 4 can be fixed in the recess 20.
  • the hydrogen permeable sheet 2 can be more easily fixed in the recess 20 of the container 11.
  • the pressing member 4 has a shape that can hold the hydrogen permeable sheet 2 together with the interposition member 3.
  • the interposition member 3 is formed in a shape surrounding the opening 15, similarly, it is preferable that the main body portion 4 a of the pressing member 4 is formed in a shape surrounding the opening 15.
  • the material which forms the press member 4 is not specifically limited, For example, synthetic resins, such as metals, such as aluminum and stainless steel, a phenol resin, PBT resin, and PPS resin, are mentioned. In particular, metal materials such as aluminum and stainless steel are preferable from the viewpoints of heat resistance and chemical resistance. Moreover, when the hydrogen permeable sheet 2 is a sheet material made of metal, it is preferable that the pressing member 4 is formed of the metal material as described above.
  • the hydrogen permeable member 1 of this embodiment can be easily attached to the container 11 by disposing the hydrogen permeable sheet 2 inside the container 11 with the interposition member 3 interposed therebetween. Specifically, first, the interposition member 3 is arranged in the container 11. At this time, the interposing member 3 is arranged around the opening 15 so that the fitting protrusion 16 of the container 11 is engaged with the fitting hole 3 a of the interposing member 3. Next, the hydrogen permeable sheet 2 is disposed on the interposition member 3. At this time, the hydrogen permeable sheet 2 is disposed so that the hydrogen permeable sheet 2 covers the opening 15 provided in the container 11.
  • the pressing member 4 is disposed on the hydrogen permeable sheet 2 from the surface opposite to the surface on which the interposing member 3 is disposed, and the hydrogen permeable sheet 2 is pressed.
  • the hydrogen permeable member 1 can be attached to the container 11 while assembling the hydrogen permeable member 1 on the container 11.
  • the hydrogen permeable member 1 is the hydrogen permeable sheet 2 arranged so as to cover the opening 15 provided in the container 11, and the hydrogen permeable sheet 2 containing metal. And an intermediate member 3 disposed between the container 11 and the hydrogen permeable sheet 2, and the sulfur component contained in the gas released from the intermediate member 3 when the intermediate member 3 is heated at 105 ° C. for 12 hours. And an intervening member 3 having a concentration of less than 0.6 ⁇ g / g. According to such a configuration, the hydrogen permeable member 1 releases almost no sulfur component even when the interposed member 3 disposed between the container 11 and the hydrogen permeable sheet 2 is at a high temperature. Therefore, a decrease in hydrogen permeability of the hydrogen permeable sheet 2 at a high temperature can be effectively suppressed.
  • the interposition member 3 includes a rubber material. According to such a configuration, it is possible to improve the adhesion through the interposition member 3 between the hydrogen permeable sheet 2 and the container 11.
  • the hydrogen permeable member 1 further includes a pressing member 4 for pressing the hydrogen permeable sheet 2 from the surface opposite to the surface on which the interposing member 3 is disposed.
  • a pressing member 4 for pressing the hydrogen permeable sheet 2 from the surface opposite to the surface on which the interposing member 3 is disposed.
  • the container 11 includes the recess 20 having the bottom surface portion 21 in which the opening 15 is formed, and the pressing member 4 has a fitting structure.
  • the hydrogen permeable member 1 is mounted on the container 11 by disposing the hydrogen permeable sheet 2 and the interposition member 3 in the recess 20 and fitting the pressing member 4 into the recess 20 through the fitting structure. is there. According to such a configuration, the hydrogen permeable sheet 2 can be more easily attached to the container 11 by fitting the pressing member 4 into the recess 20 provided in the container.
  • the hydrogen permeable member according to the above embodiment is as described above, the hydrogen permeable member of the present invention is not limited to the configuration of the above embodiment, and the design can be changed as appropriate.
  • the container 11 is an aluminum electrolytic capacitor, but the container 11 is not limited to an aluminum electrolytic capacitor as long as it discharges hydrogen gas from the internal space.
  • the container 11 may be a hydrogen generator used for a fuel cell or the like.
  • the recessed part 20 is formed in the lid
  • the hydrogen permeable sheet 2 has covered the opening part 15 provided in the lid
  • the hydrogen permeable sheet of this invention covers the opening part provided in addition to the cover of the container. It may be.
  • the hydrogen permeable sheet of the present invention may cover an opening provided directly in the container body.
  • the hydrogen permeable sheet of the present invention may cover a plurality of openings provided in the container.
  • the hydrogen permeable sheet 2 is arrange
  • the interposition member 3 is distribute
  • this invention is the interposition member 3 of the container 11 and the hydrogen permeation sheet 2.
  • another member may be provided between the interposed member of the present invention and the container or the hydrogen permeable sheet.
  • another member may be provided between the pressing member and the hydrogen permeable sheet.
  • the hydrogen permeable member 1 of the above embodiment includes only one hydrogen permeable sheet 2
  • the hydrogen permeable member of the present invention may include two or more hydrogen permeable sheets.
  • the hydrogen permeable member 1 includes a hydrogen permeable sheet 2 made up of two hydrogen permeable sheets 2a and 2b as shown in FIG. It may be adhered to the container 11 by the interposition member 3 so as to cover it.
  • the hydrogen permeable sheets 2a and 2b may be the same type of hydrogen permeable sheet, but are preferably different types of hydrogen permeable sheets.
  • the hydrogen permeable sheet 2a disposed on the side closer to the opening of the container is a sheet material (metal foil) made of an alloy of palladium and gold, and is disposed relatively close to the outside of the container.
  • the hydrogen permeable sheet 2b may be a porous PTFE membrane containing an alloy of palladium and gold.
  • a hydrogen permeable sheet having a relatively high hydrogen selectivity is arranged on the inner side of the container, and a hydrogen permeable sheet having a relatively high air permeability is disposed toward the outside of the container. It is preferable to arrange them.
  • the plate material is cold-rolled to a thickness of 100 ⁇ m using a two-roll mill with a roll diameter of 100 mm, and then further cooled to a thickness of 20 ⁇ m using a two-roll mill with a roll diameter of 20 mm. Rolled for a while. Then, the rolled plate material was put in the glass tube, and both ends of the glass tube were sealed. The inside of the glass tube was depressurized to 5 ⁇ 10 ⁇ 4 Pa at room temperature, then heated to 500 ° C. and allowed to stand for 1 hour, and then cooled to room temperature.
  • the hydrogen-permeable sheet produced in Production Example 1 was attached to a Swagelok VCR connector, and a SUS tube was attached to one side to produce a sealed space (63.5 ml). After depressurizing the inside of the tube with a vacuum pump, the pressure of hydrogen gas was adjusted to 0.15 MPa, and the pressure change in an environment of 105 ° C. was monitored. Two hours after the start of pressure reduction, the pressure in the sealed space was reduced to 0.05 MPa (variation amount: 0.10 MPa).
  • Example 1 The hydrogen permeable member of Example 1 was constructed using the hydrogen permeable sheet produced in Production Example 1 and the interposition member made of silicone rubber ("WRBS" manufactured by MISUMI Corporation).
  • WRBS silicone rubber
  • Example 2 The hydrogen permeable member of Example 2 was constructed using the hydrogen permeable sheet produced in Production Example 1 and the interposing member made of fluororubber (“WRBF” manufactured by MISUMI Corporation).
  • WRBF fluororubber
  • Example 3 The hydrogen permeable member of Example 3 was constructed using the hydrogen permeable sheet produced in Production Example 1 and the interposition member made of silicone rubber (“S503” manufactured by NOK Kogyo Co., Ltd.).
  • Example 4 The hydrogen permeable member of Example 4 was configured using the hydrogen permeable sheet prepared in Production Example 1 and the interposition member formed of silicone rubber (“KSSI-70001” manufactured by Kyowa Seal Industry Co., Ltd.).
  • Example 5 The hydrogen permeable member of Example 5 was configured using the hydrogen permeable sheet prepared in Production Example 1 and the interposition member formed of hydrogenated nitrile rubber (“G607” manufactured by NOK).
  • Comparative Example 1 The hydrogen permeable member of Comparative Example 1 was constructed using the hydrogen permeable sheet produced in Production Example 1 and the interposition member made of nitrile rubber (“A305” manufactured by NOK).
  • HSS Oven temperature 105 ° C Heating time: 12h Pressurization time: 0.12 min Loop filling time: 0.12 min Loop equilibration time: 0.05 min Injection time: 0.5 min Sample loop temperature: 160 ° C Transfer line temperature: 200 ° C
  • the hydrogen permeable sheet exposed to the gas is taken out from the SUS can, and the hydrogen permeable sheet is produced by a method similar to the method performed on the hydrogen permeable sheet (hydrogen permeable sheet before being exposed to the gas) prepared in Production Example 1.
  • the hydrogen permeation amount of the permeable sheet was measured.
  • the maintenance rate of the hydrogen permeation amount of the hydrogen permeable sheet exposed to the gas generated from each rubber material is calculated and the hydrogen permeation rate is calculated.
  • the amount maintenance rate was evaluated according to the following criteria. The results are shown in Table 1 below. ⁇ : 80% or more ⁇ : Less than 80% ⁇ : 0%
  • the rubber material used as the intervening member in the hydrogen permeable members of Examples 1 to 5 sufficiently maintained the hydrogen permeability of the hydrogen permeable sheet even under a high temperature condition of 105 ° C. It was. This is because the rubber material releases a sulfur component harmful to palladium contained in the hydrogen permeable sheet under a high temperature condition of 105 ° C., which is less than 0.6 ⁇ g / g.
  • the rubber material used as the interposition member for the hydrogen permeable member of Comparative Example 1 significantly reduced the hydrogen permeability of the hydrogen permeable sheet under the high temperature condition of 105 ° C. This is because the rubber material poisons palladium contained in the hydrogen permeable sheet with the sulfur component released as much as 0.6 ⁇ g / g in 12 hours under a high temperature condition of 105 ° C.
  • the aluminum electrolytic capacitors to which the hydrogen permeable members of Examples 1 to 5 were attached did not swell due to internal pressure even when a voltage was applied at a high temperature of 105 ° C. This is because the hydrogen permeability of the hydrogen permeable members of Examples 1 to 5 is not significantly lowered by the gas generated from the interposed member, so that the hydrogen gas generated inside the aluminum electrolytic capacitor is passed through the hydrogen permeable member. This is because it can be released to the outside.
  • the voltage was applied to the aluminum electrolytic capacitor to which the hydrogen permeable member of Comparative Example 1 was attached under a high temperature condition of 105 ° C. the capacitor was swollen.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Food Science & Technology (AREA)
  • Mechanical Engineering (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Fuel Cell (AREA)
  • Packages (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

