JP2596827B2 - Endoscope objective lens - Google Patents

Endoscope objective lens

Info

Publication number
JP2596827B2
JP2596827B2 JP1114068A JP11406889A JP2596827B2 JP 2596827 B2 JP2596827 B2 JP 2596827B2 JP 1114068 A JP1114068 A JP 1114068A JP 11406889 A JP11406889 A JP 11406889A JP 2596827 B2 JP2596827 B2 JP 2596827B2
Authority
JP
Japan
Prior art keywords
lens
group
endoscope objective
objective lens
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1114068A
Other languages
Japanese (ja)
Other versions
JPH02293709A (en
Inventor
弘之 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optic Co Ltd filed Critical Olympus Optic Co Ltd
Priority to JP1114068A priority Critical patent/JP2596827B2/en
Priority to US07/520,501 priority patent/US5175650A/en
Publication of JPH02293709A publication Critical patent/JPH02293709A/en
Application granted granted Critical
Publication of JP2596827B2 publication Critical patent/JP2596827B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Lenses (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、内視鏡の対物レンズに関するものである。Description: TECHNICAL FIELD The present invention relates to an objective lens of an endoscope.

[従来の技術] 内視鏡の対物レンズとして、特開昭62−173415号に記
載されたものが知られている。この対物レンズは、全長
が長く、レンズ外径が像径に比べて大きい等の欠点があ
った。
[Prior Art] As an objective lens of an endoscope, a lens described in JP-A-62-173415 is known. This objective lens has disadvantages such as a long overall length and a lens outer diameter that is larger than the image diameter.

又、特開昭63−26123号に記載された対物レンズがあ
る。この対物レンズは、画角が狭いにも拘らず歪曲収差
が多く発生して周辺の像が歪む等の欠点があった。
There is also an objective lens described in JP-A-63-26123. This objective lens has a drawback in that although the angle of view is narrow, a large amount of distortion occurs and the peripheral image is distorted.

[発明が解決しようとする課題] 本発明は、全長が短く外径が小さく、広角であって、
歪曲収差が良好に補正されている内視鏡対物レンズを提
供することを目的とするものである。
[Problems to be Solved by the Invention] The present invention has a short overall length, a small outer diameter, a wide angle,
It is an object of the present invention to provide an endoscope objective lens in which distortion is satisfactorily corrected.

[課題を解決するための手段] 本発明の内視鏡対物レンズは、前記の目的を達成する
ために次のような構成としたものである。
[Means for Solving the Problems] The endoscope objective lens of the present invention has the following configuration to achieve the above object.

即ち、例えば第1図のような構成で、絞りをはさんで
前群と後群とで構成し、そのうち前群は、物体側より、
全体として負のパワーを有する第1群と1枚又は接合レ
ンズよりなり正のパワーを有する第2群とにて構成さ
れ、又後群は少なくとも1組の正レンズと負レンズの接
合レンズを含む正のレンズ群のみで構成されている。そ
して次の条件(1),(2)を満足するレンズ系であ
る。
That is, for example, in a configuration as shown in FIG. 1, the front unit and the rear unit are sandwiched by an aperture.
The first lens unit includes a first unit having a negative power as a whole and a second unit having one or more cemented lenses and having a positive power. The rear unit includes at least one cemented lens of a positive lens and a negative lens. It comprises only a positive lens group. The lens system satisfies the following conditions (1) and (2).

(1)0.33f<fp<11.5f (2)|nrp−nrn|>0.2 ただし、fpは前群の第2群の焦点距離、fは全系の焦
点距離、nrp,nrnは夫々後群の接合レンズの正レンズお
よび負のパワーを持つレンズの夫々の屈折率である。
(1) 0.33f <f p < 11.5f (2) | n rp -n rn |> 0.2 , however, f p is the focal length of the second lens group of the front group, f is the focal length of the entire system, n rp, n rn is the refractive index of each of the positive and negative power lenses of the cemented lens in the rear group.

本発明の光学系は、絞りの前に正の屈折力を配置する
ことによって、像面から逆に光線追跡した時、絞りより
後側から射出して来る光線の傾き減じる作用を持たせる
ことが出来、歪曲収差の補正にとって有利である。また
この正の屈折力のレンズによって、絞りの前が負のレン
ズのみで構成することによってレンズ系が非対称になる
のを緩和する作用を有し、これによってコマ収差の補正
にとって有利である。
The optical system of the present invention, by arranging a positive refractive power in front of the stop, can have a function of reducing the inclination of light rays emitted from the rear side of the stop when tracing light backward from the image plane. This is advantageous for correcting distortion. In addition, the lens having the positive refractive power has a function of alleviating the lens system from being asymmetric by forming only the negative lens in front of the stop, which is advantageous for correction of coma.

この絞りの前の正のレンズ成分の焦点距離は、全系の
焦点距離の11.5倍以上であると、つまり条件(1)の上
限を越えると下側コマを正に補正することが難しくな
り、歪曲収差の補正も難しくなる。一方全系の焦点距離
の0.33倍以下であるとつまり条件(1)の下限を越える
と前群の個々のレンズのパワーが強くなり過ぎてコマ収
差と非点収差が補正しにくくなる。
If the focal length of the positive lens component before this stop is 11.5 times or more of the focal length of the entire system, that is, if the upper limit of the condition (1) is exceeded, it becomes difficult to correct the lower coma positively. Correction of distortion is also difficult. On the other hand, if the focal length of the entire system is 0.33 times or less, that is, if the lower limit of the condition (1) is exceeded, the power of each lens in the front group becomes too strong, and it becomes difficult to correct coma and astigmatism.

又後群の接合レンズは、その両レンズの屈折率差をつ
けることによって球面収差と上側コマ収差を補正するよ
うにした。この接合レンズの正レンズと負レンズの屈折
率差が条件(2)を外れ0.2以下であると球面収差と上
側コマ収差の補正が困難になる。
In the cemented lens of the rear group, the spherical aberration and the upper coma are corrected by giving the refractive index difference between the two lenses. If the refractive index difference between the positive lens and the negative lens of the cemented lens is out of the condition (2) and is 0.2 or less, it becomes difficult to correct spherical aberration and upper coma.

また本発明の対物レンズにおいて、接合レンズを後群
中の最も像面寄に配置することが望ましい。
Further, in the objective lens according to the present invention, it is desirable that the cemented lens is arranged closest to the image plane in the rear group.

前述の特開昭62−173415号に記載された対物レンズ
は、レンズ系の最終面近傍に比較的外径の大きいメニス
カスレンズが配置されている。しかしメニスカスレンズ
は、加工性が悪く、又レンズ全体にわたって肉薄である
ために強度が弱く、偏芯による影響が大で、それによっ
て非点収差が発生し、内視鏡のような光学系中にこのよ
うなメニスカスレンズを用いることは好ましくない。ま
た、前記従来の対物レンズは、レンズ要素の数が多いた
めに、全長が長くなり、軸外光の射出瞳が像面に近づく
ために周辺光量が低下する等の欠点があった。
In the objective lens described in the above-mentioned Japanese Patent Application Laid-Open No. Sho 62-173415, a meniscus lens having a relatively large outer diameter is arranged near the final surface of the lens system. However, the meniscus lens is poor in workability, and has a low strength due to the thinness over the entire lens, and is greatly affected by eccentricity, thereby causing astigmatism. It is not preferable to use such a meniscus lens. In addition, the conventional objective lens has a drawback that the total length is long due to the large number of lens elements, and the peripheral light quantity is reduced because the exit pupil of off-axis light approaches the image plane.

本発明では接合レンズを最も像側に配置することによ
って、強度の弱いメニスカスレンズを用いずにすみ、又
倍率の色収差を補正することが出来る。
In the present invention, by disposing the cemented lens closest to the image, it is not necessary to use a weak meniscus lens, and chromatic aberration of magnification can be corrected.

更に本発明の対物レンズにおいて、前群に配置した正
のレンズ成分を接合レンズにし、下記の条件(3)を満
足するようにすることが望ましい。
Further, in the objective lens according to the present invention, it is desirable that the positive lens component arranged in the front group be a cemented lens so as to satisfy the following condition (3).

(3)|nff−nfr|>0.1 ただし、nff,nfrは前記の接合レンズの物体側のレン
ズ及び像側のレンズの屈折率である。
(3) | n ff −n fr |> 0.1 where n ff and n fr are the refractive indices of the object-side lens and the image-side lens of the cemented lens.

このように絞りの前に配置した正の接合レンズの両レ
ンズに屈折率差をつけることによって接合面で球面収差
と下側コマ収差を補正することが出来る。
In this way, by providing a refractive index difference between the two lenses of the positive cemented lens disposed before the stop, it is possible to correct spherical aberration and lower coma at the cemented surface.

この屈折率差が0.1以下であると球面収差と下側コマ
収差を良好に補正出来なくなる。
If this refractive index difference is less than 0.1, spherical aberration and lower coma cannot be satisfactorily corrected.

更に本発明の対物レンズにおいて次の条件(4)を満
足することが好ましい。
Furthermore, it is preferable that the objective lens of the present invention satisfies the following condition (4).

(4)0.2f<D<5f ただしDは後群中の最も物体側のレンズと接合レンズ
のうちの最も像側におかれたものとの間の最大空気換算
長である。
(4) 0.2f <D <5f where D is the maximum air-equivalent length between the lens closest to the object in the rear group and the lens closest to the image among the cemented lenses.

