WO2018056682A1 - Long-wavelength infrared camera having 90-degree horizontal angle of view, and camera lens - Google Patents

Long-wavelength infrared camera having 90-degree horizontal angle of view, and camera lens Download PDF

Info

Publication number
WO2018056682A1
WO2018056682A1 PCT/KR2017/010283 KR2017010283W WO2018056682A1 WO 2018056682 A1 WO2018056682 A1 WO 2018056682A1 KR 2017010283 W KR2017010283 W KR 2017010283W WO 2018056682 A1 WO2018056682 A1 WO 2018056682A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
convex surface
concave surface
view
horizontal angle
Prior art date
Application number
PCT/KR2017/010283
Other languages
French (fr)
Korean (ko)
Inventor
신승철
정석현
Original Assignee
주식회사 소모에너지엔테크놀러지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 소모에너지엔테크놀러지 filed Critical 주식회사 소모에너지엔테크놀러지
Publication of WO2018056682A1 publication Critical patent/WO2018056682A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/20Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from infrared radiation only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0087Simple or compound lenses with index gradient
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0025Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having one lens only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/008Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras designed for infrared light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/14Optical objectives specially designed for the purposes specified below for use with infrared or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B9/00Exposure-making shutters; Diaphragms
    • G03B9/02Diaphragms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B2003/0093Simple or compound lenses characterised by the shape

