JP4154395B2 - Hydrogen permeable membrane and method for producing the same - Google Patents

Hydrogen permeable membrane and method for producing the same Download PDF

Info

Publication number
JP4154395B2
JP4154395B2 JP2005044662A JP2005044662A JP4154395B2 JP 4154395 B2 JP4154395 B2 JP 4154395B2 JP 2005044662 A JP2005044662 A JP 2005044662A JP 2005044662 A JP2005044662 A JP 2005044662A JP 4154395 B2 JP4154395 B2 JP 4154395B2
Authority
JP
Japan
Prior art keywords
hydrogen permeable
permeable membrane
hydrogen
ceramic substrate
porous ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005044662A
Other languages
Japanese (ja)
Other versions
JP2005270966A (en
Inventor
明 山口
克彦 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mikuni Corp
Original Assignee
Mikuni Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mikuni Corp filed Critical Mikuni Corp
Priority to JP2005044662A priority Critical patent/JP4154395B2/en
Publication of JP2005270966A publication Critical patent/JP2005270966A/en
Application granted granted Critical
Publication of JP4154395B2 publication Critical patent/JP4154395B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Description

本発明は、水素透過膜、及びその製造方法に関する。更に詳述すれば、例えば自動車用燃料電池、家庭用燃料電池、携帯型燃料電池等の内部を流れる燃料用水素ガス中の水素ガスを選択的に透過させて、水素ガス純度を高めることができる水素透過膜及びその製造方法に関する。   The present invention relates to a hydrogen permeable membrane and a manufacturing method thereof. More specifically, the hydrogen gas purity can be increased by selectively permeating the hydrogen gas in the fuel hydrogen gas flowing through the interior of, for example, an automobile fuel cell, a household fuel cell, or a portable fuel cell. The present invention relates to a hydrogen permeable membrane and a manufacturing method thereof.

水素は、あらゆる産業分野において需要が急増するものと予測されている。このような背景が存在することから、水素ガスを精製するために利用できる水素透過膜の開発が進められている。水素透過膜としては、パラジウム(Pd)を用いた水素透過膜が知られている。Pdは希少な貴金属であり、非常に高価なものである。   Hydrogen is expected to increase in demand in all industrial fields. Because of such a background, development of hydrogen permeable membranes that can be used to purify hydrogen gas has been underway. As the hydrogen permeable membrane, a hydrogen permeable membrane using palladium (Pd) is known. Pd is a rare noble metal and is very expensive.

このため、Pdよりも安価な代替材料の開発が進められている。例えば、気体の透過性を有する多孔質支持体の表面に、ニオブ(Nb)、バナジウム(V)、タンタル(Ta)等からなる水素透過膜を形成した水素透過膜ユニットが提案されている(特許文献1)。特許文献2には、ジルコニウム(Zr)と、ニッケル、クロム、鉄、銅、バナジウム、チタン等との合金を使用した水素透過膜が提案されている。   For this reason, development of alternative materials cheaper than Pd is underway. For example, a hydrogen permeable membrane unit in which a hydrogen permeable membrane made of niobium (Nb), vanadium (V), tantalum (Ta) or the like is formed on the surface of a porous support having gas permeability has been proposed (patent) Reference 1). Patent Document 2 proposes a hydrogen permeable membrane using an alloy of zirconium (Zr) and nickel, chromium, iron, copper, vanadium, titanium, or the like.

しかしながら、Pdの代替材料は総じて、Pdに比べて水素の透過能が劣る。更に、Pdの代替材料は水素と反応して水素化する事により材料が粉化する等の劣化挙動を示す。このため、Pdに比べて耐久性が劣る問題がある。   However, substitute materials for Pd generally have poor hydrogen permeability compared to Pd. Further, the Pd substitute material exhibits a deterioration behavior such that the material is pulverized by reacting with hydrogen and hydrogenating. For this reason, there exists a problem in which durability is inferior compared with Pd.

また、Pdや代替材料等を水素透過性材料に用いている水素透過膜は、膜厚が数ミクロンから数mm程度であり、このように極めて厚い水素透過膜しか開発されていない。特に、Pdのみを膜材料とする水素透過膜は機械的強度が弱いので、これ以上水素透過膜を薄くできないという問題を抱えている。水素透過性材料、特にPdは非常に高価であるため、膜厚が大きい水素透過膜はコストが高くなる問題がある。   Further, a hydrogen permeable film using Pd or an alternative material as a hydrogen permeable material has a film thickness of about several microns to several mm, and only a very thick hydrogen permeable film has been developed. In particular, a hydrogen permeable membrane using only Pd as a membrane material has a problem that the hydrogen permeable membrane cannot be made thinner because the mechanical strength is weak. Since hydrogen permeable materials, particularly Pd, are very expensive, a hydrogen permeable membrane having a large film thickness has a problem of high cost.

