JPS6247053B2 - - Google Patents
Info
- Publication number
- JPS6247053B2 JPS6247053B2 JP54099405A JP9940579A JPS6247053B2 JP S6247053 B2 JPS6247053 B2 JP S6247053B2 JP 54099405 A JP54099405 A JP 54099405A JP 9940579 A JP9940579 A JP 9940579A JP S6247053 B2 JPS6247053 B2 JP S6247053B2
- Authority
- JP
- Japan
- Prior art keywords
- oxygen
- solid electrolyte
- membrane
- electrolyte membrane
- separation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000012528 membrane Substances 0.000 claims description 54
- 239000001301 oxygen Substances 0.000 claims description 51
- 229910052760 oxygen Inorganic materials 0.000 claims description 51
- 239000007784 solid electrolyte Substances 0.000 claims description 41
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 38
- 238000000034 method Methods 0.000 claims description 25
- 239000007789 gas Substances 0.000 claims description 18
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 16
- 229910052797 bismuth Inorganic materials 0.000 claims description 10
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 10
- 229910052712 strontium Inorganic materials 0.000 claims description 10
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 claims description 10
- 229910052742 iron Inorganic materials 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 5
- 230000035699 permeability Effects 0.000 claims description 5
- 238000000926 separation method Methods 0.000 description 26
- -1 oxygen ion Chemical class 0.000 description 16
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 8
- 239000002131 composite material Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 229920000620 organic polymer Polymers 0.000 description 5
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 4
- 229910001882 dioxygen Inorganic materials 0.000 description 4
- 238000010304 firing Methods 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 239000002918 waste heat Substances 0.000 description 3
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 229910000416 bismuth oxide Inorganic materials 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- TYIXMATWDRGMPF-UHFFFAOYSA-N dibismuth;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Bi+3].[Bi+3] TYIXMATWDRGMPF-UHFFFAOYSA-N 0.000 description 2
- 238000003411 electrode reaction Methods 0.000 description 2
- 235000013980 iron oxide Nutrition 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000002336 sorption--desorption measurement Methods 0.000 description 2
- IATRAKWUXMZMIY-UHFFFAOYSA-N strontium oxide Chemical compound [O-2].[Sr+2] IATRAKWUXMZMIY-UHFFFAOYSA-N 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- 229910000906 Bronze Inorganic materials 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 150000003842 bromide salts Chemical class 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 150000003841 chloride salts Chemical class 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 238000010612 desalination reaction Methods 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000005518 electrochemistry Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 150000004694 iodide salts Chemical class 0.000 description 1
- VBMVTYDPPZVILR-UHFFFAOYSA-N iron(2+);oxygen(2-) Chemical class [O-2].[Fe+2] VBMVTYDPPZVILR-UHFFFAOYSA-N 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 150000003891 oxalate salts Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- NDLPOXTZKUMGOV-UHFFFAOYSA-N oxo(oxoferriooxy)iron hydrate Chemical compound O.O=[Fe]O[Fe]=O NDLPOXTZKUMGOV-UHFFFAOYSA-N 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000005546 reactive sputtering Methods 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- RXSHXLOMRZJCLB-UHFFFAOYSA-L strontium;diacetate Chemical compound [Sr+2].CC([O-])=O.CC([O-])=O RXSHXLOMRZJCLB-UHFFFAOYSA-L 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Compounds Of Iron (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Oxygen, Ozone, And Oxides In General (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Description
【発明の詳細な説明】
本発明は、酸素透過性を有する固体電解質膜に
関する。更に詳しくは、ストロンチウム、ビスマ
スおよび鉄の酸化物よりなり、イオン性酸素の透
過性を有し、且つ電子導電性を有する固体電解質
膜及び該固体電解質膜を用いた酸素を含む混合気
体からの酸素の分離方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a solid electrolyte membrane having oxygen permeability. More specifically, a solid electrolyte membrane made of oxides of strontium, bismuth, and iron and having ionic oxygen permeability and electronic conductivity, and a solid electrolyte membrane that uses the solid electrolyte membrane to generate oxygen from a mixed gas containing oxygen. Regarding the separation method.