上記のようにすることによって、後群の接合レンズを
絞りから離すことができ、したがってこの接合レンズの
接合面の高い位置を軸外光線が通るようにすることが出
来る。これによって、倍率の色収差を良好に補正し得る
ようになり、又前群の凹レンズとの距離を長くとり得る
ので、各レンズのパワーを弱く出来、コマ収差と非点収
差の補正にとって有利である。また上記の間隔に赤外線
のような撮像に不必要な波長の光をカットする光学フィ
ルターを挿入することが出来望ましい。
In this manner, the cemented lens in the rear group can be moved away from the stop, and thus the off-axis rays can pass through a high position of the cemented surface of the cemented lens. Thereby, the chromatic aberration of magnification can be favorably corrected, and the distance to the concave lens in the front group can be increased, so that the power of each lens can be weakened, which is advantageous for correction of coma and astigmatism. . In addition, an optical filter that cuts light having a wavelength unnecessary for imaging, such as infrared light, can be inserted into the above-mentioned interval, which is desirable.

条件(4)においてDの値が小さすぎてこの条件の下
限以下になると光学フィルター等の光学素子を配置する
間隔がとれなくなる。また逆にDの値が大きすぎて条件
の上限を越えるとレンズ系の全長が長くなりコンパクト
化出来ない不具合が生ずる。
If the value of D in the condition (4) is too small and falls below the lower limit of the condition, the interval for arranging optical elements such as an optical filter cannot be obtained. On the other hand, if the value of D is too large and exceeds the upper limit of the condition, the overall length of the lens system becomes long, which causes a problem that it cannot be made compact.

更に本発明の内視鏡対物レンズにおいては、非球面を
用いることによって歪曲収差,像面わん曲を良好に補正
することが出来る。
Furthermore, in the endoscope objective lens of the present invention, distortion and image surface curvature can be favorably corrected by using an aspherical surface.

後に述べる実施例においては、明るさ絞りSより前に
配置された前群の各レンズのうちの一つのレンズの物体
側の面が、その曲率が光軸から離れるにつれて徐々に強
くなるような面を有するか、明るさ絞りSより前に配置
された前群のうちの一つのレンズの像側の面が、その曲
率が光軸から離れるにつれて徐々に弱くなるような面を
有するかのいずれか一方の面を一つ以上有するか、ある
いは明るさ絞りSより後方に配置された後群のうちの一
つのレンズの物体側の面が、その曲率が光軸から離れる
につれて徐々に弱くなる部分を含む面を有するか、明る
さ絞りSより後方に配置された後群のうちの一つのレン
ズの像側の面が、その曲率が光軸から離れるにつれて徐
々に強くなるような面を有するかの少なくともいずれか
一方の面を一つ以上有するようにしたものである。
In an embodiment to be described later, the surface on the object side of one of the lenses of the front group disposed before the aperture stop S has a surface whose curvature gradually increases as the distance from the optical axis increases. Or the image-side surface of one of the lenses in the front group disposed before the aperture stop S has a surface whose curvature gradually becomes weaker as the distance from the optical axis increases. One or more surfaces, or the object-side surface of one of the lenses in the rear group disposed behind the aperture stop S has a portion where the curvature gradually decreases as the distance from the optical axis increases. Whether the surface on the image side of one of the lenses in the rear group disposed behind the aperture stop S has a surface whose curvature gradually increases as the distance from the optical axis increases. At least one surface It is obtained by way.

次に以上のような内視鏡対物レンズが歪曲収差と像面
湾曲の両方を十分良好に補正し得ることについての理由
を説明する。
Next, the reason why the endoscope objective lens as described above can sufficiently correct both distortion and field curvature will be described.

第21図に示すような構成の従来の内視鏡対物レンズが
負の強い歪曲収差を発生するのは、像側から主光線を逆
に追跡した時、像高の増大と共に主光線が明るさ絞りS
よりも前の前群および明るさ絞りより後の後群によって
画角の広がる方向に屈折されることにある。したがって
光軸から離れるにつれて主光線の屈折力が弱くなる非球
面をレンズ系中に設けることによって強い負の歪曲収差
を補正することが出来る。
The reason that the conventional endoscope objective lens having the configuration shown in FIG. 21 generates a strong negative distortion is that when the principal ray is traced in reverse from the image side, the principal ray becomes brighter as the image height increases. Aperture S
That is, the light is refracted in a direction in which the angle of view is widened by the front group before the lens and the rear group after the aperture stop. Therefore, strong negative distortion can be corrected by providing an aspherical surface in the lens system in which the refractive power of the principal ray becomes weaker as the distance from the optical axis increases.

そのためには、明るさ絞りSよりも前の前群中の1枚
のレンズの物体側の面が光軸から離れるにつれて面の曲
率が強くなるような部分を含むようにするか、あるいは
前群中の1枚のレンズの像側の面が光軸から離れるにつ
れて曲率が徐々に弱くなる部分を含むようにするか、あ
るいは明るさ絞りSよりも後の後群の中の1枚のレンズ
の物体側の面が、光軸から離れるにつれて面の曲率が弱
くなるような部分を含むようにするか、あるいは後群の
中の1枚のレンズの像側の面が光軸から離れるにつれて
面の曲率が強くなるような部分を含むようにすればよ
い。
For this purpose, the surface on the object side of one of the lenses in the front group before the aperture stop S includes a portion where the curvature of the surface increases as the distance from the optical axis increases, or Either include a portion where the curvature gradually decreases as the image-side surface of one of the lenses on the image side moves away from the optical axis, or one of the lenses in the rear group after the aperture stop S. The object-side surface may include a portion where the curvature of the surface becomes weaker as the distance from the optical axis increases, or the image-side surface of one lens in the rear group moves away from the optical axis. What is necessary is just to include the part which curvature becomes strong.

上記の光軸より離れるにつれて曲率が徐々に強くなる
ような面としては、第22図,第23図に示すような非球面
も有効である。この場合、曲率は符号を含めて考えて、
その面のある点における接触円の中心が面の物体側にあ
れば負、像側にあれば正とする。したがって第22図に示
す例は、符号も含めて考え、曲率が光軸から離れるにつ
れて増大する(物体側に凹である負の曲率から物体側に
凸である正の曲率へ増大する)例である。又第23図に示
す例は、曲率が一度増大した後に次に減少する例であ
る。
An aspheric surface as shown in FIGS. 22 and 23 is also effective as a surface whose curvature gradually increases as the distance from the optical axis increases. In this case, considering the curvature including the sign,
If the center of the osculating circle at a certain point on the surface is on the object side of the surface, it is negative; if it is on the image side, it is positive. Therefore, the example shown in FIG. 22 is an example in which the curvature increases with increasing distance from the optical axis (the negative curvature that is concave on the object side increases to the positive curvature that is convex on the object side), including the sign. is there. The example shown in FIG. 23 is an example in which the curvature once increases and then decreases.

第23図に示すような面においても歪曲収差が補正でき
るのは、歪曲収差の収差曲線が第24図に示すようにうね
りをもっていても実用上さしつかえないことと、第23図
に示す非球面のうち、周辺部分は下側光線は通っても主
光線は通らないので歪曲収差の補正には関係しないから
である。
The distortion can be corrected even on the surface as shown in FIG. 23 because the distortion curve of distortion cannot be practically used even if it has undulation as shown in FIG. 24, and the aspherical surface shown in FIG. Of these, the peripheral portion does not pass through the lower ray but does not pass through the principal ray, and thus has no relation to the correction of distortion.

またレンズの像側の面の曲率が光線が離れるにつれて
曲率が徐々に弱くなる部分を含む曲面の例としては、第
25図,第26図のような形状のものもある。
Further, as an example of a curved surface including a portion in which the curvature of the image-side surface of the lens gradually becomes weaker as the light rays move away,
25 and 26 are also available.

以上説明したように、本発明の内視鏡対物レンズの前
群に設けられる非球面は、レンズの物体側の面に設けら
れた場合は、第22図,第23図に示すような面も含めて、
少なくともその一面に、曲率が徐々に強くなっていく部
分を含む面であり、像側の面に設けられる場合は、第25
図,第26図のような面等をも含めて少なくともその一部
の曲率が徐々に強くなって行く部分を含む面である。そ
してこの非球面を少なくとも一つ含む対物レンズは、歪
曲収差を良好に補正し得る。
As described above, when the aspheric surface provided in the front group of the endoscope objective lens of the present invention is provided on the object-side surface of the lens, the surface as shown in FIGS. Including,
At least one surface includes a portion where the curvature gradually increases.
26, including the surface as shown in FIG. 26 and FIG. 26, the surface includes a portion where the curvature gradually increases. The objective lens including at least one aspheric surface can satisfactorily correct distortion.

一般に非球面は、次の式にて表わすことが出来る。 Generally, an aspheric surface can be represented by the following equation.

ここでx,yは、第27図のように光軸をx軸にとり像方
向を正方向とし、光軸との交点を原点としてx軸に直交
する方向をy軸とした時の座標値、Cは光軸近傍で非球
面と接する円の曲率半径の逆数、Pは円錐定数、B,E,F,
G,…は夫々2次,4次,6次,8次の非球面係数である。
Here, x and y are coordinate values when the optical axis is the x-axis, the image direction is the positive direction, the intersection with the optical axis is the origin, and the direction orthogonal to the x-axis is the y-axis, as shown in FIG. C is the reciprocal of the radius of curvature of the circle in contact with the aspheric surface near the optical axis, P is the conic constant, B, E, F,
G,... Are second-order, fourth-order, sixth-order, and eighth-order aspherical coefficients, respectively.

本発明の内視鏡対物レンズにおいて、前群の物体側の
非球面の形状は平面からのずれ量として考えた場合、つ
まり前記の非球面の式において4次の非球面係数Eと6
次の非球面係数Fについて次の条件のうちの少なくとも
一方を満足するのが望ましい。
In the endoscope objective lens of the present invention, when the shape of the aspherical surface on the object side of the front group is considered as the amount of deviation from the plane, that is, the fourth-order aspherical surface coefficient E and 6
It is desirable that the next aspheric coefficient F satisfies at least one of the following conditions.

(5)0.0006<f3<E<0.6/f3 (6)0.0001<f5<F<0.1/f5 前群に用いた非球面で歪曲収差を十分良好に補正する
ためには、0.0006<f3<Eでなければならない。つまり
上記条件(5)の下限を越えると歪曲収差の補正が十分
でなくなる。又条件(5)の上限を越えると非点収差を
おさえきれなくなり、またレンズの加工性も悪くなる。
(5) 0.0006 <f 3 <E <0.6 / f 3 (6) 0.0001 <f 5 <F <0.1 / f 5 In order to satisfactorily correct distortion with the aspheric surface used in the front group, 0.0006 <f 3 f 3 <E. That is, when the value goes below the lower limit of the condition (5), the correction of the distortion becomes insufficient. When the value exceeds the upper limit of the condition (5), astigmatism cannot be suppressed and the workability of the lens deteriorates.

一方Fの値を条件(6)を満足することによって、E
の値に関する前述の説明と同じ効果が得られる。
On the other hand, when the value of F satisfies the condition (6), the value of E
The same effect as described above for the value of is obtained.

この条件(6)において、下限を越えると歪曲収差の
補正が十分でなくなる。又上限を越えると非点収差が十
分良好に補正できず、レンズの加工性も悪くなる。
If the lower limit of the condition (6) is exceeded, correction of distortion will not be sufficient. If the value exceeds the upper limit, astigmatism cannot be sufficiently corrected, and the workability of the lens deteriorates.

本発明のレンズ系において歪曲収差のみを補正すれば
よいのであれば、上述のような非球面を絞りの片側だけ
に配置すればよい。しかしその場合、中間像高における
子午像面湾曲のふくらみが大きくなり、中間像高におけ
る画質が著しく低下する。そこで前群と後群の両方に非
球面を配置すると、前群に設けた非球面による子午像面
湾曲のふくらみの符号つまりマイナスと、後群に設けた
非球面による子午像面湾曲のふくらみの符号つまりプラ
スとが逆符号であるために、互いに打ち消し合って、前
記のふくらみをとることが出来る。
If only the distortion needs to be corrected in the lens system of the present invention, the above-described aspherical surface may be disposed only on one side of the stop. However, in this case, the swelling of the meridional field curvature at the intermediate image height increases, and the image quality at the intermediate image height remarkably decreases. Therefore, when the aspherical surfaces are arranged in both the front group and the rear group, the sign of the bulge of the meridional field curvature due to the aspherical surface provided in the front group, that is, minus, and the bulge of the meridional field curvature due to the aspherical surface provided in the rear group. Since the sign, that is, the plus sign is the opposite sign, the bulge can be canceled by canceling each other.

また本発明の内視鏡対物において、後群の非球面を次
の条件(7)を満足する位置に配置することが望まし
い。
In the endoscope objective according to the present invention, it is desirable that the aspherical surface of the rear group is disposed at a position satisfying the following condition (7).

(7)0.2f<DA<3f ただしDAは明るさ絞りから非球面までの空気換算長で
ある。ここでいう空気換算長は、間にレンズが入った場
合レンズの中肉を屈折率で割った値を加えたものであ
る。
(7) 0.2f <D A < 3f However D A is air-equivalent length to aspherical from the aperture stop. The air conversion length referred to here is a value obtained by adding a value obtained by dividing the thickness of the lens by the refractive index when a lens is interposed therebetween.

このように、後群の非球面を絞りにある程度近いとこ
ろに配置することにより非球面を通る上側光線と下側光
線の高さの差を大きくとることが出来、したがってコマ
収差の補正に有利である。また絞りに近くなりすぎると
非点収差の補正が難しくなり好ましくない。
In this way, by disposing the aspherical surface of the rear group at a position close to the stop to a certain extent, it is possible to increase the difference between the heights of the upper and lower rays passing through the aspherical surface, which is advantageous in correcting coma. is there. If the aperture is too close to the stop, it becomes difficult to correct astigmatism, which is not preferable.

またザイデルの収差係数を次の式(i),(ii)のよ
うに定義する。これは汎用レンズ設計プログラムACCOS
−Vで用いられているものと同じものである。ただしAC
COS−Vでは、物体距離をOB,マージナル光線の開口数を
NA,第1面より物体側の媒質の屈折率をn0とした時、近
軸光線の第1面における光線高H0が H0=OB×tan{sin-1(NA/n0)} にて決まるのに対して、本願においては H0=OB×(NA/n0) にて決まる。したがって本願においては後者で決まるH0
をもとにして近軸追跡を行なって各収差係数を求めてい
る。尚NA=1/2FNOである。
Also, Seidel's aberration coefficient is defined as in the following equations (i) and (ii). This is a general-purpose lens design program ACCOS
Same as used in -V. However, AC
In COS-V, the object distance is OB and the numerical aperture of the marginal ray is
NA, when the refractive index of the medium on the object side from the first surface is n 0 , the ray height H 0 of the paraxial ray on the first surface is H 0 = OB × tan {sin -1 (NA / n 0 )} In the present application, it is determined by H 0 = OB × (NA / n 0 ). Therefore, in the present application, H 0 determined by the latter
Is used to perform paraxial tracking to obtain each aberration coefficient. NA = 1 / 2F NO .

メリジオナル光線(=0)に対して ΔY=(SA3)3+(CMA3)2 +{3(AST3)+(PTZ3)}2+(DIS3)3 +(SA5)5+(CMA5)4+(TOBSA)3 2 +(ELCMA)2 3+{5(AST5)+(PTZ5)}4 +(DIS5)3+(SA7)7…………(i) サジタル光線(=0)に対して ΔX=(SA3)3+{(AST3)+(PTZ3)}2 +(SA5)5+(SOBSA)3 2 +{(AST5)+(PTZ5)}4+(SA7)7…(ii) 上記の式(i)はメリディオナル光線に対して近軸像
点(収差がない時の像点)と実際の像点とのずれをΔY
としたもので、は最大像高で規格化した像面における
近軸主光線の入射位置、Fは瞳面における瞳径で規格化
したマージナル光線の入射位置である。またSA3,SA5,SA
7は夫々3次,5次,7次の球面収差、CMA3,CMA5は夫々3
次,5次のタンジニンシャルコマ、AST3,AST5は夫々3次,
5次の非点収差、PTZ3,PTZ5は夫々3次,5次のペッツバー
ル和、DIS3,DIS5は夫々3次,5次の歪曲収差、TOBSAは5
次の斜方向のタンジニンシャル球面収差、ELCMAは5次
の楕円コマ、SOBSAは5次の斜方向のサジタル球面収差
である。
Meridional ΔY to light rays (= 0) = (SA3) 3 + (CMA3) 2 + {3 (AST3) + (PTZ3)} 2 + (DIS3) 3 + (SA5) 5 + (CMA5) 4 + (TOBSA ) 3 2 + (ELCMA) 2 3 + {5 (AST5) + (PTZ5)} 4 + (DIS5) 3 + (SA7) 7 ............ (i) ΔX relative sagittal rays (= 0) = ( SA3) 3 + {(AST3) + (PTZ3)} 2 + (SA5) 5 + (SOBSA) 3 2 + {(AST5) + (PTZ5)} 4 + (SA7) 7 ... (ii) above formula (i ) Shows the deviation between the paraxial image point (image point when there is no aberration) and the actual image point with respect to the meridional ray by ΔY
Is the incident position of the paraxial chief ray on the image plane standardized by the maximum image height, and F is the incident position of the marginal ray standardized by the pupil diameter on the pupil plane. SA3, SA5, SA
7 is the 3rd, 5th and 7th order spherical aberration, respectively, CMA3 and CMA5 are 3 respectively
Next, 5th order tanjinjinkoma, AST3, AST5 are 3rd,
Fifth-order astigmatism, PTZ3, PTZ5 are third- and fifth-order Petzval sums, DIS3, DIS5 are third-, fifth-order distortions, and TOBSA is five.
The next oblique tangential spherical aberration, ELCMA is the fifth elliptical coma, and SOBSA is the fifth oblique sagittal spherical aberration.

今、後群中の第i面が非球面であるとすると、第i面
は球面に所定の大きさの変位を加えたものであると考え
ることが出来る。ここで元の球面において発生する3次
のコマ収差係数をSi、球面からの変位において発生する
3次のコマ収差係数をAiとし、夫々をFナンバーにて規
格化したものをSRi,ARiとする。
Now, assuming that the i-th surface in the rear group is an aspherical surface, it can be considered that the i-th surface is obtained by adding a displacement of a predetermined magnitude to the spherical surface. Here, the third-order coma aberration coefficient generated on the original spherical surface is S i , the third-order coma aberration coefficient generated on displacement from the spherical surface is A i, and S Ri , A Ri .

又後群中に非球面が複数存在するときは夫々の和とと
って次のように表わすとする。
When a plurality of aspherical surfaces exist in the rear group, the sum of the respective aspherical surfaces is expressed as follows.

AR=ΣARi SR=ΣSRi また前群の負の屈折力を持つ面で発生する3次のコマ
収差係数の和をA2とする時、次の条件(8),(9)を
満足するようにすることが望ましい。
A R = ΣA Ri S R = ΣS Ri When the sum of the third-order coma aberration coefficients generated on the surface having a negative refractive power of the front group is A 2 , the following conditions (8) and (9) are satisfied. It is desirable to be satisfied.

(8)−13<A2/(AR+SR)<−0.03 (9)−0.2<AR<0.2 一般に内視鏡の対物レンズは、広角化のために前群中
に強い負の面が存在し、ここで著しいコマ収差が発生す
る。この収差を後群中で発生する収差で打ち消して全体
としてコマ収差を補正して性能を向上させる必要があ
る。尚第1群が第28図、第30図に示すような複数のレン
ズよりなる場合は、像側の空気接触面、第29図の場合は
物体側のレンズの像側の空気接触面が上記の面である。
この面で発生する負のコマ収差を後群で打消す必要があ
る。したがって、S2と(AR+SR)は、絶対値が等しく異
符号であることが望ましい。しかし実用的には、条件
(8)で表わされる範囲であれば許される。
(8) -13 <A 2 / (A R + S R) <- 0.03 (9) -0.2 <A R <0.2 objective lens generally endoscope, negative surface strong in front group for wider angle Where significant coma occurs. It is necessary to cancel out this aberration with the aberration generated in the rear group and correct the coma as a whole to improve the performance. When the first group is composed of a plurality of lenses as shown in FIGS. 28 and 30, the air contact surface on the image side is in the case of FIG. 29. In terms of
It is necessary to cancel the negative coma generated on this surface in the rear group. Therefore, it is desirable that S 2 and (A R + S R ) have the same absolute value and opposite signs. However, practically, it is permissible within the range represented by the condition (8).

またARの値が大きすぎると、他の収差も大きくなって
しまい、他の収差を補正しにくくなってしまう。ARの値
が小さすぎると前群でのコマ収差を補正しきれなくなっ
てしまうので条件(9)の範囲内であることが望まし
い。
Also the value of A R is too large, becomes larger other aberrations, it becomes difficult to correct other aberrations. If the value of A R is too small, the coma in the front group cannot be corrected completely, so it is desirable to be within the range of the condition (9).

[実施例] 次に本発明の内視鏡対物レンズの各実施例を示す。EXAMPLES Next, examples of the endoscope objective lens of the present invention will be described.

