JP5987197B2 - Hydrogen separation membrane and hydrogen separation method - Google Patents

Hydrogen separation membrane and hydrogen separation method Download PDF

Info

Publication number
JP5987197B2
JP5987197B2 JP2013046770A JP2013046770A JP5987197B2 JP 5987197 B2 JP5987197 B2 JP 5987197B2 JP 2013046770 A JP2013046770 A JP 2013046770A JP 2013046770 A JP2013046770 A JP 2013046770A JP 5987197 B2 JP5987197 B2 JP 5987197B2
Authority
JP
Japan
Prior art keywords
hydrogen
hydrogen separation
alloy
separation membrane
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013046770A
Other languages
Japanese (ja)
Other versions
JP2013215717A (en
Inventor
祐大 金子
祐大 金子
正浩 白木
正浩 白木
英人 黒川
英人 黒川
智憲 南部
智憲 南部
佳久 松本
佳久 松本
湯川 宏
宏 湯川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya University NUC
Tokyo Gas Co Ltd
Institute of National Colleges of Technologies Japan
Tokai National Higher Education and Research System NUC
Original Assignee
Nagoya University NUC
Tokyo Gas Co Ltd
Institute of National Colleges of Technologies Japan
Tokai National Higher Education and Research System NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya University NUC, Tokyo Gas Co Ltd, Institute of National Colleges of Technologies Japan, Tokai National Higher Education and Research System NUC filed Critical Nagoya University NUC
Priority to JP2013046770A priority Critical patent/JP5987197B2/en
Publication of JP2013215717A publication Critical patent/JP2013215717A/en
Application granted granted Critical
Publication of JP5987197B2 publication Critical patent/JP5987197B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

本発明は、水素分離膜に係り、特にPd系表面層が設けられていない水素分離膜に関する。また、本発明は、この水素分離膜を用いた水素分離方法に関する。   The present invention relates to a hydrogen separation membrane, and more particularly to a hydrogen separation membrane without a Pd-based surface layer. The present invention also relates to a hydrogen separation method using this hydrogen separation membrane.

金属膜よりなる水素分離膜は、工業用水素の精製等において既に使用されており、また、都市ガス、石油、石炭等の改質ガス、反応ガス中に含まれる水素の分離への適用が期待され、開発が進められている。金属よりなる水素分離膜中への水素の透過現象は、水素の導入ガス側表面での解離および水素分離膜内への固溶、水素分離膜間の拡散、透過側表面での再結合および脱離のプロセスを経て進行する。このため、水素が選択的に透過し、水素透過膜に欠陥がない場合、透過側の水素純度は9N(99.9999999%)以上の超高純度となる。従来、水素の解離、再結合の表面プロセスにおいて、触媒活性を有するPdが必要と考えられており、Pd系合金を分離膜自体として用いるか、非Pd系水素分離膜を用いる場合は、Pdの表面薄膜層(被覆金属膜)が必要と考えられてきた。この表面層は、ベース金属層の水素透過性能を低下させないようにするために、通常は数百nm程度に非常に薄く形成される。   Hydrogen separation membranes made of metal membranes are already used in industrial hydrogen purification, etc., and are expected to be applied to the separation of hydrogen contained in reformed gases and reaction gases such as city gas, petroleum, and coal. And development is ongoing. The permeation phenomenon of hydrogen into a hydrogen separation membrane made of metal is caused by the dissociation and solid solution of hydrogen on the surface of the introduction gas side, diffusion between the hydrogen separation membranes, recombination and desorption on the surface of the permeation side It goes through a separation process. For this reason, when hydrogen permeate | transmits selectively and there is no defect in a hydrogen permeable film, the hydrogen purity of the permeation | transmission side will be ultra high purity of 9N (99.999999999%) or more. Conventionally, it has been considered that Pd having catalytic activity is necessary in the surface process of hydrogen dissociation and recombination. When a Pd-based alloy is used as the separation membrane itself or when a non-Pd-based hydrogen separation membrane is used, Pd A surface thin film layer (coating metal film) has been considered necessary. This surface layer is usually formed very thin to about several hundred nm so as not to deteriorate the hydrogen permeation performance of the base metal layer.