近時、膜による分離技術の進歩発展には著しい
ものがあり、そのうちのいくつかは、工業的規模
で実用化されている。しかし実用化されているの
は海水の淡水化、工場廃液の処理、食品の濃縮等
の如く液一液分離もしくは、液一固分離であり、
気一気分離即ち2種以上の混合ガスの分離につい
ては、ほとんどない。 In recent years, there have been remarkable advances in membrane separation technology, some of which have been put into practical use on an industrial scale. However, what has been put into practical use is liquid-liquid separation or liquid-solid separation, such as in desalination of seawater, treatment of factory waste liquid, concentration of food, etc.
Blanket separation, that is, separation of two or more types of mixed gases, is almost non-existent.
ガスの膜分離が実用化されない理由としては、
選択透過性が小さいこと、即ち特定の気体を選択
的に通し、他の気体をほとんど通さないという膜
がないため、高純度の気体を得るためには、膜分
離を何度か繰り返す多段方式を採用する必要があ
り、そのために装置が大きくなりすぎることと、
透過量が小さいため、大量のガスを生産できない
ことが主としてあげられる。 The reason why gas membrane separation is not put into practical use is that
Since there are no membranes that have low selective permselectivity, that is, they selectively allow certain gases to pass through while virtually blocking other gases, in order to obtain high-purity gases, a multi-stage membrane separation method is required in which membrane separation is repeated several times. , which would make the equipment too large;
The main reason is that a large amount of gas cannot be produced because the amount of permeation is small.
従来、気体分離用膜として、知られているもの
は主として、有機高分子膜であり、例えば、カル
ガノポリシロキサン−ポリカーボネート共重合体
膜を用い、空気中の酸素を分離する方法がある。
しかし、かような有機高分子膜を用いて空気から
分離できる酸素濃度は30〜40%程度で選択性に乏
しい。さらにかような気体分離に用いる有機高分
子膜は、耐熱性が悪いために、例えば、酸素の場
合、工業的に廃熱を利用した高炉送風用、燃焼補
助用分離膜として、用いるには不適当である。 Conventionally, what is known as a gas separation membrane is mainly an organic polymer membrane. For example, there is a method of separating oxygen in the air using a carganopolysiloxane-polycarbonate copolymer membrane.
However, the oxygen concentration that can be separated from air using such an organic polymer membrane is about 30 to 40%, which is poor selectivity. Furthermore, organic polymer membranes used for such gas separation have poor heat resistance, so in the case of oxygen, for example, they are not suitable for industrial use as separation membranes for blowing blast furnace air or combustion auxiliary membranes using waste heat. Appropriate.
有機高分子膜による分離の他に、酸素富化方法
として米国特許第3310381号明細書記載のBaO或
いは西ドイツ特許公開第2450605号明細書記載の
Ce−Pr酸化物などの金属酸化物またはモレキユ
ラーシーブを用いる吸脱着法が知られているが、
このような吸脱着法では、酸素の吸着及び脱離の
工程を必要とし設備が複雑となり、経済的に不利
を免れない。 In addition to separation using organic polymer membranes, oxygen enrichment methods include BaO described in U.S. Pat.
Adsorption/desorption methods using metal oxides such as Ce-Pr oxide or molecular sieves are known, but
Such an adsorption/desorption method requires steps for adsorption and desorption of oxygen, and requires complicated equipment, which is economically disadvantageous.
また米国特許第3400054号明細書記載の如く式
(ZrO2)1-x(CaO)x〔X=0.05〜0.3〕で示される
ような固体電解質を用いて酸素分離を行う方法が
知られている。 Furthermore, as described in U.S. Pat. No. 3,400,054, a method of separating oxygen using a solid electrolyte represented by the formula (ZrO 2 ) 1-x (CaO) x [X=0.05 to 0.3] is known. .