Definitions

  • the present invention relates to a long-wavelength infrared camera and a lens for a camera having a horizontal angle of view of 90 degrees, and more particularly, to a low-wavelength infrared ("LWIR”) camera and a lens for a camera that can be used in various smart devices.
  • LWIR low-wavelength infrared
  • the long wavelength infrared rays are light in the wavelength range of 8 ⁇ m to 12 ⁇ m and include the wavelength range of the infrared rays emitted by humans.
  • the long wavelength infrared camera is a camera that can detect and capture infrared rays generated by humans or animals at night.
  • the body temperature of humans and animals is about 310K, and the peak wavelength at 310K of black body radiation is about 8 ⁇ m to 12 ⁇ m.
  • the conventional infrared camera is made mainly of direct-processing lenses based on germanium (Germanium) lens, the manufacturing cost is high and the manufacturing time was also long.
  • the germanium lens is mainly applied to the military field, and in the civil field, its use is insignificant due to the price problem.
  • the lens to be applied to a smart device since the lens to be applied to a smart device must have a micro-shaped shape, there is a need for a molded lens to solve this problem.
  • the present invention has been made to solve the above problems of the prior art, the object of the present invention can be applied to the mold molding optical material to lower the production cost compared to the existing germanium lens and to be easily applied to the civil field through mass production
  • the present invention provides a long wavelength infrared camera having a horizontal angle of view of 90 degrees and a lens for a camera.
  • an object of the present invention is to provide a long-wavelength infrared camera and a lens for a camera having a horizontal angle of view of 90 degrees that can be applied to various smart devices because it can implement a clearer image than conventional optical devices of germanium material.
  • a lens for a long wavelength infrared camera having a horizontal angle of view of 90 degrees according to the present invention
  • a concave surface R2 that primarily refracts light incident from a subject
  • k is the conic surface coefficient
  • A4, A6, A8 and A10, A12 are aspherical coefficients
  • h is the distance from the optical axis to the concave or convex surface and c represents the center curvature
  • the radius of curvature and the thickness have an allowable range of ⁇ 0.5%
  • Diameter of concave surface R2 / (diameter of convex surface R3) is characterized in that 0.45 (acceptable range of ⁇ 0.5%).
  • the lens is characterized in that the edge portion extending between the concave surface (R2) and the convex surface (R3) in the direction perpendicular to the optical axis is formed.
  • the lens is a lens
  • the distance between the diaphragm and the concave surface R2 is 0.13 mm ⁇ 0.5%, and the central thickness TC of the concave surface R2 and the convex surface R3 is 2.62 mm ⁇ 0.5%, from the convex surface R3.
  • the distance to the infrared filter is 1.1934.0mm ⁇ 0.5%, the thickness of the infrared filter is 0.725mm ⁇ 0.5%, the distance from the infrared filter to the sensor surface is 0.615mm ⁇ 0.5%, the refractive index of the filter is 3.421 and the dispersion ratio is 2421.0. It is characterized by.
  • the present invention having the above-described configuration, it is possible to detect a living thing or object with only one lens as an optical system for a smart device, there is an advantage that can be applied to various electronic products as well as a general mobile phone.
  • the present invention it is made of a structure capable of molding by molding, there is an advantage that the production is easy, mass production is possible, and the manufacturing unit cost is low.
  • FIG. 1 is a perspective view of a long wavelength infrared camera having a horizontal angle of view of 90 degrees according to the present invention.
  • FIG. 2 is a configuration diagram illustrating the optical system structure of FIG. 2.
  • FIG. 3 is a light tracking analysis diagram of a long-wavelength infrared camera having a horizontal angle of view of 90 degrees according to the present invention.
  • Figure 4 is a graph showing the longitudinal spherical aberration (longitudinal spherical abberration) of a long-wavelength infrared camera having a horizontal angle of view of 90 degrees according to the present invention.
  • 5 is an aberration analysis graph of astigmatism of a long-wavelength infrared camera having a horizontal angle of view of 90 degrees according to the present invention.
  • FIG. 6 is a graph illustrating distortion of a long-wavelength infrared camera having a horizontal angle of view of 90 degrees according to the present invention.
  • FIG. 7 is a graph illustrating an analysis of a Modulation Transfer Function (MTF) indicating the resolution of a long-wavelength infrared camera having a horizontal angle of view of 90 degrees according to the present invention.
  • MTF Modulation Transfer Function
  • FIG. 8 is a diagram illustrating a spot diagram of a long-wavelength infrared camera having a horizontal angle of view of 90 degrees according to the present invention.
  • the long-wavelength infrared camera 1000 having a horizontal angle of view of 90 degrees includes an aperture 100, a concave surface R2 that primarily refracts light incident from a subject, and A lens 200 including a convex surface R3 for secondarily refracting the light passing through the concave surface R2, an infrared filter 300 spaced apart from the convex surface R3, and the infrared filter And a sensor surface 400 that forms an object through light passing through the 300.
  • the diaphragm 100 disposed in front of the convex surface R3 performs a function of preventing light from entering the optical system of the present invention.
  • the lens 200 has a positive refractive index as a whole and both surfaces are aspherical.
  • the lens 200 having a horizontal angle of view of 90 degrees is formed of an optical material for molding a mold.
  • the optical material for molding the mold is made of glass or plastic, and adopts materials that can be composed of various optical systems from ultra-small diameter lenses to medium-diameter lenses by using those having higher refractive index and lens transmission characteristics than similar types of materials on the market. Good to do.
  • the lens material applied to the optical system design of the present invention is a material for molding such as Ge 27 .5- Sb 13 .5- Se 60.
  • a material having a refractive index of 2.5 or more and a transmittance of 65% or more up to a wavelength band of 12 ⁇ m may be used. Can be.
  • the optical system is composed of the optical material according to the present invention, it is possible to realize a clear image compared to the existing, and it is possible to form a molding by molding, it is possible to construct a security surveillance popular LWIR camera optical system is easy to manufacture and low manufacturing cost.
  • the long-wavelength infrared camera 1000 having a horizontal angle of view of 90 degrees proceeded with an optical design of a low-cost type LWIR 1 group applying 6400 pixels (sensor).
  • the optical system of the present invention has a form advantageous for mold molding by increasing the thickness of the lens center portion and the edge portion 210.
  • the concave surface R2 and the convex surface R3 of the lens 200 according to the present invention are defined by the following ⁇ Equation 1>.
  • k is a conic surface coefficient
  • A4, A6, A8 and A10 and A12 are aspherical coefficients
  • h is a distance from an optical axis to a concave or convex surface
  • c represents a center curvature
  • the aspherical surface coefficient is defined to define the concave surface R2 and the convex surface R3.
  • the curvature radius RC and the surface thickness ST of the concave surface R2 and the convex surface R3 of the lens 200 were set, and the refractive index n and the dispersion rate v1 were set. ).
  • the dispersion ratio v1 is defined by the following equation.
  • N110 is a refractive index at a wavelength of 10 ⁇ m of a single lens
  • n108 is a refractive index at a wavelength of 8.0 ⁇ m of a single lens
  • n112 is a refractive index at a wavelength of 12 ⁇ m of a single lens
  • the radius of curvature and the surface thickness may have an allowable range of ⁇ 0.5%.
  • the average value of the center thickness TC / diameter of the concave surface R2 and the convex surface R3 is 0.88 (acceptable range of ⁇ 0.5%)
  • the thickness of the lens center portion and the edge portion is thick, an advantageous form for mold molding is possible.
  • the distance between the aperture and the concave surface (R2) is 0.13mm ⁇ 0.5%
  • the central thickness (TC) of the concave surface (R2) and the convex surface (R3) is 2.62mm ⁇ 0.5%
  • the convex The distance from the surface R3 to the infrared filter is 1.1934.0 mm ⁇ 0.5%
  • the thickness of the infrared filter is 0.725mm ⁇ 0.5%
  • the distance from the infrared filter to the sensor surface may be set to 0.615mm ⁇ 0.5%.
  • the lens 200 may be manufactured within the tolerance of the manufactured lens, thereby manufacturing a lens having a constant optical performance.
  • the corner portion of the lens 200 in a round shape, it can be advantageous to the assembly and production of the optical system.
  • the refractive index of the infrared filter 300 is 3.421 and the dispersion rate is 2421.0.
  • a predetermined angle of view can be obtained, and at the same time, longitudinal spherical aberration, astigmatism, and distortion can be minimized, and a good state can be obtained at a value of MTF (Modulation Transfer Functions) representing resolution.
  • MTF Modulation Transfer Functions
  • An exemplary embodiment of a long wavelength infrared camera 1000 having a horizontal angle of view of 90 degrees according to the present invention is described based on the configuration as described above.
  • a lens of a camera optical system for LWIR that can be applied to a smart device includes a lens 200 of the long-wavelength infrared camera 90 degree horizontal field of view in accordance with the present invention, Ge 27 .5 13 .5 -Sb non-oxide consisting of 60 -Se Infrared optical glass was applied to mold molding.
  • the radius of curvature of the concave surface R2 and the convex surface R3 of the lens 200 is -13.1807 mm (aspherical surface), -2.6572 mm (aspherical surface), and the diameter of the concave surface R2 is 1.84 mm and convex, respectively.
  • the diameter of the surface R3 was set to 4.12 mm.
  • the entire lens 200 was formed to have a thickness of 2.745 mm.
  • an edge portion 210 extending from the concave surface R2 and the convex surface R3 is formed perpendicular to the optical axis.
  • the diameter of the entire lens is set to 6.0 mm.
  • the length of the edge portion 210 can be appropriately adjusted.
  • the edge portion of the edge portion 210 is treated with a round of 0.3 ⁇ 0.6mm.
  • the concave surface R2 and the convex surface R3 of the lens 200 were formed from the above ⁇ Formula 1>, ⁇ Table 1> and ⁇ Table 2>.
  • the center thickness TC of the concave surface R2 and the convex surface R3 was set to 2.62 mm, and the thickness of the edge portion of the lens was set to 1.495, respectively.
  • the distance between the aperture 100 and the concave surface (R2) is 0.13mm
  • the distance from the convex surface (R3) to the infrared filter 300 is 1.1934mm
  • the thickness of the infrared filter 300 is 0.72mm
  • the The distance from the infrared filter 300 to the sensor surface 400 was set to 0.615 mm.
  • the infrared filter 300 has a refractive index of 3.421 and a dispersion of 2421.0.
  • a sensor of the sensor surface 400 may be a 34 ⁇ m sensor of 80 * 80 pixels.
  • FIG. 3 is an optical trace analysis diagram of a long-wavelength infrared camera having a horizontal angle of view of 90 degrees according to the present invention
  • FIG. 4 is a graph showing longitudinal spherical abberration of a long-wavelength infrared camera having a horizontal angle of view of 90 degrees according to the present invention.
  • FIG. 5 is an aberration analysis graph of the astigmatism of the 90-degree long-wavelength infrared camera according to the present invention
  • Figure 6 is a graph showing the distortion (distortion) of the 90-degree long-wavelength infrared camera according to the present invention
  • 7 is a graph analyzing a Modulation Transfer Function (MTF) indicating a resolution of a 90-degree long-wavelength infrared camera according to the present invention
  • FIG. 8 is a spot diagram of a 90-degree long-wavelength infrared camera according to the present invention. diagram).
  • MTF Modulation Transfer Function
  • the long-wavelength infrared camera having a horizontal angle of view of 90 degrees shows that the values of the images are shown adjacent to the central axis in almost all fields, indicating that the correction state of various aberrations is good.
  • the MTF optical required performance / resolution
  • the ratio of the amount of ambient light of the optical system of the present invention is secured by 85% or more on the basis of 0.7Field, the distortion rate is secured 27% optical system performance on the basis of 0.7Field.
  • the lens diameter is 6mm
  • the lens thickness can be produced within 2.8mm and can be applied to a variety of smart devices (cell phones, notebooks, various electronic devices, etc.).
  • the present invention is sufficiently possible to apply an optical material for molding a mold such as a non-oxide infrared optical glass, it is possible to lower the production cost compared to the conventional germanium lens and easily applied to the civilian field through mass production.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Lenses (AREA)

Abstract

The present invention relates to a long-wavelength infrared camera having a 90-degree horizontal angle of view, and a camera lens, wherein the lens having a 90-degree horizontal angle of view is formed from an optical material for mold-forming and comprises: a concave surface (R2) for primarily refracting light incident from a subject; and a convex surface (R3) for secondarily refracting the light that has passed through the concave surface (R2), wherein the concave surface (R2) and the convex surface (R3) are prescribed by the relationship among <Formula 1>, <Graph 1> and <Graph 2> in the detailed description of the present invention.