実施例1 f=1.000,F/5.3,2ω=135.9° IH=1.0 r1=∞ d1=0.2949 n1=1.88300 ν1=40.78 r2=0.7248 d2=0.7077 r3=9.8296 d3=0.6225 n2=1.84666 ν2=23.78 r4=−2.3211 d4=0.1966 r5=∞(絞り) d5=0.2425 r6=−4.3689 d6=0.5308 n3=1.51633 ν3=64.15 r7=−1.1894 d7=0.0983 r8=3.1298 d8=0.8519 n4=1.58913 ν4=60.97 r9=−0.9450 d9=0.2621 n5=1.84666 ν5=23.78 r10=−3.1625 d10=0.0655 r11=∞ d11=0.2621 n6=1.51633 ν6=64.15 r12=∞ d12=0.0197 r13=∞ d13=0.4063 n7=1.52000 ν7=74.00 r14=∞ d14=0.0197 r15=∞ d15=0.2621 n8=1.51633 ν8=64.15 r16=∞ d16=0.7864 r17=∞ d17=0.6553 n9=1.51633 ν9=64.15 r18=∞ fp=2.271,|nrp−nrn|=0.25753 実施例2 f=1.000,F/4.1,2ω=114.7° IH=0.91 r1=∞ d1=0.2653 n1=1.88300 ν1=40.78 r2=0.6775 d2=0.4894 r3=4.9752 d3=0.2948 n2=1.51633 ν2=64.15 r4=1.6392 d4=0.5896 n3=1.69895 ν3=30.12 r5=−2.5071 d5=0.0590 r6=∞ d6=0.1887 r7=−13.0601 d7=0.4953 n4=1.58913 ν4=60.97 r8=−1.3779 d8=0.2182 r9=4.1999 d9=0.7134 n5=1.58913 ν5=60.97 r10=−0.8974 d10=0.2358 n6=1.84666 ν6=23.78 r11=−2.4858 d11=0.1769 r12=∞ d12=0.2358 n7=1.51633 ν7=64.15 r13=∞ d13=0.0177 r14=∞ d14=0.3656 n8=1.52000 ν8=74.00 r15=∞ d15=0.0177 r16=∞ d16=0.2358 n9=1.51633 ν9=64.15 r17=∞ d17=0.7429 r18=∞ d18=0.5896 n10=1.51633 ν10=64.15 r19=∞ fp=2.148,|nrp−nrn|=0.25753 |nff−nfr|=0.18262 実施例3 f=1.000,F/4.1,2ω=113° IH=0.92 r1=∞ d1=0.3114 n1=1.88300 ν1=40.78 r2=0.7131 d2=0.5689 r3=4.1434 d3=0.2509 n2=1.77250 ν2=49.66 r4=0.6116 d4=0.5957 n3=1.62004 ν3=36.25 r5=−1.9478 d5=0.1076 r6=∞(絞り) d6=0.0599 r7=−5.5688 d7=0.4497 n4=1.72916 ν4=54.68 r8=−1.1870 d8=0.3346 r9=∞ d9=0.4192 n5=1.52000 ν5=74.00 r10=∞ d10=0.2395 n6=1.51633 ν6=64.15 r11=∞ d11=0.0599 r12=2.7131 d12=0.2255 n7=1.84666 ν7=23.78 r13=1.0896 d13=0.9748 n8=1.51633 ν8=64.15 r14=−3.2795 d14=1.1464 r15=∞ d15=0.5988 n9=1.51633 ν9=64.15 r16=∞ fp=3.842,|nrp−nrn|=0.33033 |nff−nfr|=0.15246,D=0.768 実施例4 f=1.000,F/4.2,2ω=114.3° IH=0.92 r1=∞ d1=0.3393 n1=1.88300 ν1=40.78 r2=0.7795 d2=0.7857 r3=3.3429 d3=0.2232 n2=1.77250 ν2=49.66 r4=0.8393 d4=0.5804 n3=1.62606 ν3=39.21 r5=−2.2304 d5=0.0893 r6=∞ d6=0.0446 r7=−13.5125 d7=0.4464 n4=1.72916 ν4=54.68 r8=−1.6062 d8=0.0893 r9=∞ d9=1.3393 n5=1.51633 ν5=64.15 r10=∞ d10=0.0893 r11=2.1268 d11=0.2500 n6=1.84666 ν6=23.78 r12=1.0464 d12=0.9732 n7=1.51633 ν7=64.15 r13=−3.8661 d13=0.6230 r14=∞ d14=0.8929 n8=1.51633 ν8=64.15 r15=∞ fp=3.048,|nrp−nrn|=0.33033 |nff−nfr|=0.14644,D=1.062 実施例5 f=1.000,F/4.7,2ω=106° IH=1.00 r1=∞(非球面) d1=0.3026 n1=1.80610 ν1=40.95 r2=0.6320 d2=0.5326 r3=1.4455 d3=0.2291 n2=1.75520 ν2=27.51 r4=−6.7934 d4=0.6325 n3=1.56883 ν3=56.34 r5=−1.2679 d5=0.1332 r6=∞(絞り) d6=0.1724 r7=2.4437 d7=0.5403 n4=1.51633 ν4=64.15 r8=−1.8760 d8=0.2195 n5=1.84666 ν5=23.78 r9=−2.8190(非球面) d9=0.1332 r10=∞ d10=0.9079 n6=1.52000 ν6=74.00 r11=∞ d11=0.2766 r12=∞ d12=0.6053 n7=1.51633 ν7=64.15 r13=∞ (第1面)P=1.0000 B=0.23263×10-1 E=0.3
4082×10-1 F=−0.48683×10-2 (第9面)P=−6.7002 B=0 E=0.17408 F
=−0.69257×10-1 fp=1.153,|nrp−nrn|=0.33033 |nff−nfr|=0.18637,DA=0.6475 AR=0.00526,A2/(AR−SR)=−0.996 実施例6 f=1.000,F/4.5,2ω=113.0° IH=1.14 r1=∞(非球面) d1=0.3459 n1=1.80610 ν1=40.95 r2=0.7439 d2=0.3459 r3=2.6052 d3=0.5328 n2=1.72825 ν2=28.46 r4=−0.8588 d4=0.5535 n3=1.58913 ν3=60.97 r5=266.4111 d5=0.0692 r6=∞(絞り) d6=0.1683 r7=24.8283 d7=0.4559 n4=1.53172 ν4=48.90 r8=2.0198 d8=0.4690 n5=1.84100 ν5=43.23 r9=−1.3623(非球面) d9=0.1730 r10=∞ d10=1.0378 n6=1.52000 ν6=74.00 r11=∞ d11=0.3407 r12=∞ d12=0.6919 n7=1.51633 ν7=64.15 r13=∞ 非球面係数 (第1面) P=1.0000,B=0.14569 E=0.29823×10-1,F=−0.13020×10-1 (第9面) P=1.7759,B=0,E=0.14285 F=0.10574 fp=2.348,|nrp−nrn|=0.30928 |nff−nfr|=0.13912,DA=0.7207 AR=0.0025,A2/(AR+SR)=−0.596 実施例7 f=1.000,F/4.7,2ω=113.0° IH=1.15 r1=∞(非球面) d1=0.3480 n1=1.80610 ν1=40.95 r2=0.6177 d2=0.5740 r3=2.4828 d3=0.5111 n2=1.72825 ν2=28.46 r4=−0.6841 d4=0.5569 n3=1.58921 ν3=41.08 r5=−3.2002 d5=0.0696 r6=∞(絞り) d6=0.1798 r7=2.2304 d7=0.3829 n4=1.84666 ν4=23.78 r8=1.1621 d8=0.3921 n5=1.51633 ν5=64.15 r9=−1.1830(非球面) d9=0.1740 r10=∞ d10=1.0441 n6=1.52000 ν6=74.00 r11=∞ d11=0.3554 r12=∞ d12=0.6961 n7=1.51633 ν7=64.15 r13=∞ 非球面係数 (第1面) P=1.0000,B=0.11531 E=0.26826×10-1,F=0.98377×10-3 (第9面) P=2.8824,B=0,E=0.24847 F=0.77271,G=−0.48669×10-1 fp=1.623,|nrp−nrn|=0.33033 |nff−nfr|=0.13904,DA=0.6457 AR=0.00135,A2/(AR+SR)=−1.328 実施例8 f=1.000,F/4.6,2ω=112.4° IH=1.12 r1=∞(非球面) d1=0.3382 n1=1.80610 ν1=40.95 r2=0.7123 d2=0.3382 r3=4.2817 d3=0.6242 n2=1.72825 ν2=28.46 r4=−1.0308 d4=0.5411 n3=1.58913 ν3=60.97 r5=−14.9956 d5=0.0676 r6=∞(絞り) d6=0.1112 r7=10.0801 d7=0.4259 n4=1.53172 ν4=48.90 r8=5.8518 d8=0.2662 n5=1.84100 ν5=43.23 r9=−1.1895(非球面) d9=0.1691 r10=∞ d10=1.0146 n6=1.52000 ν6=74.00 r11=∞ d11=0.3466 r12=∞ d12=0.6765 n7=1.51633 ν7=64.15 r13=∞ 非球面係数 (第1面) P=1.0000,B=0.23401 E=0,F=0.93316×10-2 (第9面) P=−0.0306,B=0, E=0.33663×10-1,F=0.51107×10-1 fp=3.033,|nrp−nrn|=0.30928 |nff−nfr|=0.13912,DA=0.5338 AR=−0.0108,A2/(AR+SR)=−0.502 実施例9 f=1.000,F/4.6,2ω=106° IH=1.00 r1=∞(非球面) d1=0.3026 n1=1.80610 ν1=40.95 r2=0.6333 d2=0.5326 r3=1.7941 d3=0.2287 n2=1.75520 ν2=27.51 r4=−2.6805 d4=0.6325 n3=1.56883 ν3=56.34 r5=−1.1728 d5=0.1332 r6=∞(絞り) d6=0.1721 r7=4.7481 d7=0.5368 n4=1.51633 ν4=64.15 r8=−3.0936 d8=0.2169 n5=1.84666 ν5=23.78 r9=−2.4248(非球面) d9=0.1332 r10=∞ d10=0.9079 n6=1.52000 ν6=74.00 r11=∞ d11=0.2713 r12=∞ d12=0.6053 n7=1.51633 ν7=64.15 r13=∞ 非球面係数 (第1面) P=1.0000,B=0.83810×10-1 E=0,F=0.75968×10-2 (第9面) P=0.3802,B=0 E=0.14794,F=0.21801×10-1 fp=1.177,|nrp−nrn|=0.33033 |nff−nfr|=0.18637,DA=0.6436 AR=0.00353,A2/(AR+SR)=−1.334 実施例10 f=1.000,F/3.7,2ω=135.9° IH=1.41 r1=∞(非球面) d1=0.4132 n1=1.88300 ν1=40.78 r2=0.9706 d2=0.9885 r3=10.5419 d3=0.8724 n2=1.84666 ν2=23.78 r4=−3.2037 d4=0.2755 r5=∞(絞り) d5=0.3449 r6=−3.5233 d6=0.7526 n3=1.51633 ν3=64.15 r7=−1.6611 d7=0.1412 r8=3.2843 d8=1.1786 n4=1.58913 ν4=60.97 r9=−1.2919(非球面) d9=0.3673 n5=1.84666 ν5=23.78 r10=−2.2845 d10=0.0918 r11=∞ d11=1.3774 n6=1.51633 ν6=64.15 r12=∞ d12=0.3398 r13=∞ d13=0.6428 n7=1.51633 ν7=64.15 r14=∞ 非球面係数 (第1面) P=1.0000,B=0.53237×10-1 E=0.37136×10-1,F=−0.10040×10-1 G=0.13094×10-2 (第9面) P=0.8681,B=0, E=−0.14223,F=0.39404×10-1 G=−0.62118×10-1 fp=2.989,|nrp−nrn|=0.25753,DA=1.724 AR=0.0108,A2/(AR+SR)=−0.605 ただしr1,r2,…はレンズ各面の曲率半径、d1,d2
…は各レンズの肉厚および空気間隔、n1,n2,…は各レ
ンズの屈折率、ν1,ν2,…は各レンズのアッベ数であ
る。
Example 1 f = 1.000, F / 5.3, 2ω = 135.9 ° IH = 1.0 r 1 = ∞ d 1 = 0.2949 n 1 = 1.88300 ν 1 = 40.78 r 2 = 0.7248 d 2 = 0.7077 r 3 = 9.8296 d 3 = 0.6225 n 2 = 1.84666 v 2 = 23.78 r 4 = −2.3211 d 4 = 0.1966 r 5 = ∞ (aperture) d 5 = 0.2425 r 6 = −4.3689 d 6 = 0.5308 n 3 = 1.51633 v 3 = 64.15 r 7 = −1.1894 d 7 = 0.0983 r 8 = 3.1298 d 8 = 0.8519 n 4 = 1.58913 ν 4 = 60.97 r 9 = -0.9450 d 9 = 0.2621 n 5 = 1.84666 ν 5 = 23.78 r 10 = -3.1625 d 10 = 0.0655 r 11 = ∞ d 11 = 0.2621 n 6 = 1.51633 ν 6 = 64.15 r 12 = ∞ d 12 = 0.0197 r 13 = 13 d 13 = 0.4063 n 7 = 1.52000 ν 7 = 74.00 r 14 = ∞ d 14 = 0.0197 r 15 = ∞ d 15 = 0.2621 n 8 = 1.51633 ν 8 = 64.15 r 16 = ∞ d 16 = 0.7864 r 17 = ∞ d 17 = 0.6553 n 9 = 1.51633 ν 9 = 64.15 r 18 = ∞ f p = 2.271, | n rp -n rn | = 0.25753 Example 2 f = 1.000, F / 4.1, 2ω = 114.7 ° IH = 0.91 r 1 = ∞ d 1 = 0.2653 n 1 = 1.88300 ν 1 = 40.78 r 2 = 0.6775 d 2 = 0.4894 r 3 = 4.9752 d 3 = 0.2948 n 2 = 1.51633 ν 2 = 64.15 r 4 = 1.6392 d 4 = 0.5896 n 3 = 1.69895 ν 3 = 30.12 r 5 = -2.5071 d 5 = 0.0590 r 6 = ∞ d 6 = 0.1887 r 7 = -13.0601 d 7 = 0.4953 n 4 = 1.58913 ν 4 = 60.97 r 8 = -1.3779 d 8 = 0.2182 r 9 = 4.1999 d 9 = 0.7134 n 5 = 1.58913 ν 5 = 60.97 r 10 = -0.8974 d 10 = 0.2358 n 6 = 1.84666 ν 6 = 23.78 r 11 = −2.4858 d 11 = 0.17769 r 12 = ∞ d 12 = 0.2358 n 7 = 1.51633 ν 7 = 64.15 r 13 = ∞ d 13 = 0.0177 r 14 = ∞ d 14 = 0.3656 n 8 = 1.52000 ν 8 = 74.00 r 15 = ∞ d 15 = 0.0177 r 16 = ∞ d 16 = 0.2358 n 9 = 1.51633 ν 9 = 64.15 r 17 = ∞ d 17 = 0.7429 r 18 = ∞ d 18 = 0.5896 n 10 = 1.51633 ν 10 = 64.15 r 19 = ∞ f p = 2.148, | n rp -n rn | = 0.25753 | n ff -n fr | = 0.18262 example 3 f = 1.000, F / 4.1,2ω = 113 ° IH = 0.92 r 1 = ∞ d 1 = 0.3114 n 1 = 1.88300 ν 1 = 40.78 r 2 = 0.7131 d 2 = 0.5689 r 3 = 4.1434 d 3 = 0.2509 n 2 = 1.77250 ν 2 = 49.66 r 4 = 0.6116 d 4 = 0.5957 n 3 = 1.62004 ν 3 = 36.25 r 5 = -1.9478 d 5 = 0.1076 r 6 = ∞ ( stop) d 6 = 0.0599 r 7 = -5.5688 d 7 = 0.4497 n 4 = 1.72916 ν 4 = 54.68 r 8 = -1.1870 d 8 = 0.3346 r 9 = ∞ d 9 = 0.4192 n 5 = 1.52000 ν 5 = 74.00 r 10 = ∞ d 10 = 0.2395 n 6 = 1.51633 ν 6 = 64.15 r 11 = ∞ d 11 = 0.0599 r 12 = 2.7131 d 12 = 0.2255 n 7 = 1.84666 ν 7 = 23.78 r 13 = 1.0896 d 13 = 0.9748 n 8 = 1.51633 ν 8 = 64.15 r 14 = -3.2795 d 14 = 1.1464 r 15 = ∞ d 15 = 0.5988 n 9 = 1.51633 ν 9 = 64.15 r 16 = ∞ f p = 3.842, | n rp -n rn | = 0.33033 | n ff -n fr | = 0.15246, D = 0.768 example 4 f = 1.000, F / 4.2,2ω = 114.3 ° IH = 0.92 r 1 = ∞ d 1 = 0.3393 n 1 = 1.88300 ν 1 = 40.78 r 2 = 0.7795 d 2 = 0.7857 r 3 = 3.3429 d 3 = 0.2232 n 2 = 1.77250 ν 2 = 49.66 r 4 = 0.8393 d 4 = 0.5804 n 3 = 1.62606 ν 3 = 39.21 r 5 = -2.2304 d 5 = 0.0893 r 6 = ∞ d 6 = 0.0446 r 7 = -13.5125 d 7 = 0.4464 n 4 = 1.72916 ν 4 = 54.68 r 8 = -1.6062 d 8 = 0.0893 r 9 = ∞ d 9 = 1.3393 n 5 = 1.51633 ν 5 = 64.15 r 10 = ∞ d 10 = 0.0893 r 11 = 2.1268 d 11 = 0.2500 n 6 = 1.84666 ν 6 = 23.78 r 12 = 1.0464 d 12 = 0.9732 n 7 = 1.51633 ν 7 = 64.15 r 13 = -3.8661 d 13 = 0.6230 r 14 = ∞ d 14 = 0.8929 n 8 = 1.51633 ν 8 = 64.15 r 15 = ∞ f p = 3.048, | n rp −n rn | = 0.30333 | n ff −n fr | = 0.14644, D = 1.62 Example 5 f = 1.000, F / 4.7, 2ω = 106 ° IH = 1.00 r 1 = ∞ (aspherical surface ) D 1 = 0.3026 n 1 = 1.80610 ν 1 = 40.95 r 2 = 0.6320 d 2 = 0.5326 r 3 = 1.4455 d 3 = 0.2291 n 2 = 1.75520 ν 2 = 27.51 r 4 = −6.7934 d 4 = 0.6325 n 3 = 1.56883 ν 3 = 56.34 r 5 = -1.2679 d 5 = 0.1332 r 6 = ∞ (aperture) d 6 = 0.1724 r 7 = 2.4437 d 7 = 0.5403 n 4 = 1.51633 ν 4 = 64.15 r 8 = -1.8760 d 8 = 0.2195 n 5 = 1.84666 ν 5 = 23.78 r 9 = -2.8190 (aspheric surface) d 9 = 0.1332 r 10 = ∞ d 10 = 0.9079 n 6 = 1.52000 ν 6 = 74.00 r 11 = ∞ d 11 = 0.2766 r 12 = ∞ d 12 = 0.6053 n 7 = 1.51633 ν 7 = 64.15 r 13 = ∞ (first surface) P = 1.000 B = 0.23263 × 10 -1 E = 0.3
4082 × 10 −1 F = −0.48683 × 10 −2 (Ninth surface) P = −6.7002 B = 0 E = 0.17408 F
= −0.69257 × 10 −1 f p = 1.153, | n rp −n rn | = 0.30333 | n ff −n fr | = 0.18637, D A = 0.6475 A R = 0.00526, A 2 / (A R −S R ) = −0.996 Example 6 f = 1.000, F / 4.5, 2ω = 113.0 ° IH = 1.14 r 1 = ∞ (aspherical surface) d 1 = 0.3459 n 1 = 1.80610 ν 1 = 40.95 r 2 = 0.7439 d 2 = 0.3459 r 3 = 2.6052 d 3 = 0.5328 n 2 = 1.72825 ν 2 = 28.46 r 4 = -0.8588 d 4 = 0.5535 n 3 = 1.58913 ν 3 = 60.97 r 5 = 266.4111 d 5 = 0.0692 r 6 = ∞ ( stop) d 6 = 0.1683 r 7 = 24.8283 d 7 = 0.4559 n 4 = 1.53172 ν 4 = 48.90 r 8 = 2.0198 d 8 = 0.4690 n 5 = 1.84100 ν 5 = 43.23 r 9 = -1.3623 ( aspheric surface) d 9 = 0.1730 r 10 = ∞ d 10 = 1.0378 n 6 = 1.52000 ν 6 = 74.00 r 11 = ∞ d 11 = 0.3407 r 12 = ∞ d 12 = 0.6919 n 7 = 1.51633 ν 7 = 64.15 r 13 = ∞ Aspherical coefficient (first surface) P = 1.0000, B = 0.14569 E = 0.29823 × 10 −1 , F = −0.13020 × 10 −1 (9th surface) P = 1.759, B = 0, E = 0.14285 F = 0.10574 f p = 2.348, | n rp −n rn | = 0.30928 │n ff -n fr │ = 0.13912, D A = 0.7207 A R = 0.0025, A 2 / (A R + S R ) =-0.596 Example 7 f = 1.000, F / 4.7, 2ω = 13.0 ° IH = 1.15 r 1 = ∞ (aspherical surface) d 1 = 0.3480 n 1 = 1.80610 ν 1 = 40.95 r 2 = 0.6177 d 2 = 0.5740 r 3 = 2.4828 d 3 = 0.5111 n 2 = 1.72825 ν 2 = 28.46 r 4 = −0.6841 d 4 = 0.5569 n 3 = 1.58921 ν 3 = 41.08 r 5 = -3.2002 d 5 = 0.0696 r 6 = ∞ ( stop) d 6 = 0.1798 r 7 = 2.2304 d 7 = 0.3829 n 4 = 1.84666 ν 4 = 23.78 r 8 = 1.1621 d 8 = 0.3921 n 5 = 1.51633 ν 5 = 64.15 r 9 = -1.1830 ( aspheric surface) d 9 = 0.1740 r 10 = ∞ d 10 = 1.0441 n 6 = 1.52000 ν 6 = 74.00 r 11 = ∞ d 11 = 0.3554 r 12 = ∞ d 12 = 0.6961 n 7 = 1.51633 ν 7 = 64.15 r 13 = ∞ aspheric coefficient (first surface) P = 1.0000, B = 0.15331 E = 0.26826 × 10 −1 , F = 0.98377 × 10 -3 (ninth surface) P = 2.8824, B = 0 , E = 0.24847 F = 0.77271, G = -0.48669 × 10 -1 f p = 1.623, | n rp -n rn | = 0.33033 | n ff -n fr | = 0.1390 4, D A = 0.6457 A R = 0.00135, A 2 / (A R + S R ) = − 1.328 Example 8 f = 1.000, F / 4.6,2ω = 112.4 ° IH = 1.12 r 1 = ∞ (aspherical surface) d 1 = 0.3382 n 1 = 1.80610 ν 1 = 40.95 r 2 = 0.7123 d 2 = 0.3382 r 3 = 4.2817 d 3 = 0.6242 n 2 = 1.72825 ν 2 = 28.46 r 4 = -1.0308 d 4 = 0.5411 n 3 = 1.58913 ν 3 = 60.97 r 5 = -14.9956 d 5 = 0.0676 r 6 = ∞ ( stop) d 6 = 0.1112 r 7 = 10.0801 d 7 = 0.4259 n 4 = 1.53172 ν 4 = 48.90 r 8 = 5.8518 d 8 = 0.2662 n 5 = 1.84100 ν 5 = 43.23 r 9 = −1.1895 (aspherical surface) d 9 = 0.1691 r 10 = ∞ d 10 = 1.0146 n 6 = 1.52000 ν 6 = 74.00 r 11 = ∞ d 11 = 0.3466 r 12 = ∞ d 12 = 0.6765 n 7 = 1.51633 ν 7 = 64.15 r 13 = ∞ Aspheric coefficient (first surface) P = 1.0000, B = 0.23401 E = 0, F = 0.93316 × 10 -2 (ninth surface) P = -0.0306, B = 0 , E = 0.33663 × 10 -1, F = 0.51107 × 10 -1 f p = 3.033, | n rp -n rn | = 0.30928 | n ff -n fr | = 0.13912, D A = 0.5338 A R = -0.0108, A 2 / (A R + S R ) = − 0.502 Example 9 f = 1.000, F / 4.6, 2ω = 106 ° IH = 1.00 r 1 = ∞ (aspherical surface) d 1 = 0.3026 n 1 = 1.80610 ν 1 = 40.95 r 2 = 0.6333 d 2 = 0.5326 r 3 = 1.7941 d 3 = 0.2287 n 2 = 1.75520 ν 2 = 27.51 r 4 = -2.6805 d 4 = 0.6325 n 3 = 1.56883 ν 3 = 56.34 r 5 = -1.1728 d 5 = 0.1332 r 6 = ∞ ( aperture ) D 6 = 0.1721 r 7 = 4.7481 d 7 = 0.5368 n 4 = 1.51633 ν 4 = 64.15 r 8 = −3.0936 d 8 = 0.169 n 5 = 1.84666 ν 5 = 23.78 r 9 = −2.4248 (aspherical surface) d 9 = 0.1332 r 10 = ∞ d 10 = 0.9079 n 6 = 1.52000 ν 6 = 74.00 r 11 = ∞ d 11 = 0.2713 r 12 = ∞ d 12 = 0.6053 n 7 = 1.51633 ν 7 = 64.15 r 13 = ∞ Aspherical coefficient One surface) P = 1.0000, B = 0.83810 × 10 -1 E = 0, F = 0.75968 × 10 -2 (9th surface) P = 0.3802, B = 0 E = 0.14794, F = 0.21801 × 10 -1 f p = 1.177, | n rp −n rn | = 0.30333 | n ff −n fr | = 0.18637, D A = 0.6436 A R = 0.00353, A 2 / (A R + S R ) = − 1.334 Example 10 f = 1.000, F / 3.7,2ω 135.9 ° IH = 1.41 r 1 = ∞ ( aspherical) d 1 = 0.4132 n 1 = 1.88300 ν 1 = 40.78 r 2 = 0.9706 d 2 = 0.9885 r 3 = 10.5419 d 3 = 0.8724 n 2 = 1.84666 ν 2 = 23.78 r 4 = -3.2037 d 4 = 0.2755 r 5 = ∞ (aperture) d 5 = 0.3449 r 6 = -3.5233 d 6 = 0.7526 n 3 = 1.51633 ν 3 = 64.15 r 7 = -1.6611 d 7 = 0.1412 r 8 = 3.2843 d 8 = 1.1786 n 4 = 1.58913 ν 4 = 60.97 r 9 = -1.2919 (aspheric surface) d 9 = 0.3673 n 5 = 1.84666 ν 5 = 23.78 r 10 = -2.2845 d 10 = 0.0918 r 11 = ∞ d 11 = 1.3774 n 6 = 1.51633 ν 6 = 64.15 r 12 = ∞ d 12 = 0.3398 r 13 = ∞ d 13 = 0.6428 n 7 = 1.51633 ν 7 = 64.15 r 14 = ∞ Aspheric coefficient (first surface) P = 1.0000, B = 0.53237 × 10 −1 E = 0.37136 × 10 −1 , F = −0.10040 × 10 −1 G = 0.13094 × 10 −2 (9th surface) P = 0.8681, B = 0, E = −0.14223, F = 0.39404 × 10 -1 G = -0.62118 × 10 -1 f p = 2.989, | n rp -n rn | = 0.25753, D A = 1.724 A R = 0.0108, A 2 / (A R + S R) = - 0.605 However r 1, r 2 ... the radius of curvature of each lens surface, d 1, d 2,
... the thickness and air space of the lens, n 1, n 2, ... is the refractive index of each lens, ν 1, ν 2, ... is the Abbe number of each lens.

上記実施例1乃至実施例10は、夫々第1図乃至第10図
に示す通りであって、それらの収差状況は夫々第11図乃
至第20図に示す通りである。
The first to tenth embodiments are as shown in FIGS. 1 to 10, respectively, and the aberration states thereof are as shown in FIGS. 11 to 20, respectively.

これら実施例のうち実施例2乃至実施例9は、前群中
の絞りの前の正のレンズ成分が接合レンズであり、条件
(3)を満足するように構成されている。
In Examples 2 to 9 among these examples, the positive lens component before the stop in the front group is a cemented lens, and is configured to satisfy the condition (3).

又実施例3,4は条件(4)を満足するもので後群中に
赤外カットフィルター等の光学素子を配置し得る構成に
なっている。
Embodiments 3 and 4 satisfy the condition (4) and have a configuration in which an optical element such as an infrared cut filter can be arranged in the rear group.

[発明の効果] 本発明の内視鏡対物レンズは、以上詳細に説明したよ
うに又実施例から明らかなように全長が短く外径が小さ
く広角で歪曲収差が良好に補正された内視鏡対物レンズ
である。
[Effects of the Invention] The endoscope objective lens of the present invention has a short overall length, a small outer diameter, a wide angle, and excellent correction of distortion, as described in detail above and as apparent from the examples. It is an objective lens.

【図面の簡単な説明】[Brief description of the drawings]

第1図乃至第10図は夫々本発明の内視鏡対物レンズの実
施例1乃至実施例10の断面図、第11図乃至第20図は夫々
実施例1乃至実施例10の収差曲線図、第21図は従来の内
視鏡対物レンズの断面図、第22図,第23図は物体側が非
球面である非球面レンズの一例の断面図、第24図は歪曲
収差の一例を示す図、第25図,第26図は像側が非球面で
ある非球面レンズの一例の断面図、第27図は非球面の式
の座標系を示す図、第28図乃至第30図は本発明の対物レ
ンズの前群の他の例を示す断面図である。
1 to 10 are sectional views of Examples 1 to 10 of the endoscope objective lens of the present invention, and FIGS. 11 to 20 are aberration curve diagrams of Examples 1 to 10, respectively. FIG. 21 is a cross-sectional view of a conventional endoscope objective lens, FIGS. 22 and 23 are cross-sectional views of an example of an aspheric lens having an aspherical object side, and FIG. 24 is a view showing an example of distortion aberration. 25 and 26 are cross-sectional views of an example of an aspherical lens having an aspherical surface on the image side, FIG. 27 is a diagram showing a coordinate system of an aspherical expression, and FIGS. 28 to 30 are objectives of the present invention. It is sectional drawing which shows the other example of the front group of a lens.

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】絞りを挟んで配置された前群と後群とより
なり、前記前群が物体側より全体として負のパワーの第
1群と1枚のレンズまたは接合レンズよりなる正のパワ
ーを有する第2群よりなり、前記後群が少なくとも負レ
ンズと正レンズよりなる接合レンズを含む正のレンズ群
のみからなり次の条件を満足する内視鏡対物レンズ。 (1)0.33f<fp<11.5f (2)|nrp−nrn|>0.2 ただし、fpは前群の第2群の焦点距離、fは全系の焦点
距離、np,nnは夫々後群の接合レンズの正レンズおよび
負レンズの屈折率である。
1. A front unit comprising a front unit and a rear unit arranged with a diaphragm interposed therebetween, wherein the front unit comprises a first unit having a negative power as a whole from the object side and a positive power comprising one lens or a cemented lens. An endoscope objective lens that satisfies the following condition, wherein the second lens unit includes a second lens unit, and the rear unit includes only a positive lens unit including a cemented lens including at least a negative lens and a positive lens. (1) 0.33f <f p < 11.5f (2) | n rp -n rn |> 0.2 , however, f p is the focal length of the second lens group of the front group, f is the focal length of the entire system, n p, n n is the refractive index of the positive lens and the negative lens of the cemented lens in the rear group, respectively.
【請求項2】前記第2群が接合レンズであり、以下の条
件を満足する請求項(1)の内視鏡対物レンズ。 (3)|nff−nfr|>0.1 ただし、nff,nfrは前記接合レンズの物体側のレンズ及
び像側のレンズの屈折率である。
2. The endoscope objective lens according to claim 1, wherein said second group is a cemented lens, and satisfies the following condition. (3) | n ff −n fr |> 0.1 where n ff and n fr are the refractive indices of the object-side lens and the image-side lens of the cemented lens.
【請求項3】以下の条件(4)を満足する請求項(1)
の内視鏡対物レンズ。 (4)0.2f<D<5f ただし、Dは後群中の最も物体側のレンズと接合レンズ
のうちの最も像側におかれたものとの間の最大空気換算
長である。
3. The method according to claim 1, wherein the following condition (4) is satisfied.
Endoscope objective lens. (4) 0.2f <D <5f where D is the maximum air-equivalent length between the lens closest to the object in the rear group and the lens closest to the image among the cemented lenses.
【請求項4】絞りを挟んで配置された前群と後群とより
なり、前記前群が負の屈折力を有するレンズ成分を含
み、前記後群が正の屈折力を有するもので、前記の前群
および後群に夫々少なくとも一つの非球面を有し、前群
中の非球面は該非球面がレンズの物体側に設けられてい
る場合はその曲率が光軸から離れるにつれて徐々に強く
なる部分を含むような形状であり、該非球面がレンズの
像側の面に設けられている場合はその曲率が光軸から離
れるにつれて徐々に弱くなる部分を含むような形状であ
り、また、後群中の非球面は該非球面がレンズの物体側
の面に設けられる場合にはその曲率が光軸から離れるに
つれて徐々に弱くなる部分を含むような形状であり、該
非球面がレンズの像側の面である場合にはその曲率が光
軸から離れるにつれて徐々に強くなる部分を含むような
形状であり、更に次の条件を満足する内視鏡対物レン
ズ。 0.2f<DA<3f ただしDAは明るさ絞りから後群中の非球面までの空気換
算距離である。
4. A lens system comprising: a front group and a rear group disposed with a stop interposed therebetween; wherein the front group includes a lens component having a negative refractive power, and the rear group has a positive refractive power; Each of the front group and the rear group has at least one aspheric surface, and when the aspheric surface is provided on the object side of the lens, the curvature gradually increases as the distance from the optical axis increases. When the aspheric surface is provided on the image-side surface of the lens, the shape is such that the curvature gradually decreases as the distance from the optical axis increases. When the aspheric surface is provided on the object-side surface of the lens, the middle aspheric surface is shaped so as to include a portion whose curvature gradually becomes weaker as the distance from the optical axis increases, and the aspheric surface is the image-side surface of the lens. , As the curvature moves away from the optical axis, Gradually is shaped to include a strongly becomes part, an endoscope objective lens further satisfies the following conditions. 0.2F <D A <3f However D A is the equivalent air distance to the aspherical surface in the rear lens from the aperture stop.
【請求項5】前群中の物体側面に設けられた非球面が以
下の条件(5),(6)を満足する請求項(4)の内視
鏡対物レンズ。 (5)0.0006/f3<E<0.6/f3 (6)0.0001/f5<F<0.1/f5 ただし、Eは4次の非球面係数、Fは6次の非球面係数
である。
5. The endoscope objective lens according to claim 4, wherein the aspherical surface provided on the side surface of the object in the front group satisfies the following conditions (5) and (6). (5) 0.0006 / f 3 <E <0.6 / f 3 (6) 0.0001 / f 5 <F <0.1 / f 5 where E is a fourth-order aspherical coefficient, and F is a sixth-order aspherical coefficient.
【請求項6】後群中の非球面が以下の条件(8),
(9)を満足する請求項(4)の内視鏡対物レンズ。 (8)−13<A2/(AR+SR)<−0.03 (9)−0.2<AR<0.2 ただし、A2は前群の負の屈折力を持つ面で発生する3次
のコマ収差係数の和、ARは前記非球面の3次のコマ収差
係数、SRは前記非球面における元の球面の3次のコマ収
差係数であり、いずれもFナンバーにて規格化した値で
ある。
6. The aspherical surface in the rear group has the following condition (8):
The endoscope objective lens according to claim 4, which satisfies (9). (8) −13 <A 2 / (A R + S R ) <− 0.03 (9) −0.2 <A R <0.2 where A 2 is a third-order frame generated on the surface having negative refractive power of the front group. The sum of the aberration coefficients, A R is the third-order coma aberration coefficient of the aspheric surface, and S R is the third-order coma aberration coefficient of the original spherical surface of the aspheric surface. is there.
JP1114068A 1989-05-09 1989-05-09 Endoscope objective lens Expired - Fee Related JP2596827B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1114068A JP2596827B2 (en) 1989-05-09 1989-05-09 Endoscope objective lens
US07/520,501 US5175650A (en) 1989-05-09 1990-05-08 Objective lens system for endoscopes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1114068A JP2596827B2 (en) 1989-05-09 1989-05-09 Endoscope objective lens

Publications (2)

Publication Number Publication Date
JPH02293709A JPH02293709A (en) 1990-12-04
JP2596827B2 true JP2596827B2 (en) 1997-04-02

Family

ID=14628231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1114068A Expired - Fee Related JP2596827B2 (en) 1989-05-09 1989-05-09 Endoscope objective lens

Country Status (1)

Country Link
JP (1) JP2596827B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9645383B2 (en) 2015-02-17 2017-05-09 Fujifilm Corporation Objective lens for endoscope and endoscope
KR101777661B1 (en) 2016-09-20 2017-09-13 주식회사 소모에너지엔테크놀러지 Long-Wavelength Infrared Camera with 21 degree Angle of View and Lens for the Carera
US10948708B2 (en) 2017-12-18 2021-03-16 Fujifilm Corporation Objective optical system for endoscope and endoscope
US11561379B2 (en) 2019-10-24 2023-01-24 Fujifilm Corporation Objective optical system for endoscope and endoscope including two lens group of −+ refractive powers having sixth lenses of −−+++− refractive powers

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0827429B2 (en) * 1991-03-04 1996-03-21 オリンパス光学工業株式会社 Objective lens for endoscope
US5223982A (en) * 1991-03-05 1993-06-29 Olympus Optical Co., Ltd. Objective lens system for endoscopes
DE19858785C2 (en) 1998-12-18 2002-09-05 Storz Karl Gmbh & Co Kg Endoscope lens and endoscope with such a lens
JP4869096B2 (en) * 2006-02-14 2012-02-01 富士フイルム株式会社 Endoscope objective lens
JP4999078B2 (en) * 2007-04-09 2012-08-15 富士フイルム株式会社 Endoscope objective lens and endoscope
JP4919419B2 (en) * 2007-04-09 2012-04-18 富士フイルム株式会社 Endoscope objective lens and endoscope
JP4920572B2 (en) * 2007-12-21 2012-04-18 オリンパスメディカルシステムズ株式会社 Endoscope objective lens
JP5455472B2 (en) 2009-07-06 2014-03-26 Hoya株式会社 Endoscope objective lens and endoscope
JP2011227380A (en) * 2010-04-22 2011-11-10 Fujifilm Corp Objective lens for endoscope, and imaging apparatus
JP5653243B2 (en) 2011-02-10 2015-01-14 Hoya株式会社 Endoscope optical system and endoscope
CN103430074B (en) 2011-03-18 2016-01-20 富士胶片株式会社 Imaging lens and imaging device
CN103282817B (en) 2011-06-23 2015-08-12 奥林巴斯医疗株式会社 Objective lens optical system for endoscope
WO2013065296A1 (en) 2011-11-01 2013-05-10 富士フイルム株式会社 Objective optical system, and endoscope device using same
JP5226882B2 (en) * 2012-01-06 2013-07-03 オリンパスメディカルシステムズ株式会社 Endoscope objective lens
JP6174344B2 (en) * 2013-03-15 2017-08-02 日立マクセル株式会社 Wide angle lens and imaging device
JP6460934B2 (en) * 2015-07-22 2019-01-30 富士フイルム株式会社 Imaging lens and imaging apparatus
CN112925092B (en) * 2021-02-04 2022-05-10 南京信息工程大学 Electronic hysteroscope imaging lens for gas and liquid uterus expansion

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5336787B2 (en) * 1973-03-20 1978-10-04

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9645383B2 (en) 2015-02-17 2017-05-09 Fujifilm Corporation Objective lens for endoscope and endoscope
KR101777661B1 (en) 2016-09-20 2017-09-13 주식회사 소모에너지엔테크놀러지 Long-Wavelength Infrared Camera with 21 degree Angle of View and Lens for the Carera
WO2018056681A1 (en) * 2016-09-20 2018-03-29 주식회사 소모에너지엔테크놀러지 Long-wave infrared camera and camera lens having 21-degree horizontal angle of view
US10948708B2 (en) 2017-12-18 2021-03-16 Fujifilm Corporation Objective optical system for endoscope and endoscope
US11561379B2 (en) 2019-10-24 2023-01-24 Fujifilm Corporation Objective optical system for endoscope and endoscope including two lens group of −+ refractive powers having sixth lenses of −−+++− refractive powers

Also Published As

Publication number Publication date
JPH02293709A (en) 1990-12-04

Similar Documents

Publication Publication Date Title
JP2628627B2 (en) Aspheric objective lens for endoscope
JP2646350B2 (en) Endoscope objective lens
JP2596827B2 (en) Endoscope objective lens
US4674844A (en) Objective lens system for an endscope
US6844991B2 (en) Fisheye lens
US5619380A (en) Objective optical system for endoscopes
JP3769373B2 (en) Bright wide-angle lens
US5305147A (en) Eyepiece lens system for endoscopes
JP3200925B2 (en) Zoom lens with wide angle of view
JPH04267212A (en) Ultra wide angle lens
JP2991524B2 (en) Wide-angle lens
JP3206930B2 (en) Endoscope objective lens
JP3007695B2 (en) Imaging lens
JP3140841B2 (en) Objective optical system for endoscope
US5508848A (en) Wide-angle lens for film-combined type cameras
JP2000028919A (en) Middle telephotographic lens
JP2572237B2 (en) Wide angle lens with long back focus
JPH05313073A (en) Eyepiece for endoscope
JPH04246606A (en) Super wide angle lens
KR100279897B1 (en) Rear Cone Telescopes, Rear Convergence Lenses and Telescopes
JPS5820009B2 (en) Large-diameter ultra-wide-angle photographic lens
JP3683995B2 (en) Endoscope objective lens
JP3049508B2 (en) Endoscope objective lens
JP2858639B2 (en) Wide-angle lens for UV
JP3744042B2 (en) Zoom lens

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080109

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees