WO2018059090A1 - 触控基板消影检测方法及制造方法、触控基板及触控装置 - Google Patents

触控基板消影检测方法及制造方法、触控基板及触控装置 Download PDF

Info

Publication number
WO2018059090A1
WO2018059090A1 PCT/CN2017/093647 CN2017093647W WO2018059090A1 WO 2018059090 A1 WO2018059090 A1 WO 2018059090A1 CN 2017093647 W CN2017093647 W CN 2017093647W WO 2018059090 A1 WO2018059090 A1 WO 2018059090A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
test
touch substrate
test block
region
Prior art date
Application number
PCT/CN2017/093647
Other languages
English (en)
French (fr)
Inventor
范文金
张雷
郭总杰
刘洋
吕奎
Original Assignee
京东方科技集团股份有限公司
合肥鑫晟光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥鑫晟光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/756,474 priority Critical patent/US10980110B2/en
Publication of WO2018059090A1 publication Critical patent/WO2018059090A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0266Marks, test patterns or identification means
    • H05K1/0269Marks, test patterns or identification means for visual or optical inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04111Cross over in capacitive digitiser, i.e. details of structures for connecting electrodes of the sensing pattern where the connections cross each other, e.g. bridge structures comprising an insulating layer, or vias through substrate

Definitions

  • the embodiments of the present disclosure relate to the field of touch technologies, and particularly to a method for detecting a touch substrate and a touch substrate, a touch substrate, and a touch device.
  • OGS One Glass Solution
  • ITO indium tin oxide
  • a sensor on a protective glass of a touch screen.
  • ITO indium tin oxide
  • the visibility of the ITO channel pattern is related to the user's use experience, and therefore needs to be in the manufacturing process of the touch screen.
  • the level of its shadow is detected.
  • the detection method of the erasing level of the OGS touch screen is: when the product is produced to a small piece, the visual inspection is judged.
  • This detection method has two drawbacks: 1) It is impossible to timely intercept and improve the defective products in the process, resulting in unnecessary production loss; 2) The visual inspection has a large error and cannot be accurately eliminated. Shadow level judgment. In other things like On-cell Similar problems exist in touch screen technology.
  • a touch substrate blanking detection method including: detecting, by using a detecting device, a difference in light reflectance of a test block having a different structure in a region outside a touch region of the touch substrate; Determining a shadow elimination effect of the touch substrate according to the difference; wherein each of the test blocks having different structures includes a structure corresponding to a different structure in the touch area.
  • a method for manufacturing a touch substrate includes: forming a test block having a different structure in a region outside the touch region of the touch substrate during the manufacturing process of the touch substrate, wherein Each of the test blocks having different structures includes a structure corresponding to a different structure in the touch area.
  • a touch substrate including: test blocks having different structures in an area outside a touch area thereof, wherein each of the test blocks having different structures includes A structure corresponding to a different structure in the touch area.
  • a touch device comprising a touch substrate according to any one of the embodiments of the present disclosure.
  • Figure 1 shows an internal touch visible area of a single OGS touch substrate
  • FIG. 2 illustrates a touch substrate shading detection method according to an embodiment of the present disclosure
  • FIG. 3 schematically shows a manufacturing process of a touch substrate
  • FIG. 4 illustrates a setup of at least two test blocks in accordance with a first type of embodiment of the present disclosure
  • FIG. 5 illustrates an arrangement of at least two test blocks in accordance with a second type of embodiment of the present disclosure.
  • the internal touch visible area includes three different laminated structure areas: area 1, area 2, and area 3.
  • the region 1 may include an ITO conductive block composed of a conductive ITO material, which serves as a touch electrode;
  • the region 2 may include an ITO etch line that separates adjacent ITO conductive blocks;
  • the region 3 is a bridge point.
  • the reflectances of the light in the regions 1, 2, and 3 are different, and if the difference in reflectance between the three regions is large, the level of the image is poor. Since the ITO etching line is very narrow, usually only 30-300 ⁇ m, and the ITO bridge point is generally only 100 ⁇ m, it is difficult to test the erasing level by optical test equipment, which is currently judged by the human eye.
  • FIG. 2 a touch substrate shading detection method according to an embodiment of the present disclosure is illustrated. As shown in Figure 2, the method includes the following steps:
  • step 201 testing a difference in light reflectance of test blocks having different structures in a region outside the touch area of the touch substrate;
  • step 202 the anti-shadow effect of the touch substrate is determined according to the difference, wherein each of the test blocks having different structures includes a structure corresponding to a different structure in the touch area.
  • the at least two test blocks dedicated to optical testing are formed in a region other than the touch region of the touch substrate, and the at least two test blocks respectively have a corresponding laminated structure corresponding to the laminated structure region (here, the corresponding laminated structure means that the test block has a laminated structure identical or partially identical to the laminated structure of the laminated structural region, and may also be referred to as the same or similar
  • the laminate structure thus has the same or similar light reflectivity as the corresponding laminate structure region, and has a size suitable for optical testing.
  • the light reflectance between different laminated structure regions in the touch region of the touch substrate can be estimated by testing the difference in light reflectance of the at least two test blocks by using a detecting device, such as an optical testing device.
  • a detecting device such as an optical testing device.
  • the difference overcomes the disadvantage that the size of different single laminated structure regions in the touch area of the touch substrate is too small to be directly used to test the difference in light reflectance by using an optical test device, so that the level of the image can be accurately determined.
  • the at least two test blocks respectively have the same or similar laminated structure as the corresponding laminated structure region, it is possible to form the laminated structure region while forming the laminated structure region in the manufacturing process of the touch substrate.
  • Said at least two test blocks (for example, by simply adding a mask pattern for forming the at least two test blocks), so that the at least two test blocks can be formed conveniently and at low cost, and can be in the manufacturing process Determine the level of shadowing of the product in a timely manner.
  • the so-called detecting means may be any detecting means having a light reflectance test function.
  • it can be any optical test device with a light reflectance test function, for example, it can be luminosity
  • it may be any sensor having a light reflectance test function, such as a photosensor; for example, any digital image processing device having a light reflectance test function, such as a machine vision system.
  • the touch substrate can be an OGS panel. In other embodiments, the touch substrate can also be other types of touch substrates, such as an On-cell touch substrate.
  • FIG. 3 schematically shows a manufacturing process of a touch substrate. As shown in Figure 3, the manufacturing process includes the following steps:
  • the slab is fed; thereafter, the relevant process steps can be performed on the slab.
  • a first film layer is formed in the product viewing zone; thereafter, other film layers may be formed sequentially in the product viewing zone.
  • a final film layer is formed in the visible region of the product.
  • the shadow elimination determination of the present disclosure is performed after the last film layer is formed in the product viewing zone; thereafter, the relevant process steps known in the art can be performed on the large plate on which the film layer is formed.
  • the slab is cut; thereafter, the associated process steps known in the art can be performed on the diced die.
  • the manufacturing process of the touch substrate can be divided into two stages, which are respectively called a large board process and a small piece process.
  • a large-plate process a plurality of film layers and structures thereof are sequentially formed on a large bare glass having an appropriate size, for example, a black matrix (BM) layer, an ITO layer, an insulating layer, a bridge point, a protective layer, and the like are sequentially formed, thereby The above region 1, region 2, and region 3 are formed.
  • BM black matrix
  • each film layer and its structure generally includes the steps of: coating a substrate, coating a photoresist, exposing using a mask pattern, developing with a developing solution, using an etching solution. Etching, using a photoresist to remove residual photoresist and the like.
  • the large board is cut into small pieces (which can be called unit panels), edging, and bonded to form a single touch substrate.
  • the touch substrate shading detection method of the present disclosure may have two types of embodiments.
  • the at least two test blocks are formed in a peripheral region of the unit panel.
  • the at least two test blocks are formed in a blank area of the large board.
  • the at least two test pieces are formed in a slab process and may be added by adding mask patterns for the at least two test blocks while forming respective film layers and structures thereof And formed.
  • the effect of the shadow reduction so as to timely discover and intercept the products with poor shadow elimination effect, without having to determine the shadow elimination effect of the product through the human eye after the end of the small-scale process, as in the conventional shadow elimination detection method, thereby causing unnecessary production. loss.
  • the at least two test blocks may be disposed in a peripheral area of a single touch substrate, and may be specifically disposed on the BM layer of the peripheral area.
  • block 1, block 2, and block 3 may be included in the at least two test blocks.
  • the block 1 may be a laminated structure formed on the BM layer, which is the same as or similar to the above-described region 1, and may include, for example, an ITO layer and a protective layer.
  • Block 2 may be the same or similar laminate formed on the BM layer as the above region 2 The structure, for example, may only include a protective layer.
  • Block 3 may be a laminate structure formed on the BM layer that is the same or similar to the above-described region 3, and may include, for example, an insulating layer and a bridge, such as a metal bridge or an ITO bridge.
  • the at least two test blocks may also include only block 1 and block 2.
  • the at least two test blocks may be arranged in any of the same or different shapes, such as rectangular, square, polygonal, circular, and the like.
  • the size of the at least two test blocks may be set to any size that facilitates detection of a device, such as an optical test device, for measurement and for accommodation in a peripheral region of the touch substrate.
  • the spot of the optical test apparatus is typically about 1 mm
  • a positioning mark is further formed adjacent the at least two test blocks to facilitate the detecting device to position the at least two test blocks.
  • the positioning mark can be, for example, any optical mark that facilitates positioning of the optical test device, such as a cross.
  • the positioning mark can be formed by any method capable of forming an optical pattern different from the background area, for example, by performing coating, etching, or the like on the BM film layer or other film layers.
  • the at least two test blocks are added with a pattern for forming the at least two test blocks on a mask for forming a corresponding film layer during the manufacturing process of the touch substrate, and It is formed at the same time as the formation of the corresponding film layer.
  • the test block is formed.
  • the test block has the same or similar film layer as the corresponding film structure region of the touch region, so that different film layers of the touch region can be obtained by testing the difference in light reflectance of at least two test blocks.
  • this form of formation of the test block does not add additional process steps and is therefore low cost.
  • the size and position of the block 1 may be added in addition to the mask pattern of the ITO structure for forming the touch region in the process of forming the ITO layer after the formation of the BM layer in the large-plate process.
  • the corresponding mask pattern is placed such that, after exposure, development, etching, etc., the ITO layer of the block 1 is formed while forming the ITO structure of the touch region.
  • the laminate structure of block 2 will only include a protective layer on the BM layer.
  • a mask corresponding to the position and size of the block 3 may be added in addition to the mask pattern for forming the insulating layer of the region 3 in the process of forming the insulating layer of the region 3 in the slab process.
  • the pattern is such that, after exposure, development, etching, etc., the insulating layer of the block 3 is formed outside the insulating layer forming the region 3.
  • a mask pattern corresponding to the position and size of the block 3 is added in addition to the mask pattern for forming the bridge point of the region 3, thus, After exposure, development, etching, etc., the bridge layer of the block 3 is formed outside the bridge forming the region 3.
  • the at least two tests can be tested using the detecting device.
  • the detection device can be first positioned by means of the positioning marker to position the at least two test blocks, thereby capturing and testing the light reflectivity of the at least two test blocks.
  • the test of the light reflectance should be on the touch substrate.
  • the film surface ie, the side of the glass substrate having the film layer
  • the glass surface of the touch substrate ie, the side of the glass substrate opposite to the film surface.
  • the at least two test blocks have more BM layers, so the light reflection effect is similar to that after the touch substrate and the LCD panel are fully bonded, and therefore, The light reflectance of the at least two test blocks is tested to more accurately determine the shadow elimination effect after the OGS panel and the LCD panel are fully bonded.
  • the difference in light reflectance between the at least two test blocks can be obtained by comparing the different light reflectances, thereby determining the touch base.
  • the shadow effect of the board For example, if the absolute value of the difference in reflectance between block 1 and block 2 is greater than the threshold a, it may be determined that the subtraction effect is poor; if the absolute value of the difference in reflectance between block 1 and block 2 is less than the threshold b, it can be determined that the shadow reduction effect is good.
  • the thresholds a and b are values that can be set according to the quality requirements of the terminal customer.
  • the image subtraction effect can be further determined based on the difference in reflectance between the block 1 and the block 3. For example, if the absolute value of the difference in reflectance between the block 1 and the block 2 is greater than the threshold a, or the absolute value of the difference in reflectance between the block 1 and the block 3 is greater than the threshold c, the subtraction effect can be determined difference. If the absolute value of the difference in reflectance between the block 1 and the block 2 is smaller than the threshold b, and the absolute value of the difference in reflectance between the block 1 and the block 3 is smaller than the threshold d, it can be determined that the subtraction effect is good.
  • determining the image subtraction effect of the touch substrate according to the difference between the light reflectances between the at least two test blocks may be manually performed. In other embodiments, determining the image subtraction effect of the touch substrate according to the difference between the light reflectances between the at least two test blocks may be automatically performed by the processing device.
  • the at least two test blocks may be formed only in a peripheral region of one of the unit panels, and the entire large panel may be determined by testing a difference in light reflectance of the at least two test blocks. The level of shadow reduction for all unit panels.
  • the at least two test blocks may also be formed in a peripheral region of each of the plurality of unit panels (or even all of the unit panels) in the large panel by testing the at least two tests. The difference in light reflectance of the block is used to determine the level of opacity of all of the unit panels in the entire slab, or to determine the level of opacity of the unit panel in which the at least two test blocks are located.
  • the above steps of testing the reflectance of at least two test blocks and comparing them to determine the product's fading effect can be performed before the end of the slab process, so that the products with poor anechoscopic effect can be found and intercepted in time, avoiding unnecessary subsequent production.
  • the cost of the process can be performed before the end of the slab process, so that the products with poor anechoscopic effect can be found and intercepted in time, avoiding unnecessary subsequent production.
  • FIG. 5 illustrates an arrangement of at least two test blocks in accordance with a second type of embodiment of the present disclosure. As shown in FIG. 5, the at least two test blocks may be disposed in a blank area of the large board. This type of embodiment is suitable for testing the level of opacity of all unit panels in the entire slab.
  • the at least two test blocks are disposed in a blank area of the large board, and the blank area of the large board has no BM layer, the reflectivity of the at least two test pieces can be tested from the film surface and the glass surface of the large board, and The subtracted effect of the test is consistent with the effect of the single-touch of the touch substrate.
  • the blank area of the large board is large, it is suitable when the size of the peripheral area of the unit panel is insufficient to set the at least two test pieces.
  • the type, shape, size, formation mode, timing of formation, test method, and method for judging the effect of the at least two test blocks in the second embodiment are the same as in the first type of embodiment or Similarly, a more detailed understanding can be obtained by referring to the above description, and details are not described herein again.
  • a touch substrate manufacturing method including the following steps:
  • test blocks having different structures are formed in a region other than the touch region of the touch substrate, and each of the test blocks having different structures includes and the touch region.
  • the different structures correspond to the structures.
  • the method further includes the steps of:
  • positioning is formed in an area outside the touch area of the touch substrate. a flag for positioning the at least two test blocks by the detecting device.
  • the at least two test blocks are formed while forming a structural region in the touch region during the manufacturing process of the touch substrate.
  • the at least two test blocks are formed by patterning for forming the at least two test blocks on a mask for forming a respective film layer of a structural region in the touch region. of.
  • the manufacturing process of the touch substrate includes a slab process, wherein a plurality of unit panels are formed on the large board, and a small piece process, wherein the large board is cut into a plurality of unit panels, the at least Two test blocks are formed in the blank area of the large board in the slab process.
  • the manufacturing process of the touch substrate includes a slab process, wherein a plurality of unit panels are formed on the large board, and a small piece process, wherein the large board is cut into a plurality of unit panels, the at least Two test blocks are formed over the black matrix layer around the cell panel in the slab process.
  • a touch substrate comprising: test blocks having different structures in a region outside a touch region thereof, wherein the test blocks having different structures are in the test block
  • Each test block includes a structure corresponding to a different structure in the touch area.
  • the at least two test blocks include a test block corresponding to the conduction block in the touch area, and a test block corresponding to the etched line in the touch area.
  • the at least two test blocks further include a touch area corresponding to the touch area Test block for the bridge point area in the domain.
  • test block is rectangular or square and has a shortest side length greater than or equal to 1 millimeter.
  • the touch substrate further includes: a positioning mark for positioning the at least two test blocks by the detecting device.
  • a touch device including the touch substrate according to any one of the embodiments of the present disclosure.
  • the touch device may further include other components, such as an LCD panel, a control panel, a backlight module, etc., since the other components may be components of the prior art, and thus will not be described again.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Position Input By Displaying (AREA)

Abstract

一种触控基板消影检测方法、触控基板制造方法、触控基板以及触控装置,该触控基板消影检测方法包括:测试位于触控基板的触控区域之外的区域中的具有不同结构的测试块的光反射率的差异(201);以及根据该差异判定触控基板的消影效果;其中,具有不同结构的测试块中的每个测试块包括与触控区域中的不同结构分别对应的结构(202)。

Description

触控基板消影检测方法及制造方法、触控基板及触控装置
相关申请的交叉引用
本申请要求于2016年09月30日递交的中国专利申请第201610868054.9号的优先权,在此全文引用上述中国专利申请公开文本的内容以作为本申请的一部分。
技术领域
本公开的实施例涉及触控技术领域,具体涉及一种触控基板消影检测方法、触控基板制造方法、触控基板以及触控装置。
背景技术
目前,电容触控屏已成为很普遍的电子产品,OGS(One Glass Solution,单玻璃触控)成为其中一种主流技术方案。OGS是指在触控屏的保护玻璃上直接形成ITO(indium tin oxide,氧化铟锡)导电膜及传感器的一种技术。在OGS触控屏的可视区域有由ITO形成的通道图案,ITO通道图案的可见程度(在专业术语中称为消影等级)关乎着用户的使用感受,因此需要在触控屏的制造过程中对其消影等级进行检测。目前对于OGS触控屏的消影等级的检测方法为:生产至小片产品时,采用目视检测判级。此种检测方法有两个弊端:1)不能对制程中的消影不良产品进行及时拦截和改善,从而造成不必要的生产损失;2)目视检测判级误差较大,不能准确地进行消影等级判定。在诸如On-cell等其他 触控屏技术中也存在着类似的问题。
可见,本领域中需要一种能够克服现有技术的上述缺点的改进的消影检测技术方案。
发明内容
在一个方面,提供了一种触控基板消影检测方法,包括:使用检测装置测试位于触控基板的触控区域之外的区域中的具有不同结构的测试块的光反射率的差异;以及根据所述差异判定所述触控基板的消影效果;其中,所述具有不同结构的测试块中的每个测试块包括与触控区域中的不同结构分别对应的结构。
在另一个方面,提供了一种触控基板制造方法,包括:在触控基板的制造过程中,在触控基板的触控区域之外的区域中形成具有不同结构的测试块,其中,所述具有不同结构的测试块中的每个测试块包括与触控区域中的不同结构分别对应的结构。
在又一个方面,提供了一种触控基板,包括:位于其触控区域之外的区域中的具有不同结构的测试块,其中,所述具有不同结构的测试块中的每个测试块包括与触控区域中的不同结构分别对应的结构。
在再一个方面,提供了一种触控装置,其包括根据本公开的任何一个实施例所述的触控基板。
附图说明
图1示出了单个OGS触控基板的内部触控可视区域;
图2示出了根据本公开的实施例的一种触控基板消影检测方法;
图3示意性地示出了触控基板的制造过程;
图4示出了根据本公开的第一类实施例的至少两个测试块的设置;以及
图5示出了根据本公开的第二类实施例的至少两个测试块的设置。
具体实施方式
为使本领域的技术人员更好地理解本公开的解决方案,下面结合附图对本公开的具体实施例所提供的触控基板消影检测方法、触控基板制造方法、触控基板以及触控装置作进一步详细描述。显然,所描述和图示的实施例及其中的各种具体特征仅是对本公开的示例性说明,而不是对本公开的限制。基于所述示例性说明,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例及其具体特征,都属于本公开保护的范围。
现参照图1,其示出了单个OGS触控基板的内部触控可视区域。如图1中所示,所述内部触控可视区域包括如下三种不同的叠层结构区域:区域1、区域2、以及区域3。其中,区域1可包括由导电的ITO材料构成的ITO导通块,其用作触控电极;区域2可包括ITO蚀刻线,其将相邻的ITO导通块分割开;区域3为桥点区域,其通过金属或ITO材料的桥状结构将相对的两个ITO导通块相连接。区域1、2、3对光的反射率存在差异,如果这三个区域的反射率差异大,则消影等级差。由于ITO蚀刻线很窄,通常只有30-300μm,ITO桥点一般也只有100μm,因此很难通过光学测试设备来测试消影等级,目前大多通过人眼判断。
现参照图2,其示出了根据本公开的实施例的一种触控基板消影检测方法。如图2中所示,该方法包括以下步骤:
在步骤201,测试位于触控基板的触控区域之外的区域中的具有不同结构的测试块的光反射率的差异;以及
在步骤202,根据所述差异判定所述触控基板的消影效果,其中,所述具有不同结构的测试块中的每个测试块包括与触控区域中的不同结构分别对应的结构。
也就是说,在触控基板的制造过程中,在触控基板的触控区域之外的区域中形成专门用于进行光学测试的至少两个测试块,所述至少两个测试块分别具有与对应的叠层结构区域对应的叠层结构(这里,对应的叠层结构是指测试块具有与叠层结构区域的叠层结构完全相同或部分相同的叠层结构,也可称为相同或相似的叠层结构),从而分别具有与对应的叠层结构区域相同或相似的光反射率,并且具有适合于光学测试的大小。
基于上述,可以通过使用检测装置,例如光学测试设备,测试所述至少两个测试块的光反射率的差异来估计触控基板的触控区域中的不同叠层结构区域之间的光反射率的差异,克服了由于触控基板的触控区域中的不同单个叠层结构区域尺寸过小而不适合直接使用光学测试设备测试其光反射率差异的缺点,从而可以准确地判定消影等级。此外,由于所述至少两个测试块分别具有与对应的叠层结构区域相同或相似的叠层结构,因此可以在触控基板的制造过程中,在形成所述叠层结构区域的同时形成所述至少两个测试块(例如,通过简单地添加用于形成所述至少两个测试块的掩膜图案),因而可以方便和低成本地形成所述至少两个测试块,且可以在制造过程中及时地判定产品的消影等级。
在上述中,所称的检测装置,可以是任何具有光反射率测试功能的检测装置。例如可以是任何具有光反射率测试功能的光学测试设备,例如可以是光度 计;例如可以是任何具有光反射率测试功能的传感器,例如可以是光敏传感器;例如可以是任何具有光反射率测试功能的数字图像处理装置,例如可以是机器视觉系统。
在一些实施例中,所述触控基板可以为OGS面板。在其他实施例中,所述触控基板也可以为其他类型的触控基板,例如On-cell触控基板等。
图3示意性地示出了触控基板的制造过程。如图3中所示,该制造过程包括如下步骤:
在步骤301,大板进料;此后,可对大板执行相关的工艺步骤。
在步骤302,在产品可视区形成第一道膜层;此后,可在产品可视区顺序形成其他膜层。
在步骤303,在产品可视区形成最后一道膜层;
在步骤304,在产品可视区形成最后一道膜层之后,执行本公开的消影判定;此后,可对形成有膜层的大板执行本领域中所知的相关工艺步骤。
在步骤305,大板制程结束;
在步骤306,对大板进行切割;此后,可对切割形成的小片执行本领域中所知的相关工艺步骤。
在步骤307,小片制程结束。
也就是说,该触控基板的制造过程可分为两个阶段,分别称为大板制程和小片制程。在大板制程中,在具有适当尺寸的大块裸玻璃上依次形成若干道膜层及其结构,例如依次形成黑矩阵(BM)层、ITO层、绝缘层、桥点、保护层等,从而形成上述区域1、区域2和区域3。
如本领域的技术人员可知的,每道膜层及其结构的形成通常包括如下步骤:在基板上镀膜,涂覆光阻剂,使用掩膜图案进行曝光,使用显影液显影,使用蚀刻液进行蚀刻,使用去光阻液去除剩余光阻剂等。
在小片制程中,将大板切割为小片(可称为单元面板),磨边,并进行绑定,从而形成单片触控基板。
本公开的触控基板消影检测方法可以具有两类实施例。在第一类实施例中,在单元面板的周边区域形成所述至少两个测试块。而在第二类实施例中,在所述大板的空白区域形成所述至少两个测试块。
在一个实施例中,所述至少两个测试块是在大板制程中形成的,且可以通过在形成相应膜层及其结构的同时通过添加用于所述至少两个测试块的掩膜图案而形成。这样,就可以在大板制程中,具体地,可以在产品可视区最后一道膜层形成(从而至少两个测试块也形成)之后,通过对至少两个测试块进行反射率测试来判定产品的消影效果,从而及时发现和拦截消影效果差的产品,而不必像传统的消影检测方法中那样,在小片制程结束后通过人眼判定产品的消影效果,从而造成不必要的生产损失。
第一类实施例
图4示出了根据本公开的第一类实施例的至少两个测试块的设置。如图4中所示,所述至少两个测试块可设置在单个触控基板的周边区域,具体可设置在所述周边区域的BM层上。
在一些实施例中,所述至少两个测试块中可包括块1、块2和块3。其中,块1可以为在BM层上形成的同上述区域1一样或类似的叠层结构,例如可包括ITO层和保护层。块2可以为在BM层上形成的同上述区域2一样或类似的叠层 结构,例如可仅包括保护层。块3可以为在BM层上形成的同上述区域3一样或类似的叠层结构,例如可包括绝缘层和桥,所述桥例如为金属桥或ITO桥。
在其他一些实施例中,所述至少两个测试块也可以仅包括块1和块2。
所述至少两个测试块可以设置为任何相同或不同的形状,如设置为矩形、正方形、多边形、圆形等。所述至少两个测试块的尺寸可以设置为任何便于检测装置,例如光学测试设备,进行测量且便于容纳在触控基板的周边区域中的尺寸。
在一个实施例中,由于光学测试设备的光斑一般为1mm左右,为了便于进行光学测试,所述至少两个测试块的最短边长或直径通常>=1mm。
在一些实施例中,在所述至少两个测试块附近还形成有定位标志,便于检测装置定位所述至少两个测试块。所述定位标志,例如可以是任何便于光学测试设备定位的光学标志,例如可以是一个十字。所述定位标志可以通过任何能够形成与背景区域相区别的光学图案的方法形成,例如可以通过在BM膜层或其他膜层之上进行镀膜、蚀刻等方法形成。
在一些实施例中,所述至少两个测试块是在所述触控基板的制造过程中在用于形成相应膜层的掩膜上增加用于形成所述至少两个测试块的图案、并在形成相应膜层的同时形成的。这样,在相应膜层制作完毕后,测试块也就形成了。以此方式,测试块就具有了与触控区域的相应膜层结构区域相同或相似的膜层,从而可以通过测试至少两个测试块的光反射率的差异来获得触控区域的不同膜层结构区域之间的光反射率的差异,以便判定消影等级。而且,测试块的这种形成方式并没有增加额外的工艺步骤,因此是低成本的。
例如,对于块1来说,可以在大板制程中形成BM层之后的形成ITO层的过程中,在用于形成触控区域的ITO结构的掩膜图案之外添加与块1的大小和位 置对应的掩膜图案,这样,经过曝光、显影、蚀刻等步骤,就会在形成触控区域的ITO结构的同时形成块1的ITO层。对于块2来说,由于其对应于包括ITO蚀刻线的区域2,即对应于ITO层已被蚀刻掉的区域,因此可以在形成ITO层、绝缘层和桥点的过程中不做任何特殊处理,这样,块2的叠层结构将仅包括在BM层上的一层保护层。对于块3来说,可以在大板制程中形成区域3的绝缘层的过程中,在用于形成区域3的绝缘层的掩膜图案之外,添加对应于块3的位置和大小的掩膜图案,这样,经过曝光、显影、蚀刻等步骤,就会在形成区域3的绝缘层之外,形成块3的绝缘层。此外,可以在大板制程中形成区域3的桥点的过程中,在用于形成区域3的桥点的掩膜图案之外,添加对应于块3的位置和大小的掩膜图案,这样,经过曝光、显影、蚀刻等步骤,就会在形成区域3的桥点之外,形成块3的桥点层。
当在大板制程中在单元面板的周边区域中形成了所述至少两个测试块之后(即在触控区域的最后一道膜层形成之后),就可以使用检测装置测试所述至少两个测试块的不同光反射率。为此,可以首先借助于所述定位标志使所述检测装置定位所述至少两个测试块,从而抓取并测试所述至少两个测试块的光反射率。
在这类实施例中,由于所述至少两个测试块形成在单元面板的周边区域的BM层上,而BM层是不透光的,因此,对光反射率的测试应当在触控基板的膜面(即玻璃基板的具有膜层的一面)进行,而不应在触控基板的玻璃面(即玻璃基板的与膜面相对的一面)进行。与触控基板的触控区域相比,所述至少两个测试块多了BM层,因此其光反射效果与当触控基板与LCD面板全贴合之后的光反射效果相近,因此,可以通过测试所述至少两个测试块的光反射率来较准确地判定OGS面板与LCD面板全贴合后的消影效果。
当测试了所述至少两个测试块的不同光反射率后,就可以通过比较所述不同光反射率来获得至少两个测试块之间的光反射率的差异,从而可判断触控基 板的消影效果。例如,如果块1与块2之间的反射率的差值的绝对值大于阈值a,则可判定消影效果差;如果块1与块2之间的反射率的差值的绝对值小于阈值b,则可判定消影效果好。其中,阈值a、b为可以根据终端客户的品质要求设定的值。
此外,还可以进一步根据块1与块3之间的反射率的差异来判定消影效果。例如,如果块1与块2之间的反射率的差值的绝对值大于阈值a,或者块1与块3之间的反射率的差值的绝对值大于阈值c,则可判定消影效果差。如果块1与块2之间的反射率的差值的绝对值小于阈值b,且块1与块3之间的反射率的差值的绝对值小于阈值d,则可判定消影效果好。
在一些实施例中,所述根据至少两个测试块之间的光反射率之间的差异来判定触控基板的消影效果可以人工完成。在另一些实施例中,所述根据至少两个测试块之间的光反射率之间的差异来判定触控基板的消影效果可以由处理设备自动完成。
在一些实施例中,可以仅在大板中的某一个单元面板的周边区域形成所述至少两个测试块,通过测试所述至少两个测试块的光反射率的差异来判定整个大板中所有单元面板的消影等级。在另一些实施例中,也可以在大板中的多个单元面板(甚至全部单元面板)中每个单元面板的周边区域都形成所述至少两个测试块,通过测试所述至少两个测试块的光反射率的差异来判定整个大板中的所有单元面板的消影等级,或者来判定所述至少两个测试块所在的单元面板的消影等级。
以上测试至少两个测试块的反射率并进行比较从而判定产品消影效果的步骤可以在大板制程结束之前进行,因而可以及时发现和拦截消影效果差的产品,避免了不必要的后续生产过程的成本。
第二类实施例
图5示出了根据本公开的第二类实施例的至少两个测试块的设置。如图5中所示,所述至少两个测试块可设置在大板的空白区域。该类实施例适合于测试整个大板中的所有单元面板的消影等级。
由于所述至少两个测试块设置在大板的空白区域,而大板的空白区域没有BM层,因此所述至少两个测试块反射率从大板的膜面和玻璃面均能测试,且测试出的消影效果与触控基板单体的消影效果一致。此外,由于大板的空白区域较大,因此适合于当单元面板的周边区域大小不够设置所述至少两个测试块时的情况。
除此之外,第二类实施例中所述至少两个测试块的种类、形状、大小、形成方式和形成时机、测试方法以及消影效果判断方法等均与第一类实施例中相同或类似,因此可参照以上描述获得更详细的了解,在此不再赘述。
以上参照附图描述了根据本公开的实施例的触控基板消影检测方法,应指出的是,以上描述中的大量细节仅为示例,而不是对本公开的限制。在本公开的实施例中,可以没有上述细节中的一些。
在本公开的另一个方面,还提供了一种触控基板制造方法,包括以下步骤:
在触控基板的制造过程中,在触控基板的触控区域之外的区域中形成具有不同结构的测试块,所述具有不同结构的测试块中的每个测试块包括与触控区域中的不同结构分别对应的结构。
在一些实施例中,该方法还包括以及步骤:
在触控基板的制造过程中,在触控基板的触控区域之外的区域中形成定位 标志,所述定位标志用于由检测装置定位所述至少两个测试块。
在一些实施例中,所述至少两个测试块是在所述触控基板的制造过程中在形成所述触控区域中的结构区域的同时形成的。
在一些实施例中,所述至少两个测试块是通过在用于形成所述触控区域中的结构区域的相应膜层的掩膜上增加用于形成所述至少两个测试块的图案形成的。
在一些实施例中,所述触控基板的制造过程包括大板制程,其中在大板上形成多个单元面板,以及小片制程,其中将所述大板切割成为多个单元面板,所述至少两个测试块在所述大板制程中形成在大板的空白区域。
在一些实施例中,所述触控基板的制造过程包括大板制程,其中在大板上形成多个单元面板,以及小片制程,其中将所述大板切割成为多个单元面板,所述至少两个测试块在所述大板制程中形成在单元面板周边的黑矩阵层之上。
如本领域的技术人员可知的,关于该触控基板制造方法的更多细节,可以从以上关于本公开的触控基板消影检测方法的描述中以及从本领域的现有知识中获得,因此不再赘述。
在本公开的又一个方面,还提供了一种触控基板,其包括:位于其触控区域之外的区域中的具有不同结构的测试块,其中,所述具有不同结构的测试块中的每个测试块包括与触控区域中的不同结构分别对应的结构。
在一些实施例中,所述至少两个测试块包括对应于所述触控区域中的导通块的测试块,以及对应于所述触控区域中的蚀刻线的测试块。
在一些进一步的实施例中,所述至少两个测试块还包括对应于所述触控区 域中的桥点区域的测试块。
在一些实施例中,所述测试块为矩形或正方形,且其最短边长大于或等于1毫米。
在一些实施例中,所述触控基板还包括:定位标志,所述定位标志用于由检测装置定位所述至少两个测试块。
如本领域的技术人员可知的,关于该触控基板的更多细节,可以从以上关于本公开的触控基板消影检测方法的描述中以及从本领域的现有知识中获得,因此不再赘述。
在本公开的再一个方面,还提供了一种触控装置,其包括根据本公开的任何一个实施例所述的触控基板。如本领域的技术人员可知的,该触控装置还可包括其他部件,例如LCD面板、控制板、背光模组等等,由于所述其他部件可以是现有技术的部件,因此不再赘述。
可以理解的是,本公开的以上各实施例仅仅是为了说明本公开的原理而采用的示例性实施例,本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为处于本公开的保护范围之内。本公开的保护范围仅由所附权利要求书的语言表述的含义及其等同含义所限定。

Claims (19)

  1. 一种触控基板消影检测方法,包括:
    使用检测装置测试位于触控基板的触控区域之外的区域中的具有不同结构的测试块的光反射率的差异;以及
    根据所述差异判定所述触控基板的消影效果;
    其中,所述具有不同结构的测试块中的每个测试块包括与触控区域中的不同结构分别对应的结构。
  2. 根据权利要求1所述的方法,其中,所述测试块包括对应于所述触控区域中的导通块的测试块,以及对应于所述触控区域中的蚀刻线的测试块。
  3. 根据权利要求2所述的方法,其中,所述测试块还包括对应于所述触控区域中的桥点区域的测试块。
  4. 根据权利要求1所述的方法,其中,所述测试块为矩形或正方形,且其最短边长大于或等于1毫米。
  5. 根据权利要求1所述的方法,还包括:
    通过位于触控基板的触控区域之外的区域中的定位标志,所述检测装置定位所述测试块。
  6. 根据权利要求1所述的方法,其中,所述测试块是在所述触控基板的制造过程中在形成所述触控区域中的结构区域的同时形成的。
  7. 根据权利要求6所述的方法,其中,所述测试块是通过在用于形成所述触控区域中的结构区域的相应膜层的掩膜上增加用于形成所 述至少两个测试块的图案形成的。
  8. 根据权利要求1至7中任何一个所述的方法,其中,所述检测装置包括下述中的至少一种:光学测试设备,传感器,数字图像处理装置。
  9. 根据权利要求1至7中任何一个所述的方法,其中,所述触控基板的制造过程包括大板制程,其中在大板上形成多个单元面板,以及小片制程,其中将所述大板切割成为多个单元面板,所述测试块在所述大板制程中形成在大板的空白区域。
  10. 根据权利要求1至7中任何一个所述的方法,其中,所述触控基板的制造过程包括大板制程,其中在大板上形成多个单元面板,以及小片制程,其中将所述大板切割成为多个单元面板,所述测试块在所述大板制程中形成在单元面板周边的黑矩阵层之上。
  11. 一种触控基板制造方法,包括:
    在触控基板的制造过程中,在触控基板的触控区域之外的区域中形成具有不同结构的测试块,其中,所述具有不同结构的测试块中的每个测试块包括与触控区域中的不同结构分别对应的结构。
  12. 根据权利要求11所述的方法,其中,所述触控基板的制造过程包括大板制程,其中在大板上形成至少两个单元面板,以及小片制程,其中将所述大板切割成为至少两个单元面板,所述至少两个测试块在所述大板制程中形成在大板的空白区域。
  13. 根据权利要求11所述的方法,其中,所述触控基板的制造过程包括大板制程,其中在大板上形成多个单元面板,以及小片制程,其中将所述大板切割成为多个单元面板,所述至少两个测试块在所述 大板制程中形成在单元面板周边的黑矩阵层之上。
  14. 一种触控基板,包括:
    位于其触控区域之外的区域中的具有不同结构的测试块,其中,所述具有不同结构的测试块中的每个测试块包括与触控区域中的不同结构分别对应的结构。
  15. 根据权利要求14所述的触控基板,其中,所述测试块包括对应于所述触控区域中的导通块的测试块,以及对应于所述触控区域中的蚀刻线的测试块。
  16. 根据权利要求15所述的触控基板,其中,所述测试块还包括对应于所述触控区域中的桥点区域的测试块。
  17. 根据权利要求14所述的触控基板,其中,所述测试块为矩形或正方形,且其最短边长大于或等于1毫米。
  18. 根据权利要求14所述的触控基板,还包括:
    定位标志,所述定位标志用于由检测装置定位所述至少两个测试块。
  19. 一种触控装置,包括根据权利要求14-18中任何一个所述的触控基板。
PCT/CN2017/093647 2016-09-30 2017-07-20 触控基板消影检测方法及制造方法、触控基板及触控装置 WO2018059090A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/756,474 US10980110B2 (en) 2016-09-30 2017-07-20 Shadow elimination detection method and manufacturing method for a touch substrate, touch substrate and touch device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610868054.9A CN106168868B (zh) 2016-09-30 2016-09-30 触控基板消影检测方法及制造方法、触控基板及触控装置
CN201610868054.9 2016-09-30

Publications (1)

Publication Number Publication Date
WO2018059090A1 true WO2018059090A1 (zh) 2018-04-05

Family

ID=57376355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/093647 WO2018059090A1 (zh) 2016-09-30 2017-07-20 触控基板消影检测方法及制造方法、触控基板及触控装置

Country Status (3)

Country Link
US (1) US10980110B2 (zh)
CN (1) CN106168868B (zh)
WO (1) WO2018059090A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106168868B (zh) 2016-09-30 2023-08-01 合肥鑫晟光电科技有限公司 触控基板消影检测方法及制造方法、触控基板及触控装置
CN106775167B (zh) * 2017-01-13 2020-12-18 京东方科技集团股份有限公司 触控基板及其制备方法、显示装置
CN109117525A (zh) * 2018-07-25 2019-01-01 京东方科技集团股份有限公司 一种触摸屏的消影模拟方法和消影模拟装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101699332A (zh) * 2009-06-29 2010-04-28 深超光电(深圳)有限公司 玻璃基板、使用该玻璃基板的检测方法以及矩阵掩模
CN103823586A (zh) * 2012-11-15 2014-05-28 住友重机械工业株式会社 触控面板传感器的制造方法及触控面板传感器
US20150160778A1 (en) * 2013-12-10 2015-06-11 Hideep Inc. Touch screen contoller and method for controlling thereof
CN104992960A (zh) * 2015-06-08 2015-10-21 京东方科技集团股份有限公司 一种显示面板及其制造方法、tft测试方法
CN205302251U (zh) * 2015-12-31 2016-06-08 深圳市易快来科技股份有限公司 电容式触摸屏功能片
CN106168868A (zh) * 2016-09-30 2016-11-30 合肥鑫晟光电科技有限公司 触控基板消影检测方法及制造方法、触控基板及触控装置
CN206301316U (zh) * 2016-09-30 2017-07-04 合肥鑫晟光电科技有限公司 触控基板及触控装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8749396B2 (en) * 2011-08-25 2014-06-10 Satorius Stedim Biotech Gmbh Assembling method, monitoring method, communication method, augmented reality system and computer program product
US9436334B2 (en) * 2012-03-26 2016-09-06 Sharp Kabushiki Kaisha Touch panel substrate with floating electrode pattern
KR101699405B1 (ko) * 2014-10-14 2017-02-14 엘지디스플레이 주식회사 터치 스크린을 갖는 액정 표시 장치와 터치 패널의 검사 방법
CN104991388B (zh) * 2015-07-17 2018-05-29 京东方科技集团股份有限公司 显示面板、触控面板、液晶显示装置及其测试方法
CN105892779B (zh) * 2016-03-31 2018-10-30 京东方科技集团股份有限公司 一种测试用触控面板、形变测试系统及测试方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101699332A (zh) * 2009-06-29 2010-04-28 深超光电(深圳)有限公司 玻璃基板、使用该玻璃基板的检测方法以及矩阵掩模
CN103823586A (zh) * 2012-11-15 2014-05-28 住友重机械工业株式会社 触控面板传感器的制造方法及触控面板传感器
US20150160778A1 (en) * 2013-12-10 2015-06-11 Hideep Inc. Touch screen contoller and method for controlling thereof
CN104992960A (zh) * 2015-06-08 2015-10-21 京东方科技集团股份有限公司 一种显示面板及其制造方法、tft测试方法
CN205302251U (zh) * 2015-12-31 2016-06-08 深圳市易快来科技股份有限公司 电容式触摸屏功能片
CN106168868A (zh) * 2016-09-30 2016-11-30 合肥鑫晟光电科技有限公司 触控基板消影检测方法及制造方法、触控基板及触控装置
CN206301316U (zh) * 2016-09-30 2017-07-04 合肥鑫晟光电科技有限公司 触控基板及触控装置

Also Published As

Publication number Publication date
US20190025982A1 (en) 2019-01-24
CN106168868A (zh) 2016-11-30
CN106168868B (zh) 2023-08-01
US10980110B2 (en) 2021-04-13
US20200192519A9 (en) 2020-06-18

Similar Documents

Publication Publication Date Title
US9134615B2 (en) Exposure method for glass substrate of liquid crystal display
TWI476459B (zh) 彩色濾光片基板,及觸控顯示裝置
JP6188953B2 (ja) 液晶ディスプレイ、液晶ディスプレイテスト方法及び電子装置
JP5931553B2 (ja) 液晶表示装置
WO2018059090A1 (zh) 触控基板消影检测方法及制造方法、触控基板及触控装置
US20160252989A1 (en) Touch Panel and Method for Fabricating the Same
US9303969B2 (en) Method for detecting pattern offset amount of exposed regions and detecting mark
US9946109B2 (en) Color filter and method for preparing the same, method for preparing alignment mark for spacer, and method for detecting position accuracy
US10198136B2 (en) OGS touch screen, manufacturing method thereof and display device
US10274762B2 (en) Display substrate motherboard, manufacturing and detecting methods thereof and display panel motherboard
US9483148B2 (en) Method for manufacturing touch substrate
WO2015074319A1 (zh) 一种彩膜基板、其制作方法、内嵌式触摸屏及显示装置
TW201917543A (zh) 觸控面板、觸控面板製造方法及使用觸控面板的電子設備
WO2016180092A1 (zh) 一种阵列基板及其制备方法、光学触摸屏和显示装置
WO2020042531A1 (zh) 显示面板及显示面板检测方法
WO2018205588A1 (zh) 掩膜版及其组件、曝光机和检测测试窗口遮挡效果的方法、光刻方法
CN108333812A (zh) 显示基板、显示面板及其显示控制方法、显示装置
US9983706B2 (en) Manufacturing method of touch panel
WO2020107647A1 (zh) 阵列基板制作过程中的修补方法
CN206301316U (zh) 触控基板及触控装置
CN103309519B (zh) 触控位置的侦测方法及使用其的光学式触控装置
JP2009264942A (ja) カラーフィルタの外観検査方法
JP2002257749A (ja) 検査装置、検査方法およびこれを用いたカラーフィルタの製造方法
JP2014199762A (ja) タッチパネル用透明電極付き基板及びその品質管理方法
CN106444162B (zh) 玻璃基板、液晶显示装置及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17854544

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 110719)

122 Ep: pct application non-entry in european phase

Ref document number: 17854544

Country of ref document: EP

Kind code of ref document: A1