WO2018061421A1 - 組成物及び発光素子 - Google Patents

組成物及び発光素子 Download PDF

Info

Publication number
WO2018061421A1
WO2018061421A1 PCT/JP2017/026225 JP2017026225W WO2018061421A1 WO 2018061421 A1 WO2018061421 A1 WO 2018061421A1 JP 2017026225 W JP2017026225 W JP 2017026225W WO 2018061421 A1 WO2018061421 A1 WO 2018061421A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
ring
formula
atom
substituent
Prior art date
Application number
PCT/JP2017/026225
Other languages
English (en)
French (fr)
Inventor
顕 榊原
林 直樹
裕之 早坂
バイダス サブキナス
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to JP2017548235A priority Critical patent/JPWO2018061421A1/ja
Publication of WO2018061421A1 publication Critical patent/WO2018061421A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present invention relates to a composition and a light-emitting element.
  • Light emitting elements such as organic electroluminescence elements can be suitably used for display and lighting applications, and research and development are actively conducted.
  • the light emitting element has an organic layer such as a light emitting layer.
  • a material for the light emitting layer for example, a composition containing an iridium complex (M0) represented by the following formula and a compound (H0) represented by the following formula is known (Patent Document 1).
  • an object of this invention is to provide a composition useful for manufacture of the light emitting element by which initial stage deterioration was fully suppressed.
  • the present invention provides the following [1] to [8].
  • a composition comprising a metal complex represented by formula (1) and a compound represented by formula (H), wherein the amount of chlorine atoms contained as impurities in the composition is The composition which is 12 mass ppm or less with respect to the solid content whole quantity contained in a composition.
  • M represents a ruthenium atom, a rhodium atom, a palladium atom, an iridium atom or a platinum atom.
  • n 1 represents an integer of 1 or more
  • n 2 represents an integer of 0 or more
  • n 1 + n 2 is 2 or 3.
  • E 1 and E 2 each independently represent a carbon atom or a nitrogen atom. However, at least one of E 1 and E 2 is a carbon atom. When a plurality of E 1 and E 2 are present, they may be the same or different.
  • Ring L 1 represents an aromatic heterocyclic ring, and this ring may have a substituent. When a plurality of such substituents are present, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which each is bonded.
  • the ring L 1 represents an aromatic hydrocarbon ring or an aromatic heterocyclic ring, and these rings may have a substituent. When a plurality of such substituents are present, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which each is bonded. When a plurality of rings L 2 are present, they may be the same or different.
  • the substituent that the ring L 1 may have and the substituent that the ring L 2 may have may be bonded to each other to form a ring together with the atoms to which they are bonded.
  • a 1 -G 1 -A 2 represents an anionic bidentate ligand.
  • a 1 and A 2 each independently represents a carbon atom, an oxygen atom or a nitrogen atom, and these atoms may be atoms constituting a ring.
  • G 1 represents a single bond or an atomic group constituting a bidentate ligand together with A 1 and A 2 .
  • a 1 -G 1 -A 2 When a plurality of A 1 -G 1 -A 2 are present, they may be the same or different.
  • n H1 represents an integer of 0 or more and 5 or less. When a plurality of n H1 are present, they may be the same or different.
  • n H2 represents an integer of 1 to 10.
  • Ar H1 represents a group represented by the formula (H1-1). When a plurality of Ar H1 are present, they may be the same or different.
  • L H1 represents an alkylene group, a cycloalkylene group, an arylene group, a divalent heterocyclic group, a group represented by —NR H1 ′ —, an oxygen atom or a sulfur atom, and these groups have a substituent.
  • R H1 ′ represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • Ar H2 represents an aromatic hydrocarbon group or an aromatic heterocyclic group, and these groups optionally have a substituent.
  • Ring R H1 and Ring R H2 each independently represent a monocyclic or condensed aromatic hydrocarbon ring or a monocyclic or condensed aromatic heterocyclic ring, and these rings may have a substituent. Good. When a plurality of such substituents are present, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which each is bonded. However, at least one of the ring R H1 and the ring R H2 is a condensed aromatic hydrocarbon ring or a condensed aromatic heterocyclic ring, and these rings may have a substituent.
  • X H1 represents a single bond, an oxygen atom, a sulfur atom, a group represented by —N (R XH1 ) —, or a group represented by —C (R XH1 ′ ) 2 —.
  • R XH1 and R XH1 ′ each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a substituted amino group, or a fluorine atom. And these groups may have a substituent.
  • a plurality of R XH1 ′ may be the same or different, and may be bonded to each other to form a ring together with the carbon atom to which each is bonded.
  • a substituent that R XH1 and ring R H1 may have, a substituent that R XH1 and ring R H2 may have, a substituent that R XH1 ′ and ring R H1 may have, and , R XH1 ′ and the substituent which the ring R H2 may have may be bonded to each other to form a ring together with the atoms to which they are bonded.
  • the purity of the compound represented by the formula (H) contained in the composition (the purity is a purity calculated from the area percentage value of liquid chromatography) is 99.0% or more.
  • the group represented by the formula (H1-1) is a group represented by the formula (H1-1A), the formula (H1-1B), or the formula (H1-1C). 2].
  • X H1 represents the same meaning as described above.
  • X H2 and X H3 each independently represent a single bond, an oxygen atom, a sulfur atom, a group represented by —N (R XH2 ) —, or a group represented by —C (R XH2 ′ ) 2 —.
  • R XH2 and R XH2 ′ each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a substituted amino group, or a fluorine atom. And these groups may have a substituent.
  • a plurality of R XH2 ′ may be the same or different, and may be bonded to each other to form a ring together with the carbon atom to which each is bonded.
  • Z H1, Z H2, Z H3 , Z H4, Z H5, Z H6, Z H7, Z H8, Z H9, Z H10, Z H11 and Z H12 each independently represents a carbon atom or a nitrogen atom.
  • R H1 , R H2 , R H3 , R H4 , R H5 , R H6 , R H7 , R H8 , R H9 , R H10 , R H11 and R H12 are each independently a hydrogen atom, an alkyl group or a cycloalkyl group Represents an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a substituted amino group, or a fluorine atom, and these groups optionally have a substituent.
  • Z H1 is a nitrogen atom
  • R H2 does not exist.
  • Z H3 is a nitrogen atom
  • R H3 does not exist.
  • Z H4 is a nitrogen atom
  • Z H5 is a nitrogen atom
  • Z H6 does not exist.
  • Z H7 is a nitrogen atom
  • Z H8 does not exist.
  • Z H9 is a nitrogen atom
  • R H9 does not exist.
  • Z H10 is a nitrogen atom, R H10 does not exist.
  • R H11 When Z H11 is a nitrogen atom, R H11 does not exist.
  • Z H12 When Z H12 is a nitrogen atom, R H12 does not exist.
  • R H1 and R H2 , R H3 and R H4 , R H5 and R H6 , R H6 and R H7 , R H7 and R H8 , R H9 and R H10 , R H10 and R H11 , and R H11 and R H12 are , May be bonded to each other to form a ring together with the carbon atoms to which they are bonded.
  • the metal complex represented by the formula (1) is represented by the formula (1-B1), the formula (1-B2), the formula (1-B3), the formula (1-B4), or the formula (1-B5).
  • R 11B , R 12B , R 13B , R 14B , R 21B , R 22B , R 23B and R 24B are each independently a hydrogen atom, alkyl group, cycloalkyl group, alkoxy group, cycloalkoxy group, aryl group, aryl An oxy group, a monovalent heterocyclic group, a substituted amino group, or a fluorine atom is represented, and these groups may have a substituent.
  • R 11B , R 12B , R 13B , R 14B , R 21B , R 22B , R 23B and R 24B they may be the same or different.
  • R 11B and R 12B , R 12B and R 13B , R 13B and R 14B , R 11B and R 21B , R 21B and R 22B , R 22B and R 23B , and R 23B and R 24B are bonded to each other, You may form the ring with the atom to which each couple
  • n 11 and n 12 each independently represents an integer of 1 or more, and n 11 + n 12 is 2 or 3.
  • R 15B , R 16B , R 17B and R 18B are each independently a hydrogen atom, alkyl group, cycloalkyl group, alkoxy group, cycloalkoxy group, aryl group, aryloxy group, monovalent heterocyclic group, substituted amino group Represents a group or a fluorine atom, and these groups optionally have a substituent.
  • R 15B , R 16B , R 17B and R 18B When there are a plurality of R 15B , R 16B , R 17B and R 18B , they may be the same or different.
  • R 13B and R 15B , R 15B and R 16B , R 16B and R 17B , R 17B and R 18B , and R 18B and R 21B are bonded to each other to form a ring together with the atoms to which they are bonded. Also good.
  • the metal complex represented by the formula (1) is represented by the formula (1-B1), the formula (1-B2), the formula (1-B3), or the formula (1-B5).
  • the group represented by the formula (H1-1) is any one of [1] to [5], which is a group represented by the formula (ArH1-1) or the formula (ArH1-10).
  • Composition [Wherein, R b , R c and Re are each independently a hydrogen atom, alkyl group, cycloalkyl group, alkoxy group, cycloalkoxy group, aryl group, aryloxy group, monovalent heterocyclic group, substituted
  • An amino group or a fluorine atom is represented, and these groups may have a substituent.
  • a plurality of R b and R e may be the same or different, and may be bonded to each other to form a ring together with the carbon atom to which each is bonded.
  • composition in any one of. [8] A light emitting device comprising the composition according to any one of [1] to [7].
  • composition of the present invention is useful for production of a light emitting device in which initial deterioration is sufficiently suppressed.
  • the light-emitting element of the present invention is a light-emitting element in which initial deterioration is sufficiently suppressed.
  • FIG. 6 is a graph showing the relationship between LT95 and the amount of chlorine atoms as impurities in Examples D1 to D3, E1 to E2, and Comparative Examples CD1 to CD4 and CE1 to CE5.
  • Me represents a methyl group
  • Et represents an ethyl group
  • Bu represents a butyl group
  • i-Pr represents an isopropyl group
  • t-Bu represents a tert-butyl group.
  • the hydrogen atom may be a deuterium atom or a light hydrogen atom.
  • the solid line representing the bond with the central metal means a covalent bond or a coordinate bond.
  • the “polymer compound” means a polymer having a molecular weight distribution and having a polystyrene-equivalent number average molecular weight of 1 ⁇ 10 3 to 1 ⁇ 10 8 .
  • the polymer compound may be any of a block copolymer, a random copolymer, an alternating copolymer, and a graft copolymer, or other embodiments.
  • the terminal group of the polymer compound is preferably a stable group because if the polymerization active group remains as it is, there is a possibility that the light emission characteristics or the luminance life may be lowered when the polymer compound is used for the production of a light emitting device. It is.
  • the terminal group is preferably a group that is conjugated to the main chain, and examples thereof include a group that is bonded to an aryl group or a monovalent heterocyclic group via a carbon-carbon bond.
  • Low molecular weight compound means a compound having no molecular weight distribution and a molecular weight of 1 ⁇ 10 4 or less.
  • “Structural unit” means one or more units present in a polymer compound.
  • the “alkyl group” may be linear or branched.
  • the number of carbon atoms of the linear alkyl group is usually 1 to 50, preferably 3 to 30, and more preferably 4 to 20, excluding the number of carbon atoms of the substituent.
  • the number of carbon atoms of the branched alkyl group is usually 3 to 50, preferably 3 to 30, and more preferably 4 to 20, excluding the number of carbon atoms of the substituent.
  • the alkyl group may have a substituent, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, 2-butyl group, isobutyl group, tert-butyl group, pentyl group, isoamyl group, 2-ethylbutyl, hexyl, heptyl, octyl, 2-ethylhexyl, 3-propylheptyl, decyl, 3,7-dimethyloctyl, 2-ethyloctyl, 2-hexyldecyl, dodecyl And a group in which a hydrogen atom in these groups is substituted with a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, a fluorine atom, etc., for example, a trifluoromethyl group, a pentafluoroethyl group,
  • the number of carbon atoms of the “cycloalkyl group” is usually 3 to 50, preferably 3 to 30, more preferably 4 to 20, excluding the number of carbon atoms of the substituent.
  • the cycloalkyl group may have a substituent, and examples thereof include a cyclohexyl group, a cyclohexylmethyl group, and a cyclohexylethyl group.
  • Aryl group means an atomic group remaining after removing one hydrogen atom directly bonded to a carbon atom constituting a ring from an aromatic hydrocarbon.
  • the number of carbon atoms of the aryl group is usually 6 to 60, preferably 6 to 20, more preferably 6 to 10, not including the number of carbon atoms of the substituent.
  • the “alkoxy group” may be linear or branched.
  • the number of carbon atoms of the straight-chain alkoxy group is usually 1 to 40, preferably 4 to 10, excluding the number of carbon atoms of the substituent.
  • the number of carbon atoms of the branched alkoxy group is usually 3 to 40, preferably 4 to 10, excluding the number of carbon atoms of the substituent.
  • the alkoxy group may have a substituent, for example, methoxy group, ethoxy group, propyloxy group, isopropyloxy group, butyloxy group, isobutyloxy group, tert-butyloxy group, pentyloxy group, hexyloxy group, Heptyloxy group, octyloxy group, 2-ethylhexyloxy group, nonyloxy group, decyloxy group, 3,7-dimethyloctyloxy group, lauryloxy group, and the hydrogen atom in these groups is a cycloalkyl group, an alkoxy group, And a group substituted with a cycloalkoxy group, an aryl group, a fluorine atom, or the like.
  • a substituent for example, methoxy group, ethoxy group, propyloxy group, isopropyloxy group, butyloxy group, isobutyloxy group, tert-buty
  • the number of carbon atoms of the “cycloalkoxy group” is usually 3 to 40, preferably 4 to 10, not including the number of carbon atoms of the substituent.
  • the cycloalkoxy group may have a substituent, and examples thereof include a cyclohexyloxy group.
  • the number of carbon atoms of the “aryloxy group” is usually 6 to 60, preferably 6 to 48, not including the number of carbon atoms of the substituent.
  • the aryloxy group may have a substituent, for example, phenoxy group, 1-naphthyloxy group, 2-naphthyloxy group, 1-anthracenyloxy group, 9-anthracenyloxy group, 1- Examples include a pyrenyloxy group and a group in which a hydrogen atom in these groups is substituted with an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, a fluorine atom, or the like.
  • the “p-valent heterocyclic group” (p represents an integer of 1 or more) is p of hydrogen atoms directly bonded to a carbon atom or a hetero atom constituting a ring from a heterocyclic compound. This means the remaining atomic group excluding the hydrogen atom. Among the p-valent heterocyclic groups, it is the remaining atomic group obtained by removing p hydrogen atoms from the hydrogen atoms directly bonded to the carbon atoms or heteroatoms constituting the ring from the aromatic heterocyclic compound. A “p-valent aromatic heterocyclic group” is preferable.
  • Aromatic heterocyclic compounds '' are oxadiazole, thiadiazole, thiazole, oxazole, thiophene, pyrrole, phosphole, furan, pyridine, pyrazine, pyrimidine, triazine, pyridazine, quinoline, isoquinoline, carbazole, dibenzophosphole, etc.
  • a compound in which the ring itself exhibits aromaticity, and a heterocyclic ring such as phenoxazine, phenothiazine, dibenzoborol, dibenzosilol, benzopyran itself does not exhibit aromaticity, but the aromatic ring is condensed to the heterocyclic ring Means a compound.
  • the number of carbon atoms of the monovalent heterocyclic group is usually 2 to 60, preferably 4 to 20, excluding the number of carbon atoms of the substituent.
  • the monovalent heterocyclic group may have a substituent, for example, thienyl group, pyrrolyl group, furyl group, pyridinyl group, piperidinyl group, quinolinyl group, isoquinolinyl group, pyrimidinyl group, triazinyl group, and these And a group in which the hydrogen atom in the group is substituted with an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, or the like.
  • Halogen atom means a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
  • the “amino group” may have a substituent, and a substituted amino group is preferable.
  • a substituent which an amino group has an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group is preferable.
  • the substituted amino group include a dialkylamino group, a dicycloalkylamino group, and a diarylamino group.
  • the amino group include dimethylamino group, diethylamino group, diphenylamino group, bis (4-methylphenyl) amino group, bis (4-tert-butylphenyl) amino group, and bis (3,5-di-tert- Butylphenyl) amino group.
  • the “alkenyl group” may be linear or branched.
  • the number of carbon atoms of the straight chain alkenyl group is usually 2 to 30, preferably 3 to 20, not including the carbon atoms of the substituent.
  • the number of carbon atoms of the branched alkenyl group is usually 3 to 30, preferably 4 to 20, not including the carbon atoms of the substituent.
  • the number of carbon atoms in the “cycloalkenyl group” is usually 3 to 30, preferably 4 to 20, not including the carbon atoms of the substituent.
  • the alkenyl group and the cycloalkenyl group may have a substituent, for example, vinyl group, 1-propenyl group, 2-propenyl group, 2-butenyl group, 3-butenyl group, 3-pentenyl group, 4- Examples thereof include a pentenyl group, a 1-hexenyl group, a 5-hexenyl group, a 7-octenyl group, and groups in which these groups have a substituent.
  • the “alkynyl group” may be linear or branched.
  • the number of carbon atoms of the alkynyl group is usually 2 to 20, preferably 3 to 20, not including the carbon atom of the substituent.
  • the number of carbon atoms of the branched alkynyl group is usually from 4 to 30, and preferably from 4 to 20, not including the carbon atom of the substituent.
  • the number of carbon atoms of the “cycloalkynyl group” is usually 4 to 30, preferably 4 to 20, not including the carbon atom of the substituent.
  • the alkynyl group and the cycloalkynyl group may have a substituent, for example, an ethynyl group, a 1-propynyl group, a 2-propynyl group, a 2-butynyl group, a 3-butynyl group, a 3-pentynyl group, 4- Examples thereof include a pentynyl group, 1-hexynyl group, 5-hexynyl group, and groups in which these groups have a substituent.
  • the “arylene group” means an atomic group remaining after removing two hydrogen atoms directly bonded to a carbon atom constituting a ring from an aromatic hydrocarbon.
  • the number of carbon atoms of the arylene group is usually 6 to 60, preferably 6 to 30, and more preferably 6 to 18, excluding the number of carbon atoms of the substituent.
  • the arylene group may have a substituent. Examples include chrysenediyl groups and groups in which these groups have substituents, and groups represented by formulas (A-1) to (A-20) are preferable.
  • the arylene group includes a group in which a plurality of these groups are bonded.
  • R and R a each independently represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group.
  • a plurality of R and R a may be the same or different, and R a may be bonded to each other to form a ring together with the atoms to which they are bonded.
  • the number of carbon atoms of the divalent heterocyclic group is usually 2 to 60, preferably 3 to 20, and more preferably 4 to 15 excluding the number of carbon atoms of the substituent.
  • the divalent heterocyclic group may have a substituent, for example, pyridine, diazabenzene, triazine, azanaphthalene, diazanaphthalene, carbazole, dibenzofuran, dibenzothiophene, dibenzosilol, phenoxazine, phenothiazine, acridine, Divalent acridine, furan, thiophene, azole, diazole, and triazole include divalent groups obtained by removing two hydrogen atoms from hydrogen atoms directly bonded to carbon atoms or heteroatoms constituting the ring, and preferably Are groups represented by formula (AA-1) to formula (AA-34).
  • the divalent heterocyclic group includes a group in which a plurality of these groups are bonded
  • crosslinking group is a group capable of generating a new bond by being subjected to heat treatment, ultraviolet irradiation treatment, near ultraviolet irradiation treatment, visible light irradiation treatment, infrared irradiation treatment, radical reaction, etc.
  • the crosslinking groups represented by the formulas (XL-1) to (XL-17) in the crosslinking group A group are preferable.
  • R XL represents a methylene group, an oxygen atom or a sulfur atom
  • n XL represents an integer of 0 to 5.
  • R XL represents a methylene group, an oxygen atom or a sulfur atom
  • n XL represents an integer of 0 to 5.
  • * 1 represents a binding position.
  • These crosslinkable groups may have a substituent.
  • “Substituent” means a fluorine atom, cyano group, alkyl group, cycloalkyl group, aryl group, monovalent heterocyclic group, alkoxy group, cycloalkoxy group, aryloxy group, amino group, substituted amino group, alkenyl group. Represents a cycloalkenyl group, an alkynyl group or a cycloalkynyl group.
  • the substituent may be a crosslinking group.
  • the “amount of chlorine atoms as impurities” contained in the compound can be measured by an automatic combustion-ion chromatography method. That is, the “amount of chlorine atom as an impurity” contained in a compound means the mass concentration of chlorine when the compound is measured by an automatic combustion-ion chromatography method. When the mass concentration of chlorine contained in the compound is below the detection limit, the “amount of chlorine atom as an impurity” contained in the compound is set to 0.01 mass ppm (ie, detection limit).
  • the metal complex represented by the formula (1) is usually a compound that exhibits phosphorescence at room temperature (25 ° C.), and preferably a compound that emits light from a triplet excited state at room temperature.
  • M is preferably an iridium atom or a platinum atom, and more preferably an iridium atom, since the initial deterioration of the light emitting device according to this embodiment is further suppressed.
  • n 1 is preferably 2 or 3, and more preferably 3.
  • M is a palladium atom or a platinum atom
  • n 1 is preferably 2.
  • E 1 and E 2 are preferably carbon atoms.
  • Ring L 1 is preferably a 5-membered or 6-membered aromatic heterocycle, and a 5-membered aromatic heterocycle having 2 or more and 4 or less nitrogen atoms as constituent atoms, or 1 or more and 4 More preferably, it is a 6-membered aromatic heterocycle having the following nitrogen atoms as constituent atoms, and a 5-membered aromatic heterocycle having 2 or 3 nitrogen atoms as constituent atoms, or 1 or 2 More preferably, it is a 6-membered aromatic heterocycle having a nitrogen atom as a constituent atom, and these rings may have a substituent.
  • E 1 is preferably a carbon atom.
  • Examples of the ring L 1 include a diazole ring, a triazole ring, a pyridine ring, a diazabenzene ring, a triazine ring, a quinoline ring and an isoquinoline ring, and a pyridine ring, a quinoline ring or an isoquinoline ring is preferable, and a pyridine ring or an isoquinoline ring is more preferable.
  • these rings may have a substituent.
  • Ring L 2 is preferably a 5-membered or 6-membered aromatic hydrocarbon ring, or a 5-membered or 6-membered aromatic heterocycle, and a 6-membered aromatic hydrocarbon ring or a 6-membered aromatic heterocycle More preferably, it is a ring, more preferably a 6-membered aromatic hydrocarbon ring, and these rings may have a substituent.
  • E 2 is preferably a carbon atom.
  • Examples of the ring L 2 include a benzene ring, a naphthalene ring, a fluorene ring, a phenanthrene ring, an indene ring, a pyridine ring, a diazabenzene ring, and a triazine ring, and a benzene ring, a naphthalene ring, a fluorene ring, a pyridine ring, or a pyrimidine ring.
  • a benzene ring, a pyridine ring or a pyrimidine ring is more preferable, and a benzene ring is more preferable, and these rings may have a substituent.
  • Examples of the substituent that the ring L 1 and the ring L 2 may have include an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, and a substituted amino group. Or a fluorine atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group is more preferable, an aryl group or a monovalent heterocyclic group is more preferable, and these groups further have a substituent. May be.
  • a phenyl group in the substituent that the ring L 1 and the ring L 2 may have, a phenyl group, a naphthyl group, an anthracenyl group, a fentrenyl group, a dihydrofentrenyl group, a fluorenyl group, or a pyrenyl group is preferable.
  • a naphthyl group or a fluorenyl group is more preferable, a phenyl group is further preferable, and these groups may further have a substituent.
  • Examples of the monovalent heterocyclic group in the substituent that the ring L 1 and the ring L 2 may have include a pyridyl group, a pyrimidinyl group, a triazinyl group, a quinolinyl group, an isoquinolinyl group, a dibenzofuranyl group, a dibenzothienyl group, A carbazolyl group, an azacarbazolyl group, a diazacarbazolyl group, a phenoxazinyl group or a phenothiazinyl group is preferred, a pyridyl group, a pyrimidinyl group or a triazinyl group is more preferred, a triazinyl group is further preferred, and these groups further have a substituent. It may be.
  • the amino group preferably has an aryl group or a monovalent heterocyclic group, more preferably an aryl group, These groups may further have a substituent.
  • Examples and preferred ranges of the aryl group in the substituent that the amino group has are the same as examples and preferred ranges of the aryl group in the substituent that the ring L 1 and the ring L 2 may have.
  • Examples and preferred ranges of the monovalent heterocyclic group in the substituent that the amino group has are the same as examples and preferred ranges of the monovalent heterocyclic group in the substituent that the ring L 1 and the ring L 2 may have. It is.
  • Examples of the substituent that the ring L 1 and the ring L 2 may have further include an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, A monovalent heterocyclic group, a substituted amino group or a fluorine atom is preferable, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group is more preferable, and an alkyl group, a cycloalkyl group or an aryl group is more preferable. These groups may further have a substituent.
  • m DA1 , m DA2 and m DA3 each independently represent an integer of 0 or more.
  • GDA represents a nitrogen atom, an aromatic hydrocarbon group, or a heterocyclic group, and these groups may have a substituent.
  • Ar DA1 , Ar DA2 and Ar DA3 each independently represent an arylene group or a divalent heterocyclic group, and these groups optionally have a substituent.
  • T DA represents an aryl group or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • the plurality of TDAs may be the same or different.
  • m DA1 , m DA2 , m DA3 , m DA4 , m DA5 , m DA6 and m DA7 each independently represent an integer of 0 or more.
  • GDA represents a nitrogen atom, an aromatic hydrocarbon group, or a heterocyclic group, and these groups may have a substituent.
  • a plurality of GDAs may be the same or different.
  • Ar DA1 , Ar DA2 , Ar DA3 , Ar DA4 , Ar DA5 , Ar DA6 and Ar DA7 each independently represent an arylene group or a divalent heterocyclic group, and these groups may have a substituent. Good.
  • T DA represents an aryl group or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • the plurality of TDAs may be the same or different.
  • m DA1 represents an integer of 0 or more.
  • Ar DA1 represents an arylene group or a divalent heterocyclic group, and these groups optionally have a substituent.
  • T DA represents an aryl group or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • m DA1, m DA2, m DA3 , m DA4, m DA5, m DA6 and m DA7 is usually 10 or less integer is preferably 5 or less integer, more preferably 2 or less an integer, further Preferably 0 or 1.
  • m DA2 , m DA3 , m DA4 , m DA5 , m DA6 and m DA7 are preferably the same integer.
  • GDA is preferably an aromatic hydrocarbon group or a heterocyclic group, more preferably hydrogen bonded directly to a carbon atom or a nitrogen atom constituting the ring from a benzene ring, a pyridine ring, a pyrimidine ring, a triazine ring or a carbazole ring. It is a group formed by removing three atoms, and these groups may have a substituent.
  • the substituent that GDA may have is preferably an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group or a monovalent heterocyclic group, more preferably an alkyl group, It is a cycloalkyl group, an alkoxy group or a cycloalkoxy group, more preferably an alkyl group or a cycloalkyl group, and these groups optionally have a substituent.
  • G DA is preferably a group represented by the formula (GDA-11) ⁇ formula (GDA-15), more preferably a group represented by the formula (GDA-11) ⁇ formula (GDA-14) And more preferably a group represented by the formula (GDA-11) or the formula (GDA-14).
  • R DA represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups may further have a substituent. When there are a plurality of RDA , they may be the same or different. ]
  • R DA is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group or a cycloalkoxy group, more preferably a hydrogen atom, an alkyl group or a cycloalkyl group, and these groups have a substituent. May be.
  • Ar DA1 , Ar DA2 , Ar DA3 , Ar DA4 , Ar DA5 , Ar DA6 and Ar DA7 are preferably a phenylene group, a fluorenediyl group or a carbazolediyl group, and more preferably represented by the formulas (ArDA-1) to (ArDA-1)-( ArDA-5), more preferably a group represented by formula (ArDA-1) to formula (ArDA-3), particularly preferably formula (ArDA-1) or formula (ArDA- 2), particularly preferably a group represented by the formula (ArDA-2), and these groups may have a substituent.
  • R DA represents the same meaning as described above.
  • R DB represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent. When there are a plurality of RDBs , they may be the same or different. ]
  • R DB is preferably an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, more preferably an aryl group or a monovalent heterocyclic group, still more preferably an aryl group, The group may have a substituent.
  • Ar DA1, Ar DA2, Ar DA3 , Ar DA4, Ar DA5, Ar DA6 and examples and preferred ranges of the substituent which may be possessed by Ar DA7 are examples of the substituent which may be possessed by G DA and It is the same as a preferable range.
  • T DA is preferably a group represented by the formula (TDA-1) ⁇ formula (TDA-3), more preferably a group represented by the formula (TDA-1).
  • R DA and R DB represent the same meaning as described above.
  • the group represented by the formula (DA) is preferably a group represented by the formula (D-A1) to the formula (D-A5), more preferably the formula (D-A1) or the formula (D-A3).
  • a group represented by the formula (D-A5) more preferably a group represented by the formula (D-A1), the formula (D-A3) or the formula (D-A5).
  • R p1 , R p2 , R p3 and R p4 each independently represents an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group or a fluorine atom.
  • R p1 , R p2 and R p4 may be the same or different.
  • np1 represents an integer of 0 to 5
  • np2 represents an integer of 0 to 3
  • np3 represents 0 or 1
  • np4 represents an integer of 0 to 4.
  • a plurality of np1 may be the same or different.
  • the group represented by the formula (DB) is preferably a group represented by the formula (D-B1) to the formula (D-B6), more preferably the formula (D-B1) to the formula (D-B3).
  • a group represented by formula (D-B5) or formula (D-B6), more preferably a group represented by formula (D-B1), formula (D-B3) or formula (D-B5) And particularly preferably a group represented by the formula (D-B1).
  • R p1 , R p2 , R p3 and R p4 each independently represents an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group or a fluorine atom.
  • R p1 , R p2 and R p4 they may be the same or different.
  • np1 represents an integer of 0 to 5
  • np2 represents an integer of 0 to 3
  • np3 represents 0 or 1
  • np4 represents an integer of 0 to 4.
  • a plurality of np1 may be the same or different.
  • a plurality of np2 may be the same or different.
  • the group represented by the formula (DC) is preferably a group represented by the formula (D-C1) to the formula (D-C4), more preferably the formula (D-C1) to the formula (D-C3). More preferably a group represented by the formula (D-C1) or the formula (D-C2), particularly preferably a group represented by the formula (D-C1).
  • R p4 , R p5 and R p6 each independently represents an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group or a fluorine atom. When there are a plurality of R p4 , R p5 and R p6 , they may be the same or different.
  • np4 represents an integer of 0 to 4
  • np5 represents an integer of 0 to 5
  • np6 represents an integer of 0 to 5.
  • Np1 is preferably an integer of 0 to 2, more preferably 0 or 1.
  • np2 is preferably 0 or 1
  • np3 is preferably 0.
  • np4 is preferably an integer of 0 to 2
  • np5 is preferably an integer of 0 to 3, more preferably 0 or 1.
  • np6 is preferably an integer of 0 to 2, more preferably 0 or 1.
  • the alkyl group or cycloalkyl group in R p1 , R p2 , R p3 , R p4 , R p5 and R p6 is preferably a methyl group, an ethyl group, an isopropyl group, a tert-butyl group, a hexyl group, or a 2-ethylhexyl group. Cyclohexyl group or tert-octyl group.
  • the alkoxy group or cycloalkoxy group in R p1 , R p2 , R p3 , R p4 , R p5 and R p6 is preferably a methoxy group, a 2-ethylhexyloxy group or a cyclohexyloxy group.
  • R p1 , R p2 , R p3 , R p4 , R p5 and R p6 are preferably an optionally substituted alkyl group or an optionally substituted cycloalkyl group, and more An alkyl group which may have a substituent is preferable, and a methyl group, an ethyl group, an isopropyl group, a tert-butyl group, a hexyl group, a 2-ethylhexyl group or a tert-octyl group is more preferable.
  • Examples of the group represented by the formula (D-A) include groups represented by the formula (DA-1) to the formula (DA-12).
  • R D represents a hydrogen atom, a methyl group, an ethyl group, an isopropyl group, a tert-butyl group, a hexyl group, a 2-ethylhexyl group, a tert-octyl group, a cyclohexyl group, a methoxy group, a 2-ethylhexyloxy group, or Represents a cyclohexyloxy group.
  • two or more RD exists, they may be the same or different.
  • Examples of the group represented by the formula (D-B) include groups represented by the formula (DB-1) to the formula (DB-7).
  • R D represents the same meaning as described above.
  • Examples of the group represented by the formula (D-C) include groups represented by the formula (DC-1) to the formula (DC-13).
  • R D represents the same meaning as described above.
  • R D is preferably a hydrogen atom, a methyl group, an ethyl group, an isopropyl group, a tert-butyl group, a hexyl group, a 2-ethylhexyl group or a tert-octyl group, and is preferably a hydrogen atom, a tert-butyl group or a tert-octyl group. More preferably, it is a group.
  • substituents that the ring L 1 may have they may be the same or different and may be bonded to each other to form a ring together with the atoms to which they are bonded.
  • substituents that the ring L 2 may have they may be the same or different and may be bonded to each other to form a ring together with the atoms to which they are bonded.
  • the substituent that the ring L 1 may have and the substituent that the ring L 2 may have may be bonded to each other to form a ring together with the atoms to which they are bonded.
  • Examples of the anionic bidentate ligand represented by A 1 -G 1 -A 2 include a ligand represented by the following formula. However, the anionic bidentate ligand represented by A 1 -G 1 -A 2 is different from the ligand whose number is defined by the subscript n 1 .
  • R L1 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group, or a fluorine atom, and these groups optionally have a substituent.
  • a plurality of R L1 may be the same or different.
  • R L2 represents an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group, or a fluorine atom, and these groups optionally have a substituent.
  • R L1 is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a fluorine atom, more preferably a hydrogen atom or an alkyl group, and these groups optionally have a substituent. .
  • R L2 is preferably an alkyl group or an aryl group, and these groups optionally have a substituent.
  • the metal complex represented by the formula (1) is a metal complex compound represented by the formula (1-A) or the formula (1-B) because the initial deterioration of the light emitting device of this embodiment is suppressed. Is preferable, and a metal complex represented by the formula (1-B) is more preferable.
  • E 11A , E 12A , E 13A , E 21A , E 22A , E 23A and E 24A each independently represent a nitrogen atom or a carbon atom.
  • E 11A , E 12A , E 13A , E 21A , E 22A , E 23A and E 24A they may be the same or different.
  • E 11A is a nitrogen atom
  • R 11A may or may not be present.
  • E 12A is a nitrogen atom
  • R 12A may or may not be present.
  • E 13A When E 13A is a nitrogen atom, R 13A may or may not be present.
  • E 21A When E 22A is a nitrogen atom, R 22A does not exist.
  • E 23A When E 23A is a nitrogen atom, R 23A does not exist.
  • E 24A When E 24A is a nitrogen atom, R 24A does not exist.
  • R 11A , R 12A , R 13A , R 21A , R 22A , R 23A and R 24A are each independently a hydrogen atom, alkyl group, cycloalkyl group, alkoxy group, cycloalkoxy group, aryl group, aryloxy group, It represents a monovalent heterocyclic group, a substituted amino group or a fluorine atom, and these groups may have a substituent.
  • R 11A , R 12A , R 13A , R 21A , R 22A , R 23A and R 24A they may be the same or different.
  • R 11A and R 12A , R 12A and R 13A , R 11A and R 21A , R 21A and R 22A , R 22A and R 23A , and R 23A and R 24A are bonded to each other together with the atoms to which they are bonded.
  • a ring may be formed.
  • Ring L 1A represents a triazole ring or a diazole ring composed of a nitrogen atom, E 1 , E 11A , E 12A and E 13A .
  • Ring L 2A represents a benzene ring, a pyridine ring or a pyrimidine ring composed of two carbon atoms, E 21A , E 22A , E 23A and E 24A . ]
  • E11B , E12B , E13B , E14B , E21B , E22B , E23B and E24B each independently represent a nitrogen atom or a carbon atom.
  • E 11B , E 12B , E 13B , E 14B , E 21B , E 22B , E 23B and E 24B they may be the same or different.
  • E 11B is a nitrogen atom
  • R 11B does not exist.
  • E 12B is a nitrogen atom, R 12B does not exist.
  • E 13B is a nitrogen atom
  • R 13B does not exist.
  • E 14B is a nitrogen atom
  • R 14B does not exist.
  • E 21B is a nitrogen atom
  • R 21B does not exist.
  • E 22B is a nitrogen atom
  • R 23B is a nitrogen atom
  • E 24B is a nitrogen atom, R 24B does not exist.
  • R 11B , R 12B , R 13B , R 14B , R 21B , R 22B , R 23B and R 24B are each independently a hydrogen atom, alkyl group, cycloalkyl group, alkoxy group, cycloalkoxy group, aryl group, aryl An oxy group, a monovalent heterocyclic group, a substituted amino group, or a fluorine atom is represented, and these groups may have a substituent.
  • R 11B , R 12B , R 13B , R 14B , R 21B , R 22B , R 23B and R 24B they may be the same or different.
  • Ring L 1B represents a pyridine ring or a pyrimidine ring composed of a nitrogen atom, a carbon atom, E 11B , E 12B , E 13B and E 14B .
  • Ring L 2B represents a benzene ring, a pyridine ring or a pyrimidine ring composed of two carbon atoms, E 21B , E 22B , E 23B and E 24B .
  • ring L 1A is a triazole ring
  • a triazole ring in which E 11A and E 12A are nitrogen atoms, or a triazole ring in which E 11A and E 13A are nitrogen atoms is preferable, and E 11A and E 12A are nitrogen atoms.
  • a triazole ring is more preferred.
  • Examples and preferred ranges of the aryl group, monovalent heterocyclic group and substituted amino group in R 11A , R 12A , R 13A , R 21A , R 22A , R 23A and R 24A are ring L 1 and ring L 2 , respectively.
  • R 11A , R 12A , R 13A , R 21A , R 22A , R 23A and R 24A may have and preferred ranges thereof may have ring L 1 and ring L 2. It is the same as the example and preferable range of the substituent which the substituent may further have.
  • R 11A is preferably an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, more preferably an aryl group. These groups may have a substituent.
  • R 11A is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group or a substituted amino group, and a hydrogen atom, an alkyl group or a cycloalkyl group And more preferably a hydrogen atom, and these groups optionally have a substituent.
  • R 12A is preferably an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, more preferably an aryl group. These groups may have a substituent.
  • R 12A is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group or a substituted amino group, and a hydrogen atom, an alkyl group or a cycloalkyl group And more preferably a hydrogen atom, and these groups optionally have a substituent.
  • R 13A is preferably an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, more preferably an aryl group. These groups may have a substituent.
  • R 13A is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group or a substituted amino group, and a hydrogen atom, an alkyl group or a cycloalkyl group And more preferably a hydrogen atom, and these groups optionally have a substituent.
  • ring L 2A is a pyridine ring
  • a pyridine ring in which E 23A is a nitrogen atom is preferable
  • E 22A is a nitrogen atom
  • Ring L 2A is preferably a benzene ring.
  • R 21A , R 22A , R 23A and R 24A are preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, a monovalent heterocyclic group, a fluorine atom or a substituted amino group,
  • An atom or a group represented by the formula (DA), formula (DB) or formula (DC) is more preferable, and a hydrogen atom or a group represented by the formula (DA). More preferably, these groups may have a substituent.
  • R 22A or R 23A is preferably an aryl group, monovalent heterocyclic group or substituted amino group, and R 22A is aryl. It is more preferably a group, a monovalent heterocyclic group or a substituted amino group.
  • the metal complex represented by the formula (1-A) suppresses the initial deterioration of the light emitting device of this embodiment, the metal complex represented by the formula (1-A1), represented by the formula (1-A2)
  • the metal complex represented by the formula (1-A3) or the metal complex represented by the formula (1-A4) is preferable, and the metal complex represented by the formula (1-A3). It is more preferable.
  • examples of the n 1 ligand include a ligand represented by the formula (LA-1) or the formula (LA-2). .
  • examples of the n 1 ligand include a ligand represented by the formula (LA-3).
  • examples of the n 1 ligand include ligands represented by the formulas (LA-4) to (LA-6).
  • a ligand represented by the formula (LA-5) or (LA-6) is preferable.
  • examples of the n 1 ligand include a ligand represented by the formula (LA-7).
  • ring L 2B is a pyridine ring
  • a pyridine ring in which E 23B is a nitrogen atom is preferable
  • E 22B is a nitrogen atom
  • Ring L 2B is preferably a benzene ring.
  • Examples and preferred ranges of the aryl group, monovalent heterocyclic group and substituted amino group in R 11B , R 12B , R 13B , R 14B , R 21B , R 22B , R 23B and R 24B are the ring L 1 and Examples of the aryl group, monovalent heterocyclic group and substituted amino group in the substituent which the ring L 2 may have are the same as the preferred range.
  • R 11B , R 12B , R 13B , R 14B , R 21B , R 22B , R 23B and R 24B may have and preferred ranges thereof include ring L 1 and ring L 2. It is the same as the example and preferable range of the substituent which the substituent which may be further may have.
  • R 11B , R 12B , R 13B , R 14B , R 21B , R 22B , R 23B and R 24B are a hydrogen atom, alkyl group, cycloalkyl group, alkoxy group, cycloalkoxy group, fluorine atom, aryl group, monovalent Are preferably a heterocyclic group or a substituted amino group, more preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group or a substituted amino group, a hydrogen atom, an alkyl group, A cycloalkyl group or a group represented by the formula (DA), formula (DB) or formula (DC) is more preferable, and a hydrogen atom, an alkyl group, or a formula (D— Particularly preferred are groups represented by A), formula (DB) or formula (DC), and these groups may have a substituent.
  • R 11B , R 12B or R 13B is preferably an aryl group, a monovalent heterocyclic group or a substituted amino group, 12B or R 13B is more preferably an aryl group, monovalent heterocyclic group or substituted amino group, and R 13B is more preferably an aryl group, monovalent heterocyclic group or substituted amino group.
  • R 22B or R 23B is preferably an aryl group, monovalent heterocyclic group or substituted amino group, and R 22B is aryl. It is more preferably a group, a monovalent heterocyclic group or a substituted amino group.
  • the metal complex represented by the formula (1-B) suppresses the initial deterioration of the light emitting device of this embodiment, the metal complex represented by the formula (1-B1) to the formula (1-B5). And is more preferably a metal complex represented by the formula (1-B1), the formula (1-B2), the formula (1-B3) or the formula (1-B5).
  • the metal complex represented by the formula (1-B1) or the formula (1-B2) is more preferable, and the metal complex represented by the formula (1-B1) is particularly preferable.
  • aryl groups, monovalent heterocyclic groups and substituted amino groups in R 15B , R 16B , R 17B and R 18B and preferred ranges thereof are the substituents that the ring L 1 and the ring L 2 may have, respectively.
  • R 15B , R 16B , R 17B and R 18B may have and preferred ranges thereof may be further included in the substituents which ring L 1 and ring L 2 may have. Examples of good substituents and preferred ranges are the same.
  • R 15B , R 16B , R 17B and R 18B may be a hydrogen atom, alkyl group, cycloalkyl group, alkoxy group, cycloalkoxy group, fluorine atom, aryl group, monovalent heterocyclic group or substituted amino group.
  • they are a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, a monovalent heterocyclic group or a substituted amino group, and a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl More preferably a monovalent heterocyclic group or a substituted amino group, particularly preferably a hydrogen atom, an alkyl group or a cycloalkyl group, particularly preferably a hydrogen atom, these groups being a substituent. You may have.
  • n 1 ligands In the metal complex represented by the formula (1-B1), n 1 ligands, and in the metal complex represented by the formula (1-B3), n 11 ligands are as follows:
  • the ligands represented by the formulas (LB-1) to (LB-6) can be given, and the luminance lifetime (initial deterioration) of the light emitting device of this embodiment is excellent. Therefore, in the formula (LB-6) The ligand represented is preferred.
  • n 1 existing ligands and in the metal complex represented by the formula (1-B3) n 21 existing ligands include:
  • the ligands represented by the formulas (LB-7) to (LB-9) can be given, and the luminance lifetime (initial deterioration) of the light emitting device of this embodiment is excellent, so that the formula (LB-7)
  • the ligand represented is preferred.
  • examples of the n 1 ligand include a ligand represented by the formula (LB-10).
  • examples of the n 1 ligand include the ligands represented by the formulas (LB-11) to (LB-15).
  • Examples of the metal complex represented by the formula (1) include a metal complex represented by the following formula.
  • the metal complex represented by the formula (1) is available from Aldrich, Luminescence Technology Corp. Available from the American Dye Source.
  • the metal complex represented by the formula (1) is, for example, “Journal of the American Chemical Society, Vol. 107, 1431-1432 (1985)”, “Journal of the American Chemical 66, 47”. 6653 (1984) ”, Japanese translations of PCT publication No. 2004-530254, Japanese Unexamined Patent Publication No. 2008-179617, Japanese Unexamined Patent Publication No. 2011-105701, Japanese translations of PCT publication No. 2007-504272, International Publication No. 2006/121811, and Japanese Unexamined Patent Publication No. 2013-2013. It can be synthesized according to the methods described in JP-A No. 147450 and JP-A No. 2014-224101. In the course of such synthesis, chlorine atoms as impurities may remain in the final product.
  • the maximum peak wavelength of the emission spectrum of the metal complex represented by the formula (1) is obtained by dissolving the metal complex represented by the formula (1) in an organic solvent such as xylene, toluene, chloroform, tetrahydrofuran (THF), etc.
  • the solution can be prepared (1 ⁇ 10 ⁇ 6 to 1 ⁇ 10 ⁇ 3 mass%) and evaluated by measuring the PL spectrum of the diluted solution at room temperature.
  • organic solvent for dissolving the metal complex represented by the formula (1) toluene or xylene is preferable.
  • the maximum peak wavelength of the emission spectrum of the metal complex represented by the formula (1) is preferably 495 nm to 750 nm, more preferably 500 nm to 680 nm, still more preferably 500 nm to 640 nm, and more preferably 500 nm to It is particularly preferably 550 nm or 590 nm to 640 nm, particularly preferably 500 nm to 550 nm.
  • the amount of chlorine atom as impurity contained in the metal complex represented by formula (1) (Hereinafter referred to as “C 1 ”) is usually 6 mass ppm or less with respect to the total amount of the metal complex, and is preferably 5 mass because the initial deterioration of the light emitting device according to this embodiment is suppressed. It is ppm or less, More preferably, it is 4 mass ppm or less, More preferably, it is 2 mass ppm or less, Most preferably, it is 1 mass ppm or less. Also, C 1, based on the total amount of the metal complex, usually, for the detection limit of the measurement is not less than 0.01 mass ppm.
  • a specific calculation method of C 1 is the same as a specific calculation method of C H described later.
  • Examples of the method for reducing C 1 include purification and dehalogenating agents. These reduction methods may be used alone or in combination of two or more.
  • Purification can be performed by, for example, the 4th edition experimental chemistry course (1993, Maruzen), the 5th edition experimental chemistry course (2007, Maruzen), the new experimental chemistry course (1975, Maruzen), the organic chemistry experiment tebiki (1988). And can be carried out by a known purification method as described in Kagaku Dojin).
  • purification methods include sublimation, extraction, reprecipitation, recrystallization, washing, chromatography, and adsorption. When the purification is performed twice or more, these methods may be the same or different.
  • Extraction is preferably liquid separation or solid-liquid extraction with a Soxhlet extractor, more preferably liquid separation.
  • Extraction is usually performed in an organic solvent.
  • organic solvent include ether solvents such as diethyl ether, tetrahydrofuran, dioxane, cyclopentyl methyl ether, and diglyme; halogen solvents such as methylene chloride and chloroform; hexane, decalin, heptane, octane, pentane, decane, dodecane, and the like.
  • Aliphatic hydrocarbon solvents of the above aromatic hydrocarbon solvents such as toluene, xylene, mesitylene; ester solvents such as ethyl acetate, butyl acetate, propyl acetate, ethyl caproate, ethyl formate, amyl acetate; water . Two or more of these solvents may be used in combination.
  • Reprecipitation is usually performed in a solvent, and is performed in a mixed solvent of a good solvent and a poor solvent.
  • good solvents include ether solvents such as diethyl ether, tetrahydrofuran, dioxane, cyclopentyl methyl ether and diglyme; halogen solvents such as methylene chloride and chloroform; aromatic hydrocarbon solvents such as toluene, xylene and mesitylene; acetic acid Ester solvents such as ethyl, butyl acetate, propyl acetate, ethyl caproate, ethyl formate, amyl acetate; acetone.
  • one good solvent is used, but two or more may be used in combination.
  • the poor solvent include alcohol solvents such as methanol, ethanol, propanol, ethylene glycol, glycerin, 2-methoxyethanol, and 2-ethoxyethanol; nitrile solvents such as acetonitrile and benzonitrile; hexane, decalin, heptane, and octane. , Pentane, decane, dodecane and other aliphatic hydrocarbon solvents; acetone, dimethyl sulfoxide, and water.
  • one kind of poor solvent is used, but two or more kinds may be used in combination.
  • the amount of the good solvent or the poor solvent used is usually 10 to 100000 parts by mass, preferably 70 to 15000 parts by mass with respect to 100 parts by mass in total of the metal complex represented by the formula (1). It is.
  • the temperature when using the solvent is usually ⁇ 80 ° C. to 180 ° C., preferably 0 ° C. to 80 ° C.
  • Recrystallization is usually performed in a solvent.
  • the solvent include alcohol solvents such as methanol, ethanol, propanol, ethylene glycol, glycerin, 2-methoxyethanol, and 2-ethoxyethanol; ether solvents such as diethyl ether, tetrahydrofuran, dioxane, cyclopentyl methyl ether, and diglyme.
  • Halogen compounds such as methylene chloride and chloroform; nitrile solvents such as acetonitrile and benzonitrile; aliphatic hydrocarbon solvents such as hexane, decalin, heptane, octane, pentane, decane, and dodecane; toluene, xylene, mesitylene, etc.
  • Aromatic hydrocarbon solvents such as N, N-dimethylformamide, N, N-dimethylacetamide; Ethyl acetate, butyl acetate, propyl acetate, ethyl caproate, ethyl formate, acetic acid
  • An ester solvent such as mill; acetone, dimethyl sulfoxide, water and the like, which may be used in combination of two or more types may be used alone. When using 2 or more types together, it is preferable to mix a good solvent and a poor solvent.
  • Examples of good solvents used for recrystallization include ether solvents such as diethyl ether, tetrahydrofuran, dioxane, cyclopentyl methyl ether, and diglyme; halogen solvents such as methylene chloride and chloroform; aromatic carbonization such as toluene, xylene, and mesitylene. Hydrogen-based solvents; ester solvents such as ethyl acetate, butyl acetate, propyl acetate, ethyl caproate, ethyl formate, amyl acetate; acetone may be mentioned, and aromatic hydrocarbon solvents are preferred. These may use only 1 type or may use 2 or more types together.
  • ether solvents such as diethyl ether, tetrahydrofuran, dioxane, cyclopentyl methyl ether, and diglyme
  • halogen solvents such as methylene chloride and chloroform
  • aromatic carbonization
  • Examples of the poor solvent used for recrystallization include alcohol solvents such as methanol, ethanol, propanol, ethylene glycol, glycerin, 2-methoxyethanol, and 2-ethoxyethanol; nitrile solvents such as acetonitrile and benzonitrile; hexane, These are aliphatic hydrocarbon solvents such as decalin, heptane, octane, pentane, decane and dodecane, and these may be used alone or in combination of two or more.
  • the amount of the good solvent or the poor solvent used is usually 10 to 100000 parts by mass, preferably 70 to 15000 parts by mass with respect to 100 parts by mass in total of the metal complex represented by the formula (1). It is.
  • the temperature at which the solvent is used is usually ⁇ 80 ° C. to 180 ° C., preferably 0 ° C. to 80 ° C.
  • washing is usually performed in a poor solvent.
  • the poor solvent include alcohol solvents such as methanol, ethanol, propanol, ethylene glycol, glycerin, 2-methoxyethanol, and 2-ethoxyethanol; nitrile solvents such as acetonitrile and benzonitrile; hexane, decalin, and heptane.
  • aliphatic hydrocarbon solvents such as octane, pentane, decane and dodecane; amide solvents such as N, N-dimethylformamide and N, N-dimethylacetamide; acetone, dimethyl sulfoxide and water.
  • one kind of poor solvent is used, but two or more kinds may be used in combination.
  • the amount of the poor solvent used is usually 10 to 100,000 parts by mass, preferably 300 to 10,000 parts by mass with respect to 100 parts by mass in total of the metal complex represented by the formula (1).
  • the temperature when a poor solvent is used is usually ⁇ 80 ° C. to 180 ° C., preferably 0 ° C. to 80 ° C.
  • the chromatography is preferably column chromatography.
  • a filler used for column chromatography silica gel or alumina is preferable.
  • Organic solvent examples include alcohol solvents such as methanol, ethanol, propanol, ethylene glycol, glycerin, 2-methoxyethanol, 2-ethoxyethanol; diethyl ether, tetrahydrofuran, dioxane, cyclopentyl methyl ether, diglyme, etc.
  • alcohol solvents such as methanol, ethanol, propanol, ethylene glycol, glycerin, 2-methoxyethanol, 2-ethoxyethanol; diethyl ether, tetrahydrofuran, dioxane, cyclopentyl methyl ether, diglyme, etc.
  • Ether solvents such as: halogen solvents such as methylene chloride and chloroform; nitrile solvents such as acetonitrile and benzonitrile; aliphatic hydrocarbon solvents such as hexane, decalin, heptane, octane, pentane, decane and dodecane; toluene and xylene , Aromatic hydrocarbon solvents such as mesitylene; and ester solvents such as ethyl acetate, butyl acetate, propyl acetate, ethyl caproate, ethyl formate, and amyl acetate. It may be used in combination with more species.
  • halogen solvents such as methylene chloride and chloroform
  • nitrile solvents such as acetonitrile and benzonitrile
  • aliphatic hydrocarbon solvents such as hexane, decalin, heptane, oct
  • Adsorption is preferably treated with an adsorbent.
  • the adsorbent is preferably graphite carbon black, molecular sieve, zeolite, activated carbon, activated clay, silica gel, alumina or celite. These adsorbents may be used in combination of two or more, and when two or more are used in combination, they may be used simultaneously or separated.
  • Adsorption with an adsorbent is usually performed in a solvent.
  • the solvent for adsorption include alcohol solvents such as methanol, ethanol, propanol, ethylene glycol, glycerin, 2-methoxyethanol, and 2-ethoxyethanol; ether solvents such as diethyl ether, tetrahydrofuran, dioxane, cyclopentyl methyl ether, and diglyme.
  • Solvents Solvents; Halogen solvents such as methylene chloride and chloroform; Nitrile solvents such as acetonitrile and benzonitrile; Aliphatic hydrocarbon solvents such as hexane, decalin, heptane, octane, pentane, decane, and dodecane; Toluene, xylene, mesitylene, etc.
  • Aromatic hydrocarbon solvents such as: N, N-dimethylformamide, N, N-dimethylacetamide and other amide solvents; ethyl acetate, butyl acetate, propyl acetate, ethyl caproate, ethyl formate Ester solvents such as amyl acetate; acetone, dimethyl sulfoxide, and water. Usually, one type of solvent is used, but two or more types may be used in combination.
  • the amount of the solvent used is usually 10 to 100000 parts by mass, preferably 100 to 50000 parts by mass with respect to 100 parts by mass in total of the metal complex represented by the formula (1). .
  • the temperature when using the solvent is usually ⁇ 80 ° C. to 180 ° C., preferably 0 ° C. to 80 ° C.
  • the amount of the adsorbent used is usually 1 to 1000 parts by mass, preferably 10 to 2000 parts by mass with respect to 100 parts by mass in total of the metal complex represented by the formula (1). is there.
  • Examples of the treatment with a dehalogenating agent include International Publication No. 2006/037458, Japanese Unexamined Patent Application Publication No. 2007-220772, Japanese Unexamined Patent Application Publication No. 2007-077078, International Publication No. 2005/084083, Japanese Unexamined Patent Application Publication No. 2012-193351. The method of description is mentioned.
  • Examples of the treatment with a dehalogenating agent include a method of reducing with a hydride reducing agent and a method of reacting a metal or an organometallic compound.
  • hydride reducing agent examples include alkali metal hydrides and alkaline earth metal hydrides such as sodium hydride, lithium hydride, calcium hydride and magnesium hydride; lithium aluminum hydride, diisobutylaluminum hydride and bismuth hydride.
  • (2-methoxyethoxy) aluminum hydride compounds such as sodium aluminum
  • borohydride compounds such as diborane, sodium borohydride and lithium triethylborohydride
  • silicon hydride compounds such as silane and triethylsilane
  • stannane and hydrogen And tin hydride compounds such as tributyltin hydride.
  • examples of the metal include lithium, sodium, magnesium, and zinc.
  • organometallic compound examples include organolithium compounds such as butyllithium and phenyllithium; organomagnesium compounds such as Grignard reagents; and organozinc compounds such as diethylzinc.
  • the treatment with the dehalogenating agent is preferably a method in which a compound represented by the formula: R Z1 -Z Z1 is reacted because C 1 can be further reduced.
  • R Z1 represents an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent.
  • Z Z1 represents a group selected from the group consisting of the substituent group Z.
  • R C2 represents a hydrogen atom, an alkyl group, a cycloalkyl group or an aryl group, these groups may have a substituent.
  • R C2 represents a hydrogen atom, an alkyl group, a cycloalkyl group or an aryl group, these groups may have a substituent.
  • R C2 represents a hydrogen atom, an alkyl group, a cycloalkyl group or an aryl group, these groups may have a substituent.
  • R C2 represents a hydrogen atom, an alkyl group, a cycloalkyl group or an aryl group, these groups may have a substituent.
  • R C2 represents a hydrogen atom, an alkyl group, a cycloalkyl group or an aryl group, these groups may have a substituent.