従って、現状では、性能、耐久性、コストの三要素を満足できる水素透過膜が無く、その開発が切望されている。
特開2002−336664号公報(特許請求の範囲) 特開平07−000775号公報(特許請求の範囲)
Therefore, at present, there is no hydrogen permeable membrane that can satisfy the three elements of performance, durability, and cost, and its development is eagerly desired.
JP 2002-336664 A (Claims) Japanese Patent Application Laid-Open No. 07-000775 (Claims)

本発明は上記事情に鑑みなされたもので、その目的とするところは、水素の透過能が高く、水素化による水素透過膜の劣化が少なく、耐久性に優れ、膜厚が極めて薄く、機械的強度に優れた、安価な水素透過膜及びその製造方法を提供することにある。   The present invention has been made in view of the above circumstances, and the object thereof is high hydrogen permeability, little deterioration of the hydrogen permeable membrane due to hydrogenation, excellent durability, extremely thin film thickness, mechanical An object of the present invention is to provide an inexpensive hydrogen permeable membrane having excellent strength and a method for producing the membrane.

上記課題を解決する本発明は以下に記載するものである。   The present invention for solving the above problems is described below.

〔1〕 アルミニウム(Al)及び/又は珪素(Si)の窒化物、アルミニウム(Al)及び/又は珪素(Si)の酸化物又は希土類元素の珪化物からなるセラミックス材料中に、パラジウム(Pd)、ニオブ(Nb)、バナジウム(V)タンタル(Ta)及びこれらの合金から選ばれる少なくとも1種の水素透過性金属粒子を分散させてなる水素透過膜であって、該水素透過膜中の水素透過性金属粒子の割合が30〜70質量%であり、該水素透過膜の厚みが5〜1000nmであることを特徴とする水素透過膜。   [1] In a ceramic material made of aluminum (Al) and / or silicon (Si) nitride, aluminum (Al) and / or silicon (Si) oxide or rare earth silicide, palladium (Pd), A hydrogen permeable membrane in which at least one hydrogen permeable metal particle selected from niobium (Nb), vanadium (V) tantalum (Ta), and alloys thereof is dispersed, and the hydrogen permeability in the hydrogen permeable membrane A hydrogen permeable membrane, wherein the proportion of metal particles is 30 to 70 mass%, and the thickness of the hydrogen permeable membrane is 5 to 1000 nm.

〔2〕 水素透過性金属が、Pd又はその合金である〔1〕に記載の水素透過膜。   [2] The hydrogen permeable membrane according to [1], wherein the hydrogen permeable metal is Pd or an alloy thereof.

〔3〕 セラミックス材料が、AlNx1、AlOx2、SiNx3又はSiOx4(但し、0.5≦x1≦1、0.8≦x2≦1.5、0.7≦x3≦1.3、1≦x4≦2)の少なくとも1種である〔1〕に記載の水素透過膜。 [3] The ceramic material is AlNx 1 , AlOx 2 , SiNx 3 or SiOx 4 (where 0.5 ≦ x 11, 0.8 ≦ x 2 ≦ 1.5, 0.7 ≦ x 3 ≦ 1. [3] The hydrogen permeable membrane according to [1], which is at least one of 3, 1 ≦ x 4 ≦ 2).

〔4〕 多孔性セラミックス基板の少なくとも片面上に〔1〕乃至〔3〕の何れかに記載の水素透過膜を成膜した水素透過膜ユニット。   [4] A hydrogen permeable membrane unit in which the hydrogen permeable membrane according to any one of [1] to [3] is formed on at least one surface of a porous ceramic substrate.

〔5〕 多孔性セラミックス基板が孔径1〜200nmの細孔を有する〔3〕に記載の水素透過膜ユニット。   [5] The hydrogen permeable membrane unit according to [3], wherein the porous ceramic substrate has pores having a pore diameter of 1 to 200 nm.

〔6〕 多孔性セラミックス基板の少なくとも片面上に気相成長法又はスパッタリング法により〔1〕乃至〔3〕の何れかに記載の水素透過膜を成膜する水素透過膜の製造方法。   [6] A method for producing a hydrogen permeable film, wherein the hydrogen permeable film according to any one of [1] to [3] is formed on at least one surface of a porous ceramic substrate by a vapor deposition method or a sputtering method.

〔7〕 多孔性セラミックス基板が孔径1〜200nmの細孔を有する〔6〕に記載の水素透過膜の製造方法。   [7] The method for producing a hydrogen permeable membrane according to [6], wherein the porous ceramic substrate has pores having a pore diameter of 1 to 200 nm.

本発明の水素透過膜は、水素透過性金属粒子を堅いセラミックス材料中に略均一に分散させたものであるため、水素透過性金属粒子が水素を吸収したり、放出する際に体積変化を起して生じる機械的ストレスを緩和できる。その結果、水素透過性金属の水素化による水素透過膜の劣化が少なくなる。即ち、本発明の水素透過膜は耐久性に優れる。   The hydrogen permeable membrane of the present invention has hydrogen permeable metal particles dispersed substantially uniformly in a hard ceramic material. Therefore, when the hydrogen permeable metal particles absorb or release hydrogen, volume change occurs. The mechanical stress that occurs can be relieved. As a result, deterioration of the hydrogen permeable membrane due to hydrogenation of the hydrogen permeable metal is reduced. That is, the hydrogen permeable membrane of the present invention is excellent in durability.