A hydrogen permeable member which is provided with: a hydrogen permeable sheet that contains a metal and is arranged so as to cover an opening of a container; and an intervening member that is arranged between the container and the hydrogen permeable sheet, and wherein the concentration of a sulfur component contained in the gas which is discharged from the intervening member if the intervening member is heated at 105°C for 12 hours is less than 0.6 μg/g.

Description

水素透過部材Hydrogen permeable member 関連出願の相互参照Cross-reference of related applications
 本願は、日本国特願2016-194396号の優先権を主張し、引用によって本願明細書の記載に組み込まれる。 This application claims the priority of Japanese Patent Application No. 2016-194396, and is incorporated herein by reference.
 本発明は、水素透過部材に関し、より詳しくは、容器の開口部に取り付けられる水素透過部材であって、該水素透過部材を介して容器内部の水素を外部へと放出可能な水素透過部材に関する。 The present invention relates to a hydrogen permeable member, and more particularly to a hydrogen permeable member attached to an opening of a container and capable of releasing hydrogen inside the container to the outside through the hydrogen permeable member.
 密封された容器内では、その内部空間で気体が発生すると、容器内の気圧が上昇して容器が破損したり爆発したりするおそれがある。例えば、二次電池、電解コンデンサ、電気二重層キャパシタなどのような蓄電素子においては、使用時に、電極が収容された容器内において特定のガスが発生するため、斯かるガスが容器外へ排出されない場合には、容器の破損や爆発を生じるおそれがある。このため、容器内の気体を容器の外側へ排出する構造が種々提案されている。 In a sealed container, if gas is generated in the interior space, the pressure inside the container may increase, and the container may be damaged or explode. For example, in a storage element such as a secondary battery, an electrolytic capacitor, an electric double layer capacitor, etc., a specific gas is generated in a container in which an electrode is accommodated, and thus such gas is not discharged outside the container. In some cases, the container may be damaged or explode. For this reason, various structures for discharging the gas in the container to the outside of the container have been proposed.
 例えば、特許文献1には、気体を透過する気体透過シートと、気体透過シートを保持する保持体とを備えた、容器本体に取り付け可能な気体透過部材が開示されている。斯かる気体透過部材は、内部空間と連通する貫通孔が表面に開口している容器本体に該開口から挿入することにより、容器本体に取り付けられる。該気体透過部材が取り付けられた容器では、容器の内部空間で発生した気体を、気体透過シートを介して容器の外部空間へと排出することができる。 For example, Patent Literature 1 discloses a gas permeable member that can be attached to a container body, which includes a gas permeable sheet that transmits gas and a holding body that holds the gas permeable sheet. Such a gas permeable member is attached to the container main body by inserting the gas permeable member into the container main body having a through-hole communicating with the inner space from the opening. In the container to which the gas permeable member is attached, the gas generated in the inner space of the container can be discharged to the outer space of the container through the gas permeable sheet.
 ところで、特許文献1に開示されるような気体透過部材に備えられる気体透過シートとして、水素を透過する水素透過シートが知られている。水素透過シートは、例えば、アルミ電解コンデンサの内部空間で発生する水素ガスを外部空間へと排出するために用いられている。
 このような水素透過シートには、通常、水素を透過する金属が含まれる。該金属は、水素分子を解離して水素原子とし、水素透過シート内に拡散させることによって、水素透過シートに水素を選択的に透過させることができる。
By the way, as a gas permeable sheet provided in a gas permeable member as disclosed in Patent Document 1, a hydrogen permeable sheet that transmits hydrogen is known. The hydrogen permeable sheet is used, for example, to discharge hydrogen gas generated in the internal space of an aluminum electrolytic capacitor to the external space.
Such a hydrogen permeable sheet usually contains a metal that is permeable to hydrogen. The metal can selectively permeate hydrogen through the hydrogen permeable sheet by dissociating hydrogen molecules into hydrogen atoms and diffusing into the hydrogen permeable sheet.
 しかしながら、気体透過部材に上記のような金属を含む水素透過シートを用いたものは、アルミ電解コンデンサなどの水素を発生する容器から水素を放出するために該容器に取り付けた場合、容器が高温になった際に該水素透過シートの水素透過性が大きく低下するという問題を有している。 However, when the hydrogen permeable sheet containing the metal as described above is used for the gas permeable member, the container is heated to a high temperature when attached to the container to release hydrogen from a container that generates hydrogen such as an aluminum electrolytic capacitor. When this happens, there is a problem that the hydrogen permeability of the hydrogen permeable sheet is greatly reduced.
日本国特開2015-181153号公報Japanese Unexamined Patent Publication No. 2015-181153
 本発明は、上記の問題点等に鑑み、高温時においても水素透過シートの水素透過性が低下し難い水素透過部材を提供することを課題とする。 The present invention has been made in view of the above-described problems and the like, and an object thereof is to provide a hydrogen permeable member in which the hydrogen permeability of the hydrogen permeable sheet is hardly lowered even at high temperatures.
 すなわち、本発明に係る水素透過部材は、容器に設けられた開口部を覆うように配される水素透過シートであって、金属を含有している水素透過シートと、前記容器と前記水素透過シートとの間に配される介在部材であって、前記介在部材を105℃で12時間加熱した際に前記介在部材から放出されるガスに含まれる硫黄成分の濃度が0.6μg/g未満である、介在部材とを備える。 That is, the hydrogen permeable member according to the present invention is a hydrogen permeable sheet disposed so as to cover an opening provided in the container, the hydrogen permeable sheet containing metal, the container, and the hydrogen permeable sheet. And the concentration of the sulfur component contained in the gas released from the interposition member when the interposition member is heated at 105 ° C. for 12 hours is less than 0.6 μg / g And an interposition member.
 本発明に係る水素透過部材では、上記介在部材がゴム材料を含んでいてもよい。 In the hydrogen permeable member according to the present invention, the interposed member may contain a rubber material.
 本発明に係る水素透過部材は、好ましくは、上記介在部材の配された側の面とは反対側の面から上記水素透過シートを押圧するための押圧部材をさらに備えていてもよい。 The hydrogen permeable member according to the present invention may preferably further include a pressing member for pressing the hydrogen permeable sheet from a surface opposite to the surface on which the interposition member is arranged.
 また、本発明に係る水素透過部材では、好ましくは、上記容器は、上記開口部が形成された底面部を有する凹部を備えていてもよく、上記押圧部材は、嵌め込み構造を有していてもよく、水素透過部材は、上記水素透過シート及び上記介在部材を該凹部内に配すると共に、上記押圧部材を該嵌め込み構造を介して該凹部内に嵌め込むことにより、上記容器に装着されるものであってもよい。 In the hydrogen permeable member according to the present invention, preferably, the container may include a recess having a bottom surface portion in which the opening is formed, and the pressing member may have a fitting structure. The hydrogen permeable member is mounted on the container by disposing the hydrogen permeable sheet and the interposition member in the recess and fitting the pressing member into the recess through the fitting structure. It may be.
本発明の一実施形態に係る水素透過部材を備えた容器を示す概略側面図である。It is a schematic side view which shows the container provided with the hydrogen permeable member which concerns on one Embodiment of this invention. 本発明の一実施形態に係る水素透過部材を表す概略断面図である。It is a schematic sectional drawing showing the hydrogen permeable member which concerns on one Embodiment of this invention. 本発明の他の実施形態に係る水素透過部材を表す概略断面図である。It is a schematic sectional drawing showing the hydrogen permeable member which concerns on other embodiment of this invention.
 以下、本発明の具体的な実施形態を説明することにより、本発明を明らかにする。ただし、下記の実施形態は、単なる例示である。本発明は、下記の実施形態に限定されない。 Hereinafter, the present invention will be clarified by describing specific embodiments of the present invention. However, the following embodiment is merely an example. The present invention is not limited to the following embodiment.
 図1及び図2に示すように、水素透過部材1は、容器11に設けられた開口部15を覆うように配される水素透過シート2と、容器11と水素透過シート2との間に配される介在部材3とを備えている。介在部材3は、換言すれば、水素透過シート2の容器11に対向する面側に配されている。
 本実施形態では、容器11は、アルミ電解コンデンサであって、開口部15は、アルミ電解コンデンサの蓋12に設けられている。アルミ電解コンデンサ11の内部で発生した水素ガスは、水素透過シート2を透過して、開口部15を通ってアルミ電解コンデンサ11の外部へと排出される。
As shown in FIGS. 1 and 2, the hydrogen permeable member 1 is disposed between the hydrogen permeable sheet 2 disposed so as to cover the opening 15 provided in the container 11 and the container 11 and the hydrogen permeable sheet 2. The interposed member 3 is provided. In other words, the interposition member 3 is disposed on the surface of the hydrogen permeable sheet 2 that faces the container 11.
In the present embodiment, the container 11 is an aluminum electrolytic capacitor, and the opening 15 is provided in the lid 12 of the aluminum electrolytic capacitor. The hydrogen gas generated inside the aluminum electrolytic capacitor 11 passes through the hydrogen permeable sheet 2 and is discharged to the outside of the aluminum electrolytic capacitor 11 through the opening 15.
 本実施形態では、水素透過シート2は、容器11の蓋12に設けられた開口部15を容器11の外側から覆うように、介在部材3を介して蓋12上に設置されている。
 また、蓋12には、凹部20が形成されており、開口部15は凹部20内に形成されている。そして、水素透過シート2は、詳細には、凹部20内において開口部15を覆うように、凹部20の底面部21上に設置されている。
In the present embodiment, the hydrogen permeable sheet 2 is installed on the lid 12 via the interposition member 3 so as to cover the opening 15 provided in the lid 12 of the container 11 from the outside of the container 11.
The lid 12 has a recess 20 formed therein, and the opening 15 is formed in the recess 20. In detail, the hydrogen permeable sheet 2 is installed on the bottom surface 21 of the recess 20 so as to cover the opening 15 in the recess 20.
 また、本実施形態では、容器11には、水素透過シート2及び介在部材3が設けられる側の表面上に、1つ以上の係合突起部16が設けられている。係合突起部16は、後述する介在部材3に形成された係合孔部3aと係合されるようになっている。
 具体的には、本実施形態では、蓋12に設けられた凹部20の底面部21上に、底面部21から上方向に突出している1つ以上の係合突起部16が設けられている。
Moreover, in this embodiment, the container 11 is provided with one or more engaging protrusions 16 on the surface on the side where the hydrogen permeable sheet 2 and the interposition member 3 are provided. The engagement protrusion 16 is adapted to be engaged with an engagement hole 3a formed in the interposition member 3 described later.
Specifically, in the present embodiment, one or more engaging protrusions 16 projecting upward from the bottom surface portion 21 are provided on the bottom surface portion 21 of the recess 20 provided in the lid 12.
 水素透過シート2は、水素透過シート2の一方の面側から他方の面側へと水素を透過させることができる。そのため、水素透過シート2により容器11の開口部15が塞がれていても、容器11の内部に含まれる水素ガスは、開口部15及び開口部15を覆う水素透過シート2を通じて、容器11の外部へと排出され得る。
 水素透過シート2は、好ましくは、105℃、差圧150kPa、面積38mm2における水素透過度が10mL/day以上であることが好ましく、50~1500mL/dayであることがより好ましい。
The hydrogen permeable sheet 2 can transmit hydrogen from one surface side of the hydrogen permeable sheet 2 to the other surface side. Therefore, even if the opening 15 of the container 11 is blocked by the hydrogen permeable sheet 2, the hydrogen gas contained in the container 11 passes through the opening 15 and the hydrogen permeable sheet 2 covering the opening 15 in the container 11. Can be discharged to the outside.
The hydrogen permeable sheet 2 preferably has a hydrogen permeability of 10 mL / day or more, more preferably 50 to 1500 mL / day, at 105 ° C., a differential pressure of 150 kPa, and an area of 38 mm 2 .
 水素透過シート2は、水素を透過させる金属を含んでいる。このような金属は、その表面に水素分子(H2)を吸着して、該水素分子を水素原子(H)に解離させる。解離させられた水素原子は、水素透過シート2内において容易に拡散され、水素透過シート2の低圧側の表面で再結合して水素分子となり、水素透過シート2より排出される。
 このようにして、水素を透過させる金属を含む水素透過シート2は、容器11内部で発生した水素ガスを容易に透過させることができ、該水素ガスを容器11の外部へと容易に排出するのに役立つ。
The hydrogen permeable sheet 2 contains a metal that allows hydrogen to permeate. Such metal adsorbs hydrogen molecules (H 2 ) on its surface and dissociates the hydrogen molecules into hydrogen atoms (H). The dissociated hydrogen atoms are easily diffused in the hydrogen permeable sheet 2, recombined on the low pressure side surface of the hydrogen permeable sheet 2 to become hydrogen molecules, and are discharged from the hydrogen permeable sheet 2.
In this way, the hydrogen permeable sheet 2 containing a metal that allows hydrogen to permeate can easily transmit the hydrogen gas generated inside the container 11, and easily discharge the hydrogen gas to the outside of the container 11. To help.
 上記金属は、例えば、バナジウム、ニオブ等の第5族金属、イリジウム等の第9族金属、パラジウム、白金等の第10族金属、又は、金、銀等の第11族金属などを含んでいてもよい。上記金属は、好ましくは第5族金属又は第10族金属を含み、より好ましくはパラジウム、バナジウム又はニオブを含み、最も好ましくはパラジウムを含む。
 また、上記金属は、単体の金属であってもよく、複数の金属の合金であってもよい。好ましくは、上記金属は、パラジウムと、銅、銀、金、バナジウム又はニオブとの合金であり、より好ましくは、パラジウムと金である。
The metal includes, for example, a Group 5 metal such as vanadium or niobium, a Group 9 metal such as iridium, a Group 10 metal such as palladium or platinum, or a Group 11 metal such as gold or silver. Also good. The metal preferably includes a Group 5 metal or a Group 10 metal, more preferably includes palladium, vanadium, or niobium, and most preferably includes palladium.
The metal may be a single metal or an alloy of a plurality of metals. Preferably, the metal is an alloy of palladium and copper, silver, gold, vanadium or niobium, more preferably palladium and gold.
 水素透過シート2に含まれる上記金属の態様は、特に限定されない。例えば、水素透過シート2は、上記金属により構成されるシート材(金属箔)であってもよく、樹脂シート等の基材層に上記金属が保持されていてもよい。後者の場合、水素透過シート2は、上記金属又は合金からなる金属層が基材層にスパッタリングされたものであってもよく、基材層の内部に粒子状の上記金属が分散されたものであってもよい。
 水素透過シート2に含まれる上記金属の量は、特に限定されない。例えば、水素透過シート2が金属箔の場合には、その金属箔の厚みが5~50μmであってもよい。また、水素透過シート2がスパッタリングにより得られる金属層である場合には、その金属層の厚みが0.01~5μmであってもよい。
The aspect of the metal contained in the hydrogen permeable sheet 2 is not particularly limited. For example, the hydrogen permeable sheet 2 may be a sheet material (metal foil) composed of the metal, and the metal may be held on a base material layer such as a resin sheet. In the latter case, the hydrogen permeable sheet 2 may be one in which a metal layer made of the above metal or alloy is sputtered onto a base material layer, and the above-mentioned particulate metal is dispersed inside the base material layer. There may be.
The amount of the metal contained in the hydrogen permeable sheet 2 is not particularly limited. For example, when the hydrogen permeable sheet 2 is a metal foil, the thickness of the metal foil may be 5 to 50 μm. When the hydrogen permeable sheet 2 is a metal layer obtained by sputtering, the thickness of the metal layer may be 0.01 to 5 μm.
 水素透過シート2が、基材層に上記金属が保持されている形態の場合、基材層は、水素透過性であって金属層を保持しうるものであれば特に限定されず、無孔質体であってもよく、多孔質体であってもよい。また、基材層は、織布、不織布であってもよい。基材層の形成材料としては、例えば、ポリエチレン及びポリプロピレンなどのポリオレフィン、ポリエチレンテレフタレート及びポリエチレンナフタレートなどのポリエステル、ポリスルホン及びポリエーテルスルホンなどのポリアリールエーテルスルホン、ポリテトラフルオロエチレン及びポリフッ化ビニリデンなどのフッ素樹脂、エポキシ樹脂、ポリアミド、ポリイミド、ポリアミドイミドなどが挙げられる。これらのうち、化学的及び熱的に安定であるポリスルホン、ポリテトラフルオロエチレン、ポリアミド、ポリイミド、ポリアミドイミド及びポリフッ化ビニリデンが好ましく用いられる。また、該基材層は、アルミナ等のセラミックより形成されていてもよい。 When the hydrogen permeable sheet 2 is in a form in which the metal is held in the base material layer, the base material layer is not particularly limited as long as it is hydrogen permeable and can hold the metal layer. It may be a body or a porous body. The base material layer may be a woven fabric or a non-woven fabric. Examples of the material for forming the base layer include polyolefins such as polyethylene and polypropylene, polyesters such as polyethylene terephthalate and polyethylene naphthalate, polyaryl ether sulfones such as polysulfone and polyethersulfone, polytetrafluoroethylene, and polyvinylidene fluoride. Fluorine resin, epoxy resin, polyamide, polyimide, polyamideimide and the like can be mentioned. Of these, chemically and thermally stable polysulfone, polytetrafluoroethylene, polyamide, polyimide, polyamideimide, and polyvinylidene fluoride are preferably used. Moreover, this base material layer may be formed from ceramics, such as an alumina.
 基材層は、平均孔径100μm以下の多孔質体であることが好ましい。平均孔径が100μmを超えると、多孔質体の表面平滑性が低下するため、スパッタリング法等で金属層を製造する場合に、多孔質体上に膜厚の均一な金属層を形成し難くなることや、金属層にピンホール又はクラックが生じやすくなることがある。 The base material layer is preferably a porous body having an average pore diameter of 100 μm or less. When the average pore diameter exceeds 100 μm, the surface smoothness of the porous body is lowered, so that it is difficult to form a metal layer having a uniform thickness on the porous body when a metal layer is produced by sputtering or the like. In addition, pinholes or cracks are likely to occur in the metal layer.
 なお、水素透過シート2は、水素を選択的に透過させるが他の気体を透過させない水素選択的透過シートであってもよく、水素以外の一定の気体を透過させ得る透過シートであってもよい。 The hydrogen permeable sheet 2 may be a hydrogen selective permeable sheet that selectively transmits hydrogen but does not transmit other gases, or may be a permeable sheet that can transmit a certain gas other than hydrogen. .
 介在部材3は、水素透過シート2と、容器11の蓋12との間に配される部材である。介在部材3は、水素透過シート2と容器11との密着性を高めるために、それらの間に配される部材であることが好ましい。そのような介在部材3としては、例えば、後述するゴム材料を含む部材などが挙げられる。 The interposition member 3 is a member disposed between the hydrogen permeable sheet 2 and the lid 12 of the container 11. The intervening member 3 is preferably a member arranged between the hydrogen permeable sheet 2 and the container 11 in order to enhance the adhesion. As such an interposition member 3, the member etc. which contain the rubber material mentioned later are mentioned, for example.
 介在部材3は、高温時においても、硫黄成分の放出量が少ないという特徴を有する。水素透過シートでは、該水素透過シートに含まれる金属が硫黄成分に接触すると、該硫黄成分が該金属に結合し、水素透過シートの水素透過性能を大きく低下させるという問題がある。ここで、介在部材を用いて水素透過シートを容器に接着させる場合に、介在部材に硫黄成分が含まれていると、容器内部の温度が高くなった際に、該介在部材から硫黄成分が放出され、それによって水素透過シートの水素透過性能を低下させることがある。これに対し、本実施形態の介在部材3を用いた水素透過部材1では、容器内部11の温度が高温になった際にも、介在部材3から硫黄成分がほとんど放出されない。そのため、水素透過部材1は、水素透過シート2の水素透過性が低下し難いという特徴を有する。 The interposing member 3 has a feature that the amount of released sulfur component is small even at high temperatures. In the hydrogen permeable sheet, when the metal contained in the hydrogen permeable sheet comes into contact with the sulfur component, the sulfur component is bonded to the metal, and the hydrogen permeable performance of the hydrogen permeable sheet is greatly deteriorated. Here, when the hydrogen permeable sheet is adhered to the container using the interposition member, if the interposition member contains a sulfur component, the sulfur component is released from the interposition member when the temperature inside the container becomes high. This may reduce the hydrogen permeation performance of the hydrogen permeable sheet. On the other hand, in the hydrogen permeable member 1 using the interposition member 3 of the present embodiment, the sulfur component is hardly released from the interposition member 3 even when the temperature inside the container 11 becomes high. Therefore, the hydrogen permeable member 1 has a feature that the hydrogen permeability of the hydrogen permeable sheet 2 is not easily lowered.
 具体的には、介在部材3を105℃で12時間加熱した際に介在部材3から放出されるガスに含まれる硫黄成分の濃度は、0.6μg/g未満であり、好ましくは0.5μg/g以下であり、より好ましくは0.3μg/g以下であり、さらに好ましくは0.14μg/g以下である。
 なお、本明細書において、ガスに含まれる硫黄成分の濃度とは、ガスを構成する全ての化合物中に含まれる硫黄元素の濃度をいう。硫黄元素を含む化合物としては、例えば、硫化水素、二酸化硫黄、ジメチルジスルフィドなどが挙げられる。
Specifically, the concentration of the sulfur component contained in the gas released from the interposition member 3 when the interposition member 3 is heated at 105 ° C. for 12 hours is less than 0.6 μg / g, preferably 0.5 μg / g. g or less, more preferably 0.3 μg / g or less, still more preferably 0.14 μg / g or less.
In the present specification, the concentration of the sulfur component contained in the gas refers to the concentration of the elemental sulfur contained in all the compounds constituting the gas. Examples of the compound containing elemental sulfur include hydrogen sulfide, sulfur dioxide, dimethyl disulfide, and the like.
 介在部材3は、例えば、シリコーンゴム、フッ素ゴム、ウレタンゴム、ブタジエンゴム、イソプレンゴム、クロロプレン、スチレンブタジエンゴム、アクリロニトリルブタジエンゴム、ブチルゴム等のゴム材料を含む部材であってもよい。好ましくは、介在部材3は、表面がゴム材料により構成された部材であってもよく、全体がゴム材料により構成された部材であってもよい。これらのゴム材料は、単独で用いられていてもよく、複数種が組み合わされて用いられていてもよい。
 好ましくは、介在部材3としては、硫黄成分を含まず、耐熱性にも優れたシリコーンゴム又はフッ素ゴムを用いることができる。
The intervening member 3 may be a member including a rubber material such as silicone rubber, fluorine rubber, urethane rubber, butadiene rubber, isoprene rubber, chloroprene, styrene butadiene rubber, acrylonitrile butadiene rubber, and butyl rubber. Preferably, the interposed member 3 may be a member whose surface is made of a rubber material, or may be a member whose whole is made of a rubber material. These rubber materials may be used independently and may be used in combination of multiple types.
Preferably, as the interposing member 3, silicone rubber or fluorine rubber that does not contain a sulfur component and has excellent heat resistance can be used.