Pd系合金に比べ水素透過性能が高く原料コストの安い5A族金属よりなるベース膜の表面にPd表面層をコーティングして作製した分離膜として、特許文献1(特開平11−276866)には、水素透過性能の高い金属ベース膜(Nb、Ta、V又はその合金膜)の両面にPd又はPd合金からなる表面層を設けた水素分離膜が記載されている。   As a separation membrane prepared by coating a Pd surface layer on the surface of a base membrane made of a group 5A metal having a high hydrogen permeation performance and a low raw material cost compared to a Pd-based alloy, Patent Document 1 (Japanese Patent Laid-Open No. 11-276866) A hydrogen separation membrane is described in which a surface layer made of Pd or Pd alloy is provided on both sides of a metal base membrane (Nb, Ta, V or its alloy membrane) having high hydrogen permeation performance.

特許文献2(特開2008−272605)には、Zr−Ni合金またはNb−Zr−Ni合金からなる非晶質合金層上にPd又はPd合金表面層を設けた水素分離膜が記載されている。しかしながら、非晶質合金は高い温度では結晶化するため、高温環境下では使用できない問題がある。   Patent Document 2 (Japanese Patent Laid-Open No. 2008-272605) describes a hydrogen separation membrane in which a Pd or Pd alloy surface layer is provided on an amorphous alloy layer made of a Zr—Ni alloy or an Nb—Zr—Ni alloy. . However, since an amorphous alloy crystallizes at a high temperature, there is a problem that it cannot be used in a high temperature environment.

特許文献3(特開2006−239526)には、5A族金属よりなるベース膜の少なくとも一方の表面にPd表面層を備える水素分離膜が記載されている。   Patent Document 3 (Japanese Patent Laid-Open No. 2006-239526) describes a hydrogen separation membrane having a Pd surface layer on at least one surface of a base membrane made of a group 5A metal.

特開平11−276866JP-A-11-276866 特開2008−272605JP 2008-272605 A 特開2006−239526JP 2006-239526 A

ベース合金層の表面にPd系表面層を設けた非Pd系水素分離膜にあっては、400〜600℃において水素分離を継続すると、ベース合金層の成分と表面層のPdが相互に拡散し、膜の水素透過性能が次第に低下する。また、Pdは高価である。   In a non-Pd-based hydrogen separation membrane in which a Pd-based surface layer is provided on the surface of the base alloy layer, if hydrogen separation is continued at 400 to 600 ° C., the components of the base alloy layer and the Pd of the surface layer diffuse to each other. The hydrogen permeation performance of the membrane gradually decreases. Moreover, Pd is expensive.

本発明は、Pd又はPd合金の表面層を有しない水素分離膜と、この水素分離膜を用いた水素分離方法を提供することを目的とする。   An object of this invention is to provide the hydrogen separation membrane which does not have the surface layer of Pd or Pd alloy, and the hydrogen separation method using this hydrogen separation membrane.

本発明の水素分離膜は、Vと、Ruとの合金よりなる水素分離膜であって、該合金中におけるRuの含有量が30モル%以下であり、表面にPd又はPd合金の表面層を有しないものである。 The hydrogen separation membrane of the present invention is a hydrogen separation membrane made of an alloy of V and Ru, wherein the Ru content in the alloy is 30 mol% or less, and a surface layer of Pd or Pd alloy is formed on the surface. It does not have.

本発明の水素分離方法は、この水素分離膜を用いるものである。   The hydrogen separation method of the present invention uses this hydrogen separation membrane.