本発明の水素透過膜は、Pd等の水素透過性金属を単独で用いて形成した膜ではなく、セラミックス材料からなるマトリックス中に水素透過性金属粒子を略均一分散させた膜である。本発明の水素透過膜は、剛性の高い多孔性基板上に形成でき、この場合は水素透過膜は大きな機械的強度を持つことを要求されないので、膜厚を5〜1000nmと極めて薄くできる。本発明の水素透過膜は膜厚を薄くできるため、機械的強度を高くするために膜を厚く形成した従来のPd単体の透過膜と同等の水素透過能を有する。更に、膜厚が小さいので、用いる水素透過性金属の使用量が少なくなり、その結果安価に水素透過膜を製造できる。   The hydrogen permeable membrane of the present invention is not a membrane formed by using a hydrogen permeable metal such as Pd alone, but a membrane in which hydrogen permeable metal particles are dispersed substantially uniformly in a matrix made of a ceramic material. The hydrogen permeable membrane of the present invention can be formed on a highly rigid porous substrate. In this case, since the hydrogen permeable membrane is not required to have a large mechanical strength, the film thickness can be made extremely thin as 5 to 1000 nm. Since the hydrogen permeable membrane of the present invention can be made thin, it has a hydrogen permeability equivalent to that of a conventional permeable membrane made of a single Pd in which the membrane is made thick in order to increase the mechanical strength. Furthermore, since the film thickness is small, the amount of hydrogen permeable metal to be used is reduced, and as a result, the hydrogen permeable film can be manufactured at low cost.

本発明の水素透過膜は、水素ガスに対して優れた透過性を有する。例えば窒素、酸素等の水素以外のガスに対しては不透過性を有する。このため、混合ガスから水素ガスを選択的に分離する用途に用いる場合、優れた性能を示す。   The hydrogen permeable membrane of the present invention has excellent permeability to hydrogen gas. For example, it is impermeable to gases other than hydrogen, such as nitrogen and oxygen. For this reason, when it uses for the use which selectively isolate | separates hydrogen gas from mixed gas, it shows the outstanding performance.

以下、本発明について図面を参照して詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the drawings.

図1は、本発明の水素透過膜の一例を示す平面図である。図1中、1は水素透過膜である。11は水素透過性金属粒子で、セラミックス材料13(マトリックス)の中に略均一に分散されている。水素透過性金属粒子11の粒子径は1〜10nmであり2〜8nmが好ましく3〜6nmがより好ましく、かつ水素透過膜1の膜厚よりも小さい。   FIG. 1 is a plan view showing an example of the hydrogen permeable membrane of the present invention. In FIG. 1, 1 is a hydrogen permeable membrane. Reference numeral 11 denotes hydrogen permeable metal particles which are substantially uniformly dispersed in the ceramic material 13 (matrix). The particle diameter of the hydrogen permeable metal particles 11 is 1 to 10 nm, preferably 2 to 8 nm, more preferably 3 to 6 nm, and smaller than the film thickness of the hydrogen permeable membrane 1.

図1中の、a−a線に沿う断面を図2に示す。図2中の符号は図1と同様である。水素透過膜の厚みは5〜1000nmが好ましい。   FIG. 2 shows a cross section taken along line aa in FIG. 2 are the same as those in FIG. The thickness of the hydrogen permeable membrane is preferably 5 to 1000 nm.

図3は、水素透過膜をホルダーに取付けた水素透過膜ユニットの一例を示す平面図である。図3中、3は水素透過膜ユニット、27はステンレスホルダー、23はステンレスホルダー27内に装着されている多孔性セラミックス基板、1は水素透過膜で、多孔性セラミックス基板23の一面に成膜されている。25は多孔性セラミックス基板23とステンレスホルダー27との空隙を気密に埋める封止材である。封止方法は、高融点金属法、活性金属法等、ロー材を用いるロー付方法等が例示できる。従って、封止材は、これら封止方法で用いる材料である。また、無機系接着剤を用いて封止しても良い。封止材25は上記の空隙を隙間無く埋めている。尚、多孔性セラミックス基板は、孔径約5nmの細孔を有する市販品が例示できる。   FIG. 3 is a plan view showing an example of a hydrogen permeable membrane unit in which a hydrogen permeable membrane is attached to a holder. In FIG. 3, 3 is a hydrogen permeable membrane unit, 27 is a stainless steel holder, 23 is a porous ceramic substrate mounted in the stainless steel holder 27, 1 is a hydrogen permeable membrane, and is formed on one surface of the porous ceramic substrate 23. ing. Reference numeral 25 denotes a sealing material that hermetically fills the gap between the porous ceramic substrate 23 and the stainless steel holder 27. Examples of the sealing method include a brazing method using a brazing material such as a refractory metal method and an active metal method. Therefore, the sealing material is a material used in these sealing methods. Moreover, you may seal using an inorganic type adhesive agent. The sealing material 25 fills the gaps without any gaps. An example of the porous ceramic substrate is a commercially available product having pores with a pore diameter of about 5 nm.

図3中の、b−b線に沿う断面を図4に示す。図4中の符号は図3と同様である。   FIG. 4 shows a cross section taken along line bb in FIG. The reference numerals in FIG. 4 are the same as those in FIG.