この分離方法は、固体電解質の酸素イオン導電
性を利用し、混合気体中の酸素を電気化学的に透
過させるという原理に基づくものである。すなわ
ち、この方法は固体電解質の片面でイオン化させ
た酸素イオンを固体電解質中を通して泳動させ、
他面で放電させて、酸素ガスを得る方法である。
このために必要な酸素のイオン化および、放電は
固体電解質両面に取付けた外部回路を通して、電
気的に短絡した電極で行なわせている。 This separation method is based on the principle of electrochemically permeating oxygen in a gas mixture by utilizing the oxygen ion conductivity of a solid electrolyte. In other words, this method allows oxygen ions ionized on one side of a solid electrolyte to migrate through the solid electrolyte,
This is a method to obtain oxygen gas by discharging on the other side.
The ionization and discharge of oxygen necessary for this purpose are carried out by electrically shorted electrodes through an external circuit attached to both sides of the solid electrolyte.
かような方法では、固体電解質、電極材料、酸
素ガスの3相が相接する点でのみ、電極反応が起
こらず有効面積が小さく、酸素ガス、透過量が少
なくなり、かつ電極と電解質の固体接触が経時的
に劣化し安定性が悪いという欠点を有し、しかも
装置が複雑になり経済的に不利である。上記特許
記載の酸素分離方法において、電極並びに外部回
路の取付けを必要とする理由は該分離方法におい
て、用いられる固体電解質の電子導電性が、酸素
イオン導電性に比べ非常に小さいためである。 In such a method, the electrode reaction does not occur only at the point where the three phases of solid electrolyte, electrode material, and oxygen gas meet, and the effective area is small, and the amount of oxygen gas and permeation is small. This method has disadvantages in that the contact deteriorates over time and is unstable, and the device is complicated, which is economically disadvantageous. The reason why the oxygen separation method described in the above-mentioned patent requires the attachment of electrodes and external circuits is that the electronic conductivity of the solid electrolyte used in the separation method is very small compared to the oxygen ion conductivity.
そこで本発明者らは、電極並びに外部回路の取
付を必要とせず、上記電極反応が充分に起こり得
るに必要な電子導電性をも有し、かつ酸素イオン
導電性を有する、固体電解質であり、高純度の酸
素を分離し、かつ廃熱等を利用し、高温状態で工
業的に使用し得る分離膜を開発すべく、鋭意研究
した結果、本発明に到達した。 Therefore, the present inventors have developed a solid electrolyte that does not require the attachment of electrodes or external circuits, has the electronic conductivity necessary for the electrode reaction to occur sufficiently, and has oxygen ion conductivity. The present invention was achieved as a result of intensive research aimed at developing a separation membrane that can separate high-purity oxygen, utilize waste heat, etc., and can be used industrially at high temperatures.
すなわち本発明は、ストロンチウム、ビスマス
および鉄の酸化物よりなるイオン性酸素の透過性
を有し、且つ電子導電性を有する固体電解質膜及
び該固体電解質膜を用いる酸素を含む混合気体か
らの酸素分離方法に関するものである。 That is, the present invention provides a solid electrolyte membrane made of oxides of strontium, bismuth, and iron that is permeable to ionic oxygen and has electronic conductivity, and a method for separating oxygen from a mixed gas containing oxygen using the solid electrolyte membrane. It is about the method.
本発明における固体電解質膜を形成する固体電
解質は、ストロンチウム、ビスマスおよび鉄の酸
化物よりなり、酸化物の形態としては、複合形で
あるのが望ましく、組成的には大略一般式
Sr1-xBix FeO3で表わされるものが適当である。
該中この酸化物はペロブスカイト型の複合酸化物
の形態のものを含んでいるのがよい。 The solid electrolyte forming the solid electrolyte membrane in the present invention is composed of oxides of strontium, bismuth, and iron, and the form of the oxide is preferably a composite form, and the composition is generally expressed by the general formula
Sr 1-x Bix FeO 3 is suitable.