 本実施形態では、介在部材3の容器11側の面には、その内周縁と外周縁との間に、容器11に設けられた係合突起部16と係合する1つ以上の係合孔部3aが形成されている。容器11の係合突起部16と介在部材3の係合孔部3aとが係合することにより、介在部材3を容器11に容易に固定することができる。 In the present embodiment, the surface of the interposition member 3 on the container 11 side has at least one engagement hole that engages with the engagement protrusion 16 provided on the container 11 between the inner periphery and the outer periphery. Part 3a is formed. By engaging the engagement protrusion 16 of the container 11 with the engagement hole 3 a of the interposition member 3, the interposition member 3 can be easily fixed to the container 11.
 介在部材3は、開口部15を囲むような形状に形成されていることが好ましい。そして、容器11内部から開口部15を介して外部へと放出される気体が水素透過シート2を通過することを確実にするため、開口15を囲むような形状に形成された介在部材3が、水素透過シート2及び容器11と隙間なく密着していることが好ましい。 The interposing member 3 is preferably formed in a shape surrounding the opening 15. And in order to ensure that the gas released from the inside of the container 11 to the outside through the opening 15 passes through the hydrogen permeable sheet 2, the interposition member 3 formed in a shape surrounding the opening 15 It is preferable that the hydrogen permeable sheet 2 and the container 11 are in close contact with each other without any gap.
 本実施形態の水素透過部材1は、介在部材3が配された側の面とは反対側の面から水素透過シート2を押圧するための押圧部材4をさらに備えている。このように、水素透過部材1が押圧部材4を備えている場合には、押圧部材4と介在部材3との間に水素透過シート2を挟持することができ、それによって水素透過シート2を容器11に容易に固定することができる。 The hydrogen permeable member 1 of this embodiment further includes a pressing member 4 for pressing the hydrogen permeable sheet 2 from the surface opposite to the surface on which the interposing member 3 is disposed. As described above, when the hydrogen permeable member 1 includes the pressing member 4, the hydrogen permeable sheet 2 can be sandwiched between the pressing member 4 and the interposition member 3, whereby the hydrogen permeable sheet 2 is placed in the container. 11 can be easily fixed.
 本実施形態では、押圧部材4は、嵌め込み構造を有しており、該嵌め込み構造を介して容器11の蓋12に設けられた凹部20内に嵌め込まれることにより、容器11に装着されている。これによって、押圧部材4は、水素透過シート2を押圧している。
 具体的には、押圧部材4は、介在部材3が配された側の面とは反対側の面から水素透過シート2を押圧する本体部4aと、介在部材3が配された側とは反対の方向かつ凹部20の内壁側の方向(図1の斜め上方)に向けて突出する突出部4bとを備えている。そして、押圧部材4は、凹部20内に嵌め込まれた際に、突出部4bの先端部分が凹部20の内壁に接触するように形成されている。このような嵌め込み構造により、押圧部材4が凹部20の内壁に嵌め込まれた際に、突出部4bが凹部20の内壁に接することにより、押圧部材4を凹部20内に固定することができ、それによって水素透過シート2を容器11の凹部20内に一層容易に固定することができる。
In the present embodiment, the pressing member 4 has a fitting structure, and is attached to the container 11 by being fitted into a recess 20 provided in the lid 12 of the container 11 via the fitting structure. Thereby, the pressing member 4 presses the hydrogen permeable sheet 2.
Specifically, the pressing member 4 is opposite to the body 4a that presses the hydrogen permeable sheet 2 from the surface opposite to the surface on which the interposing member 3 is disposed, and the side on which the interposing member 3 is disposed. And a projecting portion 4b projecting in the direction toward the inner wall side of the recess 20 (obliquely upward in FIG. 1). The pressing member 4 is formed so that the tip end portion of the protruding portion 4 b comes into contact with the inner wall of the concave portion 20 when fitted into the concave portion 20. With such a fitting structure, when the pressing member 4 is fitted into the inner wall of the recess 20, the protruding member 4 b comes into contact with the inner wall of the recess 20, so that the pressing member 4 can be fixed in the recess 20. Thus, the hydrogen permeable sheet 2 can be more easily fixed in the recess 20 of the container 11.
 押圧部材4は、介在部材3と共に水素透過シート2を挟持できるような形状であることが好ましい。例えば、介在部材3が開口15を囲むような形状に形成されている場合には、同様に、押圧部材4の本体部4aが開口15を囲むような形状に形成されていることが好ましい。 It is preferable that the pressing member 4 has a shape that can hold the hydrogen permeable sheet 2 together with the interposition member 3. For example, when the interposition member 3 is formed in a shape surrounding the opening 15, similarly, it is preferable that the main body portion 4 a of the pressing member 4 is formed in a shape surrounding the opening 15.
 押圧部材4を形成する材料は、特に限定されないが、例えば、アルミニウム、ステンレス等の金属、フェノール樹脂、PBT樹脂、PPS樹脂等の合成樹脂が挙げられる。特に、アルミニウム、ステンレス等の金属材料が、耐熱性、耐薬品性の観点から好ましい。
 また、水素透過シート2が金属からなるシート材である場合には、押圧部材4が、上記したような金属材料によって形成されていることが好ましい。
Although the material which forms the press member 4 is not specifically limited, For example, synthetic resins, such as metals, such as aluminum and stainless steel, a phenol resin, PBT resin, and PPS resin, are mentioned. In particular, metal materials such as aluminum and stainless steel are preferable from the viewpoints of heat resistance and chemical resistance.
Moreover, when the hydrogen permeable sheet 2 is a sheet material made of metal, it is preferable that the pressing member 4 is formed of the metal material as described above.
 本実施形態の水素透過部材1は、介在部材3を介して水素透過シート2を容器11の内側に配置することにより、容器11に容易に取り付けることができる。
 具体的には、まず、容器11に、介在部材3を配する。このとき、介在部材3の嵌合孔部3aに容器11の嵌合突起部16が係合するように、開口部15の周囲に介在部材3を配する。
 次に、介在部材3上に、水素透過シート2を配する。このとき、水素透過シート2が容器11に設けられた開口部15を覆うように、水素透過シート2を配する。
 その後、介在部材3が配された側の面とは反対側の面から、水素透過シート2上に押圧部材4を配して、水素透過シート2を押圧する。
 このようにして、容器11上にて水素透過部材1を組み立てつつ、容器11に水素透過部材1を取り付けることができる。
The hydrogen permeable member 1 of this embodiment can be easily attached to the container 11 by disposing the hydrogen permeable sheet 2 inside the container 11 with the interposition member 3 interposed therebetween.
Specifically, first, the interposition member 3 is arranged in the container 11. At this time, the interposing member 3 is arranged around the opening 15 so that the fitting protrusion 16 of the container 11 is engaged with the fitting hole 3 a of the interposing member 3.
Next, the hydrogen permeable sheet 2 is disposed on the interposition member 3. At this time, the hydrogen permeable sheet 2 is disposed so that the hydrogen permeable sheet 2 covers the opening 15 provided in the container 11.
Thereafter, the pressing member 4 is disposed on the hydrogen permeable sheet 2 from the surface opposite to the surface on which the interposing member 3 is disposed, and the hydrogen permeable sheet 2 is pressed.
In this way, the hydrogen permeable member 1 can be attached to the container 11 while assembling the hydrogen permeable member 1 on the container 11.
 以上のように、本実施形態に係る水素透過部材1は、容器11に設けられた開口部15を覆うように配される水素透過シート2であって、金属を含有している水素透過シート2と、容器11と水素透過シート2との間に配される介在部材3であって、介在部材3を105℃で12時間加熱した際に介在部材3から放出されるガスに含まれる硫黄成分の濃度が0.6μg/g未満である、介在部材3とを備える。斯かる構成によれば、水素透過部材1は、容器11と水素透過シート2との間に配される介在部材3が高温時においても硫黄成分をほとんど放出しない。そのため、高温時における水素透過シート2の水素透過性の低下を効果的に抑制することができる。 As described above, the hydrogen permeable member 1 according to the present embodiment is the hydrogen permeable sheet 2 arranged so as to cover the opening 15 provided in the container 11, and the hydrogen permeable sheet 2 containing metal. And an intermediate member 3 disposed between the container 11 and the hydrogen permeable sheet 2, and the sulfur component contained in the gas released from the intermediate member 3 when the intermediate member 3 is heated at 105 ° C. for 12 hours. And an intervening member 3 having a concentration of less than 0.6 μg / g. According to such a configuration, the hydrogen permeable member 1 releases almost no sulfur component even when the interposed member 3 disposed between the container 11 and the hydrogen permeable sheet 2 is at a high temperature. Therefore, a decrease in hydrogen permeability of the hydrogen permeable sheet 2 at a high temperature can be effectively suppressed.
 また、本実施形態に係る水素透過部材1では、介在部材3がゴム材料を含む。斯かる構成によれば、水素透過シート2と容器11との介在部材3を介した密着性を高めることができる。 Moreover, in the hydrogen permeable member 1 according to the present embodiment, the interposition member 3 includes a rubber material. According to such a configuration, it is possible to improve the adhesion through the interposition member 3 between the hydrogen permeable sheet 2 and the container 11.
 さらに、本実施形態に係る水素透過部材1は、介在部材3の配された側の面とは反対側の面から水素透過シート2を押圧するための押圧部材4をさらに備えている。斯かる構成によれば、押圧部材4により水素透過シート2を押圧させるだけで、水素透過シート2を容器11に容易に取り付けることができる。 Furthermore, the hydrogen permeable member 1 according to this embodiment further includes a pressing member 4 for pressing the hydrogen permeable sheet 2 from the surface opposite to the surface on which the interposing member 3 is disposed. According to such a configuration, the hydrogen permeable sheet 2 can be easily attached to the container 11 simply by pressing the hydrogen permeable sheet 2 with the pressing member 4.
 加えて、本実施形態に係る水素透過部材1では、容器11が、開口部15が形成された底面部21を有する凹部20を備えており、押圧部材4が、嵌め込み構造を有しており、水素透過部材1が、水素透過シート2及び介在部材3を凹部20内に配すると共に、押圧部材4を該嵌め込み構造を介して凹部20内に嵌め込むことにより、容器11に装着されるものである。斯かる構成によれば、押圧部材4を容器に備えられた凹部20内に嵌め込むことにより、水素透過シート2を容器11に一層容易に取り付けることができる。 In addition, in the hydrogen permeable member 1 according to the present embodiment, the container 11 includes the recess 20 having the bottom surface portion 21 in which the opening 15 is formed, and the pressing member 4 has a fitting structure. The hydrogen permeable member 1 is mounted on the container 11 by disposing the hydrogen permeable sheet 2 and the interposition member 3 in the recess 20 and fitting the pressing member 4 into the recess 20 through the fitting structure. is there. According to such a configuration, the hydrogen permeable sheet 2 can be more easily attached to the container 11 by fitting the pressing member 4 into the recess 20 provided in the container.
 上記実施形態に係る水素透過部材は以上の通りであるが、本発明の水素透過部材は上記実施形態の構成に限定されず、適宜設計変更可能である。 Although the hydrogen permeable member according to the above embodiment is as described above, the hydrogen permeable member of the present invention is not limited to the configuration of the above embodiment, and the design can be changed as appropriate.
 例えば、上記実施形態では、容器11はアルミ電解コンデンサであるが、容器11は、内部空間から水素ガスを排出するものであれば、アルミ電解コンデンサに限定されない。例えば、容器11は、燃料電池等に使用される水素生成装置であってもよい。 For example, in the above embodiment, the container 11 is an aluminum electrolytic capacitor, but the container 11 is not limited to an aluminum electrolytic capacitor as long as it discharges hydrogen gas from the internal space. For example, the container 11 may be a hydrogen generator used for a fuel cell or the like.
 さらに、上記実施形態では、容器11の蓋12に凹部20が形成されており、水素透過シート2及び介在部材3が凹部20内に配置されているが、本発明の水素透過シート及び介在部材は、容器に設けられた開口部を覆っているのであれば、容器の凹部内に設けられなくてもよい。また、本発明の水素透過部材が取り付けられる容器は、水素透過シート及び介在部材を配置するための凹部を備えていなくてもよい。 Furthermore, in the said embodiment, although the recessed part 20 is formed in the lid | cover 12 of the container 11, and the hydrogen permeable sheet 2 and the interposition member 3 are arrange | positioned in the recessed part 20, the hydrogen permeable sheet and interposition member of this invention are As long as the opening provided in the container is covered, it may not be provided in the recess of the container. Further, the container to which the hydrogen permeable member of the present invention is attached may not include a recess for arranging the hydrogen permeable sheet and the interposition member.
 また、上記実施形態では、水素透過シート2が容器11の蓋12に設けられた開口部15を覆っているが、本発明の水素透過シートは、容器の蓋以外に設けられた開口部を覆っていてもよい。例えば、本発明の水素透過シートは、容器本体に直接設けられた開口部を覆っていてもよい。また、本発明の水素透過シートは、容器に設けられた複数の開口部を覆っていてもよい。 Moreover, in the said embodiment, although the hydrogen permeable sheet 2 has covered the opening part 15 provided in the lid | cover 12 of the container 11, the hydrogen permeable sheet of this invention covers the opening part provided in addition to the cover of the container. It may be. For example, the hydrogen permeable sheet of the present invention may cover an opening provided directly in the container body. The hydrogen permeable sheet of the present invention may cover a plurality of openings provided in the container.
 さらに、上記実施形態では、水素透過シート2が容器11に設けられた開口部15を容器11の外側から覆うように容器11の外側に配置されているが、水素透過シート2は、容器11の内側から開口部15を覆うように配置されていてもよい。 Furthermore, in the said embodiment, although the hydrogen permeable sheet 2 is arrange | positioned on the outer side of the container 11 so that the opening part 15 provided in the container 11 may be covered from the outer side of the container 11, the hydrogen permeable sheet 2 of the container 11 is provided. You may arrange | position so that the opening part 15 may be covered from an inner side.
 また、上記実施形態では、介在部材3は、容器11及び水素透過シート2の両方に直接接触するように配されているが、本発明は、介在部材3が容器11と水素透過シート2との間に配されている限り、上記の構成に限定されない。すなわち、本発明の介在部材と容器又は水素透過シートとの間には、別の部材が設けられていてもよい。
 同様に、押圧部材と水素透過シートとの間に、別の部材が設けられていてもよい。
Moreover, in the said embodiment, although the interposition member 3 is distribute | arranged so that both the container 11 and the hydrogen permeation sheet 2 may contact directly, this invention is the interposition member 3 of the container 11 and the hydrogen permeation sheet 2. As long as it is arranged in between, it is not limited to the above configuration. That is, another member may be provided between the interposed member of the present invention and the container or the hydrogen permeable sheet.
Similarly, another member may be provided between the pressing member and the hydrogen permeable sheet.
 加えて、上記実施形態の水素透過部材1は、水素透過シート2を1枚だけ備えているが、本発明の水素透過部材は、2枚又はそれ以上の水素透過シートを備えていてもよい。具体的には、水素透過部材1は、図3に示されるような2枚の水素透過シート2a及び2bからなる水素透過シート2が、容器11に設けられた開口部15を容器11の内側から覆うようにして、介在部材3により容器11に接着されていてもよい。 In addition, although the hydrogen permeable member 1 of the above embodiment includes only one hydrogen permeable sheet 2, the hydrogen permeable member of the present invention may include two or more hydrogen permeable sheets. Specifically, the hydrogen permeable member 1 includes a hydrogen permeable sheet 2 made up of two hydrogen permeable sheets 2a and 2b as shown in FIG. It may be adhered to the container 11 by the interposition member 3 so as to cover it.
 水素透過シート2a及び2bは、同じタイプの水素透過シートであってもよいが、異なるタイプの水素透過シートであることが好ましい。例えば、容器のより開口部に近い側に配された水素透過シート2aが、パラジウムと金との合金により構成されるシート材(金属箔)であり、比較的容器の外部に近い位置に配された水素透過シート2bが、パラジウムと金との合金を含む多孔質PTFE膜であってもよい。このように、水素透過シートを複数枚重ねる場合には、容器のより内側に比較的水素選択性が高い水素透過シートを配し、容器の外側に近づくにつれて比較的通気性の高い水素透過シートを配するのが好ましい。 The hydrogen permeable sheets 2a and 2b may be the same type of hydrogen permeable sheet, but are preferably different types of hydrogen permeable sheets. For example, the hydrogen permeable sheet 2a disposed on the side closer to the opening of the container is a sheet material (metal foil) made of an alloy of palladium and gold, and is disposed relatively close to the outside of the container. The hydrogen permeable sheet 2b may be a porous PTFE membrane containing an alloy of palladium and gold. As described above, when a plurality of hydrogen permeable sheets are stacked, a hydrogen permeable sheet having a relatively high hydrogen selectivity is arranged on the inner side of the container, and a hydrogen permeable sheet having a relatively high air permeability is disposed toward the outside of the container. It is preferable to arrange them.
 以下、本発明の具体的な実施例及び比較例を挙げることにより、本発明を明らかにする。なお、本発明は以下の実施例に限定されない。 Hereinafter, the present invention will be clarified by giving specific examples and comparative examples of the present invention. The present invention is not limited to the following examples.
(製造例1:水素透過シートの作製)
 インゴット中のAu含有量が30mol%となるようにPd及びAu原料をそれぞれ秤量した。これらの原料を、水冷銅坩堝を備えたアーク溶解炉に投入し、大気圧のArガス雰囲気中でアーク溶解した。得られたボタンインゴットを、ロール径100mmの2段圧延機を用いて厚さ5mmになるまで冷間圧延して、板材を得た。その後、ガラス管の中に圧延した板材を入れ、ガラス管の両端を封止した。ガラス管内部を室温で5×10-4Paまで減圧し、その後700℃まで昇温して24時間放置し、その後室温まで冷却した。この熱処理により、合金中のPd及びAuの偏析を解消した。次に、ロール径100mmの2段圧延機を用いて板材を厚さ100μmになるまで冷間圧延し、続いてロール径20mmの2段圧延機を用いて板材を厚さ20μmになるまでさらに冷間圧延した。その後、ガラス管の中に圧延した板材を入れ、ガラス管の両端を封止した。ガラス管内部を室温で5×10-4Paまで減圧し、その後500℃まで昇温して1時間放置し、その後室温まで冷却した。この熱処理により、圧延によって生じたPd-Au合金内部のひずみを除去し、厚さ20μm、Au含有量30mol%のPd-Au合金層からなる水素透過シート(金属箔)を作製した。
(Production Example 1: Production of hydrogen permeable sheet)
Pd and Au raw materials were weighed so that the Au content in the ingot was 30 mol%. These raw materials were put into an arc melting furnace equipped with a water-cooled copper crucible and arc-melted in an atmospheric pressure Ar gas atmosphere. The obtained button ingot was cold-rolled to a thickness of 5 mm using a two-high rolling mill with a roll diameter of 100 mm to obtain a plate material. Then, the rolled plate material was put in the glass tube, and both ends of the glass tube were sealed. The inside of the glass tube was decompressed to 5 × 10 −4 Pa at room temperature, then heated to 700 ° C. and allowed to stand for 24 hours, and then cooled to room temperature. By this heat treatment, segregation of Pd and Au in the alloy was eliminated. Next, the plate material is cold-rolled to a thickness of 100 μm using a two-roll mill with a roll diameter of 100 mm, and then further cooled to a thickness of 20 μm using a two-roll mill with a roll diameter of 20 mm. Rolled for a while. Then, the rolled plate material was put in the glass tube, and both ends of the glass tube were sealed. The inside of the glass tube was depressurized to 5 × 10 −4 Pa at room temperature, then heated to 500 ° C. and allowed to stand for 1 hour, and then cooled to room temperature. By this heat treatment, strain inside the Pd—Au alloy generated by rolling was removed, and a hydrogen permeable sheet (metal foil) composed of a Pd—Au alloy layer having a thickness of 20 μm and an Au content of 30 mol% was produced.
(水素透過性の評価)
 製造例1で作製した水素透過シートをスウェージロック社製のVCRコネクターに取り付け、片側にSUSチューブを取り付けることにより、密封された空間(63.5ml)を作製した。チューブ内を真空ポンプで減圧後、水素ガスの圧力が0.15MPaになるように調整し、105℃の環境下での圧力変化をモニターした。減圧開始から2時間後には、該密閉された空間内の圧力は0.05MPaまで減少していた(変化量0.10MPa)。
 上記圧力変化によって水素排出膜を透過した水素モル数(体積)がわかるため、該圧力変化量を以下の計算式に基づき1日当たりの透過量に換算して、該水素透過シートの水素透過量(1atm時の体積量)を算出した。その結果、該水素透過シートの1日当たりの水素透過量は、747ml/dayであった。
 水素透過量(mL/day)=(減圧開始から2時間の間の該密封された空間内の圧力変化量(MPa))×9.807×63.5×24/2
(Evaluation of hydrogen permeability)
The hydrogen-permeable sheet produced in Production Example 1 was attached to a Swagelok VCR connector, and a SUS tube was attached to one side to produce a sealed space (63.5 ml). After depressurizing the inside of the tube with a vacuum pump, the pressure of hydrogen gas was adjusted to 0.15 MPa, and the pressure change in an environment of 105 ° C. was monitored. Two hours after the start of pressure reduction, the pressure in the sealed space was reduced to 0.05 MPa (variation amount: 0.10 MPa).
Since the number of hydrogen moles (volume) permeated through the hydrogen discharge membrane by the pressure change is known, the amount of change in pressure is converted into a permeation amount per day based on the following calculation formula, and the hydrogen permeation amount of the hydrogen permeable sheet ( The volume amount at 1 atm) was calculated. As a result, the hydrogen permeation amount per day of the hydrogen permeable sheet was 747 ml / day.
Hydrogen permeation amount (mL / day) = (pressure change amount (MPa) in the sealed space during 2 hours from the start of pressure reduction) × 9.807 × 63.5 × 24/2
(実施例1)
 製造例1により作製した水素透過シートと、シリコーンゴム(ミスミ社製「WRBS」)により構成された介在部材とを使用して、実施例1の水素透過部材を構成した。
(Example 1)
The hydrogen permeable member of Example 1 was constructed using the hydrogen permeable sheet produced in Production Example 1 and the interposition member made of silicone rubber ("WRBS" manufactured by MISUMI Corporation).
(実施例2)
 製造例1により作製した水素透過シートと、フッ素ゴム(ミスミ社製「WRBF」)により構成された介在部材とを使用して、実施例2の水素透過部材を構成した。
(Example 2)
The hydrogen permeable member of Example 2 was constructed using the hydrogen permeable sheet produced in Production Example 1 and the interposing member made of fluororubber (“WRBF” manufactured by MISUMI Corporation).
(実施例3)
 製造例1により作製した水素透過シートと、シリコーンゴム(NOK工業社製「S503」)により構成された介在部材とを使用して、実施例3の水素透過部材を構成した。
(Example 3)
The hydrogen permeable member of Example 3 was constructed using the hydrogen permeable sheet produced in Production Example 1 and the interposition member made of silicone rubber (“S503” manufactured by NOK Kogyo Co., Ltd.).
(実施例4)
 製造例1により作製した水素透過シートと、シリコーンゴム(協和シール工業社製「KSSI-70001」)により構成された介在部材とを使用して、実施例4の水素透過部材を構成した。
Example 4