本発明の水素分離膜では、5A族金属膜表面にPd又はPd合金表面層を設けない為、以下の効果が得られる。
(1) 高価なPdの使用量削減およびPd表面層の成膜プロセスを省くことによる水素分離膜の製造コスト低減が可能である。
(2) Pdとベース合金層の成分の相互拡散が生じないため、高い水素分離性能を有する5A族金属膜の水素分離性能の低下が生じず、耐久性の向上が実現可能である。
(3) 水素透過性能を向上させるために膜の薄膜化が必要であるが、Pd系表面層を有する水素分離膜に比べ、加工性が向上し、膜を支える多孔質支持体への成膜も容易となる。
In the hydrogen separation membrane of the present invention, since the Pd or Pd alloy surface layer is not provided on the surface of the group 5A metal membrane, the following effects are obtained.
(1) It is possible to reduce the production cost of the hydrogen separation membrane by reducing the amount of expensive Pd used and omitting the Pd surface layer deposition process.
(2) Since the mutual diffusion of the components of Pd and the base alloy layer does not occur, the hydrogen separation performance of the 5A group metal membrane having high hydrogen separation performance does not decrease, and the durability can be improved.
(3) Although it is necessary to reduce the thickness of the membrane in order to improve the hydrogen permeation performance, the processability is improved compared to a hydrogen separation membrane having a Pd-based surface layer, and the film is formed on a porous support that supports the membrane. Will also be easier.

実験結果を示すグラフである。It is a graph which shows an experimental result. 実験結果を示すグラフである。It is a graph which shows an experimental result. 実験結果を示すグラフである。It is a graph which shows an experimental result. 実験結果を示すグラフである。It is a graph which shows an experimental result. 実験結果を示すグラフである。It is a graph which shows an experimental result. 実験結果を示すグラフである。It is a graph which shows an experimental result. 実験結果を示すグラフである。It is a graph which shows an experimental result. 実験結果を示すグラフである。It is a graph which shows an experimental result. 実験結果を示すグラフである。It is a graph which shows an experimental result. 実験結果を示すグラフである。It is a graph which shows an experimental result. 実験結果を示すグラフである。It is a graph which shows an experimental result. 実験結果を示すグラフである。It is a graph which shows an experimental result. 実験装置の断面図である。It is sectional drawing of an experimental apparatus.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の水素分離膜は、5A族金属又はその合金よりなる水素分離膜であって、表面にPd又はPd合金の表面層を有しないものである。   The hydrogen separation membrane of the present invention is a hydrogen separation membrane made of Group 5A metal or an alloy thereof, and does not have a surface layer of Pd or Pd alloy on the surface.

5A族の金属としては、V、Nb、Taが好適であり、合金としては、Nb合金、V合金、Ta合金などのいずれでもよい。合金は5A族金属同士の合金であってもよく、5A族の少なくとも1種と、5A族以外のW、Mo、Cr、Mn、Fe、Co、Ni、Ru、Rh、Pd、Re、Os、Ir、Pt、Ti、Zr、Hf、Alなどの少なくとも1種よりなる合金元素との合金であってもよい。5A族以外の合金元素の含有率は30モル%以下、特に15モル%以下が好ましい。   V, Nb, and Ta are suitable as the Group 5A metal, and the alloy may be any of Nb alloy, V alloy, Ta alloy, and the like. The alloy may be an alloy of 5A group metals, and W, Mo, Cr, Mn, Fe, Co, Ni, Ru, Rh, Pd, Re, Os, other than 5A group and other than 5A group. An alloy with at least one alloy element such as Ir, Pt, Ti, Zr, Hf, and Al may be used. The content of alloy elements other than Group 5A is preferably 30 mol% or less, particularly preferably 15 mol% or less.