The oxide preferably includes a perovskite-type complex oxide.
上記一般式において、Xは0.1〜0.9の範囲の値
であり、好ましくは0.1〜0.7、特に好ましくは0.1
〜0.6である。Xの値が、上記範囲外にある場合
は、該酸化物の酸素イオン導電性が小さくなる傾
向があり、また焼結性が悪くなる。 In the above general formula, X is a value in the range of 0.1 to 0.9, preferably 0.1 to 0.7, particularly preferably 0.1
~0.6. If the value of
該酸化物は通常の方法により調製することがで
きる。その方法の1つとして、ストロンチウム、
ビスマス、鉄の各々の金属原子を含む化合物、殊
に後述する焼成により酸化物に転換し得る化合
物、例えば、酸化ストロンチウム、酸化ビスマ
ス、酸化鉄の如き酸化物、あるいは、好ましくは
硝酸塩、炭酸塩、であるが他に硫酸塩、リン酸塩
等の無機酸塩、酢酸塩、シユウ酸塩等の有機酸
塩、塩化物、臭化物、ヨウ化物等のハロゲン化
物、あるいは水酸化物、オキシハロゲン化物を所
望の割合で混合し、焼成する方法がある。 The oxide can be prepared by conventional methods. One of the methods is strontium,
Compounds containing metal atoms of bismuth and iron, especially compounds that can be converted into oxides by calcination as described below, such as oxides such as strontium oxide, bismuth oxide, and iron oxide, or preferably nitrates, carbonates, However, in addition, inorganic acid salts such as sulfates and phosphates, organic acid salts such as acetates and oxalates, halides such as chlorides, bromides, and iodides, or hydroxides and oxyhalides. There is a method of mixing in a desired ratio and firing.
また、上記記載の、それぞれの金属の塩の混合
水溶液を、アンモニア水等のアルカリ水溶液で、
加水分解する、いわゆる共沈殿法により調製した
後焼成してもよい。さらに、それぞれの金属の混
合物または合金を酸化し、焼成する等の方法があ
げられる。 In addition, a mixed aqueous solution of each of the metal salts described above is mixed with an alkaline aqueous solution such as aqueous ammonia,
It may be prepared by hydrolysis, a so-called co-precipitation method, and then calcined. Furthermore, methods such as oxidizing and firing a mixture or alloy of each metal can be mentioned.
いずれの方法においても、本発明の固体電解質
膜を得る場合には、通常焼成温度は、酸化雰囲下
で500〜1500℃好ましくは500〜1300℃の範囲が適
当である。 In either method, when obtaining the solid electrolyte membrane of the present invention, the firing temperature is usually in the range of 500 to 1,500°C, preferably 500 to 1,300°C in an oxidizing atmosphere.
本発明記載のストロンチウム、ビスマス及び鉄
の酸化物は、イオン性酸素の透過性を有し、かつ
電子導電性を有する、いわゆる電子−酸素イオン
混合導電性の固体電解質である。 The strontium, bismuth, and iron oxides described in the present invention are solid electrolytes having ionic oxygen permeability and electronic conductivity, that is, so-called electron-oxygen ion mixed conductivity.
イオン性酸素の透過性とは、イオン性酸素が固
体電解質膜の一方の面から他方の面へ移動し得る
作用であり通常酸素イオン導電率、表わされ、電
子導電性は、電子導電率で表わすことができる。
これら導電率は、通常の方法
例えば電気化学39 665(1971)記載の交流ブリ
ツジ法、四端子法等によつて測定される。また酸
素イオン導電率と電子導電率の比は同文献記載の
酸素イオン輸率の測定等により求めることができ
る。 Ionic oxygen permeability is the ability of ionic oxygen to move from one surface to the other of a solid electrolyte membrane, and is usually expressed as oxygen ionic conductivity, while electronic conductivity is expressed as electronic conductivity. can be expressed.
These conductivities are measured by conventional methods such as the AC bridge method and the four-terminal method described in Electrochemistry 39 665 (1971). Further, the ratio between oxygen ion conductivity and electronic conductivity can be determined by measuring the oxygen ion transfer number described in the same document.
本発明におけるストロンチウム、ビスマス、鉄
の酸化物よりなる固体電解質の酸素イオン導電率
は、ストロンチウムとビスマスの混合比により異
なるが通常400〜1200℃の温度で1×10-4〜5×
10-1Ω-1cm-1、電子導電率は0.5〜5Ω-1cm-1であ
る。 The oxygen ion conductivity of the solid electrolyte made of oxides of strontium, bismuth, and iron in the present invention varies depending on the mixing ratio of strontium and bismuth, but is usually 1×10 -4 to 5× at a temperature of 400 to 1200°C.
10 −1 Ω −1 cm −1 , and the electronic conductivity is 0.5 to 5 Ω −1 cm −1 .
本発明において、固体電解質膜を酸素分離用と
して用いる場合には、電子導電率の酸素イオン導
電率に対する割合は1以上であることが好まし
い。 In the present invention, when the solid electrolyte membrane is used for oxygen separation, the ratio of electronic conductivity to oxygen ion conductivity is preferably 1 or more.
尚、本発明における固体電解質中に、該固体電
解質の電子−イオン混合導電性を損なわない限り
においてストロンチウム、ビスマス、鉄以外の金
属等に不純物を含有していてもさしつかえない。 The solid electrolyte of the present invention may contain impurities such as strontium, bismuth, metals other than iron, etc., as long as they do not impair the electron-ion mixed conductivity of the solid electrolyte.
本発明における、固体電解質膜は、前記記載の
調製方法によつて得られた酸化物を成膜してもよ
く、あるいは酸化物の調製と、成膜を兼ねた方法
をとることもできる。これらの成膜方法として
は、例えば、ペレツト、シート状等の固形物を切
断、研磨等の機械的加工により、成膜してもよ
く、粉末状のものを、加圧成形あるいは、ペース
トにして、多孔性支持体上に塗布し、焼結させて
もよい。 In the present invention, the solid electrolyte membrane may be formed by forming an oxide obtained by the above-described preparation method, or by a method that combines oxide preparation and film formation. These films may be formed by mechanical processing such as cutting or polishing a solid material such as a pellet or sheet, or by pressure molding a powdery material, or by forming a powder into a paste. , may be coated onto a porous support and sintered.
さらに、真空蒸着法、反応性スパツタリング
法、化学気相蒸着法(C.V.D法)化学スプレー
法、合金メツキの酸化等の成膜方法があげられ
る。 Furthermore, film forming methods such as a vacuum evaporation method, a reactive sputtering method, a chemical vapor deposition method (CVD method), a chemical spray method, and oxidation of alloy plating can be mentioned.
尚成形の際に、必要に応じて充てん剤、補強材
等を用いてもよく、また該固体電解質膜を、気体
分離用膜として、用いる場合、単独で用いてもよ
く、また必要に応じて、多孔性支持体を用いた複
合膜としても使用できる。 In addition, during molding, fillers, reinforcing materials, etc. may be used as necessary, and when the solid electrolyte membrane is used as a gas separation membrane, it may be used alone, or as necessary. It can also be used as a composite membrane using a porous support.
該多孔性支持体としては、ステンレス、ブロン
ズ等の多孔性金属板または焼結体並びにそれらの
複合体、多孔性シリカアルミナ、多孔性アルミ
ナ、多孔性マグネシア等の多孔性酸化物焼結体、
窒化ホウ素等の窒化物焼結体、炭化ケイ素等の炭
化物焼結体等があげられる。 Examples of the porous support include porous metal plates or sintered bodies such as stainless steel and bronze, and composites thereof; porous oxide sintered bodies such as porous silica alumina, porous alumina, and porous magnesia;
Examples include sintered nitrides such as boron nitride, sintered carbides such as silicon carbide, and the like.
上記記載の成形方法によつて得られる固体電解
質膜の膜厚は、通常10-3〜104μであり、該固体
電解質膜を、酸素分離用膜として用いる場合、分
離した酸素が特に高純度であることを必要としな
い場合は、多少の通気孔を有していても良い。 The thickness of the solid electrolyte membrane obtained by the above-described molding method is usually 10 -3 to 10 4 μm, and when the solid electrolyte membrane is used as an oxygen separation membrane, the separated oxygen has a particularly high purity. If it is not necessary, it may have some ventilation holes.
本発明における、固体電解質膜は、酸素イオン
導電性及び電子導電性を有することから酸素を含
有する混合気体中の酸素を選択的に分離する気体
分離用膜として使用できる。例えば、該固体電解
質膜の両側に気密室を設け、一方の室を大気に曝
露し、他方の室を減圧状態にするか、あるいはま
た、一方の室を加圧して、他方の室を大気に曝露
すると、両室の酸素分圧差に応じて酸素のみが電
気化学的に選択透過して、低圧側に高純度の酸素
を得ることができる。該固体電解質膜を酸素分離
膜として使用する温度は通常400〜1200℃、好ま
しくは500〜1000℃である。 Since the solid electrolyte membrane of the present invention has oxygen ion conductivity and electronic conductivity, it can be used as a gas separation membrane that selectively separates oxygen in a mixed gas containing oxygen. For example, airtight chambers are provided on both sides of the solid electrolyte membrane, and one chamber is exposed to the atmosphere and the other chamber is kept under reduced pressure, or alternatively, one chamber is pressurized and the other chamber is exposed to the atmosphere. When exposed, only oxygen selectively permeates electrochemically depending on the oxygen partial pressure difference between the two chambers, and highly purified oxygen can be obtained on the low pressure side. The temperature at which the solid electrolyte membrane is used as an oxygen separation membrane is usually 400 to 1200°C, preferably 500 to 1000°C.
また、該固体電解質膜の形態としては、平膜、
管状膜等用途に応じて種々の形態を取り得る。さ
らに酸素分離用膜として用いる場合の膜厚は、通
常10-3〜104μであり、好ましくは10-2〜103μで
ある。従来知られている、固体電解質は主とし
て、酸素イオン導電性のものであるために、気体
分離に用いる場合には固体電解質の両側に、電極
並びに外部回路を取り付けて電気的に短絡するな
どして、電子導電性を付与する必要があるが、本
発明による固体電解質膜は、電子−酸素イオン混
合導電性を有することから、電極や外部回路を特
に必要とせずそのまゝで酸素分離用膜として使用
できる。さらに従来の有機高分子膜に比べて、高
純度の酸素が得られ、かつ高温状態で使用するこ
とから、廃熱を利用して、高炉用、燃焼補助用と
して、好適に使用できる。以上の如く、本発明の
固体電解質膜は気体分離用膜として、非常に有用
なものである。以下実施例をあげて本発明を記述
することがこれらに限定されるものではない。な
お実施例中“部”とあるのは“重量部”を意味す
る。 In addition, the solid electrolyte membrane may have a flat membrane,
It can take various forms depending on the purpose, such as a tubular membrane. Furthermore, the membrane thickness when used as an oxygen separation membrane is usually 10 -3 to 10 4 μ, preferably 10 −2 to 10 3 μ. Conventionally known solid electrolytes are mainly conductive to oxygen ions, so when used for gas separation, electrodes and external circuits are attached to both sides of the solid electrolyte to electrically short it. However, since the solid electrolyte membrane according to the present invention has a mixed conductivity of electrons and oxygen ions, it can be used as an oxygen separation membrane without any particular need for electrodes or external circuits. Can be used. Furthermore, compared to conventional organic polymer membranes, since highly purified oxygen can be obtained and it is used at high temperatures, it can be suitably used for blast furnaces and combustion aids by utilizing waste heat. As described above, the solid electrolyte membrane of the present invention is extremely useful as a gas separation membrane. The present invention will be described below with reference to Examples, but the present invention is not limited thereto. In the examples, "parts" means "parts by weight."
実施例 1
酸化ビスマス2.33部、酢酸ストロンチウム1/2
水和物2.14部、酸化第2鉄1.60部をメノウ乳鉢に
て良く混合し、該混合物を、るつぼに入れてガス
バーナーにて加熱分解した後、1000℃にて10時間
焼成した。得られた焼結体をさらに、粉砕、混合
し、1150℃で10時間焼成して、式Sr0.5 Bi0.5
FeO3なる固体酸化物を得た、該固体酸化物を、
スライサーにより、直径20mm、厚さ0.2mmに成形
した。該固体酸化物は、800℃において酸素イオ
ン導電率2×10-2Ω-1cm-1、電子導電率2.3Ω-1cm
-1を有する固体電解質であつた。Example 1 2.33 parts of bismuth oxide, 1/2 strontium acetate
2.14 parts of hydrate and 1.60 parts of ferric oxide were mixed well in an agate mortar, and the mixture was placed in a crucible and thermally decomposed with a gas burner, followed by firing at 1000°C for 10 hours. The obtained sintered body was further crushed, mixed, and fired at 1150℃ for 10 hours to obtain the formula Sr0.5 Bi0.5.
A solid oxide called FeO 3 was obtained, and the solid oxide was
Using a slicer, it was molded to a diameter of 20 mm and a thickness of 0.2 mm. The solid oxide has an oxygen ion conductivity of 2×10 -2 Ω -1 cm -1 and an electronic conductivity of 2.3 Ω -1 cm at 800°C.
It was a solid electrolyte with -1 .
実施例 2
実施例1で調製した固体電解質膜を、多孔性支
授体を用いた複合膜として、用い該複合膜の両側
に気密室を設け、800℃の温度に該膜を加熱し、
一方の室を大気に曝露し、他方の室を10cmHgの
減圧状態にして、吸引した結果固体電解質膜を通
して、低圧側に酸素ガスが0.7c.c./minの割合で
得られた。Example 2 The solid electrolyte membrane prepared in Example 1 was used as a composite membrane using a porous support, airtight chambers were provided on both sides of the composite membrane, and the membrane was heated to a temperature of 800 ° C.
One chamber was exposed to the atmosphere, the other chamber was reduced to a pressure of 10 cmHg, and as a result of suction, oxygen gas was obtained at a rate of 0.7 cc/min on the low pressure side through the solid electrolyte membrane.
Claims (1)
よりなるイオン性酸素の透過性を有し且つ電子導
電性を有する固体電解質膜。 2 該酸化物が式Srx Bi1-xFeO3(xは0.1〜
0.9)で表わされる特許請求の範囲第1項記載の
固体電解質膜。 3 ストロンチウム、ビスマスおよび鉄の酸化物
よりなるイオン性酸素の透過性を有し、且つ電子
導電性を有する固体電解質膜を介して400〜1200
℃の温度で酸素と他のガスとの混合物から酸素を
分離することを特徴とする酸素の分離方法。[Scope of Claims] 1. A solid electrolyte membrane made of oxides of strontium, bismuth, and iron and having ionic oxygen permeability and electronic conductivity. 2 The oxide has the formula Srx Bi 1-x FeO 3 (x is 0.1 to
0.9) The solid electrolyte membrane according to claim 1. 3 Through a solid electrolyte membrane made of oxides of strontium, bismuth, and iron that is permeable to ionic oxygen and has electronic conductivity,
A method for separating oxygen, characterized in that oxygen is separated from a mixture of oxygen and other gases at a temperature of °C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9940579A JPS5624020A (en) | 1979-08-06 | 1979-08-06 | Oxygen separating membrane and method of oxygen separation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9940579A JPS5624020A (en) | 1979-08-06 | 1979-08-06 | Oxygen separating membrane and method of oxygen separation |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5624020A JPS5624020A (en) | 1981-03-07 |
JPS6247053B2 true JPS6247053B2 (en) | 1987-10-06 |
Family
ID=14246572
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9940579A Granted JPS5624020A (en) | 1979-08-06 | 1979-08-06 | Oxygen separating membrane and method of oxygen separation |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5624020A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1992005862A1 (en) * | 1990-10-09 | 1992-04-16 | The Standard Oil Company | Process for separating oxygen from an oxygen-containing gas by using a bi-containing mixed metal oxide membrane |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4636671A (en) * | 1983-12-23 | 1987-01-13 | Nippondenso Co., Ltd. | Magneto generator for internal combustion engine |
CA2017243C (en) * | 1989-05-25 | 2003-09-30 | Terry J. Mazanec | Novel solid multi-component membranes, electrochemical reactor and use of membranes and reactor for oxidation reactions |
US5118395A (en) * | 1990-05-24 | 1992-06-02 | Air Products And Chemicals, Inc. | Oxygen recovery from turbine exhaust using solid electrolyte membrane |
FR2698016B1 (en) * | 1992-11-13 | 1995-01-06 | Air Liquide | Process and composition for the separation of oxygen from a gas mixture. |
-
1979
- 1979-08-06 JP JP9940579A patent/JPS5624020A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1992005862A1 (en) * | 1990-10-09 | 1992-04-16 | The Standard Oil Company | Process for separating oxygen from an oxygen-containing gas by using a bi-containing mixed metal oxide membrane |
Also Published As
Publication number | Publication date |
---|---|
JPS5624020A (en) | 1981-03-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0705790B1 (en) | Oxygen permeable mixed conductor membranes | |
JPS6146401B2 (en) | ||
GB2082156A (en) | Solid electrolyte | |
US20060141346A1 (en) | Solid electrolyte thermoelectrochemical system | |
JPH06219861A (en) | Mixed conductive body composite permeable membrane for separation of oxygen and method for separation of oxygen by using this | |
JPH07504354A (en) | Compositions, methods, and apparatus for separating oxygen from gas mixtures | |
JP2008520426A5 (en) | ||
JPH0340904A (en) | Method and apparatus for obtaining pure oxygen | |
JP2533832B2 (en) | Method for recovering oxygen from oxygen-containing mixed gas | |
EP1183092A1 (en) | Catalytic membrane reactor materials for the separation of oxygen from air | |
JP2000233120A (en) | Composite conductive cubic perovskite for ceramic ion transfer membrane | |
JPS6121717A (en) | Separation of oxygen | |
US6146445A (en) | Stabilized perovskite for ceramic membranes | |
JP2001093325A (en) | LaGaO3 BASED ELECTRON-OXYGEN ION MIXTURE CONDUCTOR AND OXYGEN TRANSMISSIVE FILM USING IT | |
JPS6247053B2 (en) | ||
JP2003210952A (en) | Oxygen separator | |
JPS6353135B2 (en) | ||
JPH0137347B2 (en) | ||
JPS5864258A (en) | Metal oxide composite body and separation of oxygen | |
JPH0146446B2 (en) | ||
JP4074452B2 (en) | Porcelain composition, composite material, oxygen separator, and chemical reactor | |
JPS6353136B2 (en) | ||
JP4320531B2 (en) | Mixed conductive composite oxide for oxygen separation and method for producing the same | |
JPH0134947B2 (en) | ||
Xing et al. | Thermochemically stable ceramic composite membranes based on Bi 2 O 3 for oxygen separation with high permeability |