Description

수평화각 90도의 장파장 적외선 카메라 및 카메라용 렌즈Long wavelength infrared camera with a horizontal angle of view of 90 degrees and lens for camera
본 발명은 수평화각 90도의 장파장 적외선 카메라 및 카메라용 렌즈에 관한 것으로, 보다 상세하게는 다양한 스마트 기기에 사용이 가능한 보급형 장파장 적외선(일명 "LWIR") 카메라 및 카메라용 렌즈에 관한 것이다.The present invention relates to a long-wavelength infrared camera and a lens for a camera having a horizontal angle of view of 90 degrees, and more particularly, to a low-wavelength infrared ("LWIR") camera and a lens for a camera that can be used in various smart devices.
장파장 적외선은 8㎛~12㎛ 파장대의 광으로서 인간이 내는 적외선의 파장대를 포함한다.The long wavelength infrared rays are light in the wavelength range of 8 µm to 12 µm and include the wavelength range of the infrared rays emitted by humans.
장파장 적외선 카메라는 야간에 인간이나 동물이 발생하는 적외선을 감지하여 촬상할 수 있는 카메라이다.The long wavelength infrared camera is a camera that can detect and capture infrared rays generated by humans or animals at night.
인간이나 동물의 체온은 310K 정도로 흑체 복사의 310K에서의 피크 파장이 8㎛~12㎛ 정도이다.The body temperature of humans and animals is about 310K, and the peak wavelength at 310K of black body radiation is about 8 µm to 12 µm.
따라서, 인간 또는 동물이 내는 적외선 에너지를 장파장 적외선 카메라를 통해 인간이나 동물에 대한 존재 유무 및 영상 획득이 가능하다.Therefore, it is possible to acquire the presence or absence of an image of the human or the animal and the infrared energy of the human or the animal through the long-wavelength infrared camera.
그러나, 국내의 경우 장파장 적외선 전용 렌즈와 장파장 적외선 카메라 시스템의 개발이 매우 더딘 편이어서 대부분 수입에 의존하고 있으며 매우 고가에 판매되고 있는 실정이다.However, in Korea, the development of a long wavelength infrared dedicated lens and a long wavelength infrared camera system is very slow, and most of them depend on imports and are sold at very high prices.
특히, 종래의 적외선 카메라는 게르마늄(Germanium) 렌즈를 기반으로 한 직가공 렌즈 위주로 제작이 되고 있어 제작원가가 높고 제조시간 또한 길 수밖에 없었다.In particular, the conventional infrared camera is made mainly of direct-processing lenses based on germanium (Germanium) lens, the manufacturing cost is high and the manufacturing time was also long.
따라서, 게르마늄 렌즈는 주로 군수 분야에 적용되고 있으며, 민수 분야에서는 가격적인 문제로 인해 사용이 미미한 실정이다.Therefore, the germanium lens is mainly applied to the military field, and in the civil field, its use is insignificant due to the price problem.
더욱이, 스마트 기기에 적용하는 렌즈의 경우 초소형 형태의 형상을 지니고 있어야 하므로, 이를 해결하기 위한 몰드 성형 렌즈가 요구되고 있다.In addition, since the lens to be applied to a smart device must have a micro-shaped shape, there is a need for a molded lens to solve this problem.
본 발명은 상기한 종래기술의 문제점을 해결하기 위해 안출된 것으로서, 본 발명의 목적은 몰드 성형용 광학소재를 적용할 수 있으므로 기존 게르마늄 렌즈 대비 생산 단가를 낮추고 대량생산을 통해 민수 분야에도 쉽게 적용시킬 수 있는 수평화각 90도의 장파장 적외선 카메라 및 카메라용 렌즈를 제공하는데 있다.The present invention has been made to solve the above problems of the prior art, the object of the present invention can be applied to the mold molding optical material to lower the production cost compared to the existing germanium lens and to be easily applied to the civil field through mass production The present invention provides a long wavelength infrared camera having a horizontal angle of view of 90 degrees and a lens for a camera.
또한, 본 발명의 목적은 기존 게르마늄 소재의 광학기기에 비해 선명한 영상을 구현할 수 있어 각종 스마트 기기에 적용할 수 있는 수평화각 90도의 장파장 적외선 카메라 및 카메라용 렌즈를 제공하는데 있다.In addition, an object of the present invention is to provide a long-wavelength infrared camera and a lens for a camera having a horizontal angle of view of 90 degrees that can be applied to various smart devices because it can implement a clearer image than conventional optical devices of germanium material.
전술한 목적을 달성하기 위해, 본 발명에 따른 수평화각 90도의 장파장 적외선 카메라용 렌즈는,In order to achieve the above object, a lens for a long wavelength infrared camera having a horizontal angle of view of 90 degrees according to the present invention,
몰드 성형용 광학소재로 이루어지며,Made of optical material for molding
피사체로부터 입사되는 광을 1차적으로 굴절시키는 오목면(R2); 및,A concave surface R2 that primarily refracts light incident from a subject; And,
상기 오목면(R2)을 통과한 광을 2차적으로 굴절시키는 볼록면(R3)을 포함하 되, 상기 오목면(R2)과 볼록면(R3)은 아래 <식 1>, <표 1> 및 <표 2>의 관계에 의해 규정되는 것을 특징으로 하는 수평화각 90도의 렌즈로서;It includes a convex surface (R3) for refracting secondary light passing through the concave surface (R2), the concave surface (R2) and the convex surface (R3) are shown in <Equation 1>, <Table 1> and A lens having a horizontal angle of view of 90 degrees, which is defined by the relationship of Table 2;
Figure PCTKR2017010283-appb-I000001
<식 1>
Figure PCTKR2017010283-appb-I000001
<Equation 1>
<표 1>TABLE 1
Figure PCTKR2017010283-appb-I000002
Figure PCTKR2017010283-appb-I000002
여기서, k는 원추곡면계수이고, A4, A6, A8 및 A10, A12는 비구면계수이며, h는 광축으로부터 오목면 또는 볼록면까지의 거리이며 c는 중심곡률을 나타냄;Where k is the conic surface coefficient, A4, A6, A8 and A10, A12 are aspherical coefficients, h is the distance from the optical axis to the concave or convex surface and c represents the center curvature;
<표 2>TABLE 2
Figure PCTKR2017010283-appb-I000003
Figure PCTKR2017010283-appb-I000003
여기서, 곡률반경과 면두께는 ±0.5%의 허용범위를 가짐;Here, the radius of curvature and the thickness have an allowable range of ± 0.5%;
(오목면(R2)의 직경)/(볼록면(R3)의 직경)은 0.45(±0.5%의 허용범위)임을 특징으로 한다.(Diameter of concave surface R2) / (diameter of convex surface R3) is characterized in that 0.45 (acceptable range of ± 0.5%).
상기 렌즈에는, 광축과 수직방향으로 상기 오목면(R2)과 볼록면(R3) 사이에서 연장되는 에지부가 형성되는 것을 특징으로 한다.The lens is characterized in that the edge portion extending between the concave surface (R2) and the convex surface (R3) in the direction perpendicular to the optical axis is formed.
제2항에 있어서,The method of claim 2,
(오목면(R2)과 볼록면(R3)의 중심부 두께(TC)/직경의 평균값)은 0.88(±0.5%의 허용범위)이고, (렌즈의 에지부 두께)/(상기 오목면(R2)과 볼록면(R3)의 중심부 두께(TC))는 0.57(±0.5%의 허용범위)인 것을 특징으로 하는 수평화각 90도의 렌즈.(Average value of center thickness TC / diameter of concave surface R2 and convex surface R3) is 0.88 (acceptable range of ± 0.5%), (thickness of edge portion of lens) / (concave surface R2) And the central thickness TC of the convex surface R3 is 0.57 (acceptable range of ± 0.5%).