  • R C2 represents a hydrogen atom, an alkyl group, a cycloalkyl group or an aryl group, these groups may have a substitu
  • a group represented by BF 3 Q ′ (wherein Q ′ represents Li, Na, K, Rb or Cs); -A group represented by MgY '(wherein Y' represents a chlorine atom, a bromine atom or an iodine atom); A group represented by —ZnY ′′ (wherein Y ′′ represents a chlorine atom, a bromine atom or an iodine atom); -Sn (R C3) 3 (wherein, R C3 represents a hydrogen atom, an alkyl group, a cycloalkyl group or an aryl group, these groups may have a substituent. More existing R C3 is The groups may be the same or different and may be linked to each other to form a ring structure together with the tin atoms to which they are bonded.
  • the treatment with the dehalogenating agent is usually performed in a solvent.
  • the solvent used in the reaction include alcohol solvents such as methanol, ethanol, propanol, ethylene glycol, glycerin, 2-methoxyethanol, and 2-ethoxyethanol; ethers such as diethyl ether, tetrahydrofuran, dioxane, cyclopentyl methyl ether, and diglyme.
  • Solvents such as methylene chloride and chloroform; nitrile solvents such as acetonitrile and benzonitrile; hydrocarbon solvents such as hexane, decalin, toluene, xylene and mesitylene; N, N-dimethylformamide, N, N- Amide solvents such as dimethylacetamide; acetone, dimethylsulfoxide, and water.
  • a solvent may be used individually by 1 type, or may use 2 or more types together.
  • the amount of the solvent used is usually 10 to 100,000 parts by mass with respect to 100 parts by mass in total of the metal complex represented by the formula (1).
  • the reaction time is usually 30 minutes to 180 hours.
  • the reaction temperature is usually between the melting point and boiling point of the solvent present in the reaction system.
  • a catalyst such as a palladium catalyst and a nickel catalyst may be used to accelerate the reaction.
  • the palladium catalyst include palladium acetate, bis (triphenylphosphine) palladium (II) dichloride, tetrakis (triphenylphosphine) palladium (0), [1,1′-bis (diphenylphosphino) ferrocene] dichloropalladium ( II), tris (dibenzylideneacetone) dipalladium (0), bis (tri-tert-butylphosphine) palladium (0).
  • nickel catalyst examples include tetrakis (triphenylphosphine) nickel (0), [1,3-bis (diphenylphosphino) propane) nickel (II) dichloride, bis (1,4-cyclooctadiene) nickel (0 ).
  • a catalyst may be used individually by 1 type, or may use 2 or more types together.
  • the amount of the catalyst used is usually 0.00001 to 3 molar equivalents as the amount of transition metal relative to the total number of moles of the metal complex represented by the formula (1).
  • Palladium catalyst or nickel catalyst is used in combination with phosphorus compounds such as triphenylphosphine, tri (o-tolyl) phosphine, tri (tert-butyl) phosphine, tricyclohexylphosphine, 1,1′-bis (diphenylphosphino) ferrocene. May be.
  • a phosphorus compound may be used individually by 1 type, or may use 2 or more types together.
  • a base and / or a phase transfer catalyst may be used to promote the reaction.
  • Examples of the base and phase transfer catalyst include inorganic bases such as sodium carbonate, potassium carbonate, cesium carbonate, potassium fluoride, cesium fluoride, tripotassium phosphate; tetrabutylammonium fluoride, tetraethylammonium hydroxide, tetrahydroxide Examples thereof include organic bases such as butylammonium; phase transfer catalysts such as tetrabutylammonium chloride and tetrabutylammonium bromide. Each of the base and the phase transfer catalyst may be used alone or in combination of two or more.
  • the amount of the base and phase transfer catalyst used is usually 0.001 to 100 molar equivalents relative to the total number of moles of the metal complex represented by the formula (1).
  • the molecular weight of the compound represented by the formula (H) is usually 1 ⁇ 10 2 to 5 ⁇ 10 4 , preferably 2 ⁇ 10 2 to 1 ⁇ 10 4 , more preferably 3 ⁇ 10 2. ⁇ a 5 ⁇ 10 3, more preferably from 4 ⁇ 10 2 ⁇ 2.5 ⁇ 10 3, particularly preferably from 5 ⁇ 10 2 ⁇ 1.5 ⁇ 10 3.
  • n H1 is preferably an integer of 0 or more, 3 or less, more preferably an integer of 0 or more, 2 or less, still more preferably 0 or 1, and particularly preferably 0 because synthesis is easy.
  • n H2 is preferably an integer of 1 or more and 7 or less, more preferably an integer of 1 or more and 5 or less, and even more preferably 1 or more, since initial deterioration of the light emitting device of this embodiment is suppressed. It is an integer of 3 or less, particularly preferably 1 or 2, and particularly preferably 1.
  • the monocyclic aromatic hydrocarbon ring is preferably a benzene ring which may have a substituent.
  • the number of carbon atoms of the aromatic hydrocarbon ring of the condensed ring is usually 7 to 60, preferably 9 to 30, not including the number of carbon atoms of the substituent. Preferably, it is 10-18.
  • Examples of the condensed aromatic hydrocarbon ring in ring R H1 and ring R H2 include a naphthalene ring, anthracene ring, phenanthrene ring, dihydrophenanthrene ring, naphthacene ring, fluorene ring, spirobifluorene ring, indene ring, and pyrene ring.
  • Perylene ring and chrysene ring preferably naphthalene ring, anthracene ring, phenanthrene ring, dihydrophenanthrene ring, fluorene ring or spirobifluorene ring, more preferably naphthalene ring, fluorene ring or spirobifluorene ring More preferably, it is a fluorene ring or a spirobifluorene ring, and particularly preferably a fluorene ring, and these rings optionally have a substituent.
  • the number of carbon atoms of the monocyclic aromatic heterocyclic ring does not include the number of carbon atoms of the substituent, and is preferably 2 to 5, more preferably 3 to 5.
  • Examples of the monocyclic aromatic heterocycle in the ring R H1 and the ring R H2 include a pyrrole ring, a diazole ring, a triazole ring, a pyridine ring, a diazabenzene ring, and a triazine ring, and preferably a pyridine ring or a diazabenzene ring. Yes, these rings may have a substituent.
  • the number of carbon atoms of the condensed aromatic heterocyclic ring is usually 2 to 60, preferably 4 to 30, excluding the number of carbon atoms of the substituent. Preferably, it is 6-20.
  • Examples of the condensed aromatic heterocycle in the ring R H1 and the ring R H2 include, for example, an azanaphthalene ring, diazanaphthalene ring, triazanaphthalene ring, indole ring, carbazole ring, azacarbazole ring, diazacarbazole ring, dibenzofuran Ring, dibenzothiophene ring, phenoxazine ring, phenothiazine ring, acridine ring, 9,10-dihydroacridine ring, acridone ring, phenazine ring and 5,10-dihydrophenazine ring, preferably azanaphthalene ring, diaza ring Naphthalene ring, carbazole ring, azacarbazole ring, diazacarbazole ring, dibenzofuran ring, dibenzothiophene ring, phenoxazine ring,
  • Examples of the substituent that the ring R H1 and the ring R H2 may have include an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, and a substituted amino group.
  • a fluorine atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, a monovalent heterocyclic group or a substituted amino group is more preferable, and an alkyl group, a cycloalkyl group, an aryl group, a monovalent group
  • a heterocyclic group or a substituted amino group is more preferred, an alkyl group, a cycloalkyl group, or a group represented by the formula (DA), formula (DB) or formula (DC) is particularly preferred, and an alkyl group or a cycloalkyl group is preferred. Particularly preferred, these groups may further have a substituent.
  • Examples of the aryl group, monovalent heterocyclic group and substituted amino group in the substituents that the ring R H1 and the ring R H2 may have include and the preferred ranges of the ring L 1 and the ring L 2 , respectively.
  • Examples of the aryl group, monovalent heterocyclic group and substituted amino group in the substituent which may be the same as the preferred range are the same.
  • Examples and preferred ranges of the aryl group, monovalent heterocyclic group and substituted amino group in the substituent which the substituent which the ring R H1 and the ring R H2 may have further have are respectively Examples of the aryl group, monovalent heterocyclic group, and substituted amino group in the substituent that L 1 and ring L 2 may have are the same as the preferred range.
  • One combination of the ring R H1 and the ring R H2 is a condensed aromatic hydrocarbon ring or a condensed aromatic heterocyclic ring, and the other is a monocyclic aromatic hydrocarbon ring or a monocyclic aromatic heterocyclic ring. More preferably, one is a condensed aromatic hydrocarbon ring or condensed aromatic heterocycle, the other is a monocyclic aromatic hydrocarbon ring, and one is a condensed aromatic ring More preferably, it is an aromatic hydrocarbon ring, and the other is a monocyclic aromatic hydrocarbon ring.
  • X H1 is preferably a single bond, an oxygen atom or a sulfur atom, and more preferably a single bond.
  • R XH1 is preferably an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, more preferably an aryl group or a monovalent heterocyclic group, still more preferably an aryl group. These groups may have a substituent.
  • R XH1 ′ is preferably an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group or a substituted amino group, more preferably an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic ring.
  • Examples and preferred ranges of the substituent that R XH1 and R XH1 ′ may have are examples of the substituent that the ring R H1 and the ring R H2 may further have. And the same as the preferred range.
  • the group represented by the formula (H1-1) is preferably a group represented by the formula (H1-1A), the formula (H1-1B) or the formula (H1-1C), and more preferably A group represented by the formula (H1-1A) or the formula (H1-1B), and more preferably a group represented by the formula (H1-1A).
  • X H2 and X H3 are preferably a single bond, a group represented by —N (R XH2 ) —, or a group represented by —C (R XH2 ′ ) 2 —, more preferably a single group.
  • At least one of X H2 and X H3 is preferably a single bond, and X H3 is more preferably a single bond.
  • X H2 and X H3 are a single bond
  • the other is an oxygen atom, a sulfur atom, a group represented by —N (R XH2 ) —, or —C (R XH2 ′ ) 2 —.
  • R XH2 and R XH2 'examples and preferred ranges are respectively, R XH1 and R XH1' is the same as the examples and preferable range.
  • R XH2 and R XH2 ′ may have and preferred ranges thereof are examples of the substituent that the ring R H1 and the ring R H2 may further have. And the same as the preferred range.
  • Z H1 to Z H12 are preferably carbon atoms.
  • R H1 to R H12 are preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, a monovalent heterocyclic group or a substituted amino group.
  • an alkyl group, an aryl group, a monovalent heterocyclic group or a substituted amino group and a hydrogen atom, an alkyl group, a cycloalkyl group, or a formula (DA), formula (DB) or formula (DC)
  • DA formula
  • DB formula
  • DC formula
  • the group represented is more preferable, a hydrogen atom, an alkyl group or a cycloalkyl group is particularly preferable, and a hydrogen atom is particularly preferable, and these groups may further have a substituent.
  • R H1 to R H12 may have and preferred ranges thereof include examples of the substituent that the ring R H1 and the ring R H2 may further have and It is the same as a preferable range.
  • R H1 and R H2 , R H3 and R H4 , R H5 and R H6 , R H6 and R H7 , R H7 and R H8 , R H9 and R H10 , R H10 and R H11 , and R H11 and R H12 are These may be bonded to each other to form a ring together with the carbon atoms to which they are bonded, but it is preferable not to form a ring.
  • L H1 is preferably an alkylene group, a cycloalkylene group, an arylene group or a divalent heterocyclic group, more preferably an arylene group or a divalent heterocyclic group, and even more preferably an arylene group. These groups may have a substituent.
  • the arylene group represented by L H1 is preferably a phenylene group, a naphthalene diyl group, a fluorenediyl group, a phenanthrene diyl group or a dihydrophenanthrene diyl group, and more preferably a formula (A-1) to a formula ( A-9), a group represented by formula (A-19) or formula (A-20), more preferably a group represented by formula (A-1) to formula (A-3). Particularly preferred is a group represented by the formula (A-1) or (A-2), and particularly preferred is a group represented by the formula (A-2). These groups have substituents. You may have.
  • the divalent heterocyclic group represented by L H1 is preferably a group represented by the formula (AA-1) to the formula (AA-34), more preferably a formula (AA-1) to Groups represented by formula (AA-6), formula (AA-10) to formula (AA-21), or formula (AA-24) to formula (AA-34), more preferably formula (AA- 1) to groups represented by formula (AA-4), formula (AA-10) to formula (AA-15), or formula (AA-29) to formula (AA-34), particularly preferably A group represented by formula (AA-2), formula (AA-4), formula (AA-10), formula (AA-12) or formula (AA-14).
  • Examples and preferred ranges of the substituent that L H1 may have are the same as examples and preferred ranges of the substituent that the ring R H1 and ring R H2 may have.
  • Examples and preferred ranges of the substituent that the substituent which L H1 may have may further have a substituent which the ring R H1 and ring R H2 may have further include. Examples of the preferred substituents and the preferred ranges are the same.
  • R H1 ′ is preferably an aryl group or a monovalent heterocyclic group, more preferably an aryl group, and these groups optionally have a substituent.
  • R H1 ′ examples and preferred ranges of the substituent that R H1 ′ may have are examples and preferred ranges of the substituent that the ring R H1 and ring R H2 may further have. Is the same.
  • the number of carbon atoms of the aromatic hydrocarbon group does not include the number of carbon atoms of the substituent, and is usually 6 to 60, preferably 6 to 30, and more preferably 6 to 18.
  • the aromatic hydrocarbon group includes benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, dihydrophenanthrene ring, naphthacene ring, fluorene ring, spirobifluorene ring, indene ring, pyrene ring, perylene ring, chrysene ring Or a group formed by removing one or more hydrogen atoms directly bonded to the carbon atoms constituting the ring from a condensed ring of these rings, preferably a benzene ring, naphthalene ring, phenanthrene ring, dihydro A phenanthrene ring, a fluorene ring, a spirobifluorene ring, or a group formed by removing one or more hydrogen atoms directly bonded to the carbon atoms constituting the ring from a condensed ring of these rings, more preferably
  • a group formed by removing one or more hydrogen atoms directly bonded particularly preferably a group formed by removing one or more hydrogen atoms directly bonded to a carbon atom constituting the ring from a benzene ring, and these groups May have a substituent.
  • the number of carbon atoms of the aromatic heterocyclic group is usually 1 to 60, preferably 2 to 40, more preferably 3 to 20, excluding the number of carbon atoms of the substituent. More preferably, it is 3-10.
  • the aromatic heterocyclic group includes pyrrole ring, furan ring, thiophene ring, oxadiazole ring, thiadiazole ring, thiazole ring, oxazole ring, isothiazole ring, isoxazole ring, benzooxadiazole ring, benzo Thiadiazole ring, benzothiazole ring, benzoxazole ring, pyridine ring, diazabenzene ring, triazine ring, azanaphthalene ring, diazanaphthalene ring, triazanaphthalene ring, tetraazanaphthalene ring, azaanthracene ring, diazaanthracene ring, triaza Anthracene ring, tetraazaanthracene ring, azaphenanthrene ring, diazaphenanthrene ring, triazaphenanthrene ring, tetraaza
  • a group formed by removing one or more hydrogen atoms directly bonded to a constituent carbon atom, particularly preferably one or more hydrogen atoms directly bonded to a carbon atom constituting the ring from a pyridine ring, a pyrimidine ring or a triazine ring Is a group excluding Preferably, it is a group formed by removing one or more hydrogen atoms directly bonded to the carbon atoms constituting the ring from the triazine ring, and these groups may have a substituent.
  • Ar H2 is excellent in the luminance lifetime (initial deterioration) of the light emitting device of the present embodiment, and is preferably a benzene ring, a fluorene ring, a spirobifluorene ring, a pyridine ring, a diazabenzene ring, a triazine ring, a quinoline ring, an isoquinoline ring, A quinazoline ring, a quinoxaline ring, a dibenzofuran ring, a dibenzothiophene ring or a carbazole ring, a group formed by removing one or more hydrogen atoms directly bonded to the carbon atoms constituting the ring, more preferably a benzene ring, a pyridine ring, A group formed by removing one or more hydrogen atoms directly bonded to a carbon atom constituting a ring from a pyrimidine ring or a triazine ring, and more
  • Ar H2 may have a substituent (different from the group represented by the formula (1H ′) described later. The same shall apply hereinafter) as an alkyl group, cycloalkyl group, alkoxy group, cycloalkoxy.
  • Group, aryl group, aryloxy group, monovalent heterocyclic group, substituted amino group or fluorine atom are preferred, alkyl group, cycloalkyl group, alkoxy group, cycloalkoxy group, aryl group, monovalent heterocyclic group or substituted group
  • An amino group is more preferable, an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group or a substituted amino group is more preferable, and an alkyl group, a cycloalkyl group, a formula (DA), a formula (D- B) or a group represented by formula (DC) is particularly preferred, and a group represented by formula (DA), formula (DB) or formula (DC) is
  • aryl group, monovalent heterocyclic group and substituted amino group in the substituent that Ar H2 may have and preferred ranges thereof are the substituents that ring L 1 and ring L 2 may have, respectively. Are the same as the examples and preferred ranges of the aryl group, monovalent heterocyclic group and substituted amino group.
  • Examples of aryl groups, monovalent heterocyclic groups, and substituted amino groups in the substituents that the substituent that Ar H2 may have further may further have the ring L 1 and the ring L, respectively.
  • Examples of the aryl group, monovalent heterocyclic group and substituted amino group in the substituent that 2 may have are the same as the preferred range.
  • the compound represented by the formula (H) is preferably represented by the formula (H′-1) to the formula (H′-14) because the luminance lifetime (initial deterioration) of the light emitting device of this embodiment is more excellent. More preferred are compounds represented by formula (H′-1) to formula (H′-5), and still more preferred are formula (H′-4) or formula (H′-5).
  • the compound represented by the formula (H′-4) is particularly preferable.
  • R 1H represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a substituted amino group, a fluorine atom, or a compound represented by the formula (1H ′ ), And these groups optionally have a substituent.
  • a plurality of R 1H may be the same or different. However, at least one of a plurality of R 1H is a group represented by the formula (1H ′).
  • n H2 are preferably groups represented by the formula (1H ′).
  • R 1H is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, a monovalent heterocyclic group, a substituted amino group, or a group represented by the formula (1H ′).
  • the group represented by the formula (1H ′) is preferably represented by the formula (1H′-1) to the formula (1H′-27) because the luminance lifetime (initial deterioration) of the light emitting device of this embodiment is more excellent. And more preferably a group represented by formula (1H′-1) to formula (1H′-6), formula (1H′-14), formula (1H′-16), formula (1H′-17), A group represented by formula (1H'-19), formula (1H'-21) or formula (1H'-27), more preferably formula (1H'-2) or formula (1H'-27) And particularly preferably a group represented by the formula (1H′-27).
  • the group represented by Ar H1 is preferably a group represented by the formula (ArH1-1) to the formula (ArH1-32) because the luminance lifetime (initial deterioration) of the light emitting device of this embodiment is more excellent. And more preferably a group represented by the formula (ArH1-1) to the formula (ArH1-16), and still more preferably a formula (ArH1-1) to a formula (ArH1-4) or a formula (ArH1-9). To a group represented by the formula (ArH1-12), particularly preferably a group represented by the formula (ArH1-1) or the formula (ArH1-10), and particularly preferably a group represented by the formula (ArH1-1). It is group represented by these.
  • R b , R c and R e are each independently a hydrogen atom, alkyl group, cycloalkyl group, alkoxy group, cycloalkoxy group, aryl group, aryloxy group, monovalent heterocyclic group, substituted amino group or fluorine Represents an atom, and these groups optionally have a substituent.
  • a plurality of R b and R e may be the same or different, and may be bonded to each other to form a ring together with the carbon atom to which each is bonded.
  • Examples and preferred ranges of R b are the same as examples and preferred ranges of R H1 to R H12 .
  • Examples and preferred ranges of substituents that R b may have include examples and preferred ranges of substituents that ring R H1 and ring R H2 may further have. The same.
  • R c and R e are each the same as the examples and the preferred ranges of R XH1 and R XH1 '.
  • Examples and preferred ranges of the substituent that R c and R e may have include examples of the substituent that the ring R H1 and the ring R H2 may further have, and It is the same as a preferable range.
  • Examples and preferred ranges of the aryl group, monovalent heterocyclic group and substituted amino group in R 1H are the aryl group and monovalent heterocyclic ring in the substituent that the ring L 1 and ring L 2 may have, respectively. Examples and preferred ranges of the group and substituted amino group are the same.
  • Examples and preferred ranges of the substituent that R 1H may have include examples and preferred ranges of the substituent that the ring R H1 and ring R H2 may further have. The same.
  • Examples of the compounds represented by formula (H′-1) to formula (H′-14) include compounds represented by formula (H ′′ -1) to formula (H ′′ -33). Preferably, it is a compound represented by the formula (H ′′ -1) to the formula (H ′′ -21), more preferably the formula (H ′′ -1) to the formula (H ′′ -11). And more preferably compounds represented by formula (H ′′ -1) to formula (H ′′ -8).
  • R 2H represents an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group, a substituted amino group, or a group represented by the formula (1H ′), and these groups have a substituent. You may do it.
  • a plurality of R 2H may be the same or different. However, at least one of a plurality of R 2H is a group represented by the formula (1H ′).
  • n H2 are preferably groups represented by the formula (1H ′).
  • R 2H is preferably an alkyl group, a cycloalkyl group, a group represented by the formula (DA), formula (DB), formula (DC) or formula (1H ′), more preferably Is a group represented by the formula (DA), formula (DB), formula (DC) or formula (1H ′), more preferably the formula (DA) or formula (1H ′).
  • R 2H is preferably an alkyl group, a cycloalkyl group, a group represented by the formula (DA), formula (DB), formula (DC) or formula (1H ′), more preferably Is a group represented by the formula (DA), formula (DB), formula (DC) or formula (1H ′), more preferably the formula (DA) or formula (1H ′).
  • R 2H is preferably an alkyl group, a cycloalkyl group, a group represented by the formula (DA), formula (DB), formula (DC) or formula (1H ′), more preferably Is a group represented by the formula (DA), formula (DB),
  • Examples and preferred ranges of the aryl group, monovalent heterocyclic group and substituted amino group in R 2H are the aryl group and monovalent heterocyclic ring in the substituent which ring L 1 and ring L 2 may have, respectively. Examples and preferred ranges of the group and substituted amino group are the same.
  • Examples and preferred ranges of the substituent that R 2H may have include examples and preferred ranges of the substituent that the ring R H1 and ring R H2 may further have. The same.
  • Examples of the compounds represented by the formula (H ′′ -1) to the formula (H ′′ -33) include those represented by the formula (H ′ ′′-1) to the formula (H ′ ′′-33).
  • R 3H represents an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group or a substituted amino group or a group represented by these groups, and these groups optionally have a substituent.
  • a plurality of R 3H may be the same or different.
  • Ar H1 represents the same meaning as described above. ]
  • Examples of the compound represented by the formula (H) include a compound represented by the following formula. *
  • the compound represented by the formula (H) is Aldrich, Luminescence Technologymin Corp. Etc. are available.
  • the purity of the compound represented by the formula (H) contained in the composition is preferably 99.0% or more, 99 It is more preferably 2% or more, and further preferably 99.5% or more.
  • the method for reducing the amount of chlorine atoms as impurities contained in the compound represented by formula (H) is the same as the method for reducing C 1 described above.
  • the amount (C H ) of chlorine atoms as impurities contained in the compound represented by the formula (H) is not limited, but is usually 12 ppm by mass or less based on the total amount of the compound represented by the formula (H). Since the initial deterioration of the light emitting device according to this embodiment is suppressed, it is preferably 5.22 ppm by mass or less, more preferably 5 ppm by mass or less, still more preferably 4 ppm by mass or less, Especially preferably, it is 3 mass ppm or less, Most preferably, it is 2.8 mass ppm or less.
  • the amount of chlorine atom (C H ) as an impurity contained in the compound represented by the formula (H) is usually preferably 0.01 mass ppm or more from the viewpoint of the detection limit in measurement. From the viewpoint of quantum efficiency (hereinafter also referred to as “EQE”), it is preferably 4.00 mass ppm or more, and more preferably 5.21 mass ppm or more.
  • Example D1 A specific calculation method of C H will be described using Example D1 and Example D2. In addition, it can calculate similarly also in another Example, a comparative example, etc.
  • Example D1 the amount of chlorine atoms as an impurity of the compound HM1-p measured by automatic combustion-ion chromatography is 2.8 ppm by mass.
  • Example D2 the amount of chlorine atom as an impurity of compound HM1-p and the amount of chlorine atom as an impurity of compound HM1-c measured by automatic combustion-ion chromatography were 2.8 masses, respectively. ppm and 244.6 mass ppm.
  • composition is a composition in which a metal complex represented by the formula (1) and a compound represented by the formula (H) are blended, and chlorine as an impurity contained in the composition
  • the amount of atoms is 12 mass ppm or less with respect to the total amount of solids contained in the composition.
  • solid content means the component which is solid in 25 degreeC.
  • the metal complex represented by the formula (1) may be blended singly or in combination of two or more.
  • the compound represented by Formula (H) may be mix
  • the total amount of chlorine atoms as impurities contained in the metal complex represented by formula (1) and chlorine atoms as impurities contained in the compound represented by formula (H) It is preferable that it is 12 mass ppm or less with respect to the solid content whole quantity mix
  • the metal represented by the formula (1) when the solid content contained in the composition according to this embodiment is only the metal complex represented by the formula (1) and the compound represented by the formula (H), the metal represented by the formula (1)
  • the total amount (mass ppm) of chlorine atoms as impurities contained in the complex and chlorine atoms as impurities contained in the compound represented by the formula (H) is the same as the metal complex represented by the formula (1) and the formula (H).
  • the ratio of the mass of the metal complex represented by formula (1) to the total mass of the compound represented by formula (1) is W 1
  • the metal complex represented by formula (1) and the compound represented by formula (H) When the ratio of the total mass of the compound represented by the formula (H) to the total mass of WH is WH, it is represented by C 1 W 1 + C H WH.
  • W 1 is usually 0.0001 to 0.90, and is preferably 0.01 to 0.60, since initial deterioration of the light emitting device according to this embodiment is further suppressed, and is preferably 0.10 to More preferably, it is 0.50.
  • W H is usually 0.0001 to 0.9999, and is preferably 0.40 to 0.95, since initial deterioration of the light emitting device according to this embodiment is further suppressed, and is preferably 0.50 to 0.95. More preferably, it is 0.90.
  • Example D1 A specific calculation method of WH will be described using Example D1 and Example D2 described later. In addition, it can calculate similarly also in another Example, a comparative example, etc.
  • the specific method for calculating W 1 is the same as the specific method for calculating W H.
  • W 1 in Example D1 is determined as follows in the same manner as the specific method for calculating WH in Example D1 described above.
  • C 1 W 1 + C H W H can be calculated by calculating C 1 , C H , W 1 and W H.
  • C 1 W 1 + C H W H in Example D1 is obtained as follows.
  • C 1 W 1 + C H W H in Example D2 is determined as follows.
  • the amount of chlorine atoms as impurities contained in the composition according to the present embodiment is preferably 8 mass ppm or less, more preferably 6 mass ppm, since initial deterioration of the light emitting device according to the present embodiment is suppressed. Or less, more preferably 4 ppm by mass or less, particularly preferably 3 ppm by mass or less, particularly preferably 2 ppm by mass or less, and still more preferably 1.41 ppm by mass or less.
  • the amount of chlorine atoms (C 1 W 1 + C H W H ) as impurities contained in the composition is usually in terms of the detection limit in measurement with respect to the total amount of the composition. Is preferably 0.01 mass ppm or more.
  • the maximum peak wavelength of the emission spectrum of the metal complex represented by the formula (1) is 500 nm to 550 nm, from the viewpoint of external quantum efficiency (hereinafter referred to as “EQE”), it is 2.00 mass ppm or more. It is preferable that it is 2.61 mass ppm or more.
  • the compounding amount of the metal complex represented by the formula (1) in the composition according to the present embodiment is usually 0.01 to 90% by mass, preferably 1 based on the total amount of solid content compounded in the composition. -60 mass%, more preferably 10-50 mass%.
  • the compounding amount of the compound represented by the formula (H) in the composition according to the present embodiment is usually 0.01 to 99.99% by mass, preferably based on the total solid content compounded in the composition. It is 40 to 95% by mass, and more preferably 50 to 90% by mass.
  • the composition according to this embodiment further contains at least one material selected from the group consisting of a hole transport material, a hole injection material, an electron transport material, an electron injection material, a light emitting material, an antioxidant, and a solvent. It may be. However, the hole transport material, the hole injection material, the electron transport material, the electron injection material, and the light emitting material are different from the metal complex represented by the formula (1) and the compound represented by the formula (H). These materials are also preferably reduced in chlorine atom content by the above-described purification and / or dehalogenating agent.
  • the hole transport material is classified into a low molecular compound and a high molecular compound, and is preferably a high molecular compound.
  • the hole transport material may have a crosslinking group.
  • polymer compound examples include polyvinyl carbazole and derivatives thereof; polyarylene having an aromatic amine structure in the side chain or main chain and derivatives thereof.
  • the polymer compound may be a compound to which an electron accepting site is bonded. Examples of the electron accepting site include fullerene, tetrafluorotetracyanoquinodimethane, tetracyanoethylene, and trinitrofluorenone.
  • the said high molecular compound may have the following structural units.
  • the compounding amount of the hole transport material is usually when the total of the metal complex represented by the formula (1) and the compound represented by the formula (H) is 100 parts by mass. 1 to 400 parts by mass, preferably 5 to 150 parts by mass.
  • the hole transport material may be used alone or in combination of two or more.
  • Electron transport materials are classified into low molecular weight compounds and high molecular weight compounds.
  • the electron transport material may have a crosslinking group.
  • low molecular weight compound examples include metal complexes having 8-hydroxyquinoline as a ligand, oxadiazole, anthraquinodimethane, benzoquinone, naphthoquinone, anthraquinone, tetracyanoanthraquinodimethane, fluorenone, diphenyldicyanoethylene, and diphenoquinone. And derivatives thereof.
  • polymer compound examples include polyphenylene, polyfluorene, and derivatives thereof.
  • the polymer compound may be doped with a metal.
  • the amount of the electron transport material is usually 100 parts by mass when the total of the metal complex represented by the formula (1) and the compound represented by the formula (H) is 100 parts by mass.
  • the amount is 1 to 400 parts by mass, preferably 5 to 150 parts by mass.
  • the electron transport material may be used alone or in combination of two or more.
  • the hole injection material and the electron injection material are each classified into a low molecular compound and a high molecular compound.
  • the hole injection material and the electron injection material may have a crosslinking group.
  • low molecular weight compounds include metal phthalocyanines such as copper phthalocyanine; carbon; metal oxides such as molybdenum and tungsten; and metal fluorides such as lithium fluoride, sodium fluoride, cesium fluoride, and potassium fluoride.
  • metal phthalocyanines such as copper phthalocyanine
  • carbon such as carbon
  • metal oxides such as molybdenum and tungsten
  • metal fluorides such as lithium fluoride, sodium fluoride, cesium fluoride, and potassium fluoride.
  • polymer compound examples include polyaniline, polythiophene, polypyrrole, polyphenylene vinylene, polythienylene vinylene, polyquinoline and polyquinoxaline, and derivatives thereof; conductive polymers such as polymers containing an aromatic amine structure in the main chain or side chain. A functional polymer.
  • the amount of the hole injection material and the electron injection material is 100 masses of the total of the metal complex represented by the formula (1) and the compound represented by the formula (H), respectively.
  • the amount is usually 1 to 400 parts by mass, preferably 5 to 150 parts by mass.
  • the electron injection material and the hole injection material may be used alone or in combination of two or more.
  • the electrical conductivity of the conductive polymer is preferably 1 ⁇ 10 ⁇ 5 S / cm to 1 ⁇ 10 3 S / cm.
  • the conductive polymer can be doped with an appropriate amount of ions.
  • the kind of ions to be doped is an anion for a hole injection material and a cation for an electron injection material.
  • the anion include polystyrene sulfonate ion, alkylbenzene sulfonate ion, and camphor sulfonate ion.
  • the cation include lithium ion, sodium ion, potassium ion, and tetrabutylammonium ion.
  • the ions to be doped may be used alone or in combination of two or more.
  • Luminescent materials (different from the metal complex represented by the formula (1) and the compound represented by the formula (H)) are classified into low molecular compounds and high molecular compounds.
  • the light emitting material may have a crosslinking group.
  • Examples of the low molecular weight compound include naphthalene and derivatives thereof, anthracene and derivatives thereof, and perylene and derivatives thereof.
  • Examples of the polymer compound include phenylene group, naphthalenediyl group, anthracenediyl group, fluorenediyl group, phenanthrene diyl group, dihydrophenanthenediyl group, group represented by formula (X), carbazole diyl group, phenoxazine diyl. And a polymer compound containing a group, a phenothiazinediyl group, a pyrenediyl group, and the like.
  • the light emitting material preferably contains a triplet light emitting complex and a polymer compound.
  • triplet light-emitting complex examples include the metal complexes shown below.
  • the blending amount of the light emitting material is usually 0 when the total of the metal complex represented by the formula (1) and the compound represented by the formula (H) is 100 parts by mass. 1 to 400 parts by mass, preferably 1 to 150 parts by mass.
  • Fluorescent materials may be used alone or in combination of two or more.
  • the antioxidant may be any compound that is soluble in the same solvent as the metal complex represented by the formula (1) and the compound represented by the formula (H) and does not inhibit light emission and charge transport.
  • System antioxidants and phosphorus antioxidants are examples of compounds that are soluble in the same solvent as the metal complex represented by the formula (1) and the compound represented by the formula (H) and does not inhibit light emission and charge transport.
  • the blending amount of the antioxidant is usually 100 parts by mass when the total of the metal complex represented by the formula (1) and the compound represented by the formula (H) is 100 parts by mass. 0.001 to 10 parts by mass.
  • Antioxidants may be used alone or in combination of two or more.
  • a composition containing a metal complex represented by the formula (1), a compound represented by the formula (H), and a solvent (hereinafter also referred to as “ink”) is prepared by spin coating, casting, micro Gravure coating method, gravure coating method, bar coating method, roll coating method, wire bar coating method, dip coating method, spray coating method, screen printing method, flexographic printing method, offset printing method, ink jet printing method, capillary coating method, It can be suitably used for a coating method such as a nozzle coating method.
  • the viscosity of the ink may be adjusted depending on the type of coating method, but when a solution such as an inkjet printing method is applied to a printing method that passes through a discharge device, clogging and flight bending at the time of discharge are less likely to occur.
  • the pressure is preferably 1 to 20 mPa ⁇ s at 25 ° C.
  • the solvent contained in the ink is preferably a solvent that can dissolve or uniformly disperse the solid content in the ink.
  • the solvent include chlorine solvents such as 1,2-dichloroethane, 1,1,2-trichloroethane, chlorobenzene and o-dichlorobenzene; ether solvents such as THF, dioxane, anisole and 4-methylanisole; Aromatic hydrocarbon solvents such as xylene, mesitylene, ethylbenzene, n-hexylbenzene, cyclohexylbenzene; cyclohexane, methylcyclohexane, n-pentane, n-hexane, n-heptane, n-octane, n-nonane, n- Aliphatic hydrocarbon solvents such as decane, n-dodecane, and bicyclohexyl; ketone solvents such as acetone,
  • the compounding amount of the solvent is usually 1000 to 100,000 parts by mass when the total of the metal complex represented by the formula (1) and the compound represented by the formula (H) is 100 parts by mass.
  • the amount is preferably 2000 to 20000 parts by mass.
  • the light emitting device is a light emitting device including an organic layer containing the composition according to the present embodiment.
  • an electrode composed of an anode and a cathode and an organic layer containing the composition according to this embodiment provided between the electrodes may be included.
  • the organic layer containing the composition according to this embodiment is usually one or more layers selected from the group consisting of a light emitting layer, a hole transport layer, a hole injection layer, an electron transport layer, and an electron injection layer, and emits light.
  • a layer is preferred.
  • Each of these layers contains a light emitting material, a hole transport material, a hole injection material, an electron transport material, and an electron injection material. These layers can be formed using, for example, the ink described above.
  • the light emitting element has a light emitting layer between the anode and the cathode.
  • the light emitting device according to the present embodiment preferably has at least one layer of a hole injection layer and a hole transport layer between the anode and the light emitting layer from the viewpoint of hole injection property and hole transport property. From the viewpoint of electron injecting property and electron transporting property, it is preferable to have at least one layer of an electron injecting layer and an electron transporting layer between the cathode and the light emitting layer.
  • the material of the hole transport layer, the material of the electron transport layer, and the material of the light emitting layer are used as solvents used in forming the layer adjacent to the hole transport layer, the electron transport layer, and the light emitting layer, respectively, in the production of the light emitting element.
  • the material When dissolved, the material preferably has a cross-linking group in order to avoid dissolution of the material in the solvent. After forming each layer using a material having a crosslinking group, the layer can be insolubilized by crosslinking the crosslinking group.
  • each layer such as a light emitting layer, a hole transport layer, an electron transport layer, a hole injection layer, and an electron injection layer
  • a low molecular weight compound for example, from powder
  • the method include a vacuum deposition method and a method of forming a film from a solution or a molten state.
  • a polymer compound for example, a method of forming a film from a solution or a molten state is used.
  • the order, number and thickness of the layers to be laminated are adjusted in consideration of the external quantum efficiency and the luminance lifetime.
  • the substrate in the light-emitting element may be any substrate that can form electrodes and does not change chemically when the organic layer is formed.
  • the substrate is made of a material such as glass, plastic, or silicon.
  • the electrode farthest from the substrate is preferably transparent or translucent.
  • Examples of the material for the anode include conductive metal oxides and translucent metals, preferably indium oxide, zinc oxide, tin oxide; indium tin oxide (ITO), indium zinc oxide, etc.
  • conductive metal oxides and translucent metals preferably indium oxide, zinc oxide, tin oxide; indium tin oxide (ITO), indium zinc oxide, etc.
  • ITO indium tin oxide
  • Examples of the material of the cathode include metals such as lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium, barium, aluminum, zinc, indium; two or more kinds of alloys thereof; Alloys of at least one species and at least one of silver, copper, manganese, titanium, cobalt, nickel, tungsten, and tin; and graphite and graphite intercalation compounds.
  • Examples of the alloy include a magnesium-silver alloy, a magnesium-indium alloy, a magnesium-aluminum alloy, an indium-silver alloy, a lithium-aluminum alloy, a lithium-magnesium alloy, a lithium-indium alloy, and a calcium-aluminum alloy.
  • Each of the anode and the cathode may have a laminated structure of two or more layers.
  • planar anode and cathode may be arranged so as to overlap each other.
  • pattern-like light emission a method in which a mask having a pattern-like window is provided on the surface of a planar light-emitting element, a layer that is desired to be a non-light-emitting portion is formed extremely thick and substantially non-light-emitting. There is a method, a method of forming an anode or a cathode, or both electrodes in a pattern.
  • a segment type display device capable of displaying numbers, characters, and the like can be obtained.
  • both the anode and the cathode may be formed in stripes and arranged orthogonally. Partial color display and multicolor display are possible by a method of separately coating a plurality of types of polymer compounds having different emission colors, or a method using a color filter or a fluorescence conversion filter.
  • the dot matrix display device can be driven passively or can be driven actively in combination with TFTs. These display devices can be used for displays of computers, televisions, portable terminals and the like.
  • the planar light emitting element can be suitably used as a planar light source for backlight of a liquid crystal display device or a planar illumination light source. If a flexible substrate is used, it can be used as a curved light source and display device.
  • one aspect of the present embodiment relates to a composition in which a metal complex represented by the formula (1) and a compound represented by the formula (H) having a residual chlorine concentration of 12 mass ppm or less are blended. It may be.
  • the residual chlorine concentration of the compound represented by the formula ( H ) is synonymous with the amount of chlorine atoms (C H ) as impurities contained in the compound represented by the formula (H).
  • the residual chlorine concentration of the compound represented by the formula (H) is C H (ppm)
  • the blending amount of the compound represented by the formula (H) with respect to the total solid content blended in the composition when the ratio (mass ratio) was W H the composition may be those satisfying the following formula (i). C H ⁇ W H ⁇ 12 (i)
  • the metal complex represented by the formula (1) with respect to the total amount of solid content blended in the composition is C 1 (mass ppm) as the residual chlorine concentration of the metal complex represented by the formula (1).
  • the composition may be those satisfying the following formula (ii). C 1 ⁇ W 1 + C H ⁇ W H ⁇ 12 (ii)
  • a step of preparing a crude purified product of the compound represented by the formula (H) having a residual chlorine concentration exceeding 12 mass ppm, and a residual chlorine concentration of 12 mass ppm from the crude purified product comprising: a step of obtaining a purified product of a compound represented by the following formula (H); and a step of obtaining a composition comprising the purified product and a metal complex represented by formula (1). It may relate to a method.
  • the polystyrene-equivalent number average molecular weight (Mn) and polystyrene-equivalent weight average molecular weight (Mw) of the polymer compound were determined by the following size exclusion chromatography (SEC) using tetrahydrofuran as the mobile phase. .
  • SEC size exclusion chromatography
  • the polymer compound to be measured was dissolved in tetrahydrofuran at a concentration of about 0.05% by mass, and 10 ⁇ L was injected into SEC. The mobile phase was run at a flow rate of 2.0 mL / min.
  • PLgel MIXED-B manufactured by Polymer Laboratories
  • a UV-VIS detector manufactured by Shimadzu Corporation, trade name: SPD-10Avp was used as the detector.
  • LC-MS was measured by the following method.
  • the measurement sample was dissolved in chloroform or tetrahydrofuran to a concentration of about 2 mg / mL, and about 1 ⁇ L was injected into LC-MS (manufactured by Agilent, trade name: 1100LCMSD).
  • the mobile phase of LC-MS was used while changing the ratio of acetonitrile and tetrahydrofuran, and was allowed to flow at a flow rate of 0.2 mL / min.
  • L-column 2 ODS 3 ⁇ m
  • TLC-MS was measured by the following method. A measurement sample is dissolved in any solvent of toluene, tetrahydrofuran or chloroform at an arbitrary concentration, and applied on a TLC plate for DART (trade name: YSK5-100, manufactured by Techno Applications), and TLC-MS (JEOL Ltd.) (Trade name: JMS-T100TD (The AccuTOF TLC)). The helium gas temperature during measurement was adjusted in the range of 200 to 400 ° C.
  • NMR NMR was measured by the following method. About 5 to 10 mg of a measurement sample was added to about 0.5 mL of deuterated chloroform (CDCl 3 ), deuterated tetrahydrofuran, deuterated dimethyl sulfoxide, deuterated acetone, deuterated N, N-dimethylformamide, deuterated toluene, deuterated methanol, deuterated ethanol, deuterated 2-propanol. Alternatively, it was dissolved in methylene chloride and measured using an NMR apparatus (manufactured by Agilent, trade name: INOVA300 or MERCURY 400VX).
  • HPLC high performance liquid chromatography
  • Kaseisorb LC ODS 2000 manufactured by Tokyo Chemical Industry
  • ODS column As the column, Kaseisorb LC ODS 2000 (manufactured by Tokyo Chemical Industry) or an ODS column having equivalent performance was used.
  • the detector a photodiode array detector (manufactured by Shimadzu Corporation, trade name: SPD-M20A) was used.
  • the maximum peak wavelength of the emission spectrum of the metal complex represented by the formula (1) was measured at room temperature with a spectrophotometer (manufactured by JASCO Corporation, FP-6500).
  • a xylene solution in which the metal complex represented by the formula (1) was dissolved in xylene at a concentration of about 0.8 ⁇ 10 ⁇ 4 mass% was used as a sample.
  • excitation light UV light having a wavelength of 325 nm was used.
  • the amount of chlorine atoms as impurities contained in the metal complex represented by the formula (1) and the compound represented by the formula (H) was measured by an automatic combustion-ion chromatography method.
  • combustion decomposition was performed using an automatic sample combustion apparatus AQF-2100H manufactured by Mitsubishi Chemical Analytech, and subsequent ion chromatography was performed using an ion chromatography system ICS-2100 manufactured by Thermo Fisher Scientific. .
  • Step 2 Synthesis of polymer compound HTL-1 (Step 1) After making the inside of the reaction vessel an inert gas atmosphere, Compound M1 (0.923 g), Compound M2 (0.0496 g), Compound M3 (0. 917 g), dichlorobis (tris-o-methoxyphenylphosphine) palladium (1.76 mg) and toluene (34 mL) were added, and the mixture was heated to 105 ° C. (Step 2) A 20 mass% tetraethylammonium hydroxide aqueous solution (6.7 mL) was added dropwise to the reaction solution, and the mixture was refluxed for 6 hours.
  • Step 3 After the reaction, phenylboronic acid (48.8 mg) and dichlorobis (tris-o-methoxyphenylphosphine) palladium (0.88 mg) were added thereto and refluxed for 14.5 hours.
  • Step 4 Thereafter, an aqueous sodium diethyldithiacarbamate solution was added thereto, and the mixture was stirred at 80 ° C. for 2 hours. After cooling, the resulting reaction solution was washed twice with water, twice with a 3% by mass aqueous acetic acid solution and twice with water, and when the resulting solution was added dropwise to methanol, precipitation occurred.
  • the obtained precipitate was dissolved in toluene and purified by passing through an alumina column and a silica gel column in this order.
  • the obtained solution was added dropwise to methanol and stirred, and then the resulting precipitate was collected by filtration and dried to obtain 1.23 g of a polymer compound HTL-1.
  • the polymer compound HTL-1 had an Mn of 2.3 ⁇ 10 4 and an Mw of 1.2 ⁇ 10 5 .
  • the theoretical value obtained from the amount of charged raw materials for polymer compound HTL-1 is that the structural unit derived from compound M1, the structural unit derived from compound M2, and the structural unit derived from compound M3 are: It is a copolymer formed by a molar ratio of 45: 5: 50.
  • HPLC area percentage value of Compound HM1-c was 99.14%.
  • the amount (C H ) of chlorine atoms as impurities contained in Compound HM1-c was 244.6 ppm by mass.
  • HPLC analysis of compound HM1-c was performed under the following conditions. The sample was diluted with tetrahydrofuran so that the concentration of compound HM1-c was 0.1 mass% to 0.2 mass% and analyzed.
  • Apparatus LC-20A (manufactured by Shimadzu Corporation) Column: SUMPAX ODS Z-CLUE (diameter 4.6 ⁇ 250 mm, 3 ⁇ m, manufactured by Sumika Chemical Analysis Center) Column temperature: 40 ° C
  • Detector Photodiode array detector (SPD-M20A, manufactured by Shimadzu Corporation) Detection wavelength: 254 nm
  • Mobile phase A solution acetonitrile, B solution THF
  • Mobile phase conditions B liquid 0% -60 minutes-B liquid 20% -20 minutes-B liquid 100% Flow rate: 1.0 ml / min Sample injection volume: 8 ⁇ l
  • Activated clay (11 g) was added to the obtained washing liquid, and the mixture was stirred and then filtered with a filter laid with Celite (1.0 g) and silica gel (11 g), and the obtained filtrate was concentrated.
  • the obtained residue (17.2 g) was dissolved in toluene (100 mL), activated clay (11 g) was added, and the mixture was stirred at 20 to 25 ° C., and then Celite (1.0 g) and silica gel (11 g) were spread.
  • the crude product (16.9 g) was obtained by concentrating the filtrate obtained by filtering with a filter. The obtained crude product was recrystallized at 20 to 25 ° C.
  • the HPLC area percentage value of the compound HM1-bp was 99.51%.
  • the HPLC area percentage value of compound HM1-p was 99.51%.
  • the amount (C H ) of chlorine atoms as impurities contained in the compound HM1-bp was 4.2 mass ppm.
  • the amount (C H ) of chlorine atoms as impurities contained in Compound HM1-p was 2.8 ppm by mass.
  • HPLC analysis of Compound HM1-bp and Compound HM1-p was performed under the following conditions. Samples were analyzed by diluting with tetrahydrofuran so that the concentrations of Compound HM1-bp and Compound HM1-p were 0.1 mass% to 0.2 mass%.
  • LC-20A manufactured by Shimadzu Corporation
  • Mobile phase conditions B liquid 0% -60 minutes-B liquid 20% -20 minutes-B liquid 100%
  • the metal complex MC1b synthesized according to the method described in WO2009 / 131255 is purified by silica gel column chromatography (mixed solvent of toluene and heptane) and then repeatedly recrystallized using a mixed solvent of toluene and heptane. Purified. The obtained solid was dried under reduced pressure at 60 ° C. to obtain metal complex MC1 as a yellow solid.
  • the amount (C 1 ) of chlorine atoms as impurities contained in the metal complex MC1 was below the detection limit (0.01 mass ppm or less).
  • the maximum peak wavelength of the emission spectrum of the metal complex MC1 was 525 nm.
  • Example D1 Production and Evaluation of Light-Emitting Element D1 [Production of Light-Emitting Element D1] (Formation of anode and hole injection layer) An anode was formed by attaching an ITO film with a thickness of 45 nm to the glass substrate by sputtering. On the anode, a hole injection material ND-3202 (manufactured by Nissan Chemical Industries) was formed into a film with a thickness of 65 nm by spin coating. In an air atmosphere, a hole injection layer was formed by heating on a hot plate at 50 ° C. for 3 minutes and further heating at 240 ° C. for 15 minutes.
  • ND-3202 manufactured by Nissan Chemical Industries
  • the polymer compound HTL-1 was dissolved in xylene at a concentration of 0.7% by mass. Using the obtained xylene solution, a film having a thickness of 20 nm is formed on the hole injection layer by spin coating, and heated by heating at 180 ° C. for 60 minutes in a nitrogen gas atmosphere on a hot plate. A layer was formed.
  • Example D2 Production and Evaluation of Light-Emitting Element D2 [Production of Light-Emitting Element D2]
  • a light-emitting element D2 was produced in the same manner as in Example D1, except that (Formation D1 of light-emitting layer) in Example D1 was changed to (Formation D2 of light-emitting layer) described below.
  • Example D3 Production and Evaluation of Light-Emitting Element D3 [Production of Light-Emitting Element D3]
  • a light emitting device D3 was produced in the same manner as in Example D1, except that (Formation D1 of light emitting layer) in Example D1 was changed to (Formation D3 of light emitting layer) described below.
  • Example CD1 Production and Evaluation of Light-Emitting Element CD1 [Production of Light-Emitting Element CD1]
  • a light emitting device CD1 was produced in the same manner as in Example D1, except that (Light emitting layer formation D1) in Example D1 was changed to (Light emitting layer formation CD1) described below.
  • Example CD2 Production and Evaluation of Light-Emitting Element CD2 [Production of Light-Emitting Element CD2]
  • a light emitting device CD2 was produced in the same manner as in Example D1, except that (Light emitting layer formation D1) in Example D1 was changed to (Light emitting layer formation CD2) described below.
  • C 1 is 0.01 mass ppm
  • C H is 51.160 mass ppm
  • W 1 is 0.5
  • W H is 0.5 Yes
  • C 1 W 1 + C H W H is 25.585 ppm by mass.
  • Example CD3 Production and Evaluation of Light-Emitting Element CD3 [Production of Light-Emitting Element CD3]
  • a light emitting device CD3 was produced in the same manner as in Example D1, except that (Light emitting layer formation D1) in Example D1 was changed to (Light emitting layer formation CD3) described below.
  • Example CD4 Production and Evaluation of Light-Emitting Element CD4 [Production of Light-Emitting Element CD4]
  • a light emitting device CD4 was produced in the same manner as in Example D1, except that (Formation of light emitting layer D1) in Example D1 was changed to (Formation of light emitting layer CD4) described below.
  • Table 1 shows the value of each Example and each Comparative Example when the value of Comparative Example CD4 is 1.0.
  • the metal complex MC2b (364 mg) synthesized according to the method described in International Publication No. 2002/44189, phenylboronic acid (140 mg), [di-tert-butyl (4- Dimethylaminophenyl) phosphine] dichloropalladium (II) (6.6 mg) and toluene (11 mL) were added and heated to 80 ° C. Then, after adding 40 mass% tetrabutylammonium hydroxide aqueous solution (3.6 mL) there, it stirred at 80 degreeC for 8 hours.
  • the amount (C 1 ) of chlorine atoms as impurities contained in the metal complex MC2 was 4 mass ppm.
  • the maximum peak wavelength of the emission spectrum of the metal complex MC2 was 617 nm.
  • Example E1 Production and Evaluation of Light-Emitting Element E1 [Production of Light-Emitting Element E1] (Formation of anode and hole injection layer) An anode was formed by attaching an ITO film with a thickness of 45 nm to the glass substrate by sputtering. On the anode, a hole injection material ND-3202 (manufactured by Nissan Chemical Industries) was formed into a film with a thickness of 65 nm by spin coating. In an air atmosphere, a hole injection layer was formed by heating on a hot plate at 50 ° C. for 3 minutes and further heating at 240 ° C. for 15 minutes.
  • ND-3202 manufactured by Nissan Chemical Industries
  • the polymer compound HTL-1 was dissolved in xylene at a concentration of 0.7% by mass. Using the obtained xylene solution, a film having a thickness of 20 nm is formed on the hole injection layer by spin coating, and heated by heating at 180 ° C. for 60 minutes in a nitrogen gas atmosphere on a hot plate. A layer was formed.
  • Example E2 Production and evaluation of light-emitting element E2 [Production of light-emitting element E2]
  • a light emitting device E2 was produced in the same manner as in Example E1, except that (Emission layer formation E1) in Example E1 was changed to (Emission layer formation E2) described below.
  • Example CE1 Production and Evaluation of Light-Emitting Element CE1 [Production of Light-Emitting Element CE1]
  • a light emitting device CE1 was produced in the same manner as in Example E1, except that (Emission layer formation E1) in Example E1 was changed to (Emission layer formation CE1) described below.
  • Example CE2 Production and Evaluation of Light-Emitting Element CE2 [Production of Light-Emitting Element CE2]
  • a light emitting device CE2 was produced in the same manner as in Example E1, except that (Emitting layer formation E1) in Example E1 was changed to (Emitting layer formation CE2) described below.
  • Example CE3 Production and Evaluation of Light-Emitting Element CE3 [Production of Light-Emitting Element CE3]
  • a light emitting device CE3 was produced in the same manner as in Example E1, except that (Emitting layer formation E1) in Example E1 was changed to (Emitting layer formation CE3) described below.
  • Example CE4 Production and Evaluation of Light-Emitting Element CE4 [Production of Light-Emitting Element CE4]
  • a light emitting device CE4 was produced in the same manner as in Example E1, except that (Emission layer formation E1) in Example E1 was changed to (Emission layer formation CE4) described below.
  • Example CE5 Production and Evaluation of Light-Emitting Element CE5 [Production of Light-Emitting Element CE5]
  • a light emitting device CE5 was produced in the same manner as in Example E1, except that (Emission layer formation E1) in Example E1 was changed to (Emission layer formation CE5) described below.
  • FIG. 1 is a graph showing the relationship between LT95 and the amount of chlorine atoms as impurities in Examples D1 to D3, E1 to E2, and Comparative Examples CD1 to CD4 and CE1 to CE5.
  • Example D1 when the LT95 value of Example D1 is 1, the relative values of Examples D1 to D3 and Comparative Examples CD1 to CD4, and when the LT95 value of Example E1 is 1, Example E1
  • the relative values of E2 to E2 and Comparative Examples CE1 to CE5 are shown on the vertical axis.
  • composition of the present embodiment is useful for producing a light emitting device in which initial deterioration is sufficiently suppressed.
  • the light emitting element of this embodiment is a light emitting element in which initial deterioration is sufficiently suppressed.

Abstract

初期劣化が十分に抑制された発光素子の製造に有用な組成物を提供する。 金属錯体と式(H)で表される化合物とが配合された組成物であって、前記組成物中に不純物として含まれる塩素原子の量が、前記組成物中に含まれる固形分全量に対して、12質量ppm以下である、組成物。式(H)[式中、nH1は0~5の整数を表し、nH2は1~10の整数を表す。ArH1は式(H1-1)で表される基を表す。LH1はアルキレン基、アリーレン基等を表す。ArH2は芳香族炭化水素基又は芳香族複素環基を表す。]式(H1-1)[式中、環RH1及び環RH2は芳香族炭化水素環又は芳香族複素環を表す。但し、環RH1及び環RH2のうちの少なくとも一つは縮環の芳香族炭化水素環又は縮環の芳香族複素環である。XH1は単結合、酸素原子、硫黄原子等を表す。]

Description

組成物及び発光素子
 本発明は、組成物及び発光素子に関する。
 有機エレクトロルミネッセンス素子等の発光素子は、ディスプレイ及び照明の用途に好適に使用することが可能であり、研究開発が盛んに行われている。発光素子は、発光層等の有機層を有する。発光層の材料としては、例えば、下記式で表されるイリジウム錯体(M0)と、下記式で表される化合物(H0)とを含有する組成物が知られている(特許文献1)。
Figure JPOXMLDOC01-appb-C000007
特表2013-504884号公報
 しかしながら、上述の組成物を含有する発光層を有する発光素子は、初期劣化(即ち、焼き付きと呼ばれる発光初期における輝度低下)の抑制が必ずしも十分ではなかった。
 そこで、本発明は、初期劣化が十分に抑制された発光素子の製造に有用な組成物を提供することを目的とする。
 本発明は、以下の[1]~[8]を提供する。
[1]式(1)で表される金属錯体と式(H)で表される化合物とが配合された組成物であって、前記組成物中に不純物として含まれる塩素原子の量が、前記組成物中に含まれる固形分全量に対して、12質量ppm以下である、組成物。
Figure JPOXMLDOC01-appb-C000008
[式中、
 Mは、ルテニウム原子、ロジウム原子、パラジウム原子、イリジウム原子又は白金原子を表す。
 n1は1以上の整数を表し、n2は0以上の整数を表し、n1+n2は2又は3である。Mがルテニウム原子、ロジウム原子又はイリジウム原子の場合、n1+n2は3であり、Mがパラジウム原子又は白金原子の場合、n1+n2は2である。
 E1及びE2は、それぞれ独立に、炭素原子又は窒素原子を表す。但し、E1及びE2の少なくとも一方は炭素原子である。E1及びE2が複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。
 環L1は、芳香族複素環を表し、この環は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環L1が複数存在する場合、それらは同一でも異なっていてもよい。
 環L2は、芳香族炭化水素環又は芳香族複素環を表し、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環L2が複数存在する場合、それらは同一でも異なっていてもよい。
 環L1が有していてもよい置換基と、環L2が有していてもよい置換基とは、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
 A1-G1-A2は、アニオン性の2座配位子を表す。A1及びA2は、それぞれ独立に、炭素原子、酸素原子又は窒素原子を表し、これらの原子は環を構成する原子であってもよい。G1は、単結合、又は、A1及びA2とともに2座配位子を構成する原子団を表す。A1-G1-A2が複数存在する場合、それらは同一でも異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000009
[式中、
 nH1は、0以上5以下の整数を表す。nH1が複数存在する場合、それらは同一でも異なっていてもよい。
 nH2は、1以上10以下の整数を表す。
 ArH1は、式(H1-1)で表される基を表す。ArH1が複数存在する場合、それらは同一でも異なっていてもよい。
 LH1は、アルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基、-NRH1'-で表される基、酸素原子又は硫黄原子を表し、これらの基は置換基を有していてもよい。RH1'は、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。LH1が複数存在する場合、それらは同一でも異なっていてもよい。
 ArH2は、芳香族炭化水素基又は芳香族複素環基を表し、これらの基は置換基を有していてもよい。]
Figure JPOXMLDOC01-appb-C000010
[式中、
 環RH1及び環RH2は、それぞれ独立に、単環若しくは縮環の芳香族炭化水素環又は単環若しくは縮環の芳香族複素環を表し、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
 但し、環RH1及び環RH2のうちの少なくとも一つは、縮環の芳香族炭化水素環又は縮環の芳香族複素環であり、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
 XH1は、単結合、酸素原子、硫黄原子、-N(RXH1)-で表される基、又は、-C(RXH1')2-で表される基を表す。RXH1及びRXH1'は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はフッ素原子を表し、これらの基は置換基を有していてもよい。複数存在するRXH1'は、同一でも異なっていてもよく、互いに結合して、それぞれが結合する炭素原子と共に環を形成していてもよい。
 RXH1と環RH1が有していてもよい置換基、RXH1と環RH2が有していてもよい置換基、RXH1'と環RH1が有していてもよい置換基、及び、RXH1'と環RH2が有していてもよい置換基は、それぞれ結合して、それぞれが結合する原子と共に環を形成していてもよい。]
[2]前記組成物中に含まれる前記式(H)で表される化合物の純度(当該純度は、液体クロマトグラフィーの面積百分率値から算出される純度である)が99.0%以上である、[1]に記載の組成物。
[3]前記式(H1-1)で表される基が、式(H1-1A)、式(H1-1B)又は式(H1-1C)で表される基である、[1]又は[2]に記載の組成物。
Figure JPOXMLDOC01-appb-C000011
[式中、
 XH1は、前記と同じ意味を表す。
 XH2及びXH3は、それぞれ独立に、単結合、酸素原子、硫黄原子、-N(RXH2)-で表される基、又は、-C(RXH2')2-で表される基を表す。RXH2及びRXH2'は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はフッ素原子を表し、これらの基は置換基を有していてもよい。複数存在するRXH2'は、同一でも異なっていてもよく、互いに結合して、それぞれが結合する炭素原子と共に環を形成していてもよい。
 ZH1、ZH2、ZH3、ZH4、ZH5、ZH6、ZH7、ZH8、ZH9、ZH10、ZH11及びZH12は、それぞれ独立に、炭素原子又は窒素原子を表す。
 RH1、RH2、RH3、RH4、RH5、RH6、RH7、RH8、RH9、RH10、RH11及びRH12は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はフッ素原子を表し、これらの基は置換基を有していてもよい。
 ZH1が窒素原子の場合、RH1は存在しない。ZH2が窒素原子の場合、RH2は存在しない。ZH3が窒素原子の場合、RH3は存在しない。ZH4が窒素原子の場合、RH4は存在しない。ZH5が窒素原子の場合、RH5は存在しない。ZH6が窒素原子の場合、RH6は存在しない。ZH7が窒素原子の場合、RH7は存在しない。ZH8が窒素原子の場合、RH8は存在しない。ZH9が窒素原子の場合、RH9は存在しない。ZH10が窒素原子の場合、RH10は存在しない。ZH11が窒素原子の場合、RH11は存在しない。ZH12が窒素原子の場合、RH12は存在しない。
 RH1とRH2、RH3とRH4、RH5とRH6、RH6とRH7、RH7とRH8、RH9とRH10、RH10とRH11、及び、RH11とRH12は、それぞれ結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。]
[4]前記式(1)で表される金属錯体が、式(1-B1)、式(1-B2)、式(1-B3)、式(1-B4)又は式(1-B5)で表される金属錯体である、[1]~[3]のいずれかに記載の組成物。
Figure JPOXMLDOC01-appb-C000012
[式中、
 M、n1、n2、A1-G1-A2は、前記と同じ意味を表す。
 R11B、R12B、R13B、R14B、R21B、R22B、R23B及びR24Bは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はフッ素原子を表し、これらの基は置換基を有していてもよい。R11B、R12B、R13B、R14B、R21B、R22B、R23B及びR24Bが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。R11BとR12B、R12BとR13B、R13BとR14B、R11BとR21B、R21BとR22B、R22BとR23B、及び、R23BとR24Bは、それぞれ結合して、それぞれが結合する原子とともに環を形成していてもよい。
 n11及びn12は、それぞれ独立に、1以上の整数を表し、n11+n12は2又は3である。Mがルテニウム原子、ロジウム原子又はイリジウム原子の場合、n11+n12は3であり、Mがパラジウム原子又は白金原子の場合、n11+n12は2である。
 R15B、R16B、R17B及びR18Bは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はフッ素原子を表し、これらの基は置換基を有していてもよい。R15B、R16B、R17B及びR18Bが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。R13BとR15B、R15BとR16B、R16BとR17B、R17BとR18B、及び、R18BとR21Bは、それぞれ結合して、それぞれが結合する原子とともに環を形成していてもよい。]
[5]前記式(1)で表される金属錯体が、前記式(1-B1)、前記式(1-B2)、前記式(1-B3)又は前記式(1-B5)で表される金属錯体である、[4]に記載の組成物。
[6]前記式(H1-1)で表される基が、式(ArH1-1)又は式(ArH1-10)で表される基である、[1]~[5]のいずれかに記載の組成物。
Figure JPOXMLDOC01-appb-C000013
[式中、Rb、Rc及びReは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はフッ素原子を表し、これらの基は置換基を有していてもよい。複数存在するRb及びReは、各々、同一でも異なっていてもよく、互いに結合して、それぞれが結合する炭素原子と共に環を形成していてもよい。]
[7]正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料、発光材料、酸化防止剤及び溶媒からなる群より選ばれる少なくとも1種の材料を更に含有する[1]~[6]のいずれかに記載の組成物。
[8][1]~[7]のいずれかに記載の組成物を含む発光素子。
 本発明の組成物は、初期劣化が十分に抑制された発光素子の製造に有用である。また、本発明の発光素子は、初期劣化が十分に抑制された発光素子である。
実施例D1~D3、E1~E2及び比較例CD1~CD4、CE1~CE5におけるLT95と不純物としての塩素原子の量との関係を表すグラフである。
 以下、本発明の好適な実施形態について詳細に説明する。
 <共通する用語>
 本明細書で共通して用いられる用語は、特記しない限り、以下の意味である。
 Meはメチル基、Etはエチル基、Buはブチル基、i-Prはイソプロピル基、t-Buはtert-ブチル基を表す。
 水素原子は、重水素原子であっても、軽水素原子であってもよい。
 金属錯体を表す式中、中心金属との結合を表す実線は、共有結合又は配位結合を意味する。
 「高分子化合物」とは、分子量分布を有し、ポリスチレン換算の数平均分子量が1×103~1×108である重合体を意味する。
 高分子化合物は、ブロック共重合体、ランダム共重合体、交互共重合体、グラフト共重合体のいずれであってもよいし、その他の態様であってもよい。
 高分子化合物の末端基は、重合活性基がそのまま残っていると、高分子化合物を発光素子の作製に用いた場合に発光特性又は輝度寿命が低下する可能性があるので、好ましくは安定な基である。末端基としては、好ましくは主鎖と共役結合している基であり、例えば、炭素-炭素結合を介してアリール基又は1価の複素環基と結合している基が挙げられる。
 「低分子化合物」とは、分子量分布を有さず、分子量が1×104以下の化合物を意味する。
 「構成単位」とは、高分子化合物中に1個以上存在する単位を意味する。
 「アルキル基」は、直鎖及び分岐のいずれでもよい。直鎖のアルキル基の炭素原子数は、置換基の炭素原子数を含めないで、通常1~50であり、好ましくは3~30であり、より好ましくは4~20である。分岐のアルキル基の炭素原子数は、置換基の炭素原子数を含めないで、通常3~50であり、好ましくは3~30であり、より好ましくは4~20である。
 アルキル基は、置換基を有していてもよく、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、2-ブチル基、イソブチル基、tert-ブチル基、ペンチル基、イソアミル基、2-エチルブチル基、ヘキシル基、ヘプチル基、オクチル基、2-エチルヘキシル基、3-プロピルヘプチル基、デシル基、3,7-ジメチルオクチル基、2-エチルオクチル基、2-ヘキシルデシル基、ドデシル基、及び、これらの基における水素原子が、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、フッ素原子等で置換された基が挙げられ、例えば、トリフルオロメチル基、ペンタフルオロエチル基、パーフルオロブチル基、パーフルオロヘキシル基、パーフルオロオクチル基、3-フェニルプロピル基、3-(4-メチルフェニル)プロピル基、3-(3,5-ジ-ヘキシルフェニル)プロピル基、6-エチルオキシヘキシル基が挙げられる。
 「シクロアルキル基」の炭素原子数は、置換基の炭素原子数を含めないで、通常3~50であり、好ましくは3~30であり、より好ましくは4~20である。
 シクロアルキル基は、置換基を有していてもよく、例えば、シクロヘキシル基、シクロヘキシルメチル基、シクロヘキシルエチル基が挙げられる。
 「アリール基」は、芳香族炭化水素から環を構成する炭素原子に直接結合する水素原子1個を除いた残りの原子団を意味する。アリール基の炭素原子数は、置換基の炭素原子数を含めないで、通常6~60であり、好ましくは6~20であり、より好ましくは6~10である。
 アリール基は、置換基を有していてもよく、例えば、フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、1-ピレニル基、2-ピレニル基、4-ピレニル基、2-フルオレニル基、3-フルオレニル基、4-フルオレニル基、2-フェニルフェニル基、3-フェニルフェニル基、4-フェニルフェニル基、及び、これらの基における水素原子が、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、フッ素原子等で置換された基が挙げられる。
 「アルコキシ基」は、直鎖及び分岐のいずれでもよい。直鎖のアルコキシ基の炭素原子数は、置換基の炭素原子数を含めないで、通常1~40であり、好ましくは4~10である。分岐のアルコキシ基の炭素原子数は、置換基の炭素原子数を含めないで、通常3~40であり、好ましくは4~10である。
 アルコキシ基は、置換基を有していてもよく、例えば、メトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、ブチルオキシ基、イソブチルオキシ基、tert-ブチルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、2-エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基、3,7-ジメチルオクチルオキシ基、ラウリルオキシ基、及び、これらの基における水素原子が、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、フッ素原子等で置換された基が挙げられる。
 「シクロアルコキシ基」の炭素原子数は、置換基の炭素原子数を含めないで、通常3~40であり、好ましくは4~10である。
 シクロアルコキシ基は、置換基を有していてもよく、例えば、シクロヘキシルオキシ基が挙げられる。
 「アリールオキシ基」の炭素原子数は、置換基の炭素原子数を含めないで、通常6~60であり、好ましくは6~48である。
 アリールオキシ基は、置換基を有していてもよく、例えば、フェノキシ基、1-ナフチルオキシ基、2-ナフチルオキシ基、1-アントラセニルオキシ基、9-アントラセニルオキシ基、1-ピレニルオキシ基、及び、これらの基における水素原子が、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、フッ素原子等で置換された基が挙げられる。
 「p価の複素環基」(pは、1以上の整数を表す。)とは、複素環式化合物から、環を構成する炭素原子又はヘテロ原子に直接結合している水素原子のうちp個の水素原子を除いた残りの原子団を意味する。p価の複素環基の中でも、芳香族複素環式化合物から、環を構成する炭素原子又はヘテロ原子に直接結合している水素原子のうちp個の水素原子を除いた残りの原子団である「p価の芳香族複素環基」が好ましい。
 「芳香族複素環式化合物」は、オキサジアゾール、チアジアゾール、チアゾール、オキサゾール、チオフェン、ピロール、ホスホール、フラン、ピリジン、ピラジン、ピリミジン、トリアジン、ピリダジン、キノリン、イソキノリン、カルバゾール、ジベンゾホスホール等の複素環自体が芳香族性を示す化合物、及び、フェノキサジン、フェノチアジン、ジベンゾボロール、ジベンゾシロール、ベンゾピラン等の複素環自体は芳香族性を示さなくとも、複素環に芳香環が縮環されている化合物を意味する。
 1価の複素環基の炭素原子数は、置換基の炭素原子数を含めないで、通常2~60であり、好ましくは4~20である。
 1価の複素環基は、置換基を有していてもよく、例えば、チエニル基、ピロリル基、フリル基、ピリジニル基、ピペリジニル基、キノリニル基、イソキノリニル基、ピリミジニル基、トリアジニル基、及び、これらの基における水素原子が、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基等で置換された基が挙げられる。
 「ハロゲン原子」とは、フッ素原子、塩素原子、臭素原子又はヨウ素原子を示す。
 「アミノ基」は、置換基を有していてもよく、置換アミノ基が好ましい。アミノ基が有する置換基としては、アルキル基、シクロアルキル基、アリール基又は1価の複素環基が好ましい。
 置換アミノ基としては、例えば、ジアルキルアミノ基、ジシクロアルキルアミノ基及びジアリールアミノ基が挙げられる。
 アミノ基としては、例えば、ジメチルアミノ基、ジエチルアミノ基、ジフェニルアミノ基、ビス(4-メチルフェニル)アミノ基、ビス(4-tert-ブチルフェニル)アミノ基、ビス(3,5-ジ-tert-ブチルフェニル)アミノ基が挙げられる。
 「アルケニル基」は、直鎖及び分岐のいずれでもよい。直鎖のアルケニル基の炭素原子数は、置換基の炭素原子数を含めないで、通常2~30であり、好ましくは3~20である。分岐のアルケニル基の炭素原子数は、置換基の炭素原子数を含めないで、通常3~30であり、好ましくは4~20である。
 「シクロアルケニル基」の炭素原子数は、置換基の炭素原子数を含めないで、通常3~30であり、好ましくは4~20である。
 アルケニル基及びシクロアルケニル基は、置換基を有していてもよく、例えば、ビニル基、1-プロペニル基、2-プロペニル基、2-ブテニル基、3-ブテニル基、3-ペンテニル基、4-ペンテニル基、1-ヘキセニル基、5-ヘキセニル基、7-オクテニル基、及び、これらの基が置換基を有する基が挙げられる。
 「アルキニル基」は、直鎖及び分岐のいずれでもよい。アルキニル基の炭素原子数は、置換基の炭素原子を含めないで、通常2~20であり、好ましくは3~20である。分岐のアルキニル基の炭素原子数は、置換基の炭素原子を含めないで、通常4~30であり、好ましくは4~20である。
 「シクロアルキニル基」の炭素原子数は、置換基の炭素原子を含めないで、通常4~30であり、好ましくは4~20である。
 アルキニル基及びシクロアルキニル基は、置換基を有していてもよく、例えば、エチニル基、1-プロピニル基、2-プロピニル基、2-ブチニル基、3-ブチニル基、3-ペンチニル基、4-ペンチニル基、1-ヘキシニル基、5-ヘキシニル基、及び、これらの基が置換基を有する基が挙げられる。
 「アリーレン基」は、芳香族炭化水素から環を構成する炭素原子に直接結合する水素原子2個を除いた残りの原子団を意味する。アリーレン基の炭素原子数は、置換基の炭素原子数を含めないで、通常6~60であり、好ましくは6~30であり、より好ましくは6~18である。
 アリーレン基は、置換基を有していてもよく、例えば、フェニレン基、ナフタレンジイル基、アントラセンジイル基、フェナントレンジイル基、ジヒドロフェナントレンジイル基、ナフタセンジイル基、フルオレンジイル基、ピレンジイル基、ペリレンジイル基、クリセンジイル基、及び、これらの基が置換基を有する基が挙げられ、好ましくは、式(A-1)~式(A-20)で表される基である。アリーレン基は、これらの基が複数結合した基を含む。
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
[式中、R及びRaは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表す。複数存在するR及びRaは、各々、同一でも異なっていてもよく、Ra同士は互いに結合して、それぞれが結合する原子と共に環を形成していてもよい。]
 2価の複素環基の炭素原子数は、置換基の炭素原子数を含めないで、通常2~60であり、好ましくは、3~20であり、より好ましくは、4~15である。
 2価の複素環基は、置換基を有していてもよく、例えば、ピリジン、ジアザベンゼン、トリアジン、アザナフタレン、ジアザナフタレン、カルバゾール、ジベンゾフラン、ジベンゾチオフェン、ジベンゾシロール、フェノキサジン、フェノチアジン、アクリジン、ジヒドロアクリジン、フラン、チオフェン、アゾール、ジアゾール、トリアゾールから、環を構成する炭素原子又はヘテロ原子に直接結合している水素原子のうち2個の水素原子を除いた2価の基が挙げられ、好ましくは、式(AA-1)~式(AA-34)で表される基である。2価の複素環基は、これらの基が複数結合した基を含む。
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
[式中、R及びRaは、前記と同じ意味を表す。]
 「架橋基」とは、加熱処理、紫外線照射処理、近紫外線照射処理、可視光照射処理、赤外線照射処理、ラジカル反応等に供することにより、新たな結合を生成することが可能な基であり、好ましくは、架橋基A群の式(XL-1)~式(XL-17)で表される架橋基である。
(架橋基A群)
Figure JPOXMLDOC01-appb-C000025
[式中、RXLは、メチレン基、酸素原子又は硫黄原子を表し、nXLは、0~5の整数を表す。RXLが複数存在する場合、それらは同一でも異なっていてもよく、nXLが複数存在する場合、それらは同一でも異なっていてもよい。*1は結合位置を表す。これらの架橋性基は置換基を有していてもよい。]
 「置換基」とは、フッ素原子、シアノ基、アルキル基、シクロアルキル基、アリール基、1価の複素環基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、アミノ基、置換アミノ基、アルケニル基、シクロアルケニル基、アルキニル基又はシクロアルキニル基を表す。置換基は架橋基であってもよい。
 化合物中に含まれる「不純物としての塩素原子の量」は、自動燃焼-イオンクロマトグラフ法により測定することができる。即ち、化合物中に含まれる「不純物としての塩素原子の量」とは、化合物を自動燃焼-イオンクロマトグラフ法により測定した際の塩素の質量濃度を意味する。化合物中に含まれる塩素の質量濃度が検出限界以下の場合、化合物中に含まれる「不純物としての塩素原子の量」を0.01質量ppm(即ち、検出限界)とする。
 <組成物>
 [式(1)で表される金属錯体]
 式(1)で表される金属錯体は、通常、室温(25℃)で燐光発光性を示す化合物であり、好ましくは、室温で三重項励起状態からの発光を示す化合物である。
 Mは、本実施形態に係る発光素子の初期劣化がより抑制されるので、イリジウム原子又は白金原子であることが好ましく、イリジウム原子であることがより好ましい。
 Mがルテニウム原子、ロジウム原子又はイリジウム原子の場合、n1は2又は3であることが好ましく、3であることがより好ましい。Mがパラジウム原子又は白金原子の場合、n1は2であることが好ましい。
 E1及びE2は、炭素原子であることが好ましい。
 環L1は、5員又は6員の芳香族複素環であることが好ましく、2つ以上4つ以下の窒素原子を構成原子として有する5員の芳香族複素環、又は、1つ以上4つ以下の窒素原子を構成原子として有する6員の芳香族複素環であることがより好ましく、2つ若しくは3つの窒素原子を構成原子として有する5員の芳香族複素環、又は、1つ若しくは2つの窒素原子を構成原子として有する6員の芳香族複素環であることが更に好ましく、これらの環は置換基を有していてもよい。但し、環L1が6員の芳香族複素環である場合、E1は炭素原子であることが好ましい。
 環L1としては、例えば、ジアゾール環、トリアゾール環、ピリジン環、ジアザベンゼン環、トリアジン環、キノリン環及びイソキノリン環が挙げられ、ピリジン環、キノリン環又はイソキノリン環が好ましく、ピリジン環又はイソキノリン環がより好ましく、これらの環は置換基を有していてもよい。
 環L2は、5員若しくは6員の芳香族炭化水素環、又は、5員若しくは6員の芳香族複素環であることが好ましく、6員の芳香族炭化水素環又は6員の芳香族複素環であることがより好ましく、6員の芳香族炭化水素環であることが更に好ましく、これらの環は置換基を有していてもよい。環R2が6員の芳香族複素環である場合、E2は炭素原子であることが好ましい。
 環L2としては、例えば、ベンゼン環、ナフタレン環、フルオレン環、フェナントレン環、インデン環、ピリジン環、ジアザベンゼン環及びトリアジン環が挙げられ、ベンゼン環、ナフタレン環、フルオレン環、ピリジン環又はピリミジン環が好ましく、ベンゼン環、ピリジン環又はピリミジン環がより好ましく、ベンゼン環が更に好ましく、これらの環は置換基を有していてもよい。
 環L1及び環L2が有していてもよい置換基としては、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はフッ素原子が好ましく、アルキル基、シクロアルキル基、アリール基又は1価の複素環基がより好ましく、アリール基又は1価の複素環基が更に好ましく、これらの基は更に置換基を有していてもよい。
 環L1及び環L2が有していてもよい置換基におけるアリール基としては、フェニル基、ナフチル基、アントラセニル基、フェントレニル基、ジヒドロフェントレニル基、フルオレニル基又はピレニル基が好ましく、フェニル基、ナフチル基又はフルオレニル基がより好ましく、フェニル基が更に好ましく、これらの基は更に置換基を有していてもよい。
 環L1及び環L2が有していてもよい置換基における1価の複素環基としては、ピリジル基、ピリミジニル基、トリアジニル基、キノリニル基、イソキノリニル基、ジベンゾフラニル基、ジベンゾチエニル基、カルバゾリル基、アザカルバゾリル基、ジアザカルバゾリル基、フェノキサジニル基又はフェノチアジニル基が好ましく、ピリジル基、ピリミジニル基又はトリアジニル基がより好ましく、トリアジニル基が更に好ましく、これらの基は更に置換基を有していてもよい。
 環L1及び環L2が有していてもよい置換基における置換アミノ基において、アミノ基が有する置換基としては、アリール基又は1価の複素環基が好ましく、アリール基がより好ましく、これらの基は更に置換基を有していてもよい。アミノ基が有する置換基におけるアリール基の例及び好ましい範囲は、環L1及び環L2が有していてもよい置換基におけるアリール基の例及び好ましい範囲と同じである。アミノ基が有する置換基における1価の複素環基の例及び好ましい範囲は、環L1及び環L2が有していてもよい置換基における1価の複素環基の例及び好ましい範囲と同じである。
 環L1及び環L2が有していてもよい置換基が更に有していてもよい置換基としては、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はフッ素原子が好ましく、アルキル基、シクロアルキル基、アリール基又は1価の複素環基がより好ましく、アルキル基、シクロアルキル基又はアリール基が更に好ましく、これらの基は更に置換基を有していてもよい。
 環L1及び環L2が有していてもよい置換基におけるアリール基、1価の複素環基又は置換アミノ基は、本実施形態の発光素子の初期劣化が抑制されるので、好ましくは、式(D-A)、式(D-B)又は式(D-C)で表される基であり、より好ましくは、式(D-A)又は式(D-B)で表される基であり、更に好ましくは、式(D-A)で表される基である。
Figure JPOXMLDOC01-appb-C000026
[式中、
 mDA1、mDA2及びmDA3は、それぞれ独立に、0以上の整数を表す。
 GDAは、窒素原子、芳香族炭化水素基又は複素環基を表し、これらの基は置換基を有していてもよい。
 ArDA1、ArDA2及びArDA3は、それぞれ独立に、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。ArDA1、ArDA2及びArDA3が複数ある場合、それらはそれぞれ同一でも異なっていてもよい。
 TDAは、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるTDAは、同一でも異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000027
[式中、
 mDA1、mDA2、mDA3、mDA4、mDA5、mDA6及びmDA7は、それぞれ独立に、0以上の整数を表す。
 GDAは、窒素原子、芳香族炭化水素基又は複素環基を表し、これらの基は置換基を有していてもよい。複数あるGDAは、同一でも異なっていてもよい。
 ArDA1、ArDA2、ArDA3、ArDA4、ArDA5、ArDA6及びArDA7は、それぞれ独立に、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。ArDA1、ArDA2、ArDA3、ArDA4、ArDA5、ArDA6及びArDA7が複数ある場合、それらはそれぞれ同一でも異なっていてもよい。
 TDAは、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるTDAは、同一でも異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000028
[式中、
 mDA1は、0以上の整数を表す。
 ArDA1は、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。ArDA1が複数ある場合、それらは同一でも異なっていてもよい。
 TDAは、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。]
 mDA1、mDA2、mDA3、mDA4、mDA5、mDA6及びmDA7は、通常10以下の整数であり、好ましくは5以下の整数であり、より好ましくは2以下の整数であり、更に好ましくは0又は1である。mDA2、mDA3、mDA4、mDA5、mDA6及びmDA7は、同一の整数であることが好ましい。
 GDAは、好ましくは芳香族炭化水素基又は複素環基であり、より好ましくはベンゼン環、ピリジン環、ピリミジン環、トリアジン環又はカルバゾール環から環を構成する炭素原子又は窒素原子に直接結合する水素原子3個を除いてなる基であり、これらの基は置換基を有していてもよい。
 GDAが有していてもよい置換基としては、好ましくは、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基であり、より好ましくは、アルキル基、シクロアルキル基、アルコキシ基又はシクロアルコキシ基であり、更に好ましくは、アルキル基又はシクロアルキル基であり、これらの基は置換基を有していてもよい。
 GDAは、好ましくは式(GDA-11)~式(GDA-15)で表される基であり、より好ましくは式(GDA-11)~式(GDA-14)で表される基であり、更に好ましくは式(GDA-11)又は式(GDA-14)で表される基である。
Figure JPOXMLDOC01-appb-C000029
[式中、
 *は、式(D-A)におけるArDA1、式(D-B)におけるArDA1、式(D-B)におけるArDA2、又は、式(D-B)におけるArDA3との結合を表す。
 **は、式(D-A)におけるArDA2、式(D-B)におけるArDA2、式(D-B)におけるArDA4、又は、式(D-B)におけるArDA6との結合を表す。
 ***は、式(D-A)におけるArDA3、式(D-B)におけるArDA3、式(D-B)におけるArDA5、又は、式(D-B)におけるArDA7との結合を表す。
 RDAは、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は更に置換基を有していてもよい。RDAが複数ある場合、それらは同一でも異なっていてもよい。]
 RDAは、好ましくは水素原子、アルキル基、シクロアルキル基、アルコキシ基又はシクロアルコキシ基であり、より好ましくは水素原子、アルキル基又はシクロアルキル基であり、これらの基は置換基を有していてもよい。
 ArDA1、ArDA2、ArDA3、ArDA4、ArDA5、ArDA6及びArDA7は、好ましくは、フェニレン基、フルオレンジイル基又はカルバゾールジイル基であり、より好ましくは式(ArDA-1)~(ArDA-5)で表される基であり、更に好ましくは式(ArDA-1)~式(ArDA-3)で表される基であり、特に好ましくは式(ArDA-1)又は式(ArDA-2)で表される基であり、とりわけ好ましくは式(ArDA-2)で表される基であり、これらの基は置換基を有していてもよい。
Figure JPOXMLDOC01-appb-C000030
[式中、
 RDAは、前記と同じ意味を表す。
 RDBは、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。RDBが複数ある場合、それらは同一でも異なっていてもよい。]
 RDBは、好ましくはアルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、より好ましくはアリール基又は1価の複素環基であり、更に好ましくはアリール基であり、これらの基は置換基を有していてもよい。
 ArDA1、ArDA2、ArDA3、ArDA4、ArDA5、ArDA6及びArDA7が有していてもよい置換基の例及び好ましい範囲は、GDAが有していてもよい置換基の例及び好ましい範囲と同じである。
 TDAは、好ましくは式(TDA-1)~式(TDA-3)で表される基であり、より好ましくは式(TDA-1)で表される基である。
Figure JPOXMLDOC01-appb-C000031
[式中、RDA及びRDBは、前記と同じ意味を表す。]
 式(D-A)で表される基は、好ましくは式(D-A1)~式(D-A5)で表される基であり、より好ましくは式(D-A1)又は式(D-A3)~式(D-A5)で表される基であり、更に好ましくは式(D-A1)、式(D-A3)又は式(D-A5)で表される基である。
Figure JPOXMLDOC01-appb-C000032
[式中、
 Rp1、Rp2、Rp3及びRp4は、それぞれ独立に、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基又はフッ素原子を表す。Rp1、Rp2及びRp4が複数ある場合、それらはそれぞれ同一であっても異なっていてもよい。
 np1は、0~5の整数を表し、np2は0~3の整数を表し、np3は0又は1を表し、np4は0~4の整数を表す。複数あるnp1は、同一でも異なっていてもよい。]
 式(D-B)で表される基は、好ましくは式(D-B1)~式(D-B6)で表される基であり、より好ましくは式(D-B1)~式(D-B3)、式(D-B5)又は式(D-B6)で表される基であり、更に好ましくは式(D-B1)、式(D-B3)又は式(D-B5)で表される基であり、特に好ましくは式(D-B1)で表される基である。
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
[式中、
 Rp1、Rp2、Rp3及びRp4は、それぞれ独立に、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基又はフッ素原子を表す。Rp1、Rp2及びRp4が複数ある場合、それらはそれぞれ同一でも異なっていてもよい。
 np1は0~5の整数を表し、np2は0~3の整数を表し、np3は0又は1を表し、np4は0~4の整数を表す。複数あるnp1は同一でも異なっていてもよい。複数あるnp2は、それらは同一でも異なっていてもよい。]
 式(D-C)で表される基は、好ましくは式(D-C1)~式(D-C4)で表される基であり、より好ましくは式(D-C1)~式(D-C3)で表される基であり、更に好ましくは式(D-C1)又は式(D-C2)で表される基であり、特に好ましくは式(D-C1)で表される基である。
Figure JPOXMLDOC01-appb-C000035
[式中、
 Rp4、Rp5及びRp6は、それぞれ独立に、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基又はフッ素原子を表す。Rp4、Rp5及びRp6が複数ある場合、それらはそれぞれ同一であっても異なっていてもよい。
 np4は0~4の整数を表し、np5は0~5の整数を表し、np6は0~5の整数を表す。]
 np1は、好ましくは0~2の整数であり、より好ましくは0又は1である。np2は、好ましくは0又は1であり、より好ましくは0である。np3は好ましくは0である。np4は、好ましくは0~2の整数であり、より好ましくは0である。np5は、好ましくは0~3の整数であり、より好ましくは0又は1である。np6は、好ましくは0~2の整数であり、より好ましくは0又は1である。
 Rp1、Rp2、Rp3、Rp4、Rp5及びRp6におけるアルキル基又はシクロアルキル基は、好ましくは、メチル基、エチル基、イソプロピル基、tert-ブチル基、ヘキシル基、2-エチルヘキシル基、シクロヘキシル基又はtert-オクチル基である。
 Rp1、Rp2、Rp3、Rp4、Rp5及びRp6におけるアルコキシ基又はシクロアルコキシ基は、好ましくは、メトキシ基、2-エチルヘキシルオキシ基又はシクロへキシルオキシ基である。
 Rp1、Rp2、Rp3、Rp4、Rp5及びRp6は、好ましくは、置換基を有していてもよいアルキル基又は置換基を有していてもよいシクロアルキル基であり、より好ましくは、置換基を有していてもよいアルキル基であり、更に好ましくは、メチル基、エチル基、イソプロピル基、tert-ブチル基、ヘキシル基、2-エチルヘキシル基又はtert-オクチル基である。
 式(D-A)で表される基としては、例えば、式(D-A-1)~式(D-A-12)で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
[式中、RDは、水素原子、メチル基、エチル基、イソプロピル基、tert-ブチル基、ヘキシル基、2-エチルヘキシル基、tert-オクチル基、シクロヘキシル基、メトキシ基、2-エチルヘキシルオキシ基又はシクロへキシルオキシ基を表す。RDが複数存在する場合、それらは同一でも異なっていてもよい。]
 式(D-B)で表される基としては、例えば、式(D-B-1)~式(D-B-7)で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
[式中、RDは前記と同じ意味を表す。]
 式(D-C)で表される基としては、例えば、式(D-C-1)~式(D-C-13)で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000040
[式中、RDは前記と同じ意味を表す。]
 RDは、水素原子、メチル基、エチル基、イソプロピル基、tert-ブチル基、ヘキシル基、2-エチルヘキシル基又はtert-オクチル基であることが好ましく、水素原子、tert-ブチル基又はtert-オクチル基であることがより好ましい。
 環L1が有していてもよい置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
 環L2が有していてもよい置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
 環L1が有していてもよい置換基と、環L2が有していてもよい置換基とは、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
 A1-G1-A2で表されるアニオン性の2座配位子としては、例えば、下記式で表される配位子が挙げられる。但し、A1-G1-A2で表されるアニオン性の2座配位子は、添え字n1でその数を定義されている配位子とは異なる。
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
[式中、
 *は、Mと結合する部位を表す。
 RL1は、水素原子、アルキル基、シクロアルキル基、アリール基、1価の複素環基又はフッ素原子を表し、これらの基は置換基を有していてもよい。複数存在するRL1は、同一でも異なっていてもよい。
 RL2は、アルキル基、シクロアルキル基、アリール基、1価の複素環基又はフッ素原子を表し、これらの基は置換基を有していてもよい。]
 RL1は、水素原子、アルキル基、シクロアルキル基、アリール基又はフッ素原子であることが好ましく、水素原子又はアルキル基であることがより好ましく、これらの基は置換基を有していてもよい。
 RL2は、アルキル基又はアリール基であることが好ましく、これらの基は置換基を有していてもよい。
 式(1)で表される金属錯体は、本実施形態の発光素子の初期劣化が抑制されるので、式(1-A)又は式(1-B)で表される金属錯体化合物であることが好ましく、式(1-B)で表される金属錯体であることがより好ましい。
Figure JPOXMLDOC01-appb-C000044
[式中、
 M、n1、n2、E1及びA1-G1-A2は、前記と同じ意味を表す。
 E11A、E12A、E13A、E21A、E22A、E23A及びE24Aは、それぞれ独立に、窒素原子又は炭素原子を表す。E11A、E12A、E13A、E21A、E22A、E23A及びE24Aが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。E11Aが窒素原子の場合、R11Aは存在しても存在しなくてもよい。E12Aが窒素原子の場合、R12Aは存在しても存在しなくてもよい。E13Aが窒素原子の場合、R13Aは存在しても存在しなくてもよい。E21Aが窒素原子の場合、R21Aは存在しない。E22Aが窒素原子の場合、R22Aは存在しない。E23Aが窒素原子の場合、R23Aは存在しない。E24Aが窒素原子の場合、R24Aは存在しない。
 R11A、R12A、R13A、R21A、R22A、R23A及びR24Aは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はフッ素原子を表し、これらの基は置換基を有していてもよい。R11A、R12A、R13A、R21A、R22A、R23A及びR24Aが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。R11AとR12A、R12AとR13A、R11AとR21A、R21AとR22A、R22AとR23A、及び、R23AとR24Aは、それぞれ結合して、それぞれが結合する原子とともに環を形成していてもよい。
 環L1Aは、窒素原子、E1、E11A、E12A及びE13Aとで構成されるトリアゾール環又はジアゾール環を表す。
 環L2Aは、2つの炭素原子、E21A、E22A、E23A及びE24Aとで構成されるベンゼン環、ピリジン環又はピリミジン環を表す。]
Figure JPOXMLDOC01-appb-C000045
[式中、
 M、n1、n2及びA1-G1-A2は、前記と同じ意味を表す。
 E11B、E12B、E13B、E14B、E21B、E22B、E23B及びE24Bは、それぞれ独立に、窒素原子又は炭素原子を表す。E11B、E12B、E13B、E14B、E21B、E22B、E23B及びE24Bが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。E11Bが窒素原子の場合、R11Bは存在しない。E12Bが窒素原子の場合、R12Bは存在しない。E13Bが窒素原子の場合、R13Bは存在しない。E14Bが窒素原子の場合、R14Bは存在しない。E21Bが窒素原子の場合、R21Bは存在しない。E22Bが窒素原子の場合、R22Bは存在しない。E23Bが窒素原子の場合、R23Bは存在しない。E24Bが窒素原子の場合、R24Bは存在しない。
 R11B、R12B、R13B、R14B、R21B、R22B、R23B及びR24Bは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はフッ素原子を表し、これらの基は置換基を有していてもよい。R11B、R12B、R13B、R14B、R21B、R22B、R23B及びR24Bが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。R11BとR12B、R12BとR13B、R13BとR14B、R11BとR21B、R21BとR22B、R22BとR23B、及び、R23BとR24Bは、それぞれ結合して、それぞれが結合する原子とともに環を形成していてもよい。
 環L1Bは、窒素原子、炭素原子、E11B、E12B、E13B及びE14Bとで構成されるピリジン環又はピリミジン環を表す。
 環L2Bは、2つの炭素原子、E21B、E22B、E23B及びE24Bとで構成されるベンゼン環、ピリジン環又はピリミジン環を表す。]
 ・式(1-A)で表される金属錯体
 環L1Aがジアゾール環である場合、E11Aが窒素原子であるイミダゾール環、又は、E12Aが窒素原子であるイミダゾール環が好ましく、E11Aが窒素原子であるイミダゾール環がより好ましい。
 環L1Aがトリアゾール環である場合、E11A及びE12Aが窒素原子であるトリアゾール環、又は、E11A及びE13Aが窒素原子であるトリアゾール環が好ましく、E11A及びE12Aが窒素原子であるトリアゾール環がより好ましい。
 R11A、R12A、R13A、R21A、R22A、R23A及びR24Aにおけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲は、それぞれ、環L1及び環L2が有していてもよい置換基におけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲と同じである。
 R11A、R12A、R13A、R21A、R22A、R23A及びR24Aが有していてもよい置換基の例及び好ましい範囲は、環L1及び環L2が有していてもよい置換基が更に有していてもよい置換基の例及び好ましい範囲と同じである。
 E11Aが窒素原子であり、且つ、R11Aが存在する場合、R11Aはアルキル基、シクロアルキル基、アリール基又は1価の複素環基であることが好ましく、アリール基であることがより好ましく、これらの基は置換基を有していてもよい。
 E11Aが炭素原子である場合、R11Aは水素原子、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であることが好ましく、水素原子、アルキル基又はシクロアルキル基であることがより好ましく、水素原子であることが更に好ましく、これらの基は置換基を有していてもよい。
 E12Aが窒素原子であり、且つ、R12Aが存在する場合、R12Aはアルキル基、シクロアルキル基、アリール基又は1価の複素環基であることが好ましく、アリール基であることがより好ましく、これらの基は置換基を有していてもよい。
 E12Aが炭素原子である場合、R12Aは水素原子、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であることが好ましく、水素原子、アルキル基又はシクロアルキル基であることがより好ましく、水素原子であることが更に好ましく、これらの基は置換基を有していてもよい。
 E13Aが窒素原子であり、且つ、R13Aが存在する場合、R13Aはアルキル基、シクロアルキル基、アリール基又は1価の複素環基であることが好ましく、アリール基であることがより好ましく、これらの基は置換基を有していてもよい。
 E13Aが炭素原子である場合、R13Aは水素原子、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であることが好ましく、水素原子、アルキル基又はシクロアルキル基であることがより好ましく、水素原子であることが更に好ましく、これらの基は置換基を有していてもよい。
 環L2Aがピリジン環である場合、E21Aが窒素原子であるピリジン環、E22Aが窒素原子であるピリジン環、又は、E23Aが窒素原子であるピリジン環が好ましく、E22Aが窒素原子であるであるピリジン環がより好ましい。
 環L2Aがピリミジン環である場合、E22A及びE24Aが窒素原子であるピリミジン環が好ましい。
 環L2Aは、ベンゼン環であることが好ましい。
 R21A、R22A、R23A及びR24Aは、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、1価の複素環基、フッ素原子又は置換アミノ基が好ましく、水素原子又は式(D-A)、式(D-B)若しくは式(D-C)で表される基であることがより好ましく、水素原子又は式(D-A)で表される基であることが更に好ましく、これらの基は置換基を有していてもよい。
 環L2Aがアリール基、1価の複素環基又は置換アミノ基を有する場合、R22A又はR23Aがアリール基、1価の複素環基又は置換アミノ基であることが好ましく、R22Aがアリール基、1価の複素環基又は置換アミノ基であることがより好ましい。
 式(1-A)で表される金属錯体は、本実施形態の発光素子の初期劣化が抑制されるので、式(1-A1)で表される金属錯体、式(1-A2)で表される金属錯体、式(1-A3)で表される金属錯体又は式(1-A4)で表される金属錯体であることが好ましく、式(1-A3)で表される金属錯体であることがより好ましい。
Figure JPOXMLDOC01-appb-C000046
[式中、M、n1、n2、R11A、R12A、R13A、R21A、R22A、R23A、R24A及びA1-G1-A2は、前記と同じ意味を表す。]
 式(1-A1)で表される金属錯体において、n1個存在する配位子としては、例えば、式(LA-1)又は式(LA-2)で表される配位子が挙げられる。
 式(1-A2)で表される金属錯体において、n1個存在する配位子としては、例えば、式(LA-3)で表される配位子が挙げられる。
 式(1-A3)で表される金属錯体において、n1個存在する配位子としては、例えば、式(LA-4)~式(LA-6)で表される配位子が挙げられ、式(LA-5)又は式(LA-6)で表される配位子が好ましい。
 式(1-A4)で表される金属錯体において、n1個存在する配位子としては、例えば、式(LA-7)で表される配位子が挙げられる。
Figure JPOXMLDOC01-appb-C000047
[式中、*は、Mと結合する部位を表し、R11A、R12A、R13A及びR22Aは、前記と同じ意味を表す。]
 ・式(1-B)で表される金属錯体
 環L1Bがピリミジン環である場合、E11Bが窒素原子であるピリミジン環が好ましい。
 環L2Bがピリジン環である場合、E21Bが窒素原子であるピリジン環、E22Bが窒素原子であるピリジン環、又は、E23Bが窒素原子であるピリジン環が好ましく、E22Bが窒素原子であるであるピリジン環がより好ましい。
 環L2Bがピリミジン環である場合、E22B及びE24Bが窒素原子であるピリミジン環が好ましい。
 環L2Bは、ベンゼン環であることが好ましい。
 R11B、R12B、R13B、R14B、R21B、R22B、R23B及びR24Bにおけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲は、それぞれ、環L1及び環L2が有していてもよい置換基におけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲と同じである。
 R11B、R12B、R13B、R14B、R21B、R22B、R23B及びR24Bが有していてもよい置換基の例及び好ましい範囲は、環L1及び環L2が有していてもよい置換基が更に有していてもよい置換基の例及び好ましい範囲と同じである。
 R11B、R12B、R13B、R14B、R21B、R22B、R23B及びR24Bは、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、フッ素原子、アリール基、1価の複素環基又は置換アミノ基であることが好ましく、水素原子、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であることがより好ましく、水素原子、アルキル基、シクロアルキル基、又は、式(D-A)、式(D-B)若しくは式(D-C)で表される基であることが更に好ましく、水素原子、アルキル基、又は、式(D-A)、式(D-B)若しくは式(D-C)で表される基であることが特に好ましく、これらの基は置換基を有していてもよい。
 環L1Bがアリール基、1価の複素環基又は置換アミノ基を有する場合、R11B、R12B又はR13Bがアリール基、1価の複素環基又は置換アミノ基であることが好ましく、R12B又はR13Bがアリール基、1価の複素環基又は置換アミノ基であることがより好ましく、R13Bがアリール基、1価の複素環基又は置換アミノ基であることが更に好ましい。
 環L2Bがアリール基、1価の複素環基又は置換アミノ基を有する場合、R22B又はR23Bがアリール基、1価の複素環基又は置換アミノ基であることが好ましく、R22Bがアリール基、1価の複素環基又は置換アミノ基であることがより好ましい。
 式(1-B)で表される金属錯体は、本実施形態の発光素子の初期劣化が抑制されるので、前記式(1-B1)~前記式(1-B5)で表される金属錯体であることが好ましく、前記式(1-B1)、前記式(1-B2)、前記式(1-B3)又は前記式(1-B5)で表される金属錯体であることがより好ましく、前記式(1-B1)又は前記式(1-B2)で表される金属錯体であることが更に好ましく、前記式(1-B1)で表される金属錯体であることが特に好ましい。
 R15B、R16B、R17B及びR18Bにおけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲は、それぞれ、環L1及び環L2が有していてもよい置換基におけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲と同じである。
 R15B、R16B、R17B及びR18Bが有していてもよい置換基の例及び好ましい範囲は、環L1及び環L2が有していてもよい置換基が更に有していてもよい置換基の例及び好ましい範囲と同じである。
 R15B、R16B、R17B及びR18Bは、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、フッ素原子、アリール基、1価の複素環基又は置換アミノ基であることが好ましく、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、1価の複素環基又は置換アミノ基であることがより好ましく、水素原子、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であることが更に好ましく、水素原子、アルキル基又はシクロアルキル基であることが特に好ましく、水素原子であることがとりわけ好ましく、これらの基は置換基を有していてもよい。
 式(1-B1)で表される金属錯体において、n1個存在する配位子、及び、式(1-B3)で表される金属錯体において、n11個存在する配位子としては、例えば、式(LB-1)~式(LB-6)で表される配位子が挙げられ、本実施形態の発光素子の輝度寿命(初期劣化)が優れるので、式(LB-6)で表される配位子が好ましい。
 式(1-B1)で表される金属錯体において、n1個存在する配位子、及び、式(1-B3)で表される金属錯体において、n21個存在する配位子としては、例えば、式(LB-7)~式(LB-9)で表される配位子が挙げられ、本実施形態の発光素子の輝度寿命(初期劣化)が優れるので、式(LB-7)で表される配位子が好ましい。
 式(1-B4)で表される金属錯体において、n1個存在する配位子としては、例えば、式(LB-10)で表される配位子が挙げられる。
 式(1-B5)で表される金属錯体において、n1個存在する配位子としては、例えば、式(LB-11)~式(LB-15)で表される配位子が挙げられる。
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
[式中、*は、Mと結合する部位を表し、R11B、R12B、R13B、R21B、R22B及びR23Bは、前記と同じ意味を表す。]
 式(1)で表される金属錯体としては、例えば、下記式で表される金属錯体が挙げられる。
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
 式(1)で表される金属錯体は、Aldrich、Luminescence Technology Corp.、American Dye Source等から入手可能である。また、式(1)で表される金属錯体は、例えば、「Journal of the American Chemical Society,Vol.107,1431-1432(1985)」、「Journal of the American Chemical Society,Vol.106,6647-6653(1984)」、特表2004-530254号公報、特開2008-179617号公報、特開2011-105701号公報、特表2007-504272号公報、国際公開第2006/121811号、特開2013-147450号公報、特開2014-224101号公報に記載の方法に従って合成することができる。こうした合成の過程において、不純物としての塩素原子が最終生成物中に残留することがある。
 式(1)で表される金属錯体の発光スペクトルの最大ピーク波長は、式(1)で表される金属錯体を、キシレン、トルエン、クロロホルム、テトラヒドロフラン(THF)等の有機溶媒に溶解させ、希薄溶液を調製し(1×10-6~1×10-3質量%)、該希薄溶液のPLスペクトルを室温で測定することで評価することができる。式(1)で表される金属錯体を溶解させる有機溶媒としては、トルエン又はキシレンが好ましい。
 式(1)で表される金属錯体の発光スペクトルの最大ピーク波長は、495nm~750nmであることが好ましく、500nm~680nmであることがより好ましく、500nm~640nmであることが更に好ましく、500nm~550nm又は590nm~640nmであることが特に好ましく、500nm~550nmであることがとりわけ好ましい。
 ・式(1)で表される金属錯体に含まれる不純物としての塩素原子の量
 本実施形態に係る組成物において、式(1)で表される金属錯体に含まれる不純物としての塩素原子の量(以下、「C1」と言う。)は、金属錯体の全量に対して、通常、6質量ppm以下であり、本実施形態に係る発光素子の初期劣化が抑制されるので、好ましくは5質量ppm以下であり、より好ましくは4質量ppm以下であり、更に好ましくは2質量ppm以下であり、特に好ましくは1質量ppm以下である。また、C1は、金属錯体の全量に対して、通常、測定上の検出限界のために、0.01質量ppm以上である。
 C1の具体的な算出方法は、後述のCHの具体的な算出方法と同様である。
 C1の低減方法としては、例えば、精製、脱ハロゲン化剤が挙げられる。これらの低減方法は、1種のみ用いても2種以上を併用してもよい。
 精製は、例えば、第4版実験化学講座(1993年、丸善)、第5版実験化学講座(2007年、丸善)、新実験化学講座(1975年、丸善)、有機化学実験のてびき(1988年、化学同人)に記載の公知の精製方法により行うことができる。
 精製方法としては、例えば、昇華、抽出、再沈殿、再結晶、洗浄、クロマトグラフィー、吸着が挙げられる。精製を2回以上行う場合、それらの方法は、同一でも異なっていてもよい。
 抽出は、好ましくは、分液、又は、ソックスレー抽出器による固液抽出であり、より好ましくは、分液である。
 抽出は、通常、有機溶媒中で行う。この有機溶媒としては、例えば、ジエチルエーテル、テトラヒドロフラン、ジオキサン、シクロペンチルメチルエーテル、ジグライム等のエーテル系溶媒;塩化メチレン、クロロホルム等のハロゲン系溶媒;ヘキサン、デカリン、ヘプタン、オクタン、ペンタン、デカン、ドデカン等の脂肪族炭化水素系溶媒;トルエン、キシレン、メシチレン等の芳香族炭化水素系溶媒;酢酸エチル、酢酸ブチル、酢酸プロピル、カプロン酸エチル、ギ酸エチル、酢酸アミル等のエステル系溶媒;水が挙げられる。抽出に用いる溶媒はこのうち2種以上を併用してもよい。
 再沈殿は、通常、溶媒中で行い、良溶媒と貧溶媒との混合溶媒中で行う。
 良溶媒としては、例えば、ジエチルエーテル、テトラヒドロフラン、ジオキサン、シクロペンチルメチルエーテル、ジグライム等のエーテル系溶媒;塩化メチレン、クロロホルム等のハロゲン系溶媒;トルエン、キシレン、メシチレン等の芳香族炭化水素系溶媒;酢酸エチル、酢酸ブチル、酢酸プロピル、カプロン酸エチル、ギ酸エチル、酢酸アミル等のエステル系溶媒;アセトンが挙げられる。通常、良溶媒は1種を用いるが、2種以上を併用してもよい。
 貧溶媒としては、例えば、メタノール、エタノール、プロパノール、エチレングリコール、グリセリン、2-メトキシエタノール、2-エトキシエタノール等のアルコール系溶媒;アセトニトリル、ベンゾニトリル等のニトリル系溶媒;ヘキサン、デカリン、ヘプタン、オクタン、ペンタン、デカン、ドデカン等の脂肪族炭化水素系溶媒;アセトン、ジメチルスルホキシド、水が挙げられる。通常、貧溶媒は1種を用いるが、2種以上を併用してもよい。
 再沈殿において、良溶媒又は貧溶媒の使用量は、通常、式(1)で表される金属錯体の合計100質量部に対して、10~100000質量部であり、好ましくは70~15000質量部である。
 再沈殿において、溶媒を用いる際の温度は、通常、-80℃~180℃であり、好ましくは0℃~80℃である。
 再結晶は、通常、溶媒中で行う。この溶媒としては、例えば、メタノール、エタノール、プロパノール、エチレングリコール、グリセリン、2-メトキシエタノール、2-エトキシエタノール等のアルコール系溶媒;ジエチルエーテル、テトラヒドロフラン、ジオキサン、シクロペンチルメチルエーテル、ジグライム等のエーテル系溶媒;塩化メチレン、クロロホルム等のハロゲン系溶媒;アセトニトリル、ベンゾニトリル等のニトリル系溶媒;ヘキサン、デカリン、ヘプタン、オクタン、ペンタン、デカン、ドデカン等の脂肪族炭化水素系溶媒;トルエン、キシレン、メシチレン等の芳香族炭化水素系溶媒;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド系溶媒;酢酸エチル、酢酸ブチル、酢酸プロピル、カプロン酸エチル、ギ酸エチル、酢酸アミル等のエステル系溶媒;アセトン、ジメチルスルホキシド、水が挙げられ、これらは1種のみ用いても2種以上を併用してもよい。2種以上を併用する場合は、良溶媒と貧溶媒を混合して行うことが好ましい。
 再結晶に用いられる良溶媒としては、例えば、ジエチルエーテル、テトラヒドロフラン、ジオキサン、シクロペンチルメチルエーテル、ジグライム等のエーテル系溶媒;塩化メチレン、クロロホルム等のハロゲン系溶媒;トルエン、キシレン、メシチレン等の芳香族炭化水素系溶媒;酢酸エチル、酢酸ブチル、酢酸プロピル、カプロン酸エチル、ギ酸エチル、酢酸アミル等のエステル系溶媒;アセトンが挙げられ、好ましくは芳香族炭化水素系溶媒である。これらは1種のみを用いても2種以上を併用してもよい。
 再結晶に用いられる貧溶媒としては、例えば、メタノール、エタノール、プロパノール、エチレングリコール、グリセリン、2-メトキシエタノール、2-エトキシエタノール等のアルコール系溶媒;アセトニトリル、ベンゾニトリル等のニトリル系溶媒;ヘキサン、デカリン、ヘプタン、オクタン、ペンタン、デカン、ドデカン等の脂肪族炭化水素系溶媒であり、これらは1種のみを用いても2種以上を併用してもよい。
 再結晶において、良溶媒又は貧溶媒の使用量は、通常、式(1)で表される金属錯体の合計100質量部に対して、10~100000質量部であり、好ましくは70~15000質量部である。
 再結晶において、溶媒を用いる際の温度は、通常-80℃~180℃であり、好ましくは0℃~80℃である。
 洗浄は、通常、貧溶媒中で行う。貧溶媒としては、例えば、例えば、メタノール、エタノール、プロパノール、エチレングリコール、グリセリン、2-メトキシエタノール、2-エトキシエタノール等のアルコール系溶媒;アセトニトリル、ベンゾニトリル等のニトリル系溶媒;ヘキサン、デカリン、ヘプタン、オクタン、ペンタン、デカン、ドデカン等の脂肪族炭化水素系溶媒;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド系溶媒;アセトン、ジメチルスルホキシド、水が挙げられる。通常、貧溶媒は1種を用いるが、2種以上を併用してもよい。
 洗浄において、貧溶媒の使用量は、式(1)で表される金属錯体の合計100質量部に対して、通常、10~100000質量部であり、好ましくは300~10000質量部である。
 洗浄において、貧溶媒を用いる際の温度は、通常、-80℃~180℃であり、好ましくは0℃~80℃である。
 クロマトグラフィーは、好ましくはカラムクロマトグラフィーである。カラムクロマトグラフィーに用いる充填剤としては、シリカゲル又はアルミナが好ましい。
 カラムクロマトグラフィーは、通常、有機溶媒中で行う。カラムクロマトグラフィーにおける有機溶媒としては、例えば、メタノール、エタノール、プロパノール、エチレングリコール、グリセリン、2-メトキシエタノール、2-エトキシエタノール等のアルコール系溶媒;ジエチルエーテル、テトラヒドロフラン、ジオキサン、シクロペンチルメチルエーテル、ジグライム等のエーテル系溶媒;塩化メチレン、クロロホルム等のハロゲン系溶媒;アセトニトリル、ベンゾニトリル等のニトリル系溶媒;ヘキサン、デカリン、ヘプタン、オクタン、ペンタン、デカン、ドデカン等の脂肪族炭化水素系溶媒;トルエン、キシレン、メシチレン等の芳香族炭化水素系溶媒;酢酸エチル、酢酸ブチル、酢酸プロピル、カプロン酸エチル、ギ酸エチル、酢酸アミル等のエステル系溶媒が挙げられ、これらは2種以上を併用してもよい。
 吸着は、吸着剤による処理が好ましい。吸着剤としては、好ましくは、グラファイトカーボンブラック、モレキュラーシーブ、ゼオライト、活性炭、活性白土、シリカゲル、アルミナ又はセライトである。これらの吸着剤は2種以上を併用してもよく、2種以上を併用する場合は、同時に用いても、分離して用いてもよい。
 吸着剤による吸着は、通常、溶媒中で行う。吸着における溶媒としては、例えば、メタノール、エタノール、プロパノール、エチレングリコール、グリセリン、2-メトキシエタノール、2-エトキシエタノール等のアルコール系溶媒;ジエチルエーテル、テトラヒドロフラン、ジオキサン、シクロペンチルメチルエーテル、ジグライム等のエーテル系溶媒;塩化メチレン、クロロホルム等のハロゲン系溶媒;アセトニトリル、ベンゾニトリル等のニトリル系溶媒;ヘキサン、デカリン、ヘプタン、オクタン、ペンタン、デカン、ドデカン等の脂肪族炭化水素系溶媒;トルエン、キシレン、メシチレン等の芳香族炭化水素系溶媒;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド系溶媒;酢酸エチル、酢酸ブチル、酢酸プロピル、カプロン酸エチル、ギ酸エチル、酢酸アミル等のエステル系溶媒;アセトン、ジメチルスルホキシド、水が挙げられる。通常、溶媒は1種を用いるが、2種以上を併用してもよい。
 吸着剤による吸着において、溶媒の使用量は、式(1)で表される金属錯体の合計100質量部に対して、通常、10~100000質量部であり、好ましくは100~50000質量部である。
 吸着剤による吸着において、溶媒を用いる際の温度は、通常、-80℃~180℃であり、好ましくは0℃~80℃である。
 吸着剤による吸着において、吸着剤の使用量は、式(1)で表される金属錯体の合計100質量部に対して、通常、1~1000質量部であり、好ましくは10~2000質量部である。
 脱ハロゲン化剤による処理としては、例えば、国際公開第2006/037458号、特開2007-220772号公報、特開2007-077078号公報、国際公開第2005/084083号、特開2012-193351号公報に記載の方法が挙げられる。
 脱ハロゲン化剤による処理としては、例えば、ヒドリド還元剤で還元する方法、及び、金属又は有機金属化合物を反応させる方法が挙げられる。
 ヒドリド還元剤としては、例えば、水素化ナトリウム、水素化リチウム、水素化カルシウム及び水素化マグネシウム等のアルカリ金属水素化物及びアルカリ土類金属水素化物;水素化アルミニウムリチウム、水素化ジイソブチルアルミニウム及び水素化ビス(2-メトキシエトキシ)アルミニウムナトリウム等の水素化アルミニウム化合物;ジボラン、水素化ホウ素ナトリウム及び水素化トリエチルホウ素リチウム等の水素化ホウ素化合物;シラン及びトリエチルシラン等の水素化ケイ素化合物;並びに、スタンナン及び水素化トリブチルスズ等の水素化スズ化合物が挙げられる。
 金属を反応させる方法において、金属としては、例えば、リチウム、ナトリウム、マグネシウム及び亜鉛等が挙げられる。
 有機金属化合物を反応させる方法において、有機金属化合物としては、例えば、ブチルリチウム及びフェニルリチウム等の有機リチウム化合物;グリニャール試薬等の有機マグネシウム化合物;並びに、ジエチル亜鉛等の有機亜鉛化合物が挙げられる。
 脱ハロゲン化剤による処理は、C1をより低減することができるので、好ましくは、式:RZ1-ZZ1で表される化合物を反応させる方法である。ここで、RZ1は、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。ZZ1は、置換基Z群からなる群から選ばれる基を表す。
<置換基Z群>
 -B(ORC22(式中、RC2は、水素原子、アルキル基、シクロアルキル基又はアリール基を表し、これらの基は置換基を有していてもよい。複数存在するRC2は同一でも異なっていてもよく、互いに連結して、それぞれが結合する酸素原子とともに環構造を形成していてもよい。)で表される基;
 -BF3Q’(式中、Q’は、Li、Na、K、Rb又はCsを表す。)で表される基;
 -MgY’(式中、Y’は、塩素原子、臭素原子又はヨウ素原子を表す。)で表される基;
 -ZnY’’(式中、Y’’は、塩素原子、臭素原子又はヨウ素原子を表す。)で表される基;及び、
 -Sn(RC33(式中、RC3は、水素原子、アルキル基、シクロアルキル基又はアリール基を表し、これらの基は置換基を有していてもよい。複数存在するRC3は同一でも異なっていてもよく、互いに連結して、それぞれが結合するスズ原子とともに環構造を形成していてもよい。)で表される基。
 脱ハロゲン化剤による処理は、通常、溶媒中で行う。反応に用いる溶媒としては、例えば、メタノール、エタノール、プロパノール、エチレングリコール、グリセリン、2-メトキシエタノール、2-エトキシエタノール等のアルコール系溶媒;ジエチルエーテル、テトラヒドロフラン、ジオキサン、シクロペンチルメチルエーテル、ジグライム等のエーテル系溶媒;塩化メチレン、クロロホルム等のハロゲン系溶媒;アセトニトリル、ベンゾニトリル等のニトリル系溶媒;ヘキサン、デカリン、トルエン、キシレン、メシチレン等の炭化水素系溶媒;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド系溶媒;アセトン、ジメチルスルホキシド、水が挙げられる。溶媒は、1種単独で用いても2種以上を併用してもよい。
 溶媒の使用量は、通常、式(1)で表される金属錯体の合計100質量部に対して、10~100000質量部である。
 脱ハロゲン化剤による処理において、反応時間は、通常、30分間~180時間である。反応温度は、通常、反応系に存在する溶媒の融点から沸点の間である。
 脱ハロゲン化剤による処理において、反応を促進するために、パラジウム触媒及びニッケル触媒等の触媒を用いてもよい。パラジウム触媒としては、例えば、酢酸パラジウム、ビス(トリフェニルホスフィン)パラジウム(II)ジクロリド、テトラキス(トリフェニルホスフィン)パラジウム(0)、[1,1’-ビス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム(II)、トリス(ジベンジリデンアセトン)二パラジウム(0)、ビス(トリ-tert-ブチルホスフィン)パラジウム(0)が挙げられる。ニッケル触媒としては、例えば、テトラキス(トリフェニルホスフィン)ニッケル(0)、[1,3-ビス(ジフェニルホスフィノ)プロパン)ニッケル(II)ジクロリド、ビス(1,4-シクロオクタジエン)ニッケル(0)が挙げられる。触媒は、1種単独で用いても2種以上を併用してもよい。
 触媒の使用量は、式(1)で表される金属錯体のモル数の合計に対する遷移金属の量として、通常、0.00001~3モル当量である。
 パラジウム触媒又はニッケル触媒は、トリフェニルホスフィン、トリ(o-トリル)ホスフィン、トリ(tert-ブチル)ホスフィン、トリシクロヘキシルホスフィン、1,1’-ビス(ジフェニルホスフィノ)フェロセン等のリン化合物と併用してもよい。リン化合物は、1種単独で用いても2種以上を併用してもよい。
 脱ハロゲン化剤による処理において、反応を促進するために、塩基及び/又は相間移動触媒を用いてもよい。
 塩基及び相間移動触媒としては、例えば、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、フッ化カリウム、フッ化セシウム、リン酸三カリウム等の無機塩基;フッ化テトラブチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラブチルアンモニウム等の有機塩基;塩化テトラブチルアンモニウム、臭化テトラブチルアンモニウム等の相間移動触媒が挙げられる。塩基及び相間移動触媒は、それぞれ、1種単独で用いても2種以上を併用してもよい。
 塩基及び相間移動触媒の使用量は、それぞれ、式(1)で表される金属錯体の合計モル数に対して、通常0.001~100モル当量である。
 脱ハロゲン化剤による処理において、反応を2回以上行う場合、それらは同一の条件で反応させてもよく、異なる条件で反応させてもよい。
 [式(H)で表される化合物]
 式(H)で表される化合物の分子量は、通常、1×102~5×104であり、好ましくは、2×102~1×104であり、より好ましくは、3×102~5×103であり、更に好ましくは、4×102~2.5×103であり、特に好ましくは、5×102~1.5×103である。
 nH1は、合成が容易であるので、好ましくは0以上3以下の整数であり、より好ましくは0以上2以下の整数であり、更に好ましくは0又は1であり、特に好ましくは0である。
 nH2は、本実施形態の発光素子の初期劣化が抑制されるので、好ましくは1以上7以下の整数であり、より好ましくは、好ましくは1以上5以下の整数であり、更に好ましくは1以上3以下の整数であり、特に好ましくは1又は2であり、とりわけ好ましくは1である。
 ・式(H1-1)で表される基
 環RH1及び環RH2において、単環の芳香族炭化水素環の炭素原子数は、置換基の炭素原子数を含めないで、好ましくは6である。
 環RH1及び環RH2において、単環の芳香族炭化水素環は、好ましくは、置換基を有していてもよいベンゼン環である。
 環RH1及び環RH2において、縮合環の芳香族炭化水素環の炭素原子数は、置換基の炭素原子数を含めないで、通常7~60であり、好ましくは9~30であり、より好ましくは10~18である。
 環RH1及び環RH2における縮合環の芳香族炭化水素環としては、例えば、ナフタレン環、アントラセン環、フェナントレン環、ジヒドロフェナントレン環、ナフタセン環、フルオレン環、スピロビフルオレン環、インデン環、ピレン環、ペリレン環及びクリセン環が挙げられ、好ましくは、ナフタレン環、アントラセン環、フェナントレン環、ジヒドロフェナントレン環、フルオレン環又はスピロビフルオレン環であり、より好ましくは、ナフタレン環、フルオレン環又はスピロビフルオレン環であり、更に好ましくは、フルオレン環又はスピロビフルオレン環であり、特に好ましくは、フルオレン環であり、これらの環は置換基を有していてもよい。
 環RH1及び環RH2において、単環の芳香族複素環の炭素原子数は、置換基の炭素原子数を含めないで、好ましくは2~5であり、より好ましくは3~5である。
 環RH1及び環RH2における単環の芳香族複素環としては、例えば、ピロール環、ジアゾール環、トリアゾール環、ピリジン環、ジアザベンゼン環及びトリアジン環が挙げられ、好ましくは、ピリジン環又はジアザベンゼン環であり、これらの環は置換基を有していてもよい。
 環RH1及び環RH2において、縮合環の芳香族複素環の炭素原子数は、置換基の炭素原子数を含めないで、通常2~60であり、好ましくは、4~30であり、より好ましくは、6~20である。
 環RH1及び環RH2における縮合環の芳香族複素環としては、例えば、アザナフタレン環、ジアザナフタレン環、トリアザナフタレン環、インドール環、カルバゾール環、アザカルバゾール環、ジアザカルバゾール環、ジベンゾフラン環、ジベンゾチオフェン環、フェノキサジン環、フェノチアジン環、アクリジン環、9,10-ジヒドロアクリジン環、アクリドン環、フェナジン環及び5,10-ジヒドロフェナジン環が挙げられ、好ましくは、アザナフタレン環、ジアザナフタレン環、カルバゾール環、アザカルバゾール環、ジアザカルバゾール環、ジベンゾフラン環、ジベンゾチオフェン環、フェノキサジン環、フェノチアジン環、9,10-ジヒドロアクリジン環又は5,10-ジヒドロフェナジン環であり、より好ましくは、カルバゾール環、アザカルバゾール環、ジアザカルバゾール環、ジベンゾフラン環、ジベンゾチオフェン環、フェノキサジン環、フェノチアジン環、9,10-ジヒドロアクリジン環又は5,10-ジヒドロフェナジン環であり、これらの環は置換基を有していてもよい。
 環RH1及び環RH2が有していてもよい置換基としては、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はフッ素原子が好ましく、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、1価の複素環基又は置換アミノ基がより好ましく、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基が更に好ましく、アルキル基、シクロアルキル基、又は、式(D-A)、式(D-B)若しくは式(D-C)で表される基が特に好ましく、アルキル基又はシクロアルキル基がとりわけ好ましく、これらの基は更に置換基を有していてもよい。
 環RH1及び環RH2が有していてもよい置換基が更に有していてもよい置換基としては、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はフッ素原子が好ましく、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、1価の複素環基又は置換アミノ基がより好ましく、アルキル基、シクロアルキル基、アリール基又は1価の複素環基が更に好ましく、アルキル基、シクロアルキル基又はアリール基が特に好ましく、アルキル基又はシクロアルキル基がとりわけ好ましく、これらの基は更に置換基を有していてもよい。
 環RH1及び環RH2が有していてもよい置換基におけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲は、それぞれ、環L1及び環L2が有していてもよい置換基におけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲と同じである。
 環RH1及び環RH2が有していてもよい置換基が更に有していてもよい置換基におけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲は、それぞれ、環L1及び環L2が有していてもよい置換基におけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲と同じである。
 環RH1及び環RH2の組み合わせは、一方が縮合環の芳香族炭化水素環又は縮合環の芳香族複素環であり、他方が単環の芳香族炭化水素環又は単環の芳香族複素環であることが好ましく、一方が縮合環の芳香族炭化水素環又は縮合環の芳香族複素環であり、他方が単環の芳香族炭化水素環であることがより好ましく、一方が縮合環の芳香族炭化水素環であり、他方が単環の芳香族炭化水素環であることが更に好ましい。
 XH1は、好ましくは単結合、酸素原子又は硫黄原子であり、より好ましくは単結合である。
 RXH1は、好ましくは、アルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、より好ましくは、アリール基又は1価の複素環基であり、更に好ましくは、アリール基であり、これらの基は置換基を有していてもよい。
 RXH1'は、好ましくは、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であり、より好ましくは、アルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、更に好ましくは、アルキル基、シクロアルキル基又はアリール基であり、特に好ましくは、アルキル基又はシクロアルキル基であり、これらの基は置換基を有していてもよい。
 RXH1及びRXH1'が有していてもよい置換基の例及び好ましい範囲は、環RH1及び環RH2が有していてもよい置換基が更に有していてもよい置換基の例及び好ましい範囲と同じである。
 式(H1-1)で表される基は、好ましくは、前記式(H1-1A)、前記式(H1-1B)又は前記式(H1-1C)で表される基であり、より好ましくは、前記式(H1-1A)又は前記式(H1-1B)で表される基であり、更に好ましくは前記式(H1-1A)で表される基である。
 XH2及びXH3は、好ましくは、単結合、-N(RXH2)-で表される基、又は、-C(RXH2')2-で表される基であり、より好ましくは、単結合又は-C(RXH2')2-で表される基である。
 XH2及びXH3のうち、少なくとも一方は単結合であることが好ましく、XH3が単結合であることがより好ましい。
 XH2及びXH3のうち、少なくとも一方が単結合である場合、もう一方は酸素原子、硫黄原子、-N(RXH2)-で表される基、又は、-C(RXH2')2-で表される基であることが好ましく、-N(RXH2)-で表される基、又は、-C(RXH2')2-で表される基であることがより好ましく、-C(RXH2')2-で表される基であることが更に好ましい。
 RXH2及びRXH2'の例及び好ましい範囲は、各々、RXH1及びRXH1'の例及び好ましい範囲と同じである。
 RXH2及びRXH2'が有していてもよい置換基の例及び好ましい範囲は、環RH1及び環RH2が有していてもよい置換基が更に有していてもよい置換基の例及び好ましい範囲と同じである。
 ZH1~ZH12は、炭素原子であることが好ましい。
 RH1~RH12は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、1価の複素環基又は置換アミノ基であることが好ましく、水素原子、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であることがより好ましく、水素原子、アルキル基、シクロアルキル基、又は、式(D-A)、式(D-B)若しくは式(D-C)で表される基が更に好ましく、水素原子、アルキル基又はシクロアルキル基が特に好ましく、水素原子がとりわけ好ましく、これらの基は更に置換基を有していてもよい。
 RH1~RH12が有していてもよい置換基の例及び好ましい範囲は、環RH1及び環RH2が有していてもよい置換基が更に有していてもよい置換基の例及び好ましい範囲と同じである。
 RH1とRH2、RH3とRH4、RH5とRH6、RH6とRH7、RH7とRH8、RH9とRH10、RH10とRH11、及び、RH11とRH12は、それぞれ結合して、それぞれが結合する炭素原子とともに環を形成していてもよいが、環を形成しないことが好ましい。
 LH1は、アルキレン基、シクロアルキレン基、アリーレン基又は2価の複素環基であることが好ましく、アリーレン基又は2価の複素環基であることがより好ましく、アリーレン基であることが更に好ましく、これらの基は置換基を有していてもよい。
 LH1で表されるアリーレン基としては、好ましくは、フェニレン基、ナフタレンジイル基、フルオレンジイル基、フェナントレンジイル基又はジヒドロフェナントレンジイル基であり、より好ましくは、式(A-1)~式(A-9)、式(A-19)又は式(A-20)で表される基であり、更に好ましくは、式(A-1)~式(A-3)で表される基であり、特に好ましくは、式(A-1)又は(A-2)で表される基であり、とりわけ好ましくは、式(A-2)で表される基であり、これらの基は置換基を有していてもよい。
 LH1で表される2価の複素環基としては、好ましくは、式(AA-1)~式(AA-34)で表される基であり、より好ましくは、式(AA-1)~式(AA-6)、式(AA-10)~式(AA-21)又は式(AA-24)~式(AA-34)で表される基であり、更に好ましくは、式(AA-1)~式(AA-4)、式(AA-10)~式(AA-15)又は式(AA-29)~式(AA-34)で表される基であり、特に好ましくは、式(AA-2)、式(AA-4)、式(AA-10)、式(AA-12)又は式(AA-14)で表される基である。
 LH1が有していてもよい置換基の例及び好ましい範囲は、環RH1及び環RH2が有していてもよい置換基の例及び好ましい範囲と同じである。
 LH1が有していてもよい置換基が更に有していてもよい置換基の例及び好ましい範囲は、環RH1及び環RH2が有していてもよい置換基が更に有していてもよい置換基の例及び好ましい範囲と同じである。
 RH1'は、好ましくは、アリール基又は1価の複素環基であり、より好ましくはアリール基であり、これらの基は置換基を有していてもよい。
 RH1'が有していてもよい置換基の例及び好ましい範囲は、環RH1及び環RH2が有していてもよい置換基が更に有していてもよい置換基の例及び好ましい範囲と同じである。
 ArH2において、芳香族炭化水素基の炭素原子数は、置換基の炭素原子数を含めないで、通常6~60であり、好ましくは6~30であり、より好ましくは6~18である。
 ArH2において、芳香族炭化水素基としては、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ジヒドロフェナントレン環、ナフタセン環、フルオレン環、スピロビフルオレン環、インデン環、ピレン環、ペリレン環、クリセン環、又は、これらの環が縮環した環から、環を構成する炭素原子に直接結合する水素原子1個以上を除いてなる基が挙げられ、好ましくは、ベンゼン環、ナフタレン環、フェナントレン環、ジヒドロフェナントレン環、フルオレン環、スピロビフルオレン環、又は、これらの環が縮環した環から、環を構成する炭素原子に直接結合する水素原子1個以上を除いてなる基であり、より好ましくは、ベンゼン環、ナフタレン環、フェナントレン環、ジヒドロフェナントレン環、フルオレン環又はスピロビフルオレン環から、環を構成する炭素原子に直接結合する水素原子1個以上を除いてなる基であり、更に好ましくは、ベンゼン環、フルオレン環又はスピロビフルオレン環から、環を構成する炭素原子に直接結合する水素原子1個以上を除いてなる基であり、特に好ましくは、ベンゼン環から、環を構成する炭素原子に直接結合する水素原子1個以上を除いてなる基であり、これらの基は置換基を有していてもよい。
 ArH2において、芳香族複素環基の炭素原子数は、置換基の炭素原子数を含めないで、通常1~60であり、好ましくは2~40であり、より好ましくは3~20であり、更に好ましくは3~10である。
 ArH2において、芳香族複素環基としては、ピロール環、フラン環、チオフェン環、オキサジアゾール環、チアジアゾール環、チアゾール環、オキサゾール環、イソチアゾール環、イソオキサゾール環、ベンゾオキサジアゾール環、ベンゾチアジアゾール環、ベンゾチアゾール環、ベンゾオキサゾール環、ピリジン環、ジアザベンゼン環、トリアジン環、アザナフタレン環、ジアザナフタレン環、トリアザナフタレン環、テトラアザナフタレン環、アザアントラセン環、ジアザアントラセン環、トリアザアントラセン環、テトラアザアントラセン環、アザフェナントレン環、ジアザフェナントレン環、トリアザフェナントレン環、テトラアザフェナントレン環、ジベンゾフラン環、ジベンゾチオフェン環、ジベンゾシロール環、ジベンゾホスホール環、カルバゾール環、アザカルバゾール環、ジアザカルバゾール環、フェノキサジン環、フェノチアジン環、又は、これらの複素環に芳香環が縮環した環から、環を構成する炭素原子又はヘテロ原子に直接結合する水素原子1個以上を除いてなる基が挙げられ、好ましくは、ピリジン環、ジアザベンゼン環、トリアジン環、アザナフタレン環、ジアザナフタレン環、アザアントラセン環、ジアザアントラセン環、アザフェナントレン環、ジアザフェナントレン環、ジベンゾフラン環、ジベンゾチオフェン環、カルバゾール環、アザカルバゾール環又はジアザカルバゾール環から、環を構成する炭素原子に直接結合する水素原子1個以上を除いてなる基であり、より好ましくは、ピリジン環、ジアザベンゼン環、トリアジン環、キノリン環、イソキノリン環、キナゾリン環、キノキサリン環、アクリジン環、フェナジン環、フェナントロリン環、ジベンゾフラン環、ジベンゾチオフェン環、カルバゾール環、アザカルバゾール環又はジアザカルバゾール環から、環を構成する炭素原子に直接結合する水素原子1個以上を除いてなる基であり、更に好ましくは、ピリジン環、ジアザベンゼン環、トリアジン環、キノリン環、イソキノリン環、キナゾリン環、キノキサリン環、ジベンゾフラン環、ジベンゾチオフェン環又はカルバゾール環から、環を構成する炭素原子に直接結合する水素原子1個以上を除いてなる基であり、特に好ましくは、ピリジン環、ピリミジン環又はトリアジン環から、環を構成する炭素原子に直接結合する水素原子1個以上を除いてなる基であり、とりわけ好ましくは、トリアジン環から、環を構成する炭素原子に直接結合する水素原子1個以上を除いてなる基であり、これらの基は置換基を有していてもよい。
 ArH2は、本実施形態の発光素子の輝度寿命(初期劣化)が優れるので、好ましくは、ベンゼン環、フルオレン環、スピロビフルオレン環、ピリジン環、ジアザベンゼン環、トリアジン環、キノリン環、イソキノリン環、キナゾリン環、キノキサリン環、ジベンゾフラン環、ジベンゾチオフェン環又はカルバゾール環から、環を構成する炭素原子に直接結合する水素原子1個以上を除いてなる基であり、より好ましくは、ベンゼン環、ピリジン環、ピリミジン環又はトリアジン環から、環を構成する炭素原子に直接結合する水素原子1個以上を除いてなる基であり、更に好ましくは、ベンゼン環又はトリアジン環から、環を構成する炭素原子に直接結合する水素原子1個以上を除いてなる基であり、特に好ましくは、トリアジン環から、環を構成する炭素原子に直接結合する水素原子1個以上を除いてなる基であり、これらの基は置換基を有していてもよい。
 ArH2が有していてもよい置換基(後述の式(1H')で表される基とは異なる。以下、同様である。)としては、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はフッ素原子が好ましく、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、1価の複素環基又は置換アミノ基がより好ましく、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基が更に好ましく、アルキル基、シクロアルキル基、又は、式(D-A)、式(D-B)若しくは式(D-C)で表される基が特に好ましく、式(D-A)、式(D-B)又は式(D-C)で表される基がとりわけ好ましく、式(D-A)で表される基が殊更に好ましく、これらの基は更に置換基を有していてもよい。
 ArH2が有していてもよい置換基におけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲は、それぞれ、環L1及び環L2が有していてもよい置換基におけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲と同じである。
 ArH2が有していてもよい置換基が更に有していてもよい置換基におけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲は、それぞれ、環L1及び環L2が有していてもよい置換基におけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲と同じである。
 ArH2が有していてもよい置換基が更に有していてもよい置換基の例及び好ましい範囲は、環RH1及び環RH2が有していてもよい置換基が更に有していてもよい置換基の例及び好ましい範囲と同じである。
 式(H)で表される化合物は、本実施形態の発光素子の輝度寿命(初期劣化)がより優れるので、好ましくは、式(H'-1)~式(H'-14)で表される化合物であり、より好ましくは、式(H'-1)~式(H'-5)で表される化合物であり、更に好ましくは、式(H'-4)又は式(H'-5)で表される化合物であり、特に好ましくは、式(H'-4)で表される化合物である。
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
[式中、R1Hは、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基、フッ素原子又は式(1H')で表される基を表し、これらの基は置換基を有していてもよい。複数存在するR1Hは、同一でも異なっていてもよい。但し、複数存在するR1Hのうち、少なくとも1個は式(1H')で表される基である。]
 複数存在するR1Hのうち、nH2個は式(1H')で表される基であることが好ましい。
Figure JPOXMLDOC01-appb-C000059
[式中、LH1、nH1及びArH1は、前記と同じ意味を表す。]
 R1Hは、好ましくは、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、1価の複素環基、置換アミノ基又は式(1H')で表される基であり、より好ましくは、水素原子、アルキル基、シクロアルキル基、アリール基、1価の複素環基、置換アミノ基又は式(1H')で表される基であり、更に好ましくは、水素原子、アルキル基、シクロアルキル基、又は、式(D-A)、式(D-B)、式(D-C)若しくは式(1H')で表される基であり、特に好ましくは、水素原子、又は、式(D-A)、式(D-B)、式(D-C)若しくは式(1H')で表される基であり、とりわけ好ましくは、水素原子、又は、式(D-A)若しくは式(1H')で表される基であり、これらの基は置換基を有していてもよい。
 式(1H')で表される基は、本実施形態の発光素子の輝度寿命(初期劣化)がより優れるので、好ましくは、式(1H'-1)~式(1H'-27)で表される基であり、より好ましくは、式(1H'-1)~式(1H'-6)、式(1H'-14)、式(1H'-16)、式(1H'-17)、式(1H'-19)、式(1H'-21)又は式(1H'-27)で表される基であり、更に好ましくは、式(1H'-2)又は式(1H'-27)で表される基であり、特に好ましくは、式(1H'-27)で表される基である。
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
[式中、R、Ra及びArH1は、前記と同じ意味を表す。]
 ArH1で表される基は、本実施形態の発光素子の輝度寿命(初期劣化)がより優れるので、好ましくは、式(ArH1-1)~式(ArH1-32)で表される基であり、より好ましくは、式(ArH1-1)~式(ArH1-16)で表される基であり、更に好ましくは、式(ArH1-1)~式(ArH1-4)又は式(ArH1-9)~式(ArH1-12)で表される基であり、特に好ましくは、式(ArH1-1)又は式(ArH1-10)で表される基であり、とりわけ好ましくは、式(ArH1-1)で表される基である。
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
[式中、
 Rb、Rc及びReは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はフッ素原子を表し、これらの基は置換基を有していてもよい。複数存在するRb及びReは、同一でも異なっていてもよく、互いに結合して、それぞれが結合する炭素原子と共に環を形成していてもよい。]
 Rbの例及び好ましい範囲は、RH1~RH12の例及び好ましい範囲と同じである。
 Rbが有していてもよい置換基の例及び好ましい範囲は、環RH1及び環RH2が有していてもよい置換基が更に有していてもよい置換基の例及び好ましい範囲と同じである。
 Rc及びReの例及び好ましい範囲は、各々、RXH1及びRXH1'の例及び好ましい範囲と同じである。
 Rc及びReが有していてもよい置換基の例及び好ましい範囲は、環RH1及び環RH2が有していてもよい置換基が更に有していてもよい置換基の例及び好ましい範囲と同じである。
 R1Hにおけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲は、それぞれ、環L1及び環L2が有していてもよい置換基におけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲と同じである。
 R1Hが有していてもよい置換基の例及び好ましい範囲は、環RH1及び環RH2が有していてもよい置換基が更に有していてもよい置換基の例及び好ましい範囲と同じである。
 式(H'-1)~式(H'-14)で表される化合物としては、例えば、式(H''-1)~式(H''-33)で表される化合物が挙げられ、好ましくは、式(H''-1)~式(H''-21)で表される化合物であり、より好ましくは、式(H''-1)~式(H''-11)で表される化合物であり、更に好ましくは、式(H''-1)~式(H''-8)で表される化合物である。
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000080
[式中、R2Hは、アルキル基、シクロアルキル基、アリール基、1価の複素環基、置換アミノ基又は式(1H')で表される基を表し、これらの基は置換基を有していてもよい。複数存在するR2Hは、同一でも異なっていてもよい。但し、複数存在するR2Hのうち、少なくとも1個は式(1H')で表される基である。]
 複数存在するR2Hのうち、nH2個は式(1H')で表される基であることが好ましい。
 R2Hは、好ましくは、アルキル基、シクロアルキル基、式(D-A)、式(D-B)、式(D-C)若しくは式(1H’)で表される基であり、より好ましくは、式(D-A)、式(D-B)、式(D-C)又は式(1H')で表される基であり、更に好ましくは、式(D-A)又は式(1H')で表される基であり、これらの基は更に置換基を有していてもよい。
 R2Hにおけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲は、それぞれ、環L1及び環L2が有していてもよい置換基におけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲と同じである。
 R2Hが有していてもよい置換基の例及び好ましい範囲は、環RH1及び環RH2が有していてもよい置換基が更に有していてもよい置換基の例及び好ましい範囲と同じである。
 式(H''-1)~式(H''-33)で表される化合物としては、例えば、式(H'''-1)~式(H'''-33)で表される化合物が挙げられ、好ましくは、式(H'''-1)~式(H'''-21)で表される化合物であり、より好ましくは、式(H'''-1)~式(H'''-11)で表される化合物であり、更に好ましくは、式(H'''-1)~式(H'''-8)で表される化合物である。
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000086
[式中、R3Hは、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基又で表される基を表し、これらの基は置換基を有していてもよい。複数存在するR3Hは、同一でも異なっていてもよい。ArH1は、前記と同じ意味を表す。]
 式(H)で表される化合物としては、例えば、下記式で表される化合物が挙げられる。 
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000097
 式(H)で表される化合物は、Aldrich、Luminescence Technology Corp.等から入手可能である。その他には、例えば、国際公開第2007/063754号、国際公開第2008/056746号、国際公開第2011/032686号、国際公開第2012/096263号、特開2009-227663号公報、特開2010-275255号公報に記載の方法に従って合成することができる。こうした合成の過程において、不純物としての塩素原子が最終生成物中に残留することがある。
 組成物中に含まれる式(H)で表される化合物の純度(当該純度は、液体クロマトグラフィーの面積百分率値から算出される純度である)は99.0%以上であることが好ましく、99.2%以上であることがより好ましく、99.5%以上であることが更に好ましい。
 式(H)で表される化合物に含まれる不純物としての塩素原子の量の低減方法は、特記しない限り、前述のC1の低減方法と同様である。なお、前述のC1の低減方法の項における、各試薬、溶媒の使用量の説明中、「式(1)で表される金属錯体」と書かれている箇所を、「式(H)で表される化合物」と読み替える。
 式(H)で表される化合物に含まれる不純物としての塩素原子の量(CH)は、限定されないが、式(H)で表される化合物の全量に対して、通常、12質量ppm以下であり、本実施形態に係る発光素子の初期劣化が抑制されるので、好ましくは5.22質量ppm以下であり、より好ましくは5質量ppm以下であり、更に好ましくは4質量ppm以下であり、特に好ましくは3質量ppm以下であり、殊更に好ましくは2.8質量ppm以下である。
 式(H)で表される化合物に含まれる不純物としての塩素原子の量(CH)は、通常、測定上の検出限界の観点からは、0.01質量ppm以上であることが好ましく、外部量子効率(以下、「EQE」とも言う。)の観点からは、4.00質量ppm以上であることが好ましく、5.21質量ppm以上であることがより好ましい。
 CHの具体的な算出方法を実施例D1及び実施例D2を用いて説明する。なお、その他の実施例、比較例等でも、同様に算出することができる。
 実施例D1では、自動燃焼-イオンクロマトグラフ法により測定した化合物HM1-pの不純物としての塩素原子の量は2.8質量ppmである。
 実施例D2では、自動燃焼-イオンクロマトグラフ法により測定した化合物HM1-pの不純物としての塩素原子の量、及び、化合物HM1-cの不純物としての塩素原子の量は、それぞれ、2.8質量ppm及び244.6質量ppmである。また、化合物HM1-pと化合物HM1-cとの質量比は、化合物HM1-p:化合物HM1-c=49.5:0.5である。
 よって、CHは、各化合物に含まれる不純物としての塩素原子の量及びその仕込みの量から、以下のとおり求められる。
 CH={2.8×49.5/(49.5+0.5)}+{244.6×0.5/(49.5+0.5)}=5.218質量ppm
 <組成物>
 本実施形態に係る組成物は、式(1)で表される金属錯体と式(H)で表される化合物とが配合された組成物であって、前記組成物に含まれる不純物としての塩素原子の量が、前記組成物に含まれる固形分全量に対して、12質量ppm以下である。なお、固形分とは、25℃において固体である成分を意味する。
 本実施形態に係る組成物において、式(1)で表される金属錯体は、1種単独で配合されていても、2種以上配合されていてもよい。また、本実施形態に係る組成物において、式(H)で表される化合物は、1種単独で配合されていても、2種以上配合されていてもよい。
 本実施形態に係る組成物は、式(1)で表される金属錯体に含まれる不純物としての塩素原子及び式(H)で表される化合物に含まれる不純物としての塩素原子の総量が、組成物に配合される固形分全量に対して、12質量ppm以下であることが好ましい。
 例えば、本実施形態に係る組成物に含まれる固形分が、式(1)で表される金属錯体及び式(H)で表される化合物のみであるとき、式(1)で表される金属錯体に含まれる不純物としての塩素原子及び式(H)で表される化合物に含まれる不純物としての塩素原子の総量(質量ppm)は、式(1)で表される金属錯体と式(H)で表される化合物との合計質量に対する、式(1)で表される金属錯体の質量の比をW1、式(1)で表される金属錯体と式(H)で表される化合物との合計質量に対する、式(H)で表される化合物の合計質量の比をWHとしたとき、C11+CHHで表される。
 W1は、通常、0.0001~0.90であり、本実施形態に係る発光素子の初期劣化がより抑制されるので、0.01~0.60であることが好ましく、0.10~0.50であることがより好ましい。
 WHは、通常、0.0001~0.9999であり、本実施形態に係る発光素子の初期劣化がより抑制されるので、0.40~0.95であることが好ましく、0.50~0.90であることがより好ましい。
 WHの具体的な算出方法を後述の実施例D1及び実施例D2を用いて説明する。なお、その他の実施例、比較例等でも、同様に算出することができる。
 実施例D1では、化合物HM1-pと金属錯体MC1との質量比は、化合物HM1-p:金属錯体MC1=50:50であるので、WHは、仕込みの量から、以下のとおり求められる。
 WH=50/(50+50)=0.5
 実施例D2では、化合物HM1-pと、化合物HM1-cと金属錯体MC1との質量比は、化合物HM1-p:化合物HM1-c:金属錯体MC1=49.5:0.5:50であるので、WHは、仕込みの量から、以下のとおり求められる。
 WH=(49.5+0.5)/(49.5+0.5+50)=0.5
 W1の具体的な算出方法は、WHの具体的な算出方法と同様である。例えば、前述の実施例D1におけるWHの具体的な算出方法と同様にして、実施例D1におけるW1は、以下のとおり求められる。
 W1=50/(50+50)=0.5
 同様にして、実施例D2におけるW1は、以下のとおり求められる。
 W1=50/(49.5+0.5+50)=0.5
 上述のとおり、C1、CH、W1及びWHを算出することにより、C11+CHHを算出することができる。
 例えば、実施例D1におけるC11+CHHは、以下のとおり求められる。
 C11+CHH=(0.01×0.5)+(2.8×0.5)=1.405質量ppm
 同様に、実施例D2におけるC11+CHHは、以下のとおり求められる。
 C11+CHH=(0.01×0.5)+(5.218×0.5)=2.614質量ppm
 本実施形態に係る組成物に含まれる不純物としての塩素原子の量は、本実施形態に係る発光素子の初期劣化が抑制されるので、好ましくは8質量ppm以下であり、より好ましくは6質量ppm以下であり、更に好ましくは4質量ppm以下であり、特に好ましくは3質量ppm以下であり、とりわけ好ましくは2質量ppm以下であり、殊更に好ましくは1.41質量ppm以下である。
 本実施形態に係る組成物において、組成物に含まれる不純物としての塩素原子の量(C11+CHH)は、組成物の全量に対して、通常、測定上の検出限界の観点からは、0.01質量ppm以上であることが好ましい。式(1)で表される金属錯体の発光スペクトルの最大ピーク波長が500nm~550nmである場合、外部量子効率(以下、「EQE」と言う。)の観点からは、2.00質量ppm以上であることが好ましく、2.61質量ppm以上であることがより好ましい。
 本実施形態に係る組成物における式(1)で表される金属錯体の配合量は、組成物に配合される固形分全量基準で、通常、0.01~90質量%であり、好ましくは1~60質量%であり、より好ましくは10~50質量%である。
 本実施形態に係る組成物における式(H)で表される化合物の配合量は、組成物に配合される固形分全量基準で、通常、0.01~99.99質量%であり、好ましくは40~95質量%であり、より好ましくは50~90質量%である。
 [その他の成分]
 本実施形態に係る組成物は、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料、発光材料、酸化防止剤及び溶媒からなる群から選ばれる少なくとも1種の材料を更に含有していてもよい。但し、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料及び発光材料は、式(1)で表される金属錯体及び式(H)で表される化合物とは異なる。これらの材料も、上述した精製及び/又は脱ハロゲン化剤により、塩素原子の含有量を低減しておくことが好ましい。
 正孔輸送材料は、低分子化合物と高分子化合物とに分類され、好ましくは高分子化合物である。正孔輸送材料は、架橋基を有していてもよい。
 高分子化合物としては、例えば、ポリビニルカルバゾール及びその誘導体;側鎖又は主鎖に芳香族アミン構造を有するポリアリーレン及びその誘導体が挙げられる。高分子化合物は、電子受容性部位が結合された化合物でもよい。電子受容性部位としては、例えば、フラーレン、テトラフルオロテトラシアノキノジメタン、テトラシアノエチレン、トリニトロフルオレノンが挙げられる。なお、前記高分子化合物は、以下の構成単位を有していてもよい。
Figure JPOXMLDOC01-appb-C000098
 本実施形態に係る組成物において、正孔輸送材料の配合量は、式(1)で表される金属錯体及び式(H)で表される化合物との合計を100質量部とした場合、通常、1~400質量部であり、好ましくは5~150質量部である。
 正孔輸送材料は、1種単独で用いても2種以上を併用してもよい。
 電子輸送材料は、低分子化合物と高分子化合物とに分類される。電子輸送材料は、架橋基を有していてもよい。
 低分子化合物としては、例えば、8-ヒドロキシキノリンを配位子とする金属錯体、オキサジアゾール、アントラキノジメタン、ベンゾキノン、ナフトキノン、アントラキノン、テトラシアノアントラキノジメタン、フルオレノン、ジフェニルジシアノエチレン及びジフェノキノン、及び、これらの誘導体が挙げられる。
 高分子化合物としては、例えば、ポリフェニレン、ポリフルオレン、及び、これらの誘導体が挙げられる。高分子化合物は、金属でドープされていてもよい。
 本実施形態に係る組成物において、電子輸送材料の配合量は、式(1)で表される金属錯体及び式(H)で表される化合物との合計を100質量部とした場合、通常、1~400質量部であり、好ましくは5~150質量部である。
 電子輸送材料は、1種単独で用いても2種以上を併用してもよい。
 正孔注入材料及び電子注入材料は、各々、低分子化合物と高分子化合物とに分類される。正孔注入材料及び電子注入材料は、架橋基を有していてもよい。
 低分子化合物としては、例えば、銅フタロシアニン等の金属フタロシアニン;カーボン;モリブデン、タングステン等の金属酸化物;フッ化リチウム、フッ化ナトリウム、フッ化セシウム、フッ化カリウム等の金属フッ化物が挙げられる。
 高分子化合物としては、例えば、ポリアニリン、ポリチオフェン、ポリピロール、ポリフェニレンビニレン、ポリチエニレンビニレン、ポリキノリン及びポリキノキサリン、並びに、これらの誘導体;芳香族アミン構造を主鎖又は側鎖に含む重合体等の導電性高分子が挙げられる。
 本実施形態に係る組成物において、正孔注入材料及び電子注入材料の配合量は、各々、式(1)で表される金属錯体及び式(H)で表される化合物との合計を100質量部とした場合、通常、1~400質量部であり、好ましくは5~150質量部である。
 電子注入材料及び正孔注入材料は、各々、1種単独で用いても2種以上を併用してもよい。
 正孔注入材料又は電子注入材料が導電性高分子を含む場合、導電性高分子の電気伝導度は、好ましくは、1×10-5S/cm~1×103S/cmである。導電性高分子の電気伝導度をかかる範囲とするために、導電性高分子に適量のイオンをドープすることができる。
 ドープするイオンの種類は、正孔注入材料であればアニオン、電子注入材料であればカチオンである。アニオンとしては、例えば、ポリスチレンスルホン酸イオン、アルキルベンゼンスルホン酸イオン、樟脳スルホン酸イオンが挙げられる。カチオンとしては、例えば、リチウムイオン、ナトリウムイオン、カリウムイオン、テトラブチルアンモニウムイオンが挙げられる。
 ドープするイオンは、1種単独で用いても2種以上を併用してもよい。
 発光材料(式(1)で表される金属錯体及び式(H)で表される化合物とは異なる。)は、低分子化合物と高分子化合物とに分類される。発光材料は、架橋基を有していてもよい。
 低分子化合物としては、例えば、ナフタレン及びその誘導体、アントラセン及びその誘導体、並びに、ペリレン及びその誘導体が挙げられる。
 高分子化合物としては、例えば、フェニレン基、ナフタレンジイル基、アントラセンジイル基、フルオレンジイル基、フェナントレンジイル基、ジヒドロフェナントレンジイル基、式(X)で表される基、カルバゾールジイル基、フェノキサジンジイル基、フェノチアジンジイル基、ピレンジイル基等を含む高分子化合物が挙げられる。
 発光材料は、好ましくは、三重項発光錯体及び高分子化合物を含む。
 三重項発光錯体としては、例えば、以下に示す金属錯体が挙げられる。
Figure JPOXMLDOC01-appb-C000099
 本実施形態に係る組成物において、発光材料の配合量は、式(1)で表される金属錯体及び式(H)で表される化合物との合計を100質量部とした場合、通常、0.1~400質量部であり、好ましくは1~150質量部である。
 発光材料は、1種単独で用いても2種以上を併用してもよい。
 酸化防止剤は、式(1)で表される金属錯体及び式(H)で表される化合物と同じ溶媒に可溶であり、発光及び電荷輸送を阻害しない化合物であればよく、例えば、フェノール系酸化防止剤、リン系酸化防止剤が挙げられる。
 本実施形態に係る組成物において、酸化防止剤の配合量は、式(1)で表される金属錯体及び式(H)で表される化合物との合計を100質量部とした場合、通常、0.001~10質量部である。
 酸化防止剤は、1種単独で用いても2種以上を併用してもよい。
 式(1)で表される金属錯体と、式(H)で表される化合物と、溶媒とを含有する組成物(以下、「インク」ともいう。)は、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイヤーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法、キャピラリ-コート法、ノズルコート法等の塗布法に好適に使用することができる。
 インクの粘度は、塗布法の種類によって調整すればよいが、インクジェット印刷法等の溶液が吐出装置を経由する印刷法に適用する場合には、吐出時の目詰まり及び飛行曲がりが起こりづらいので、好ましくは25℃において1~20mPa・sである。
 インクに含有される溶媒は、好ましくは、インク中の固形分を溶解又は均一に分散できる溶媒である。溶媒としては、例えば、1,2-ジクロロエタン、1,1,2-トリクロロエタン、クロロベンゼン、o-ジクロロベンゼン等の塩素系溶媒;THF、ジオキサン、アニソール、4-メチルアニソール等のエーテル系溶媒;トルエン、キシレン、メシチレン、エチルベンゼン、n-ヘキシルベンゼン、シクロヘキシルベンゼン等の芳香族炭化水素系溶媒;シクロヘキサン、メチルシクロヘキサン、n-ペンタン、n-ヘキサン、n-へプタン、n-オクタン、n-ノナン、n-デカン、n-ドデカン、ビシクロヘキシル等の脂肪族炭化水素系溶媒;アセトン、メチルエチルケトン、シクロヘキサノン、アセトフェノン等のケトン系溶媒;酢酸エチル、酢酸ブチル、エチルセルソルブアセテート、安息香酸メチル、酢酸フェニル等のエステル系溶媒;エチレングリコール、グリセリン、1,2-ヘキサンジオール等の多価アルコール系溶媒;イソプロピルアルコール、シクロヘキサノール等のアルコール系溶媒;ジメチルスルホキシド等のスルホキシド系溶媒;N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド等のアミド系溶媒が挙げられる。溶媒は、1種単独で用いても2種以上を併用してもよい。
 インクにおいて、溶媒の配合量は、式(1)で表される金属錯体及び式(H)で表される化合物との合計を100質量部とした場合、通常、1000~100000質量部であり、好ましくは2000~20000質量部である。
 <発光素子>
 本実施形態に係る発光素子は、本実施形態に係る組成物を含む有機層を含む発光素子である。本実施形態に係る発光素子の構成としては、例えば、陽極及び陰極からなる電極と、該電極間に設けられた本実施形態に係る組成物を含む有機層とを有していてもよい。
 本実施形態に係る組成物を含む有機層は、通常、発光層、正孔輸送層、正孔注入層、電子輸送層及び電子注入層からなる群から選ばれる1種以上の層であり、発光層であることが好ましい。これらの層は、各々、発光材料、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料を含有する。これらの層は、例えば、上述したインクを用いて、形成することができる。
 発光素子は、陽極と陰極の間に発光層を有する。本実施形態に係る発光素子は、正孔注入性及び正孔輸送性の観点からは、陽極と発光層との間に、正孔注入層及び正孔輸送層の少なくとも1層を有することが好ましく、電子注入性及び電子輸送性の観点からは、陰極と発光層の間に、電子注入層及び電子輸送層の少なくとも1層を有することが好ましい。
 正孔輸送層の材料、電子輸送層の材料及び発光層の材料は、発光素子の作製において、各々、正孔輸送層、電子輸送層及び発光層に隣接する層の形成時に使用される溶媒に溶解する場合、該溶媒に該材料が溶解することを回避するために、該材料が架橋基を有することが好ましい。架橋基を有する材料を用いて各層を形成した後、該架橋基を架橋させることにより、該層を不溶化させることができる。
 本実施形態に係る発光素子において、発光層、正孔輸送層、電子輸送層、正孔注入層、電子注入層等の各層の形成方法としては、低分子化合物を用いる場合、例えば、粉末からの真空蒸着法、溶液又は溶融状態からの成膜による方法が挙げられ、高分子化合物を用いる場合、例えば、溶液又は溶融状態からの成膜による方法が挙げられる。
 積層する層の順番、数及び厚さは、外部量子効率及び輝度寿命を勘案して調整する。
 発光素子における基板は、電極を形成することができ、かつ、有機層を形成する際に化学的に変化しない基板であればよく、例えば、ガラス、プラスチック、シリコン等の材料からなる基板である。不透明な基板の場合には、基板から最も遠くにある電極が透明又は半透明であることが好ましい。
 陽極の材料としては、例えば、導電性の金属酸化物、半透明の金属が挙げられ、好ましくは、酸化インジウム、酸化亜鉛、酸化スズ;インジウム・スズ・オキサイド(ITO)、インジウム・亜鉛・オキサイド等の導電性化合物;銀とパラジウムと銅との複合体(APC);NESA、金、白金、銀、銅である。
 陰極の材料としては、例えば、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、亜鉛、インジウム等の金属;それらのうち2種以上の合金;それらのうち1種以上と、銀、銅、マンガン、チタン、コバルト、ニッケル、タングステン、錫のうち1種以上との合金;並びに、グラファイト及びグラファイト層間化合物が挙げられる。合金としては、例えば、マグネシウム-銀合金、マグネシウム-インジウム合金、マグネシウム-アルミニウム合金、インジウム-銀合金、リチウム-アルミニウム合金、リチウム-マグネシウム合金、リチウム-インジウム合金、カルシウム-アルミニウム合金が挙げられる。
 陽極及び陰極は、各々、2層以上の積層構造としてもよい。
 発光素子を用いて面状の発光を得るためには、面状の陽極と陰極が重なり合うように配置すればよい。パターン状の発光を得るためには、面状の発光素子の表面にパターン状の窓を設けたマスクを設置する方法、非発光部にしたい層を極端に厚く形成し実質的に非発光とする方法、陽極若しくは陰極、又は、両方の電極をパターン状に形成する方法がある。これらのいずれかの方法でパターンを形成し、いくつかの電極を独立にON/OFFできるように配置することにより、数字、文字等を表示できるセグメントタイプの表示装置が得られる。ドットマトリックス表示装置とするためには、陽極と陰極を共にストライプ状に形成して直交するように配置すればよい。複数の種類の発光色の異なる高分子化合物を塗り分ける方法、カラーフィルター又は蛍光変換フィルターを用いる方法により、部分カラー表示、マルチカラー表示が可能となる。ドットマトリックス表示装置は、パッシブ駆動も可能であるし、TFT等と組み合わせてアクティブ駆動も可能である。これらの表示装置は、コンピュータ、テレビ、携帯端末等のディスプレイに用いることができる。面状の発光素子は、液晶表示装置のバックライト用の面状光源、又は、面状の照明用光源として好適に用いることができる。フレキシブルな基板を用いれば、曲面状の光源及び表示装置としても使用できる。
 以上、本実施形態の好適な一実施形態について説明したが、本実施形態は上記の実施形態に限定されない。
 例えば、本実施形態の一側面は、式(1)で表される金属錯体と、残留塩素濃度が12質量ppm以下の式(H)で表される化合物と、が配合された組成物に関するものであってよい。なお、式(H)で表される化合物の残留塩素濃度は、式(H)で表される化合物に含まれる不純物としての塩素原子の量(CH)と同義である。
 一実施形態において、式(H)で表される化合物の残留塩素濃度をCH(ppm)、組成物に配合される固形分全量に対する、前記式(H)で表される化合物の配合量の比(質量比)をWHとしたとき、組成物は下記式(i)を満たすものであってよい。
 CH×WH≦12  (i)
 また、一実施形態において、式(1)で表される金属錯体の残留塩素濃度をC1(質量ppm)、組成物に配合される固形分全量に対する、式(1)で表される金属錯体の配合量の比(質量比)をW1としたとき、組成物は下記式(ii)を満たすものであってよい。
 C1×W1+CH×WH≦12  (ii)
 また、本実施形態の一側面は、残留塩素濃度が12質量ppmを超える式(H)で表される化合物の粗精製物を準備する工程と、粗精製物から、残留塩素濃度が12質量ppm以下の式(H)で表される化合物の精製物を得る工程と、精製物と式(1)で表される金属錯体とを配合した組成物を得る工程と、を備える、組成物の精製方法に関するものであってよい。
 以下、実施例によって本実施形態を更に詳細に説明するが、本実施形態はこれらの実施例に限定されるものではない。
 実施例において、高分子化合物のポリスチレン換算の数平均分子量(Mn)及びポリスチレン換算の重量平均分子量(Mw)は、移動相にテトラヒドロフランを用い、下記のサイズエクスクルージョンクロマトグラフィー(SEC)により求めた。なお、SECの測定条件は、次のとおりである。
 測定する高分子化合物を約0.05質量%の濃度でテトラヒドロフランに溶解させ、SECに10μL注入した。移動相は、2.0mL/分の流量で流した。カラムとして、PLgel MIXED-B(ポリマーラボラトリーズ製)を用いた。検出器にはUV-VIS検出器(島津製作所製、商品名:SPD-10Avp)を用いた。
 LC-MSは、下記の方法で測定した。
 測定試料を約2mg/mLの濃度になるようにクロロホルム又はテトラヒドロフランに溶解させ、LC-MS(Agilent製、商品名:1100LCMSD)に約1μL注入した。LC-MSの移動相には、アセトニトリル及びテトラヒドロフランの比率を変化させながら用い、0.2mL/分の流量で流した。カラムは、L-column 2 ODS(3μm)(化学物質評価研究機構製、内径:2.1mm、長さ:100mm、粒径3μm)を用いた。
 TLC-MSは、下記の方法で測定した。
 測定試料をトルエン、テトラヒドロフラン又はクロロホルムのいずれかの溶媒に任意の濃度で溶解させ、DART用TLCプレート(テクノアプリケーションズ社製、商品名:YSK5-100)上に塗布し、TLC-MS(日本電子社製、商品名:JMS-T100TD(The AccuTOF TLC))を用いて測定した。測定時のヘリウムガス温度は、200~400℃の範囲で調節した。
 NMRは、下記の方法で測定した。
 5~10mgの測定試料を約0.5mLの重クロロホルム(CDCl3)、重テトラヒドロフラン、重ジメチルスルホキシド、重アセトン、重N,N-ジメチルホルムアミド、重トルエン、重メタノール、重エタノール、重2-プロパノール又は重塩化メチレンに溶解させ、NMR装置(Agilent製、商品名:INOVA300又はMERCURY 400VX)を用いて測定した。
 化合物の純度の指標として、高速液体クロマトグラフィー(HPLC)面積百分率の値を用いた。この値は、特に記載がない限り、HPLC(島津製作所製、商品名:LC-20A)でのUV=254nmにおける値とする。この際、測定する化合物は、0.01~0.2質量%の濃度になるようにテトラヒドロフラン又はクロロホルムに溶解させ、濃度に応じてHPLCに1~10μL注入した。HPLCの移動相には、アセトニトリル/テトラヒドロフランの比率を100/0~0/100(容積比)まで変化させながら用い、1.0mL/分の流量で流した。カラムは、Kaseisorb LC ODS 2000(東京化成工業製)又は同等の性能を有するODSカラムを用いた。検出器には、フォトダイオードアレイ検出器(島津製作所製、商品名:SPD-M20A)を用いた。
 本実施例において、式(1)で表される金属錯体の発光スペクトルの最大ピーク波長は、分光光度計(日本分光株式会社製、FP-6500)により室温にて測定した。式(1)で表される金属錯体をキシレンに、約0.8×10-4質量%の濃度で溶解させたキシレン溶液を試料として用いた。励起光としては、波長325nmのUV光を用いた。
 式(1)で表される金属錯体と、式(H)で表される化合物とに含まれる不純物としての塩素原子の量は、自動燃焼-イオンクロマトグラフ法により測定した。本測定では、燃焼分解を三菱化学アナリテック社製 自動試料燃焼装置 AQF-2100H型を用いて行い、その後のイオンクロマトグラフィをサーモフィッシャーサイエンティフィック社製 イオンクロマトグラフィーシステム ICS-2100を用いて行った。
 <合成例1> 化合物M1、化合物M2及び化合物M3の合成
 化合物M1は、国際公開第2015/145871号に記載の方法に従って合成した。
 化合物M2は、国際公開第2013/146806号に記載の方法に従って合成した。
 化合物M3は、国際公開第2005/049546号に記載の方法に従って合成した。
Figure JPOXMLDOC01-appb-C000100
 <合成例2> 高分子化合物HTL-1の合成
(工程1)反応容器内を不活性ガス雰囲気とした後、化合物M1(0.923g)、化合物M2(0.0496g)、化合物M3(0.917g)、ジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(1.76mg)及びトルエン(34mL)を加え、105℃に加熱した。
(工程2)反応液に、20質量%水酸化テトラエチルアンモニウム水溶液(6.7mL)を滴下し、6時間還流させた。
(工程3)反応後、そこに、フェニルボロン酸(48.8mg)及びジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(0.88mg)を加え、14.5時間還流させた。
(工程4)その後、そこに、ジエチルジチアカルバミン酸ナトリウム水溶液を加え、80℃で2時間撹拌した。冷却後、得られた反応液を、水で2回、3質量%酢酸水溶液で2回、水で2回洗浄し、得られた溶液をメタノールに滴下したところ、沈澱が生じた。得られた沈殿物をトルエンに溶解させ、アルミナカラム、シリカゲルカラムの順番で通すことにより精製した。得られた溶液をメタノールに滴下し、撹拌した後、得られた沈殿物をろ取し、乾燥させることにより、高分子化合物HTL-1を1.23g得た。
 高分子化合物HTL-1のMnは2.3×104であり、Mwは1.2×105であった。
 高分子化合物HTL-1は、仕込み原料の量から求めた理論値では、化合物M1から誘導される構成単位と、化合物M2から誘導される構成単位と、化合物M3から誘導される構成単位とが、45:5:50のモル比で構成されてなる共重合体である。
 <合成例3> 化合物HM1-cの合成
Figure JPOXMLDOC01-appb-C000101
 反応容器内を窒素ガス雰囲気とした後、流動パラフィンに分散させた60質量%水素化ナトリウム(0.10g)、化合物HM1-2a(0.54g)及びN,N-ジメチルホルムアミド(14mL)を加えた。その後、そこへ、化合物HM1-1a(1.5g)及びN,N-ジメチルホルムアミド(17mL)を加え、室温で2時間撹拌した。得られた反応混合物へトルエン(30mL)及び水(2mL)を加えた後、水層を分離し、得られた有機層を水(50mL)で洗浄した。得られた洗浄液へ硫酸マグネシウム(0.050g)及び活性白土(0.50g)を加え、20~25℃で攪拌した後、シリカゲル(1.0g)及びセライト(0.1g)を敷いたろ過器でろ過し、得られたろ液を濃縮することで、粗生成物(1.88g)を得た。得られた粗生成物を、アセトニトリル(25mL)に加え、20~25℃で洗浄した後、乾燥することで、白色固体として化合物HM1-cを1.88g得た。
 LC-MS(APCI,positive):[M+H]+971
 化合物HM1-cのHPLC面積百分率値は、99.14%であった。
 化合物HM1-cに含まれる不純物としての塩素原子の量(CH)は、244.6質量ppmであった。
 化合物HM1-cのHPLC分析は、下記の条件で行った。サンプルは、化合物HM1-cの濃度が0.1質量%~0.2質量%になるようにテトラヒドロフランで希釈し、分析した。

 装置     :LC-20A(島津製作所製)
 カラム    :SUMIPAX ODS Z-CLUE(直径4.6×250mm、3μm、住化分析センター製)
 カラム温度  :40℃
 検出器    :フォトダイオードアレイ検出器(SPD-M20A、島津製作所製)
 検出波長   :254nm
 移動相    :A液アセトニトリル、B液THF
 移動相条件  :B液0%-60分-B液20%-20分-B液100%
 流速     :1.0ml/分
 サンプル注入量:8μl
 <合成例4> 化合物HM1-pの合成
Figure JPOXMLDOC01-appb-C000102
 反応容器内を窒素ガス雰囲気とした後、流動パラフィンに分散させた60質量%水素化ナトリウム(0.94g)、化合物HM1-2a(5.3g)及びN,N-ジメチルホルムアミド(53mL)を加えた。その後、そこへ、化合物HM1-1a(15g)及びN,N-ジメチルホルムアミド(187mL)を加え、室温で2時間撹拌した。得られた反応混合物へトルエン(107mL)及び水(107mL)を加えた後、水層を分離し、得られた有機層を水(214mL)で洗浄した。得られた洗浄液へ活性白土(11g)を加え、攪拌した後、セライト(1.0g)及びシリカゲル(11g)を敷いたろ過器でろ過し、得られたろ液を濃縮した。得られた残渣(17.2g)をトルエン(100mL)に溶解させた後、活性白土(11g)を加え、20~25℃で攪拌した後、セライト(1.0g)及びシリカゲル(11g)を敷いたろ過器でろ過し、得られたろ液を濃縮することで、粗生成物(16.9g)を得た。得られた粗生成物を、酢酸エチル(47mL)及びヘプタン(20mL)の混合溶媒を用いて、20~25℃で再結晶することで、固体として化合物HM1-bpを15.8g得た。得られた化合物HM1-bpを、ヘプタン(80mL)に加え、20~25℃で洗浄した後、乾燥することで、白色固体として化合物HM1-pを14.8g得た。
 LC-MS(APCI,positive):[M+H]+971
 化合物HM1-bpのHPLC面積百分率値は99.51%であった。化合物HM1-pのHPLC面積百分率値は99.51%であった。
 化合物HM1-bpに含まれる不純物としての塩素原子の量(CH)は4.2質量ppmであった。化合物HM1-pに含まれる不純物としての塩素原子の量(CH)は2.8質量ppmであった。
 化合物HM1-bp及び化合物HM1-pのHPLC分析は、下記の条件で行った。サンプルは、化合物HM1-bp及び化合物HM1-pの濃度が0.1質量%~0.2質量%になるようにテトラヒドロフランで希釈し、分析した。

 装置     :LC-20A(島津製作所製)
 カラム    :SUMIPAX ODS Z-CLUE(直径4.6×250mm、3μm、住化分析センター製)
 カラム温度  :40℃
 検出器    :フォトダイオードアレイ検出器(SPD-M20A、島津製作所製)
 検出波長   :254nm
 移動相    :A液アセトニトリル、B液THF
 移動相条件  :B液0%-60分-B液20%-20分-B液100%
 流速     :1.0ml/分
 サンプル注入量:8μl
 <合成例5> 金属錯体MC1の合成
Figure JPOXMLDOC01-appb-C000103
 国際公開第2009/131255号に記載の方法に従って合成した金属錯体MC1bを、シリカゲルカラムクロマトグラフィー(トルエン及びヘプタンの混合溶媒)で精製した後、トルエン及びヘプタンの混合溶媒を用いて繰り返し再結晶することで精製した。得られた固体を60℃で減圧乾燥させることにより、金属錯体MC1を黄色固体として得た。
 金属錯体MC1に含まれる不純物としての塩素原子の量(C1)は検出限界以下(0.01質量ppm以下)であった。
 LC-MS(APCI,positive):[M+H]1677
 金属錯体MC1の発光スペクトルの最大ピーク波長は525nmであった。
 <実施例D1> 発光素子D1の作製及び評価
 [発光素子D1の作製]
 (陽極及び正孔注入層の形成)
 ガラス基板にスパッタ法により45nmの厚みでITO膜を付けることにより陽極を形成した。該陽極上に、正孔注入材料であるND-3202(日産化学工業製)をスピンコート法により65nmの厚さで成膜した。大気雰囲気下、ホットプレート上で50℃、3分間加熱し、更に240℃、15分間加熱することにより正孔注入層を形成した。
 (正孔輸送層の形成)
 キシレンに高分子化合物HTL-1を0.7質量%の濃度で溶解させた。得られたキシレン溶液を用いて、正孔注入層の上にスピンコート法により20nmの厚さで成膜し、窒素ガス雰囲気下、ホットプレート上で180℃、60分間加熱させることにより正孔輸送層を形成した。
 (発光層の形成D1)
 キシレンに、化合物HM1-p及び金属錯体MC1(化合物HM1-p/金属錯体MC1=50質量%/50質量%)を3.3質量%の濃度で溶解させた。得られたキシレン溶液を用いて、正孔輸送層の上にスピンコート法により85nmの厚さで成膜し、窒素ガス雰囲気下、150℃、10分間加熱させることにより発光層を形成した。
 なお、仕込みの量から求めた理論値では、C1は0.01質量ppmであり、CHは2.8質量ppmであり、W1は0.5であり、WHは0.5であり、C11+CHHは1.405質量ppmである。
 (陰極の形成)
 発光層を形成した基板を蒸着機内において、1.0×10-4Pa以下にまで減圧した後、陰極として、発光層の上にフッ化ナトリウムを約4nm、次いで、フッ化ナトリウム層の上にアルミニウムを約80nm蒸着した。蒸着後、ガラス基板を用いて封止することにより、発光素子D1を作製した。
 [評価]
 発光素子D1に電圧を印加することによりEL発光が観測された。1000cd/m2におけるCIE色度座標(x,y)は(0.34,0.62)であった。1000cd/m2におけるEQEは、9.20%であった。
 初期輝度が1000cd/m2となるように電流値を設定後、定電流で駆動させ、輝度が初期輝度の95%となるまでの時間(以下、「LT95」と言う。初期劣化の抑制を評価する指標となる。)を測定したところ、59時間であった。結果を表1に示す。
 初期輝度が8000cd/m2となるように電流値を設定後、定電流で駆動させ、輝度が初期輝度の80%となるまでの時間(以下、「LT80」と言う。)を測定したところ、8.9時間であった。輝度が初期輝度の50%となるまでの時間(以下、「LT50」と言う。)を測定したところ、85時間であった。結果を表1に示す。
 <実施例D2> 発光素子D2の作製及び評価
 [発光素子D2の作製]
 実施例D1における(発光層の形成D1)を、下記(発光層の形成D2)に変更した以外は、実施例D1と同様にして、発光素子D2を作製した。
 (発光層の形成D2)
 キシレンに、化合物HM1-p、化合物HM1-c及び金属錯体MC1(化合物HM1-p/化合物HM1-c/金属錯体MC1=49.5質量%/0.5質量%/50質量%)を3.3質量%の濃度で溶解させた。得られたキシレン溶液を用いて、正孔輸送層の上にスピンコート法により85nmの厚さで成膜し、窒素ガス雰囲気下、150℃、10分間加熱させることにより発光層を形成した。
 なお、仕込みの量から求めた理論値では、C1は0.01質量ppmであり、CHは5.218質量ppmであり、W1は0.5であり、WHは0.5であり、C11+CHHは2.614質量ppmである。
 [評価]
 発光素子D2に電圧を印加することによりEL発光が観測された。1000cd/m2におけるCIE色度座標(x,y)は(0.34,0.62)であった。1000cd/m2におけるEQEは、9.94%であった。
 初期輝度が1000cd/m2となるように電流値を設定後、定電流で駆動させ、LT95を測定したところ、56時間であった。結果を表1に示す。
 初期輝度が8000cd/m2となるように電流値を設定後、定電流で駆動させ、LT80を測定したところ、8.9時間であった。LT50を測定したところ、85時間であった。結果を表1に示す。
 <実施例D3> 発光素子D3の作製及び評価
 [発光素子D3の作製]
 実施例D1における(発光層の形成D1)を、下記(発光層の形成D3)に変更した以外は、実施例D1と同様にして、発光素子D3を作製した。
 (発光層の形成D3)
 キシレンに、化合物HM1-p、化合物HM1-c及び金属錯体MC1(化合物HM1-p/化合物HM1-c/金属錯体MC1=47.5質量%/2.5質量%/50質量%)を3.3質量%の濃度で溶解させた。得られたキシレン溶液を用いて、正孔輸送層の上にスピンコート法により85nmの厚さで成膜し、窒素ガス雰囲気下、150℃、10分間加熱させることにより発光層を形成した。
 なお、仕込みの量から求めた理論値では、C1は0.01質量ppmであり、CHは14.890質量ppmであり、W1は0.5であり、WHは0.5であり、C11+CHHは7.450質量ppmである。
 [評価]
 発光素子D3に電圧を印加することによりEL発光が観測された。1000cd/m2におけるCIE色度座標(x,y)は(0.34,0.62)であった。1000cd/m2におけるEQEは、9.86%であった。
 初期輝度が1000cd/m2となるように電流値を設定後、定電流で駆動させ、LT95を測定したところ、52時間であった。結果を表1に示す。
 初期輝度が8000cd/m2となるように電流値を設定後、定電流で駆動させ、LT80を測定したところ、10.4時間であった。LT50を測定したところ、100時間であった。結果を表1に示す。
 <比較例CD1> 発光素子CD1の作製及び評価
 [発光素子CD1の作製]
 実施例D1における(発光層の形成D1)を、下記(発光層の形成CD1)に変更した以外は、実施例D1と同様にして、発光素子CD1を作製した。
(発光層の形成CD1)
 キシレンに、化合物HM1-p、化合物HM1-c及び金属錯体MC1(化合物HM1-p/化合物HM1-c/金属錯体MC1=45質量%/5.0質量%/50質量%)を3.3質量%の濃度で溶解させた。得られたキシレン溶液を用いて、正孔輸送層の上にスピンコート法により85nmの厚さで成膜し、窒素ガス雰囲気下、150℃、10分間加熱させることにより発光層を形成した。
 なお、仕込みの量から求めた理論値では、C1は0.01質量ppmであり、CHは26.980質量ppmであり、W1は0.5であり、WHは0.5であり、C11+CHHは13.495質量ppmである。
 [評価]
 発光素子CD1に電圧を印加することによりEL発光が観測された。1000cd/m2におけるCIE色度座標(x,y)は(0.34,0.62)であった。1000cd/m2におけるEQEは、9.95%であった。
 初期輝度が1000cd/m2となるように電流値を設定後、定電流で駆動させ、LT95を測定したところ、40時間であった。結果を表1に示す。
 初期輝度が8000cd/m2となるように電流値を設定後、定電流で駆動させ、LT80を測定したところ、9.0時間であった。LT50を測定したところ、88時間であった。結果を表1に示す。
 <比較例CD2> 発光素子CD2の作製及び評価
 [発光素子CD2の作製]
 実施例D1における(発光層の形成D1)を、下記(発光層の形成CD2)に変更した以外は、実施例D1と同様にして、発光素子CD2を作製した。
 (発光層の形成CD2)
 キシレンに、化合物HM1-p、化合物HM1-c及び金属錯体MC1(化合物HM1-p/化合物HM1-c/金属錯体MC1=40質量%/10質量%/50質量%)を3.3質量%の濃度で溶解させた。得られたキシレン溶液を用いて、正孔輸送層の上にスピンコート法により85nmの厚さで成膜し、窒素ガス雰囲気下、150℃、10分間加熱させることにより発光層を形成した。
 なお、仕込みの量から求めた理論値では、C1は0.01質量ppmであり、CHは51.160質量ppmであり、W1は0.5であり、WHは0.5であり、C11+CHHは25.585質量ppmである。
 [評価]
 発光素子CD2に電圧を印加することによりEL発光が観測された。1000cd/m2におけるCIE色度座標(x,y)は(0.34,0.62)であった。1000cd/m2におけるEQEは、9.95%であった。
 初期輝度が1000cd/m2となるように電流値を設定後、定電流で駆動させ、LT95を測定したところ、24時間であった。結果を表1に示す。
 初期輝度が8000cd/m2となるように電流値を設定後、定電流で駆動させ、LT80を測定したところ、7.6時間であった。LT50を測定したところ、84時間であった。結果を表1に示す。
 <比較例CD3> 発光素子CD3の作製及び評価
 [発光素子CD3の作製]
 実施例D1における(発光層の形成D1)を、下記(発光層の形成CD3)に変更した以外は、実施例D1と同様にして、発光素子CD3を作製した。
 (発光層の形成CD3)
 キシレンに、化合物HM1-p、化合物HM1-c及び金属錯体MC1(化合物HM1-p/化合物HM1-c/金属錯体MC1=25質量%/25質量%/50質量%)を3.3質量%の濃度で溶解させた。得られたキシレン溶液を用いて、正孔輸送層の上にスピンコート法により85nmの厚さで成膜し、窒素ガス雰囲気下、150℃、10分間加熱させることにより発光層を形成した。
 なお、仕込みの量から求めた理論値では、C1は0.01質量ppmであり、CHは123.700質量ppmであり、W1は0.5であり、WHは0.5であり、C11+CHHは61.855質量ppmである。
 [評価]
 発光素子CD3に電圧を印加することによりEL発光が観測された。1000cd/m2におけるCIE色度座標(x,y)は(0.34,0.62)であった。1000cd/m2におけるEQEは、9.35%であった。
 初期輝度が1000cd/m2となるように電流値を設定後、定電流で駆動させ、LT95を測定したところ、13時間であった。結果を表1に示す。
 初期輝度が8000cd/m2となるように電流値を設定後、定電流で駆動させ、LT80を測定したところ、5.4時間であった。LT50を測定したところ74時間であった。結果を表1に示す。
 <比較例CD4> 発光素子CD4の作製及び評価
 [発光素子CD4の作製]
 実施例D1における(発光層の形成D1)を、下記(発光層の形成CD4)に変更した以外は、実施例D1と同様にして、発光素子CD4を作製した。
 (発光層の形成CD4)
 キシレンに、化合物HM1-c及び金属錯体MC1(化合物HM1-c/金属錯体MC1=50質量%/50質量%)を3.3質量%の濃度で溶解させた。得られたキシレン溶液を用いて、正孔輸送層の上にスピンコート法により85nmの厚さで成膜し、窒素ガス雰囲気下、150℃、10分間加熱させることにより発光層を形成した。
 なお、仕込みの量から求めた理論値では、C1は0.01質量ppmであり、CHは244.6質量ppmであり、W1は0.5であり、WHは0.5であり、C11+CHHは122.305質量ppmである。
 [評価]
 発光素子CD4に電圧を印加することによりEL発光が観測された。1000cd/m2におけるCIE色度座標(x,y)は(0.34,0.62)であった。1000cd/m2におけるEQEは、9.17%であった。
 初期輝度が1000cd/m2となるように電流値を設定後、定電流で駆動させ、LT95を測定したところ、4.3時間であった。結果を表1に示す。
 初期輝度が8000cd/m2となるように電流値を設定後、定電流で駆動させ、LT80を測定したところ、3.4時間であった。LT50を測定したところ、56時間であった。結果を表1に示す。
 なお、表1中の相対値は、比較例CD4の値を1.0としたときの各実施例、各比較例の値を示す。
Figure JPOXMLDOC01-appb-T000104
 <合成例6> 金属錯体MC2の合成
Figure JPOXMLDOC01-appb-C000105
 遮光した反応容器内をアルゴンガス雰囲気とした後、国際公開第2002/44189号に記載の方法に従って合成した金属錯体MC2b(364mg)、フェニルボロン酸(140mg)、[ジ-tert-ブチル(4-ジメチルアミノフェニル)ホスフィン]ジクロロパラジウム(II)(6.6mg)及びトルエン(11mL)を加え、80℃に加熱した。その後、そこへ、40質量%テトラブチルアンモニウムヒドロキシド水溶液(3.6mL)を加えた後、80℃で8時間撹拌した。得られた反応液を室温まで冷却した後、水層を除去し有機層を得た。得られた有機層を、水(30mL)で2回洗浄し、無水硫酸マグネシウムで乾燥させた後、ろ過した。得られた残渣をトルエン(150mL)で洗浄した後、得られたろ液を減圧濃縮することにより固体を得た。得られた固体をトルエン(200mL)に溶解させ、セライト(1.0g)及びシリカゲル(6.0g)を敷いたろ過器でろ過し、得られたろ液を濃縮した。得られた残渣(330mg)をトルエン及びアセトニトリルの混合溶媒を用いて再結晶した。得られた固体を50℃で減圧乾燥させることにより、金属錯体MC2(310mg)を赤色固体として得た。
 LC-MS(APCI,positive):[M+H]974
 金属錯体MC2に含まれる不純物としての塩素原子の量(C1)は4質量ppmであった。
 金属錯体MC2の発光スペクトルの最大ピーク波長は617nmであった。
 <実施例E1> 発光素子E1の作製及び評価
 [発光素子E1の作製]
 (陽極及び正孔注入層の形成)
 ガラス基板にスパッタ法により45nmの厚みでITO膜を付けることにより陽極を形成した。該陽極上に、正孔注入材料であるND-3202(日産化学工業製)をスピンコート法により65nmの厚さで成膜した。大気雰囲気下、ホットプレート上で50℃、3分間加熱し、更に240℃、15分間加熱することにより正孔注入層を形成した。
 (正孔輸送層の形成)
 キシレンに高分子化合物HTL-1を0.7質量%の濃度で溶解させた。得られたキシレン溶液を用いて、正孔注入層の上にスピンコート法により20nmの厚さで成膜し、窒素ガス雰囲気下、ホットプレート上で180℃、60分間加熱させることにより正孔輸送層を形成した。
 (発光層の形成E1)
 キシレンに、化合物HM1-p及び金属錯体MC2(化合物HM1-p/金属錯体MC2=90質量%/10質量%)を3.3質量%の濃度で溶解させた。得られたキシレン溶液を用いて、正孔輸送層の上にスピンコート法により85nmの厚さで成膜し、窒素ガス雰囲気下、150℃、10分間加熱させることにより発光層を形成した。
 なお、仕込みの量から求めた理論値では、C1は4質量ppmであり、CHは2.8質量ppmであり、W1は0.1であり、WHは0.9であり、C11+CHHは2.92質量ppmである。
 (陰極の形成)
 発光層を形成した基板を蒸着機内において、1.0×10-4Pa以下にまで減圧した後、陰極として、発光層の上にフッ化ナトリウムを約4nm、次いで、フッ化ナトリウム層の上にアルミニウムを約80nm蒸着した。蒸着後、ガラス基板を用いて封止することにより、発光素子E1を作製した。
 [評価]
 発光素子E1に電圧を印加することによりEL発光が観測された。1000cd/m2におけるCIE色度座標(x,y)は(0.63,0.36)であった。
 初期輝度が100cd/m2となるように電流値を設定後、定電流で駆動させ、LT95を測定したところ、24.7時間であった。結果を表2に示す。
 初期輝度が1000cd/m2となるように電流値を設定後、定電流で駆動させ、LT80を測定したところ、6.1時間であった。LT50を測定したところ、45.4時間であった。結果を表2に示す。
 <実施例E2> 発光素子E2の作製及び評価
[発光素子E2の作製]
 実施例E1における(発光層の形成E1)を、下記(発光層の形成E2)に変更した以外は、実施例E1と同様にして、発光素子E2を作製した。
 (発光層の形成E2)
 キシレンに、化合物HM1-p、化合物HM1-c及び金属錯体MC2(化合物HM1-p/化合物HM1-c/金属錯体MC2=89.1質量%/0.9質量%/10質量%)を3.3質量%の濃度で溶解させた。得られたキシレン溶液を用いて、正孔輸送層の上にスピンコート法により85nmの厚さで成膜し、窒素ガス雰囲気下、150℃、10分間加熱させることにより発光層を形成した。
 なお、仕込みの量から求めた理論値では、C1は4質量ppmであり、CHは5.218質量ppmであり、W1は0.1であり、WHは0.9であり、C11+CHHは5.096質量ppmである。
 [評価]
 発光素子E2に電圧を印加することによりEL発光が観測された。1000cd/m2におけるCIE色度座標(x,y)は(0.62,0.37)であった。
 初期輝度が100cd/m2となるように電流値を設定後、定電流で駆動させ、LT95を測定したところ、24.3時間であった。結果を表2に示す。
 初期輝度が1000cd/m2となるように電流値を設定後、定電流で駆動させ、LT80を測定したところ、5.8時間であった。LT50を測定したところ、47.6時間であった。結果を表2に示す。
 <比較例CE1> 発光素子CE1の作製及び評価
 [発光素子CE1の作製]
 実施例E1における(発光層の形成E1)を、下記(発光層の形成CE1)に変更した以外は、実施例E1と同様にして、発光素子CE1を作製した。
 (発光層の形成CE1)
 キシレンに、化合物HM1-p、化合物HM1-c及び金属錯体MC2(化合物HM1-p/化合物HM1-c/金属錯体MC2=85.5質量%/4.5質量%/10質量%)を3.3質量%の濃度で溶解させた。得られたキシレン溶液を用いて、正孔輸送層の上にスピンコート法により85nmの厚さで成膜し、窒素ガス雰囲気下、150℃、10分間加熱させることにより発光層を形成した。
 なお、仕込みの量から求めた理論値では、C1は4質量ppmであり、CHは14.890質量ppmであり、W1は0.1であり、WHは0.9であり、C11+CHHは13.801質量ppmである。
 [評価]
 発光素子CE1に電圧を印加することによりEL発光が観測された。1000cd/m2におけるCIE色度座標(x,y)は(0.63,0.36)であった。
 初期輝度が100cd/m2となるように電流値を設定後、定電流で駆動させ、LT95を測定したところ、20.3時間であった。結果を表2に示す。
 初期輝度が1000cd/m2となるように電流値を設定後、定電流で駆動させ、LT80を測定したところ、5.9時間であった。LT50を測定したところ、47.2時間であった。結果を表2に示す。
 <比較例CE2> 発光素子CE2の作製及び評価
 [発光素子CE2の作製]
 実施例E1における(発光層の形成E1)を、下記(発光層の形成CE2)に変更した以外は、実施例E1と同様にして、発光素子CE2を作製した。
 (発光層の形成CE2)
 キシレンに、化合物HM1-p、化合物HM1-c及び金属錯体MC2(化合物HM1-p/化合物HM1-c/金属錯体MC2=81質量%/9.0質量%/10質量%)を3.3質量%の濃度で溶解させた。得られたキシレン溶液を用いて、正孔輸送層の上にスピンコート法により85nmの厚さで成膜し、窒素ガス雰囲気下、150℃、10分間加熱させることにより発光層を形成した。
 なお、仕込みの量から求めた理論値では、C1は4質量ppmであり、CHは26.980質量ppmであり、W1は0.1であり、WHは0.9であり、C11+CHHは24.682質量ppmである。
 [評価]
 発光素子CE2に電圧を印加することによりEL発光が観測された。1000cd/m2におけるCIE色度座標(x,y)は(0.63,0.36)であった。
 初期輝度が100cd/m2となるように電流値を設定後、定電流で駆動させ、LT95を測定したところ、15.6時間であった。結果を表2に示す。
 初期輝度が1000cd/m2となるように電流値を設定後、定電流で駆動させ、LT80を測定したところ、6.1時間であった。LT50を測定したところ、47.7時間であった。結果を表2に示す。
 <比較例CE3> 発光素子CE3の作製及び評価
 [発光素子CE3の作製]
 実施例E1における(発光層の形成E1)を、下記(発光層の形成CE3)に変更した以外は、実施例E1と同様にして、発光素子CE3を作製した。
 (発光層の形成CE3)
 キシレンに、化合物HM1-p、化合物HM1-c及び金属錯体MC2(化合物HM1-p/化合物HM1-c/金属錯体MC2=72質量%/18質量%/10質量%)を3.3質量%の濃度で溶解させた。得られたキシレン溶液を用いて、正孔輸送層の上にスピンコート法により85nmの厚さで成膜し、窒素ガス雰囲気下、150℃、10分間加熱させることにより発光層を形成した。
 なお、仕込みの量から求めた理論値では、C1は4質量ppmであり、CHは51.160質量ppmであり、W1は0.1であり、WHは0.9であり、C11+CHHは46.444質量ppmである。
 [評価]
 発光素子CE3に電圧を印加することによりEL発光が観測された。1000cd/m2におけるCIE色度座標(x,y)は(0.63,0.36)であった。
 初期輝度が100cd/m2となるように電流値を設定後、定電流で駆動させ、LT95を測定したところ、9.5時間であった。結果を表2に示す。
 初期輝度が1000cd/m2となるように電流値を設定後、定電流で駆動させ、LT80を測定したところ、5.4時間であった。LT50を測定したところ、44.2時間であった。結果を表2に示す。
 <比較例CE4> 発光素子CE4の作製及び評価
 [発光素子CE4の作製]
 実施例E1における(発光層の形成E1)を、下記(発光層の形成CE4)に変更した以外は、実施例E1と同様にして、発光素子CE4を作製した。
 (発光層の形成CE4)
 キシレンに、化合物HM1-p、化合物HM1-c及び金属錯体MC2(化合物HM1-p/化合物HM1-c/金属錯体MC2=45質量%/45質量%/10質量%)を3.3質量%の濃度で溶解させた。得られたキシレン溶液を用いて、正孔輸送層の上にスピンコート法により85nmの厚さで成膜し、窒素ガス雰囲気下、150℃、10分間加熱させることにより発光層を形成した。
 なお、仕込みの量から求めた理論値では、C1は4質量ppmであり、CHは123.700質量ppmであり、W1は0.1であり、WHは0.9であり、C11+CHHは111.730質量ppmである。
 [評価]
 発光素子CE4に電圧を印加することによりEL発光が観測された。1000cd/m2におけるCIE色度座標(x,y)は(0.63,0.36)であった。
 初期輝度が100cd/m2となるように電流値を設定後、定電流で駆動させ、LT95を測定したところ、5.3時間であった。結果を表2に示す。
 初期輝度が1000cd/m2となるように電流値を設定後、定電流で駆動させ、LT80を測定したところ、4.4時間であった。LT50を測定したところ、37.7時間であった。結果を表2に示す。
 <比較例CE5> 発光素子CE5の作製及び評価
 [発光素子CE5の作製]
 実施例E1における(発光層の形成E1)を、下記(発光層の形成CE5)に変更した以外は、実施例E1と同様にして、発光素子CE5を作製した。
 (発光層の形成CE5)
 キシレンに、化合物HM1-c及び金属錯体MC2(化合物HM1-c/金属錯体MC1=90質量%/10質量%)を3.3質量%の濃度で溶解させた。得られたキシレン溶液を用いて、正孔輸送層の上にスピンコート法により85nmの厚さで成膜し、窒素ガス雰囲気下、150℃、10分間加熱させることにより発光層を形成した。
 なお、仕込みの量から求めた理論値では、C1は4質量ppmであり、CHは244.6質量ppmであり、W1は0.1であり、WHは0.9であり、C11+CHHは220.540質量ppmである。
 [評価]
 発光素子CE5に電圧を印加することによりEL発光が観測された。1000cd/m2におけるCIE色度座標(x,y)は(0.63,0.36)であった。
 初期輝度が100cd/m2となるように電流値を設定後、定電流で駆動させ、LT95を測定したところ、2.8時間であった。結果を表2に示す。
 初期輝度が1000cd/m2となるように電流値を設定後、定電流で駆動させ、LT80を測定したところ、3.8時間であった。LT50を測定したところ、34.4時間であった。結果を表2に示す。
 なお、表2中の相対値は、比較例CE5の値を1.0としたときの各実施例、各比較例の値を示す。また、図1には、実施例D1~D3、E1~E2及び比較例CD1~CD4、CE1~CE5におけるLT95と不純物としての塩素原子の量との関係を表すグラフを示す。図1において、実施例D1のLT95の値を1としたときの実施例D1~D3及び比較例CD1~CD4の相対値、及び、実施例E1のLT95の値を1としたときの実施例E1~E2及び比較例CE1~CE5の相対値を縦軸に示した。
Figure JPOXMLDOC01-appb-T000106
 本実施形態の組成物は、初期劣化が十分に抑制された発光素子の製造に有用である。また、本実施形態の発光素子は、初期劣化が十分に抑制された発光素子である。

Claims (8)

  1.  式(1)で表される金属錯体と式(H)で表される化合物とが配合された組成物であって、前記組成物中に不純物として含まれる塩素原子の量が、前記組成物中に含まれる固形分全量に対して、12質量ppm以下である、組成物。
    Figure JPOXMLDOC01-appb-C000001
    [式中、
     Mは、ルテニウム原子、ロジウム原子、パラジウム原子、イリジウム原子又は白金原子を表す。
     n1は1以上の整数を表し、n2は0以上の整数を表し、n1+n2は2又は3である。Mがルテニウム原子、ロジウム原子又はイリジウム原子の場合、n1+n2は3であり、Mがパラジウム原子又は白金原子の場合、n1+n2は2である。
     E1及びE2は、それぞれ独立に、炭素原子又は窒素原子を表す。但し、E1及びE2の少なくとも一方は炭素原子である。E1及びE2が複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。
     環L1は、芳香族複素環を表し、この環は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環L1が複数存在する場合、それらは同一でも異なっていてもよい。
     環L2は、芳香族炭化水素環又は芳香族複素環を表し、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環L2が複数存在する場合、それらは同一でも異なっていてもよい。
     環L1が有していてもよい置換基と、環L2が有していてもよい置換基とは、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
     A1-G1-A2は、アニオン性の2座配位子を表す。A1及びA2は、それぞれ独立に、炭素原子、酸素原子又は窒素原子を表し、これらの原子は環を構成する原子であってもよい。G1は、単結合、又は、A1及びA2とともに2座配位子を構成する原子団を表す。A1-G1-A2が複数存在する場合、それらは同一でも異なっていてもよい。]
    Figure JPOXMLDOC01-appb-C000002
    [式中、
     nH1は、0以上5以下の整数を表す。nH1が複数存在する場合、それらは同一でも異なっていてもよい。
     nH2は、1以上10以下の整数を表す。
     ArH1は、式(H1-1)で表される基を表す。ArH1が複数存在する場合、それらは同一でも異なっていてもよい。
     LH1は、アルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基、-NRH1'-で表される基、酸素原子又は硫黄原子を表し、これらの基は置換基を有していてもよい。RH1'は、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。LH1が複数存在する場合、それらは同一でも異なっていてもよい。
     ArH2は、芳香族炭化水素基又は芳香族複素環基を表し、これらの基は置換基を有していてもよい。]
    Figure JPOXMLDOC01-appb-C000003
    [式中、
     環RH1及び環RH2は、それぞれ独立に、単環若しくは縮環の芳香族炭化水素環又は単環若しくは縮環の芳香族複素環を表し、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
     但し、環RH1及び環RH2のうちの少なくとも一つは、縮環の芳香族炭化水素環又は縮環の芳香族複素環であり、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
     XH1は、単結合、酸素原子、硫黄原子、-N(RXH1)-で表される基、又は、-C(RXH1')2-で表される基を表す。RXH1及びRXH1'は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はフッ素原子を表し、これらの基は置換基を有していてもよい。複数存在するRXH1'は、同一でも異なっていてもよく、互いに結合して、それぞれが結合する炭素原子と共に環を形成していてもよい。
     RXH1と環RH1が有していてもよい置換基、RXH1と環RH2が有していてもよい置換基、RXH1'と環RH1が有していてもよい置換基、及び、RXH1'と環RH2が有していてもよい置換基は、それぞれ結合して、それぞれが結合する原子と共に環を形成していてもよい。]
  2.  前記組成物中に含まれる前記式(H)で表される化合物の純度(当該純度は、液体クロマトグラフィーの面積百分率値から算出される純度である)が99.0%以上である、請求項1に記載の組成物。
  3.  前記式(H1-1)で表される基が、式(H1-1A)、式(H1-1B)又は式(H1-1C)で表される基である、請求項1又は2に記載の組成物。
    Figure JPOXMLDOC01-appb-C000004
    [式中、
     XH1は、前記と同じ意味を表す。
     XH2及びXH3は、それぞれ独立に、単結合、酸素原子、硫黄原子、-N(RXH2)-で表される基、又は、-C(RXH2')2-で表される基を表す。RXH2及びRXH2'は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はフッ素原子を表し、これらの基は置換基を有していてもよい。複数存在するRXH2'は、同一でも異なっていてもよく、互いに結合して、それぞれが結合する炭素原子と共に環を形成していてもよい。
     ZH1、ZH2、ZH3、ZH4、ZH5、ZH6、ZH7、ZH8、ZH9、ZH10、ZH11及びZH12は、それぞれ独立に、炭素原子又は窒素原子を表す。
     RH1、RH2、RH3、RH4、RH5、RH6、RH7、RH8、RH9、RH10、RH11及びRH12は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はフッ素原子を表し、これらの基は置換基を有していてもよい。
     ZH1が窒素原子の場合、RH1は存在しない。ZH2が窒素原子の場合、RH2は存在しない。ZH3が窒素原子の場合、RH3は存在しない。ZH4が窒素原子の場合、RH4は存在しない。ZH5が窒素原子の場合、RH5は存在しない。ZH6が窒素原子の場合、RH6は存在しない。ZH7が窒素原子の場合、RH7は存在しない。ZH8が窒素原子の場合、RH8は存在しない。ZH9が窒素原子の場合、RH9は存在しない。ZH10が窒素原子の場合、RH10は存在しない。ZH11が窒素原子の場合、RH11は存在しない。ZH12が窒素原子の場合、RH12は存在しない。
     RH1とRH2、RH3とRH4、RH5とRH6、RH6とRH7、RH7とRH8、RH9とRH10、RH10とRH11、及び、RH11とRH12は、それぞれ結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。]
  4.  前記式(1)で表される金属錯体が、式(1-B1)、式(1-B2)、式(1-B3)、式(1-B4)又は式(1-B5)で表される金属錯体である、請求項1~3のいずれか一項に記載の組成物。
    Figure JPOXMLDOC01-appb-C000005
    [式中、
     M、n1、n2、A1-G1-A2は、前記と同じ意味を表す。
     R11B、R12B、R13B、R14B、R21B、R22B、R23B及びR24Bは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はフッ素原子を表し、これらの基は置換基を有していてもよい。R11B、R12B、R13B、R14B、R21B、R22B、R23B及びR24Bが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。R11BとR12B、R12BとR13B、R13BとR14B、R11BとR21B、R21BとR22B、R22BとR23B、及び、R23BとR24Bは、それぞれ結合して、それぞれが結合する原子とともに環を形成していてもよい。
     n11及びn12は、それぞれ独立に、1以上の整数を表し、n11+n12は2又は3である。Mがルテニウム原子、ロジウム原子又はイリジウム原子の場合、n11+n12は3であり、Mがパラジウム原子又は白金原子の場合、n11+n12は2である。
     R15B、R16B、R17B及びR18Bは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はフッ素原子を表し、これらの基は置換基を有していてもよい。R15B、R16B、R17B及びR18Bが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。R13BとR15B、R15BとR16B、R16BとR17B、R17BとR18B、及び、R18BとR21Bは、それぞれ結合して、それぞれが結合する原子とともに環を形成していてもよい。]
  5.  前記式(1)で表される金属錯体が、前記式(1-B1)、前記式(1-B2)、前記式(1-B3)又は前記式(1-B5)で表される金属錯体である、請求項4に記載の組成物。
  6.  前記式(H1-1)で表される基が、式(ArH1-1)又は式(ArH1-10)で表される基である、請求項1~5のいずれか一項に記載の組成物。
    Figure JPOXMLDOC01-appb-C000006
    [式中、Rb、Rc及びReは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はフッ素原子を表し、これらの基は置換基を有していてもよい。複数存在するRb及びReは、各々、同一でも異なっていてもよく、互いに結合して、それぞれが結合する炭素原子と共に環を形成していてもよい。]
  7.  正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料、発光材料、酸化防止剤及び溶媒からなる群より選ばれる少なくとも1種の材料を更に含有する請求項1~6のいずれか一項に記載の組成物。
  8.  請求項1~7のいずれか一項に記載の組成物を含む発光素子。
PCT/JP2017/026225 2016-09-28 2017-07-20 組成物及び発光素子 WO2018061421A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017548235A JPWO2018061421A1 (ja) 2016-09-28 2017-07-20 組成物及び発光素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016189282 2016-09-28
JP2016-189282 2016-09-28

Publications (1)

Publication Number Publication Date
WO2018061421A1 true WO2018061421A1 (ja) 2018-04-05

Family

ID=61762689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/026225 WO2018061421A1 (ja) 2016-09-28 2017-07-20 組成物及び発光素子

Country Status (2)

Country Link
JP (1) JPWO2018061421A1 (ja)
WO (1) WO2018061421A1 (ja)

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020137444A1 (ja) * 2018-12-28 2020-07-02 住友化学株式会社 発光素子用組成物及びそれを含有する発光素子
WO2020137446A1 (ja) * 2018-12-28 2020-07-02 住友化学株式会社 発光素子用組成物及びそれを含有する発光素子
WO2020137447A1 (ja) * 2018-12-28 2020-07-02 住友化学株式会社 発光素子用組成物及びそれを含有する発光素子
WO2020137448A1 (ja) * 2018-12-28 2020-07-02 住友化学株式会社 発光素子用組成物及びそれを含有する発光素子
WO2020137443A1 (ja) * 2018-12-28 2020-07-02 住友化学株式会社 発光素子用組成物及びそれを含有する発光素子
WO2020137445A1 (ja) * 2018-12-28 2020-07-02 住友化学株式会社 発光素子用組成物及びそれを含有する発光素子
JP2020107825A (ja) * 2018-12-28 2020-07-09 住友化学株式会社 発光素子用組成物及び発光素子の製造方法
JP2020107826A (ja) * 2018-12-28 2020-07-09 住友化学株式会社 発光素子用組成物及び発光素子の製造方法
JP2020107830A (ja) * 2018-12-28 2020-07-09 住友化学株式会社 発光素子用組成物及びそれを含有する発光素子
JP2020107807A (ja) * 2018-12-28 2020-07-09 住友化学株式会社 発光素子用組成物及び発光素子の製造方法
JP2020107812A (ja) * 2018-12-28 2020-07-09 住友化学株式会社 発光素子用組成物及び発光素子の製造方法
JP2020107824A (ja) * 2018-12-28 2020-07-09 住友化学株式会社 発光素子用組成物及び発光素子の製造方法
JP2020107831A (ja) * 2018-12-28 2020-07-09 住友化学株式会社 発光素子用組成物及びそれを含有する発光素子
JP2020107813A (ja) * 2018-12-28 2020-07-09 住友化学株式会社 発光素子用組成物及び発光素子の製造方法
JP2020107811A (ja) * 2018-12-28 2020-07-09 住友化学株式会社 発光素子用組成物及び発光素子の製造方法
JP2020107822A (ja) * 2018-12-28 2020-07-09 住友化学株式会社 発光素子用組成物及びそれを含有する発光素子
JP2020107828A (ja) * 2018-12-28 2020-07-09 住友化学株式会社 発光素子用組成物及びそれを含有する発光素子
JP2020107823A (ja) * 2018-12-28 2020-07-09 住友化学株式会社 発光素子用組成物及び発光素子の製造方法
JP2020107832A (ja) * 2018-12-28 2020-07-09 住友化学株式会社 発光素子用組成物及び発光素子の製造方法
JP2020107829A (ja) * 2018-12-28 2020-07-09 住友化学株式会社 発光素子用組成物及びそれを含有する発光素子
JP2020107827A (ja) * 2018-12-28 2020-07-09 住友化学株式会社 発光素子用組成物及び発光素子の製造方法
JP2020107814A (ja) * 2018-12-28 2020-07-09 住友化学株式会社 発光素子用組成物及び発光素子の製造方法
JP2020109829A (ja) * 2019-09-05 2020-07-16 住友化学株式会社 発光素子用組成物及びそれを含有する発光素子
JP2020109831A (ja) * 2019-09-05 2020-07-16 住友化学株式会社 発光素子用組成物及びそれを含有する発光素子
JP2020109823A (ja) * 2019-09-04 2020-07-16 住友化学株式会社 発光素子用組成物及びそれを含有する発光素子
JP2020109874A (ja) * 2020-04-06 2020-07-16 住友化学株式会社 発光素子用組成物及びそれを含有する発光素子
JP2020109830A (ja) * 2019-09-05 2020-07-16 住友化学株式会社 発光素子用組成物及びそれを含有する発光素子
JP2020109825A (ja) * 2019-09-05 2020-07-16 住友化学株式会社 発光素子用組成物及びそれを含有する発光素子
JP2020109870A (ja) * 2020-04-06 2020-07-16 住友化学株式会社 発光素子用組成物及びそれを含有する発光素子
JP2020109826A (ja) * 2019-09-05 2020-07-16 住友化学株式会社 発光素子用組成物及びそれを含有する発光素子
JP2020109832A (ja) * 2019-09-05 2020-07-16 住友化学株式会社 発光素子用組成物及びそれを含有する発光素子
JP2020109873A (ja) * 2020-04-06 2020-07-16 住友化学株式会社 発光素子用組成物及びそれを含有する発光素子
JP2020109833A (ja) * 2019-09-05 2020-07-16 住友化学株式会社 発光素子用組成物及びそれを含有する発光素子
JP2020109822A (ja) * 2019-09-04 2020-07-16 住友化学株式会社 発光素子用組成物及びそれを含有する発光素子
JP2020109871A (ja) * 2020-04-06 2020-07-16 住友化学株式会社 発光素子用組成物及びそれを含有する発光素子
JP2020109824A (ja) * 2019-09-05 2020-07-16 住友化学株式会社 発光素子用組成物及びそれを含有する発光素子
JP2020109828A (ja) * 2019-09-05 2020-07-16 住友化学株式会社 発光素子用組成物及びそれを含有する発光素子
JP2020109872A (ja) * 2020-04-06 2020-07-16 住友化学株式会社 発光素子用組成物及びそれを含有する発光素子
JP2020109827A (ja) * 2019-09-05 2020-07-16 住友化学株式会社 発光素子用組成物及びそれを含有する発光素子
JP2021075730A (ja) * 2021-01-29 2021-05-20 住友化学株式会社 発光素子用組成物及びそれを含有する発光素子

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005084083A1 (ja) * 2004-03-02 2005-09-09 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子
JP2008516421A (ja) * 2004-10-01 2008-05-15 メルク パテント ゲーエムベーハー 有機半導体を含む電子デバイス
JP2012216783A (ja) * 2011-03-31 2012-11-08 Fujifilm Corp 有機電界発光素子の発光層を形成するホスト材料の昇華精製方法
JP2015106661A (ja) * 2013-11-29 2015-06-08 出光興産株式会社 有機エレクトロルミネッセンス素子および電子機器
WO2015117718A1 (de) * 2014-02-05 2015-08-13 Merck Patent Gmbh Metallkomplexe
WO2015165563A1 (de) * 2014-04-30 2015-11-05 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2015192939A1 (de) * 2014-06-18 2015-12-23 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
JP2016121125A (ja) * 2014-10-28 2016-07-07 株式会社半導体エネルギー研究所 有機金属イリジウム錯体、発光素子、発光装置、電子機器、照明装置、および有機金属イリジウム錯体の合成方法
JP2016524333A (ja) * 2013-06-20 2016-08-12 ユニバーサル ディスプレイ コーポレイション 発光領域に正孔輸送性ホストを有する燐光有機発光デバイス

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005084083A1 (ja) * 2004-03-02 2005-09-09 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子
JP2008516421A (ja) * 2004-10-01 2008-05-15 メルク パテント ゲーエムベーハー 有機半導体を含む電子デバイス
JP2012216783A (ja) * 2011-03-31 2012-11-08 Fujifilm Corp 有機電界発光素子の発光層を形成するホスト材料の昇華精製方法
JP2016524333A (ja) * 2013-06-20 2016-08-12 ユニバーサル ディスプレイ コーポレイション 発光領域に正孔輸送性ホストを有する燐光有機発光デバイス
JP2015106661A (ja) * 2013-11-29 2015-06-08 出光興産株式会社 有機エレクトロルミネッセンス素子および電子機器
WO2015117718A1 (de) * 2014-02-05 2015-08-13 Merck Patent Gmbh Metallkomplexe
WO2015165563A1 (de) * 2014-04-30 2015-11-05 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2015192939A1 (de) * 2014-06-18 2015-12-23 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
JP2016121125A (ja) * 2014-10-28 2016-07-07 株式会社半導体エネルギー研究所 有機金属イリジウム錯体、発光素子、発光装置、電子機器、照明装置、および有機金属イリジウム錯体の合成方法

Cited By (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020107828A (ja) * 2018-12-28 2020-07-09 住友化学株式会社 発光素子用組成物及びそれを含有する発光素子
JP2020107825A (ja) * 2018-12-28 2020-07-09 住友化学株式会社 発光素子用組成物及び発光素子の製造方法
WO2020137447A1 (ja) * 2018-12-28 2020-07-02 住友化学株式会社 発光素子用組成物及びそれを含有する発光素子
TWI700352B (zh) * 2018-12-28 2020-08-01 日商住友化學股份有限公司 發光元件用組成物之製造方法及發光元件之製造方法
WO2020137443A1 (ja) * 2018-12-28 2020-07-02 住友化学株式会社 発光素子用組成物及びそれを含有する発光素子
JP2020107832A (ja) * 2018-12-28 2020-07-09 住友化学株式会社 発光素子用組成物及び発光素子の製造方法
KR20200083621A (ko) * 2018-12-28 2020-07-08 스미또모 가가꾸 가부시키가이샤 발광 소자용 조성물 및 그것을 함유하는 발광 소자
JP2020107823A (ja) * 2018-12-28 2020-07-09 住友化学株式会社 発光素子用組成物及び発光素子の製造方法
JP2020107826A (ja) * 2018-12-28 2020-07-09 住友化学株式会社 発光素子用組成物及び発光素子の製造方法
JP2020107830A (ja) * 2018-12-28 2020-07-09 住友化学株式会社 発光素子用組成物及びそれを含有する発光素子
JP2020107807A (ja) * 2018-12-28 2020-07-09 住友化学株式会社 発光素子用組成物及び発光素子の製造方法
JP2020107812A (ja) * 2018-12-28 2020-07-09 住友化学株式会社 発光素子用組成物及び発光素子の製造方法
JP2020107824A (ja) * 2018-12-28 2020-07-09 住友化学株式会社 発光素子用組成物及び発光素子の製造方法
JP2020107810A (ja) * 2018-12-28 2020-07-09 住友化学株式会社 発光素子用組成物及び発光素子の製造方法
JP2020107808A (ja) * 2018-12-28 2020-07-09 住友化学株式会社 発光素子用組成物及び発光素子の製造方法
JP2020107831A (ja) * 2018-12-28 2020-07-09 住友化学株式会社 発光素子用組成物及びそれを含有する発光素子
JP2020107813A (ja) * 2018-12-28 2020-07-09 住友化学株式会社 発光素子用組成物及び発光素子の製造方法
JP2020107811A (ja) * 2018-12-28 2020-07-09 住友化学株式会社 発光素子用組成物及び発光素子の製造方法
JP2020107806A (ja) * 2018-12-28 2020-07-09 住友化学株式会社 発光素子用組成物及び発光素子の製造方法
JP2020107822A (ja) * 2018-12-28 2020-07-09 住友化学株式会社 発光素子用組成物及びそれを含有する発光素子
WO2020137448A1 (ja) * 2018-12-28 2020-07-02 住友化学株式会社 発光素子用組成物及びそれを含有する発光素子
WO2020137446A1 (ja) * 2018-12-28 2020-07-02 住友化学株式会社 発光素子用組成物及びそれを含有する発光素子
WO2020137445A1 (ja) * 2018-12-28 2020-07-02 住友化学株式会社 発光素子用組成物及びそれを含有する発光素子
JP2020107805A (ja) * 2018-12-28 2020-07-09 住友化学株式会社 発光素子用組成物及び発光素子の製造方法
JP2020107829A (ja) * 2018-12-28 2020-07-09 住友化学株式会社 発光素子用組成物及びそれを含有する発光素子
JP2020107827A (ja) * 2018-12-28 2020-07-09 住友化学株式会社 発光素子用組成物及び発光素子の製造方法
JP2020107814A (ja) * 2018-12-28 2020-07-09 住友化学株式会社 発光素子用組成物及び発光素子の製造方法
JP2020107833A (ja) * 2018-12-28 2020-07-09 住友化学株式会社 発光素子用組成物及び発光素子の製造方法
JP2020107809A (ja) * 2018-12-28 2020-07-09 住友化学株式会社 発光素子用組成物及び発光素子の製造方法
WO2020137444A1 (ja) * 2018-12-28 2020-07-02 住友化学株式会社 発光素子用組成物及びそれを含有する発光素子
JP7191685B2 (ja) 2018-12-28 2022-12-19 住友化学株式会社 発光素子用組成物及びそれを含有する発光素子
CN111630135A (zh) * 2018-12-28 2020-09-04 住友化学株式会社 发光元件用组合物及含有其的发光元件
JP7191688B2 (ja) 2018-12-28 2022-12-19 住友化学株式会社 発光素子用組成物及びそれを含有する発光素子
JP7191687B2 (ja) 2018-12-28 2022-12-19 住友化学株式会社 発光素子用組成物及びそれを含有する発光素子
JP7191686B2 (ja) 2018-12-28 2022-12-19 住友化学株式会社 発光素子用組成物及びそれを含有する発光素子
JP7191684B2 (ja) 2018-12-28 2022-12-19 住友化学株式会社 発光素子用組成物及びそれを含有する発光素子
US11420930B2 (en) 2018-12-28 2022-08-23 Sumitomo Chemical Company, Limited Composition for light emitting device and light emitting device containing the same
CN111630135B (zh) * 2018-12-28 2021-11-12 住友化学株式会社 发光元件用组合物及含有其的发光元件
KR102201526B1 (ko) 2018-12-28 2021-01-13 스미또모 가가꾸 가부시키가이샤 발광 소자용 조성물 및 그것을 함유하는 발광 소자
JP2020109823A (ja) * 2019-09-04 2020-07-16 住友化学株式会社 発光素子用組成物及びそれを含有する発光素子
JP2020109822A (ja) * 2019-09-04 2020-07-16 住友化学株式会社 発光素子用組成物及びそれを含有する発光素子
JP2020109829A (ja) * 2019-09-05 2020-07-16 住友化学株式会社 発光素子用組成物及びそれを含有する発光素子
JP2020109824A (ja) * 2019-09-05 2020-07-16 住友化学株式会社 発光素子用組成物及びそれを含有する発光素子
JP2020109828A (ja) * 2019-09-05 2020-07-16 住友化学株式会社 発光素子用組成物及びそれを含有する発光素子
JP2020109831A (ja) * 2019-09-05 2020-07-16 住友化学株式会社 発光素子用組成物及びそれを含有する発光素子
JP2020109827A (ja) * 2019-09-05 2020-07-16 住友化学株式会社 発光素子用組成物及びそれを含有する発光素子
JP2020109830A (ja) * 2019-09-05 2020-07-16 住友化学株式会社 発光素子用組成物及びそれを含有する発光素子
JP2020109833A (ja) * 2019-09-05 2020-07-16 住友化学株式会社 発光素子用組成物及びそれを含有する発光素子
JP2020109825A (ja) * 2019-09-05 2020-07-16 住友化学株式会社 発光素子用組成物及びそれを含有する発光素子
JP2020109826A (ja) * 2019-09-05 2020-07-16 住友化学株式会社 発光素子用組成物及びそれを含有する発光素子
JP2020109832A (ja) * 2019-09-05 2020-07-16 住友化学株式会社 発光素子用組成物及びそれを含有する発光素子
JP7009544B2 (ja) 2020-04-06 2022-01-25 住友化学株式会社 発光素子用組成物の製造方法及び発光素子の製造方法
JP7132968B2 (ja) 2020-04-06 2022-09-07 住友化学株式会社 発光素子用組成物の製造方法及び発光素子の製造方法
JP7132971B2 (ja) 2020-04-06 2022-09-07 住友化学株式会社 発光素子用組成物の製造方法及び発光素子の製造方法
JP7132970B2 (ja) 2020-04-06 2022-09-07 住友化学株式会社 発光素子用組成物の製造方法及び発光素子の製造方法
JP7132969B2 (ja) 2020-04-06 2022-09-07 住友化学株式会社 発光素子用組成物の製造方法及び発光素子の製造方法
JP2020109870A (ja) * 2020-04-06 2020-07-16 住友化学株式会社 発光素子用組成物及びそれを含有する発光素子
JP2020109873A (ja) * 2020-04-06 2020-07-16 住友化学株式会社 発光素子用組成物及びそれを含有する発光素子
JP2020109871A (ja) * 2020-04-06 2020-07-16 住友化学株式会社 発光素子用組成物及びそれを含有する発光素子
JP2020109874A (ja) * 2020-04-06 2020-07-16 住友化学株式会社 発光素子用組成物及びそれを含有する発光素子
JP2020109872A (ja) * 2020-04-06 2020-07-16 住友化学株式会社 発光素子用組成物及びそれを含有する発光素子
JP2022002335A (ja) * 2021-01-29 2022-01-06 住友化学株式会社 発光素子用組成物及びそれを含有する発光素子
JP2021075730A (ja) * 2021-01-29 2021-05-20 住友化学株式会社 発光素子用組成物及びそれを含有する発光素子

Also Published As

Publication number Publication date
JPWO2018061421A1 (ja) 2018-09-27

Similar Documents

Publication Publication Date Title
WO2018061421A1 (ja) 組成物及び発光素子
JP6427681B2 (ja) 組成物、燐光発光性化合物及び発光素子
CN110546781B (zh) 发光元件
CN111052430B (zh) 发光元件
WO2015186539A1 (ja) 発光素子
WO2015194448A1 (ja) 発光素子
JP6562168B2 (ja) 組成物及びそれを用いた発光素子
JP6695919B2 (ja) 発光素子
WO2018198972A1 (ja) 組成物及びそれを用いた発光素子
JP6296208B2 (ja) 発光素子
WO2016009908A1 (ja) 発光素子の製造方法
WO2018198971A1 (ja) 組成物及びそれを用いた発光素子
JP6573041B2 (ja) 発光素子
JP2018078286A (ja) 組成物及びそれを用いた発光素子
JP6399243B2 (ja) 発光素子
WO2017038613A1 (ja) 組成物及びそれを用いた発光素子
JP6296209B2 (ja) 発光素子
WO2019208648A1 (ja) 発光素子
JP2018188515A (ja) 組成物及び発光素子
JP2016064998A (ja) 金属錯体およびそれを用いた発光素子
WO2018199283A1 (ja) 組成物及びそれを用いた発光素子
JP2019186576A (ja) 発光素子
WO2019225483A1 (ja) 発光素子用組成物、発光素子用組成物の製造方法、発光素子用組成物の評価方法、発光素子及び発光素子の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017548235

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17855379

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17855379

Country of ref document: EP

Kind code of ref document: A1