WO2018059367A1 - 一种Si-V发光的金刚石颗粒与石英光纤的复合方法 - Google Patents

一种Si-V发光的金刚石颗粒与石英光纤的复合方法 Download PDF

Info

Publication number
WO2018059367A1
WO2018059367A1 PCT/CN2017/103305 CN2017103305W WO2018059367A1 WO 2018059367 A1 WO2018059367 A1 WO 2018059367A1 CN 2017103305 W CN2017103305 W CN 2017103305W WO 2018059367 A1 WO2018059367 A1 WO 2018059367A1
Authority
WO
WIPO (PCT)
Prior art keywords
diamond
optical fiber
diamond particles
fiber
quartz fiber
Prior art date
Application number
PCT/CN2017/103305
Other languages
English (en)
French (fr)
Inventor
胡晓君
仰宗春
Original Assignee
浙江工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江工业大学 filed Critical 浙江工业大学
Publication of WO2018059367A1 publication Critical patent/WO2018059367A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/271Diamond only using hot filaments

Definitions

  • the present invention relates to a composite method of Si-V luminescent dispersed diamond particles and a quartz fiber.
  • Quantum security communication refers to a new type of communication method that uses quantum entanglement effect for information transmission.
  • Quantum secure communication requires the use of a single photon transfer key signal, so a stable single photon source must be available.
  • a single photon source is a light source that emits at any time and emits only one photon. Common single photon sources are: single atoms, single molecules, single quantum dots, and diamond color centers. When a single photon source is used in the field of quantum secure communication, it is necessary to transmit a single photon signal through an optical fiber.
  • Fiber is a fiber encapsulated in plastic and is an optical communication tool. Quartz fiber is the most widely used fiber material.
  • the single photon signal When a single photon signal is transmitted using an optical fiber, if a single photon source is not directly attached to the optical fiber, the single photon signal is transmitted to the optical fiber, and signal attenuation occurs due to the presence of a medium such as air. Therefore, if a single photon source is combined with an optical fiber, signal attenuation may be minimized. At the same time, the single photon source is directly combined with the optical fiber, which is very little affected by the external environment and is very stable; and can be conveniently transplanted into an external field system such as an external magnetic field or an electric field.
  • the diamond color center is a single photon source with excellent performance, and the diamond color center currently used is generally an N-V color center.
  • the diamond particles containing the NV color center are mixed into the molten optical fiber, and after cooling, the optical fiber containing the diamond NV color center is obtained; second, the NV color center is contained.
  • the diamond particles adhere directly to the end face of the fiber.
  • both methods have drawbacks: the first method has the function of heating the fiber to a molten state, and the melting point of the quartz fiber is about 1750 ° C.
  • the diamond NV color center is destroyed, which is disadvantageous for the single photon source performance;
  • the composite method of the diamond and the optical fiber obtained by the second method is to directly adhere the diamond containing the NV color center to the optical fiber, and the bonding force between the two is weak, and it is easy to fall off in practical applications.
  • the Si-V color center has the characteristics of narrow luminescence peak, short luminescence lifetime, and weak phonon coupling, and is more suitable for use in fields such as quantum communication.
  • the present invention uses hot filament chemical vapor deposition to deposit dispersed diamond particles on a quartz fiber to obtain strong Si-V luminescence, and realizes Si-V illuminating diamond and fiber. Effective compounding.
  • An object of the present invention is to provide a method for compounding Si-V luminescent dispersed diamond particles and a quartz fiber, wherein the characteristic peak of the Si-V luminescence in the photoluminescence spectrum (PL spectrum) is located at 738 nm, and the line width is Narrow ( ⁇ 5nm), short luminescence lifetime (1.2ns) makes Si-V a promising single photon source.
  • PL spectrum photoluminescence spectrum
  • a composite method of Si-V illuminating diamond particles and a quartz fiber comprising the following steps:
  • Dispersed Si-V luminescent diamond particles are prepared on the silica fiber treated by the step (1) by hot filament chemical vapor deposition, that is, the composite of the Si-V luminescent diamond particles and the quartz fiber is completed.
  • the operation method of the step (1) is:
  • the mass ratio of the diamond powder to the polyvinyl alcohol and dimethyl sulfoxide is 1:0.5 to 1:80-100;
  • the method of applying the mixed solution to the quartz fiber may be: immersing the quartz fiber in the mixed liquid for 5 to 20 minutes, and after taking out, coating a surface of the quartz fiber with a mixed liquid having a thickness of about 1 mm.
  • the operation method of the step (2) is:
  • the quartz fiber treated in the step (1) is placed in a hot wire chemical vapor deposition apparatus, and acetone is introduced into the reaction chamber by a hydrogen A bubbling method using acetone as a carbon source.
  • the flow ratio of hydrogen B to acetone is 200: 40 ⁇ 90
  • the distance between hot wire and quartz fiber is 7 ⁇ 10mm
  • the reaction power is 1600 ⁇ 2300W
  • the working pressure is 1.5 ⁇ 3.5Kpa
  • the growth time of diamond particles is 10 ⁇ 30min
  • after the end of growth the condition of hydrogen B is not available.
  • the temperature is cooled down to room temperature (20-30 ° C), that is, the dispersed Si-V luminescent diamond particles are prepared on the silica fiber, and the composite of the diamond particles and the quartz fiber is realized.
  • the diamond particles have a size of 200 to 500 nm and are composed of nanodiamond grains and amorphous carbon grain boundaries.
  • hydrogen A and “hydrogen B” have no special meaning, and the labels “A” and “B” are only used to distinguish different two-way hydrogen.
  • hydrogen A is used as a carrier gas for acetone, and acetone is introduced into the reaction chamber by bubbling, and the flow rate of acetone is calculated by the flow rate of hydrogen A.
  • a method for recombining existing NV-emitting diamond particles with an optical fiber mainly by mixing NV-emitting diamond particles with an optical fiber raw material, and then drawing the optical fiber; the present invention directly uses a chemical vapor deposition method to illuminate Si-V
  • the diamond grain grows on the fiber to realize the composite of the diamond grain and the fiber, and the method is simpler and more feasible.
  • Another method of combining N-V illuminating diamond particles with an optical fiber is to disperse the diamond particles in an aqueous solution, and then drop the diamond solution on the end face of the fiber, and combine them by physical interaction between the optical fiber and the diamond.
  • the bonding force between the diamond particles and the optical fiber is weak and easy to separate.
  • the present invention uses chemical vapor deposition to directly grow diamond particles on the surface of the optical fiber, and the two are combined by chemical bonding, and the bonding force is strong, and it is difficult to separate and fall off.
  • Si-V luminescence has excellent luminescence properties and can better generate photons.
  • the invention effectively combines the Si-V illuminating diamond particles with the optical fiber, and is expected to realize photon transmission, and is of great significance for realizing the application of diamond in the field of quantum communication and the like.
  • Figure 1 Surface scanning electron micrograph of diamond particles prepared on a quartz fiber in Example 1.
  • Figure 2 visible light Raman spectrum of diamond particles prepared on a quartz fiber in Example 1;
  • FIG. 3 Photoluminescence spectrum of diamond particles prepared on a quartz fiber in Example 1;
  • Figure 4 A surface scanning electron micrograph of diamond particles prepared on a quartz fiber in Example 2;
  • Figure 5 visible light Raman spectrum of diamond particles prepared on a quartz fiber in Example 2;
  • Figure 7 Surface scanning electron micrograph of diamond particles prepared on a quartz fiber in Embodiment 3.
  • Figure 8 visible light Raman spectrum of diamond particles prepared on a quartz fiber in Example 3.
  • Figure 9 Photoluminescence spectrum of diamond particles prepared on a quartz fiber in Example 3.
  • the seed crystal is attached to the surface of the optical fiber by a coating method.
  • the specific method is as follows: 0.2 g of polyvinyl alcohol (polyvinyl alcohol type 1797 produced by Aladdin Company, degree of alcoholysis 96%-98%) and 19.8 g of dimethyl sulfoxide are mixed, and the mixture is heated to 80 ° C and sonicated. The mixture was uniformly mixed, and then 0.2 g of diamond powder was added and uniformly mixed to obtain a mixed solution.
  • a quartz fiber (approximately 149 ⁇ m high-purity silica fiber having a diameter of about 149 ⁇ m) was immersed in the resulting mixture for 10 minutes, and then taken out and rinsed with deionized water, and blown dry with a hair dryer for use.
  • the quartz fiber subjected to the above treatment was placed in a hot wire chemical vapor deposition apparatus (chemical vapor deposition equipment was purchased from Shanghai Dating Diamond Coating Co., Ltd., model: JUHF CVD 001), acetone was used as a carbon source, and acetone was bubbled by hydrogen. Brought into the reaction chamber, the flow rate of hydrogen is 200sccm, the flow rate of acetone is 90sccm, the distance between hot wire and quartz fiber is 7mm, the reaction power is 1700W, the working pressure is 1.5Kpa; the preparation time is 20 minutes; after the growth, The cooled Si-V luminescent diamond particles were prepared on a quartz fiber under the condition that the hydrogen gas was not cooled and cooled to room temperature.
  • Fig. 1 is a scanning electron micrograph of a surface of a diamond particle. It is known that the diamond particle has a particle diameter of about 200 to 300 nm, and the particle is connected to the particle to form a cluster having a particle diameter of about 2 to 5 ⁇ m.
  • FIG 2 is a visible Raman spectrum of the diamond particles, the diamond pattern indicate a characteristic peak at 1332cm -1, 1560cm -1 can also be observed in the disordered graphite peak sp 2 bond, is mainly described sample phase and an amorphous diamond The sequence of graphite is composed, and the diamond signal is very strong, indicating that the diamond content is high.
  • Figure 3 is a photoluminescence spectrum of diamond particles. The photoluminescence peak of diamond Si-V can be seen at 738 nm, indicating that the process can produce a Si-V illuminating diamond color center on an optical fiber.
  • the seed crystal is attached to the surface of the optical fiber by a coating method.
  • the specific method is as follows: 0.2 g of polyvinyl alcohol (polyvinyl alcohol type 1797 produced by Aladdin Company, degree of alcoholysis 96%-98%) and 19.8 g of dimethyl sulfoxide are mixed, and the mixture is heated to 80 ° C and sonicated. The mixture was uniformly mixed, and then 0.2 g of diamond powder was added and uniformly mixed to obtain a mixed solution.
  • a quartz fiber (a high-purity silica fiber having a diameter of about 149 ⁇ m) was immersed in the resulting mixture for 5 minutes, and then taken out and rinsed with deionized water, and blown dry with a hair dryer for use.
  • the quartz fiber subjected to the above treatment was placed in a hot wire chemical vapor deposition apparatus (chemical vapor deposition equipment was purchased from Shanghai Dating Diamond Coating Co., Ltd., model: JUHF CVD 001), acetone was used as a carbon source, and acetone was bubbled by hydrogen. Brought into the reaction chamber, the flow rate of hydrogen is 200sccm, the flow rate of acetone is 90sccm, the distance between hot wire and quartz fiber is 8mm, the reaction power is 1800W, the working pressure is 1.5Kpa; the preparation time is 20 minutes; after the growth, The cooled Si-V luminescent diamond particles were prepared on a quartz fiber under the condition that the hydrogen gas was not cooled and cooled to room temperature.
  • Figure 4 is a scanning electron micrograph of the surface of diamond particles. It can be seen that the diamond has a particle size of about 200-300 nm, and the particles are connected to the particles to form a cluster having a particle size of about 10 ⁇ m.
  • Figure 5 is a visible Raman spectrum of the diamond particles. indicate a characteristic diamond peak at 1332cm -1, 1560cm -1 can also be observed in the disordered graphite peak sp 2 bond, the sample described mainly by disordered diamond phase and the graphite phase, and the signal is very strong diamond, diamond-described Higher content.
  • Figure 6 is a photoluminescence spectrum of diamond particles. The photoluminescence peak of diamond Si-V can be seen at 738 nm, indicating that the process can produce a Si-V illuminating diamond color center on an optical fiber.
  • the seed crystal is attached to the surface of the optical fiber by a coating method.
  • the specific method is as follows: 0.2 g of polyvinyl alcohol (polyvinyl alcohol type 1797 produced by Aladdin Company, degree of alcoholysis 96%-98%) and 19.8 g of dimethyl sulfoxide are mixed, and the mixture is heated to 80 ° C and sonicated. The mixture was uniformly mixed, and then 0.2 g of diamond powder was added and uniformly mixed to obtain a mixed solution.
  • a quartz fiber (approximately 149 ⁇ m high-purity silica fiber having a diameter of about 149 ⁇ m) was immersed in the resulting mixture for 15 minutes, and then taken out and rinsed with deionized water, and blown dry with a hair dryer for use.
  • the quartz fiber subjected to the above treatment was placed in a hot wire chemical vapor deposition apparatus (chemical vapor deposition equipment was purchased from Shanghai Dating Diamond Coating Co., Ltd., model: JUHF CVD 001), acetone was used as a carbon source, and acetone was bubbled by hydrogen.
  • chemical vapor deposition equipment was purchased from Shanghai Dating Diamond Coating Co., Ltd., model: JUHF CVD 001
  • acetone was used as a carbon source
  • acetone was bubbled by hydrogen.
  • the hydrogen flow rate is 200sccm
  • the flow rate of acetone is 40sccm
  • the distance between the hot wire and the quartz fiber is 8mm
  • the reaction power is 2000W
  • the working pressure is 2.5Kpa
  • the preparation time is 20 minutes
  • the conditions of the hydrogen gas were lowered and the temperature was cooled to room temperature, that is, dispersed Si-V luminescent diamond particles were prepared on a silica fiber.
  • Figure 7 is a scanning electron micrograph of the surface of diamond particles. It can be seen that the diamond has a particle size of about 200-300 nm, and the particles are connected to the particles to form a cluster having a particle size of about 2-5 microns.
  • Figure 8 is a visible Raman spectrum of the diamond particles. , diamond pattern indicate a characteristic peak at 1332cm -1, 1560cm -1 can also be observed in the disordered graphite peak sp 2 bond, the sample described mainly by disordered diamond phase and the graphite phase, and the diamond very strong signal, Indicates that the diamond content is high.
  • Figure 9 is a photoluminescence spectrum of diamond particles. The photoluminescence peak of diamond Si-V can be seen at 738 nm, indicating that the process can produce a Si-V illuminating diamond color center on an optical fiber.
  • the patent "Single Photon Element Device and Method of Making Same” utilizes diamond encapsulated in an optical fiber or fiber end face as a single photon source.
  • a single crystal diamond having a single NV color center is encapsulated in an end face of an optical fiber or an optical fiber.
  • the specific operation method is: suspending a suspension containing single crystal diamond particles between the end faces of the optical fibers, and observing whether the NV color is present after the solvent evaporates. The fluorescence of the heart is judged whether it is the luminescence of a single NV color center, thus completing the fabrication of the single photon source device.
  • the method uses NV color center as a single photon source, and Si-V has the characteristics of narrow luminescence peak, short luminescence lifetime and weak phonon coupling, which is more suitable for quantum communication. And other fields.
  • the single photon source device obtained by the method only combines the physical effects of the optical fiber and the diamond, and the bonding force is weak and easy to separate; and the single photon source device obtained by the invention combines the optical fiber and the diamond by chemical action. Strong bonding, not easy to separate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Luminescent Compositions (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

一种Si-V发光的金刚石颗粒与石英光纤的复合方法,包括如下步骤:(1)将聚乙烯醇和二甲基亚砜混合,升温至70~90℃,超声混匀,然后加入金刚石粉末混匀,得到混合液;将混合液涂覆于石英光纤上,涂覆后的石英光纤用去离子水清洗,干燥备用;(2)将经过步骤(1)处理的石英光纤放入热丝化学气相沉积设备,以丙酮为碳源,采用氢气A鼓泡方式将丙酮带入到反应室中,氢气B与丙酮的流量比为200:40~90,热丝与石英光纤的距离为7~10mm,反应功率为1600~2300W,工作气压为1.5~3.5Kpa,金刚石颗粒生长时间为10~30min,生长结束后,在不通氢气B的条件下降温冷却至室温,即在石英光纤上制备得到分散的Si-V发光的金刚石颗粒,实现了金刚石颗粒与石英光纤的复合。

Description

一种Si-V发光的金刚石颗粒与石英光纤的复合方法 (一)技术领域
本发明涉及一种Si-V发光的分散的金刚石颗粒与石英光纤的复合方法。
(二)背景技术
量子保密通信是指利用量子纠缠效应进行信息传递的一种新型通讯方式。量子保密通信需要使用单光子传递密匙信号,因此必须要有稳定的单光子源。单光子源是指在任意时刻都能发射并且只发射一个光子的光源。常见的单光子源有:单原子、单分子、单量子点以及金刚石色心。当单光子源应用在量子保密通信领域时,需要通过光纤传输单光子信号。光纤是一种封装在塑料中的纤维,是光学通信工具,其中石英光纤是使用最广泛的光纤材料。
使用光纤传递单光子信号时,如果单光子源不是直接附着在光纤上,那么单光子信号传递到光纤上的过程中,会因为空气等介质的存在而产生信号衰减。因此,如果将单光子源和光纤复合,可能将信号衰减降到最低。同时单光子源与光纤直接复合,受外界环境的影响很小,非常稳定;并且可以方便地将其移植到外界磁场、电场等外场系统中。其中,金刚石色心是性能优异的单光子源,目前使用的金刚石色心一般是N-V色心。目前将金刚石的N-V色心与光纤复合的方法有两种:一、将含有N-V色心的金刚石颗粒混入熔融的光纤中,冷却后得到含有金刚石N-V色心的光纤;二、将含有N-V色心的金刚石颗粒直接粘着在光纤端面。但是这两种方法均具有弊端:第一种方法具有将光纤加热到熔融态,而石英光纤的熔点约为1750℃,这个温度下金刚石N-V色心会被破坏,因此不利于单光子源性能;第二种方法得到的金刚石与光纤的复合方式是通过直接将含有N-V色心的金刚石粘着在光纤上,二者之间的结合力很弱,在实际应用中容易脱落。与N-V色心相比,Si-V色心具有发光峰窄、发光寿命短、声子耦合弱的特点,更适合用于量子通信等领域。
针对现有技术中所存在的弊端,本发明使用热丝化学气相沉积法,在石英光纤上沉积分散的金刚石颗粒,获得了较强的Si-V发光,实现了Si-V发光的金刚石与光纤的有效复合。
(三)发明内容
本发明的目的是提供一种Si-V发光的分散的金刚石颗粒与石英光纤的复合方法,所述的Si-V发光在光致发光谱(PL谱)中特征峰位于738nm处,线宽较窄(~5nm),发光寿命很短(1.2ns),使得Si-V成为极具潜力的单光子源。
本发明采用如下技术方案:
一种Si-V发光的金刚石颗粒与石英光纤的复合方法,所述的复合方法包括如下步骤:
(1)使用金刚石粉末溶液对石英光纤进行涂覆处理;
(2)采用热丝化学气相沉积法,在经过步骤(1)处理的石英光纤上制备得到分散的Si-V发光的金刚石颗粒,即完成Si-V发光的金刚石颗粒与石英光纤的复合。
具体的,所述步骤(1)的操作方法为:
将聚乙烯醇和二甲基亚砜混合,升温至70~90℃,超声混匀(使用功率为180W的超声机超声1h),然后加入金刚石粉末(粒径为100nm)混匀,得到混合液;将所得混合液涂覆 于石英光纤上,涂覆后的石英光纤用去离子水清洗,干燥备用;
所述金刚石粉末与聚乙烯醇、二甲基亚砜的投料质量比为1:0.5~1:80~100;
所述将混合液涂覆于石英光纤上的方法可以为:将石英光纤浸没于混合液中5~20分钟,取出后即在石英光纤的表面涂覆了一层厚度约为1mm的混合液。
具体的,所述步骤(2)的操作方法为:
将经过步骤(1)处理的石英光纤放入热丝化学气相沉积设备,以丙酮为碳源,采用氢气A鼓泡方式将丙酮带入到反应室中,氢气B与丙酮的流量比为200:40~90,热丝与石英光纤的距离为7~10mm,反应功率为1600~2300W,工作气压为1.5~3.5Kpa,金刚石颗粒生长时间为10~30min,生长结束后,在不通氢气B的条件下降温冷却至室温(20~30℃),即在石英光纤上制备得到分散的Si-V发光的金刚石颗粒,实现了金刚石颗粒与石英光纤的复合。
所述金刚石颗粒的尺寸为200~500nm,由纳米金刚石晶粒和非晶碳晶界组成。
所述的“氢气A”、“氢气B”没有特殊的含义,标记为“A”、“B”只是用于区分不同的两路氢气。其中氢气A作为丙酮的载气,以鼓泡方式将丙酮带入到反应室中,丙酮的流量以氢气A的流量进行计算。
与现有技术相比,本发明的有益效果在于:
(1)已有的N-V发光的金刚石颗粒与光纤复合的方法,主要是将N-V发光的金刚石颗粒与光纤原料混合,再拉制光纤;本发明使用化学气相沉积法,直接将Si-V发光的金刚石晶粒生长到光纤上,实现金刚石晶粒与光纤的复合,方法更加简单可行。
(2)N-V发光的金刚石颗粒与光纤复合的另一个方法是将金刚石颗粒分散在水溶液中,然后将金刚石溶液滴在光纤端面上,通过光纤和金刚石之间的物理作用而结合在一起。但是,金刚石颗粒与光纤的结合力较弱,容易分离。与这种方法相比,本发明使用化学气相沉积法,将金刚石颗粒直接生长在光纤表面上,二者通过化学成键的方式结合,结合力较强,不易分离和脱落。
(3)与N-V发光相比,Si-V发光具有优异的发光性能,能够更好地产生光子。本发明将Si-V发光的金刚石颗粒与光纤有效复合,可望实现光子的传输,对于实现金刚石在量子通信等领域的应用,具有重要意义。
(四)附图说明
图1:实施例1中,在石英光纤上制备的金刚石颗粒的表面扫描电镜照片;
图2:实施例1中,在石英光纤上制备得到的金刚石颗粒的可见光拉曼图谱;
图3:实施例1中,在石英光纤上制备得到的金刚石颗粒的光致发光图谱;
图4:实施例2中,在石英光纤上制备得到的金刚石颗粒的表面扫描电镜照片;
图5:实施例2中,在石英光纤上制备得到的金刚石颗粒的可见光拉曼图谱;
图6:实施例2中,在石英光纤上制备得到的金刚石颗粒的光致发光图谱;
图7:实施列3中,在石英光纤上制备金刚石颗粒的表面扫描电镜照片;
图8:实施例3中,在石英光纤上制备得到的金刚石颗粒的可见光拉曼图谱;
图9:实施例3中,在石英光纤上制备得到的金刚石颗粒的光致发光图谱。
(五)具体实施方式
下面结合具体实施例对本发明进行进一步描述,但本发明的保护范围并不仅限于此。
实施例1
使用金刚石粉末作为晶种,利用涂覆的方法将晶种附着在光纤表面上。具体方法为:取0.2g聚乙烯醇(阿拉丁公司生产的聚乙烯醇1797型,醇解度96%-98%)和19.8g二甲基亚砜混合,将混合物加热到80℃并超声使之混合均匀,然后加入0.2g金刚石粉末,混合均匀后,得到混合液。将石英光纤(直径约为149微米高纯石英光纤)浸没于所得混合液中10分钟,之后取出用去离子水清洗,用吹风机吹干后备用。
将经过上述处理的石英光纤放入热丝化学气相沉积设备(化学气相沉积设备购自上海交友钻石涂层有限公司,型号为JUHF CVD 001),以丙酮为碳源,采用氢气鼓泡方式将丙酮带入到反应室中,氢气的流量为200sccm,丙酮的流量为90sccm,热丝与石英光纤的距离为7mm,反应功率为1700W,工作气压为1.5Kpa;制备时间为20分钟;生长结束后,在不通氢气的条件下降温冷却至室温,即在石英光纤上制备得到分散的Si-V发光的金刚石颗粒。
采用台式扫描电镜观察光纤上金刚石颗粒的表面形貌。图1是金刚石颗粒的表面扫描电镜照片,可知金刚石颗粒的粒径约为200-300纳米,颗粒与颗粒相连,形成粒径约为2-5微米的团簇。图2是金刚石颗粒的可见光拉曼谱图,图谱表明在1332cm-1处出现了金刚石特征峰,在1560cm-1还可观察到无序sp2键的石墨峰,说明样品主要由金刚石相和无序石墨相组成,并且金刚石信号十分强烈,说明金刚石含量较高。图3是金刚石颗粒的光致发光谱图,在738nm处可以看到金刚石Si-V的光致发光峰,说明此工艺能够在光纤上制备得到Si-V发光的金刚石色心。
实施例2
使用金刚石粉末作为晶种,利用涂覆的方法将晶种附着在光纤表面上。具体方法为:取0.2g聚乙烯醇(阿拉丁公司生产的聚乙烯醇1797型,醇解度96%-98%)和19.8g二甲基亚砜混合,将混合物加热到80℃并超声使之混合均匀,然后加入0.2g金刚石粉末,混合均匀后,得到混合液。将石英光纤(直径约为149微米高纯石英光纤)浸没于所得混合液中5分钟,之后取出用去离子水清洗,用吹风机吹干后备用。
将经过上述处理的石英光纤放入热丝化学气相沉积设备(化学气相沉积设备购自上海交友钻石涂层有限公司,型号为JUHF CVD 001),以丙酮为碳源,采用氢气鼓泡方式将丙酮带入到反应室中,氢气的流量为200sccm,丙酮的流量为90sccm,热丝与石英光纤的距离为8mm,反应功率为1800W,工作气压为1.5Kpa;制备时间为20分钟;生长结束后,在不通氢气的条件下降温冷却至室温,即在石英光纤上制备得到分散的Si-V发光的金刚石颗粒。
采用台式扫描电镜观察光纤上金刚石颗粒的表面形貌。图4是金刚石颗粒的表面扫描电镜照片,可见金刚石粒径约为200-300纳米,颗粒与颗粒相连形成粒径约为10微米的团簇;图5是金刚石颗粒的可见光拉曼谱图,图谱表明在1332cm-1处出现了金刚石特征峰,在1560cm-1还可观察到无序sp2键的石墨峰,说明样品主要由金刚石相和无序石墨相组成,并且金刚石信号十分强烈,说明金刚石含量较高。图6是金刚石颗粒的光致发光谱图,在738nm处可以看到金刚石Si-V的光致发光峰,说明此工艺能够在光纤上制备得到Si-V发光的金刚石色心。
实施例3
使用金刚石粉末作为晶种,利用涂覆的方法将晶种附着在光纤表面上。具体方法为:取0.2g聚乙烯醇(阿拉丁公司生产的聚乙烯醇1797型,醇解度96%-98%)和19.8g二甲基亚砜混合,将混合物加热到80℃并超声使之混合均匀,然后加入0.2g金刚石粉末,混合均匀后,得到混合液。将石英光纤(直径约为149微米高纯石英光纤)浸没于所得混合液中15分钟,之后取出用去离子水清洗,用吹风机吹干后备用。
将经过上述处理的石英光纤放入热丝化学气相沉积设备(化学气相沉积设备购自上海交友钻石涂层有限公司,型号为JUHF CVD 001),以丙酮为碳源,采用氢气鼓泡方式将丙酮带入到反应室中,氢气流量为200sccm,丙酮的流量为40sccm,热丝与石英光纤的距离为8mm,反应功率为2000W,工作气压为2.5Kpa;制备时间为20分钟;生长结束后,在不通氢气的条件下降温冷却至室温,即在石英光纤上制备得到分散的Si-V发光的金刚石颗粒。
采用台式扫描电镜观察光纤上金刚石颗粒的表面形貌。图7是金刚石颗粒的表面扫描电镜照片,可见金刚石粒径约为200-300纳米,颗粒与颗粒相连形成粒径约为2-5微米的团簇;图8是金刚石颗粒的可见光拉曼谱图,图谱表明在1332cm-1处出现了金刚石特征峰,在1560cm-1还可观察到无序sp2键的石墨峰,说明样品主要由金刚石相和无序石墨相组成,并且金刚石信号十分强烈,说明金刚石含量较高。图9是金刚石颗粒的光致发光谱图,在738nm处可以看到金刚石Si-V的光致发光峰,说明此工艺能够在光纤上制备得到Si-V发光的金刚石色心。
对比例
专利《单光子元装置及其制作方法》利用封装在光纤中或光纤端面的金刚石作为单光子源。将具有单N-V色心的单晶金刚石封装在光纤端面或者光纤中,其具体操作方法是:将含有单晶金刚石颗粒的悬浊液滴在光纤端面之间,待溶剂蒸发后观察是否出现N-V色心的荧光,再判断是否是单N-V色心的发光,这样就完成了单光子源装置的制作。
通过对比本发明发现,此方法所使用的是N-V色心作为单光子源,而Si-V与之相比具有发光峰窄、发光寿命短、声子耦合弱的特点,更适合用于量子通信等领域。并且此方法得到的单光子源装置仅依靠光纤和金刚石的物理作用结合在一起,结合力较弱,容易分离;而本发明得到的单光子源装置是通过化学作用将光纤和金刚石结合在一起,结合力较强,不易分离。

Claims (5)

  1. 一种Si-V发光的金刚石颗粒与石英光纤的复合方法,其特征在于,所述的复合方法包括如下步骤:
    (1)将聚乙烯醇和二甲基亚砜混合,升温至70~90℃,超声混匀,然后加入金刚石粉末混匀,得到混合液;将所得混合液涂覆于石英光纤上,涂覆后的石英光纤用去离子水清洗,干燥备用;
    (2)将经过步骤(1)处理的石英光纤放入热丝化学气相沉积设备,以丙酮为碳源,采用氢气A鼓泡方式将丙酮带入到反应室中,氢气B与丙酮的流量比为200:40~90,热丝与石英光纤的距离为7~10mm,反应功率为1600~2300W,工作气压为1.5~3.5Kpa,金刚石颗粒生长时间为10~30min,生长结束后,在不通氢气B的条件下降温冷却至室温,即在石英光纤上制备得到分散的Si-V发光的金刚石颗粒,实现了金刚石颗粒与石英光纤的复合。
  2. 如权利要求1所述的Si-V发光的金刚石颗粒与石英光纤的复合方法,其特征在于,步骤(1)中,所述金刚石粉末与聚乙烯醇、二甲基亚砜的投料质量比为1:0.5~1:80~100。
  3. 如权利要求1所述的Si-V发光的金刚石颗粒与石英光纤的复合方法,其特征在于,步骤(1)中,所述混合液在石英光纤上的涂覆厚度为0.5~1.5mm。
  4. 如权利要求1所述的Si-V发光的金刚石颗粒与石英光纤的复合方法,其特征在于,步骤(1)中,所述涂覆的方式为:将石英光纤浸没于所述混合液中3~20min,取出即完成涂覆。
  5. 如权利要求1所述的Si-V发光的金刚石颗粒与石英光纤的复合方法,其特征在于,步骤(2)中,所述金刚石颗粒的尺寸为200~500nm,由纳米金刚石晶粒和非晶碳晶界组成。
PCT/CN2017/103305 2016-09-30 2017-09-26 一种Si-V发光的金刚石颗粒与石英光纤的复合方法 WO2018059367A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610866071.9 2016-09-30
CN201610866071.9A CN106637129B (zh) 2016-09-30 2016-09-30 一种Si-V发光的金刚石颗粒与石英光纤的复合方法

Publications (1)

Publication Number Publication Date
WO2018059367A1 true WO2018059367A1 (zh) 2018-04-05

Family

ID=58854069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/103305 WO2018059367A1 (zh) 2016-09-30 2017-09-26 一种Si-V发光的金刚石颗粒与石英光纤的复合方法

Country Status (2)

Country Link
CN (1) CN106637129B (zh)
WO (1) WO2018059367A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106637129B (zh) * 2016-09-30 2019-04-09 浙江工业大学 一种Si-V发光的金刚石颗粒与石英光纤的复合方法
CN109884013B (zh) * 2019-03-05 2021-04-06 中北大学 提高金刚石nv色心荧光收集效率的方法
CN112698437A (zh) * 2019-10-23 2021-04-23 湖州中芯半导体科技有限公司 一种cvd金刚石光纤装置
CN114640401B (zh) * 2022-03-01 2024-05-17 南京理工大学 一种量子网络中非局域的多体纠缠态的并行制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1871697A (zh) * 2003-10-22 2006-11-29 独立行政法人科学技术振兴机构 液状组合物、其制造方法、低介电常数膜、研磨料及电子部件
CN103787585A (zh) * 2014-02-10 2014-05-14 北京美顺达技术开发有限公司 在石英基片上沉积金刚石膜的方法
CN104060237A (zh) * 2014-06-10 2014-09-24 浙江工业大学 一种具有Si-V发光的纳米金刚石薄膜及制备方法
CN104882366A (zh) * 2015-03-31 2015-09-02 浙江工业大学 一种n型纳米金刚石薄膜/p型单晶硅的异质pn结原型器件及其制备方法
CN106637129A (zh) * 2016-09-30 2017-05-10 浙江工业大学 一种Si‑V发光的金刚石颗粒与石英光纤的复合方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5074632A (en) * 1990-03-07 1991-12-24 Health Research, Inc. Fiber optic diffusers and methods for manufacture of the same
FR2910010B1 (fr) * 2006-12-19 2009-03-06 Commissariat Energie Atomique Procede de preparation d'un film organique a la surface d'un support solide dans des conditions non-electrochimiques, support solide ainsi obtenu et kit de preparation
KR20120094922A (ko) * 2009-09-30 2012-08-27 튀링기셰스 인슈티투트 퓌르 텍스틸-운트 쿤스트슈토프-포르슝 이.브이. 클래딩 재료 및 캐리어 재료를 갖는 성형체 및 이의 제조 방법
CN102888062B (zh) * 2012-09-10 2014-05-07 中国科学院宁波材料技术与工程研究所 一种热交换异相复合薄膜及其制备方法
CN104831253B (zh) * 2015-03-31 2017-04-12 浙江工业大学 一种具有强Si‑V发光的单颗粒层纳米金刚石薄膜及其制备方法
CN104762607B (zh) * 2015-03-31 2017-04-12 浙江工业大学 一种单颗粒层纳米金刚石薄膜及其制备方法
CN105154847B (zh) * 2015-09-09 2017-12-05 浙江工业大学 一种具有Si‑V发光的纳米金刚石薄膜及其可控制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1871697A (zh) * 2003-10-22 2006-11-29 独立行政法人科学技术振兴机构 液状组合物、其制造方法、低介电常数膜、研磨料及电子部件
CN103787585A (zh) * 2014-02-10 2014-05-14 北京美顺达技术开发有限公司 在石英基片上沉积金刚石膜的方法
CN104060237A (zh) * 2014-06-10 2014-09-24 浙江工业大学 一种具有Si-V发光的纳米金刚石薄膜及制备方法
CN104882366A (zh) * 2015-03-31 2015-09-02 浙江工业大学 一种n型纳米金刚石薄膜/p型单晶硅的异质pn结原型器件及其制备方法
CN106637129A (zh) * 2016-09-30 2017-05-10 浙江工业大学 一种Si‑V发光的金刚石颗粒与石英光纤的复合方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
RABEAU, J.R. ET AL.: "Diamond Chemical Vapor Deposition on Optical Fibers for Fluorescence Waveguiding", APPLIED PHYSICS LETTERS, vol. 86, no. 13, 31 March 2005 (2005-03-31), pages 134104-1 - 134104-3, XP012064871, ISSN: 0003-6951 *
XIONG, LIWEI ET AL.: "Advance of Optical Chemical Vapor Deposition Diamond Thin Films", LASER & OPTOELECTRONICS PROGRESS, 31 July 2006 (2006-07-31), ISSN: 1006-4125 *

Also Published As

Publication number Publication date
CN106637129A (zh) 2017-05-10
CN106637129B (zh) 2019-04-09

Similar Documents

Publication Publication Date Title
WO2018059367A1 (zh) 一种Si-V发光的金刚石颗粒与石英光纤的复合方法
CN104762607B (zh) 一种单颗粒层纳米金刚石薄膜及其制备方法
CN108148452B (zh) 一种含有石墨烯的复合导热填料及其制备方法和应用
JP6368797B2 (ja) 炭素ナノチューブ繊維およびその製造方法
CN104831253B (zh) 一种具有强Si‑V发光的单颗粒层纳米金刚石薄膜及其制备方法
CN103193224B (zh) 在非金属基底上低温制备石墨烯薄膜的方法
CN111172625B (zh) 一种碳化硅纳米线连接的方法
CN113150778B (zh) 一种铝功能化的荧光碳点及其制备方法和应用
CN106477550B (zh) 一种纯化碳纳米管薄膜的方法
CN207775345U (zh) 金刚石/石墨烯复合导热膜和散热系统
TW202021904A (zh) 石墨烯膠膜的製備方法及石墨烯的轉移方法
CN110358123A (zh) 一种高导热石墨烯复合薄膜及其制备方法
CN106882926B (zh) 制备石墨烯透明导电薄膜的方法
CN109705857B (zh) 金刚石纳米针结构及其制备方法与应用
CN106637400A (zh) 一种Si‑V发光的纳米金刚石晶粒及其制备方法
CN113284839A (zh) 一种钻石晶体的异质键合方法及异质结构
CN106567054B (zh) 石英基Si-V发光的单颗粒层纳米金刚石薄膜及其制备方法
CN106044783B (zh) 一种二氧化硅纳米线的制备方法
CN109706550A (zh) 一种碳纳米纤维作为模板制备六方氮化硼的方法
CN110589832A (zh) 一种SiC纳米线及其制备方法和应用
TWI545219B (zh) 一種形成鑽石膜的成核方法
CN103422058B (zh) 一种掺硼富硅氧化硅薄膜及其制备方法和应用
CN110510865A (zh) 一种在微纳光纤表面制备的单层二维材料及其光活化方法
Shi et al. Triply Hiding Optical Information via Excitation‐Dependent Allochroic Photoluminescence Based on Cellulose Derivates
Kaci et al. Elaboration and characterization of luminescent porous SiC microparticles/poly vinyl alcohol thin films

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17854817

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17854817

Country of ref document: EP

Kind code of ref document: A1