본 발명에 따른 수평화각 90도의 장파장 적외선 카메라는,Long-wavelength infrared camera having a horizontal angle of view of 90 degrees according to the present invention,
조리개;iris;
상기 렌즈;The lens;
상기 볼록면(R3)으로부터 이격되게 설치되는 적외선 필터; 및,An infrared filter spaced apart from the convex surface R3; And,
상기 적외선 필터를 통과한 광을 통해 피사체를 결상하는 센서면을 포함하는 것을 특징으로 한다.And a sensor surface for forming an object through light passing through the infrared filter.
상기 조리개와 상기 오목면(R2) 사이의 거리는 0.13mm±0.5%, 상기 오목면(R2)과 볼록면(R3)의 중심부 두께(TC)는 2.62mm±0.5%, 상기 볼록면(R3)으로부터 적외선 필터까지의 거리는 1.1934.0mm±0.5%, 적외선 필터의 두께는 0.725mm±0.5%, 상기 적외선 필터로부터 센서면까지의 거리는 0.615mm±0.5%이며, 상기 필터의 굴절율은 3.421이고 분산율은 2421.0인 것을 특징으로 한다.The distance between the diaphragm and the concave surface R2 is 0.13 mm ± 0.5%, and the central thickness TC of the concave surface R2 and the convex surface R3 is 2.62 mm ± 0.5%, from the convex surface R3. The distance to the infrared filter is 1.1934.0mm ± 0.5%, the thickness of the infrared filter is 0.725mm ± 0.5%, the distance from the infrared filter to the sensor surface is 0.615mm ± 0.5%, the refractive index of the filter is 3.421 and the dispersion ratio is 2421.0. It is characterized by.
전술한 바와 같은 구성의 본 발명에 따르면, 스마트 기기용 광학계로서 1매 렌즈만으로도 생물 또는 사물의 탐지가 가능하여, 일반 핸드폰 뿐만 아니라 다양한 전자제품에 적용할 수 있다는 이점이 있다.According to the present invention having the above-described configuration, it is possible to detect a living thing or object with only one lens as an optical system for a smart device, there is an advantage that can be applied to various electronic products as well as a general mobile phone.
또한, 본 발명에 따르면, 몰딩에 의한 성형이 가능한 구조로 이루어져 제작이 용이하며 대량 생산이 가능하고 제조 단가가 저렴하다는 장점도 있다.In addition, according to the present invention, it is made of a structure capable of molding by molding, there is an advantage that the production is easy, mass production is possible, and the manufacturing unit cost is low.
도 1은 본 발명에 따른 수평화각 90도의 장파장 적외선 카메라의 사시도이다.1 is a perspective view of a long wavelength infrared camera having a horizontal angle of view of 90 degrees according to the present invention.
도 2는 도 2의 광학계 구조를 나타내는 구성도이다.FIG. 2 is a configuration diagram illustrating the optical system structure of FIG. 2.
도 3은 본 발명에 따른 수평화각 90도의 장파장 적외선 카메라의 광 추적 분석도이다.3 is a light tracking analysis diagram of a long-wavelength infrared camera having a horizontal angle of view of 90 degrees according to the present invention.
도 4는 본 발명에 따른 수평화각 90도의 장파장 적외선 카메라의 종 구면수차(longitudinal spherical abberration)를 나타내는 그래프이다.Figure 4 is a graph showing the longitudinal spherical aberration (longitudinal spherical abberration) of a long-wavelength infrared camera having a horizontal angle of view of 90 degrees according to the present invention.
도 5는 본 발명에 따른 수평화각 90도의 장파장 적외선 카메라의 비점수차(astigmatism)에 관한 수차 해석 그래프이다.5 is an aberration analysis graph of astigmatism of a long-wavelength infrared camera having a horizontal angle of view of 90 degrees according to the present invention.
도 6은 본 발명에 따른 수평화각 90도의 장파장 적외선 카메라의 왜곡수차(distortion)를 나타내는 그래프이다.6 is a graph illustrating distortion of a long-wavelength infrared camera having a horizontal angle of view of 90 degrees according to the present invention.
도 7은 본 발명에 따른 수평화각 90도의 장파장 적외선 카메라의 해상도를 나타내는 MTF(Modulation Transfer Function)을 분석한 그래프이다.7 is a graph illustrating an analysis of a Modulation Transfer Function (MTF) indicating the resolution of a long-wavelength infrared camera having a horizontal angle of view of 90 degrees according to the present invention.
도 8은 본 발명에 따른 수평화각 90도의 장파장 적외선 카메라의 스폿 다이어그램(spot diagram)을 도시한 도면이다.8 is a diagram illustrating a spot diagram of a long-wavelength infrared camera having a horizontal angle of view of 90 degrees according to the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1과 도 2에 도시한 바와 같이, 본 발명에 따른 수평화각 90도의 장파장 적외선 카메라(1000)는, 조리개(100), 피사체로부터 입사되는 광을 1차적으로 굴절시키는 오목면(R2) 및, 상기 오목면(R2)을 통과한 광을 2차적으로 굴절시키는 볼록면(R3)을 포함하는 렌즈(200), 상기 볼록면(R3)으로부터 이격되게 설치되는 적외선 필터(300) 및, 상기 적외선 필터(300)를 통과한 광을 통해 피사체를 결상하는 센서면(400)을 포함한다.As shown in FIGS. 1 and 2, the long-wavelength infrared camera 1000 having a horizontal angle of view of 90 degrees according to the present invention includes an aperture 100, a concave surface R2 that primarily refracts light incident from a subject, and A lens 200 including a convex surface R3 for secondarily refracting the light passing through the concave surface R2, an infrared filter 300 spaced apart from the convex surface R3, and the infrared filter And a sensor surface 400 that forms an object through light passing through the 300.
먼저, 상기 볼록면(R3) 앞에 배치되는 조리개(100)는 본 발명의 광학계에 잡광이 들어오는 것을 방지하는 기능을 수행한다. First, the diaphragm 100 disposed in front of the convex surface R3 performs a function of preventing light from entering the optical system of the present invention.
상기 렌즈(200)는 전체적으로 양(+)의 굴절률을 갖으며 양면은 비구면이다. The lens 200 has a positive refractive index as a whole and both surfaces are aspherical.
상기 수평화각 90도의 렌즈(200)는 몰드 성형용 광학소재로 이루어진다.The lens 200 having a horizontal angle of view of 90 degrees is formed of an optical material for molding a mold.
몰드 성형용 광학소재는 글라스나 플라스틱 등으로 이루어지며, 기존 시장에 나와 있는 비슷한 종류의 소재보다 굴절률과 렌즈 투과 특성이 높은 것을 사용함으로써 초소구경 렌즈부터 중구경 렌즈까지 다양한 광학계 구성이 가능한 소재를 채택하는 것이 좋다.The optical material for molding the mold is made of glass or plastic, and adopts materials that can be composed of various optical systems from ultra-small diameter lenses to medium-diameter lenses by using those having higher refractive index and lens transmission characteristics than similar types of materials on the market. Good to do.
예컨대, 본 발명의 광학계 설계에 적용된 렌즈 소재는 Ge27 .5-Sb13 .5-Se60 와 같은 몰드성형용 소재로서 2.5 이상의 굴절률과 파장 대역 12㎛까지 65% 이상의 높은 투과도를 가지는 소재가 사용될 수 있다.For example, the lens material applied to the optical system design of the present invention is a material for molding such as Ge 27 .5- Sb 13 .5- Se 60. A material having a refractive index of 2.5 or more and a transmittance of 65% or more up to a wavelength band of 12 μm may be used. Can be.
이러한 본 발명에 따른 광학소재로 광학계를 구성하게 되면 기존 대비 선명한 영상을 구현할 수 있으며, 몰딩에 의한 성형이 가능하여 제작이 용이하고 제조단가가 저렴한 보안감시 보급형 LWIR 카메라 광학계를 구성할 수 있다.When the optical system is composed of the optical material according to the present invention, it is possible to realize a clear image compared to the existing, and it is possible to form a molding by molding, it is possible to construct a security surveillance popular LWIR camera optical system is easy to manufacture and low manufacturing cost.
또한, 본 발명의 수평화각 90도의 장파장 적외선 카메라(1000)는 6400픽셀(센서)을 적용한 보급형 LWIR 1군 1매 광학 설계를 진행하였다.In addition, the long-wavelength infrared camera 1000 having a horizontal angle of view of 90 degrees according to the present invention proceeded with an optical design of a low-cost type LWIR 1 group applying 6400 pixels (sensor).
본 발명의 광학계는 렌즈 중심부와 에지부(210)의 두께를 두껍게 하여 몰드 성형에 유리한 형태를 가지고 있다. The optical system of the present invention has a form advantageous for mold molding by increasing the thickness of the lens center portion and the edge portion 210.
또한, 본 발명에 따른 렌즈(200)의 상기 오목면(R2)과 볼록면(R3)은 아래 <식 1>의 관계에 의해 규정된다.Incidentally, the concave surface R2 and the convex surface R3 of the lens 200 according to the present invention are defined by the following <Equation 1>.
Figure PCTKR2017010283-appb-I000004
<식 1>
Figure PCTKR2017010283-appb-I000004
<Equation 1>
여기서, k는 원추곡면계수이고, A4, A6, A8 및 A10, A12는 비구면계수이며, h는 광축으로부터 오목면 또는 볼록면까지의 거리이며 c는 중심곡률을 나타낸다.Where k is a conic surface coefficient, A4, A6, A8 and A10 and A12 are aspherical coefficients, h is a distance from an optical axis to a concave or convex surface and c represents a center curvature.
아래 <표 1>과 같이 비구면계수를 정하여 오목면(R2)과 볼록면(R3)을 규정한다.As shown in Table 1 below, the aspherical surface coefficient is defined to define the concave surface R2 and the convex surface R3.
<표 1>TABLE 1
Figure PCTKR2017010283-appb-I000005
Figure PCTKR2017010283-appb-I000005
또한, 아래 <표 2>와 같이, 렌즈(200)의 오목면(R2)과 볼록면(R3)의 곡률반경(RC)과 면두께(ST)를 설정하였으며, 굴절율(n)과 분산율(v1)을 정하였다.In addition, as shown in Table 2 below, the curvature radius RC and the surface thickness ST of the concave surface R2 and the convex surface R3 of the lens 200 were set, and the refractive index n and the dispersion rate v1 were set. ).
상기 분산율(v1)은 아래의 식으로 정의된다.The dispersion ratio v1 is defined by the following equation.
v1= (n110-1)/(n108-n112) <식 2>v1 = (n110-1) / (n108-n112) <Equation 2>
여기서, n110은 1매 렌즈의 파장 10㎛에서의 굴절율, n108은 1매 렌즈의 파장 8.0㎛에서의 굴절율, n112은 1매 렌즈의 파장 12㎛에서의 굴절율이며,N110 is a refractive index at a wavelength of 10 μm of a single lens, n108 is a refractive index at a wavelength of 8.0 μm of a single lens, n112 is a refractive index at a wavelength of 12 μm of a single lens,
2.0<n110<3.02.0 <n110 <3.0
<표 2>TABLE 2
Figure PCTKR2017010283-appb-I000006
Figure PCTKR2017010283-appb-I000006
여기서, 곡률반경과 면두께는 ±0.5%의 허용범위를 가질 수 있다.Here, the radius of curvature and the surface thickness may have an allowable range of ± 0.5%.
특히, (오목면(R2)과 볼록면(R3)의 중심부 두께(TC)/직경의 평균값)은 0.88(±0.5%의 허용범위)이고, (렌즈의 에지부 두께)/(상기 오목면(R2)과 볼록면(R3)의 중심부 두께(TC))는 0.57(±0.5%의 허용범위)의 값을 가지므로, 화각 90도를 정확히 맞출 수 있게 된다.In particular, (the average value of the center thickness TC / diameter of the concave surface R2 and the convex surface R3) is 0.88 (acceptable range of ± 0.5%), (thickness of the edge portion of the lens) / (the concave surface ( Since the center thickness (TC) of R2) and the convex surface R3 has a value of 0.57 (acceptable range of ± 0.5%), it is possible to accurately match the angle of view 90 degrees.
또한, 렌즈 중심부와 에지부의 두께가 두꺼우므로 몰드 성형에 유리한 형태가 가능하게 된다.In addition, since the thickness of the lens center portion and the edge portion is thick, an advantageous form for mold molding is possible.
본 발명에 따르면, 상기 조리개와 상기 오목면(R2) 사이의 거리는 0.13mm±0.5%, 상기 오목면(R2)과 볼록면(R3)의 중심부 두께(TC)는 2.62mm±0.5%, 상기 볼록면(R3)으로부터 적외선 필터까지의 거리는 1.1934.0mm±0.5%, 적외선 필터의 두께는 0.725mm±0.5%, 상기 적외선 필터로부터 센서면까지의 거리는 0.615mm±0.5%로 설정될 수 있다.According to the invention, the distance between the aperture and the concave surface (R2) is 0.13mm ± 0.5%, the central thickness (TC) of the concave surface (R2) and the convex surface (R3) is 2.62mm ± 0.5%, the convex The distance from the surface R3 to the infrared filter is 1.1934.0 mm ± 0.5%, the thickness of the infrared filter is 0.725mm ± 0.5%, the distance from the infrared filter to the sensor surface may be set to 0.615mm ± 0.5%.
본 발명의 렌즈(200)에 두께 공차를 설정하게 되면, 제작되는 렌즈의 허용공차 이내로 제작이 가능하여 일정한 광학성능을 가진 렌즈를 제작할 수 있다.When the thickness tolerance is set in the lens 200 of the present invention, the lens 200 may be manufactured within the tolerance of the manufactured lens, thereby manufacturing a lens having a constant optical performance.
또한, 렌즈(200)의 모서리 부분을 라운드 형태로 제작함으로써 광학계 조립 및 제작에 유리하게 할 수 있다. In addition, by manufacturing the corner portion of the lens 200 in a round shape, it can be advantageous to the assembly and production of the optical system.
한편, 상기 적외선 필터(300)의 굴절율은 3.421이고 분산율은 2421.0인 것이 적당하다.Meanwhile, the refractive index of the infrared filter 300 is 3.421 and the dispersion rate is 2421.0.
이와 같은 조건을 통해, 소정의 화각이 얻어지는 동시에, 종방향 구면수차, 비점수차 및 왜곡수차를 최소화할 수 있으며, 해상도를 나타내는 MTF(Modulation Transfer Functions)의 값에서 양호한 상태를 얻을 수 있다.Through such conditions, a predetermined angle of view can be obtained, and at the same time, longitudinal spherical aberration, astigmatism, and distortion can be minimized, and a good state can be obtained at a value of MTF (Modulation Transfer Functions) representing resolution.
전술한 바와 같은 구성에 기초하여 본 발명에 따른 수평화각 90도의 장파장 적외선 카메라(1000)의 예시적인 일 실시예를 기재한다.An exemplary embodiment of a long wavelength infrared camera 1000 having a horizontal angle of view of 90 degrees according to the present invention is described based on the configuration as described above.
먼저, 본 발명에 따른 수평화각 90도의 장파장 적외선 카메라의 렌즈(200)는 스마트기기에 적용할 수 있는 LWIR용 카메라 광학계의 렌즈로서, Ge27 .5-Sb13 .5-Se60로 이루어진 비산화물 적외선 광학유리를 적용하여 몰드 성형을 하였다.First, a lens of a camera optical system for LWIR that can be applied to a smart device includes a lens 200 of the long-wavelength infrared camera 90 degree horizontal field of view in accordance with the present invention, Ge 27 .5 13 .5 -Sb non-oxide consisting of 60 -Se Infrared optical glass was applied to mold molding.
또한, 상기 렌즈(200)의 오목면(R2)과 볼록면(R3)의 곡률반경은 각각 -13.1807mm(비구면), -2.6572mm(비구면), 오목면(R2)의 직경은 1.84mm, 볼록면(R3)의 직경은 4.12mm로 설정하였다.In addition, the radius of curvature of the concave surface R2 and the convex surface R3 of the lens 200 is -13.1807 mm (aspherical surface), -2.6572 mm (aspherical surface), and the diameter of the concave surface R2 is 1.84 mm and convex, respectively. The diameter of the surface R3 was set to 4.12 mm.
전체 렌즈(200)의 두께는 2.745mm로 형성하였다.The entire lens 200 was formed to have a thickness of 2.745 mm.
장착을 위해 광축과 수직으로 상기 오목면(R2)과 볼록면(R3)으로부터 연장되는 에지부(210)가 형성되며, 이를 고려할 때 전체 렌즈의 직경은 6.0mm 로 설정하였다.For mounting, an edge portion 210 extending from the concave surface R2 and the convex surface R3 is formed perpendicular to the optical axis. In consideration of this, the diameter of the entire lens is set to 6.0 mm.
상기 에지부(210)의 길이는 적절히 조정이 가능하다.The length of the edge portion 210 can be appropriately adjusted.
상기 에지부(210)의 모서리 부분에는 0.3~0.6mm의 라운드가 처리되어 있다.The edge portion of the edge portion 210 is treated with a round of 0.3 ~ 0.6mm.
렌즈(200)의 오목면(R2)과 볼록면(R3)은 위의 <식 1>과 <표 1> 및 <표 2>로부터 형성하였다.The concave surface R2 and the convex surface R3 of the lens 200 were formed from the above <Formula 1>, <Table 1> and <Table 2>.
또한, 오목면(R2)과 볼록면(R3)의 중심부 두께(TC)는 2.62mm로, 렌즈의 에지부 두께는 1.495로 각각 설정하였다.In addition, the center thickness TC of the concave surface R2 and the convex surface R3 was set to 2.62 mm, and the thickness of the edge portion of the lens was set to 1.495, respectively.
또한, 상기 조리개(100)와 상기 오목면(R2) 사이의 거리는 0.13mm, 상기 볼록면(R3)으로부터 적외선 필터(300)까지의 거리는 1.1934mm, 적외선 필터(300)의 두께는 0.72mm, 상기 적외선 필터(300)로부터 센서면(400)까지의 거리는 0.615mm로 정하였다.In addition, the distance between the aperture 100 and the concave surface (R2) is 0.13mm, the distance from the convex surface (R3) to the infrared filter 300 is 1.1934mm, the thickness of the infrared filter 300 is 0.72mm, the The distance from the infrared filter 300 to the sensor surface 400 was set to 0.615 mm.
상기 적외선 필터(300)의 굴절율은 3.421이고 분산율은 2421.0인 것을 채택하였다.The infrared filter 300 has a refractive index of 3.421 and a dispersion of 2421.0.
또한, 상기 센서면(400)의 센서로는 80*80픽셀의 34㎛ 센서가 채택될 수 있다.In addition, a sensor of the sensor surface 400 may be a 34㎛ sensor of 80 * 80 pixels.
이와 같은 구성의 본 발명의 수평화각 90도의 장파장 적외선 카메라(1000)에 대하여 도 3 내지 도 8의 실험결과를 얻을 수 있었다.Experiments of FIGS. 3 to 8 were obtained with respect to the long wavelength infrared camera 1000 having a horizontal angle of view of 90 degrees according to the present invention.
도 3은 본 발명에 따른 수평화각 90도의 장파장 적외선 카메라의 광 추적 분석도이고, 도 4는 본 발명에 따른 수평화각 90도의 장파장 적외선 카메라의 종 구면수차(longitudinal spherical abberration)를 나타내는 그래프이고, 도 5는 본 발명에 따른 수평화각 90도의 장파장 적외선 카메라의 비점수차(astigmatism)에 관한 수차 해석 그래프이고, 도 6은 본 발명에 따른 수평화각 90도의 장파장 적외선 카메라의 왜곡수차(distortion)를 나타내는 그래프이고, 도 7은 본 발명에 따른 수평화각 90도의 장파장 적외선 카메라의 해상도를 나타내는 MTF(Modulation Transfer Function)을 분석한 그래프이고, 도 8은 본 발명에 따른 수평화각 90도의 장파장 적외선 카메라의 스폿 다이어그램(spot diagram)을 도시한 도면이다.3 is an optical trace analysis diagram of a long-wavelength infrared camera having a horizontal angle of view of 90 degrees according to the present invention, and FIG. 4 is a graph showing longitudinal spherical abberration of a long-wavelength infrared camera having a horizontal angle of view of 90 degrees according to the present invention. 5 is an aberration analysis graph of the astigmatism of the 90-degree long-wavelength infrared camera according to the present invention, Figure 6 is a graph showing the distortion (distortion) of the 90-degree long-wavelength infrared camera according to the present invention 7 is a graph analyzing a Modulation Transfer Function (MTF) indicating a resolution of a 90-degree long-wavelength infrared camera according to the present invention, and FIG. 8 is a spot diagram of a 90-degree long-wavelength infrared camera according to the present invention. diagram).
도 3 내지 도 8에 도시한 바와 같이, 본 발명에 따른 수평화각 90도의 장파장 적외선 카메라는 거의 모든 필드에서 상들의 값이 중심축에 인접하게 나타나고 있어 각종 수차의 보정 상태가 양호함을 나타내고 있음은 물론 MTF(광학적 요구성능/해상도)를 만족하고 있음을 나타내고 있다.As shown in FIGS. 3 to 8, the long-wavelength infrared camera having a horizontal angle of view of 90 degrees according to the present invention shows that the values of the images are shown adjacent to the central axis in almost all fields, indicating that the correction state of various aberrations is good. Of course, it indicates that the MTF (optical required performance / resolution) is satisfied.
또한, 본 발명의 광학계의 주변 광량 비는 0.7Field 기준으로 85% 이상 확보하였으며, 왜곡률은 0.7Field 기준으로 27% 광학계 성능을 확보하고 있다. In addition, the ratio of the amount of ambient light of the optical system of the present invention is secured by 85% or more on the basis of 0.7Field, the distortion rate is secured 27% optical system performance on the basis of 0.7Field.
그리고, 렌즈 직경이 6mm, 렌즈 두께는 2.8mm 이내로 제작이 가능하여 다양한 스마트기기(핸드폰, 노트북, 각종 전자기기 등)에 적용이 가능하다. In addition, the lens diameter is 6mm, the lens thickness can be produced within 2.8mm and can be applied to a variety of smart devices (cell phones, notebooks, various electronic devices, etc.).
따라서, 본 발명은 비산화물 적외선 광학유리와 같은 몰드 성형용 광학소재를 적용하는 것이 충분히 가능하므로, 기존 게르마늄 렌즈 대비 생산 단가를 낮추고 대량생산을 통해 민수 분야에도 쉽게 적용시킬 수 있다.Therefore, the present invention is sufficiently possible to apply an optical material for molding a mold such as a non-oxide infrared optical glass, it is possible to lower the production cost compared to the conventional germanium lens and easily applied to the civilian field through mass production.

Claims (5)

  1. 몰드 성형용 광학소재로 이루어지며,Made of optical material for molding
    피사체로부터 입사되는 광을 1차적으로 굴절시키는 오목면(R2); 및,A concave surface R2 that primarily refracts light incident from a subject; And,
    상기 오목면(R2)을 통과한 광을 2차적으로 굴절시키는 볼록면(R3)을 포함하 되, 상기 오목면(R2)과 볼록면(R3)은 아래 <식 1>, <표 1> 및 <표 2>의 관계에 의해 규정되는 것을 특징으로 하는 수평화각 90도의 렌즈;It includes a convex surface (R3) for refracting secondary light passing through the concave surface (R2), the concave surface (R2) and the convex surface (R3) are shown in <Equation 1>, <Table 1> and A lens having a horizontal angle of view of 90 degrees, which is defined by the relationship of Table 2;
    Figure PCTKR2017010283-appb-I000007
    <식 1>
    Figure PCTKR2017010283-appb-I000007
    <Equation 1>
    <표 1>TABLE 1
    Figure PCTKR2017010283-appb-I000008
    Figure PCTKR2017010283-appb-I000008
    여기서, k는 원추곡면계수이고, A4, A6, A8 및 A10, A12는 비구면계수이며, h는 광축으로부터 오목면 또는 볼록면까지의 거리이며 c는 중심곡률을 나타냄;Where k is the conic surface coefficient, A4, A6, A8 and A10, A12 are aspherical coefficients, h is the distance from the optical axis to the concave or convex surface and c represents the center curvature;
    <표 2>TABLE 2
    Figure PCTKR2017010283-appb-I000009
    Figure PCTKR2017010283-appb-I000009
    여기서, 곡률반경과 면두께는 ±0.5%의 허용범위를 가짐;Here, the radius of curvature and the thickness have an allowable range of ± 0.5%;
    (오목면(R2)의 직경)/(볼록면(R3)의 직경)은 0.45(±0.5%의 허용범위)임.(Diameter of concave surface (R2)) / (diameter of convex surface (R3)) is 0.45 (acceptable range of ± 0.5%).
  2. 제1항에서,In claim 1,
    상기 렌즈에는, 광축과 수직방향으로 상기 오목면(R2)과 볼록면(R3) 사이에서 연장되는 에지부가 형성되는 것을 특징으로 하는 수평화각 90도의 렌즈.The lens having a horizontal angle of view of 90 degrees, wherein the lens has an edge portion extending between the concave surface (R2) and the convex surface (R3) in a direction perpendicular to the optical axis.
  3. 제2항에 있어서,The method of claim 2,
    (오목면(R2)과 볼록면(R3)의 중심부 두께(TC)/직경의 평균값)은 0.88(±0.5%의 허용범위)이고, (렌즈의 에지부 두께)/(상기 오목면(R2)과 볼록면(R3)의 중심부 두께(TC))는 0.57(±0.5%의 허용범위)인 것을 특징으로 하는 수평화각 90도의 렌즈.(Average value of center thickness TC / diameter of concave surface R2 and convex surface R3) is 0.88 (acceptable range of ± 0.5%), (thickness of edge portion of lens) / (concave surface R2) And the central thickness TC of the convex surface R3 is 0.57 (acceptable range of ± 0.5%).
  4. 조리개;iris;
    제1항 내지 제3항 중 어느 한 항에 따른 렌즈;A lens according to any one of claims 1 to 3;
    상기 볼록면(R3)으로부터 이격되게 설치되는 적외선 필터; 및,An infrared filter spaced apart from the convex surface R3; And,
    상기 적외선 필터를 통과한 광을 통해 피사체를 결상하는 센서면을 포함하는 것을 특징으로 하는 수평화각 90도의 장파장 적외선 카메라.And a sensor surface for imaging an object through light passing through the infrared filter.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 조리개와 상기 오목면(R2) 사이의 거리는 0.13mm±0.5%, 상기 오목면(R2)과 볼록면(R3)의 중심부 두께(TC)는 2.62mm±0.5%, 상기 볼록면(R3)으로부터 적외선 필터까지의 거리는 1.1934.0mm±0.5%, 적외선 필터의 두께는 0.725mm±0.5%, 상기 적외선 필터로부터 센서면까지의 거리는 0.615mm±0.5%이며, 상기 필터의 굴절율은 3.421이고 분산율은 2421.0인 것을 특징으로 하는 수평화각 90도의 장파장 적외선 카메라.The distance between the diaphragm and the concave surface R2 is 0.13 mm ± 0.5%, and the central thickness TC of the concave surface R2 and the convex surface R3 is 2.62 mm ± 0.5%, from the convex surface R3. The distance to the infrared filter is 1.1934.0mm ± 0.5%, the thickness of the infrared filter is 0.725mm ± 0.5%, the distance from the infrared filter to the sensor surface is 0.615mm ± 0.5%, the refractive index of the filter is 3.421 and the dispersion ratio is 2421.0. Long wavelength infrared camera with a horizontal angle of view of 90 degrees.
PCT/KR2017/010283 2016-09-20 2017-09-20 Long-wavelength infrared camera having 90-degree horizontal angle of view, and camera lens WO2018056682A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160120175A KR101887143B1 (en) 2016-09-20 2016-09-20 Long-Wavelength Infrared Camera with 90 degree Angle of View and Lens for the Carera
KR10-2016-0120175 2016-09-20

Publications (1)

Publication Number Publication Date
WO2018056682A1 true WO2018056682A1 (en) 2018-03-29

Family

ID=61661353

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/010283 WO2018056682A1 (en) 2016-09-20 2017-09-20 Long-wavelength infrared camera having 90-degree horizontal angle of view, and camera lens

Country Status (5)

Country Link
KR (1) KR101887143B1 (en)
CN (1) CN107843944A (en)
HK (1) HK1246865A1 (en)
TW (1) TWI625969B (en)
WO (1) WO2018056682A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102134298B1 (en) * 2019-01-17 2020-07-16 주식회사 소모아이알 Long-Wavelength Infrared Camera with 120 degree Angle of View and Lens for the Carera
KR102299461B1 (en) * 2020-01-10 2021-09-07 한국광기술원 Angle of view 40-degree far-infrared optical system with uniform resolution for each image area
CN111913240A (en) * 2020-08-11 2020-11-10 中山北方晶华精密光学有限公司 Optical lens special for mobile phone and processing method thereof
CN112698476B (en) * 2020-12-18 2022-06-10 天津欧菲光电有限公司 Optical imaging system, image capturing module and electronic device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002118776A (en) * 2000-10-10 2002-04-19 Konica Corp Image pickup device
JP2003329920A (en) * 2002-05-10 2003-11-19 Seiko Epson Corp Image pickup lens and camera module
JP2008216470A (en) * 2007-03-01 2008-09-18 Hitachi Maxell Ltd Objective lens for imaging, imaging module, and method of designing objective lens for imaging
JP2010151935A (en) * 2008-12-24 2010-07-08 Kantatsu Co Ltd Imaging lens
JP2010249931A (en) * 2009-04-13 2010-11-04 Fujifilm Corp Infrared lens and imaging apparatus

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3825315A (en) * 1973-01-29 1974-07-23 R Altman Zoom lens optical system for infrared wavelengths
DE2808043C3 (en) * 1978-02-24 1981-10-22 Optische Werke G. Rodenstock, 8000 München Optical system for night vision glasses
US4802717A (en) * 1986-04-21 1989-02-07 Hughes Aircraft Company Infrared afocal zoom telescope
US6292293B1 (en) * 1999-06-25 2001-09-18 Raytheon Company Wide-angle infrared lens and detector with internal aperture stop and associated method
US6356396B1 (en) * 2000-02-01 2002-03-12 Raytheon Company Optical system having a generalized torus optical corrector
KR100404726B1 (en) * 2000-06-10 2003-11-07 (주)웨이텍 Lens comprising diffractive optical element and aspheric element on one sheet and optical apparatus comprising the same
US7224535B2 (en) * 2005-07-29 2007-05-29 Panavision International, L.P. Zoom lens system
CN101246252A (en) * 2007-02-13 2008-08-20 亚洲光学股份有限公司 Micro-lens
KR100916502B1 (en) 2007-08-10 2009-09-08 삼성전기주식회사 Subminiature Optical System
KR100950506B1 (en) * 2008-01-18 2010-03-31 삼성테크윈 주식회사 Imaging optical system for camera and video telephony camera employing the same
KR101274610B1 (en) * 2011-06-03 2013-06-17 주식회사 소모홀딩스엔테크놀러지 far-infrared camera lens unit
WO2014074202A2 (en) * 2012-08-20 2014-05-15 The Regents Of The University Of California Monocentric lens designs and associated imaging systems having wide field of view and high resolution
EP2894503B1 (en) * 2012-09-05 2020-11-18 Nalux Co. Ltd. Infrared imaging optical system
US9335126B2 (en) * 2013-07-17 2016-05-10 Raytheon Company Offset aperture gimbaled optical system with optically corrected conformal dome

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002118776A (en) * 2000-10-10 2002-04-19 Konica Corp Image pickup device
JP2003329920A (en) * 2002-05-10 2003-11-19 Seiko Epson Corp Image pickup lens and camera module
JP2008216470A (en) * 2007-03-01 2008-09-18 Hitachi Maxell Ltd Objective lens for imaging, imaging module, and method of designing objective lens for imaging
JP2010151935A (en) * 2008-12-24 2010-07-08 Kantatsu Co Ltd Imaging lens
JP2010249931A (en) * 2009-04-13 2010-11-04 Fujifilm Corp Infrared lens and imaging apparatus

Also Published As

Publication number Publication date
KR20180031891A (en) 2018-03-29
CN107843944A (en) 2018-03-27
KR101887143B1 (en) 2018-09-11
TW201815153A (en) 2018-04-16
TWI625969B (en) 2018-06-01
HK1246865A1 (en) 2018-09-14

Similar Documents

Publication Publication Date Title
US20240004166A1 (en) Subminiature optical system and portable device including the same
WO2018056682A1 (en) Long-wavelength infrared camera having 90-degree horizontal angle of view, and camera lens
TWI710817B (en) Optical lens
CN105974561B (en) Wide-angle camera
WO2018056681A1 (en) Long-wave infrared camera and camera lens having 21-degree horizontal angle of view
WO2017160095A1 (en) Optical imaging lens system
KR101837371B1 (en) Fast and small optical system for high-pixel
CN101241226B (en) Subminiature imaging optical system
WO2017155303A1 (en) Photographing lens optical system
WO2016190625A1 (en) Wide-field-of-view athermalization infrared lens module
CN111221098B (en) Telephoto lens, camera module and electronic device
WO2017034307A1 (en) Imaging lens, and camera module and digital device comprising same
KR20220035973A (en) Camera module and terminal device
WO2014025121A1 (en) Optical system
WO2018056683A1 (en) Long-wave infrared camera and camera lens having 54-degree horizontal angle of view
TW202314316A (en) Optical lens assembly and photographing module
WO2017160091A1 (en) Optical lens system and imaging apparatus
TWI615652B (en) Optical lens
WO2016182408A2 (en) Taking lens system
KR102134298B1 (en) Long-Wavelength Infrared Camera with 120 degree Angle of View and Lens for the Carera
EP4194921A1 (en) Optical system, lens module, and electronic device
TWI753815B (en) Optical lens system,imaging device and electronic device
CN111007658B (en) Low-cost athermal day and night lens and working method thereof
CN201083875Y (en) Micro-optical lens
CN210401819U (en) Optical system, lens module and electronic equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17853396

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17853396

Country of ref document: EP

Kind code of ref document: A1