上記5A族金属又はその合金膜は、上記5A族金属又はその合金を溶製し、これを好ましくは厚さ1〜600μm特に好ましくは50〜100μmに圧延して製造することができる。なお、薄膜化には圧延以外の手段を採用してもよい。また、本発明の水素分離膜は、スパッタリング、CVD、めっきなどの成膜方法によって通気性の支持材料の表面に厚さ1〜100μm、特に1〜20μm程度に形成されたものであってもよい。   The group 5A metal or alloy film thereof can be produced by melting the group 5A metal or alloy thereof, and rolling it to a thickness of preferably 1 to 600 μm, particularly preferably 50 to 100 μm. In addition, you may employ | adopt means other than rolling for thin film formation. Further, the hydrogen separation membrane of the present invention may be formed on the surface of the air-permeable support material by a film forming method such as sputtering, CVD, or plating to have a thickness of 1 to 100 μm, particularly about 1 to 20 μm. .

本発明の水素分離膜には、表面にPd又はPd系合金の表面層が設けられていない。   The hydrogen separation membrane of the present invention is not provided with a surface layer of Pd or a Pd-based alloy on the surface.

本発明の水素分離膜を備えた水素分離装置としては、水素分離膜がハウジング、ケーシング又はベッセル等と称される容器内に設置され、水素分離膜で隔てられた1次室と2次室とを有し、必要に応じさらに加熱手段を有するものであれば、特にその構成は限定されない。膜の形態としても、平膜型、円筒型などのいずれの形態であってもよい。水素分離膜は、多孔質の支持体や表面に溝を設けた支持板の上に重ね合わされてもよく、多孔質体の表面に成膜されたものであってもよい。多孔質体としては、金属材、セラミック材などのいずれでもよい。   As a hydrogen separation apparatus provided with the hydrogen separation membrane of the present invention, a hydrogen separation membrane is installed in a container called a housing, a casing, a vessel or the like, and a primary chamber and a secondary chamber separated by a hydrogen separation membrane, The structure is not particularly limited as long as it has a heating means as necessary. The form of the film may be any form such as a flat film type and a cylindrical type. The hydrogen separation membrane may be superimposed on a porous support or a support plate having a groove on the surface, or may be formed on the surface of the porous body. As a porous body, any of a metal material, a ceramic material, etc. may be sufficient.

本発明は、2N(99%)〜7N(99.99999%)程度の水素ガスを透過処理して7N超、特に9N(99.9999999%)以上の超高純度の水素ガスを製造するのに好適である。このような超高純度の水素ガスは半導体製造工程等に用いるのに好適である。ただし、本発明はこれに限定されるものではなく、各種の水素含有ガスから水素を分離する目的で用いることができる。   In the present invention, hydrogen gas of about 2N (99%) to 7N (99.99999%) is permeabilized to produce ultra-high purity hydrogen gas of more than 7N, particularly 9N (99.9999999%) or more. Is preferred. Such ultra-high purity hydrogen gas is suitable for use in semiconductor manufacturing processes and the like. However, the present invention is not limited to this, and can be used for the purpose of separating hydrogen from various hydrogen-containing gases.

水素分離装置の運転温度(具体的には1次側のガス温度)は、膜の組成にもよるが、通常は300〜700℃特に400〜600℃程度とされる。   The operating temperature (specifically, the gas temperature on the primary side) of the hydrogen separator is usually about 300 to 700 ° C., particularly about 400 to 600 ° C., although it depends on the composition of the membrane.

水素分離膜の表面に有機物が付着している場合には、水素分離装置の運転開始に際し、該水素分離装置の昇温後、原料水素ガスを供給する前に該水素分離装置内に空気を導入し、膜表面の付着有機物を酸化除去してもよい。   When organic substances are attached to the surface of the hydrogen separation membrane, air is introduced into the hydrogen separator after starting the operation of the hydrogen separator and after supplying the hydrogen gas after the temperature of the hydrogen separator is increased. Then, organic substances adhering to the film surface may be removed by oxidation.

以下、実施例及び比較例について説明する。   Hereinafter, examples and comparative examples will be described.