図5は、本発明の水素透過膜ユニットの製造方法の一例を示す工程図である。先ず、多孔性セラミックス基板をステンレスホルダーに装着し、両者間の間隙を封止材(ロー材)で埋めた後、これらを焼成する。これにより、多孔性セラミックス基板とステンレスホルダーとが一体化する。次いで、水素透過性金属又はその合金からなるターゲットと、セラミックス材料からなるターゲットとを、高周波マグネトロンスパッタリング装置内に置く。次いで、窒素ガス及び/又は酸素ガスの雰囲気下でスパッタリングを行う。これにより、セラミックス材料からなるマトリックス中に、水素透過性金属粒子又はその合金粒子が分散した水素透過膜が多孔性セラミックス基板の一面に成膜される。このようにして得られた水素透過膜ユニットは、必要により品質検査に供し、品質に問題の無いものが水素選択透過膜として製品化される。   FIG. 5 is a process diagram showing an example of a method for producing a hydrogen permeable membrane unit of the present invention. First, a porous ceramic substrate is mounted on a stainless steel holder, and a gap between the two is filled with a sealing material (a brazing material), followed by firing. Thereby, the porous ceramic substrate and the stainless steel holder are integrated. Next, a target made of a hydrogen permeable metal or an alloy thereof and a target made of a ceramic material are placed in a high-frequency magnetron sputtering apparatus. Next, sputtering is performed in an atmosphere of nitrogen gas and / or oxygen gas. Thus, a hydrogen permeable film in which hydrogen permeable metal particles or alloy particles thereof are dispersed in a matrix made of a ceramic material is formed on one surface of the porous ceramic substrate. The hydrogen permeable membrane unit thus obtained is subjected to quality inspection if necessary, and a product having no quality problem is commercialized as a hydrogen selective permeable membrane.

図6は本発明の実施例で用いる水素透過性試験機を示す断面図である。図6中31は混合ガスセル、33は混合ガスセルに供給する試験用混合ガス注入口、35は混合ガスセル中の混合ガス吸引口、37は圧力センサー、41は透過ガスセル、43は透過ガスのサンプリング口、45は透過ガスセル内の透過ガスの吸引口、47は透過ガスセル内の圧力センサーである。図6中に示されるその他の符号は図3に示される符号と同様である。   FIG. 6 is a cross-sectional view showing a hydrogen permeability tester used in an example of the present invention. In FIG. 6, 31 is a mixed gas cell, 33 is a mixed gas inlet for test to be supplied to the mixed gas cell, 35 is a mixed gas suction port in the mixed gas cell, 37 is a pressure sensor, 41 is a permeate gas cell, and 43 is a permeate gas sampling port. , 45 is a suction port for the permeated gas in the permeate gas cell, and 47 is a pressure sensor in the permeate gas cell. The other symbols shown in FIG. 6 are the same as the symbols shown in FIG.

(水素透過性金属粒子)
本発明における水素透過性金属粒子11は、パラジウム(Pd)、ニオブ(Nb)、バナジウム(V)、タンタル(Ta)又はこれらの合金の少なくとも1種からなる粒子である。これらの水素透過性金属粒子は、金属元素粒子としてセラミックス材料中に分散させても良く、合金粒子として分散させても良い。水素透過性金属の合金は、従来から水素透過膜の製造材料に用いられている合金である。水素透過性金属の合金としては、例えば、上記水素透過性金属とカルシウム、鉄、銅、バナジウム、ニッケル、チタン、クロム、ジルコニウム等の金属との合金を挙げることができる。
(Hydrogen permeable metal particles)
The hydrogen permeable metal particles 11 in the present invention are particles made of at least one of palladium (Pd), niobium (Nb), vanadium (V), tantalum (Ta), or an alloy thereof. These hydrogen permeable metal particles may be dispersed in the ceramic material as metal element particles, or may be dispersed as alloy particles. The hydrogen permeable metal alloy is an alloy conventionally used as a material for producing a hydrogen permeable membrane. Examples of the hydrogen permeable metal alloy include an alloy of the hydrogen permeable metal and a metal such as calcium, iron, copper, vanadium, nickel, titanium, chromium, and zirconium.

これらの水素透過性金属粒子のうち、Pd粒子と、Pd合金粒子が水素透過能に優れるので特に好ましい。   Of these hydrogen permeable metal particles, Pd particles and Pd alloy particles are particularly preferred because of their excellent hydrogen permeability.

本発明の水素透過膜において、これらの水素透過性金属粒子は、セラミックス材料中に均一分散されていることが好ましい。水素透過膜中の水素透過性金属粒子の含有割合は30〜70質量%であり、35〜60質量%がより好ましく、38〜50質量%が特に好ましい。この含有割合が30質量%未満であると、水素の透過能が不十分となる。一方、この含有割合が70質量%を超えると、水素透過膜として使用中に、水素透過膜の水素化に基づく劣化が顕著となる。また、含有割合が70質量%を超える場合は、水素透過膜の機械的強度が不十分となるので、薄膜の厚みが5〜1000nmの水素透過膜を得ることが困難となる。   In the hydrogen permeable membrane of the present invention, it is preferable that these hydrogen permeable metal particles are uniformly dispersed in the ceramic material. The content ratio of the hydrogen permeable metal particles in the hydrogen permeable membrane is 30 to 70% by mass, more preferably 35 to 60% by mass, and particularly preferably 38 to 50% by mass. When the content ratio is less than 30% by mass, hydrogen permeability is insufficient. On the other hand, when the content ratio exceeds 70% by mass, deterioration due to hydrogenation of the hydrogen permeable membrane becomes remarkable during use as a hydrogen permeable membrane. Moreover, since the mechanical strength of a hydrogen permeable film will become inadequate when a content rate exceeds 70 mass%, it becomes difficult to obtain a hydrogen permeable film with a thin film thickness of 5-1000 nm.