The hydrogen permeable member of Example 4 was configured using the hydrogen permeable sheet prepared in Production Example 1 and the interposition member formed of silicone rubber (“KSSI-70001” manufactured by Kyowa Seal Industry Co., Ltd.).
(実施例5)
 製造例1により作製した水素透過シートと、水素化ニトリルゴム(NOK社製「G607」)により構成された介在部材とを使用して、実施例5の水素透過部材を構成した。
(Example 5)
The hydrogen permeable member of Example 5 was configured using the hydrogen permeable sheet prepared in Production Example 1 and the interposition member formed of hydrogenated nitrile rubber (“G607” manufactured by NOK).
(比較例1)
 製造例1により作製した水素透過シートと、ニトリルゴム(NOK社製「A305」)により構成された介在部材とを使用して、比較例1の水素透過部材を構成した。
(Comparative Example 1)
The hydrogen permeable member of Comparative Example 1 was constructed using the hydrogen permeable sheet produced in Production Example 1 and the interposition member made of nitrile rubber (“A305” manufactured by NOK).
(水素透過部材の評価) (Evaluation of hydrogen permeable member)
(介在部材に含まれる硫黄成分の測定)
 実施例1~5及び比較例1の介在部材に使用した材料と同じ各ゴム材料2gを、それぞれ10mlヘッドスペースバイアル瓶に入れて密栓し、ヘッドスペースサンプラー(HSS)(Agilent Technologies製、G1888)を用いて、以下の条件にて105℃で12時間加熱を行った。
(Measurement of sulfur components contained in intervening members)
2 g of each rubber material same as the material used for the intervening members of Examples 1 to 5 and Comparative Example 1 was put into a 10 ml headspace vial and sealed, and a headspace sampler (HSS) (Agilent Technologies, G1888) was attached. And heated at 105 ° C. for 12 hours under the following conditions.
HSS
 オーブン温度:105℃
 加熱時間:12h
 加圧時間:0.12min
 ループ充填時間:0.12min
 ループ平衡時間:0.05min
 注入時間:0.5min
 サンプルループ温度:160℃
 トランスファーライン温度:200℃
HSS
Oven temperature: 105 ° C
Heating time: 12h
Pressurization time: 0.12 min
Loop filling time: 0.12 min
Loop equilibration time: 0.05 min
Injection time: 0.5 min
Sample loop temperature: 160 ° C
Transfer line temperature: 200 ° C
 これにより該ゴム材料から放出されたガス3mlを、GC/MS/FPD(Agilent Technologies製、7890A/5975C)に注入して、以下の各条件により該ガス中の硫黄成分量を測定した。 3 g of gas released from the rubber material was injected into GC / MS / FPD (manufactured by Agilent Technologies, 7890A / 5975C), and the amount of sulfur component in the gas was measured under the following conditions.
GC/MS/FPD
・GC
 カラム:HP-5MS UI 30m×0.25mm id×0.25μm film thickness
 カラム温度:40℃(3min)→+20℃/min→300℃(4min)
 キャリアーガス:He(3.0ml/min)
 注入口:スプリット5:1
 注入口温度:250℃
 検出器:MS/FPD
・MS
 イオン化法:EI法
 電子エネルギー:70eV
 E.M.電圧:1776V
 イオンソース温度:230℃
 インターフェイス温度:300℃
 質量範囲:m/z=35~800
・FPD…硫黄系化合物の選択検出
 温度:250℃
 H2流量:50ml/min
 Air流量:60ml/min
GC / MS / FPD
・ GC
Column: HP-5MS UI 30 m × 0.25 mm id × 0.25 μm film thickness
Column temperature: 40 ° C. (3 min) → + 20 ° C./min→300° C. (4 min)
Carrier gas: He (3.0 ml / min)
Inlet: Split 5: 1
Inlet temperature: 250 ° C
Detector: MS / FPD
・ MS
Ionization method: EI method Electron energy: 70 eV
E. M.M. Voltage: 1776V
Ion source temperature: 230 ° C
Interface temperature: 300 ° C
Mass range: m / z = 35-800
-FPD: Selective detection of sulfur compounds Temperature: 250 ° C
H 2 flow rate: 50 ml / min
Air flow rate: 60 ml / min
 このようにして測定された、各ゴム材料から発生したガスに含まれていた硫黄成分の量を、下記の表1に示す。 The amount of sulfur component contained in the gas generated from each rubber material measured in this way is shown in Table 1 below.
(介在部材から発生するガスによる水素透過シートの水素透過性低下の確認)
 実施例1~5及び比較例1の介在部材に使用した材料と同じ各ゴム材料2gを、それぞれ製造例1により作製した水素透過シート38mm2と共に密閉されたSUS缶内に入れ、105℃で12時間熱処理を行った。このようにして、該シリコーンゴムから発生したガスを水素透過シートに曝露させた。
(Confirmation of decrease in hydrogen permeability of hydrogen permeable sheet due to gas generated from intervening member)
2 g of each rubber material same as the material used for the intervening members of Examples 1 to 5 and Comparative Example 1 was placed in a sealed SUS can together with 38 mm 2 of hydrogen permeable sheet prepared according to Production Example 1, and 12 g at 105 ° C. Time heat treatment was performed. In this way, the gas generated from the silicone rubber was exposed to the hydrogen permeable sheet.
 その後、該ガスに曝露させた水素透過シートをSUS缶から取り出し、製造例1により作製した水素透過シート(ガスに曝露させる前の水素透過シート)に対して行った方法と同様の方法により該水素透過シートの水素透過量を測定した。 Thereafter, the hydrogen permeable sheet exposed to the gas is taken out from the SUS can, and the hydrogen permeable sheet is produced by a method similar to the method performed on the hydrogen permeable sheet (hydrogen permeable sheet before being exposed to the gas) prepared in Production Example 1. The hydrogen permeation amount of the permeable sheet was measured.
 各ガスに曝露させる前の水素透過シートの水素透過量を100%とした場合における、各ゴム材料から発生したガスに曝露させた水素透過シートの水素透過量の維持率を算出すると共に、水素透過量の維持率を以下の基準により評価した。結果を下記の表1に示す。
 〇:80%以上
 △:80%未満
 ×:0%
When the hydrogen permeation amount of the hydrogen permeable sheet before being exposed to each gas is 100%, the maintenance rate of the hydrogen permeation amount of the hydrogen permeable sheet exposed to the gas generated from each rubber material is calculated and the hydrogen permeation rate is calculated. The amount maintenance rate was evaluated according to the following criteria. The results are shown in Table 1 below.
○: 80% or more △: Less than 80% ×: 0%
(水素透過部材を取り付けたアルミ電解コンデンサに対する評価)
 実施例1~5及び比較例1の水素透過部材を、アルミ電解コンデンサの開口部にそれぞれ取り付けた。具体的には、図1に示すように、凹部内に開口部が設けられた蓋を備えたアルミ電解コンデンサにおいて、該蓋の開口部の周囲に上記介在部材を配した後、該開口部を覆うように上記水素透過シートを配置した。その後、図1に示すように、凹部内に押圧部材を嵌め込むことにより、該水素透過シートを押圧部材により押圧することにより、該水素透過シートを該介在部材と該押圧部材とにより挟持して、凹部内に固定した。
(Evaluation of aluminum electrolytic capacitor with hydrogen permeable member)
The hydrogen permeable members of Examples 1 to 5 and Comparative Example 1 were attached to the openings of the aluminum electrolytic capacitors, respectively. Specifically, as shown in FIG. 1, in an aluminum electrolytic capacitor having a lid provided with an opening in a recess, after the interposition member is arranged around the opening of the lid, the opening is The above hydrogen permeable sheet was arranged so as to cover. Thereafter, as shown in FIG. 1, the hydrogen permeable sheet is sandwiched between the interposition member and the pressing member by fitting the pressing member into the recess and pressing the hydrogen permeable sheet with the pressing member. And fixed in the recess.
 この状態の各コンデンサに対し、それぞれ105℃にて400Vの電圧を500時間印加した。その後、各コンデンサの外観を観察し、各コンデンサの膨れを確認した。結果を下記の表1に示す。
 なお、このとき、実施例1~5及び比較例1の水素透過部材は、いずれもアルミ電解コンデンサの蓋より外れることなく、隙間なく取り付けられていた。
A voltage of 400 V was applied to each capacitor in this state at 105 ° C. for 500 hours. Thereafter, the appearance of each capacitor was observed to confirm the swelling of each capacitor. The results are shown in Table 1 below.
At this time, the hydrogen permeable members of Examples 1 to 5 and Comparative Example 1 were all attached without a gap without coming off the lid of the aluminum electrolytic capacitor.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1より明らかなように、実施例1~5の水素透過部材に介在部材として使用したゴム材料は、105℃の高温条件下であっても、水素透過シートの水素透過性を十分に維持していた。これは、該ゴム材料が、105℃の高温条件下において、水素透過シートに含まれるパラジウムに有害な硫黄成分の放出量が0.6μg/gより少ないためである。
 これに対し、比較例1の水素透過部材に介在部材として使用したゴム材料は、105℃の高温条件下において、水素透過シートの水素透過性を著しく低下させた。これは、該ゴム材料が、105℃の高温条件下において、12時間で0.6μg/gもの放出された硫黄成分が、水素透過シートに含まれるパラジウムを被毒するためである。
As is clear from Table 1, the rubber material used as the intervening member in the hydrogen permeable members of Examples 1 to 5 sufficiently maintained the hydrogen permeability of the hydrogen permeable sheet even under a high temperature condition of 105 ° C. It was. This is because the rubber material releases a sulfur component harmful to palladium contained in the hydrogen permeable sheet under a high temperature condition of 105 ° C., which is less than 0.6 μg / g.
In contrast, the rubber material used as the interposition member for the hydrogen permeable member of Comparative Example 1 significantly reduced the hydrogen permeability of the hydrogen permeable sheet under the high temperature condition of 105 ° C. This is because the rubber material poisons palladium contained in the hydrogen permeable sheet with the sulfur component released as much as 0.6 μg / g in 12 hours under a high temperature condition of 105 ° C.
 加えて、実施例1~5の水素透過部材を取り付けたアルミ電解コンデンサは、105℃の高温条件下で電圧を印加させたとしても、内圧により膨れることはなかった。これは、実施例1~5の水素透過部材の水素透過性が、介在部材から発生するガスによって著しく低下させられることがないため、アルミ電解コンデンサ内部で発生した水素ガスを、水素透過部材を介して外部へ放出することができるためである。
 これに対し、比較例1の水素透過部材を取り付けたアルミ電解コンデンサは、105℃の高温条件下で電圧を印加させたところ、コンデンサに膨れが見られた。これは、比較例1の水素透過部材の水素透過性が、介在部材から発生するガスによって失われたため、アルミ電解コンデンサ内部で発生した水素ガスを、水素透過部材を介して外部へ放出することができなくなったためである。
In addition, the aluminum electrolytic capacitors to which the hydrogen permeable members of Examples 1 to 5 were attached did not swell due to internal pressure even when a voltage was applied at a high temperature of 105 ° C. This is because the hydrogen permeability of the hydrogen permeable members of Examples 1 to 5 is not significantly lowered by the gas generated from the interposed member, so that the hydrogen gas generated inside the aluminum electrolytic capacitor is passed through the hydrogen permeable member. This is because it can be released to the outside.
On the other hand, when the voltage was applied to the aluminum electrolytic capacitor to which the hydrogen permeable member of Comparative Example 1 was attached under a high temperature condition of 105 ° C., the capacitor was swollen. This is because the hydrogen permeability of the hydrogen permeable member of Comparative Example 1 was lost by the gas generated from the interposition member, so that the hydrogen gas generated inside the aluminum electrolytic capacitor could be released to the outside through the hydrogen permeable member. This is because it is no longer possible.
1,1’:水素透過部材、2,2a,2b:水素透過シート、
3:介在部材、3a:係合孔部、4:押圧部材、4a:本体部、4b:突出部
11:容器(アルミ電解コンデンサ)、12:蓋、15:開口部、16:係合突起部
20:凹部、21:底面部
1, 1 ': Hydrogen permeable member, 2, 2a, 2b: Hydrogen permeable sheet,
3: Interposition member, 3a: engagement hole, 4: pressing member, 4a: main body, 4b: protrusion 11: container (aluminum electrolytic capacitor), 12: lid, 15: opening, 16: engagement protrusion 20: recessed portion, 21: bottom surface portion

Claims (4)

  1.  容器に設けられた開口部を覆うように配される水素透過シートであって、金属を含有している水素透過シートと、
     前記容器と前記水素透過シートとの間に配される介在部材であって、前記介在部材を105℃で12時間加熱した際に前記介在部材から放出されるガスに含まれる硫黄成分の濃度が0.6μg/g未満である、介在部材と、
    を備えた水素透過部材。
    A hydrogen permeable sheet disposed so as to cover an opening provided in the container, and a hydrogen permeable sheet containing a metal;
    An intermediate member disposed between the container and the hydrogen permeable sheet, wherein the concentration of sulfur component contained in the gas released from the intermediate member when the intermediate member is heated at 105 ° C. for 12 hours is 0 An interposition member being less than 6 μg / g;
    A hydrogen permeable member comprising:
  2.  前記介在部材は、ゴム材料を含む、請求項1に記載の水素透過部材。 The hydrogen permeable member according to claim 1, wherein the interposition member includes a rubber material.
  3.  前記介在部材の配された側の面とは反対側の面から前記水素透過シートを押圧するための押圧部材をさらに備える、請求項1又は2に記載の水素透過部材。 The hydrogen permeable member according to claim 1 or 2, further comprising a pressing member for pressing the hydrogen permeable sheet from a surface opposite to the surface on which the interposition member is arranged.
  4.  前記容器は、前記開口部が形成された底面部を有する凹部を備えており、
     前記押圧部材は、嵌め込み構造を有しており、
     前記水素透過部材は、前記水素透過シート及び前記介在部材を前記凹部内に配すると共に、前記押圧部材を前記嵌め込み構造を介して前記凹部内に嵌め込むことにより、前記容器に装着される、請求項3に記載の水素透過部材。
    The container includes a recess having a bottom surface in which the opening is formed,
    The pressing member has a fitting structure,
    The hydrogen permeable member is mounted on the container by disposing the hydrogen permeable sheet and the interposition member in the recess, and fitting the pressing member into the recess via the fitting structure. Item 4. The hydrogen-permeable member according to Item 3.
PCT/JP2017/028905 2016-09-30 2017-08-09 Hydrogen permeable member WO2018061492A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016194396A JP2018056510A (en) 2016-09-30 2016-09-30 Hydrogen permeable member
JP2016-194396 2016-09-30

Publications (1)

Publication Number Publication Date
WO2018061492A1 true WO2018061492A1 (en) 2018-04-05

Family

ID=61763367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/028905 WO2018061492A1 (en) 2016-09-30 2017-08-09 Hydrogen permeable member

Country Status (3)

Country Link
JP (1) JP2018056510A (en)
TW (1) TW201826300A (en)
WO (1) WO2018061492A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006059683A (en) * 2004-08-20 2006-03-02 Tokai Rubber Ind Ltd Washing method of rubber product for fuel cell
JP2015160855A (en) * 2014-02-26 2015-09-07 株式会社イノアックコーポレーション Rubber crosslinked product, and production method thereof
WO2015133616A1 (en) * 2014-03-06 2015-09-11 日東電工株式会社 Gas-permeable member and air-permeable container

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006059683A (en) * 2004-08-20 2006-03-02 Tokai Rubber Ind Ltd Washing method of rubber product for fuel cell
JP2015160855A (en) * 2014-02-26 2015-09-07 株式会社イノアックコーポレーション Rubber crosslinked product, and production method thereof
WO2015133616A1 (en) * 2014-03-06 2015-09-11 日東電工株式会社 Gas-permeable member and air-permeable container

Also Published As

Publication number Publication date
TW201826300A (en) 2018-07-16
JP2018056510A (en) 2018-04-05

Similar Documents

Publication Publication Date Title
JP5489714B2 (en) Pressure regulating valve for electronic parts and electronic parts using the same
US8564932B2 (en) Device to prevent overpressure in a capacitor or ultracapacitor
US5393325A (en) Composite hydrogen separation metal membrane
US3344582A (en) Irreversible hydrogen membrane
JP2008198664A (en) Gas penetration safety valve and electrochemical element
EP3115102A1 (en) Gas-permeable member and air-permeable container
JP5554747B2 (en) Gas seal composite and apparatus comprising the gas seal composite
JP4141381B2 (en) Proton conductor gas sensor
WO2018061492A1 (en) Hydrogen permeable member
JP3844859B2 (en) Dehumidifier
KR101772988B1 (en) Electrochemical carbon monoxide gas sensor
JP2018056509A (en) Hydrogen permeable member
JP7080548B2 (en) Hydrogen emission parts
JP5623819B2 (en) Gas seal composite and apparatus comprising the gas seal composite
JP7181324B2 (en) Hydrogen drain membrane
JP6289909B2 (en) A fuel cell stack comprising an anode chamber, an area for condensing and removing water in the anode chamber, and a method for condensing water in the chamber and removing the formed water
JP6867829B2 (en) Hydrogen discharge membrane
JP2018029102A (en) Breathable container
JP6089814B2 (en) Hydrogen separation method
TW201603356A (en) Hydrogen release film
WO2018051882A1 (en) Hydrogen discharge component
JP5987197B2 (en) Hydrogen separation membrane and hydrogen separation method
JP4898725B2 (en) Hydrogen separator
TW201729448A (en) Electrochemical element
JPS6247054B2 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17855450

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17855450

Country of ref document: EP

Kind code of ref document: A1