WO2018056681A1 - Long-wave infrared camera and camera lens having 21-degree horizontal angle of view - Google Patents
Long-wave infrared camera and camera lens having 21-degree horizontal angle of view Download PDFInfo
- Publication number
- WO2018056681A1 WO2018056681A1 PCT/KR2017/010282 KR2017010282W WO2018056681A1 WO 2018056681 A1 WO2018056681 A1 WO 2018056681A1 KR 2017010282 W KR2017010282 W KR 2017010282W WO 2018056681 A1 WO2018056681 A1 WO 2018056681A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lens
- convex surface
- view
- horizontal angle
- concave surface
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 29
- 239000000463 material Substances 0.000 claims abstract description 13
- 238000000465 moulding Methods 0.000 claims description 14
- 239000006185 dispersion Substances 0.000 claims description 6
- 238000000034 method Methods 0.000 claims 2
- 238000005452 bending Methods 0.000 abstract 2
- 238000004519 manufacturing process Methods 0.000 description 14
- 238000010586 diagram Methods 0.000 description 6
- 230000004075 alteration Effects 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 241001465754 Metazoa Species 0.000 description 4
- VGRFVJMYCCLWPQ-UHFFFAOYSA-N germanium Chemical compound [Ge].[Ge] VGRFVJMYCCLWPQ-UHFFFAOYSA-N 0.000 description 4
- 241000282412 Homo Species 0.000 description 3
- 201000009310 astigmatism Diseases 0.000 description 3
- 229910052732 germanium Inorganic materials 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 2
- 239000005304 optical glass Substances 0.000 description 2
- 230000005457 Black-body radiation Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000036760 body temperature Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000004454 trace mineral analysis Methods 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/20—Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from infrared radiation only
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/28—Interference filters
- G02B5/281—Interference filters designed for the infrared light
- G02B5/282—Interference filters designed for the infrared light reflecting for infrared and transparent for visible light, e.g. heat reflectors, laser protection
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/14—Optical objectives specially designed for the purposes specified below for use with infrared or ultraviolet radiation
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0015—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
- G02B13/002—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/208—Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/02—Mountings, adjusting means, or light-tight connections, for optical elements for lenses
- G02B7/021—Mountings, adjusting means, or light-tight connections, for optical elements for lenses for more than one lens
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B9/00—Exposure-making shutters; Diaphragms
- G03B9/02—Diaphragms
Definitions
- the present invention relates to a long-wavelength infrared camera and a lens for a camera having a horizontal angle of view of 21 degrees, and more particularly, to a low-wavelength infrared ("LWIR”) camera and a lens for a camera that can be used in various security surveillance fields.
- LWIR low-wavelength infrared
- the long wavelength infrared rays are light in the wavelength range of 8 ⁇ m to 12 ⁇ m and include the wavelength range of the infrared rays emitted by humans.
- the long wavelength infrared camera is a camera that can detect and capture infrared rays generated by humans or animals at night.
- the body temperature of humans and animals is about 310K, and the peak wavelength at 310K of black body radiation is about 8 ⁇ m to 12 ⁇ m.
- the conventional infrared camera is made mainly of direct-processing lenses based on germanium (Germanium) lens, the manufacturing cost is high and the manufacturing time was also long.
- the germanium lens is mainly applied to the military field, and in the civil field, its use is insignificant due to the price problem.
- the present invention has been made to solve the above problems of the prior art, the object of the present invention can be applied to the mold molding optical material to lower the production cost compared to the existing germanium lens and to be easily applied to the civil field through mass production
- the present invention provides a long wavelength infrared camera having a horizontal angle of view of 21 degrees and a lens for a camera.
- a lens for a long wavelength infrared camera having a horizontal angle of view of 21 degrees according to the present invention
- a concave surface R2 that primarily refracts light incident from a subject
- k is the conic surface coefficient
- A4, A6, A8 and A10 are aspherical coefficients
- h is the distance from the optical axis to the concave or convex surface and c represents the center curvature
- the radius of curvature and the thickness have an allowable range of ⁇ 0.5%
- Diameter of concave surface R2 / (diameter of convex surface R3) is characterized by being 0.57 (acceptable range of ⁇ 0.5%).
- the lens is characterized in that the edge portion extending between the concave surface (R2) and the convex surface (R3) in the direction perpendicular to the optical axis is formed.
- the lens is a lens
- the distance between the diaphragm and the concave surface R2 is 0.7 mm ⁇ 0.5%, and the central thickness TC of the concave surface R2 and the convex surface R3 is 6.295 mm ⁇ 0.5%, from the convex surface R3.
- the distance to the infrared filter is 6.7mm ⁇ 0.5%, the thickness of the infrared filter is 0.65mm ⁇ 0.5%, the distance from the infrared filter to the sensor surface is 1.3mm ⁇ 0.5%, the refractive index of the filter is 3.421 and the dispersion ratio is 2421.0. It features.
- the present invention having the above-described configuration, it is possible to detect living things or objects with only one lens as the entry-level optical system in the field of security surveillance, and can be applied to various fields (night security surveillance, fire prevention, transformer detection, etc.). There is an advantage.
- the present invention it is made of a structure capable of molding by molding, there is an advantage that the production is easy, mass production is possible, and the manufacturing unit cost is low.
- FIG. 1 is a perspective view of a long wavelength infrared camera having a horizontal angle of view of 21 degrees according to the present invention.
- FIG. 2 is a configuration diagram illustrating the optical system structure of FIG. 2.
- FIG. 3 is a light tracking analysis diagram of a long wavelength infrared camera having a horizontal angle of view of 21 degrees according to the present invention.
- FIG. 4 is a graph showing the longitudinal spherical aberration of the long-wavelength infrared camera having a horizontal angle of view of 21 degrees according to the present invention.
- 5 is an aberration analysis graph of astigmatism of a long-wavelength infrared camera having a horizontal angle of view of 21 degrees according to the present invention.
- 6 is a graph illustrating distortion of a long-wavelength infrared camera having a horizontal angle of view of 21 degrees according to the present invention.
- FIG. 7 is a graph illustrating an analysis of a Modulation Transfer Function (MTF) indicating a resolution of a long-wavelength infrared camera having a horizontal angle of view of 21 degrees according to the present invention.
- MTF Modulation Transfer Function
- FIG. 8 illustrates a spot diagram of a long wavelength infrared camera having a horizontal angle of view of 21 degrees according to the present invention.
- the long-wavelength infrared camera 1000 having a horizontal angle of view of 21 degrees includes an aperture 100, a concave surface R2 that primarily refracts light incident from a subject, and A lens 200 including a convex surface R3 for secondarily refracting the light passing through the concave surface R2, an infrared filter 300 spaced apart from the convex surface R3, and the infrared filter And a sensor surface 400 that forms an object through light passing through the 300.
- the diaphragm 100 disposed in front of the convex surface R3 performs a function of preventing light from entering the optical system of the present invention.
- the lens 200 having a horizontal angle of view of 21 degrees is formed of an optical material for molding.
- the optical material for molding the mold is made of glass or plastic, and adopts materials that can be composed of various optical systems from ultra-small diameter lenses to medium-diameter lenses by using those having higher refractive index and lens transmission characteristics than similar types of materials on the market. Good to do.
- the lens material applied to the optical system design of the present invention is a material for molding such as Ge 27 .5- Sb 13 .5- Se 60.
- a material having a refractive index of 2.5 or more and a transmittance of 65% or more up to a wavelength band of 12 ⁇ m may be used. Can be.
- the optical system is composed of the optical material according to the present invention, it is possible to realize a clear image compared to the existing, and it is possible to form a molding by molding, it is possible to construct a security surveillance popular LWIR camera optical system is easy to manufacture and low manufacturing cost.
- the long-wavelength infrared camera 1000 with a horizontal angle of view of 21 degrees proceeded with an optical design of a low-cost type LWIR 1 group applying 6400 pixels (sensor).
- the optical system of the present invention has a form advantageous for mold molding by increasing the thickness of the lens center portion and the edge portion 210.
- the concave surface R2 and the convex surface R3 of the lens 200 according to the present invention are defined by the following ⁇ Equation 1>.
- k is a conical surface coefficient
- A4, A6, A8 and A10 are aspherical coefficients
- h is a distance from an optical axis to a concave or convex surface
- c represents a center curvature
- the aspherical surface coefficient is defined to define the concave surface R2 and the convex surface R3.
- the curvature radius RC and the surface thickness ST of the concave surface R2 and the convex surface R3 of the lens 200 were set, and the refractive index n and the dispersion rate v1 were set. ).
- the dispersion ratio v1 is defined by the following equation.
- N110 is a refractive index at a wavelength of 10 ⁇ m of a single lens
- n108 is a refractive index at a wavelength of 8.0 ⁇ m of a single lens
- n112 is a refractive index at a wavelength of 12 ⁇ m of a single lens
- the radius of curvature and the surface thickness may have an allowable range of ⁇ 0.5%.
- (diameter of concave surface R2) / (diameter of convex surface R3) has a value of 0.57 (acceptable range of ⁇ 0.5%), and (thickness of the edge portion of the lens) / (the concave surface R2). )
- the central thickness (TC) of the convex surface (R3) have a value of 0.74 (acceptable range of ⁇ 0.5%), so that the angle of view of 21 degrees can be accurately adjusted.
- the thickness of the lens center portion and the edge portion is thick, an advantageous form for mold molding is possible.
- the distance between the diaphragm 100 and the concave surface R2 is 0.7 mm ⁇ 0.5%, and the central thickness TC of the concave surface R2 and the convex surface R3 is 6.295 mm ⁇ 0.5%.
- the distance from the convex surface R3 to the infrared filter 300 is 6.7 mm ⁇ 0.5%, and the thickness of the infrared filter 300 is 0.65 mm ⁇ 0.5%, from the infrared filter 300 to the sensor surface 400.
- the distance can be set to 1.3 mm ⁇ 0.5%.
- the lens 200 may be manufactured within the tolerance of the manufactured lens, thereby manufacturing a lens having a constant optical performance.
- the corner portion of the lens 200 in a round shape, it can be advantageous to the assembly and production of the optical system.
- the refractive index of the infrared filter 300 is 3.421 and the dispersion rate is 2421.0.
- a predetermined angle of view can be obtained, and at the same time, longitudinal spherical aberration, astigmatism, and distortion can be minimized, and a good state can be obtained at a value of MTF (Modulation Transfer Functions) representing resolution.
- MTF Modulation Transfer Functions
- An exemplary embodiment of a long wavelength infrared camera 1000 having a horizontal angle of view of 21 degrees according to the present invention is described based on the configuration as described above.
- a lens of a camera optical system for LWIR that can be applied to the 21-degree horizontal view angle lens 200 of the long-wavelength infrared camera is particularly security surveillance field according to the present invention
- Ge 27 .5 -Sb 13.5 -Se 60 consisting of non-oxide Infrared optical glass was applied to mold molding.
- the radius of curvature of the concave surface R2 and the convex surface R3 of the lens 200 is -17.7265 mm (aspherical surface), -8.1644 mm (aspherical surface), and the diameter of the concave surface R2 is 5.78 mm and convex, respectively.
- the diameter of the surface R3 was set to 10.2 mm.
- the thickness of the entire lens 200 was 6.935mm.
- an edge portion 210 extending from the concave surface R2 and the convex surface R3 is formed perpendicular to the optical axis.
- the diameter of the entire lens is set to 15.8 mm.
- the length of the edge portion 210 can be appropriately adjusted.
- the edge portion of the edge portion 210 is treated with a round of 0.3 ⁇ 0.6mm.
- the concave surface R2 and the convex surface R3 of the lens 200 were formed from the above ⁇ Formula 1>, ⁇ Table 1> and ⁇ Table 2>.
- the center part thickness TC of the concave surface R2 and the convex surface R3 was 6.295 mm, and the edge part thickness of the lens was set to 4.635, respectively.
- the distance between the aperture 100 and the concave surface (R2) is 0.7mm
- the distance from the convex surface (R3) to the infrared filter 300 is 6.7mm
- the thickness of the infrared filter 300 is 0.65mm
- the The distance from the infrared filter 300 to the sensor surface 400 was set to 1.3 mm.
- the infrared filter 300 has a refractive index of 3.421 and a dispersion of 2421.0.
- a sensor of the sensor surface 400 may be a 34 ⁇ m sensor of 80 * 80 pixels.
- FIGS. 3 to 8 were obtained with respect to the long wavelength infrared camera 1000 having the horizontal angle of view of 21 degrees according to the present invention.
- FIG. 3 is an optical trace analysis diagram of a long-wavelength infrared camera having a horizontal angle of view of 21 degrees according to the present invention
- FIG. 4 is a graph illustrating longitudinal spherical abberration of a long-wavelength infrared camera having a horizontal angle of view of 21 degrees according to the present invention
- 5 is an aberration analysis graph of astigmatism of a long-wavelength infrared camera having a horizontal angle of view of 21 degrees according to the present invention
- FIG. 6 is a graph showing distortion of a long-wavelength infrared camera having a horizontal angle of view of 21 degrees according to the present invention.
- FIG. 7 is a graph illustrating an analysis of a Modulation Transfer Function (MTF) indicating the resolution of a long-wavelength infrared camera having a horizontal angle of view of 21 degrees according to the present invention
- FIG. 8 is a spot diagram of a long-wavelength infrared camera having a horizontal angle of view of 21 degrees according to the present invention. diagram).
- MTF Modulation Transfer Function
- the long-wavelength infrared camera having a horizontal angle of view of 21 degrees shows that the values of the images are shown adjacent to the central axis in almost all fields, indicating that the correction state of various aberrations is good.
- the MTF optical required performance / resolution
- peripheral light quantity ratio of the optical system of the present invention can be secured to 95% or more, the distortion can be limited to within 5% to obtain a clearer image.
- the present invention is sufficiently possible to apply an optical material for molding a mold such as a non-oxide infrared optical glass, it is possible to lower the production cost compared to the conventional germanium lens and easily applied to the civilian field through mass production.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Lenses (AREA)
Abstract
The present invention relates to a long-wave infrared camera and camera lens having a 21-degree horizontal angle of view, the lens having a 21-degree horizontal angle of view being made of moldable optical material and having a concave surface (R2) for primary bending of incoming light from a subject, and a convex surface (R3) for secondary bending of the light that has passed through the concave surface (R2), wherein the concave surface (R2) and convex surface (R3) are defined by the relationships in formula 1, table 1 and table 2 of the detailed description.
Description
본 발명은 수평화각 21도의 장파장 적외선 카메라 및 카메라용 렌즈에 관한 것으로, 보다 상세하게는 다양한 보안감시 분야에 사용이 가능한 보급형 장파장 적외선(일명 "LWIR") 카메라 및 카메라용 렌즈에 관한 것이다.The present invention relates to a long-wavelength infrared camera and a lens for a camera having a horizontal angle of view of 21 degrees, and more particularly, to a low-wavelength infrared ("LWIR") camera and a lens for a camera that can be used in various security surveillance fields.
장파장 적외선은 8㎛~12㎛ 파장대의 광으로서 인간이 내는 적외선의 파장대를 포함한다.The long wavelength infrared rays are light in the wavelength range of 8 µm to 12 µm and include the wavelength range of the infrared rays emitted by humans.
장파장 적외선 카메라는 야간에 인간이나 동물이 발생하는 적외선을 감지하여 촬상할 수 있는 카메라이다.The long wavelength infrared camera is a camera that can detect and capture infrared rays generated by humans or animals at night.
인간이나 동물의 체온은 310K 정도로 흑체 복사의 310K에서의 피크 파장이 8㎛~12㎛ 정도이다.The body temperature of humans and animals is about 310K, and the peak wavelength at 310K of black body radiation is about 8 µm to 12 µm.
따라서, 인간 또는 동물이 내는 적외선 에너지를 장파장 적외선 카메라를 통해 인간이나 동물에 대한 존재 유무 및 영상 획득이 가능하다.Therefore, it is possible to acquire the presence or absence of an image of the human or the animal and the infrared energy of the human or the animal through the long-wavelength infrared camera.
그러나, 국내의 경우 장파장 적외선 전용 렌즈와 장파장 적외선 카메라 시스템의 개발이 매우 더딘 편이어서 대부분 수입에 의존하고 있으며 매우 고가에 판매되고 있는 실정이다.However, in Korea, the development of a long wavelength infrared dedicated lens and a long wavelength infrared camera system is very slow, and most of them depend on imports and are sold at very high prices.
특히, 종래의 적외선 카메라는 게르마늄(Germanium) 렌즈를 기반으로 한 직가공 렌즈 위주로 제작이 되고 있어 제작원가가 높고 제조시간 또한 길 수밖에 없었다.In particular, the conventional infrared camera is made mainly of direct-processing lenses based on germanium (Germanium) lens, the manufacturing cost is high and the manufacturing time was also long.
따라서, 게르마늄 렌즈는 주로 군수 분야에 적용되고 있으며, 민수 분야에서는 가격적인 문제로 인해 사용이 미미한 실정이다.Therefore, the germanium lens is mainly applied to the military field, and in the civil field, its use is insignificant due to the price problem.
본 발명은 상기한 종래기술의 문제점을 해결하기 위해 안출된 것으로서, 본 발명의 목적은 몰드 성형용 광학소재를 적용할 수 있으므로 기존 게르마늄 렌즈 대비 생산 단가를 낮추고 대량생산을 통해 민수 분야에도 쉽게 적용시킬 수 있는 수평화각 21도의 장파장 적외선 카메라 및 카메라용 렌즈를 제공하는데 있다.The present invention has been made to solve the above problems of the prior art, the object of the present invention can be applied to the mold molding optical material to lower the production cost compared to the existing germanium lens and to be easily applied to the civil field through mass production The present invention provides a long wavelength infrared camera having a horizontal angle of view of 21 degrees and a lens for a camera.
전술한 목적을 달성하기 위해, 본 발명에 따른 수평화각 21도의 장파장 적외선 카메라용 렌즈는,In order to achieve the above object, a lens for a long wavelength infrared camera having a horizontal angle of view of 21 degrees according to the present invention,
몰드 성형용 광학소재로 이루어지며,Made of optical material for molding
피사체로부터 입사되는 광을 1차적으로 굴절시키는 오목면(R2); 및,A concave surface R2 that primarily refracts light incident from a subject; And,
상기 오목면(R2)을 통과한 광을 2차적으로 굴절시키는 볼록면(R3)을 포함하 되, 상기 오목면(R2)과 볼록면(R3)은 아래 <식 1>, <표 1> 및 <표 2>의 관계에 의해 규정되는 것을 특징으로 하는 수평화각 21도의 렌즈로서;It includes a convex surface (R3) for refracting secondary light passing through the concave surface (R2), the concave surface (R2) and the convex surface (R3) are shown in the following <Equation 1> A lens having a horizontal angle of view of 21 degrees, which is defined by the relationship of Table 2;
<표 1>TABLE 1
여기서, k는 원추곡면계수이고, A4, A6, A8 및 A10은 비구면계수이며, h는 광축으로부터 오목면 또는 볼록면까지의 거리이며 c는 중심곡률을 나타냄;Where k is the conic surface coefficient, A4, A6, A8 and A10 are aspherical coefficients, h is the distance from the optical axis to the concave or convex surface and c represents the center curvature;
<표 2>TABLE 2
여기서, 곡률반경과 면두께는 ±0.5%의 허용범위를 가짐;Here, the radius of curvature and the thickness have an allowable range of ± 0.5%;
(오목면(R2)의 직경)/(볼록면(R3)의 직경)은 0.57(±0.5%의 허용범위)임을 특징으로 한다.(Diameter of concave surface R2) / (diameter of convex surface R3) is characterized by being 0.57 (acceptable range of ± 0.5%).
상기 렌즈에는, 광축과 수직방향으로 상기 오목면(R2)과 볼록면(R3) 사이에서 연장되는 에지부가 형성되는 것을 특징으로 한다.The lens is characterized in that the edge portion extending between the concave surface (R2) and the convex surface (R3) in the direction perpendicular to the optical axis is formed.
(오목면(R2)과 볼록면(R3)의 중심부 두께(TC)/직경의 평균값)은 0.79(±0.5%의 허용범위)이고, (렌즈의 에지부 두께)/(상기 오목면(R2)과 볼록면(R3)의 중심부 두께(TC))는 0.74(±0.5%의 허용범위)인 것을 특징으로 한다.(Average thickness TC / diameter of concave surface R2 and convex surface R3) is 0.79 (acceptable range of ± 0.5%), (thickness of edge portion of lens) / (concave surface R2) And the central thickness TC of the convex surface R3) is 0.74 (acceptable range of ± 0.5%).
또한, 본 발명에 따른 수평화각 21도의 장파장 적외선 카메라는,In addition, a long wavelength infrared camera having a horizontal angle of view of 21 degrees according to the present invention,
조리개;iris;
상기 렌즈;The lens;
상기 볼록면(R3)으로부터 이격되게 설치되는 적외선 필터; 및,An infrared filter spaced apart from the convex surface R3; And,
상기 적외선 필터를 통과한 광을 통해 피사체를 결상하는 센서면을 포함하는 것을 특징으로 한다.And a sensor surface for forming an object through light passing through the infrared filter.
상기 조리개와 상기 오목면(R2) 사이의 거리는 0.7mm±0.5%, 상기 오목면(R2)과 볼록면(R3)의 중심부 두께(TC)는 6.295mm±0.5%, 상기 볼록면(R3)으로부터 적외선 필터까지의 거리는 6.7mm±0.5%, 적외선 필터의 두께는 0.65mm±0.5%, 상기 적외선 필터로부터 센서면까지의 거리는 1.3mm±0.5%이며, 상기 필터의 굴절율은 3.421이고 분산율은 2421.0인 것을 특징으로 한다.The distance between the diaphragm and the concave surface R2 is 0.7 mm ± 0.5%, and the central thickness TC of the concave surface R2 and the convex surface R3 is 6.295 mm ± 0.5%, from the convex surface R3. The distance to the infrared filter is 6.7mm ± 0.5%, the thickness of the infrared filter is 0.65mm ± 0.5%, the distance from the infrared filter to the sensor surface is 1.3mm ± 0.5%, the refractive index of the filter is 3.421 and the dispersion ratio is 2421.0. It features.
전술한 바와 같은 구성의 본 발명에 따르면, 보안감시 분야에 보급형 광학계로서 1매 렌즈만으로도 생물 또는 사물의 탐지가 가능하여, 다양한 분야(야간 보안 감시, 화재 방지, 변압기 감지 등)에 적용할 수 있다는 이점이 있다.According to the present invention having the above-described configuration, it is possible to detect living things or objects with only one lens as the entry-level optical system in the field of security surveillance, and can be applied to various fields (night security surveillance, fire prevention, transformer detection, etc.). There is an advantage.
또한, 본 발명에 따르면, 몰딩에 의한 성형이 가능한 구조로 이루어져 제작이 용이하며 대량 생산이 가능하고 제조 단가가 저렴하다는 장점도 있다.In addition, according to the present invention, it is made of a structure capable of molding by molding, there is an advantage that the production is easy, mass production is possible, and the manufacturing unit cost is low.
도 1은 본 발명에 따른 수평화각 21도의 장파장 적외선 카메라의 사시도이다.1 is a perspective view of a long wavelength infrared camera having a horizontal angle of view of 21 degrees according to the present invention.
도 2는 도 2의 광학계 구조를 나타내는 구성도이다.FIG. 2 is a configuration diagram illustrating the optical system structure of FIG. 2.
도 3은 본 발명에 따른 수평화각 21도의 장파장 적외선 카메라의 광 추적 분석도이다.3 is a light tracking analysis diagram of a long wavelength infrared camera having a horizontal angle of view of 21 degrees according to the present invention.
도 4는 본 발명에 따른 수평화각 21도의 장파장 적외선 카메라의 종 구면수차(longitudinal spherical abberration)를 나타내는 그래프이다.4 is a graph showing the longitudinal spherical aberration of the long-wavelength infrared camera having a horizontal angle of view of 21 degrees according to the present invention.
도 5는 본 발명에 따른 수평화각 21도의 장파장 적외선 카메라의 비점수차(astigmatism)에 관한 수차 해석 그래프이다.5 is an aberration analysis graph of astigmatism of a long-wavelength infrared camera having a horizontal angle of view of 21 degrees according to the present invention.
도 6은 본 발명에 따른 수평화각 21도의 장파장 적외선 카메라의 왜곡수차(distortion)를 나타내는 그래프이다.6 is a graph illustrating distortion of a long-wavelength infrared camera having a horizontal angle of view of 21 degrees according to the present invention.
도 7은 본 발명에 따른 수평화각 21도의 장파장 적외선 카메라의 해상도를 나타내는 MTF(Modulation Transfer Function)을 분석한 그래프이다.7 is a graph illustrating an analysis of a Modulation Transfer Function (MTF) indicating a resolution of a long-wavelength infrared camera having a horizontal angle of view of 21 degrees according to the present invention.
도 8은 본 발명에 따른 수평화각 21도의 장파장 적외선 카메라의 스폿 다이어그램(spot diagram)을 도시한 도면이다.FIG. 8 illustrates a spot diagram of a long wavelength infrared camera having a horizontal angle of view of 21 degrees according to the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1과 도 2에 도시한 바와 같이, 본 발명에 따른 수평화각 21도의 장파장 적외선 카메라(1000)는, 조리개(100), 피사체로부터 입사되는 광을 1차적으로 굴절시키는 오목면(R2) 및, 상기 오목면(R2)을 통과한 광을 2차적으로 굴절시키는 볼록면(R3)을 포함하는 렌즈(200), 상기 볼록면(R3)으로부터 이격되게 설치되는 적외선 필터(300) 및, 상기 적외선 필터(300)를 통과한 광을 통해 피사체를 결상하는 센서면(400)을 포함한다.As shown in FIGS. 1 and 2, the long-wavelength infrared camera 1000 having a horizontal angle of view of 21 degrees according to the present invention includes an aperture 100, a concave surface R2 that primarily refracts light incident from a subject, and A lens 200 including a convex surface R3 for secondarily refracting the light passing through the concave surface R2, an infrared filter 300 spaced apart from the convex surface R3, and the infrared filter And a sensor surface 400 that forms an object through light passing through the 300.
먼저, 상기 볼록면(R3) 앞에 배치되는 조리개(100)는 본 발명의 광학계에 잡광이 들어오는 것을 방지하는 기능을 수행한다. First, the diaphragm 100 disposed in front of the convex surface R3 performs a function of preventing light from entering the optical system of the present invention.
상기 수평화각 21도의 렌즈(200)는 몰드 성형용 광학소재로 이루어진다.The lens 200 having a horizontal angle of view of 21 degrees is formed of an optical material for molding.
몰드 성형용 광학소재는 글라스나 플라스틱 등으로 이루어지며, 기존 시장에 나와 있는 비슷한 종류의 소재보다 굴절률과 렌즈 투과 특성이 높은 것을 사용함으로써 초소구경 렌즈부터 중구경 렌즈까지 다양한 광학계 구성이 가능한 소재를 채택하는 것이 좋다.The optical material for molding the mold is made of glass or plastic, and adopts materials that can be composed of various optical systems from ultra-small diameter lenses to medium-diameter lenses by using those having higher refractive index and lens transmission characteristics than similar types of materials on the market. Good to do.
예컨대, 본 발명의 광학계 설계에 적용된 렌즈 소재는 Ge27
.5-Sb13
.5-Se60 와 같은 몰드성형용 소재로서 2.5 이상의 굴절률과 파장 대역 12㎛까지 65% 이상의 높은 투과도를 가지는 소재가 사용될 수 있다.For example, the lens material applied to the optical system design of the present invention is a material for molding such as Ge 27 .5- Sb 13 .5- Se 60. A material having a refractive index of 2.5 or more and a transmittance of 65% or more up to a wavelength band of 12 μm may be used. Can be.
이러한 본 발명에 따른 광학소재로 광학계를 구성하게 되면 기존 대비 선명한 영상을 구현할 수 있으며, 몰딩에 의한 성형이 가능하여 제작이 용이하고 제조단가가 저렴한 보안감시 보급형 LWIR 카메라 광학계를 구성할 수 있다.When the optical system is composed of the optical material according to the present invention, it is possible to realize a clear image compared to the existing, and it is possible to form a molding by molding, it is possible to construct a security surveillance popular LWIR camera optical system is easy to manufacture and low manufacturing cost.
또한, 본 발명의 수평화각 21도의 장파장 적외선 카메라(1000)는 6400픽셀(센서)을 적용한 보급형 LWIR 1군 1매 광학 설계를 진행하였다.In addition, the long-wavelength infrared camera 1000 with a horizontal angle of view of 21 degrees according to the present invention proceeded with an optical design of a low-cost type LWIR 1 group applying 6400 pixels (sensor).
본 발명의 광학계는 렌즈 중심부와 에지부(210)의 두께를 두껍게 하여 몰드 성형에 유리한 형태를 가지고 있다. The optical system of the present invention has a form advantageous for mold molding by increasing the thickness of the lens center portion and the edge portion 210.
또한, 본 발명에 따른 렌즈(200)의 상기 오목면(R2)과 볼록면(R3)은 아래 <식 1>의 관계에 의해 규정된다.Incidentally, the concave surface R2 and the convex surface R3 of the lens 200 according to the present invention are defined by the following <Equation 1>.
여기서, k는 원추곡면계수이고, A4, A6, A8 및 A10는 비구면계수이며, h는 광축으로부터 오목면 또는 볼록면까지의 거리이며 c는 중심곡률을 나타낸다.Here, k is a conical surface coefficient, A4, A6, A8 and A10 are aspherical coefficients, h is a distance from an optical axis to a concave or convex surface, and c represents a center curvature.
아래 <표 1>과 같이 비구면계수를 정하여 오목면(R2)과 볼록면(R3)을 규정한다.As shown in Table 1 below, the aspherical surface coefficient is defined to define the concave surface R2 and the convex surface R3.
<표 1>TABLE 1
또한, 아래 <표 2>와 같이, 렌즈(200)의 오목면(R2)과 볼록면(R3)의 곡률반경(RC)과 면두께(ST)를 설정하였으며, 굴절율(n)과 분산율(v1)을 정하였다.In addition, as shown in Table 2 below, the curvature radius RC and the surface thickness ST of the concave surface R2 and the convex surface R3 of the lens 200 were set, and the refractive index n and the dispersion rate v1 were set. ).
상기 분산율(v1)은 아래의 식으로 정의된다.The dispersion ratio v1 is defined by the following equation.
v1= (n110-1)/(n108-n112) <식 2>v1 = (n110-1) / (n108-n112) <Equation 2>
여기서, n110은 1매 렌즈의 파장 10㎛에서의 굴절율, n108은 1매 렌즈의 파장 8.0㎛에서의 굴절율, n112은 1매 렌즈의 파장 12㎛에서의 굴절율이며,N110 is a refractive index at a wavelength of 10 μm of a single lens, n108 is a refractive index at a wavelength of 8.0 μm of a single lens, n112 is a refractive index at a wavelength of 12 μm of a single lens,
2.0<n110<3.02.0 <n110 <3.0
<표 2>TABLE 2
여기서, 곡률반경과 면두께는 ±0.5%의 허용범위를 가질 수 있다.Here, the radius of curvature and the surface thickness may have an allowable range of ± 0.5%.
특히, (오목면(R2)의 직경)/(볼록면(R3)의 직경)은 0.57(±0.5%의 허용범위)의 값을 갖고, (렌즈의 에지부 두께)/(상기 오목면(R2)과 볼록면(R3)의 중심부 두께(TC))는 0.74(±0.5%의 허용범위)의 값을 가지므로, 화각 21도를 정확히 맞출 수 있게 된다.In particular, (diameter of concave surface R2) / (diameter of convex surface R3) has a value of 0.57 (acceptable range of ± 0.5%), and (thickness of the edge portion of the lens) / (the concave surface R2). ) And the central thickness (TC) of the convex surface (R3) have a value of 0.74 (acceptable range of ± 0.5%), so that the angle of view of 21 degrees can be accurately adjusted.
또한, 렌즈 중심부와 에지부의 두께가 두꺼우므로 몰드 성형에 유리한 형태가 가능하게 된다.In addition, since the thickness of the lens center portion and the edge portion is thick, an advantageous form for mold molding is possible.
본 발명에 따르면, 상기 조리개(100)와 상기 오목면(R2) 사이의 거리는 0.7mm±0.5%, 상기 오목면(R2)과 볼록면(R3)의 중심부 두께(TC)는 6.295mm±0.5%, 상기 볼록면(R3)으로부터 적외선 필터(300)까지의 거리는 6.7mm±0.5%, 적외선 필터(300)의 두께는 0.65mm±0.5%, 상기 적외선 필터(300)로부터 센서면(400)까지의 거리는 1.3mm±0.5%로 설정될 수 있다.According to the present invention, the distance between the diaphragm 100 and the concave surface R2 is 0.7 mm ± 0.5%, and the central thickness TC of the concave surface R2 and the convex surface R3 is 6.295 mm ± 0.5%. The distance from the convex surface R3 to the infrared filter 300 is 6.7 mm ± 0.5%, and the thickness of the infrared filter 300 is 0.65 mm ± 0.5%, from the infrared filter 300 to the sensor surface 400. The distance can be set to 1.3 mm ± 0.5%.
본 발명의 렌즈(200)에 두께 공차를 설정하게 되면, 제작되는 렌즈의 허용공차 이내로 제작이 가능하여 일정한 광학성능을 가진 렌즈를 제작할 수 있다.When the thickness tolerance is set in the lens 200 of the present invention, the lens 200 may be manufactured within the tolerance of the manufactured lens, thereby manufacturing a lens having a constant optical performance.
또한, 렌즈(200)의 모서리 부분을 라운드 형태로 제작함으로써 광학계 조립 및 제작에 유리하게 할 수 있다. In addition, by manufacturing the corner portion of the lens 200 in a round shape, it can be advantageous to the assembly and production of the optical system.
한편, 상기 적외선 필터(300)의 굴절율은 3.421이고 분산율은 2421.0인 것이 적당하다.Meanwhile, the refractive index of the infrared filter 300 is 3.421 and the dispersion rate is 2421.0.
이와 같은 조건을 통해, 소정의 화각이 얻어지는 동시에, 종방향 구면수차, 비점수차 및 왜곡수차를 최소화할 수 있으며, 해상도를 나타내는 MTF(Modulation Transfer Functions)의 값에서 양호한 상태를 얻을 수 있다.Through such conditions, a predetermined angle of view can be obtained, and at the same time, longitudinal spherical aberration, astigmatism, and distortion can be minimized, and a good state can be obtained at a value of MTF (Modulation Transfer Functions) representing resolution.
전술한 바와 같은 구성에 기초하여 본 발명에 따른 수평화각 21도의 장파장 적외선 카메라(1000)의 예시적인 일 실시예를 기재한다.An exemplary embodiment of a long wavelength infrared camera 1000 having a horizontal angle of view of 21 degrees according to the present invention is described based on the configuration as described above.
먼저, 본 발명에 따른 수평화각 21도의 장파장 적외선 카메라의 렌즈(200)는 특히 보안감시 분야에 적용할 수 있는 LWIR용 카메라 광학계의 렌즈로서, Ge27
.5-Sb13.5-Se60 로 이루어진 비산화물 적외선 광학유리를 적용하여 몰드 성형을 하였다.First, a lens of a camera optical system for LWIR that can be applied to the 21-degree horizontal view angle lens 200 of the long-wavelength infrared camera is particularly security surveillance field according to the present invention, Ge 27 .5 -Sb 13.5 -Se 60 consisting of non-oxide Infrared optical glass was applied to mold molding.
또한, 상기 렌즈(200)의 오목면(R2)과 볼록면(R3)의 곡률반경은 각각 -17.7265mm(비구면), -8.1644mm(비구면), 오목면(R2)의 직경은 5.78mm, 볼록면(R3)의 직경은 10.2mm로 설정하였다.In addition, the radius of curvature of the concave surface R2 and the convex surface R3 of the lens 200 is -17.7265 mm (aspherical surface), -8.1644 mm (aspherical surface), and the diameter of the concave surface R2 is 5.78 mm and convex, respectively. The diameter of the surface R3 was set to 10.2 mm.
전체 렌즈(200)의 두께는 6.935mm로 형성하였다.The thickness of the entire lens 200 was 6.935mm.
장착을 위해 광축과 수직으로 상기 오목면(R2)과 볼록면(R3)으로부터 연장되는 에지부(210)가 형성되며, 이를 고려할 때 전체 렌즈의 직경은 15.8mm 로 설정하였다.For mounting, an edge portion 210 extending from the concave surface R2 and the convex surface R3 is formed perpendicular to the optical axis. In consideration of this, the diameter of the entire lens is set to 15.8 mm.
상기 에지부(210)의 길이는 적절히 조정이 가능하다.The length of the edge portion 210 can be appropriately adjusted.
상기 에지부(210)의 모서리 부분에는 0.3~0.6mm의 라운드가 처리되어 있다.The edge portion of the edge portion 210 is treated with a round of 0.3 ~ 0.6mm.
렌즈(200)의 오목면(R2)과 볼록면(R3)은 위의 <식 1>과 <표 1> 및 <표 2>로부터 형성하였다.The concave surface R2 and the convex surface R3 of the lens 200 were formed from the above <Formula 1>, <Table 1> and <Table 2>.
또한, 오목면(R2)과 볼록면(R3)의 중심부 두께(TC)는 6.295mm로, 렌즈의 에지부 두께는 4.635로 각각 설정하였다.In addition, the center part thickness TC of the concave surface R2 and the convex surface R3 was 6.295 mm, and the edge part thickness of the lens was set to 4.635, respectively.
또한, 상기 조리개(100)와 상기 오목면(R2) 사이의 거리는 0.7mm, 상기 볼록면(R3)으로부터 적외선 필터(300)까지의 거리는 6.7mm, 적외선 필터(300)의 두께는 0.65mm, 상기 적외선 필터(300)로부터 센서면(400)까지의 거리는 1.3mm로 정하였다.In addition, the distance between the aperture 100 and the concave surface (R2) is 0.7mm, the distance from the convex surface (R3) to the infrared filter 300 is 6.7mm, the thickness of the infrared filter 300 is 0.65mm, the The distance from the infrared filter 300 to the sensor surface 400 was set to 1.3 mm.
상기 적외선 필터(300)의 굴절율은 3.421이고 분산율은 2421.0인 것을 채택하였다.The infrared filter 300 has a refractive index of 3.421 and a dispersion of 2421.0.
또한, 상기 센서면(400)의 센서로는 80*80픽셀의 34㎛ 센서가 채택될 수 있다.In addition, a sensor of the sensor surface 400 may be a 34㎛ sensor of 80 * 80 pixels.
이와 같은 구성의 본 발명의 수평화각 21도의 장파장 적외선 카메라(1000)에 대하여 도 3 내지 도 8의 실험결과를 얻을 수 있었다.Experiments of FIGS. 3 to 8 were obtained with respect to the long wavelength infrared camera 1000 having the horizontal angle of view of 21 degrees according to the present invention.
도 3은 본 발명에 따른 수평화각 21도의 장파장 적외선 카메라의 광 추적 분석도이고, 도 4는 본 발명에 따른 수평화각 21도의 장파장 적외선 카메라의 종 구면수차(longitudinal spherical abberration)를 나타내는 그래프이고, 도 5는 본 발명에 따른 수평화각 21도의 장파장 적외선 카메라의 비점수차(astigmatism)에 관한 수차 해석 그래프이고, 도 6은 본 발명에 따른 수평화각 21도의 장파장 적외선 카메라의 왜곡수차(distortion)를 나타내는 그래프이고, 도 7은 본 발명에 따른 수평화각 21도의 장파장 적외선 카메라의 해상도를 나타내는 MTF(Modulation Transfer Function)을 분석한 그래프이고, 도 8은 본 발명에 따른 수평화각 21도의 장파장 적외선 카메라의 스폿 다이어그램(spot diagram)을 도시한 도면이다.3 is an optical trace analysis diagram of a long-wavelength infrared camera having a horizontal angle of view of 21 degrees according to the present invention, and FIG. 4 is a graph illustrating longitudinal spherical abberration of a long-wavelength infrared camera having a horizontal angle of view of 21 degrees according to the present invention. 5 is an aberration analysis graph of astigmatism of a long-wavelength infrared camera having a horizontal angle of view of 21 degrees according to the present invention, and FIG. 6 is a graph showing distortion of a long-wavelength infrared camera having a horizontal angle of view of 21 degrees according to the present invention. FIG. 7 is a graph illustrating an analysis of a Modulation Transfer Function (MTF) indicating the resolution of a long-wavelength infrared camera having a horizontal angle of view of 21 degrees according to the present invention, and FIG. 8 is a spot diagram of a long-wavelength infrared camera having a horizontal angle of view of 21 degrees according to the present invention. diagram).
도 3 내지 도 8에 도시한 바와 같이, 본 발명에 따른 수평화각 21도의 장파장 적외선 카메라는 거의 모든 필드에서 상들의 값이 중심축에 인접하게 나타나고 있어 각종 수차의 보정 상태가 양호함을 나타내고 있음은 물론 MTF(광학적 요구성능/해상도)를 만족하고 있음을 나타내고 있다.As shown in FIGS. 3 to 8, the long-wavelength infrared camera having a horizontal angle of view of 21 degrees according to the present invention shows that the values of the images are shown adjacent to the central axis in almost all fields, indicating that the correction state of various aberrations is good. Of course, it indicates that the MTF (optical required performance / resolution) is satisfied.
또한, 본 발명의 광학계의 주변 광량비는 95%이상 확보할 수 있고, 왜곡률을 5% 이내로 제한할 수 있어 보다 선명한 영상을 얻을 수 있다. In addition, the peripheral light quantity ratio of the optical system of the present invention can be secured to 95% or more, the distortion can be limited to within 5% to obtain a clearer image.
따라서, 본 발명은 비산화물 적외선 광학유리와 같은 몰드 성형용 광학소재를 적용하는 것이 충분히 가능하므로, 기존 게르마늄 렌즈 대비 생산 단가를 낮추고 대량생산을 통해 민수 분야에도 쉽게 적용시킬 수 있다.Therefore, the present invention is sufficiently possible to apply an optical material for molding a mold such as a non-oxide infrared optical glass, it is possible to lower the production cost compared to the conventional germanium lens and easily applied to the civilian field through mass production.
Claims (5)
- 몰드 성형용 광학소재로 이루어지며,Made of optical material for molding피사체로부터 입사되는 광을 1차적으로 굴절시키는 오목면(R2); 및,A concave surface R2 that primarily refracts light incident from a subject; And,상기 오목면(R2)을 통과한 광을 2차적으로 굴절시키는 볼록면(R3)을 포함하 되, 상기 오목면(R2)과 볼록면(R3)은 아래 <식 1>, <표 1> 및 <표 2>의 관계에 의해 규정되는 것을 특징으로 하는 수평화각 21도의 렌즈;It includes a convex surface (R3) for refracting secondary light passing through the concave surface (R2), the concave surface (R2) and the convex surface (R3) are shown in the following <Equation 1> A lens having a horizontal angle of view of 21 degrees, which is defined by the relationship of Table 2;<표 1>TABLE 1여기서, k는 원추곡면계수이고, A4, A6, A8 및 A10은 비구면계수이며, h는 광축으로부터 오목면 또는 볼록면까지의 거리이며 c는 중심곡률을 나타냄;Where k is the conic surface coefficient, A4, A6, A8 and A10 are aspherical coefficients, h is the distance from the optical axis to the concave or convex surface and c represents the center curvature;<표 2>TABLE 2여기서, 곡률반경과 면두께는 ±0.5%의 허용범위를 가짐;Here, the radius of curvature and the thickness have an allowable range of ± 0.5%;(오목면(R2)의 직경)/(볼록면(R3)의 직경)은 0.57(±0.5%의 허용범위)임.(Diameter of concave surface (R2)) / (diameter of convex surface (R3)) is 0.57 (acceptable range of ± 0.5%).
- 제1항에서,In claim 1,상기 렌즈에는, 광축과 수직방향으로 상기 오목면(R2)과 볼록면(R3) 사이에서 연장되는 에지부가 형성되는 것을 특징으로 하는 수평화각 21도의 렌즈.The lens has a horizontal angle of view of 21 degrees, wherein the lens has an edge portion extending between the concave surface (R2) and the convex surface (R3) in a direction perpendicular to the optical axis.
- 제2항에 있어서,The method of claim 2,(오목면(R2)과 볼록면(R3)의 중심부 두께(TC)/직경의 평균값)은 0.79(±0.5%의 허용범위)이고, (렌즈의 에지부 두께)/(상기 오목면(R2)과 볼록면(R3)의 중심부 두께(TC))는 0.74(±0.5%의 허용범위)인 것을 특징으로 하는 수평화각 21도의 렌즈.(Average thickness TC / diameter of concave surface R2 and convex surface R3) is 0.79 (acceptable range of ± 0.5%), (thickness of edge portion of lens) / (concave surface R2) And a central thickness TC of the convex surface R3 is 0.74 (acceptable range of ± 0.5%).
- 조리개;iris;제1항 내지 제3항 중 어느 한 항에 따른 렌즈;A lens according to any one of claims 1 to 3;상기 볼록면(R3)으로부터 이격되게 설치되는 적외선 필터; 및,An infrared filter spaced apart from the convex surface R3; And,상기 적외선 필터를 통과한 광을 통해 피사체를 결상하는 센서면을 포함하는 것을 특징으로 하는 수평화각 21도의 장파장 적외선 카메라.And a sensor surface that forms an image of a subject through light passing through the infrared filter. 21. A long-wavelength infrared camera having a horizontal angle of view of 21 degrees.
- 제4항에 있어서,The method of claim 4, wherein상기 조리개와 상기 오목면(R2) 사이의 거리는 0.7mm±0.5%, 상기 오목면(R2)과 볼록면(R3)의 중심부 두께(TC)는 6.295mm±0.5%, 상기 볼록면(R3)으로부터 적외선 필터까지의 거리는 6.7mm±0.5%, 적외선 필터의 두께는 0.65mm±0.5%, 상기 적외선 필터로부터 센서면까지의 거리는 1.3mm±0.5%이며, 상기 필터의 굴절율은 3.421이고 분산율은 2421.0인 것을 특징으로 하는 수평화각 21도의 장파장 적외선 카메라.The distance between the diaphragm and the concave surface R2 is 0.7 mm ± 0.5%, and the central thickness TC of the concave surface R2 and the convex surface R3 is 6.295 mm ± 0.5%, from the convex surface R3. The distance to the infrared filter is 6.7mm ± 0.5%, the thickness of the infrared filter is 0.65mm ± 0.5%, the distance from the infrared filter to the sensor surface is 1.3mm ± 0.5%, the refractive index of the filter is 3.421 and the dispersion ratio is 2421.0. Long wavelength infrared camera with horizontal angle of view of 21 degrees.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2016-0120160 | 2016-09-20 | ||
KR1020160120160A KR101777661B1 (en) | 2016-09-20 | 2016-09-20 | Long-Wavelength Infrared Camera with 21 degree Angle of View and Lens for the Carera |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018056681A1 true WO2018056681A1 (en) | 2018-03-29 |
Family
ID=59968005
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2017/010282 WO2018056681A1 (en) | 2016-09-20 | 2017-09-20 | Long-wave infrared camera and camera lens having 21-degree horizontal angle of view |
Country Status (5)
Country | Link |
---|---|
KR (1) | KR101777661B1 (en) |
CN (1) | CN107843976A (en) |
HK (1) | HK1246863A1 (en) |
TW (1) | TWI625968B (en) |
WO (1) | WO2018056681A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190128900A (en) | 2018-05-09 | 2019-11-19 | 주식회사 소모에너지엔테크놀러지 | Long-Wavelength Infrared Camera Lens for Image Sensor and Optical System including the Camera Lens |
KR20190128904A (en) | 2018-05-09 | 2019-11-19 | 주식회사 소모에너지엔테크놀러지 | Optical System for Compact, Long-Wavelength Infrared Camera |
KR102134298B1 (en) * | 2019-01-17 | 2020-07-16 | 주식회사 소모아이알 | Long-Wavelength Infrared Camera with 120 degree Angle of View and Lens for the Carera |
KR102062367B1 (en) | 2019-02-08 | 2020-01-03 | 주식회사 소모에너지엔테크놀러지 | 30mm Equivalent Focal Length 1x Magnification Optical System only Used for 2D Focal Plane Array Available in Precision Sensing for 0.1 to 10 Terahertz band |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2596827B2 (en) * | 1989-05-09 | 1997-04-02 | オリンパス光学工業株式会社 | Endoscope objective lens |
KR20050110604A (en) * | 2005-11-08 | 2005-11-23 | 샤닝포터 주식회사 | Optical system for wide angle camera with aspheric surface |
JP2010249931A (en) * | 2009-04-13 | 2010-11-04 | Fujifilm Corp | Infrared lens and imaging apparatus |
KR101123776B1 (en) * | 2011-12-22 | 2012-03-16 | 대원전광주식회사 | Surveillance camera pinhole lens for visible and near infrared wavelength |
JP2013235183A (en) * | 2012-05-10 | 2013-11-21 | Canon Inc | Optical system and imaging device having the same |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3825315A (en) * | 1973-01-29 | 1974-07-23 | R Altman | Zoom lens optical system for infrared wavelengths |
DE2808043C3 (en) * | 1978-02-24 | 1981-10-22 | Optische Werke G. Rodenstock, 8000 München | Optical system for night vision glasses |
US4802717A (en) * | 1986-04-21 | 1989-02-07 | Hughes Aircraft Company | Infrared afocal zoom telescope |
JP3370612B2 (en) * | 1998-09-14 | 2003-01-27 | 富士通株式会社 | Light intensity conversion element, collimating lens, objective lens, and optical device |
US6292293B1 (en) * | 1999-06-25 | 2001-09-18 | Raytheon Company | Wide-angle infrared lens and detector with internal aperture stop and associated method |
US6356396B1 (en) * | 2000-02-01 | 2002-03-12 | Raytheon Company | Optical system having a generalized torus optical corrector |
JP2002098885A (en) * | 2000-09-21 | 2002-04-05 | Konica Corp | Image pickup lens |
US7224535B2 (en) * | 2005-07-29 | 2007-05-29 | Panavision International, L.P. | Zoom lens system |
JP2007233194A (en) * | 2006-03-02 | 2007-09-13 | E-Pin Optical Industry Co Ltd | Square simplex type optical glass lens and its manufacture method |
WO2014074202A2 (en) * | 2012-08-20 | 2014-05-15 | The Regents Of The University Of California | Monocentric lens designs and associated imaging systems having wide field of view and high resolution |
US9335126B2 (en) * | 2013-07-17 | 2016-05-10 | Raytheon Company | Offset aperture gimbaled optical system with optically corrected conformal dome |
-
2016
- 2016-09-20 KR KR1020160120160A patent/KR101777661B1/en active IP Right Grant
-
2017
- 2017-09-20 TW TW106132263A patent/TWI625968B/en not_active IP Right Cessation
- 2017-09-20 WO PCT/KR2017/010282 patent/WO2018056681A1/en active Application Filing
- 2017-09-20 CN CN201710853902.3A patent/CN107843976A/en active Pending
-
2018
- 2018-05-14 HK HK18106212.9A patent/HK1246863A1/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2596827B2 (en) * | 1989-05-09 | 1997-04-02 | オリンパス光学工業株式会社 | Endoscope objective lens |
KR20050110604A (en) * | 2005-11-08 | 2005-11-23 | 샤닝포터 주식회사 | Optical system for wide angle camera with aspheric surface |
JP2010249931A (en) * | 2009-04-13 | 2010-11-04 | Fujifilm Corp | Infrared lens and imaging apparatus |
KR101123776B1 (en) * | 2011-12-22 | 2012-03-16 | 대원전광주식회사 | Surveillance camera pinhole lens for visible and near infrared wavelength |
JP2013235183A (en) * | 2012-05-10 | 2013-11-21 | Canon Inc | Optical system and imaging device having the same |
Also Published As
Publication number | Publication date |
---|---|
CN107843976A (en) | 2018-03-27 |
TWI625968B (en) | 2018-06-01 |
TW201815152A (en) | 2018-04-16 |
HK1246863A1 (en) | 2018-09-14 |
KR101777661B1 (en) | 2017-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018056682A1 (en) | Long-wavelength infrared camera having 90-degree horizontal angle of view, and camera lens | |
WO2018056681A1 (en) | Long-wave infrared camera and camera lens having 21-degree horizontal angle of view | |
CN105974561B (en) | Wide-angle camera | |
TWI710817B (en) | Optical lens | |
WO2017023086A1 (en) | Imaging lens | |
WO2017160095A1 (en) | Optical imaging lens system | |
WO2017155303A1 (en) | Photographing lens optical system | |
CN107193114B (en) | Short-focus ultra-wide-angle small fixed focus lens | |
CN109507785B (en) | Infrared confocal lens | |
WO2016190625A1 (en) | Wide-field-of-view athermalization infrared lens module | |
WO2017160093A1 (en) | Optical imaging lens system | |
CN109375352B (en) | Infrared confocal lens | |
WO2017160091A1 (en) | Optical lens system and imaging apparatus | |
CN110568590A (en) | Starlight-level optical lens and imaging method thereof | |
WO2018056683A1 (en) | Long-wave infrared camera and camera lens having 54-degree horizontal angle of view | |
KR20190128900A (en) | Long-Wavelength Infrared Camera Lens for Image Sensor and Optical System including the Camera Lens | |
CN111007658B (en) | Low-cost athermal day and night lens and working method thereof | |
KR102134298B1 (en) | Long-Wavelength Infrared Camera with 120 degree Angle of View and Lens for the Carera | |
TWI689747B (en) | Four-piece dual waveband optical lens system | |
WO2016182408A2 (en) | Taking lens system | |
US7619835B2 (en) | Image-forming lens set | |
WO2021253229A1 (en) | Optical system, camera module, and terminal device | |
TW202319796A (en) | Optical imaging system, image capturing device, and electronic equipment | |
US20080285155A1 (en) | Image-forming lens set | |
WO2022031017A1 (en) | Optical system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17853395 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17853395 Country of ref document: EP Kind code of ref document: A1 |