〔実施例1〕
純Vを圧延して厚さ96μm、直径12mmの水素分離膜を製造した。この水素分離膜を図13に示す試験用モジュール1にセットして水素透過速度を測定した。
[Example 1]
Pure V was rolled to produce a hydrogen separation membrane having a thickness of 96 μm and a diameter of 12 mm. This hydrogen separation membrane was set in the test module 1 shown in FIG. 13, and the hydrogen permeation rate was measured.

この水素透過試験用モジュール1は、ガス導入管2の後端面とガス取出管6の前端面との間にガスケット3、5を介して水素分離膜4を配置したものである。導入管2にはナット7が外嵌しており、取出管6の先端のフランジ部6aにはキャップナット8が係合している。   In this hydrogen permeation test module 1, a hydrogen separation membrane 4 is disposed between a rear end face of a gas introduction pipe 2 and a front end face of a gas extraction pipe 6 via gaskets 3 and 5. A nut 7 is fitted on the introduction pipe 2, and a cap nut 8 is engaged with a flange portion 6 a at the tip of the extraction pipe 6.

該キャップナット8を導入管2側に延出させ、その内周面の雌ねじに対しナット7の外周面の雄ねじを螺合させる。ナット7の先端が導入管2の後端のフランジ部2aに当接することにより、キャップナット8を介して取出管6が導入管2側に引き付けられ、導入管2の後端面と取出管6の前端面との間でガスケット3、5を介して水素分離膜4が挟圧される。   The cap nut 8 is extended to the introduction tube 2 side, and a male screw on the outer peripheral surface of the nut 7 is screwed into a female screw on the inner peripheral surface. The leading end of the nut 7 comes into contact with the flange portion 2 a at the rear end of the introduction pipe 2, whereby the extraction pipe 6 is attracted to the introduction pipe 2 side through the cap nut 8, and the rear end surface of the introduction pipe 2 and the extraction pipe 6 are The hydrogen separation membrane 4 is sandwiched between the front end surface via the gaskets 3 and 5.

ガスケット3、5は、同一大きさの円環状であり、その内孔の面積が水素分離膜4の膜透過面積Aとなる。キャップナット8には、ガスのリークテスト用の小孔8aが設けられている。   The gaskets 3 and 5 have an annular shape of the same size, and the area of the inner hole is the membrane permeation area A of the hydrogen separation membrane 4. The cap nut 8 is provided with a small hole 8a for a gas leak test.

ガスケットの内孔は5.6mmであるが、VCRで締め付けられた場合のガスケットと膜試料との接触部の直径は7.1mmであり、有効膜透過面積Aは39.6mm(3.96×10−5)である。 Although the inner hole of the gasket is 5.6 mm, the diameter of the contact portion between the gasket and the membrane sample when tightened with a VCR is 7.1 mm, and the effective membrane permeation area A is 39.6 mm 2 (3.96). × 10 −5 m 2 ).

この水素透過試験用モジュール1を電気炉内に設置し、導入管2に原料ガスを供給し、取出管6から水素ガスを取り出す。   The hydrogen permeation test module 1 is installed in an electric furnace, the raw material gas is supplied to the introduction pipe 2, and the hydrogen gas is taken out from the extraction pipe 6.

V膜を真空下で550℃に昇温した。温度550℃、プロセス側圧力(Inlet圧力)400kPa、水素透過側圧力(Outlet圧力)200kPaとし、水素透過側へ透過する水素の流量(水素透過速度)を測定し、またそれに基づいて水素透過係数(mol/m・s・Pa1/2)を算出した。その結果、図1の通り、このPdの表面薄膜層が無いV膜でも、8時間にわたり、水素透過性能が低下することなく、高い水素透過性能を維持することが認められた。 The V film was heated to 550 ° C. under vacuum. At a temperature of 550 ° C., a process side pressure (Inlet pressure) of 400 kPa, a hydrogen permeation side pressure (Outlet pressure) of 200 kPa, the flow rate of hydrogen permeating to the hydrogen permeation side (hydrogen permeation rate) is measured, and based on the measurement, mol / m · s · Pa 1/2 ) was calculated. As a result, as shown in FIG. 1, it was confirmed that even with the V film without the Pd surface thin film layer, high hydrogen permeation performance was maintained for 8 hours without deterioration of hydrogen permeation performance.