(セラミックス材料)
本発明において、水素透過膜1のマトリックスを構成するセラミックス材料13は、アルミニウム(Al)及び/又は珪素(Si)の窒化物、アルミニウム(Al)及び/又は珪素(Si)の酸化物又は希土類元素の珪化物からなる。このようなセラミックス材料として、具体的には、AlNx1、AlOx2、SiNx3、及びSiOx4(但し、0.5≦x1≦1、0.8≦x2≦1.5、0.7≦x3≦1.3、1≦x4≦2)を挙げることができる。
(Ceramic materials)
In the present invention, the ceramic material 13 constituting the matrix of the hydrogen permeable membrane 1 is made of aluminum (Al) and / or silicon (Si) nitride, aluminum (Al) and / or silicon (Si) oxide or rare earth element. Made of silicide. As such ceramic materials, specifically, AlNx 1 , AlOx 2 , SiNx 3 , and SiOx 4 (where 0.5 ≦ x 11, 0.8 ≦ x 2 ≦ 1.5, 0.7 ≦ x 3 ≦ 1.3, 1 ≦ x 4 ≦ 2).

また、希土類元素の珪化物としては、イットリウム(Y)、ランタン(La)等の珪化物を挙げることができる。   Examples of rare earth element silicides include silicides such as yttrium (Y) and lanthanum (La).

これらのセラミックス材料のうち、AlNx1は、硬度が高く、強度も優れる。このため、AlNx1は、水素透過性金属又はその合金の水素化に起因する粉化を抑制することができるので特に好ましい。 Of these ceramic materials, AlNx 1 has high hardness and excellent strength. For this reason, AlNx 1 is particularly preferable because it can suppress powdering resulting from hydrogenation of a hydrogen-permeable metal or an alloy thereof.

(水素透過膜の膜厚)
本発明の水素透過膜1は、その厚みが5〜1000nmで、10〜500nmが好ましい。この厚みが5nm未満の場合、水素透過膜の強度が不足する。一方、厚みが1000nmを超える場合、水素透過能が不十分となり、更に水素透過性金属の使用量の節約に起因するコスト低減効果も減少する。尚、水素透過性金属としてPdを用いる場合、Pdは水素ガスと他のガスとの分離能に優れるので、透過膜の厚みを特に薄くすることができる。
(Thickness of hydrogen permeable membrane)
The hydrogen permeable membrane 1 of the present invention has a thickness of 5 to 1000 nm, preferably 10 to 500 nm. When this thickness is less than 5 nm, the strength of the hydrogen permeable membrane is insufficient. On the other hand, when the thickness exceeds 1000 nm, the hydrogen permeability is insufficient, and the cost reduction effect due to saving of the amount of hydrogen permeable metal used is also reduced. Note that when Pd is used as the hydrogen permeable metal, Pd is excellent in separability between hydrogen gas and other gases, so that the thickness of the permeable membrane can be particularly reduced.

(多孔性セラミックス基板)
本発明における多孔性セラミックス基板23は、基板内部に存在する細孔を通してガス透過性を示す。多孔性セラミックス基板は、通常市販されている多孔性セラミックスを用いることができる。多孔性セラミックス基板に存在する細孔は、孔径1〜200nmであることが好ましく、5〜100nmがより好ましい。この孔径が1nm未満であると、水素の透過能が不十分となる。一方、200nmを超えると、水素ガスとその他のガス(例えば窒素ガス)との分離性能が不十分になることがある。尚、細孔は多孔性セラミックス基板中連続した孔であることが好ましい。
(Porous ceramic substrate)
The porous ceramic substrate 23 in the present invention exhibits gas permeability through pores existing inside the substrate. As the porous ceramic substrate, a commercially available porous ceramic can be used. The pores present in the porous ceramic substrate preferably have a pore diameter of 1 to 200 nm, more preferably 5 to 100 nm. If the pore diameter is less than 1 nm, the hydrogen permeability is insufficient. On the other hand, when it exceeds 200 nm, the separation performance between hydrogen gas and other gases (for example, nitrogen gas) may be insufficient. The pores are preferably continuous pores in the porous ceramic substrate.

(水素透過膜の製造方法)
本発明の水素透過膜は、多孔性セラミックス基板23の少なくとも片面に、セラミックス材料と、水素透過性金属又はその合金との混合物よりなる薄膜を成膜することにより得られる。成膜は、気相成長法又はスパッタリング法によることが好ましい。
(Method for producing hydrogen permeable membrane)
The hydrogen permeable membrane of the present invention is obtained by forming a thin film made of a mixture of a ceramic material and a hydrogen permeable metal or an alloy thereof on at least one surface of the porous ceramic substrate 23. Film formation is preferably performed by vapor deposition or sputtering.

水素透過膜の気相成長法は、例えばPd金属とアルミニウム金属とを窒素ガス雰囲気下で加熱し、セラミックス等の基板上にPd(水素透過性金属)とAlN(セラミックス材料)との混合物として薄膜状に析出させる成膜法である。   For example, the hydrogen vapor permeable film is vapor-phase-grown by heating Pd metal and aluminum metal in a nitrogen gas atmosphere, and forming a thin film as a mixture of Pd (hydrogen permeable metal) and AlN (ceramic material) on a substrate such as ceramics. It is a film-forming method that deposits in a shape.

