JP4898725B2 - Hydrogen separator - Google Patents

Hydrogen separator Download PDF

Info

Publication number
JP4898725B2
JP4898725B2 JP2008057981A JP2008057981A JP4898725B2 JP 4898725 B2 JP4898725 B2 JP 4898725B2 JP 2008057981 A JP2008057981 A JP 2008057981A JP 2008057981 A JP2008057981 A JP 2008057981A JP 4898725 B2 JP4898725 B2 JP 4898725B2
Authority
JP
Japan
Prior art keywords
hydrogen
hydrogen separation
separation cylinder
pressing
axial direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008057981A
Other languages
Japanese (ja)
Other versions
JP2009213960A (en
Inventor
耕平 三矢
融 島森
義則 白崎
達也 常木
英人 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd, Tokyo Gas Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2008057981A priority Critical patent/JP4898725B2/en
Publication of JP2009213960A publication Critical patent/JP2009213960A/en
Application granted granted Critical
Publication of JP4898725B2 publication Critical patent/JP4898725B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

本発明は、原料ガスから水素を選択して分離することができる水素分離装置に関し、特に、水素分離筒の損傷を防止できる構造を有する水素分離装置に関する。   The present invention relates to a hydrogen separator capable of selecting and separating hydrogen from a source gas, and more particularly to a hydrogen separator having a structure capable of preventing damage to a hydrogen separator cylinder.

水素の工業的製造方法の一つとして、炭化水素ガスの水蒸気改質法が知られており、この水蒸気改質法では、通常、粒状等の改質触媒を充填した改質器が用いられる。
ところが、改質器で得られる改質ガスには、主成分である水素のほか、CO、CO2等の副生成分や余剰H2Oが含まれているので、改質ガスを、例えば燃料電池にそのまま用いたのでは電池性能を阻害してしまう。
As one of the industrial methods for producing hydrogen, a steam reforming method of hydrocarbon gas is known. In this steam reforming method, a reformer filled with a reforming catalyst such as a granule is usually used.
However, the reformed gas obtained from the reformer contains by-products such as CO and CO 2 and surplus H 2 O in addition to hydrogen as the main component. If it is used as it is for a battery, battery performance will be impaired.

つまり、燃料電池のうち、リン酸形燃料電池で用いる水素ガス中のCOは1%(vol%)程度、固体高分子形燃料電池では100ppm(volppm)程度が限度であり、これらを超えると電池性能が著しく劣化するため、それら副生成分は燃料電池へ導入する前に除去する必要がある。   That is, of the fuel cells, CO in hydrogen gas used in phosphoric acid fuel cells is limited to about 1% (vol%), and in solid polymer fuel cells, the limit is about 100 ppm (vol ppm). Since the performance deteriorates significantly, these by-products need to be removed before being introduced into the fuel cell.

この対策として、改質器による改質ガスの生成と該改質ガスの精製とを一つの装置で行えるように一体化したメンブレンリアクタが開発されている(特許文献1参照)。
ところが、この種のメンブレンリアクタは、収納容器である反応管(外管)内に、表面に水素透過膜を備えた水素分離管を配置した多重管構成である。メンブレンリアクタは、外管と水素分離管との間隙に粒状等の改質触媒が充填され、この間隙に原料ガスが供給されて改質される。このとき、充填された触媒が水素分離管に繰り返し接触するため、例えば水素透過膜が破損する等の問題があった。
As a countermeasure, a membrane reactor has been developed in which the generation of the reformed gas by the reformer and the purification of the reformed gas can be performed with one apparatus (see Patent Document 1).
However, this type of membrane reactor has a multi-tube configuration in which a hydrogen separation tube having a hydrogen permeable membrane on its surface is arranged in a reaction tube (outer tube) that is a storage container. The membrane reactor is reformed by filling the gap between the outer pipe and the hydrogen separation pipe with a granular reforming catalyst and supplying the raw material gas into the gap. At this time, since the filled catalyst repeatedly contacts the hydrogen separation tube, there was a problem that, for example, the hydrogen permeable membrane was damaged.

この問題点を解決するために、近年では、水素透過膜の支持体として、改質触媒兼支持体を用いた試験管のような形状の水素分離筒を用いるとともに、水素分離筒を固定する取付金具等を備えた水素分離装置が提案されている(特許文献2参照)。   In order to solve this problem, in recent years, a hydrogen separation cylinder shaped like a test tube using a reforming catalyst / support is used as a support for the hydrogen permeable membrane, and the hydrogen separation cylinder is fixedly attached. A hydrogen separator equipped with metal fittings has been proposed (see Patent Document 2).

この種の水素分離装置として、例えば図6に例示する様に、水素分離筒P1の一端が取付金具P2に固定され、取付金具P2内の内部流路P3を介して、水素分離筒P1内に原料ガスが供給される構造が考えられる。この水素分離装置では、水素分離筒P1の改質触媒や水素透過膜の作用によって、原料ガスから水素が分離され、水素分離筒P1の外周面から外側に水素が分離して排出される。
特開2005−58823号公報 特開2004−149332号公報
As an example of this type of hydrogen separation apparatus, as illustrated in FIG. 6, for example, one end of a hydrogen separation cylinder P1 is fixed to a mounting bracket P2, and the hydrogen separation cylinder P1 is inserted into the hydrogen separation cylinder P1 via an internal channel P3 in the mounting bracket P2. A structure in which source gas is supplied is conceivable. In this hydrogen separator, hydrogen is separated from the raw material gas by the action of the reforming catalyst and the hydrogen permeable membrane of the hydrogen separator cylinder P1, and hydrogen is separated and discharged from the outer peripheral surface of the hydrogen separator cylinder P1 to the outside.
JP 2005-58823 A JP 2004-149332 A

前記水素分離装置では、原料ガスが水素分離筒P1の外周側(即ち水素ガスが供給される側)に漏出するのを防止するために、例えば水素分離筒P1と取付金具P2の間に膨張黒鉛製のシール部材P4が配置され、このシール部材P4は押圧金具P5及び固定金具P6によって押圧固定されるが、水素分離筒P1自体は主成分がセラミックスであるので、その固定の際に表面等が損傷することがあった。   In the hydrogen separation apparatus, in order to prevent the raw material gas from leaking to the outer peripheral side of the hydrogen separation cylinder P1 (that is, the side to which hydrogen gas is supplied), for example, expanded graphite is provided between the hydrogen separation cylinder P1 and the mounting bracket P2. A seal member P4 made of metal is disposed, and this seal member P4 is pressed and fixed by a pressing metal fitting P5 and a fixing metal fitting P6. Since the main component of the hydrogen separation cylinder P1 itself is ceramics, the surface and the like are fixed during the fixing. It was sometimes damaged.

つまり、固定金具P6の締め付けによって押圧金具P5が水素分離筒P1の軸方向に沿って押圧され、更に、この押圧金具P5によってシール部材P4が同軸方向に沿って押圧されるが、押圧の際の力の掛かり具合によっては、押圧金具P5の軸方向と水素分離筒P1の軸方向がずれて、水素分離筒P1が傾くことがあった。その結果、水素分離筒P1の外周面に、押圧金具P5の開口端等が当たって、水素分離筒P1が損傷することがあった。   That is, the pressing fitting P5 is pressed along the axial direction of the hydrogen separation cylinder P1 by tightening the fixing fitting P6, and further, the sealing member P4 is pressed along the coaxial direction by the pressing fitting P5. Depending on the degree of force applied, the axial direction of the pressing metal fitting P5 and the axial direction of the hydrogen separation cylinder P1 may be shifted, and the hydrogen separation cylinder P1 may be inclined. As a result, the hydrogen separation cylinder P1 may be damaged because the opening end of the pressing fitting P5 hits the outer peripheral surface of the hydrogen separation cylinder P1.

本発明は、上述した課題を解決するためになされたものであり、その目的は、シール部材が押圧金具等によって押圧された場合等に、押圧金具等によって水素分離筒が損傷することを防止できる水素分離装置を提供することである。   The present invention has been made in order to solve the above-described problems, and the object thereof is to prevent the hydrogen separation cylinder from being damaged by the press fitting or the like when the seal member is pressed by the press fitting or the like. It is to provide a hydrogen separator.

(1)請求項1の発明は、原料ガスから水素を選択して分離する水素分離筒と、前記水素分離筒の軸方向の端部が取り付けられる取付部材と、前記水素分離筒に外嵌されて、該水素分離筒と前記取付部材との間を気密する膨張黒鉛製の筒状のシール部材と、前記水素分離筒に外嵌されて、前記シール部材を前記軸方向に沿って前記取付部材側に押圧する筒状の押圧部材と、前記水素分離筒に外嵌されて、前記押圧部材を前記軸方向に沿って前記取付部材側に押圧する筒状の固定部材と、を備えた水素分離装置であって、前記押圧部材の前記水素分離筒が貫挿される貫通孔は、前記固定部材側に向かって内径が大きく設定されていることを特徴とする。   (1) The invention of claim 1 is a hydrogen separation cylinder that selects and separates hydrogen from a raw material gas, an attachment member to which an axial end of the hydrogen separation cylinder is attached, and an outer fit to the hydrogen separation cylinder. A cylindrical sealing member made of expanded graphite that is hermetically sealed between the hydrogen separation cylinder and the mounting member; and the fitting member that is externally fitted to the hydrogen separation cylinder and that moves the sealing member along the axial direction. A hydrogen separation device comprising: a cylindrical pressing member that presses toward the side; and a cylindrical fixing member that is externally fitted to the hydrogen separation tube and presses the pressing member toward the mounting member along the axial direction. It is an apparatus, Comprising: The through-hole in which the said hydrogen separation cylinder of the said press member is penetrated is set large in an internal diameter toward the said fixing member side, It is characterized by the above-mentioned.

本発明では、筒状の押圧部材の貫通孔は、固定部材側に向かって内径が大きく設定されているので、固定部材の押圧によって押圧部材が傾いた場合でも、押圧部材の開口端の角部が水素分離筒の外周面に当たり難く、よって水素分離筒が損傷し難いという効果がある。
なお、本発明の水素分離装置としては、例えば水素分離筒などに改質触媒を備えているものが挙げられる。また、改質触媒を備えてないもの、即ち、別の装置等で改質されたガス(H2、CO、CO2、炭化水素(メタン等)、水蒸気)から水素を分離するものが挙げられる。なお、改質触媒を備えている場合でも、改質ガスから水素を分離してもよい。
(2)請求項2の発明では、前記押圧部材の貫通孔の内周面に、前記固定部材側に向かって内径が大きくなるテーパ部を備えたことを特徴とする。
In the present invention, since the inner diameter of the through hole of the cylindrical pressing member is set larger toward the fixed member side, even when the pressing member is inclined by the pressing of the fixing member, the corner portion of the opening end of the pressing member Is less likely to hit the outer peripheral surface of the hydrogen separation cylinder, and therefore the hydrogen separation cylinder is hardly damaged.
In addition, as a hydrogen separation apparatus of this invention, what is equipped with the reforming catalyst in the hydrogen separation cylinder etc. is mentioned, for example. In addition, those that do not have a reforming catalyst, that is, those that separate hydrogen from gases (H 2 , CO, CO 2 , hydrocarbons (methane, etc.), water vapor) reformed by another apparatus or the like can be mentioned. . Even when a reforming catalyst is provided, hydrogen may be separated from the reformed gas.
(2) The invention of claim 2 is characterized in that a taper portion whose inner diameter increases toward the fixed member side is provided on the inner peripheral surface of the through hole of the pressing member.

本発明は、貫通孔の内周面の好ましい形状を例示したものである。本発明では、貫通孔の内周面がテーパ形状とされているので、水素分離筒は一層破損し難いという利点がある。   The present invention exemplifies a preferable shape of the inner peripheral surface of the through hole. In this invention, since the internal peripheral surface of a through-hole is made into the taper shape, there exists an advantage that a hydrogen-separation cylinder is hard to damage further.

(3)請求項3の発明では、前記テーパ部のテーパ角は、1°〜30°の範囲であることを特徴とする。
本発明は、好ましいテーパ角を例示したものである。この範囲のテーパ角であれば、水素分離筒は一層破損し難い。
(3) In invention of Claim 3, the taper angle of the said taper part is the range of 1 degree-30 degrees, It is characterized by the above-mentioned.
The present invention exemplifies a preferable taper angle. If the taper angle is within this range, the hydrogen separation cylinder is more difficult to break.

(4)請求項4の発明では、前記テーパ部における前記固定部材側の内径と前記取付部材側の内径との差は、1mm以上であることを特徴とする。
本発明は、好ましい内径差を例示したものである。この範囲の内径差であれば、水素分離筒は一層破損し難い。
(4) The invention according to claim 4 is characterized in that a difference between the inner diameter on the fixing member side and the inner diameter on the mounting member side in the tapered portion is 1 mm or more.
The present invention illustrates a preferred inner diameter difference. If the inner diameter difference is within this range, the hydrogen separation cylinder is more difficult to break.

(5)請求項5の発明では、前記押圧部材の貫通孔の内周面に、前記固定部材側のテーパ部と、前記取付部材側の前記軸方向と平行なストレート部と、を備えたことを特徴とする。   (5) In the invention of claim 5, the inner peripheral surface of the through hole of the pressing member is provided with a tapered portion on the fixing member side and a straight portion parallel to the axial direction on the mounting member side. It is characterized by.

本発明は、好ましい貫通孔の内周面の形状を例示したものである。つまり、本発明では、押圧部材の貫通孔の内周面に、固定部材側のテーパ部と取付部材側のストレート部とを備えているので、水素分離筒の損傷の防止とシール部材の好適な押圧とを、共に実現することができる。   The present invention exemplifies a preferable shape of the inner peripheral surface of the through hole. That is, in the present invention, the inner peripheral surface of the through hole of the pressing member is provided with the taper portion on the fixing member side and the straight portion on the attachment member side, so that the hydrogen separation cylinder is prevented from being damaged and the sealing member is suitable. Both pressing can be realized.

(6)請求項6の発明では、前記テーパ部とストレート部との間に、滑らかに湾曲したR部を備えたことを特徴とする。
貫通孔の内周面は、テーパ部とストレート部との間で折れ曲がっているが、このテーパ部とストレート部との間にR部を備えていることにより、この折れ曲がり部分による水素分離筒の損傷を抑制できる。
(6) The invention of claim 6 is characterized in that a smoothly curved R portion is provided between the tapered portion and the straight portion.
The inner peripheral surface of the through-hole is bent between the taper portion and the straight portion. By providing the R portion between the taper portion and the straight portion, the hydrogen separation cylinder is damaged by the bent portion. Can be suppressed.

(7)請求項7の発明では、前記R部の半径は、0.1mm以上であることを特徴とする。
本発明では、R部の半径が0.1mm以上と大きく、その表面が滑らかに湾曲しているので、押圧部材が大きく傾いた場合でも、水素分離筒が損傷し難いという利点がある。
(7) The invention of claim 7 is characterized in that the radius of the R portion is 0.1 mm or more.
In the present invention, since the radius of the R portion is as large as 0.1 mm or more and the surface is smoothly curved, there is an advantage that even when the pressing member is largely inclined, the hydrogen separation cylinder is hardly damaged.

(8)請求項8の発明では、前記ストレート部の軸方向の長さは、1mm以上であることを特徴とする。
本発明では、ストレート部の軸方向の長さが1mm以上と大きいので、シール部材の好適な押圧を実現することができる。
(8) The invention according to claim 8 is characterized in that the length of the straight portion in the axial direction is 1 mm or more.
In the present invention, since the length of the straight portion in the axial direction is as large as 1 mm or more, suitable pressing of the seal member can be realized.

<以下、本発明の水素分離装置の各構成について説明する>
・原料ガスとしては、都市ガス等の炭化水素ガスと水蒸気の混合ガス等が挙げられる。あるいは、なんらかの方法(水蒸気改質、部分酸化、水の電気分解、バイオマスからの水素製造等)で得た水素を含む混合ガスが挙げられる。
<Hereinafter, each configuration of the hydrogen separator of the present invention will be described>
-Examples of the source gas include a mixed gas of hydrocarbon gas such as city gas and water vapor. Alternatively, a mixed gas containing hydrogen obtained by some method (steam reforming, partial oxidation, water electrolysis, hydrogen production from biomass, etc.) can be mentioned.

・前記水素分離筒としては、(改質触媒兼支持体である)多孔質支持管の表面に水素透過膜が形成された筒状体や、多孔質支持管の表面に(金属の拡散を防止する)バリア層が形成され、更にバリア層の表面に水素透過膜が形成された筒状体が挙げられる。   -As the hydrogen separation cylinder, a cylindrical body in which a hydrogen permeable membrane is formed on the surface of a porous support pipe (which is a reforming catalyst and support), or a surface of the porous support pipe (to prevent metal diffusion) And a cylindrical body in which a barrier layer is formed and a hydrogen permeable film is further formed on the surface of the barrier layer.

このうち、多孔質支持管を構成する材料としては、例えばニッケルとイットリア安定化ジルコニアの混合物の焼結体、ニッケルとイットリア安定化ジルコニアの混合物を主体とする焼結体(Ni−YSZサーメット等)、その他、支持体としての機能と改質触媒としての機能の両機能を合わせ有する多孔質セラミックス、多孔質サーメットなどが挙げられる。   Among these, as a material constituting the porous support tube, for example, a sintered body of a mixture of nickel and yttria stabilized zirconia, a sintered body mainly composed of a mixture of nickel and yttria stabilized zirconia (Ni-YSZ cermet, etc.) Other examples include porous ceramics and porous cermets having both the function as a support and the function as a reforming catalyst.

水素透過膜としては、例えばPd膜やPd合金膜などの金属膜が挙げられる。あるいは、無機分子篩い膜等が挙げられる。
バリア層の構成材料としては、例えばジルコニア、安定化ジルコニア、部分安定化ジルコニア、アルミナ、マグネシア、もしくはそれらの材料の混合物もしくは化合物を用いることができる。
Examples of the hydrogen permeable film include metal films such as a Pd film and a Pd alloy film. Or an inorganic molecular sieve membrane etc. are mentioned.
As a constituent material of the barrier layer, for example, zirconia, stabilized zirconia, partially stabilized zirconia, alumina, magnesia, or a mixture or compound of these materials can be used.

・前記取付部材としては、耐熱性及び耐酸化性を有する例えばSUS316のステンレス等の金属製の取付金具などが挙げられる。
・前記シール部材としては、膨張黒鉛製のシートが筒状に巻き付けられたもの、或いは膨張黒鉛製のシートが積層されたもの、更には、それらを組み合わせた複合部材などが挙げられる。
-As said attachment member, metal attachment brackets, such as stainless steel of SUS316 etc. which have heat resistance and oxidation resistance, etc. are mentioned.
-Examples of the sealing member include a member in which a sheet made of expanded graphite is wound in a cylindrical shape, a sheet in which sheets made of expanded graphite are laminated, and a composite member in which they are combined.

この膨張黒鉛製のシール部材は、黒鉛本来の高い耐熱性能に加え、シール性能に優れる稠密構造を有し、且つ、柔軟性及び高い圧縮性並びに弾性復元力を有している。例えば600℃又はそれ以上の高温に長時間曝された場合にも、シール部材自体が顕著に破壊・化学変化しない耐熱・耐化学性能を備えたものが望ましい。   This expanded graphite sealing member has a dense structure excellent in sealing performance in addition to the high heat resistance inherent in graphite, and has flexibility, high compressibility, and elastic restoring force. For example, it is desirable that the seal member itself has a heat resistance and chemical resistance that does not significantly break down or change chemically even when exposed to a high temperature of 600 ° C. or higher for a long time.

なお、膨張黒鉛としては、下記の物性値を有することが好ましい。
密度(嵩密度)が0.6〜1.9g/cm3、圧縮率(JIS−R3453に準拠)が10〜90%、復元率(JIS−R3453に準拠)が3〜70%、酸化開始温度(空気中での加熱によって重量が1%減少したときの温度)が400℃以上。
The expanded graphite preferably has the following physical property values.
Density (bulk density) is 0.6 to 1.9 g / cm 3 , compression rate (based on JIS-R3453) is 10 to 90%, restoration rate (based on JIS-R3453) is 3 to 70%, oxidation start temperature (Temperature when weight decreased by 1% by heating in air) 400 ° C. or higher.

・前記押圧部材としては、耐熱性及び耐酸化性を有する例えばSUS316のステンレス等の金属製の押圧金具(押圧リング)などが挙げられる。
・前記固定部材としては、耐熱性及び耐酸化性を有する例えばSUS316のステンレス等の金属製の押圧金具などが挙げられる。
As the pressing member, for example, a metal pressing fitting (pressing ring) such as stainless steel of SUS316 having heat resistance and oxidation resistance may be used.
-As said fixing member, metal metal fittings, such as stainless steel of SUS316 etc. which have heat resistance and oxidation resistance, etc. are mentioned.

以下、本発明の最良の実施形態について説明する。
[第1実施形態]
ここでは、燃料電池に燃料ガス(水素ガス)を供給する水素分離装置について説明する。
Hereinafter, the best embodiment of the present invention will be described.
[First Embodiment]
Here, a hydrogen separator that supplies fuel gas (hydrogen gas) to the fuel cell will be described.

a)まず、本実施形態の水素分離装置の全体構成について説明する。
図1に示す様に、本実施形態の水素分離装置(水素分離モジュール)1は、一端が閉塞された試験管状の水素分離筒3と、水素分離筒3の開放端側が挿入された筒状の取付金具5と、水素分離筒3の外周面と取付金具5の内周面との間に配置された円筒形のシール部材7を押圧する押圧金具9と、押圧金具9に外嵌されて取付金具5に螺合する筒状の固定金具11とを備えている。
a) First, the overall configuration of the hydrogen separator according to this embodiment will be described.
As shown in FIG. 1, a hydrogen separation device (hydrogen separation module) 1 according to the present embodiment includes a test tubular hydrogen separation cylinder 3 closed at one end, and a cylindrical shape into which an open end side of the hydrogen separation cylinder 3 is inserted. The mounting bracket 5, the pressing bracket 9 that presses the cylindrical seal member 7 disposed between the outer peripheral surface of the hydrogen separation cylinder 3 and the inner peripheral surface of the mounting bracket 5, and the outer surface of the pressing bracket 9 for mounting. A cylindrical fixing metal fitting 11 screwed to the metal fitting 5 is provided.

前記水素分離筒3は、その軸中心の中心孔13に導入された原料ガス(例えばメタンなどの炭化水素ガスと水蒸気の混合ガス)から、水素を選択的に分離して、水素分離筒3の外周側に供給する部材である。この水素分離筒3は、一端が閉塞された試験管状の(改質触媒兼支持体である)多孔質支持管15と、多孔質支持管15の外側表面を覆うバリア層19と、バリア層19の外側表面を覆う水素透過膜21とから構成されている。   The hydrogen separation cylinder 3 selectively separates hydrogen from a raw material gas (for example, a mixed gas of hydrocarbon gas such as methane and water vapor) introduced into the central hole 13 at the axial center thereof, and the hydrogen separation cylinder 3 It is a member supplied to the outer peripheral side. The hydrogen separation cylinder 3 includes a test tube (a reforming catalyst / support) porous support tube 15 that is closed at one end, a barrier layer 19 that covers the outer surface of the porous support tube 15, and a barrier layer 19. And a hydrogen permeable membrane 21 covering the outer surface of the substrate.

このうち、多孔質支持管15は、改質触媒としての役割と水素透過膜21等を支持する役割とを有する通気性を有する試験管状の支持体であり、この多孔質支持管15では、原料ガスを水蒸気改質して改質ガスを生成する。   Among these, the porous support tube 15 is an air-permeable test tubular support having a role as a reforming catalyst and a role of supporting the hydrogen permeable membrane 21 and the like. The reformed gas is generated by steam reforming the gas.

水素透過膜21は、多孔質支持管15内で改質された改質ガスから水素を選択的に透過して精製する薄膜である。
バリア層19は、多孔質支持管15の金属成分(例えばNi)と水素透過膜21の成分(例えばPd)とが互いに入り込む(拡散する)ことにより、水素透過膜21の水素透過性能が劣化することを防止するための多孔質層(相互拡散防止層)である。
The hydrogen permeable membrane 21 is a thin film that selectively permeates and purifies hydrogen from the reformed gas modified in the porous support tube 15.
In the barrier layer 19, the metal component (for example, Ni) of the porous support tube 15 and the component (for example, Pd) of the hydrogen permeable membrane 21 enter (diffuse) each other, so that the hydrogen permeable performance of the hydrogen permeable membrane 21 deteriorates. This is a porous layer (interdiffusion prevention layer) for preventing this.

また、前記取付金具5は、水素分離装置1の基部を構成する筒状金具であり、その先端側より、外周にねじ部23を有する先端側筒状部25と、外周側に環状に張り出す鍔部27と、(原料ガスを供給する配管等が接続される)基端側筒状部29とを備えている。   The mounting bracket 5 is a cylindrical bracket that forms the base of the hydrogen separation apparatus 1, and from the distal end side, a distal end side cylindrical portion 25 having a threaded portion 23 on the outer periphery and an annularly projecting outer periphery side. A flange portion 27 and a proximal-side cylindrical portion 29 (to which a pipe or the like for supplying a raw material gas is connected) are provided.

この取付金具5の軸中心には、原料ガスの流路となる貫通孔(中空部)31が形成され、中空部31には、水素分離筒3の基端側(同図右側)の端部が収容されている。詳しくは、中空部31の内径は、先端側筒状部25内側より鍔部27内側が小さく設定されており、鍔部27内側の先端側の角部には、先端側筒状部25と所定の間隔を空けて、段状に切り欠いた凹部33が形成され、この凹部33に水素分離筒3の端部が内嵌している。   A through-hole (hollow part) 31 serving as a raw material gas flow path is formed at the axial center of the mounting bracket 5, and the hollow part 31 has an end part on the base end side (right side of the figure) of the hydrogen separation cylinder 3. Is housed. Specifically, the inner diameter of the hollow portion 31 is set to be smaller on the inner side of the flange portion 27 than on the inner side of the distal end side cylindrical portion 25, and at the corner on the distal end side on the inner side of the flange portion 27, A recess 33 that is cut out in a step shape is formed, and the end of the hydrogen separation cylinder 3 is fitted in the recess 33.

前記シール部材7は、膨張黒鉛からなる円筒状の気密部材であり、取付金具5の先端側筒状部25の内周面と水素分離筒3の外周面との間の空間41内にて、押圧金具9と隣接して配置されている。このシール部材7は、前記空間41内にて、押圧金具9の押圧によって圧縮された状態、従って周囲を押圧した状態にて保持されているので、この空間41における原料ガスの漏出を防止している。なお、シール部材7は、先端側に配置された第1シール部材43と、後端側に配置された第2シール部材45とから構成されている。   The sealing member 7 is a cylindrical airtight member made of expanded graphite, and in the space 41 between the inner peripheral surface of the front end side cylindrical portion 25 of the mounting bracket 5 and the outer peripheral surface of the hydrogen separation cylinder 3, It is arranged adjacent to the pressing fitting 9. Since the seal member 7 is held in the space 41 in a state compressed by the pressing of the pressing fitting 9, and thus in a state where the periphery is pressed, the leakage of the source gas in the space 41 is prevented. Yes. The seal member 7 includes a first seal member 43 disposed on the front end side and a second seal member 45 disposed on the rear end side.

前記固定金具11は、(軸方向と垂直の)径方向に伸びて押圧金具9を基端側に押圧する環状の押圧板35と、押圧板35の外周端から軸方向に沿って基端側に伸び、内周面にねじ部37を有する筒状部39とを備えている。従って、この固定金具11のねじ部37と取付金具5のねじ部23を螺合させて締め付けることにより、押圧金具9を介してシール部材7を、基端側に押圧することができる。   The fixing bracket 11 extends in the radial direction (perpendicular to the axial direction) and presses the pressing bracket 9 toward the proximal end side, and the proximal end side along the axial direction from the outer peripheral end of the pressing plate 35. And a cylindrical portion 39 having a threaded portion 37 on the inner peripheral surface. Therefore, the sealing member 7 can be pressed to the proximal end side via the pressing fitting 9 by screwing and tightening the screw portion 37 of the fixing fitting 11 and the screwing portion 23 of the mounting fitting 5.

前記押圧金具9は、円筒形状の筒状金具であり、取付金具5の先端側筒状部25の内周面と水素分離筒3の外周面との間に形成された筒状の空間41内にて、シール部材7と隣接して配置されている。この押圧金具9の先端側は固定金具11の押圧板35に当接し、その後端側はシール部材7に当接している。   The pressing fitting 9 is a cylindrical tubular fitting, and in a tubular space 41 formed between the inner peripheral surface of the distal end side tubular portion 25 of the mounting bracket 5 and the outer peripheral surface of the hydrogen separation cylinder 3. Therefore, it is arranged adjacent to the seal member 7. The front end side of the pressing metal 9 is in contact with the pressing plate 35 of the fixing metal 11, and the rear end side is in contact with the seal member 7.

詳しくは、図2に拡大して示す様に、押圧金具9の軸中心に形成された貫通孔51の内周面のうち、同図右側(シール部材7側)には、軸方向と平行な表面を有するストレート部53が形成されている。また、同図左側(固定金具11側)には、左側にゆくほど内径が大きくなるテーパ形状を有するテーパ部55が形成されている。更に、ストレート部53とテーパ部55との間には、両者を滑らかに繋ぐ湾曲したR部57が形成されている。なお、貫通孔51の両開口端の角部には、C面取りを施したC面取部59、61が形成されている。   Specifically, as shown in an enlarged view in FIG. 2, of the inner peripheral surface of the through hole 51 formed at the axial center of the pressing fitting 9, the right side (seal member 7 side) is parallel to the axial direction. A straight portion 53 having a surface is formed. Further, a tapered portion 55 having a tapered shape whose inner diameter increases toward the left side is formed on the left side of the drawing (on the side of the fixing bracket 11). Furthermore, between the straight part 53 and the taper part 55, the curved R part 57 which connects both smoothly is formed. In addition, C chamfered portions 59 and 61 with C chamfering are formed at corners of both opening ends of the through hole 51.

次に、押圧金具9の各部の好ましい寸法について、図3に基づいて説明する。なお、図3では説明のために各部をデフォルメして示している。

M>N ・・・(1)
N>1mm ・・・(2)
φD2>φD1+1mm ・・・(3)
R部の半径(半径r)≧0.1mm ・・・(4)
C面取部の面取寸法(C面取り)≦0.2mm ・・・(5)
1°≦θ≦30 ・・・(6)

L :押圧金具の軸方向長さ
M :テーパ部の軸方向長さ
N :ストレート部の軸方向長さ
φD1:貫通孔のストレート部における内径
φD2:貫通孔のテーパ部の固定金具側の開口端における内径
φD3:押圧金具の外径
θ :テーパ角

なお、前記図1に示す様に、水素分離装置1の内部(詳しくは水素分離筒3の中心孔13)には、内挿管50が配置されている。この内挿管50は、原料ガスを、水素分離装置1の基端側から水素分離筒3の先端側に供給する部材であり、反応後のオフガス(CO、CO2、H2、メタン、水蒸気)は、内挿管50の外周に沿って水素分離装置1の基端側から排出される。
Next, the preferable dimension of each part of the press metal fitting 9 is demonstrated based on FIG. In FIG. 3, the respective parts are shown deformed for explanation.

M> N (1)
N> 1mm (2)
φD2> φD1 + 1mm (3)
Radius of radius R (radius r) ≧ 0.1 mm (4)
Chamfering dimension of C chamfered part (C chamfering) ≤ 0.2mm (5)
1 ° ≦ θ ≦ 30 (6)

L: Axial length of the press fitting M: Axial length of the tapered portion N: Axial length of the straight portion φD1: Inner diameter of the straight portion of the through hole φD2: Opening end of the through hole tapered portion on the fixing bracket side Inside diameter φD3: Outer diameter of the press fitting θ: Taper angle

As shown in FIG. 1, an internal intubation 50 is disposed inside the hydrogen separation apparatus 1 (specifically, the center hole 13 of the hydrogen separation cylinder 3). This inner tube 50 is a member that supplies the raw material gas from the base end side of the hydrogen separation device 1 to the front end side of the hydrogen separation cylinder 3, and is an off-gas after reaction (CO, CO 2 , H 2 , methane, water vapor). Is discharged from the proximal end side of the hydrogen separator 1 along the outer periphery of the inner intubation 50.

b)次に、水素分離装置1が取り付けられる水素分離システムの全体構成について説明する。
上述した水素分離装置1は、図4に示す様に、例えばSUS316等のステンレス製の筒状の収納容器(反応管)71内に、複数本(例えば3本)収容されて固定されている。
b) Next, the overall configuration of the hydrogen separation system to which the hydrogen separator 1 is attached will be described.
As shown in FIG. 4, a plurality of (for example, three) hydrogen separation apparatuses 1 described above are accommodated and fixed in a stainless steel cylindrical storage container (reaction tube) 71 such as SUS316.

前記反応管71は、円筒状の外周壁73と、外周壁73の軸方向の一方を塞ぐ基板75と、他方を塞ぐ蓋板77とを備えており、各水素分離装置1は、この基板75を貫く様に配置されている。詳しくは、各水素分離装置1は、各取付金具5の鍔部27にて、例えば溶接等により、基板75に固定されている(図1参照)。   The reaction tube 71 includes a cylindrical outer peripheral wall 73, a substrate 75 that closes one of the outer peripheral walls 73 in the axial direction, and a lid plate 77 that closes the other. It is arranged to penetrate. Specifically, each hydrogen separator 1 is fixed to the substrate 75 by welding or the like at the flange portion 27 of each mounting bracket 5 (see FIG. 1).

また、取付金具5の下部には、原料ガスを供給するための配管79が、例えばナット81により取り付けられている。更に、反応管71の外周壁73には、水素を取り出す水素取出孔83が設けられている。   Further, a pipe 79 for supplying a source gas is attached to the lower part of the mounting bracket 5 by, for example, a nut 81. Further, a hydrogen extraction hole 83 for taking out hydrogen is provided in the outer peripheral wall 73 of the reaction tube 71.

従って、この水素分離システムでは、水素分離装置1の取付金具5の下側に取り付けられた配管79から、水素分離筒3の内部に原料ガスが供給されると、水素分離筒3により水素が分離され、その外周側より反応管71内に水素が流入する。そして、反応管71内に充満した水素は、水素取出孔83を介して外部に取り出される。   Therefore, in this hydrogen separation system, when the source gas is supplied into the hydrogen separation cylinder 3 from the pipe 79 attached to the lower side of the mounting bracket 5 of the hydrogen separation apparatus 1, hydrogen is separated by the hydrogen separation cylinder 3. Then, hydrogen flows into the reaction tube 71 from the outer peripheral side. Then, the hydrogen filled in the reaction tube 71 is taken out through the hydrogen take-out hole 83.

この水素取出孔83から取り出された水素は、図示しない燃料電池に供給されて発電が行われる。
c)次に、本実施形態の水素分離装置1の製造方法について説明する。
<水素分離筒3の製造方法>
例えば酸化ニッケル60質量部と、イットリア8モル%を固溶させたジルコニア40質量部(8YSZ)とを混合する。更に造孔剤として黒鉛粉(又はコンスターチ)を混合して混合材を作製する。
The hydrogen taken out from the hydrogen take-out hole 83 is supplied to a fuel cell (not shown) to generate power.
c) Next, the manufacturing method of the hydrogen separator 1 of this embodiment is demonstrated.
<Method for Producing Hydrogen Separation Tube 3>
For example, 60 parts by mass of nickel oxide and 40 parts by mass (8YSZ) of zirconia in which 8 mol% of yttria is dissolved are mixed. Further, graphite powder (or starch) is mixed as a pore forming agent to prepare a mixed material.

そして、この混合材を用い、押出成形によって、有底円筒管を成形する。
次に、有底円筒管を乾燥した後に、脱脂処理を行い、1400℃で1時間焼成して、NiO−YSZで形成された多孔質支持管15を作製する。
And a bottomed cylindrical tube is shape | molded by extrusion molding using this mixed material.
Next, after the bottomed cylindrical tube is dried, it is degreased and fired at 1400 ° C. for 1 hour to produce a porous support tube 15 formed of NiO—YSZ.

これとは別に、8YSZとバインダとエタノールを添加して、スラリーを調製する。
次に、このスラリーを、ディップコート法(又はスプレー吹き付け法、印刷法等)により、多孔質支持管15の表面上に塗布してコート層を形成する。
Separately from this, 8YSZ, a binder and ethanol are added to prepare a slurry.
Next, this slurry is applied onto the surface of the porous support tube 15 by a dip coating method (or spray spraying method, printing method, etc.) to form a coating layer.

次に、このコート層を1300℃で加熱処理して焼き付けし、バリア層19を形成する。
このバリア層19により被覆された多孔質支持管15を、エタノールで30分間超音波洗浄し、120℃で乾燥させる。
Next, this coat layer is baked by heat treatment at 1300 ° C. to form the barrier layer 19.
The porous support tube 15 covered with the barrier layer 19 is ultrasonically cleaned with ethanol for 30 minutes and dried at 120 ° C.

次に、バリア層19を覆う様に、無電解メッキ法(又は真空蒸着法、スパッタリング法等)により、Pd等からなる水素透過膜21を形成する。
次に、水素雰囲気下にて600℃で3時間還元処理を施し、これにより、水素分離筒3を完成する。
<シール部材7の製造方法>
第1シール部材43を製造する場合には、例えば膨張黒鉛製のシートを環状に切断し、その環状のシートを各貫通孔を合わせるようにして積層する。
Next, a hydrogen permeable film 21 made of Pd or the like is formed by an electroless plating method (or a vacuum deposition method, a sputtering method, or the like) so as to cover the barrier layer 19.
Next, reduction treatment is performed at 600 ° C. for 3 hours under a hydrogen atmosphere, thereby completing the hydrogen separation cylinder 3.
<Method for Manufacturing Seal Member 7>
When the first seal member 43 is manufactured, for example, an expanded graphite sheet is cut into an annular shape, and the annular sheet is laminated so that the respective through holes are aligned.

次に、この積層体を、濃硫酸、硝酸などの酸化剤により酸化処理することによって、膨張黒鉛を例えば100〜300倍程度膨張させる。
その後、この膨張黒鉛を、例えば0.6〜1.9g/cm3の密度範囲となるように、プレス成形により負荷・圧縮する。
Next, this laminated body is oxidized with an oxidizing agent such as concentrated sulfuric acid and nitric acid to expand the expanded graphite, for example, about 100 to 300 times.
Thereafter, the expanded graphite is loaded and compressed by press molding so that the density range is, for example, 0.6 to 1.9 g / cm 3 .

第2シール部材45を製造する場合には、同様な膨張黒鉛製のシートを(図示しない心棒等に)巻き付けることにより、筒状の積層体を形成する(心棒等は後に除去する)。
次に、この積層体を、濃硫酸、硝酸などの酸化剤により酸化処理することによって、膨張黒鉛を同様に膨張させる。
When the second seal member 45 is manufactured, a tubular laminate is formed by winding a similar expanded graphite sheet (a mandrel or the like (not shown)) (the mandrel or the like is removed later).
Next, the expanded graphite is similarly expanded by oxidizing the laminate with an oxidizing agent such as concentrated sulfuric acid or nitric acid.

その後、この膨張黒鉛を、上記密度範囲となるように、負荷・圧縮する。
<水素分離装置1の組付方法>
取付金具5の中空部31に、第2シール材45、第1シール材43、押圧金具9の順で内嵌する。
Thereafter, the expanded graphite is loaded and compressed so as to be in the above density range.
<Assembly method of hydrogen separator 1>
The second sealing material 45, the first sealing material 43, and the pressing metal 9 are fitted in the hollow portion 31 of the mounting metal 5 in this order.

次に、水素分離筒3の開放端側を、押圧金具9の貫通孔、第1のシール材43、第2のシール材45を通す様に挿入し、水素分離筒3の端部を取付金具5の凹部33に嵌める。
次に、水素分離筒3の先端側より固定金具11を外嵌し、固定金具11のねじ部37と取付金具5のねじ部23を螺合し、固定金具11により押圧金具9を基端側に締め付けてシール部材7を押圧し、水素分離装置1を完成する。
Next, the open end side of the hydrogen separation cylinder 3 is inserted so as to pass through the through hole of the pressing fitting 9, the first sealing material 43, and the second sealing material 45, and the end of the hydrogen separation cylinder 3 is attached to the mounting fitting. 5 is fitted in the recess 33.
Next, the fixing bracket 11 is fitted from the distal end side of the hydrogen separation cylinder 3, the screw portion 37 of the fixing bracket 11 and the screw portion 23 of the mounting bracket 5 are screwed together, and the pressing bracket 9 is connected to the proximal end side by the fixing bracket 11. The hydrogen separation apparatus 1 is completed by pressing the seal member 7 by tightening to the above.

d)この様に本実施形態では、シール部材7を押圧する金具として、固定金具11側がテーパ状に広がった貫通孔51を有する押圧金具9を用いるので、固定金具11によって押圧金具9を締め付けた場合に、水素分離筒3が傾いても、押圧部材9の開口端の角部などによって水素分離筒3の外周面が損傷し難いという効果がある。   d) As described above, in this embodiment, as the metal fitting for pressing the seal member 7, the pressure metal fitting 9 having the through hole 51 having a taper-shaped opening on the side of the metal fitting 11 is used. In this case, even if the hydrogen separation cylinder 3 is tilted, there is an effect that the outer peripheral surface of the hydrogen separation cylinder 3 is hardly damaged by the corners of the opening end of the pressing member 9.

また、押圧部材9のテーパ部55とストレート部53との間にはR部57が形成され、押圧部材9の開口端の角部にはC面取部59、61が形成されているので、この点からも、水素分離筒3が損傷し難いという利点がある。C面取は、端部の外周側にも同様に存在する。   Further, an R portion 57 is formed between the taper portion 55 and the straight portion 53 of the pressing member 9, and C chamfered portions 59 and 61 are formed at the corners of the opening end of the pressing member 9. Also from this point, there is an advantage that the hydrogen separation cylinder 3 is hardly damaged. C chamfering also exists on the outer peripheral side of the end portion.

なお、本実施形態の水素分離装置1は、水素分離筒3の一端側(開放端)のみを固定した片持ち式であるが、水素分離筒3の振動等に対する安定性を増すために、水素分離筒3の閉塞端側を反応管71等に固定しても良い。
[第2実施形態]
次に、第2実施形態の水素分離装置について説明するが、前記第1実施形態と同様な内容の説明は省略する。
The hydrogen separation apparatus 1 of the present embodiment is a cantilever type in which only one end side (open end) of the hydrogen separation cylinder 3 is fixed. However, in order to increase the stability against vibrations of the hydrogen separation cylinder 3, The closed end side of the separation cylinder 3 may be fixed to the reaction tube 71 or the like.
[Second Embodiment]
Next, although the hydrogen separation apparatus of 2nd Embodiment is demonstrated, description of the content similar to the said 1st Embodiment is abbreviate | omitted.

図5に示す様に、本実施形態の水素分離装置91では、両端が開放された円筒状の水素分離筒93が使用されており、この水素分離筒93の軸方向の両側に、前記第1実施形態と同様に、取付金具95、97、シール部材99、101、押圧金具103、105、固定金具107、109からなる固定構造が形成されている。   As shown in FIG. 5, in the hydrogen separation device 91 of the present embodiment, a cylindrical hydrogen separation cylinder 93 having both ends opened is used. As in the embodiment, a fixing structure including mounting brackets 95 and 97, seal members 99 and 101, pressing brackets 103 and 105, and fixing brackets 107 and 109 is formed.

つまり、水素分離筒93の軸方向には、同図の左右対称に、取付金具95、シール部材99、押圧金具103、固定金具107からなる一方の固定構造と、取付金具97、シール部材101、押圧金具105、固定金具109からなる他方の固定構造とが設けられている。   In other words, in the axial direction of the hydrogen separation cylinder 93, one fixing structure including the mounting bracket 95, the seal member 99, the pressing bracket 103, and the fixing bracket 107, the mounting bracket 97, the seal member 101, The other fixing structure including the pressing metal 105 and the fixing metal 109 is provided.

本実施形態では、例えば同図の右側から原料ガスを供給し、その反応後の原料ガスは同図の左側から排出される。また、水素分離筒93で分離された水素は、水素分離筒93の外周側から反応管119内に供給される。   In the present embodiment, for example, the raw material gas is supplied from the right side of the figure, and the raw material gas after the reaction is discharged from the left side of the figure. Further, the hydrogen separated in the hydrogen separation cylinder 93 is supplied into the reaction tube 119 from the outer peripheral side of the hydrogen separation cylinder 93.

本実施形態においても、前記第1実施形態と同様の効果を奏する。また、水素分離筒93の両端が固定されているので、安定性が高いという利点がある。
なお、この変形例として、両端が開放された円筒状の水素分離筒を用いるが、水素分離装置の軸方向の一方は前記固定構造により閉塞されている構成も採用できる。
Also in this embodiment, there exists an effect similar to the said 1st Embodiment. Further, since both ends of the hydrogen separation cylinder 93 are fixed, there is an advantage that the stability is high.
As a modification, a cylindrical hydrogen separation cylinder having both ends opened is used, but a configuration in which one of the hydrogen separation devices in the axial direction is closed by the fixing structure can also be adopted.

<実験例1>
次に、実際に上述した水素分離装置を製造して、その性能を確認した実験について説明する。
<Experimental example 1>
Next, an experiment in which the above-described hydrogen separation apparatus was actually manufactured and its performance was confirmed will be described.

<試料の作製方法>
実験に使用する試料(実施例1)として、前記第1実施形態と同様な、テーパ部を有する押圧部材を備えた水素分離装置を、20個作製した。
<Sample preparation method>
As a sample (Example 1) used for the experiment, 20 hydrogen separators having a pressing member having a tapered portion, similar to the first embodiment, were produced.

なお、押圧部材等の各部の寸法は、下記の通りである。
L :8mm
M :6mm
N :2mm
φD1 :10mm
φD2 :11.5mm
φD3 :13mm
θ :14°
R部のr半径 :2mm
C面取り :0.2mm
水素分離筒の直径:9.9mm
また、比較例1として、従来のテーパ部のない押圧部材を備えた水素分離装置を10個作製した。なお、押圧部材以外は、前記実施例1と同様である。
In addition, the dimension of each part, such as a press member, is as follows.
L: 8 mm
M: 6 mm
N: 2 mm
φD1: 10 mm
φD2: 11.5mm
φD3: 13mm
θ: 14 °
R radius of R part: 2mm
C chamfering: 0.2mm
Diameter of hydrogen separator: 9.9mm
Further, as Comparative Example 10, ten conventional hydrogen separators having a pressing member without a tapered portion were produced. Other than the pressing member, the second embodiment is the same as the first embodiment.

<実験方法>
そして、上述した各試料に対し、固定部材を締付け圧力35N/mm2で締め付け、その後、水素分離装置を分解して、水素分離筒の損傷の程度を調べた。
<Experiment method>
Then, the fixing member was fastened to each sample described above at a fastening pressure of 35 N / mm 2 , and then the hydrogen separator was disassembled to examine the degree of damage to the hydrogen separator.

<実験結果>
その結果、本発明の範囲の実施例では、水素分離筒の損傷が5%と少なく、好適であった。それに対して、比較例では、水素分離筒の損傷が40%と多く好ましくない。
<Experimental result>
As a result, in the examples within the scope of the present invention, damage to the hydrogen separation cylinder was as small as 5%, which was preferable. On the other hand, in the comparative example, the damage of the hydrogen separation cylinder is 40%, which is not preferable.

<実験例2>
前記実験例1とほぼ同様な試料(実施例2〜6)を作製し、水素分離筒の損傷の程度を調べた。
<Experimental example 2>
Samples (Examples 2 to 6) substantially the same as those of Experimental Example 1 were prepared, and the degree of damage to the hydrogen separation cylinder was examined.

詳しくは、下記表1の様にθの範囲を換えた各実施例の試料を、それぞれ10個作製して、水素分離筒の損傷の発生した割合を調べた。但し、他の寸法等の条件は、前記実験例1と同様である。   Specifically, as shown in Table 1 below, ten samples of each example with different θ ranges were prepared, and the rate at which the hydrogen separation cylinder was damaged was examined. However, other dimensions and other conditions are the same as in Experimental Example 1.

Figure 0004898725
尚、本発明は前記実施形態になんら限定されるものではなく、本発明を逸脱しない範囲において種々の態様で実施しうることはいうまでもない。
Figure 0004898725
In addition, this invention is not limited to the said embodiment at all, and it cannot be overemphasized that it can implement with a various aspect in the range which does not deviate from this invention.

第1実施形態の水素分離装置を軸方向に沿って破断して示す断面図である。It is sectional drawing which fractures | ruptures and shows the hydrogen separator of 1st Embodiment along an axial direction. 第1実施形態における押圧金具を軸方向に沿って破断し拡大して示す断面図である。It is sectional drawing which fractures | ruptures and expands the press metal fitting in 1st Embodiment along an axial direction. 押圧金具の寸法等を説明する説明図である。It is explanatory drawing explaining the dimension etc. of a press metal fitting. 第1実施形態の水素分離装置が使用される水素分離システムを示し、(a)は(b)のA−A’断面図、(b)は反応管を軸方向に破断して示す水素分離システムの正面図である。1 shows a hydrogen separation system in which the hydrogen separation apparatus of the first embodiment is used, (a) is a cross-sectional view taken along line AA ′ of (b), and (b) is a hydrogen separation system showing a reaction tube broken in the axial direction. FIG. 第2実施形態の水素分離装置を軸方向に沿って破断して示す断面図である。It is sectional drawing which fractures | ruptures and shows the hydrogen separator of 2nd Embodiment along an axial direction. 従来技術の説明図である。It is explanatory drawing of a prior art.

符号の説明Explanation of symbols

1、91…水素分離装置
3、93…水素分離筒
5、95…取付金具
7、99、101…シール部材
9、103、105…押圧金具
11、107、109…固定金具
53…ストレート部
55…テーパ部
57…R部
59、61…C面取部
71…反応管(収納容器)
DESCRIPTION OF SYMBOLS 1,91 ... Hydrogen separator 3,93 ... Hydrogen separation cylinder 5,95 ... Mounting bracket 7,99,101 ... Seal member 9,103,105 ... Pressing bracket 11,107,109 ... Fixing bracket 53 ... Straight part 55 ... Tapered portion 57 ... R portion 59, 61 ... C chamfered portion 71 ... Reaction tube (storage container)

Claims (8)

原料ガスから水素を選択して分離する水素分離筒と、
前記水素分離筒の軸方向の端部が取り付けられる取付部材と、
前記水素分離筒に外嵌されて、該水素分離筒と前記取付部材との間を気密する膨張黒鉛製の筒状のシール部材と、
前記水素分離筒に外嵌されて、前記シール部材を前記軸方向に沿って前記取付部材側に押圧する筒状の押圧部材と、
前記水素分離筒に外嵌されて、前記押圧部材を前記軸方向に沿って前記取付部材側に押圧する筒状の固定部材と、
を備えた水素分離装置であって、
前記押圧部材の前記水素分離筒が貫挿される貫通孔は、前記固定部材側に向かって内径が大きく設定されていることを特徴とする水素分離装置。
A hydrogen separation cylinder for selecting and separating hydrogen from the source gas;
An attachment member to which an axial end of the hydrogen separation cylinder is attached;
A tubular sealing member made of expanded graphite that is fitted over the hydrogen separation cylinder and hermetically seals between the hydrogen separation cylinder and the mounting member;
A cylindrical pressing member that is externally fitted to the hydrogen separation cylinder and presses the seal member toward the mounting member along the axial direction;
A cylindrical fixing member that is fitted over the hydrogen separation cylinder and presses the pressing member toward the mounting member along the axial direction;
A hydrogen separator comprising:
The through-hole through which the hydrogen separation cylinder of the pressing member is inserted has a larger inner diameter toward the fixed member.
前記押圧部材の貫通孔の内周面に、前記固定部材側に向かって内径が大きくなるテーパ部を備えたことを特徴とする請求項1に記載の水素分離装置。   2. The hydrogen separator according to claim 1, wherein a taper portion having an inner diameter that increases toward the fixed member is provided on an inner peripheral surface of the through hole of the pressing member. 前記テーパ部のテーパ角は、1°〜30°の範囲であることを特徴とする請求項2に記載の水素分離装置。   3. The hydrogen separator according to claim 2, wherein a taper angle of the taper portion is in a range of 1 ° to 30 °. 前記テーパ部における前記固定部材側の内径と前記取付部材側の内径との差は、1mm以上であることを特徴とする請求項2に記載の水素分離装置。   3. The hydrogen separator according to claim 2, wherein a difference between an inner diameter on the fixing member side and an inner diameter on the mounting member side in the tapered portion is 1 mm or more. 前記押圧部材の貫通孔の内周面に、前記固定部材側のテーパ部と、前記取付部材側の前記軸方向と平行なストレート部と、を備えたことを特徴とする請求項2〜4のいずれかに記載の水素分離装置。   The inner peripheral surface of the through hole of the pressing member includes a taper portion on the fixed member side and a straight portion parallel to the axial direction on the attachment member side. The hydrogen separator according to any one of the above. 前記テーパ部とストレート部との間に、滑らかに湾曲したR部を備えたことを特徴とする請求項5に記載の水素分離装置。   6. The hydrogen separator according to claim 5, wherein a smoothly curved R portion is provided between the tapered portion and the straight portion. 前記R部の半径は、0.1mm以上であることを特徴とする請求項6に記載の水素分離装置。   The hydrogen separation apparatus according to claim 6, wherein the radius of the R portion is 0.1 mm or more. 前記ストレート部の軸方向の長さは、1mm以上であることを特徴とする請求項5〜7のいずれかに記載の水素分離装置。 8. The hydrogen separator according to claim 5, wherein a length of the straight portion in the axial direction is 1 mm or more.
JP2008057981A 2008-03-07 2008-03-07 Hydrogen separator Expired - Fee Related JP4898725B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008057981A JP4898725B2 (en) 2008-03-07 2008-03-07 Hydrogen separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008057981A JP4898725B2 (en) 2008-03-07 2008-03-07 Hydrogen separator

Publications (2)

Publication Number Publication Date
JP2009213960A JP2009213960A (en) 2009-09-24
JP4898725B2 true JP4898725B2 (en) 2012-03-21

Family

ID=41186415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008057981A Expired - Fee Related JP4898725B2 (en) 2008-03-07 2008-03-07 Hydrogen separator

Country Status (1)

Country Link
JP (1) JP4898725B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118751091A (en) * 2018-09-17 2024-10-11 杭州安诺过滤器材有限公司 Unsupported high-strength polyether sulfone flat microporous membrane and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3758774A (en) * 1972-06-19 1973-09-11 Ibm Illumination system for copier machines arranged to minimize glare with respect to an operator
JP3770791B2 (en) * 2000-12-19 2006-04-26 株式会社ノリタケカンパニーリミテド High temperature type membrane reformer
JP3933907B2 (en) * 2001-10-23 2007-06-20 日本碍子株式会社 Gas separator fixing structure and gas separator using the same
JP4490383B2 (en) * 2006-03-13 2010-06-23 日本碍子株式会社 Hydrogen gas separator fixing structure and hydrogen gas separator using the same

Also Published As

Publication number Publication date
JP2009213960A (en) 2009-09-24

Similar Documents

Publication Publication Date Title
JP5188236B2 (en) Gas supply / discharge manifold and solid oxide fuel cell bundle
JP5554747B2 (en) Gas seal composite and apparatus comprising the gas seal composite
JP2004149332A (en) Hydrogen production system
JP5773699B2 (en) Metal air battery
JP5623819B2 (en) Gas seal composite and apparatus comprising the gas seal composite
JP2008246315A (en) Hydrogen separation device and fuel cell
KR100992561B1 (en) Tube Type Solid Oxide Fuel Cell
JP5155343B2 (en) Hydrogen separator and method for manufacturing hydrogen separator
JP5149026B2 (en) Hydrogen separator
JP4898725B2 (en) Hydrogen separator
JP5888188B2 (en) Hydrogen separator
JP4347129B2 (en) Reaction tube and reaction plate for hydrogen production
CN113957470A (en) Porous diffusion layer and preparation method thereof and proton exchange membrane water electrolysis hydrogen production device
JP5606792B2 (en) Gas separation apparatus and manufacturing method thereof
JP5149050B2 (en) Hydrogen separator
JP2008246314A (en) Hydrogen separation device and fuel cell
JP2014114179A (en) Molded catalyst and hydrogen production apparatus
JP2010094655A (en) Hydrogen separation apparatus
JP2005166531A (en) Fuel cell
JP2013034913A (en) Hydrogen separation apparatus
JP2014184381A (en) Hydrogen separation body
JP5057684B2 (en) Hydrogen production equipment
JP2010095413A (en) Hydrogen production system
JP5410937B2 (en) Hydrogen production equipment
WO2024201667A1 (en) Electrolytic cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111226

R150 Certificate of patent or registration of utility model

Ref document number: 4898725

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees