WO2016190625A1 - Wide-field-of-view athermalization infrared lens module - Google Patents

Wide-field-of-view athermalization infrared lens module Download PDF

Info

Publication number
WO2016190625A1
WO2016190625A1 PCT/KR2016/005396 KR2016005396W WO2016190625A1 WO 2016190625 A1 WO2016190625 A1 WO 2016190625A1 KR 2016005396 W KR2016005396 W KR 2016005396W WO 2016190625 A1 WO2016190625 A1 WO 2016190625A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
refractive power
infrared
concave surface
negative refractive
Prior art date
Application number
PCT/KR2016/005396
Other languages
French (fr)
Korean (ko)
Inventor
박찬근
Original Assignee
주식회사 소모비전
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 소모비전 filed Critical 주식회사 소모비전
Publication of WO2016190625A1 publication Critical patent/WO2016190625A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/34Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having four components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below

Definitions

  • the present invention relates to a wide-field non-degradable infrared lens module, and more particularly, to an infrared optical system of a thermal imaging device, a wide-field non-degraded infrared ray in which a focal length is stably maintained over a wide temperature range through a combination of germanium and chalcogenide lenses. It relates to a lens module.
  • thermal imaging equipment is a device that detects and displays infrared rays emitted by a person or an object, through which the position and dynamics of the person or the object may be grasped at night or in the absence of light.
  • infrared rays have poor transmittance due to the low transmittance of ordinary glass lenses, and thus infrared infrared lenses made of materials such as germanium (Ge), zinc sulfide (ZnS), and zinc selenide (ZnSe) are employed.
  • the refractive index changes with temperature and the dispersibility of the material is relatively small compared to the materials used in the visible region.
  • the optical performance of thermal imaging equipment is sensitive to temperature changes, so it is not a big problem when used in a narrow temperature range near room temperature, but non-degradation compensation is required when the driving temperature range is wide.
  • Patent Document 1 KR 10-1214601 B1 2012.12.14.
  • the problem to be solved by the present invention is to provide a wide-field non-degradable infrared lens module with a small focal length fluctuation in a wide temperature range and aberration is minimized through lens combinations of different materials and surface shapes.
  • the wide-field non-degradable infrared lens module of the present invention for solving the above problems is a lens system consisting of a first lens, a second lens, a third lens and a fourth lens, and an aperture disposed between the second lens and the third lens.
  • the first lens has a convex surface R1 having a positive refractive power on the object side, and a concave surface R2 having a negative refractive power on the image side, and is formed at a negative magnification as a whole.
  • the second lens has a convex surface R3 having a positive refractive power on an object side in a state disposed behind the first lens, and a concave surface R4 having a negative refractive power on an image side.
  • the third lens has a concave surface R5 having a negative refractive power on an object side in a state disposed behind the second lens, and a concave having a negative refractive power on an image side.
  • Plane R6 is formed, and overall,
  • the fourth lens has a convex surface R7 having a positive refractive power on an object side and a concave surface R8 having a negative refractive power on an image side, while being disposed behind the third lens.
  • the first lens is made of germanium
  • the second lens, the third lens, and the fourth lens are made of chalcogenide.
  • the wide-field non-degradable infrared lens module of the present invention the second lens, the third lens and the fourth lens, germanium (Ge)-selenium (Se)-tellurium (Te) -based chalcogenide lens, germanium- An arsenic (As) -selenium-based chalcogenide lens or a germanium-arsenic-selenium-tellurium-based chalcogenide lens is selectively employed.
  • the first lens has an object-side convex surface R1 having a spherical surface, and the image-side concave surface R2 of the first lens except the convex surface R1. And both surfaces (R3 ⁇ R8) of the remaining lens is characterized in that made of aspherical surface.
  • the wide-field undeteriorated infrared lens module of the present invention is characterized by satisfying the condition 1 below.
  • the wide field undeteriorated infrared lens module of the present invention is characterized in that the F number is in the range of 1.0 to 1.5.
  • the change of focal length is minimized in a wide temperature range through the first lens made of germanium and the second lens, third lens, and fourth lens made of chalcogenide material.
  • aberration such as chromatic aberration is minimized through the combination of the shape and refractive power of each lens, the utility of the present invention and the ease of use of the equipment employing the same may be increased.
  • FIG. 1 is a schematic view showing a lens array state of the wide field undeteriorated infrared lens module according to the present invention.
  • FIG. 2 is a view showing a temperature-specific MTF curve for one embodiment of a wide field undeteriorated infrared lens module according to the present invention.
  • FIG. 3 is a diagram illustrating a ray aberration of an embodiment of a wide field undeteriorated infrared lens module according to the present invention
  • Figure 4 shows a spot diagram of an embodiment of a wide field undeteriorated infrared lens module according to the present invention.
  • FIG. 5 is a diagram illustrating distortion aberration for one embodiment of a wide-field undeteriorated infrared lens module according to the present invention.
  • FIG. 6 is a view showing an MTF curve for an embodiment of a wide field undeteriorated infrared lens module according to the present invention.
  • FIG. 7 is a view showing a condensing state of a wide-field undeteriorated infrared lens module according to the present invention.
  • an infrared lens module of the present invention includes a lens system including a first lens 10, a second lens 20, a third lens 30, and a fourth lens 40, and the second lens 20. ) And the aperture 50 disposed between the third lens 30.
  • the first lens 10 has a convex surface R1 having a positive refractive power on an object side, a concave surface R2 having a negative refractive power on an image side, and is generally formed at a negative magnification.
  • the first lens 10 preferably has a high refractive index so as to adjust the light of thermal infrared rays, and is resistant to impact due to the characteristics exposed to the external environment, and employs a germanium lens without heavy metal exposure during processing. It is desirable to.
  • the second lens 20 has a convex surface R3 having a positive refractive power on an object side in a state disposed behind the first lens 10, and a concave surface R4 having a negative refractive power on an image side. ) Is formed and is formed at a positive magnification as a whole.
  • the third lens 30 has a concave surface R5 having negative refractive power on an object side in a state disposed behind the second lens 20, and a concave surface R6 having negative refractive power on an image side. ) Is formed and is formed at a positive magnification as a whole.
  • the fourth lens 40 has a convex surface R7 having a positive refractive power on an object side in a state disposed behind the third lens 30, and a concave surface R8 having a negative refractive power on an image side. ) Is formed and is formed at a positive magnification as a whole.
  • the second lens 20, the third lens 30, and the fourth lens 40 employ a chalcogenide lens in which chalcogen, germanium, and the like are combined.
  • the chalcogenide is also used as a high refractive lens. Infrared light can be adjusted, in particular, low cost and excellent processability, there is an advantage that can lower the manufacturing cost of the thermal imaging equipment employing the lens module of the present invention.
  • the second lens 20, the third lens 30, and the fourth lens 40 are germanium (Ge) -selenium (Se) -telelium (Te) -based chalcogenide lens, germanium-arsenic ( As) -selenium-based chalcogenide lenses or germanium-arsenic-selenium-tellurium-based chalcogenide lenses may optionally be employed.
  • the diaphragm 50 is disposed between the second lens 20 and the third lens 30, but is disposed close to the third lens 30, the light incident from the second lens 20 It functions to selectively converge.
  • the object-side convex surface R1 of the first lens 10 has a spherical surface, and the image-side concave surface R2 of the first lens 10 except for the object-side convex surface R1 and both surfaces of the residual lens ( R3 to R8) are all composed of aspherical surfaces.
  • the lens module of the present invention is designed so that the number of F is in the range 1.0 ⁇ 1.5.
  • the spherical surface R1 of the first lens has a sag Zo value calculated by Equation 1 below, and the other lens aspherical surfaces R2 through R8 have the sag Za value calculated by Equation 2 below.
  • the design is made to satisfy condition 1.
  • R denotes a radius of curvature of the lens
  • Y denotes a lens height
  • A, B, C ', and D denote aspherical coefficients determined according to lens materials.
  • Table 1 below is the basic data of the lens module satisfying the condition 1, the optical field (OAL): 53 mm, the aperture ratio (FNO): F / 1.3, the focal length (f): 5.44 mm, the horizontal angle of view ( w): 90 °, the refractive index (Nd) and the second lens 20, the third lens 30, the fourth lens 40 for the germanium lens manufactured by Success Infrared of China as the first lens 10
  • the refractive index (Nd) of the IG6 lens developed by Vitron of Germany is adopted.
  • Table 2 is a coefficient value of the aspherical surface of the lens module of Table 1.
  • 2 to 7 is an analysis graph showing the optical characteristics for the lens module consisting of the values of Table 1 and Table 2.
  • FIG. 2 shows the MTF curve for each temperature calculated by infinitely the object distance.
  • the MTF value is about 0.32. This value is equivalent to 80% or more of 0.4, which is an MTF value satisfying the specification, and indicates that an image having a good resolution can be obtained in a wide temperature range.
  • FIG. 3 shows ray aberrations calculated from infinite object distances, showing meridians and curves on the optical axis at 40.00 ° and 54.09 °.
  • FIG. 4 is a spot diagram calculated by infinite object distance, which shows various aberrations, dividing the incident pupil into hundreds or thousands of meshes to track rays, and at each point on the object.
  • the ray is traced with a mesh of, indicating the position of each ray as a spot on the top surface.
  • the center three circles each represent a spot diagram for a field, and the more the points are dispersed from the center, the larger the aberration.
  • 5 shows distortion aberrations calculated by infinite object distances, and shows the degree of curvature of the screen.
  • MTF Modulation Transfer Functions
  • the lens module of the present invention shows the values of the images adjacent to the central axis in almost all fields, so that the corrected states of spherical aberration, meridian aberration and chromatic aberration are good, and appropriate resolution is achieved. It has a presence.
  • Figure 7 is a view showing a condensing state of the wide-field non-deteriorated infrared lens module according to the present invention
  • the lens module of the present invention is a double gauss lens in the form of an advantageous lens to minimize wide-angle, astigmatism, image curvature and distortion aberration It is provided in a modified form.
  • reference numerals a and b denote an imaging sensor and a sensor protection window, respectively.

Abstract

The present invention relates to a wide-field-of-view athermalization infrared lens module in which an infrared optical system of a thermal imaging device stably maintains a focal length in a wide temperature range through a combination of germanium and chalcogenide lenses. The lens module comprises: a lens system consisting of a first lens, a second lens, a third lens and a fourth lens; and an aperture disposed between the second lens and the third lens, wherein the first lens is provided with a convex surface (R1) having a positive refractive force on an object side, and with a concave surface (R2) having a negative refractive force on an upper side thereof, and is formed with a negative magnification as a whole; the second lens is provided, while disposed in the rear side of the first lens, with a convex surface (R3) having a positive refractive force on an object side, and with a concave surface (R4) having a negative refractive force on an upper side thereof, and is formed with a positive magnification as a whole; the third lens is provided, while disposed in the rear side of the second lens, with a concave surface (R5) having a negative refractive force on an object side, and with a concave surface (R6) having a negative refractive force on an upper side thereof, and is formed with a positive magnification as a whole; the fourth lens is provided, while disposed in the rear side of the third lens, with a convex surface (R7) having a positive refractive force on an object side, and with a concave surface (R8) having a negative refractive force on an upper side thereof, and is formed with a positive magnification as a whole; and the first lens is made of a germanium material, and the second lens, the third lens and the fourth lens are made of a chalcogenide material.

Description

광시야 비열화 적외선 렌즈모듈Wide field deteriorated infrared lens module
본 발명은 광시야 비열화 적외선 렌즈모듈에 관한 것으로서, 더욱 상세하게는 열영상 장비의 적외선 광학계가 게르마늄과 칼코게나이드 렌즈 조합을 통해 넓은 온도범위에서 초점거리가 안정적으로 유지되는 광시야 비열화 적외선 렌즈모듈에 관한 것이다.The present invention relates to a wide-field non-degradable infrared lens module, and more particularly, to an infrared optical system of a thermal imaging device, a wide-field non-degraded infrared ray in which a focal length is stably maintained over a wide temperature range through a combination of germanium and chalcogenide lenses. It relates to a lens module.
일반적으로, 열영상 장비는 사람이나 물체가 방출하는 적외선을 감지하여 영상으로 보여주는 장비로서, 이를 통해 야간이나 빛이 없는 곳에서 사람이나 물체의 위치 및 동태가 파악될 수 있다.In general, thermal imaging equipment is a device that detects and displays infrared rays emitted by a person or an object, through which the position and dynamics of the person or the object may be grasped at night or in the absence of light.
다만, 적외선은 일반 유리렌즈로는 투과율이 낮아 집광이 불량하여, 게르마늄(Ge), 황화아연(ZnS), 셀렌화아연(ZnSe) 등의 재질로 이루어진 적외선 전용 렌즈가 채용되는데, 이러한 적외선 렌즈들은 온도에 따른 굴절률 변화가 크고 재료의 분산능이 가시광선 영역에서 사용하는 재료들에 비하여 상대적으로 작은 특징이 있다.However, infrared rays have poor transmittance due to the low transmittance of ordinary glass lenses, and thus infrared infrared lenses made of materials such as germanium (Ge), zinc sulfide (ZnS), and zinc selenide (ZnSe) are employed. The refractive index changes with temperature and the dispersibility of the material is relatively small compared to the materials used in the visible region.
즉, 열영상 장비의 광학성능은 온도변화에 민감하기 때문에, 상온 근처의 좁은 온도 영역에서 사용할 때는 큰 문제가 되지 않지만, 구동온도 범위가 넓은 경우에는 비열화 보상이 요구되며, 비열화 보상 방법에는 기계적인 방법과 기능성 렌즈의 조합으로 보상하는 광학적인 방법이 있다.In other words, the optical performance of thermal imaging equipment is sensitive to temperature changes, so it is not a big problem when used in a narrow temperature range near room temperature, but non-degradation compensation is required when the driving temperature range is wide. There is an optical method of compensating by a combination of a mechanical method and a functional lens.
<특허문헌><Patent Documents>
(특허문헌 1) KR 10-1214601 B1 2012.12.14.(Patent Document 1) KR 10-1214601 B1 2012.12.14.
본 발명에서 해결하고자 하는 과제는, 재질과 면 형상이 다른 렌즈 조합을 통해 넓은 온도범위에서 초점거리의 변동이 작고, 수차가 최소화되는 광시야 비열화 적외선 렌즈모듈을 제공하고자 한다.The problem to be solved by the present invention is to provide a wide-field non-degradable infrared lens module with a small focal length fluctuation in a wide temperature range and aberration is minimized through lens combinations of different materials and surface shapes.
상기 과제를 해결하기 위한 본 발명의 광시야 비열화 적외선 렌즈모듈은, 제 1렌즈, 제 2렌즈, 제 3렌즈와 제 4렌즈로 이루어지는 렌즈계 및 상기 제 2렌즈와 제 3렌즈 사이에 배치되는 조리개를 포함하며, 상기 제 1렌즈는 물체측에 양의 굴절력을 갖는 볼록면(R1)이 형성되고, 상측에 음의 굴절력을 갖는 오목면(R2)이 형성되며, 전체적으로는 음의 배율로 형성되고, 상기 제 2렌즈는 상기 제 1렌즈의 후방에 배치된 상태에서 물체측에 양의 굴절력을 갖는 볼록면(R3)이 형성되고, 상측에 음의 굴절력을 갖는 오목면(R4)이 형성되며, 전체적으로는 양의 배율로 형성되며, 상기 제 3렌즈는 상기 제 2렌즈의 후방에 배치된 상태에서 물체측에 음의 굴절력을 갖는 오목면(R5)이 형성되고, 상측에 음의 굴절력을 갖는 오목면(R6)이 형성되며, 전체적으로는 양의 배율로 형성되고, 상기 제 4렌즈는 상기 제 3렌즈의 후방에 배치된 상태에서 물체측에 양의 굴절력을 갖는 볼록면(R7)이 형성되고, 상측에 음의 굴절력을 갖는 오목면(R8)이 형성되며, 전체적으로는 양의 배율로 형성되며, 상기 제 1렌즈는 게르마늄 재질로 이루어지고, 상기 제 2렌즈, 제 3렌즈 및 제 4렌즈는 칼코게나이드 재질로 이루어지는 것을 특징으로 한다.The wide-field non-degradable infrared lens module of the present invention for solving the above problems is a lens system consisting of a first lens, a second lens, a third lens and a fourth lens, and an aperture disposed between the second lens and the third lens. The first lens has a convex surface R1 having a positive refractive power on the object side, and a concave surface R2 having a negative refractive power on the image side, and is formed at a negative magnification as a whole. The second lens has a convex surface R3 having a positive refractive power on an object side in a state disposed behind the first lens, and a concave surface R4 having a negative refractive power on an image side. It is generally formed at a positive magnification, and the third lens has a concave surface R5 having a negative refractive power on an object side in a state disposed behind the second lens, and a concave having a negative refractive power on an image side. Plane R6 is formed, and overall, The fourth lens has a convex surface R7 having a positive refractive power on an object side and a concave surface R8 having a negative refractive power on an image side, while being disposed behind the third lens. The first lens is made of germanium, and the second lens, the third lens, and the fourth lens are made of chalcogenide.
또한, 본 발명의 광시야 비열화 적외선 렌즈모듈은, 상기 제 2렌즈, 제 3렌즈 및 제 4렌즈로 게르마늄(Ge)-셀레늄(Se)-텔루륨(Te)계 칼코겐화물 렌즈, 게르마늄-비소(As)-셀레늄계 칼코겐화물 렌즈 또는 게르마늄-비소-셀레늄-텔루륨계 칼코겐화물 렌즈가 선택적으로 채용되는 것을 특징으로 한다.In addition, the wide-field non-degradable infrared lens module of the present invention, the second lens, the third lens and the fourth lens, germanium (Ge)-selenium (Se)-tellurium (Te) -based chalcogenide lens, germanium- An arsenic (As) -selenium-based chalcogenide lens or a germanium-arsenic-selenium-tellurium-based chalcogenide lens is selectively employed.
또한, 본 발명의 광시야 비열화 적외선 렌즈모듈은, 상기 제 1렌즈가 물체측 볼록면(R1)이 구면으로 이루어지고, 상기 볼록면(R1)을 제외한 제 1렌즈의 상측 오목면(R2)과 잔여 렌즈의 양면(R3 ~ R8)은 모두 비구면으로 이루어지는 것을 특징으로 한다.In the wide-field non-deteriorated infrared lens module of the present invention, the first lens has an object-side convex surface R1 having a spherical surface, and the image-side concave surface R2 of the first lens except the convex surface R1. And both surfaces (R3 ~ R8) of the remaining lens is characterized in that made of aspherical surface.
또한, 본 발명의 광시야 비열화 적외선 렌즈모듈은, 아래의 조건 1을 만족하는 것을 특징으로 한다. In addition, the wide-field undeteriorated infrared lens module of the present invention is characterized by satisfying the condition 1 below.
[조건 1][Condition 1]
Zo1 > 0 [제 1렌즈의 구면(R1)]Zo1> 0 [Spherical lens of the first lens (R1)]
Za2 > 0 [제 1렌즈의 비구면(R2)]Za2> 0 [Aspherical surface (R2) of first lens]
Za3 > 0 [제 2렌즈의 비구면(R3)]Za3> 0 [Aspherical surface (R3) of second lens]
Za5 < 0 [제 3렌즈의 비구면(R5)]Za5 <0 [Aspherical surface (R5) of third lens]
Za6 < 0 [제 3렌즈의 비구면(R6)]Za6 <0 [Aspherical surface (R6) of third lens]
Za8 < 0 [제 4렌즈의 비구면(R8)]Za8 <0 [Aspherical surface (R8) of fourth lens]
아울러, 본 발명의 광시야 비열화 적외선 렌즈모듈은, F수가 1.0~1.5 범위에 있는 것을 특징으로 한다.In addition, the wide field undeteriorated infrared lens module of the present invention is characterized in that the F number is in the range of 1.0 to 1.5.
본 발명의 광시야 비열화 적외선 렌즈모듈에 의하면, 게르마늄 재질로 이루어지는 제 1렌즈와 칼코게나이드 재질로 이루어지는 제 2렌즈, 제 3렌즈 및 제 4렌즈를 통해 넓은 온도범위에서 초점거리의 변화가 최소화되고, 각 렌즈의 형상과 굴절력의 조합을 통해 색수차 등의 수차가 최소화되므로, 본 발명의 활용성 및 이를 채용한 장비의 이용 편의성이 증대될 수 있다.According to the wide-field non-degradable infrared lens module of the present invention, the change of focal length is minimized in a wide temperature range through the first lens made of germanium and the second lens, third lens, and fourth lens made of chalcogenide material. In addition, since aberration such as chromatic aberration is minimized through the combination of the shape and refractive power of each lens, the utility of the present invention and the ease of use of the equipment employing the same may be increased.
도 1은 본 발명에 따른 광시야 비열화 적외선 렌즈모듈의 렌즈 배열상태를 나타낸 개요도.1 is a schematic view showing a lens array state of the wide field undeteriorated infrared lens module according to the present invention.
도 2는 본 발명에 따른 광시야 비열화 적외선 렌즈모듈의 일 실시 예에 대한 온도별 MTF 곡선을 도시한 도면.2 is a view showing a temperature-specific MTF curve for one embodiment of a wide field undeteriorated infrared lens module according to the present invention.
도 3은 본 발명에 따른 광시야 비열화 적외선 렌즈모듈의 일 실시 예에 대한 광선수차(ray aberration)를 도시한 도면. 3 is a diagram illustrating a ray aberration of an embodiment of a wide field undeteriorated infrared lens module according to the present invention;
도 4는 본 발명에 따른 광시야 비열화 적외선 렌즈모듈의 일 실시 예에 대한 스폿 다이어그램을 도시한 도면.Figure 4 shows a spot diagram of an embodiment of a wide field undeteriorated infrared lens module according to the present invention.
도 5는 본 발명에 따른 광시야 비열화 적외선 렌즈모듈의 일 실시 예에 대한 왜곡수차를 도시한 도면.FIG. 5 is a diagram illustrating distortion aberration for one embodiment of a wide-field undeteriorated infrared lens module according to the present invention. FIG.
도 6은 본 발명에 따른 광시야 비열화 적외선 렌즈모듈의 일 실시 예에 대한 MTF 곡선을 도시한 도면.6 is a view showing an MTF curve for an embodiment of a wide field undeteriorated infrared lens module according to the present invention.
도 7은 본 발명에 따른 광시야 비열화 적외선 렌즈모듈의 집광상태를 도시한 도면.7 is a view showing a condensing state of a wide-field undeteriorated infrared lens module according to the present invention.
이하 첨부된 도면을 참조하여 본 발명의 바람직한 실시 예를 더욱 상세하게 설명한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명에 따른 광시야 비열화 적외선 렌즈모듈의 렌즈 배열상태를 나타낸 개요도이다. 도 1을 참조하면, 본 발명의 적외선 렌즈모듈은 제 1렌즈(10), 제 2렌즈(20), 제 3렌즈(30)와 제 4렌즈(40)로 이루어지는 렌즈계 및 상기 제 2렌즈(20)와 제 3렌즈(30) 사이에 배치되는 조리개(50)를 포함하여 구성된다.1 is a schematic view showing a lens arrangement of the wide field undeteriorated infrared lens module according to the present invention. Referring to FIG. 1, an infrared lens module of the present invention includes a lens system including a first lens 10, a second lens 20, a third lens 30, and a fourth lens 40, and the second lens 20. ) And the aperture 50 disposed between the third lens 30.
상기 제 1렌즈(10)는 물체측에 양의 굴절력을 갖는 볼록면(R1)이 형성되고, 상측에 음의 굴절력을 갖는 오목면(R2)이 형성되며, 전체적으로는 음의 배율로 형성된다.The first lens 10 has a convex surface R1 having a positive refractive power on an object side, a concave surface R2 having a negative refractive power on an image side, and is generally formed at a negative magnification.
또한, 제 1렌즈(10)는 열적외선의 빛을 조정할 수 있도록 고굴절의 특성을 갖는 것이 바람직하고, 외부 환경에 노출되는 특성상 충격에 강하며, 가공시 중금속 노출이 없는 게르마늄(Germanium) 렌즈를 채용하는 것이 바람직하다. In addition, the first lens 10 preferably has a high refractive index so as to adjust the light of thermal infrared rays, and is resistant to impact due to the characteristics exposed to the external environment, and employs a germanium lens without heavy metal exposure during processing. It is desirable to.
상기 제 2렌즈(20)는 상기 제 1렌즈(10)의 후방에 배치된 상태에서 물체측에 양의 굴절력을 갖는 볼록면(R3)이 형성되고, 상측에 음의 굴절력을 갖는 오목면(R4)이 형성되며, 전체적으로는 양의 배율로 형성된다.The second lens 20 has a convex surface R3 having a positive refractive power on an object side in a state disposed behind the first lens 10, and a concave surface R4 having a negative refractive power on an image side. ) Is formed and is formed at a positive magnification as a whole.
상기 제 3렌즈(30)는 상기 제 2렌즈(20)의 후방에 배치된 상태에서 물체측에 음의 굴절력을 갖는 오목면(R5)이 형성되고, 상측에 음의 굴절력을 갖는 오목면(R6)이 형성되며, 전체적으로는 양의 배율로 형성된다.The third lens 30 has a concave surface R5 having negative refractive power on an object side in a state disposed behind the second lens 20, and a concave surface R6 having negative refractive power on an image side. ) Is formed and is formed at a positive magnification as a whole.
상기 제 4렌즈(40)는 상기 제 3렌즈(30)의 후방에 배치된 상태에서 물체측에 양의 굴절력을 갖는 볼록면(R7)이 형성되고, 상측에 음의 굴절력을 갖는 오목면(R8)이 형성되며, 전체적으로는 양의 배율로 형성된다.The fourth lens 40 has a convex surface R7 having a positive refractive power on an object side in a state disposed behind the third lens 30, and a concave surface R8 having a negative refractive power on an image side. ) Is formed and is formed at a positive magnification as a whole.
상기 제 2렌즈(20), 제 3렌즈(30) 및 제 4렌즈(40)는 칼코겐과 게르마늄 등을 화합한 칼코게나이드(chalcogenide) 렌즈를 채용하는데, 상기 칼코게나이드 또한 고굴절 렌즈로서 열적외선의 빛을 조정할 수 있으며, 특히 가격이 저렴하고 가공성이 우수하여, 본 발명의 렌즈모듈을 채용한 열영상 장비의 제작비용을 낮출 수 있는 잇점이 있다.The second lens 20, the third lens 30, and the fourth lens 40 employ a chalcogenide lens in which chalcogen, germanium, and the like are combined. The chalcogenide is also used as a high refractive lens. Infrared light can be adjusted, in particular, low cost and excellent processability, there is an advantage that can lower the manufacturing cost of the thermal imaging equipment employing the lens module of the present invention.
구체적으로, 상기 제 2렌즈(20), 제 3렌즈(30) 및 제 4렌즈(40)로는 게르마늄(Ge)-셀레늄(Se)-텔루륨(Te)계 칼코겐화물 렌즈, 게르마늄-비소(As)-셀레늄계 칼코겐화물 렌즈 또는 게르마늄-비소-셀레늄-텔루륨계 칼코겐화물 렌즈가 선택적으로 채용될 수 있다.Specifically, the second lens 20, the third lens 30, and the fourth lens 40 are germanium (Ge) -selenium (Se) -telelium (Te) -based chalcogenide lens, germanium-arsenic ( As) -selenium-based chalcogenide lenses or germanium-arsenic-selenium-tellurium-based chalcogenide lenses may optionally be employed.
상기 조리개(50)는 상기 제 2렌즈(20)와 제 3렌즈(30)의 사이에 배치되되 상기 제 3렌즈(30)에 근접되게 배치되며, 상기 제 2렌즈(20)로부터 입사되는 빛이 선택적으로 수렴되도록 하는 기능을 한다.The diaphragm 50 is disposed between the second lens 20 and the third lens 30, but is disposed close to the third lens 30, the light incident from the second lens 20 It functions to selectively converge.
이하에서는 본 발명에 따른 렌즈모듈의 설계에 대해 상술한다.Hereinafter, the design of the lens module according to the present invention will be described in detail.
상기 제 1렌즈(10)의 물체측 볼록면(R1)은 구면으로 이루어지고, 상기 물체측 볼록면(R1)을 제외한 제 1렌즈(10)의 상측 오목면(R2)과 잔여 렌즈의 양면(R3 ~ R8)은 모두 비구면으로 이루어진다.The object-side convex surface R1 of the first lens 10 has a spherical surface, and the image-side concave surface R2 of the first lens 10 except for the object-side convex surface R1 and both surfaces of the residual lens ( R3 to R8) are all composed of aspherical surfaces.
또한, F수(유효초점거리/입사동크기)가 1.0 미만이면 각 렌즈들(10, 20, 30, 40)의 직경이 커지므로 수차의 보정이 어렵고, 1.5를 초과하면 각 렌즈들(10, 20, 30, 40)의 구경이 작아져 수자의 보정은 쉬워지나 센서에서 필요로 하는 빛을 집광하기가 어렵게 된다. 따라서 본 발명의 렌즈모듈은 F수가 1.0~1.5 범위 내에 있도록 렌즈설계가 이루어진다.In addition, if the F-number (effective focal length / incident pupil size) is less than 1.0, the diameters of the lenses 10, 20, 30, and 40 become large, so that the correction of aberration is difficult. The apertures of 20, 30, and 40 become smaller, so that the correction of the number becomes easier, but it becomes difficult to collect the light required by the sensor. Therefore, the lens module of the present invention is designed so that the number of F is in the range 1.0 ~ 1.5.
한편, 제1렌즈의 구면(R1)은 아래의 수학식 1로 계산된 새그(sag) Zo 값이, 그외의 렌즈 비구면(R2 ~ R8)은 수학식 2로 계산된 새그 Za 값이, 다음의 조건 1을 만족하도록 설계가 이루어진다.Meanwhile, the spherical surface R1 of the first lens has a sag Zo value calculated by Equation 1 below, and the other lens aspherical surfaces R2 through R8 have the sag Za value calculated by Equation 2 below. The design is made to satisfy condition 1.
[조건 1][Condition 1]
Zo1 > 0 [제 1렌즈의 구면(R1)]Zo1> 0 [Spherical lens of the first lens (R1)]
Za2 > 0 [제 1렌즈의 비구면(R2)]Za2> 0 [Aspherical surface (R2) of first lens]
Za3 > 0 [제 2렌즈의 비구면(R3)]Za3> 0 [Aspherical surface (R3) of second lens]
Za5 < 0 [제 3렌즈의 비구면(R5)]Za5 <0 [Aspherical surface (R5) of third lens]
Za6 < 0 [제 3렌즈의 비구면(R6)]Za6 <0 [Aspherical surface (R6) of third lens]
Za8 < 0 [제 4렌즈의 비구면(R8)]Za8 <0 [Aspherical surface (R8) of fourth lens]
[수학식 1][Equation 1]
Figure PCTKR2016005396-appb-I000001
Figure PCTKR2016005396-appb-I000001
[수학식 2][Equation 2]
Figure PCTKR2016005396-appb-I000002
Figure PCTKR2016005396-appb-I000002
여기서, C는 곡률(C=1/R, R은 렌즈의 곡률반경), Y는 렌즈높이, A, B, C', D는 렌즈 재질에 따라 결정되는 비구면 계수를 각각 나타낸다.Here, C denotes a curvature (C = 1 / R, R denotes a radius of curvature of the lens), Y denotes a lens height, and A, B, C ', and D denote aspherical coefficients determined according to lens materials.
또한, 다음의 표 1은 상기 조건 1을 만족하는 렌즈모듈의 기본데이터로서, 광학전장(OAL): 53 mm, 구경비(FNO): F/1.3, 초점거리(f): 5.44 mm, 수평화각(w): 90°로 하며, 제 1렌즈(10)로는 중국 Success Infrared사에서 제작한 게르마늄 렌즈에 대한 굴절률(Nd)과 제 2렌즈(20), 제 3렌즈(30), 제 4렌즈(40)로는 칼코게나이드 렌즈로서 독일의 Vitron사가 개발한 IG6렌즈에 대한 굴절률(Nd)을 채용하였다.In addition, Table 1 below is the basic data of the lens module satisfying the condition 1, the optical field (OAL): 53 mm, the aperture ratio (FNO): F / 1.3, the focal length (f): 5.44 mm, the horizontal angle of view ( w): 90 °, the refractive index (Nd) and the second lens 20, the third lens 30, the fourth lens 40 for the germanium lens manufactured by Success Infrared of China as the first lens 10 As the chalcogenide lens, the refractive index (Nd) of the IG6 lens developed by Vitron of Germany is adopted.
아울러, 표 2는 표 1의 렌즈모듈 중 비구면의 계수 값이다.In addition, Table 2 is a coefficient value of the aspherical surface of the lens module of Table 1.
렌즈면Lens surface 곡률반경(R)Bending Radius (R) 두께, 간격(d)Thickness, thickness (d) 굴절률(Nd)Refractive index (Nd) 비고Remarks
제1면(R1)First side (R1) 45.77745.777 3.503.50 4.0030734.003073 구면Spherical
제2면(R2)2nd side (R2) 20.18520.185 14.7714.77 -- 비구면Aspheric surface
제3면(R3)Page 3 (R3) 23.94823.948 8.698.69 2.7781002.778100 비구면Aspheric surface
제4면(R4)Fourth side (R4) 83.72083.720 7.487.48 -- 비구면Aspheric surface
조리개iris -- 1.941.94 -- --
제5면(R5)Page 5 (R5) -11.669-11.669 5.095.09 2.7781002.778100 비구면Aspheric surface
제6면(R6)Page 6 (R6) -11.657-11.657 2.532.53 -- 비구면Aspheric surface
제7면(R7)Page 7 (R7) 82.44882.448 9.009.00 2.7781002.778100 비구면Aspheric surface
제8면(R8)8th page (R8) -33.273-33.273 5.005.00 -- 비구면Aspheric surface
렌즈면Lens surface AA BB C'C ' DD
제2면(R2)2nd side (R2) -0.293058E-04-0.293058E-04 0.424897E-070.424897E-07 -0.123090E-09-0.123090E-09 --
제3면(R3)Page 3 (R3) -0.211321E-04-0.211321E-04 -0.367776E-08-0.367776E-08 -0.122402E-09-0.122402E-09 --
제4면(R4)Fourth side (R4) -0.159484E-04-0.159484E-04 -0.376906E-07-0.376906E-07 0.446695E-100.446695E-10 --
제5면(R5)Page 5 (R5) -0.272702E-03-0.272702E-03 0.437197E-05 0.437197E-05 -0.248986E-07-0.248986E-07 --
제6면(R6)Page 6 (R6) 0.114156E-030.114156E-03 -0.105147E-06-0.105147E-06 0.842029E-080.842029E-08 --
제7면(R7)Page 7 (R7) 0.204030E-030.204030E-03 -0.177893E-05-0.177893E-05 0.100941E-070.100941E-07 -0.340879E-10-0.340879E-10
제8면(R8)8th page (R8) 0.122776E-030.122776E-03 -0.851284E-07-0.851284E-07 -0.669398E-08-0.669398E-08 0.231370E-100.231370E-10
도 2 내지 도 7은 상기 표 1과 표 2의 값으로 이루어진 렌즈모듈에 대한 광학특성을 나타낸 분석 그래프이다.2 to 7 is an analysis graph showing the optical characteristics for the lens module consisting of the values of Table 1 and Table 2.
구체적으로, 도 2는 물체거리를 무한대로 하여 산출한 온도별 MTF 곡선을 나타낸 것으로서, 도 2에 도시되어 있는 바와 같이 -32도와 +43도에서 한계주파수가 29mm/cycles일 때 MTF 값이 약 0.32 이상이고, 이는 사양에 만족하는 MTF 값인 0.4의 80% 수준의 이상에 해당하는 값이며, 넓은 온도범위에서 해상도가 양호한 영상을 획득할 수 있음을 나타낸다.Specifically, FIG. 2 shows the MTF curve for each temperature calculated by infinitely the object distance. As shown in FIG. 2, when the limit frequency is 29mm / cycles at -32 degrees and +43 degrees, the MTF value is about 0.32. This value is equivalent to 80% or more of 0.4, which is an MTF value satisfying the specification, and indicates that an image having a good resolution can be obtained in a wide temperature range.
도 3은 물체거리를 무한대로 하여 산출한 광선수차(ray aberration)를 나타낸 것으로서, 자오상면 만곡과 구결상면 만곡을 40.00°, 54.09°인 광축 상에서 나타낸 것이다. FIG. 3 shows ray aberrations calculated from infinite object distances, showing meridians and curves on the optical axis at 40.00 ° and 54.09 °.
도 4는 물체거리를 무한대로 하여 산출한 스폿 다이어그램을 나타낸 것으로서, 각종 수차를 종합적으로 나타낸 것이며, 광선을 추적하기 위해 입사동을 수백 또는 수천 개의 그물눈(mesh)으로 나누고, 물체상의 한 점에서 각각의 그물눈으로 광선을 추적하여 각각의 광선의 위치를 상면 상에 점(sopt)으로 표시한 것이다. 도 4에서 중심 3개의 원은 각각 필드에 대한 스폿 다이어그램을 나타내며, 중심으로부터 분산되는 점이 많을수록 수차가 커짐을 의미한다.4 is a spot diagram calculated by infinite object distance, which shows various aberrations, dividing the incident pupil into hundreds or thousands of meshes to track rays, and at each point on the object. The ray is traced with a mesh of, indicating the position of each ray as a spot on the top surface. In FIG. 4, the center three circles each represent a spot diagram for a field, and the more the points are dispersed from the center, the larger the aberration.
도 5는 물체거리를 무한대로 하여 산출한 왜곡수차를 나타낸 것으로서, 화면이 곡선으로 휘어 보이는 정도를 나타낸 것이다. 5 shows distortion aberrations calculated by infinite object distances, and shows the degree of curvature of the screen.
도 6은 물체거리를 무한대로 하여 산출한 해상도의 MTF(Modulation Transfer Functions)곡선을 나타낸 것으로서, 검출기 픽셀 크기를 17μm하고 한계주파수를 29mm/cycles로 하였을 때 MTF값이 0.411로 산출되는데, 통상 0.4 이상의 값을 가지면 해상도가 양호한 것으로 인정된다. 6 shows a Modulation Transfer Functions (MTF) curve having a resolution calculated at an infinite object distance. The MTF value is calculated to be 0.411 when the detector pixel size is 17 μm and the limit frequency is 29 mm / cycles. The value is considered to be good resolution.
도 3 내지 도 6에서 나타낸 바와 같이, 본 발명의 렌즈모듈은 거의 모든 필드에서 상들의 값이 중심축에 인접하게 나타나고 있어, 구면수차, 자오상면 수차 및 색수차의 보정 상태가 양호하고, 적정 해상도를 가짐을 나타낸다.As shown in Figs. 3 to 6, the lens module of the present invention shows the values of the images adjacent to the central axis in almost all fields, so that the corrected states of spherical aberration, meridian aberration and chromatic aberration are good, and appropriate resolution is achieved. It has a presence.
아울러, 도 7은 본 발명에 따른 광시야 비열화 적외선 렌즈모듈의 집광상태를 도시한 도면으로서, 본 발명의 렌즈모듈은 광각, 비점수차, 상면만곡 및 왜곡수차 최소화하기 유리한 렌즈형태인 이중 가우스렌즈 형태를 변형한 구조로 제공된다. 여기서, 도면부호 a,b는 각각 이미징 센서 및 센서 보호 윈도우를 나타낸다.In addition, Figure 7 is a view showing a condensing state of the wide-field non-deteriorated infrared lens module according to the present invention, the lens module of the present invention is a double gauss lens in the form of an advantageous lens to minimize wide-angle, astigmatism, image curvature and distortion aberration It is provided in a modified form. Here, reference numerals a and b denote an imaging sensor and a sensor protection window, respectively.
이상에서 본 발명의 바람직한 실시 예를 설명하였으나, 본 발명의 권리범위는 이에 한정되지 아니하며 본 발명의 실시 예와 실질적으로 균등한 범위에 있는 것까지 본 발명의 권리범위가 미치는 것으로 이해되어야 하며, 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형 실시가 가능하다.Although the preferred embodiment of the present invention has been described above, the scope of the present invention is not limited thereto, and it should be understood that the scope of the present invention extends to the range that is substantially equivalent to the embodiment of the present invention. Various modifications can be made by those skilled in the art without departing from the spirit of the invention.

Claims (5)

  1. 제 1렌즈, 제 2렌즈, 제 3렌즈와 제 4렌즈로 이루어지는 렌즈계 및 상기 제 2렌즈와 제 3렌즈 사이에 배치되는 조리개를 포함하며,A lens system including a first lens, a second lens, a third lens, and a fourth lens, and an aperture disposed between the second lens and the third lens,
    상기 제 1렌즈는 물체측에 양의 굴절력을 갖는 볼록면(R1)이 형성되고, 상측에 음의 굴절력을 갖는 오목면(R2)이 형성되며, 전체적으로는 음의 배율로 형성되고,The first lens has a convex surface R1 having a positive refractive power on the object side, a concave surface R2 having a negative refractive power on the image side, and is formed at a negative magnification as a whole.
    상기 제 2렌즈는 상기 제 1렌즈의 후방에 배치된 상태에서 물체측에 양의 굴절력을 갖는 볼록면(R3)이 형성되고, 상측에 음의 굴절력을 갖는 오목면(R4)이 형성되며, 전체적으로는 양의 배율로 형성되며,In the state where the second lens is disposed behind the first lens, a convex surface R3 having a positive refractive power is formed on an object side, and a concave surface R4 having a negative refractive power is formed on an image side. Is formed at a positive magnification,
    상기 제 3렌즈는 상기 제 2렌즈의 후방에 배치된 상태에서 물체측에 음의 굴절력을 갖는 오목면(R5)이 형성되고, 상측에 음의 굴절력을 갖는 오목면(R6)이 형성되며, 전체적으로는 양의 배율로 형성되고, In the third lens, the concave surface R5 having negative refractive power is formed on the object side and the concave surface R6 having negative refractive power is formed on the object side while being disposed behind the second lens. Is formed at a positive magnification,
    상기 제 4렌즈는 상기 제 3렌즈의 후방에 배치된 상태에서 물체측에 양의 굴절력을 갖는 볼록면(R7)이 형성되고, 상측에 음의 굴절력을 갖는 오목면(R8)이 형성되며, 전체적으로는 양의 배율로 형성되며, In the fourth lens, a convex surface R7 having a positive refractive power is formed on an object side in a state disposed behind the third lens, and a concave surface R8 having a negative refractive power is formed on an image side. Is formed at a positive magnification,
    상기 제 1렌즈는 게르마늄 재질로 이루어지고, 상기 제 2렌즈, 제 3렌즈 및 제 4렌즈는 칼코게나이드 재질로 이루어지는 것을 특징으로 하는 광시야 비열화 적외선 렌즈모듈.The first lens is made of germanium material, the second lens, the third lens and the fourth lens is a wide-field non-deteriorated infrared lens module, characterized in that made of chalcogenide material.
  2. 제 1항에 있어서,The method of claim 1,
    상기 제 2렌즈, 제 3렌즈 및 제 4렌즈로는 게르마늄(Ge)-셀레늄(Se)-텔루륨(Te)계 칼코겐화물 렌즈, 게르마늄-비소(As)-셀레늄계 칼코겐화물 렌즈 또는 게르마늄-비소-셀레늄-텔루륨계 칼코겐화물 렌즈가 선택적으로 채용되는 것을 특징으로 하는 광시야 비열화 적외선 렌즈모듈.The second lens, the third lens, and the fourth lens may include a germanium (Ge) -selenium (Se) -telelium (Te) -based chalcogenide lens, a germanium-arsenic (As) -selenium-based chalcogenide lens, or germanium. -Wide field non-degradable infrared lens module, characterized in that the arsenic- selenium- tellurium-based chalcogenide lens is selectively employed.
  3. 제 1항에 있어서,The method of claim 1,
    상기 제 1렌즈는 물체측 볼록면(R1)이 구면으로 이루어지고, 상기 볼록면(R1)을 제외한 제 1렌즈의 상측 오목면(R2)과 잔여 렌즈의 양면(R3 ~ R8)은 모두 비구면으로 이루어지는 것을 특징으로 하는 광시야 비열화 적외선 렌즈모듈.The first lens has an object-side convex surface R1 having a spherical surface, and the image-side concave surface R2 of the first lens except the convex surface R1 and both surfaces R3 to R8 of the remaining lens are aspherical. Wide field deteriorated infrared lens module, characterized in that made.
  4. 제 3항에 있어서,The method of claim 3, wherein
    아래의 조건 1을 만족하는 것을 특징으로 하는 광시야 비열화 적외선 렌즈모듈.Wide field undeteriorated infrared lens module, characterized in that to satisfy the following condition 1.
    [조건 1][Condition 1]
    Zo1 > 0 [제1렌즈의 구면(R1)]Zo1> 0 [Spherical surface of the first lens (R1)]
    Za2 > 0 [제1렌즈의 비구면(R2)]Za2> 0 [Aspherical surface (R2) of first lens]
    Za3 > 0 [제2렌즈의 비구면(R3)]Za3> 0 [Aspherical surface (R3) of second lens]
    Za5 < 0 [제3렌즈의 비구면(R5)]Za5 <0 [Aspherical surface (R5) of third lens]
    Za6 < 0 [제3렌즈의 비구면(R6)]Za6 <0 [Aspherical surface (R6) of third lens]
    Za8 < 0 [제4렌즈의 비구면(R8)]Za8 <0 [Aspherical surface (R8) of fourth lens]
    여기서, Zo은 구면의 새그 값을 나타내고 Za는 비구면의 새그 값을 나타낸다.Here, Zo represents the sag value of the spherical surface and Za represents the sag value of the aspherical surface.
  5. 제 4항에 있어서,The method of claim 4, wherein
    F수가 1.0~1.5 범위에 있는 것을 특징으로 하는 광시야 비열화 적외선 렌즈모듈.A wide field of view deteriorated infrared lens module, characterized in that the number of F is in the range of 1.0 to 1.5.
PCT/KR2016/005396 2015-05-22 2016-05-20 Wide-field-of-view athermalization infrared lens module WO2016190625A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150071783A KR101838988B1 (en) 2015-05-22 2015-05-22 Wide Viewing Athermalized Infrared Lens Module
KR10-2015-0071783 2015-05-22

Publications (1)

Publication Number Publication Date
WO2016190625A1 true WO2016190625A1 (en) 2016-12-01

Family

ID=57394091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/005396 WO2016190625A1 (en) 2015-05-22 2016-05-20 Wide-field-of-view athermalization infrared lens module

Country Status (2)

Country Link
KR (1) KR101838988B1 (en)
WO (1) WO2016190625A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109324392A (en) * 2018-12-11 2019-02-12 中国科学院长春光学精密机械与物理研究所 A kind of intermediate waves broadband infrared optical system and remote sensing optical device
CN111213080A (en) * 2019-06-20 2020-05-29 深圳市汇顶科技股份有限公司 Lens, fingerprint identification device and electronic equipment
CN114624855A (en) * 2020-12-10 2022-06-14 宁波舜宇车载光学技术有限公司 Optical lens and electronic device
JP7411664B2 (en) 2019-01-04 2024-01-11 エルジー イノテック カンパニー リミテッド Optical system and camera module including it

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101810969B1 (en) * 2016-12-02 2017-12-21 (주)토핀스 Wide Field of View Long Wave Length Infrared Optical System with the Minimized Image Distortion
WO2019052200A1 (en) 2017-09-14 2019-03-21 浙江舜宇光学有限公司 Optical imaging camera
TWI647505B (en) * 2017-12-12 2019-01-11 新鉅科技股份有限公司 Four-piece infrared single wavelength lens system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0627368A (en) * 1990-10-09 1994-02-04 Thomson Trt Defense Infrared ray objective device
KR20080037175A (en) * 2006-10-25 2008-04-30 현동훈 Optical system for thermal sensing device of ultra compact using aspherical
JP2011186071A (en) * 2010-03-05 2011-09-22 Tamron Co Ltd Infrared zoom lens
KR101214601B1 (en) * 2012-07-23 2012-12-21 (주)토핀스 Athermalized infrared lens module
JP2013225019A (en) * 2012-04-20 2013-10-31 Tamron Co Ltd Infrared zoom lens

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0627368A (en) * 1990-10-09 1994-02-04 Thomson Trt Defense Infrared ray objective device
KR20080037175A (en) * 2006-10-25 2008-04-30 현동훈 Optical system for thermal sensing device of ultra compact using aspherical
JP2011186071A (en) * 2010-03-05 2011-09-22 Tamron Co Ltd Infrared zoom lens
JP2013225019A (en) * 2012-04-20 2013-10-31 Tamron Co Ltd Infrared zoom lens
KR101214601B1 (en) * 2012-07-23 2012-12-21 (주)토핀스 Athermalized infrared lens module

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109324392A (en) * 2018-12-11 2019-02-12 中国科学院长春光学精密机械与物理研究所 A kind of intermediate waves broadband infrared optical system and remote sensing optical device
CN109324392B (en) * 2018-12-11 2021-07-16 中国科学院长春光学精密机械与物理研究所 Medium-short wave broadband infrared optical system and remote sensing optical equipment
JP7411664B2 (en) 2019-01-04 2024-01-11 エルジー イノテック カンパニー リミテッド Optical system and camera module including it
CN111213080A (en) * 2019-06-20 2020-05-29 深圳市汇顶科技股份有限公司 Lens, fingerprint identification device and electronic equipment
CN111213080B (en) * 2019-06-20 2021-07-23 深圳市汇顶科技股份有限公司 Lens, fingerprint identification device and electronic equipment
CN114624855A (en) * 2020-12-10 2022-06-14 宁波舜宇车载光学技术有限公司 Optical lens and electronic device

Also Published As

Publication number Publication date
KR101838988B1 (en) 2018-03-16
KR20160137830A (en) 2016-12-01

Similar Documents

Publication Publication Date Title
WO2016190625A1 (en) Wide-field-of-view athermalization infrared lens module
WO2017023086A1 (en) Imaging lens
CN202230238U (en) Optical lens group for camera shooting
CN104635324B (en) Image capturing lens assembly, image capturing device and mobile terminal
CN113156611B (en) Optical lens and imaging apparatus
CN107272153A (en) Optical lens
CN110596857B (en) Wide-angle lens and imaging apparatus
CN113031230B (en) Super wide-angle lens and imaging device
CN104035189A (en) Zoom lens
CN215575895U (en) Fixed focus lens
CN101995646B (en) Image-taking lens system
CN210720846U (en) Optical system, image capturing device and electronic device
CN209961992U (en) Optical system and imaging lens
CN110737072A (en) optical lens and electronic device
CN112444939A (en) Optical system, image capturing device and electronic device
CN216083236U (en) Fixed focus lens
CN212321968U (en) Large-image-plane high-resolution fisheye lens
CN211375167U (en) Large-light-transmission high-resolution optical imaging lens
CN211698374U (en) Optical lens, camera module and electronic equipment
CN111007658B (en) Low-cost athermal day and night lens and working method thereof
CN114185161A (en) Optical system, lens module and electronic equipment
CN113126265A (en) Fixed focus lens
KR101730030B1 (en) Infrared Lens Module
CN216083243U (en) 25mm focal length lens
US20220390722A1 (en) Wide-angle lens assembly

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16800264

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16800264

Country of ref document: EP

Kind code of ref document: A1