次に実施例をあげて本発明をより具体的に説明するが、本発明はこれに限定されるものではない。   EXAMPLES Next, the present invention will be described more specifically with reference to examples, but the present invention is not limited thereto.

[実施例1]
高周波マグネトロンスパッタリング装置を用い、多孔性セラミックス基板上に水素透過膜を形成した。図3に、作製した水素透過膜ユニットを示す。
[Example 1]
A high-frequency magnetron sputtering apparatus was used to form a hydrogen permeable film on the porous ceramic substrate. FIG. 3 shows the produced hydrogen permeable membrane unit.

先ず、高周波マグネトロンスパッタリング装置内に、ステンレスホルダー内に装着されている多孔性セラミックス基板と、Alターゲットと、その上に配置したPdチップ(ターゲット)を置いた。次いで、装置内を約4×10-5Pa程度まで減圧にした。多孔性セラミックス基板は、ステンレスホルダーに装着し、基板とホルダー間の空隙を封止材(ロー材)で封止したものを用いた。次いで、装置内にアルゴンガスと窒素ガス(容積比85:15)とを9.3Paとなるように導入し、室温でスパッタリングを行った。その結果、多孔性セラミックス基板の片面に厚さ10nmの水素透過膜が成膜された。成膜された水素透過膜は、AlNx1(x1=0.9)マトリック内にPdが2〜6nmの粒子径で均一分散されたものであった。水素透過膜内のPd含有量は約40質量%であった。 First, a porous ceramic substrate mounted in a stainless steel holder, an Al target, and a Pd chip (target) placed thereon were placed in a high-frequency magnetron sputtering apparatus. Next, the pressure in the apparatus was reduced to about 4 × 10 −5 Pa. The porous ceramic substrate used was a stainless steel holder, and the gap between the substrate and the holder was sealed with a sealing material (raw material). Subsequently, argon gas and nitrogen gas (volume ratio 85:15) were introduced into the apparatus so as to be 9.3 Pa, and sputtering was performed at room temperature. As a result, a hydrogen permeable film having a thickness of 10 nm was formed on one surface of the porous ceramic substrate. The formed hydrogen permeable membrane was one in which Pd was uniformly dispersed with a particle diameter of 2 to 6 nm in an AlNx 1 (x 1 = 0.9) matrix. The Pd content in the hydrogen permeable membrane was about 40% by mass.

次いで、水素透過膜ユニットを図6に示す水素透過性試験機に装着し、水素の透過性能を試験した。先ず、水素透過性試験機の混合ガスセル31内の大気を混合ガス吸引口35から吸引し、また透過ガスセル41内の大気を透過ガス吸引口45から吸引した。混合ガスセル31内、及び透過ガスセル41内が1×10-6Paになった時点で吸引を止めた。 Next, the hydrogen permeable membrane unit was mounted on a hydrogen permeability tester shown in FIG. 6, and the hydrogen permeation performance was tested. First, the atmosphere in the mixed gas cell 31 of the hydrogen permeability tester was sucked from the mixed gas suction port 35, and the atmosphere in the permeated gas cell 41 was sucked from the permeated gas suction port 45. Suction was stopped when the inside of the mixed gas cell 31 and the inside of the permeating gas cell 41 reached 1 × 10 −6 Pa.

次いで、混合ガス注入口33から水素ガス及び窒素ガス(体積比70:30)を注入した。混合ガスセル31内圧を2×10-5Pa、水素透過性試験機全体を300℃の温度に保ちながら、透過ガス吸引口45を減圧にして、透過ガス吸引口45から排出される水素ガスと窒素ガスとの流量を測定した。その結果、水素ガスについては、7×10-7mol/m2/s/Paの透過量となった。窒素ガスについては殆ど検出されなかった。このことから選択性H2/N2は3500以上であることが判った。 Next, hydrogen gas and nitrogen gas (volume ratio 70:30) were injected from the mixed gas injection port 33. While maintaining the internal pressure of the mixed gas cell 31 at 2 × 10 −5 Pa and the temperature of the hydrogen permeability tester at 300 ° C., the permeate gas suction port 45 is depressurized and the hydrogen gas and nitrogen discharged from the permeate gas suction port 45 are reduced. The flow rate with the gas was measured. As a result, the permeation amount of hydrogen gas was 7 × 10 −7 mol / m 2 / s / Pa. Almost no nitrogen gas was detected. From this, it was found that the selectivity H 2 / N 2 was 3500 or more.

[実施例2]
実施例1で得られた水素透過膜ユニットを用い、実施例1と同様の水素の透過性試験を繰り返し10回実施した。その後、水素透過膜ユニットを水素透過性試験機から取り出し、水素透過膜の表面を観察した。その結果水素透過膜の表面に、亀裂などの劣化は認められなかった。
[Example 2]
Using the hydrogen permeable membrane unit obtained in Example 1, the same hydrogen permeability test as in Example 1 was repeated 10 times. Thereafter, the hydrogen permeable membrane unit was taken out of the hydrogen permeability tester, and the surface of the hydrogen permeable membrane was observed. As a result, no deterioration such as cracks was observed on the surface of the hydrogen permeable membrane.

[比較例1]
高周波マグネトロンスパッタリング装置内に、Alチップ(Alターゲット)を置かない以外は実施例1と同様に操作して、水素透過膜ユニットを作製した。その結果、多孔性セラミックス基板の片面に厚み10nmの水素透過膜が成膜された。成膜された水素透過膜は、Pd単独のものである。得られた水素透過膜ユニットを用い、実施例2と同様に水素の透過性試験を繰り返し3回実施した。その後、水素透過膜ユニットを水素透過性試験機から取り出し、水素透過膜の表面を観察した。水素透過膜の表面に、亀裂が認められた。
[Comparative Example 1]
A hydrogen permeable membrane unit was produced in the same manner as in Example 1 except that no Al chip (Al target) was placed in the high frequency magnetron sputtering apparatus. As a result, a hydrogen permeable film having a thickness of 10 nm was formed on one surface of the porous ceramic substrate. The formed hydrogen permeable membrane is made of Pd alone. Using the obtained hydrogen permeable membrane unit, the hydrogen permeability test was repeated three times in the same manner as in Example 2. Thereafter, the hydrogen permeable membrane unit was removed from the hydrogen permeability tester, and the surface of the hydrogen permeable membrane was observed. Cracks were observed on the surface of the hydrogen permeable membrane.

尚、水素透過膜の厚さの測定は触針式膜厚計により、水素透過膜の組成の測定はEPMA(電子線マイクロアナライザー)により行った。
The thickness of the hydrogen permeable membrane was measured with a stylus type film thickness meter, and the composition of the hydrogen permeable membrane was measured with an EPMA (electron beam microanalyzer).

本発明の水素透過膜の一例を示す平面図である。It is a top view which shows an example of the hydrogen permeable film of this invention. 図1における、a−a線に沿った断面図である。It is sectional drawing along the aa line in FIG. 本発明の水素透過膜ユニットの一例を示す平面図である。It is a top view which shows an example of the hydrogen permeable membrane unit of this invention. 図3における、b−b線に沿った断面図である。FIG. 4 is a cross-sectional view taken along line bb in FIG. 3. 本発明の水素透過膜ユニットの製造方法の一例を示す工程図である。It is process drawing which shows an example of the manufacturing method of the hydrogen permeable membrane unit of this invention. 水素透過性試験機の一例を示す断面図である。It is sectional drawing which shows an example of a hydrogen permeability tester.

符号の説明Explanation of symbols

1 水素透過膜
3 水素透過膜ユニット
11 水素透過性金属粒子
13 セラミックス材料
23 セラミックス基板
25 封止材
27 ステンレスホルダー
31 混合ガスセル
33 混合ガス注入口
35 混合ガス吸引口
37 混合ガス圧力センサー
41 透過ガスセル
43 透過ガスサンプリング口
45 透過ガス吸引口
47 透過ガス圧力センサー
DESCRIPTION OF SYMBOLS 1 Hydrogen permeable membrane 3 Hydrogen permeable membrane unit 11 Hydrogen permeable metal particle 13 Ceramic material 23 Ceramic substrate 25 Sealing material 27 Stainless steel holder 31 Mixed gas cell 33 Mixed gas inlet 35 Mixed gas suction port 37 Mixed gas pressure sensor 41 Permeated gas cell 43 Permeate gas sampling port 45 Permeate gas suction port 47 Permeate gas pressure sensor

Claims (6)

孔径1〜200nmの細孔を有する多孔性セラミックス基板と、
前記多孔性セラミックス基板の少なくとも片面上に形成された水素透過膜と、からなる水素透過膜ユニットであって、
前記水素透過膜は、アルミニウム(Al)及び/又は珪素(Si)の窒化物、アルミニウム(Al)及び/又は珪素(Si)の酸化物又は希土類元素の珪化物からなセラミックス材料中に、パラジウム(Pd)、ニオブ(Nb)、バナジウム(V)タンタル(Ta)及びこれらの合金から選ばれる少なくとも1種の粒子径が1〜10nmの水素透過性金属粒子を分散させてなる水素透過膜であって、該水素透過膜は前記セラミックス材料と水素透過性金属又はその合金とをターゲットに用いる高周波マグネトロンスパッタリング法により製造され、該水素透過膜中の水素透過性金属粒子の割合が30〜70質量%であり、該水素透過膜の厚みが10〜1000nmであることを特徴とする水素透過膜ユニット。
A porous ceramic substrate having pores with a pore diameter of 1 to 200 nm;
A hydrogen permeable membrane unit comprising a hydrogen permeable membrane formed on at least one surface of the porous ceramic substrate,
The hydrogen permeable membrane, a nitride of aluminum (Al) and / or silicon (Si), aluminum (Al) and / or oxides or ceramic material ing from silicide of a rare earth element of silicon (Si), palladium A hydrogen permeable membrane in which hydrogen permeable metal particles having a particle diameter of 1 to 10 nm selected from (Pd), niobium (Nb), vanadium (V) , tantalum (Ta), and alloys thereof are dispersed. The hydrogen permeable membrane is manufactured by a high frequency magnetron sputtering method using the ceramic material and a hydrogen permeable metal or an alloy thereof as a target, and the ratio of the hydrogen permeable metal particles in the hydrogen permeable membrane is 30 to 70 mass. %, And the thickness of the hydrogen permeable membrane is 10 to 1000 nm.
水素透過性金属が、Pd又はその合金である請求項1に記載の水素透過膜ユニット。 The hydrogen permeable membrane unit according to claim 1, wherein the hydrogen permeable metal is Pd or an alloy thereof. セラミックス材料が、AlNx1、AlOx2、SiNx3又はSiOx4(但し、0.5≦x1≦1、0.8≦x2≦1.5、0.7≦x3≦1.3、1≦x4≦2)の少なくとも1種である請求項1に記載の水素透過膜ユニット。 The ceramic material is AlNx 1 , AlOx 2 , SiNx 3 or SiOx 4 (where 0.5 ≦ x 11, 0.8 ≦ x 2 ≦ 1.5, 0.7 ≦ x 3 ≦ 1.3, 1 The hydrogen permeable membrane unit according to claim 1, wherein at least one of ≦ x 4 ≦ 2). 多孔性セラミックス基板が、孔径5〜100nmの細孔を有する請求項1に記載の水素透過膜ユニット。 The hydrogen permeable membrane unit according to claim 1, wherein the porous ceramic substrate has pores having a pore diameter of 5 to 100 nm. 孔径1〜200nmの細孔を有する多孔性セラミックス基板の少なくとも片面上に高周波マグネトロンスパッタリング法により請求項1乃至3の何れかに記載の水素透過膜を成膜する水素透過膜ユニットの製造方法。 A method for producing a hydrogen permeable membrane unit, wherein the hydrogen permeable membrane according to any one of claims 1 to 3 is formed on at least one surface of a porous ceramic substrate having pores having a pore diameter of 1 to 200 nm by a high frequency magnetron sputtering method. 多孔性セラミックス基板が、孔径5〜100nmの細孔を有する請求項5に記載の水素透過膜ユニットの製造方法。
The method for producing a hydrogen permeable membrane unit according to claim 5, wherein the porous ceramic substrate has pores having a pore diameter of 5 to 100 nm.
JP2005044662A 2004-02-27 2005-02-21 Hydrogen permeable membrane and method for producing the same Expired - Fee Related JP4154395B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005044662A JP4154395B2 (en) 2004-02-27 2005-02-21 Hydrogen permeable membrane and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004055184 2004-02-27
JP2005044662A JP4154395B2 (en) 2004-02-27 2005-02-21 Hydrogen permeable membrane and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005270966A JP2005270966A (en) 2005-10-06
JP4154395B2 true JP4154395B2 (en) 2008-09-24

Family

ID=35171166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005044662A Expired - Fee Related JP4154395B2 (en) 2004-02-27 2005-02-21 Hydrogen permeable membrane and method for producing the same

Country Status (1)

Country Link
JP (1) JP4154395B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5363121B2 (en) * 2006-12-28 2013-12-11 株式会社ミクニ Hydrogen permeable membrane and manufacturing method thereof
JP5723650B2 (en) * 2011-03-28 2015-05-27 Jx日鉱日石金属株式会社 Hydrogen permeation module and hydrogen separation method using the same

Also Published As

Publication number Publication date
JP2005270966A (en) 2005-10-06

Similar Documents

Publication Publication Date Title
EP1568409B1 (en) Hydrogen-permeable membrane and process for production thereof
EP2054355B1 (en) Composite oxygen ion transport membrane
US6572683B2 (en) Substance separation structure and method of preparing the same
KR100547527B1 (en) Hydrogen Permeable Structure and Manufacturing Method Thereof
JP5363121B2 (en) Hydrogen permeable membrane and manufacturing method thereof
US9199204B2 (en) Hydrogen-separation-membrane protection layer and a coating method therefor
JP2006204990A (en) Hydrogen separation membrane and its manufacturing method
JP4154395B2 (en) Hydrogen permeable membrane and method for producing the same
KR100354727B1 (en) Solid electrolyte membrane with mechanically-enhancing and porous catalytically enhancing constituents
US20070044663A1 (en) Method for fabricating a hydrogen separation membrane on a porous substrate
JP4500763B2 (en) Composition gradient oxygen separation membrane
JP4500762B2 (en) Oxygen separation membrane having a composition gradient structure
JP4064774B2 (en) Hydrogen permeator and method for producing the same
KR101831151B1 (en) Hydrogen filtering membrane and method of manufacturing the same
JP2006314876A (en) Hydrogen separator
JP4911916B2 (en) Hydrogen separator
JP2007069090A (en) Composition gradient type oxygen separation membrane
JP6075155B2 (en) Oxygen permeable membrane, oxygen separation method and fuel cell system
JP2001137673A (en) Hydrogen separating composite
JP2006272167A (en) Hydrogen permeable membrane
JP2008272605A (en) Hydrogen permeable membrane and its manufacturing method
JP2008043908A (en) Hydrogen-permeable membrane, its manufacturing method, and hydrogen-permeable member using this hydrogen-permeable membrane
JP5987197B2 (en) Hydrogen separation membrane and hydrogen separation method
JPWO2012121275A1 (en) Hydrogen separation membrane and hydrogen separator
JP2007021388A (en) Hydrogen-permeating alloy membrane and hydrogen-permeating membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080617

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080707

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4154395

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140711

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees