JPS6247054B2 - - Google Patents
Info
- Publication number
- JPS6247054B2 JPS6247054B2 JP54113526A JP11352679A JPS6247054B2 JP S6247054 B2 JPS6247054 B2 JP S6247054B2 JP 54113526 A JP54113526 A JP 54113526A JP 11352679 A JP11352679 A JP 11352679A JP S6247054 B2 JPS6247054 B2 JP S6247054B2
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen
- solid electrolyte
- oxide
- electrolyte membrane
- present
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229910052739 hydrogen Inorganic materials 0.000 claims description 38
- 239000001257 hydrogen Substances 0.000 claims description 38
- 239000012528 membrane Substances 0.000 claims description 34
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 28
- 239000007784 solid electrolyte Substances 0.000 claims description 23
- 238000000034 method Methods 0.000 claims description 19
- 239000007789 gas Substances 0.000 claims description 16
- 229910052751 metal Inorganic materials 0.000 claims description 16
- 239000002184 metal Substances 0.000 claims description 16
- 229910052684 Cerium Inorganic materials 0.000 claims description 8
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 claims description 8
- 229910052712 strontium Inorganic materials 0.000 claims description 8
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 claims description 8
- 229910052779 Neodymium Inorganic materials 0.000 claims description 7
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 7
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 claims description 7
- 229910052706 scandium Inorganic materials 0.000 claims description 7
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 claims description 7
- 229910052727 yttrium Inorganic materials 0.000 claims description 7
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims description 7
- 229910052725 zinc Inorganic materials 0.000 claims description 7
- 239000011701 zinc Substances 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 6
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 claims description 5
- 229910044991 metal oxide Inorganic materials 0.000 claims description 5
- 150000004706 metal oxides Chemical class 0.000 claims description 5
- 239000011343 solid material Substances 0.000 claims description 2
- 150000002431 hydrogen Chemical class 0.000 description 11
- 238000000926 separation method Methods 0.000 description 11
- -1 hydrogen ions Chemical class 0.000 description 7
- 238000000354 decomposition reaction Methods 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 238000010304 firing Methods 0.000 description 4
- 230000001590 oxidative effect Effects 0.000 description 4
- HYXGAEYDKFCVMU-UHFFFAOYSA-N scandium oxide Chemical compound O=[Sc]O[Sc]=O HYXGAEYDKFCVMU-UHFFFAOYSA-N 0.000 description 4
- 239000006104 solid solution Substances 0.000 description 4
- 125000004429 atom Chemical group 0.000 description 3
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 3
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 238000005120 petroleum cracking Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- IATRAKWUXMZMIY-UHFFFAOYSA-N strontium oxide Chemical compound [O-2].[Sr+2] IATRAKWUXMZMIY-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910001316 Ag alloy Inorganic materials 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- 229910000906 Bronze Inorganic materials 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000003842 bromide salts Chemical class 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 150000003841 chloride salts Chemical class 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- BDAGIHXWWSANSR-NJFSPNSNSA-N hydroxyformaldehyde Chemical compound O[14CH]=O BDAGIHXWWSANSR-NJFSPNSNSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 150000004694 iodide salts Chemical class 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011533 mixed conductor Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 150000003891 oxalate salts Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- SWELZOZIOHGSPA-UHFFFAOYSA-N palladium silver Chemical compound [Pd].[Ag] SWELZOZIOHGSPA-UHFFFAOYSA-N 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000005546 reactive sputtering Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 229910000018 strontium carbonate Inorganic materials 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Fuel Cell (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
- Hydrogen, Water And Hydrids (AREA)
- Chemically Coating (AREA)
Description
本発明は、水素の分離能を有する固体電解質膜
およびその膜を用いた水素含有ガスからの水素の
分離方法に関するものである。
従来、無機質膜による水素の分離に関しては、
各種の金属合金膜、とりわけパラジウム−銀合金
膜が知られており、これは石油クラツキングによ
り製造した水素の分離・精製に利用されている。
このような合金膜の利用による水素の分離にお
いては、水素含有ガス中に含まれる他のガス、例
えば酸素、イオウ、ハロゲンなどの酸化性或いは
還元性ガスが高温時に存在する場合には、金属表
面がかようなガスの作用によつて変化し水素分解
能が長時間使用すると次第に劣化し、遂には機能
しなくなる。特に最近実用化が嘱望されている水
の熱化学的分解による水素の製造において、得ら
れた水素含有ガスからの水素の分離・精製に前述
した合金膜を高温において使用することは工業的
に困難である。
従つて選択的水素分解能が高く、かつ簡単な方
法により分離できる安定な分離膜が提供できれ
ば、その工業的価値は大きい。
而して、この種の分離膜として用いる物質に
は、次の条件が要求される。即ち(1)選択的水素透
過能の高いこと。(2)酸化性ガスなどによる劣化の
ないこと。(3)800℃以上の高温まで使用可能なこ
と。(4)簡単な方法にて分離できること等である。
本発明者らは、かかる諸特性を有する物質を探
求して来た結果、ストロンチウムおよびセリウム
を主成分とし他に或る特定の金属を含有する酸化
物であつてペロでスカイト型結晶を形成する酸化
物が水素ガスの分解能が優れ、前述した分離膜と
しての特性を有していることが判明し本発明に到
達した。
すなわち、本発明は(a)ストロンチウム、(b)セリ
ウムおよび(c)スカンジウム、イツトリウム、ネオ
ジウムおよび亜鉛からなる群から選ばれた少くと
も一種の金属の酸化物より形成されたペロブスカ
イト型金属酸化物より主として構成され、少くと
も水素の存在する雰囲気下において水素イオンお
よび電子導電性を有する固体電解質膜であり、ま
たかかる固体電解質膜を介して100〜1400℃の温
度で水素と他のガスとの混合ガスから水素を分離
する方法である。
かかる本発明における固体電解質膜は、前記(a)
成分(b)成分および(c)成分の金属の酸化物が互に固
溶体を形成しそれによつて水素イオンおよび電子
の導電性を有しているものと考えられる。
すなわち、かかる固溶体によつて、電子ホール
の生成によるP型電子導電性が出現し、水素原子
が該固溶体に水素イオンとして侵入するにあたつ
て、放出した電子は、この電子ホールによつて相
殺され、該固溶体中を水素イオンとなつて移動し
うると共に残存する電子ホールによつて電子も移
動しうるという、いわゆる混合導電体となるため
に、局部電池現象により水素が固体隔膜中を選択
透過しうるものと考えられる。
このような原理に基づく特定ガスの選択透過お
よび水素イオンの金属酸化物内の透過現象は、例
えばBi−Mo系の固体電解質膜およびLa−Y系の
固体電解質膜が知られているが、本発明による固
体電解質膜は、これら公知のものに比較して水素
透過性が10倍以上である。
本発明における固体電解質膜を形成する固体電
解質は、(a)ストロンチウム、(b)セリウム、および
(c)スカンジウム、イツトリウム、ネオジウムおよ
び亜鉛よりなる群から選ばれた少くとも一種の金
属の酸化物より形成されたペロブスカイト型酸化
物である。
該酸化物中に含まれる(a)ストロンチウム、(b)セ
リウムは、金属原子として、全金属原子当り夫々
30〜70mol%好ましくは40〜60mol%である。ま
た(c)スカンジウム、イツトリウム、ネオジウムお
よび亜鉛からなる群より選ばれた少くとも一種の
金属の含有量は、該酸化物における全金属原子当
り0.5〜25mol%、好ましくは1〜20mol%であ
る。
該酸化物は、種々の方法により調製することが
できる。その方法の1つとして(a)ストロンチウ
ム、(b)セリウムおよび(c)スカンジウム、イツトリ
ウム、ネオジウムおよび亜鉛からなる群より選ば
れた少くとも一種の金属のそれぞれの金属を含む
化合物、特に後述する焼成により、酸化物に転換
し得る化合物、例えば、酸化ストロンチウム、二
酸化セリウム、酸化スカンジウム、酸化イツトリ
ウム等の如き酸化物、あるいは好ましくは、硝酸
塩、炭酸塩、であるが他に硫酸塩、リン酸塩等の
無機酸塩、酢酸塩、シユウ酸塩等の有機酸塩、塩
化物、臭化物、ヨウ化物等のハロゲン化物、ある
いは水酸化物を所望の割合で混合し焼成する方法
がある。また上記記載のそれぞれの金属の塩或い
は金属アルコラートの混合水溶液を、例えばアン
モニア水等のアルカリ水溶液で、加水分解するな
どのいわゆる共沈殿法により調整した後焼成して
もよい。
さらに、それぞれの金属の混合物または合金を
酸化し、焼成する等の方法があげられる。
いずれの方法においても、本発明の固体電解質
膜を得る場合には、通常焼成温度は、酸化雰囲気
下で500〜1500℃、好ましくは600〜1450℃の範囲
の温度が適当である。
本発明における固体電解質中に、該固体電解質
の水素イオン−電子混合導電性を損なわない限り
において、(a)ストロンチウム、(b)セリウム、(c)ス
カンジウム、イツトリウム、ネオジウムおよび亜
鉛以外の金属等の不純物を含有していてもさしつ
かえない。
本発明における、固体電解質膜は、前記記載の
調製方法によつて得られた酸化物を成膜してもよ
く、あるいは、酸化物の調製と成膜を兼ねた方法
をとることもできる。このような成膜方法として
は、例えば、ペレツト、シート状等の固形物を切
断、研磨等の機械的加工により、成膜してもよ
く、粉末状のものを、加圧成形あるいは、ペース
トにして、多孔性支持体上に塗布し、焼結させて
もよい。
さらに、真空蒸着法、反応性スパツタリング
法、化学気相蒸発法(C.V.D法)、化学スプレー
法、合金メツキの酸化等の成膜方法があげられ
る。さらに成形の際に、必要に応じて、充てん
剤、補強材等を用いてもよく、また該固体電解質
膜を気体分離用膜として、用いる場合、単独で用
いてもよく、また必要に応じて、多孔性支持体を
用いた複合膜としても使用できる。
該多孔性支持体としては、ステンレス、ブロン
ズ等の多孔性金属板または焼結体並びにそれらの
複合体、多孔性シリカアルミナ、多孔性アルミ
ナ、多孔性マグネシア等の多孔性酸化物焼結体、
窒化ホウ素等の窒化物焼結体、炭化ケイ素等の炭
化物焼結体等があげられる。上記記載の成形方法
によつて得られる固体電解質膜の膜厚は、通常
10-3〜104μ、好ましくは10-3〜103μの範囲が適
当であり、該固体電解質膜を、水素分解用膜とし
て、用いる場合、分離した、水素が特に高純度で
あることを必要としない場合には、多少の通気孔
を有していても良い。本発明における、固体電解
質膜は、水素イオン導電性および電子導電性を有
することから、水素を含有する混合気体中の水素
を選択的に分離する気体分離用膜として使用でき
る。例えば、該固体電解質膜の両側に気密室を設
け、一方の室に水素ガスを含有する混合気体を供
給し、その水素分圧よりも他室の水素分圧が低く
なるように両室の条件を設定することにより高純
度の水素ガスを容易に得ることができる。該固体
電解質膜を水素分離用膜として使用する温度は通
常100〜1400℃好ましくは200〜1200℃、特に好ま
しくは400〜1000℃である。
かかる本発明の水素分離方法は、石油クラツキ
ング水素の精製工程のみならず、各種熱化学的水
分解により生成水素の精製・分離にも有効であ
る。しかも本発明の固体電解質膜は、安定性が良
好で、かつ高温における水素分解能が極めて高い
ことが認められた。
以下実施例をあげて本発明を記述するが、これ
らに限定されるものではない。尚実施例中“部”
とあるのは“重量部”を意味する。
実施例 1
炭酸ストロンチウム3.691部、二酸化セリウム
4.088部および酸化スカンジウム0.086部を混合粉
砕し、1430℃で5時間焼成して、得た直径13mm厚
さ0.1mmの薄片を隔膜とし、該隔膜を隔てて、両
側に気密室を設け、900℃において、一方の室に
水素−水蒸気混合ガスを導き、他室を10torrで吸
引することにより31m/hrの純水素ガスを得る
ことができた。
実施例 2〜4
実施例1において酸化スカンジウムの代わりに
表1の如き(c)化合物を所定量、用いて以下実施例
1と同様にして、隔膜を作成し、水素の透過量を
測定した結果を、表1に示す。
The present invention relates to a solid electrolyte membrane capable of separating hydrogen, and a method for separating hydrogen from a hydrogen-containing gas using the solid electrolyte membrane. Conventionally, regarding hydrogen separation using inorganic membranes,
Various metal alloy membranes are known, particularly palladium-silver alloy membranes, which are used for separation and purification of hydrogen produced by petroleum cracking. In hydrogen separation using such an alloy membrane, if other gases contained in the hydrogen-containing gas, such as oxidizing or reducing gases such as oxygen, sulfur, and halogens, are present at high temperatures, the metal surface The hydrogen decomposition ability changes due to the action of such gases, and when used for a long time, it gradually deteriorates and eventually ceases to function. In particular, in the production of hydrogen by thermochemical decomposition of water, which has recently been expected to be put to practical use, it is industrially difficult to use the alloy membrane described above to separate and purify hydrogen from the obtained hydrogen-containing gas at high temperatures. It is. Therefore, if a stable separation membrane that has a high selective hydrogen decomposition ability and can separate by a simple method could be provided, it would have great industrial value. Therefore, the following conditions are required for the material used as this type of separation membrane. That is, (1) high selective hydrogen permeability; (2) No deterioration due to oxidizing gas, etc. (3) Can be used at high temperatures of 800℃ or higher. (4) It can be separated by a simple method. As a result of our search for a substance with such properties, the present inventors discovered that Perot is an oxide containing strontium and cerium as main components and a certain other metal, and forms a skite-type crystal. It was found that oxides have excellent hydrogen gas decomposition ability and have the above-mentioned properties as a separation membrane, and the present invention was achieved. That is, the present invention is based on a perovskite metal oxide formed from an oxide of at least one metal selected from the group consisting of (a) strontium, (b) cerium, and (c) scandium, yttrium, neodymium, and zinc. It is a solid electrolyte membrane that has hydrogen ion and electron conductivity in an atmosphere where at least hydrogen is present, and that hydrogen and other gases are mixed at a temperature of 100 to 1400°C through such a solid electrolyte membrane. This is a method of separating hydrogen from gas. The solid electrolyte membrane of the present invention has the above-mentioned (a)
It is believed that the metal oxides of component (b) and component (c) form a solid solution with each other, thereby providing hydrogen ion and electron conductivity. In other words, in such a solid solution, P-type electronic conductivity appears due to the generation of electron holes, and when hydrogen atoms enter the solid solution as hydrogen ions, the emitted electrons are canceled out by the electron holes. Hydrogen selectively permeates through the solid diaphragm due to the local battery phenomenon, and becomes a so-called mixed conductor in which hydrogen ions can move in the solid solution and electrons can also move through the remaining electron holes. It is considered possible. The phenomenon of selective permeation of specific gases and permeation of hydrogen ions through metal oxides based on such principles is known, for example, in Bi-Mo solid electrolyte membranes and La-Y solid electrolyte membranes, but this is not the case in this study. The solid electrolyte membrane according to the invention has hydrogen permeability that is 10 times higher than that of these known membranes. The solid electrolyte forming the solid electrolyte membrane in the present invention includes (a) strontium, (b) cerium, and
(c) A perovskite-type oxide formed from an oxide of at least one metal selected from the group consisting of scandium, yttrium, neodymium, and zinc. (a) Strontium and (b) cerium contained in the oxide are each contained as metal atoms per total metal atom.
It is 30 to 70 mol%, preferably 40 to 60 mol%. The content of (c) at least one metal selected from the group consisting of scandium, yttrium, neodymium and zinc is 0.5 to 25 mol%, preferably 1 to 20 mol%, based on all metal atoms in the oxide. The oxide can be prepared by various methods. One of the methods is to prepare a compound containing each of (a) strontium, (b) cerium, and (c) at least one metal selected from the group consisting of scandium, yttrium, neodymium, and zinc, especially by firing as described below. Compounds that can be converted into oxides, such as strontium oxide, cerium dioxide, scandium oxide, yttrium oxide, etc., or preferably nitrates, carbonates, but also sulfates, phosphates, etc. There is a method of mixing inorganic acid salts, organic acid salts such as acetates and oxalates, halides such as chlorides, bromides, and iodides, or hydroxides in a desired ratio and firing the mixture. Alternatively, a mixed aqueous solution of each of the metal salts or metal alcoholates described above may be prepared by a so-called coprecipitation method, such as hydrolysis with an alkaline aqueous solution such as aqueous ammonia, and then calcined. Furthermore, methods such as oxidizing and firing a mixture or alloy of each metal can be mentioned. In either method, when obtaining the solid electrolyte membrane of the present invention, the firing temperature is usually in the range of 500 to 1500°C, preferably 600 to 1450°C in an oxidizing atmosphere. The solid electrolyte of the present invention may contain metals other than (a) strontium, (b) cerium, (c) scandium, yttrium, neodymium, and zinc, as long as they do not impair the hydrogen ion-electron mixed conductivity of the solid electrolyte. It is acceptable even if it contains impurities. In the present invention, the solid electrolyte membrane may be formed by forming an oxide obtained by the preparation method described above, or by a method that combines the preparation of the oxide and the formation of the film. As a method for forming such a film, for example, a solid material such as a pellet or sheet may be formed by mechanical processing such as cutting or polishing, or a powder may be formed by pressure molding or made into a paste. It may be coated on a porous support and sintered. Furthermore, film forming methods such as a vacuum evaporation method, a reactive sputtering method, a chemical vapor phase evaporation method (CVD method), a chemical spray method, and oxidation of alloy plating can be mentioned. Furthermore, during molding, a filler, a reinforcing material, etc. may be used as necessary, and when the solid electrolyte membrane is used as a gas separation membrane, it may be used alone, or as necessary. It can also be used as a composite membrane using a porous support. Examples of the porous support include porous metal plates or sintered bodies such as stainless steel and bronze, and composites thereof; porous oxide sintered bodies such as porous silica alumina, porous alumina, and porous magnesia;
Examples include sintered nitrides such as boron nitride, sintered carbides such as silicon carbide, and the like. The thickness of the solid electrolyte membrane obtained by the molding method described above is usually
A range of 10 -3 to 10 4 μ, preferably 10 -3 to 10 3 μ is appropriate, and when the solid electrolyte membrane is used as a membrane for hydrogen decomposition, the separated hydrogen must be of particularly high purity. If not required, some ventilation holes may be provided. Since the solid electrolyte membrane of the present invention has hydrogen ion conductivity and electronic conductivity, it can be used as a gas separation membrane that selectively separates hydrogen in a hydrogen-containing gas mixture. For example, airtight chambers are provided on both sides of the solid electrolyte membrane, a gas mixture containing hydrogen gas is supplied to one chamber, and the conditions in both chambers are set such that the hydrogen partial pressure in the other chamber is lower than the hydrogen partial pressure. High purity hydrogen gas can be easily obtained by setting . The temperature at which the solid electrolyte membrane is used as a hydrogen separation membrane is usually 100 to 1400°C, preferably 200 to 1200°C, particularly preferably 400 to 1000°C. The hydrogen separation method of the present invention is effective not only in the process of refining petroleum cracking hydrogen, but also in the purification and separation of hydrogen produced by various thermochemical water splitting processes. Moreover, the solid electrolyte membrane of the present invention was found to have good stability and extremely high hydrogen decomposition ability at high temperatures. The present invention will be described below with reference to Examples, but is not limited thereto. In addition, “part” in the examples
"parts by weight" means "parts by weight". Example 1 3.691 parts of strontium carbonate, cerium dioxide
4.088 parts of scandium oxide and 0.086 parts of scandium oxide were mixed and pulverized and fired at 1430°C for 5 hours.The obtained thin pieces with a diameter of 13 mm and a thickness of 0.1 mm were used as a diaphragm. By introducing a hydrogen-steam mixture gas into one chamber and suctioning the other chamber at 10 torr, it was possible to obtain pure hydrogen gas at a rate of 31 m/hr. Examples 2 to 4 A diaphragm was prepared in the same manner as in Example 1 using a predetermined amount of the compound (c) shown in Table 1 instead of scandium oxide in Example 1, and the amount of hydrogen permeation was measured. are shown in Table 1.
【表】
表中の実施例2および3においては二酸化セリ
ウムの使用量は3.873部であつた。[Table] In Examples 2 and 3 in the table, the amount of cerium dioxide used was 3.873 parts.
Claims (1)
ンジウム、イツトリウム、ネオジウムおよび亜鉛
からなる群から選ばれた少くとも一種の金属の酸
化物より形成されたペロブスカイト型金属酸化物
より主として構成され、少くとも水素の存在する
雰囲気下において水素イオンおよび電子導電性を
有する固体電解質膜。 2 (a)ストロンチウム、(b)セリウムおよび(c)スカ
ンジウム、イツトリウム、ネオジウムおよび亜鉛
からなる群から選ばれた少くとも一種の金属の酸
化物より形成されたペロブスカイト型金属酸化物
より主として構成され、少くとも水素の存在する
雰囲気下において水素イオンおよび電子導電性を
有する固体電解質膜を介して100〜1400℃の温度
で水素と他のガスとの混合物から水素を分離する
方法。[Claims] 1. A perovskite metal oxide formed from an oxide of at least one metal selected from the group consisting of (a) strontium, (b) cerium, and (c) scandium, yttrium, neodymium, and zinc. A solid electrolyte membrane that is mainly composed of solid materials and has hydrogen ion and electronic conductivity at least in an atmosphere where hydrogen is present. 2. Mainly composed of a perovskite metal oxide formed from an oxide of at least one metal selected from the group consisting of (a) strontium, (b) cerium, and (c) scandium, yttrium, neodymium, and zinc; A method for separating hydrogen from a mixture of hydrogen and other gases at a temperature of 100 to 1400°C via a solid electrolyte membrane having hydrogen ion and electronic conductivity in an atmosphere in which at least hydrogen is present.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11352679A JPS5641804A (en) | 1979-09-06 | 1979-09-06 | Solid electrolyte membrane and separation of hydrogen |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11352679A JPS5641804A (en) | 1979-09-06 | 1979-09-06 | Solid electrolyte membrane and separation of hydrogen |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5641804A JPS5641804A (en) | 1981-04-18 |
JPS6247054B2 true JPS6247054B2 (en) | 1987-10-06 |
Family
ID=14614564
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11352679A Granted JPS5641804A (en) | 1979-09-06 | 1979-09-06 | Solid electrolyte membrane and separation of hydrogen |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5641804A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59125055A (en) * | 1983-01-05 | 1984-07-19 | Toyo Soda Mfg Co Ltd | High temperature hydrogen sensor |
US6287432B1 (en) * | 1987-03-13 | 2001-09-11 | The Standard Oil Company | Solid multi-component membranes, electrochemical reactor components, electrochemical reactors and use of membranes, reactor components, and reactor for oxidation reactions |
-
1979
- 1979-09-06 JP JP11352679A patent/JPS5641804A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5641804A (en) | 1981-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU706663B2 (en) | Oxygen permeable mixed conductor membranes | |
US5160618A (en) | Method for manufacturing ultrathin inorganic membranes | |
US6592782B2 (en) | Materials and methods for the separation of oxygen from air | |
KR101178457B1 (en) | A BSCF-5582 membrane coated with LSTF-6437 for oxygen separation and the menufacturing method thereof | |
Wei et al. | Enhanced stability of Zr-doped Ba (CeTb) O 3− δ-Ni cermet membrane for hydrogen separation | |
WO2000059613A1 (en) | Catalytic membrane reactor materials for the separation of oxygen from air | |
JPS6146401B2 (en) | ||
US6146445A (en) | Stabilized perovskite for ceramic membranes | |
JPS6121717A (en) | Separation of oxygen | |
US9005486B2 (en) | Proton conducting ceramics in membrane separations | |
JPS6247054B2 (en) | ||
JP4074452B2 (en) | Porcelain composition, composite material, oxygen separator, and chemical reactor | |
JPS6247053B2 (en) | ||
JP2005281077A (en) | Ceramic composition, composite material, and chemical reaction apparatus | |
JP4855706B2 (en) | Hydrogen separator and hydrogen separator | |
Xing et al. | Thermochemically stable ceramic composite membranes based on Bi 2 O 3 for oxygen separation with high permeability | |
JP3806298B2 (en) | Composite material, oxygen separator and chemical reactor | |
JP4340269B2 (en) | Porcelain composition, oxygen separator and chemical reactor | |
JPS5864258A (en) | Metal oxide composite body and separation of oxygen | |
JPS6353135B2 (en) | ||
JPH0137347B2 (en) | ||
JP2006082040A (en) | Oxide ion conductor and oxygen separation membrane element | |
JP4855013B2 (en) | Oxygen separation membrane and hydrocarbon oxidation reactor | |
JP2002097083A (en) | Porous material and composite material | |
JPH0146446B2 (en) |