〔実施例2〜12〕
膜組成及び膜厚を
実施例2:V−5W,488μm
実施例3:Nb−5W,507μm
実施例4:V−4Cr,571μm
実施例5:V−8Cr,380μm
実施例6:V−5Mo,363μm
実施例7:V−10Mo,582μm
実施例8:V−5Ru,588μm
実施例9:V−9.2Al,371μm
実施例10:V−5Co,459μm
実施例11:V−15W−5Mo,498μm
実施例12:V−5W−15Mo,528μm
としたこと以外は実施例1と同様にして水素分離膜を製造し、実施例1と同様にして水素透過速度を測定し、それに基づいて水素透過係数を算出し、結果を図2〜12に示した。なお、各実施例におけるプロセス側圧力(Inlet)及び水素透過側圧力(Outlet)並びに試験温度は図2〜12中に記入された通りとした。V−5WはWを5モル%含むV合金を表わし、Nb−5WはWを5モル%含むNb合金を表わす。V−4Cr、V−8CrはCrをそれぞれ4モル%、8モル%含むV合金を表わし、V−5Mo、V−10MoはMoをそれぞれ5モル%、10モル%含むV合金を表わし、V−5RuはRuを5モル%含むV合金を表わし、V−9.2AlはAlを9.2モル%含むV合金を表わし、V−5CoはCoを5モル%含むV合金を表わし、V−15W−5MoはWを15モル%、Moを5モル%含むV合金を表わし、V−5W−15MoはWを5モル%、Moを15モル%含むV合金を表わす。
[Examples 2 to 12]
Example 2: V-5W, 488 μm
Example 3: Nb-5W, 507 μm
Example 4: V-4Cr, 571 μm
Example 5: V-8Cr, 380 μm
Example 6: V-5Mo, 363 μm
Example 7: V-10Mo, 582 μm
Example 8: V-5Ru, 588 μm
Example 9: V-9.2Al, 371 μm
Example 10: V-5Co, 459 μm
Example 11: V-15W-5Mo, 498 μm
Example 12: V-5W-15Mo, 528 μm
A hydrogen separation membrane was produced in the same manner as in Example 1 except that the hydrogen permeation rate was measured in the same manner as in Example 1, and the hydrogen permeation coefficient was calculated based on the hydrogen permeation rate. The results are shown in FIGS. Indicated. The process side pressure (Inlet), the hydrogen permeation side pressure (Outlet), and the test temperature in each example were as described in FIGS. V-5W represents a V alloy containing 5 mol% of W, and Nb-5W represents an Nb alloy containing 5 mol% of W. V-4Cr and V-8Cr represent V alloys containing 4 mol% and 8 mol% of Cr, V-5Mo and V-10Mo represent V alloys containing 5 mol% and 10 mol% of Mo, respectively. 5Ru represents a V alloy containing 5 mol% of Ru, V-9.2Al represents a V alloy containing 9.2 mol% of Al, V-5Co represents a V alloy containing 5 mol% of Co, and V-15W. -5Mo represents a V alloy containing 15 mol% W and 5 mol% Mo, and V-5W-15Mo represents a V alloy containing 5 mol% W and 15 mol% Mo.

〔考察〕
実施例1〜12の水素分離膜は、Pd表面層がなくても水素透過速度が高い。いずれの水素分離膜も8時間以上にわたって水素透過性能は安定しており、特に、実施例2,3,11,12のWを合金化金属としたV合金膜、実施例7のV−Mo合金膜及び実施例9のV−Al合金膜は、20時間にわたり、水素透過性能が低下することなく、水素が透過することが認められた。また、図3の通り、Nb−5W合金膜は、約3日間にわたり、水素透過性能が低下することなく、水素が透過することが認められた。図1〜12に純Pd膜及びPd−25Ag膜の水素透過係数を示してあるが、実施例1〜12の膜はいずれもこれよりも水素透過係数が大きい。
[Discussion]
The hydrogen separation membranes of Examples 1 to 12 have a high hydrogen permeation rate even without the Pd surface layer. All hydrogen separation membranes have stable hydrogen permeation performance over 8 hours, and in particular, V alloy membranes in which W of Examples 2, 3, 11, and 12 is alloyed metal, and V-Mo alloys of Example 7 The film and the V-Al alloy film of Example 9 were found to allow hydrogen permeation for 20 hours without degradation of hydrogen permeation performance. Further, as shown in FIG. 3, it was confirmed that the Nb-5W alloy film permeates hydrogen without deterioration in hydrogen permeation performance for about 3 days. 1 to 12 show the hydrogen permeation coefficients of the pure Pd film and the Pd-25Ag film, but the films of Examples 1 to 12 all have a larger hydrogen permeation coefficient.

1 水素透過試験用モジュール
2 ガス導入管
3、5 ガスケット
4 水素分離膜
6 ガス取出管
7 ナット
8 キャップナット
DESCRIPTION OF SYMBOLS 1 Hydrogen permeation test module 2 Gas introduction pipe 3, 5 Gasket 4 Hydrogen separation membrane 6 Gas extraction pipe 7 Nut 8 Cap nut

Claims (4)

Vと、Ruとの合金よりなる水素分離膜であって、該合金中におけるRuの含有量が30モル%以下であり、表面にPd又はPd合金の表面層を有しない水素分離膜。 A hydrogen separation membrane made of an alloy of V and Ru, wherein the Ru content in the alloy is 30 mol% or less and does not have a surface layer of Pd or Pd alloy on the surface. 請求項1において、膜厚が1〜600μmであることを特徴とする水素分離膜。   The hydrogen separation membrane according to claim 1, wherein the thickness is 1 to 600 μm. 請求項1又は2に記載の水素分離膜の一方の側に水素含有原料ガスを供給し、他方の側から精製水素ガスを取り出す水素分離方法。   A hydrogen separation method in which a hydrogen-containing source gas is supplied to one side of the hydrogen separation membrane according to claim 1 or 2 and purified hydrogen gas is taken out from the other side. 請求項3において前記水素含有原料の水素純度が2N〜7Nであり、前記精製水素ガスの純度が7N超であることを特徴とする水素分離方法。   The hydrogen separation method according to claim 3, wherein the hydrogen-containing raw material has a hydrogen purity of 2N to 7N and the purified hydrogen gas has a purity of more than 7N.
JP2013046770A 2012-03-12 2013-03-08 Hydrogen separation membrane and hydrogen separation method Active JP5987197B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013046770A JP5987197B2 (en) 2012-03-12 2013-03-08 Hydrogen separation membrane and hydrogen separation method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012054650 2012-03-12
JP2012054650 2012-03-12
JP2013046770A JP5987197B2 (en) 2012-03-12 2013-03-08 Hydrogen separation membrane and hydrogen separation method

Publications (2)

Publication Number Publication Date
JP2013215717A JP2013215717A (en) 2013-10-24
JP5987197B2 true JP5987197B2 (en) 2016-09-07

Family

ID=49588516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013046770A Active JP5987197B2 (en) 2012-03-12 2013-03-08 Hydrogen separation membrane and hydrogen separation method

Country Status (1)

Country Link
JP (1) JP5987197B2 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3788707B2 (en) * 1998-08-06 2006-06-21 株式会社半導体エネルギー研究所 Semiconductor device and manufacturing method thereof
JP2003001381A (en) * 2001-02-19 2003-01-07 Fukuda Metal Foil & Powder Co Ltd Manufacturing method for vanadium alloy foil
JP3931227B2 (en) * 2002-03-27 2007-06-13 独立行政法人物質・材料研究機構 Method for producing Ni substrate having Ni-V alloy phase
JP4577775B2 (en) * 2005-03-28 2010-11-10 日立金属株式会社 Method for producing double phase alloy for hydrogen separation and purification
JP4756450B2 (en) * 2005-03-31 2011-08-24 日立金属株式会社 Double phase alloy for hydrogen separation and purification
JP2007007565A (en) * 2005-06-30 2007-01-18 Tokyo Gas Co Ltd Reinforcing structure for hydrogen-permeable film, and its manufacturing method
JP2008055295A (en) * 2006-08-30 2008-03-13 Ihi Corp Hydrogen separation membrane
JP5463557B2 (en) * 2006-09-08 2014-04-09 国立大学法人北見工業大学 Dual-phase hydrogen permeable alloy and method for producing the same
JP2008194629A (en) * 2007-02-14 2008-08-28 Sumitomo Metal Mining Co Ltd Hydrogen-permeable alloy membrane
CN102574074A (en) * 2009-09-14 2012-07-11 东京瓦斯株式会社 Hydrogen separation membrane and method for separating hydrogen
JP5330171B2 (en) * 2009-09-14 2013-10-30 東京瓦斯株式会社 Hydrogen separation method using V-W type alloy membrane and condition setting method therefor

Also Published As

Publication number Publication date
JP2013215717A (en) 2013-10-24

Similar Documents

Publication Publication Date Title
US20120325087A1 (en) Hydrogen selective protective coating, coated article and method
US9199204B2 (en) Hydrogen-separation-membrane protection layer and a coating method therefor
Hwang et al. A multi-membrane reformer for the direct production of hydrogen via a steam-reforming reaction of methane
US20080241058A1 (en) Process for producing hydrogen with permselective membrane reactor and permselective membrane reactor
Peters et al. Fabrication of palladium-based membranes by magnetron sputtering
JP2007246333A (en) Permselective membrane-type reactor and hydrogen-producing method using the same
US7560090B2 (en) Process for producing hydrogen with permselective membrane reactor and permselective membrane reactor
JP6011538B2 (en) Hydrogen separator and method for operating the same
JP5987197B2 (en) Hydrogen separation membrane and hydrogen separation method
JP6384831B2 (en) Hydrogen separator and hydrogen separation method
Chi et al. Influence of the rotation rate of porous stainless steel tubes on electroless palladium deposition
JP6089814B2 (en) Hydrogen separation method
JP5548996B2 (en) Method for producing hydrogen separation membrane
KR101831151B1 (en) Hydrogen filtering membrane and method of manufacturing the same
Ryi et al. Long-term hydrogen permeation tests of Pd–Cu–Ni/PNS with temperature cycles from room temperature to 773 K
JP5183962B2 (en) Method for producing hydrogen using selectively permeable membrane reactor
JP6093985B2 (en) Hydrogen separation membrane treatment method and hydrogen separation method
JP5867502B2 (en) Hydrogen separation membrane and hydrogen separator
JP4154395B2 (en) Hydrogen permeable membrane and method for producing the same
Ryi et al. Hydrogen recovery from ethylene mixture with PD-AU composite membrane
KR20150018923A (en) Separation membrane, hydrogen separation membrane including separation membrane and device including hydrogen separation membrane
KR20130094259A (en) Separation membrane, hydrogen separation membrane including separation membrane and device including hydrogen separation membrane
JP2008272605A (en) Hydrogen permeable membrane and its manufacturing method
JP6382756B2 (en) Hydrogen separation membrane, hydrogen separation module, hydrogen separation device and hydrogen production device
JP2008043908A (en) Hydrogen-permeable membrane, its manufacturing method, and hydrogen-permeable member using this hydrogen-permeable membrane

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130326

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160718

R150 Certificate of patent or registration of utility model

Ref document number: 5987197

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350