WO2018055972A1 - Actuator device - Google Patents

Actuator device Download PDF

Info

Publication number
WO2018055972A1
WO2018055972A1 PCT/JP2017/030189 JP2017030189W WO2018055972A1 WO 2018055972 A1 WO2018055972 A1 WO 2018055972A1 JP 2017030189 W JP2017030189 W JP 2017030189W WO 2018055972 A1 WO2018055972 A1 WO 2018055972A1
Authority
WO
WIPO (PCT)
Prior art keywords
actuator
actuator member
tension
actuator device
tension applying
Prior art date
Application number
PCT/JP2017/030189
Other languages
French (fr)
Japanese (ja)
Inventor
拓磨 山内
栄太郎 田中
晴彦 渡邊
吾朗 上田
誠一郎 鷲野
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017065134A external-priority patent/JP6610596B2/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112017004705.6T priority Critical patent/DE112017004705B4/en
Publication of WO2018055972A1 publication Critical patent/WO2018055972A1/en
Priority to US16/351,997 priority patent/US11025178B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N10/00Electric motors using thermal effects
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means

Definitions

  • This disclosure relates to an actuator device that uses, as a power source, an actuator member that deforms in response to external energy input by electrical, photonic, chemical, thermal, absorption, or other means.
  • an actuator member described in Patent Document 1 is known as this type of actuator member.
  • the actuator member described in Patent Document 1 is made of a polymer fiber and has a characteristic of being twisted or stretched by a temperature change based on electric heating or white heating.
  • an actuator member made of a polymer fiber as described in Patent Document 1 can change in deformation characteristics such as torsional characteristics and stretch characteristics by absorbing and swelling water and oil in the surrounding environment.
  • deformation characteristics such as torsional characteristics and stretch characteristics by absorbing and swelling water and oil in the surrounding environment.
  • the actuator member is deformed by a constant load applied to the actuator member, so-called creep deformation occurs in the actuator member, the deformation characteristics of the actuator member can be similarly changed. If the actuator member deforms due to swelling, creep deformation, thermal expansion, or thermal contraction, the operation of the operated part connected to the actuator member also changes, and as a result, the operation of the operated part may be destabilized. is there.
  • Such a problem is not limited to an actuator member made of a polymer fiber, but is applied to an actuator device that uses, as a power source, an actuator member that can change its deformation characteristics due to natural deformation such as swelling, creep deformation, thermal expansion, and thermal contraction This is a common issue.
  • An object of the present disclosure is to provide an actuator device that can stabilize the operation of an actuated portion under a situation where natural deformation occurs in an actuator member.
  • the actuator device includes an actuator member, an actuated portion, a driving portion, and a tension applying portion.
  • the actuator member is deformed in response to external energy application.
  • the actuated part is connected to the actuator member.
  • the drive unit applies energy to the actuator member to displace the operated portion in the deformation direction of the actuator member.
  • the tension applying unit applies a tension that can correct a change in tension based on at least one of expansion and contraction of the actuator member due to natural deformation to the actuator member.
  • the tension change of the actuator member is corrected by the tension applied to the actuator member from the tension applying unit.
  • FIG. 1 is a diagram schematically showing the structure of the actuator device according to the first embodiment.
  • FIG. 2 is a block diagram illustrating an electrical configuration of the actuator device according to the first embodiment.
  • FIG. 3 is a diagram schematically illustrating an operation example of the actuator device according to the first embodiment.
  • FIG. 4 is a diagram schematically showing the structure of the actuator device according to the second embodiment.
  • FIG. 5 is an enlarged view showing an example of the correcting actuator member in the actuator device of the second embodiment.
  • FIG. 6 is a block diagram illustrating an electrical configuration of the actuator device according to the second embodiment.
  • FIG. 7 is an enlarged view showing the correcting actuator member in the actuator device according to the modification of the second embodiment.
  • FIG. 8 is a diagram schematically showing the structure of the actuator device according to the third embodiment.
  • FIG. 1 is a diagram schematically showing the structure of the actuator device according to the first embodiment.
  • FIG. 2 is a block diagram illustrating an electrical configuration of the actuator device according to the first embodiment.
  • FIG. 9 is a diagram schematically illustrating the structure of an actuator device according to a first modification of the third embodiment.
  • FIG. 10 is a diagram schematically illustrating the structure of an actuator device according to a second modification of the third embodiment.
  • FIG. 11 is a diagram schematically showing the structure of the actuator device of the fourth embodiment.
  • FIG. 12 is a diagram schematically showing the structure of an actuator device according to a modification of the fourth embodiment.
  • FIG. 13 is a diagram schematically illustrating the relationship between the central axis m1 of the first actuator member and the central axes m10 and m11 of the coil spring in the actuator device according to the fourth embodiment.
  • FIG. 14 is a diagram schematically showing the relationship between the central axis m1 of the first actuator member and the central axes m10 to m12 of the coil spring in the actuator device of the fourth embodiment.
  • FIG. 15 is a diagram schematically illustrating the structure of an actuator device according to another embodiment.
  • the actuator device 10 of the present embodiment includes a first actuator member 21, a second actuator member 22, an actuated portion 30, a fixing member 40, and a tension applying device 50. Yes.
  • the first actuator member 21 and the second actuator member 22 are arranged in series with the actuated portion 30 in between.
  • Each actuator member 21 and 22 consists of a wire-shaped member arrange
  • Each actuator member 21 and 22 is formed of polymer fibers such as polyamide.
  • metal plating such as silver is formed on the surface of each actuator member 21, 22, metal plating such as silver is formed.
  • the actuator members 21 and 22 can be heated by passing a current through the metal plating formed on the surfaces of the actuator members 21 and 22.
  • Each actuator member 21, 22 has a characteristic of being torsionally deformed about the axis m 1 based on the supply of heat energy called heating.
  • the orientation direction of the polyamide molecule that is a constituent molecule of the first actuator member 21 is centered on the axis line m1 in a manner inclined at a predetermined angle with respect to the axis line m1. It has a spiral shape.
  • the first actuator member 21 is torsionally deformed in the first direction R11 centered on the axis m1 based on the application of thermal energy by heating, and is cooled by natural cooling or the like, thereby being opposite to the first direction R11.
  • the deformation direction of the first actuator member 21 is the first direction R11.
  • the orientation direction of the polyamide molecule that is the constituent molecule of the second actuator member 22 is set to the axis m1 in a manner that it is inclined at a predetermined angle in the direction opposite to the orientation direction of the constituent molecule of the first actuator member 21 with respect to the axis m1. It has a spiral shape in the center.
  • the second actuator member 22 is torsionally deformed in the second direction R12 opposite to the first direction R11 based on the application of thermal energy by heating, and is cooled by natural cooling or the like, thereby being changed into the second direction R12.
  • the cross-sectional shape and length of the second actuator member 22 are the same as the cross-sectional shape and length of the first actuator member 21.
  • the actuated part 30 is connected to one end part 21 a of the first actuator member 21. Therefore, when the first actuator member 21 is torsionally deformed in the first direction R11 by heating, a rotational force in the first direction R11 is applied to the operated part 30, so that the operated part 30 is rotationally displaced in the first direction R11. To do.
  • the actuated portion 30 is also connected to one end portion 22 a of the second actuator member 22. Therefore, when the second actuator member 22 is torsionally deformed in the second direction R12 by heating, a rotational force in the second direction R12 is applied to the operated part 30, so that the operated part 30 is rotationally displaced in the second direction R12. To do.
  • a sensor device 31 is fixedly provided on the operated part 30.
  • the sensor device 31 is a device that detects a required physical quantity, an imaging device, or the like.
  • the sensor device 31 is rotationally displaced in the first direction R11 and the second direction R12 together with the operated part 30.
  • the actuated portion 30 is supported by a support mechanism (not shown) so as to be rotatable about the axis m1.
  • the fixing member 40 is a housing of the actuator device 10 or the like. An end 22b opposite to the end 22a connected to the operated part 30 in the second actuator member 22 is fixedly attached to the fixing member 40. The fixing member 40 holds the second actuator member 22.
  • the tension applying device 50 is a device that applies tension to the actuator members 21 and 22 based on energization.
  • the tension applying device 50 has a movable part 51.
  • the movable portion 51 is connected to an end portion 21 b opposite to the end portion 21 a connected to the operated portion 30 in the first actuator member 21.
  • the tension applying device 50 displaces the movable portion 51 in the direction indicated by the arrow A1 based on energization.
  • the direction indicated by the arrow A ⁇ b> 1 is a direction parallel to the axis m ⁇ b> 1 and a direction away from the operated part 30. Due to the displacement of the movable portion 51, a tension in the direction indicated by the arrow A1 is applied to each actuator member 21, 22.
  • the tension applied to each actuator member 21, 22 can be adjusted by adjusting the energization amount to the tension applying device 50.
  • the tension applying device 50 can electrically control the tension applied to each actuator member 21, 22.
  • tensile_strength provision apparatus 50 the electromagnetic actuator apparatus which displaces the movable part 51 by electromagnetic force, for example, and the motor apparatus which displaces the movable part 51 using the rotational force of a rotor can be used.
  • the tension applying device 50 holds the first actuator member 21.
  • the tension applying device 50 and the fixing member 40 also have a function of holding the operated part 30 via the actuator members 21 and 22.
  • the actuator device 10 further includes a first heating unit 61, a second heating unit 62, and a control unit 70.
  • the first heating unit 61 heats the first actuator member 21 with Joule heat by passing a current through the metal plating of the first actuator member 21.
  • the actuated part 30 is rotationally displaced in the first direction R11 by the first actuator member 21 being torsionally deformed in the first direction R11.
  • the 1st heating part 61 of this embodiment is functioning as a drive part which displaces the to-be-acted part 30 in the deformation
  • the second heating unit 62 heats the second actuator member 22 with Joule heat by passing a current through the metal plating of the second actuator member 22. Thereby, the actuated part 30 is rotationally displaced in the second direction R12 by the second actuator member 22 being twisted and deformed in the second direction R12.
  • the second heating unit 62 of the present embodiment functions as a drive unit that displaces the actuated unit 30 in the deformation direction of the second actuator member 22 by applying energy to the second actuator member 22. .
  • the control unit 70 heats the first actuator member 21 and the second actuator member 22 via the first heating unit 61 and the second heating unit 62, respectively, so that the first direction R11 and the second direction R12 of the operated unit 30 are achieved.
  • This is a part that executes posture control for changing the posture of the robot.
  • the control unit 70 is configured around a microcomputer having a CPU, ROM, RAM, and the like.
  • the CPU executes a calculation process related to the attitude control of the operated part 30.
  • the ROM stores programs and data necessary for attitude control. In the RAM, CPU calculation results and the like are temporarily stored.
  • control unit 70 heats the first actuator member 21 via the first heating unit 61 when the attitude of the actuated unit 30 is displaced in the first direction R11.
  • control unit 70 heats the second actuator member 22 via the second heating unit 62 when the attitude of the operated unit 30 is displaced in the second direction R12.
  • control unit 70 applies tension to the actuator members 21 and 22 by controlling the tension applying device 50. Specifically, the control unit 70 energizes the tension applying device 50 when starting the attitude control of the operated unit 30, that is, when starting the operation of the operated unit 30. As a result, the tension applying device 50 is driven, and a predetermined tension is applied to each actuator member 21, 22.
  • the control unit 70 drives the tension applying device 50 immediately before the start of the attitude control of the actuated unit 30, that is, immediately before the start of the operation of the actuated unit 30, thereby causing each actuator member 21, 22 to move. A predetermined tension may be applied.
  • the controller 70 maintains a state in which a predetermined tension is applied to each actuator member 21, 22 by maintaining energization to the tension applying device 50 during the period during which the attitude control of the actuated part 30 is executed. To do.
  • control unit 70 is applied to each actuator member 21 and 22 by stopping energization of the tension applying device 50 at the end of the posture control of the operated unit 30, that is, at the end of the operation of the operated unit 30. Release the tension.
  • each actuator member 21, 22 when each actuator member 21, 22 extends in the direction B along the axis m1 shown in FIG. As shown, the actuator members 21 and 22 may bend.
  • the direction indicated by the arrow B is also referred to as the extending direction of the actuator members 21 and 22 based on natural deformation.
  • the actuator device 10 of the present embodiment even when the actuator members 21 and 22 extend in the direction along the axis m1 due to natural deformation, at the time of starting the posture control of the actuated unit 30 or immediately before it, The tension in the direction indicated by the arrow A1 is applied from the tension applying device 50 to the first actuator member 21 and the second actuator member 22. Since the tension changes due to the extension of the first actuator member 21 and the second actuator member 22 due to natural deformation are corrected by this tension, the extension state of the first actuator member 21 and the second actuator member 22 is shown in FIG. It is possible to return to the state that is. Thereby, since the rotational force based on the torsional deformation of each actuator member 21 and 22 is appropriately given to the operated part 30, it becomes easy to operate the operated part 30 appropriately.
  • the tension applying device 50 applies tension to the actuator members 21 and 22 at the start of the operation of the actuated portion 30 or immediately before the operation. Further, the tension applying device 50 releases the tension applied to each actuator member 21, 22 when the operation of the operated part 30 is stopped or immediately after that. Thereby, since the stress given to each actuator member 21 and 22 is relieved in periods other than the period in which the to-be-actuated part 30 is act
  • the tension applying device 50 is used as a tension applying unit that can electrically control the tension applied to each actuator member 21, 22.
  • tensile_strength can be arbitrarily adjusted by controlling the energization amount and energization timing of the tension
  • the actuator device 10 of this embodiment includes a correction actuator member 23 instead of the tension applying device 50.
  • the correction actuator member 23 is formed of a wire-like member disposed along the axis m1.
  • One end 23 a of the correction actuator member 23 is connected to the end 21 b of the first actuator member 21.
  • the other end 23b of the correcting actuator member 23 is fixedly attached to a fixing member 41 such as a housing.
  • the fixing member 41 holds the correcting actuator member 23.
  • the fixing members 40 and 41 also have a function of holding the actuated portion 30 via the actuator members 21 and 22 and the correction actuator member 23.
  • the straightening actuator member 23 is formed of a bundle of polymer fibers such as polyamide.
  • the correction actuator member 23 is formed integrally with the first actuator member 21.
  • the correcting actuator member 23 may be a separate body from the first actuator member 21. In this case, the correcting actuator member 23 is joined to the first actuator member 21 by bonding or the like.
  • a metal plating such as silver is formed on the surface of the straightening actuator member 23.
  • the metal plating of the correction actuator member 23 and the metal plating of the first actuator member 21 are electrically insulated, and current is applied to either the metal plating of the correction actuator member 23 or the metal plating of the first actuator member 21. It is possible to flow.
  • the correction actuator member 23 is heated.
  • the correcting actuator member 23 has a characteristic of contracting in the direction B along the axis m1 based on application of thermal energy called heating.
  • the correcting actuator member 23 has a structure in which polymer fibers in which the arrangement direction of constituent molecules is helical are arranged in a spiral shape around the axis m1.
  • the polymer fiber constituting the straightening actuator member 23 has a characteristic of contracting by heating. Due to the contraction of the polymer fiber, the correction actuator member 23 as a whole contracts in the direction B along the axis m1. Due to the contraction of the correcting actuator member 23 in the direction B along the axis m1, a tension in the direction indicated by the arrow A1 is applied to each actuator member 21, 22. Further, since the amount of contraction of the correction actuator member 23 can be adjusted by adjusting the heating amount of the correction actuator member 23, the tension applied to each actuator member 21, 22 can be adjusted as a result. Can do.
  • the actuator device 10 further includes a third heating unit 63.
  • the third heating unit 63 heats the correction actuator member 23 with Joule heat by passing a current through the metal plating of the correction actuator member 23. As a result, the correction actuator member 23 contracts, so that tension is applied to the actuator members 21 and 22.
  • the third heating unit 63 of the present embodiment functions as a correction driving unit that applies energy to the correction actuator member 23.
  • the control unit 70 applies tension to the actuator members 21 and 22 by contracting the correcting actuator member 23 via the third heating unit 63. Specifically, the control unit 70 applies tension to each actuator member 21, 22 by heating the correction actuator member 23 at the start of attitude control of the operated unit 30, that is, at the start of operation of the operated unit 30. Is granted.
  • the controller 70 heats the actuator member 23 for correction immediately before the start of the attitude control of the actuated part 30, that is, immediately before the start of the operation of the actuated part 30.
  • a predetermined tension may be applied to the.
  • the controller 70 maintains the state in which the predetermined tension is applied to the actuator members 21 and 22 by maintaining the heating of the correcting actuator member 23 during the period during which the attitude control of the actuated portion 30 is being performed. To do.
  • control unit 70 is applied to each actuator member 21 and 22 by stopping the heating of the correcting actuator member 23 at the end of the attitude control of the operated unit 30, that is, at the end of the operation of the operated unit 30. Release the tension.
  • the straightening actuator member 23 and the third heating unit 63 are used as a tension applying unit capable of electrically controlling the tension applied to each actuator member 21, 22. Thereby, by controlling the heating amount and heating timing of the correcting actuator member 23, the magnitude of the tension applied to each actuator member 21, 22 and the timing of applying the tension can be arbitrarily adjusted.
  • the correcting actuator member 23 has a structure as shown in FIG. That is, the correction actuator member 23 is disposed along the axis m1. As indicated by the two-dot chain line in the figure, the orientation direction of the polyamide molecules, which are the constituent molecules of the correcting actuator member 23, is helical with the axis m1 as the center. The spiral angle in the orientation direction of the correcting actuator member 23 with respect to the axis m1 is larger than the spiral angle in the orientation direction of the first actuator member 21 with respect to the axis m1. Accordingly, when the polymer fiber constituting the correction actuator member 23 contracts by heating, the correction actuator member 23 as a whole contracts in the direction along the axis m1. By contraction of the correcting actuator member 23 in the direction along the axis m1, tension in the direction indicated by the arrow A1 can be applied to each actuator member 21, 22.
  • the actuator device 10 of this embodiment has an elastic member 80 instead of the tension applying device 50.
  • the elastic member 80 is disposed in series with the first actuator member 21 and the fixing member 41 between the first actuator member 21 and the fixing member 41 such as a housing.
  • the elastic member 80 is configured by a coil spring having an elastic modulus smaller than the elastic modulus of each actuator member 21, 22.
  • One end 80 a of the elastic member 80 is connected to the end 21 b of the first actuator member 21.
  • the other end 80b of the elastic member 80 is fixed to a fixing member 41 such as a housing.
  • the elastic member 80 applies a pretension to the actuator members 21 and 22 in the extension direction B of the actuator members 21 and 22 based on natural deformation. Specifically, the elastic member 80 applies an urging force in the direction indicated by the arrow A ⁇ b> 1 to the end 21 b of the first actuator member 21. Due to this urging force, each actuator member 21, 22 is given a tension in the direction indicated by arrow B. The tension applied from the elastic member 80 to the actuator members 21 and 22 is larger than the extension amount of the actuator members 21 and 22 based on natural deformation, so that the actuator members 21 and 22 can be extended in advance. It is set by.
  • the elastic member 80 is used as a tension applying portion that applies tension to the actuator members 21 and 22.
  • the elastic member 80 preliminarily applies tension in the extending direction B of the actuator members 21 and 22 based on natural deformation.
  • tensile_strength can be provided to each actuator member 21 and 22 with a simpler structure.
  • the elastic member 80 gives each actuator member 21 and 22 a tension capable of extending each actuator member 21 and 22 larger than the extension amount of each actuator member 21 and 22 based on natural deformation. Thereby, the influence which the expansion
  • the first actuator member 21 and the second actuator member 22 of this modification are arranged in parallel with the axis m1 interposed therebetween.
  • the first actuator member 21 is disposed along the axis m2.
  • the first actuator member 21 is torsionally deformed in a rotation direction R21 centering on the axis m2 based on application of thermal energy by heating.
  • the second actuator member 22 is disposed along the axis m3.
  • the second actuator member 22 is torsionally deformed in the rotation direction R22 about the axis m3 based on application of thermal energy by heating.
  • the one end part 21 a of the first actuator member 21 and the one end part 22 b of the second actuator member 22 are connected to the actuated part 30.
  • the other end 21 b of the first actuator member 21 and the other end 22 a of the second actuator member 22 are fixedly attached to the fixing member 41.
  • the one end portion 80a of the elastic member 80 is connected to the side surface of the operated portion 30 opposite to the side surface to which the actuator members 21 and 22 are connected.
  • the other end portion 80 b of the elastic member 80 is fixedly attached to the fixing member 40.
  • the elastic member 80 applies a pretension to the actuator members 21 and 22 in the extension direction B of the actuator members 21 and 22 based on natural deformation. Specifically, the elastic member 80 applies an urging force in the direction indicated by the arrow A2 to the operated part 30. Due to this urging force, the actuator members 21 and 22 are applied with tension in the direction indicated by the arrow A2.
  • an elastic member 80 is disposed between the first actuator member 21 and the actuated portion 30. Even with such a configuration, the same and similar operations and effects as those of the third embodiment can be obtained.
  • the axis m1 is also referred to as “the central axis m1 of the first actuator member 21” and “the central axis m1 of the second actuator member 22”.
  • the actuator device 10 includes a first tension applying mechanism 100 provided at an end 21 b of the first actuator member 21 and a second actuator member 22 instead of the elastic member 80. And a second tension applying mechanism 110 provided at the end 22b.
  • the first tension applying mechanism 100 applies a tension in the direction indicated by the arrow A1 to the first actuator member 21.
  • the first tension applying mechanism 100 includes a fixing portion 101, a housing 102, and a coil spring 103.
  • the fixing portion 101 is fixed to the end portion 21b of the first actuator member 21 by adhesion or the like.
  • the fixed portion 101 is formed in a flange shape so as to protrude from the outer peripheral surface of the end portion 21b of the first actuator member 21 in the radial direction centering on the axis m1.
  • the housing 102 is formed in a bottomed cylindrical shape around the axis m1. Inside the housing 102, a fixed portion 101 is slidably accommodated. The housing 102 has a bottom portion 102 a at an end facing the operated portion 30. A through hole 102b having the axis m1 as a central axis is formed in the bottom 102a. An end portion 21b of the first actuator member 21 extends into the housing 102 through the through hole 102b and is fixed to the fixing portion 101. The end of the housing 102 opposite to the end where the bottom 102 a is provided is fixed to the fixing member 41. The inner diameter of the through hole 102 b is larger than the outer diameter of the first actuator member 21. Therefore, when the first actuator member 21 expands and contracts in the direction B, it is difficult for a frictional force to be generated between the first actuator member 21 and the housing 102.
  • the coil spring 103 is disposed so as to include the end 21b of the first actuator member 21 therein.
  • the coil spring 103 is provided on the outer periphery of the end 21 b of the first actuator member 21 so that the center axis thereof coincides with the center axis m ⁇ b> 1 of the first actuator member 21.
  • the coil spring 103 is arranged in a compressed state between the fixed portion 101 and the bottom portion 102a of the housing 102, thereby applying an elastic force in the direction indicated by the arrow A1 to the fixed portion 101. Thereby, the tension
  • One end of the coil spring 103 is inserted into a concave groove 101 a formed in the fixed portion 101.
  • the other end of the coil spring 103 is inserted into a concave groove 102 c formed in the housing 102.
  • the outer peripheral portion of the coil spring 103 is positioned. Accordingly, a gap is provided between the inner peripheral portion of the coil spring 103 and the outer peripheral portion of the first actuator member 21, and a gap is provided between the outer peripheral portion of the coil spring 103 and the inner peripheral portion of the housing 102.
  • Due to these gaps when the coil spring 103 is elastically deformed, a friction force is hardly generated between the coil spring 103 and the first actuator member 21, and a friction force is generated between the coil spring 103 and the housing 102. It is hard to occur.
  • the second tension applying mechanism 110 applies the tension in the direction indicated by the arrow A2 opposite to the direction indicated by the arrow A1 to the second actuator member 22. Similar to the first tension applying mechanism 100, the second tension applying mechanism 110 includes a fixing portion 111, a housing 112, and a coil spring 113. In addition, since the structure and function of these elements are the same as the structure and function of each element of the 1st tension
  • the coil springs 103 and 113 are used as tension applying portions that apply tension to the actuator members 21 and 22.
  • the coil springs 103 and 113 preliminarily apply tension in the extending direction B of the actuator members 21 and 22 based on natural deformation.
  • tensile_strength can be provided to each actuator member 21 and 22 with a simpler structure.
  • the coil spring 103 is provided on the outer periphery of the first actuator member 21.
  • the coil spring 113 is provided on the outer periphery of the second actuator member 22.
  • the coil springs 103 and 113 contain the actuator members 21 and 22, respectively. Thereby, the enlargement of the actuator device 10 in the radial direction around the axis m1 can be avoided.
  • the first tension applying mechanism 100 of this modification has two coil springs 104a and 104b.
  • the coil springs 104a and 104b are provided on the outer periphery of the end portion 21b of the first actuator member 21 so that their center axes m10 and m11 are shifted from the center axis m1 of the actuator member 21. More specifically, as shown in FIG. 13, the central axes m10 and m11 of the two coil springs 104a and 104b are equiangularly spaced at the same circumference C around the central axis m1 of the first actuator member 21. It is arranged at the position. Thereby, tension in the direction indicated by the arrow A ⁇ b> 1 can be applied to the first actuator member 21 without generating a moment in the first actuator member 21.
  • one end of the coil spring 104 a is inserted into a protruding portion 101 b formed on the fixed portion 101.
  • the other end of the coil spring 104 a is inserted into a protruding portion 102 d formed on the housing 102.
  • the inner peripheral portion of the coil spring 104a is positioned.
  • the inner peripheral portion of the coil spring 104 b is also positioned by the protruding portion 101 c formed on the fixed portion 101 and the protruding portion 102 e formed on the housing 102.
  • a gap is provided between the inner peripheral portion of each of the coil springs 104 a and 104 b and the outer peripheral portion of the first actuator member 21, and the outer peripheral portion of each of the coil springs 104 a and 104 b and the inner peripheral portion of the housing 102. There is a gap between them. Due to these gaps, when the coil springs 104a and 104b are elastically deformed, frictional force is hardly generated between the coil springs 104a and 104b and the first actuator member 21, and the coil springs 104a and 104b and the housing 102 are Friction is less likely to occur during
  • the second tension applying mechanism 110 also has two coil springs 114a and 114b, similar to the first tension applying mechanism 100. Since the structure of these coil springs 114a and 114b is the same as that of the coil springs 104a and 104b of the first tension applying mechanism 100, their detailed description is omitted.
  • the actions and effects shown in the above (7) and (8) by the actuator device 10 of the fourth embodiment can be obtained. Further, as compared with the actuator device 10 of the fourth embodiment, the tension applied to the actuator members 21 and 22 can be increased by the increase in the number of coil springs.
  • the number of coil springs arranged on the outer periphery of the actuator members 21 and 22 is not limited to two and can be changed as appropriate.
  • the center axes m10 to m12 of the three coil springs are the center axes of the first actuator member 21, as shown in FIG. It arrange
  • each embodiment can also be implemented with the following forms.
  • tensile_strength provision apparatus 50 of 1st Embodiment may adjust the magnitude
  • the tension applying device 50 moves the movable part 51 in the direction when the actuator members 21 and 22 are thermally contracted.
  • the tension applied to the actuator members 21, 22 is adjusted to a constant magnitude.
  • the elastic member 80 of the third embodiment is not limited to a coil spring, and a mainspring spring, a leaf spring, and other appropriate elastic members can be used. Further, the number of elastic members 80 is not limited to one, and may be plural.
  • the elastic member 80 is provided at the end 21b of the actuator member 21. If connected, the elastic member 80 is deformed in the direction B, so that the stress applied to the actuator members 21 and 22 can be relaxed. Therefore, an effect of improving the durability of the actuator members 21 and 22 can be obtained.
  • the number and arrangement of coil springs may be changed as appropriate.
  • the actuator device 10 of the modification of the fourth embodiment only one of the coil springs 104a and 104b is provided on the outer periphery of the first actuator member 21, and the coil springs 114a and 114b are provided on the outer periphery of the second actuator member 22. Only one of these may be provided.
  • the configuration of the coil spring of the actuator device 10 shown in FIG. 11 may be combined with the configuration of the coil spring of the actuator device 10 shown in FIG.
  • only one of the first tension applying mechanism 100 and the second tension applying mechanism 110 may be provided.
  • an appropriate elastic member such as a mesh spring may be used instead of the coil springs 103, 104a, 104b, 113, 114a, 114b.
  • the coil spring 103 of the fourth embodiment shown in Fig. 11 may be positioned at the inner peripheral portion thereof by the fixing portion 101 and the housing 102. The same applies to the coil spring 113. Further, the coil springs 104a and 104b of the modification of the fourth embodiment shown in FIG. 12 may have their outer peripheral portions positioned by the fixing portion 101 and the housing 102. The same applies to the coil springs 114a and 114b.
  • each actuator member 21 to 23 is not limited to a method of heating by supplying an electric current to the metal plating formed on the surface, and an appropriate method can be adopted.
  • a coil may be wound around the outer peripheral surfaces of the actuator members 21 to 23, and the actuator members 21 to 23 may be heated by energizing the coils.
  • each actuator member 21 to 23 may be heated using a heater or the like.
  • the actuator members 21 and 22 are not limited to those that are torsionally deformed based on energy application, but may be those that are linearly displaced in the longitudinal direction based on energy application.
  • an actuator member that expands and deforms in a direction parallel to the axis m1 based on heating and contracts and deforms in a direction parallel to the axis m1 based on cooling can be used.
  • each of the actuator members 21 to 23 is not limited to polymer fiber, but is an appropriate material that deforms in response to external energy input by electrical, optical, chemical, thermal, absorption, or other means. Can be used. Examples of such materials include shape memory alloys, dielectric elastomers, magnetic gels, and conductive polymers.
  • the material of the correcting actuator member 23 As for the material of the correcting actuator member 23 according to the modification of the first embodiment, an appropriate material that deforms in response to external energy input can be used. Note that the material of the correcting actuator member 23 may be the same as or different from the material of the first actuator member 21. When the material of the correction actuator member 23 and the material of the first actuator member 21 are the same, the correction actuator member 23 and the first actuator member 21 may be integrally formed.
  • control unit 70 can be provided by software stored in a substantial storage device and a computer that executes the software, only software, only hardware, or a combination thereof.
  • control unit 70 when the control unit 70 is provided by an electronic circuit that is hardware, it can be provided by a digital circuit including a large number of logic circuits or an analog circuit.

Landscapes

  • Micromachines (AREA)

Abstract

The actuator device (10) is provided with an actuator member (21, 22), an operated portion (30), a driving unit, and a tensile-force-applying unit (50). The actuator member deforms in response to externally applied energy. The operated portion is coupled to the actuator member. The driving unit displaces the operated portion in the deformation direction of the actuator member by applying energy to the actuator member. The tensile-force-applying unit provides the actuator member with tensile force by which tensile-force change based on at least one of expansion and contraction of the actuator member caused by natural deformation can be corrected.

Description

アクチュエータ装置Actuator device 関連出願の相互参照Cross-reference of related applications
 本出願は、2016年9月20日に出願された日本国特許出願2016-183297号と、2017年3月29日に出願された日本国特許出願2017-065134号とに基づくものであって、その優先権の利益を主張するものであり、その特許出願の全ての内容が、参照により本明細書に組み込まれる。 This application is based on Japanese Patent Application No. 2016-183297 filed on September 20, 2016, and Japanese Patent Application No. 2017-0665134 filed on March 29, 2017, Claims the benefit of that priority, the entire contents of which patent application is incorporated herein by reference.
 本開示は、電気的、光子的、化学的、熱的、吸収、もしくは他の手段による外部からのエネルギ入力に応じて変形するアクチュエータ部材を動力源として用いるアクチュエータ装置に関する。 This disclosure relates to an actuator device that uses, as a power source, an actuator member that deforms in response to external energy input by electrical, photonic, chemical, thermal, absorption, or other means.
 従来、この種のアクチュエータ部材としては、特許文献1に記載のアクチュエータ部材が知られている。特許文献1に記載のアクチュエータ部材は、ポリマ繊維からなり、電気加熱や白色加熱に基づく温度変化によりねじり変形又は伸張変形する特性を有している。 Conventionally, an actuator member described in Patent Document 1 is known as this type of actuator member. The actuator member described in Patent Document 1 is made of a polymer fiber and has a characteristic of being twisted or stretched by a temperature change based on electric heating or white heating.
特開2016-42783号公報JP 2016-42783 A
 特許文献1に記載のアクチュエータ部材を一旦加熱した後に自然冷却させた場合、このアクチュエータ部材は加熱時の変形方向とは逆方向に変形する。したがって、特許文献1に記載のアクチュエータ部材に被作動部を連結した上でアクチュエータ部材を加熱及び冷却すれば、被作動部を往復動作せることが可能となる。 When the actuator member described in Patent Document 1 is once heated and then naturally cooled, the actuator member is deformed in a direction opposite to the deformation direction during heating. Therefore, when the actuated part is connected to the actuator member described in Patent Document 1 and then the actuator member is heated and cooled, the actuated part can be reciprocated.
 一方、特許文献1に記載されるようなポリマ繊維からなるアクチュエータ部材では、周囲環境の水分や油分を吸収して膨潤することにより、ねじり特性や伸張特性等の変形特性に変化が生じ得る。また、アクチュエータ部材に一定の荷重が付与され続けられることでアクチュエータ部材が変形する、いわゆるクリープ変形がアクチュエータ部材に生じた場合にも、同様にアクチュエータ部材の変形特性に変化が生じ得る。膨潤やクリープ変形、熱膨張、熱収縮によりアクチュエータ部材が変形すると、アクチュエータ部材に連結された被作動部の作動にも変化が生じるため、結果的に被作動部の作動を不安定化させるおそれがある。 On the other hand, an actuator member made of a polymer fiber as described in Patent Document 1 can change in deformation characteristics such as torsional characteristics and stretch characteristics by absorbing and swelling water and oil in the surrounding environment. Similarly, when the actuator member is deformed by a constant load applied to the actuator member, so-called creep deformation occurs in the actuator member, the deformation characteristics of the actuator member can be similarly changed. If the actuator member deforms due to swelling, creep deformation, thermal expansion, or thermal contraction, the operation of the operated part connected to the actuator member also changes, and as a result, the operation of the operated part may be destabilized. is there.
 なお、このような課題は、ポリマ繊維からなるアクチュエータ部材に限らず、膨潤やクリープ変形、熱膨張、熱収縮等の自然変形により変形特性に変化が生じ得るアクチュエータ部材を動力源として用いるアクチュエータ装置に共通する課題である。 Such a problem is not limited to an actuator member made of a polymer fiber, but is applied to an actuator device that uses, as a power source, an actuator member that can change its deformation characteristics due to natural deformation such as swelling, creep deformation, thermal expansion, and thermal contraction This is a common issue.
 本開示の目的は、アクチュエータ部材に自然変形が生じる状況下において被作動部の作動を安定化させることの可能なアクチュエータ装置を提供することにある。 An object of the present disclosure is to provide an actuator device that can stabilize the operation of an actuated portion under a situation where natural deformation occurs in an actuator member.
 本開示の一態様によるアクチュエータ装置は、アクチュエータ部材と、被作動部と、駆動部と、張力付与部とを備える。アクチュエータ部材は、外部からのエネルギの付与に応じて変形する。被作動部は、アクチュエータ部材に連結されている。駆動部は、アクチュエータ部材にエネルギを付与することにより被作動部をアクチュエータ部材の変形方向に変位させる。張力付与部は、自然変形によるアクチュエータ部材の伸長及び収縮の少なくとも一方に基づく張力変化を矯正することのできる張力をアクチュエータ部材に付与する。 The actuator device according to one aspect of the present disclosure includes an actuator member, an actuated portion, a driving portion, and a tension applying portion. The actuator member is deformed in response to external energy application. The actuated part is connected to the actuator member. The drive unit applies energy to the actuator member to displace the operated portion in the deformation direction of the actuator member. The tension applying unit applies a tension that can correct a change in tension based on at least one of expansion and contraction of the actuator member due to natural deformation to the actuator member.
 この構成によれば、自然変形によりアクチュエータ部材が伸長及び収縮の少なくとも一方を行うような状況下でも、張力付与部からアクチュエータ部材に付与される張力によりアクチュエータ部材の張力変化が矯正される。これにより、自然変形によるアクチュエータ部材の伸長及び収縮の少なくとも一方が被作動部の作動に及ぼす影響を緩和することができるため、被作動部の作動を安定化させることができる。 According to this configuration, even under a situation where the actuator member performs at least one of expansion and contraction due to natural deformation, the tension change of the actuator member is corrected by the tension applied to the actuator member from the tension applying unit. Thereby, since the influence which at least one of expansion | extension and contraction of the actuator member by natural deformation has on the action | operation of a to-be-actuated part can be relieve | moderated, the action | operation of an to-be-actuated part can be stabilized.
図1は、第1実施形態のアクチュエータ装置の構造を模式的に示す図である。FIG. 1 is a diagram schematically showing the structure of the actuator device according to the first embodiment. 図2は、第1実施形態のアクチュエータ装置の電気的な構成を示すブロック図である。FIG. 2 is a block diagram illustrating an electrical configuration of the actuator device according to the first embodiment. 図3は、第1実施形態のアクチュエータ装置の動作例を模式的に示す図である。FIG. 3 is a diagram schematically illustrating an operation example of the actuator device according to the first embodiment. 図4は、第2実施形態のアクチュエータ装置の構造を模式的に示す図である。FIG. 4 is a diagram schematically showing the structure of the actuator device according to the second embodiment. 図5は、第2実施形態のアクチュエータ装置における矯正用アクチュエータ部材の一例を拡大して示す拡大図である。FIG. 5 is an enlarged view showing an example of the correcting actuator member in the actuator device of the second embodiment. 図6は、第2実施形態のアクチュエータ装置の電気的な構成を示すブロック図である。FIG. 6 is a block diagram illustrating an electrical configuration of the actuator device according to the second embodiment. 図7は、第2実施形態の変形例のアクチュエータ装置における矯正用アクチュエータ部材を拡大して示す拡大図である。FIG. 7 is an enlarged view showing the correcting actuator member in the actuator device according to the modification of the second embodiment. 図8は、第3実施形態のアクチュエータ装置の構造を模式的に示す図である。FIG. 8 is a diagram schematically showing the structure of the actuator device according to the third embodiment. 図9は、第3実施形態の第1変形例のアクチュエータ装置の構造を模式的に示す図である。FIG. 9 is a diagram schematically illustrating the structure of an actuator device according to a first modification of the third embodiment. 図10は、第3実施形態の第2変形例のアクチュエータ装置の構造を模式的に示す図である。FIG. 10 is a diagram schematically illustrating the structure of an actuator device according to a second modification of the third embodiment. 図11は、第4実施形態のアクチュエータ装置の構造を模式的に示す図である。FIG. 11 is a diagram schematically showing the structure of the actuator device of the fourth embodiment. 図12は、第4実施形態の変形例のアクチュエータ装置の構造を模式的に示す図である。FIG. 12 is a diagram schematically showing the structure of an actuator device according to a modification of the fourth embodiment. 図13は、第4実施形態のアクチュエータ装置における第1アクチュエータ部材の中心軸m1とコイルばねの中心軸m10,m11との関係を模式的に示す図である。FIG. 13 is a diagram schematically illustrating the relationship between the central axis m1 of the first actuator member and the central axes m10 and m11 of the coil spring in the actuator device according to the fourth embodiment. 図14は、第4実施形態のアクチュエータ装置における第1アクチュエータ部材の中心軸m1とコイルばねの中心軸m10~m12との関係を模式的に示す図である。FIG. 14 is a diagram schematically showing the relationship between the central axis m1 of the first actuator member and the central axes m10 to m12 of the coil spring in the actuator device of the fourth embodiment. 図15は、他の実施形態のアクチュエータ装置の構造を模式的に示す図である。FIG. 15 is a diagram schematically illustrating the structure of an actuator device according to another embodiment.
 <第1実施形態>
 以下、アクチュエータ装置の第1実施形態について図面を参照しながら説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。
<First Embodiment>
Hereinafter, a first embodiment of an actuator device will be described with reference to the drawings. In order to facilitate the understanding of the description, the same constituent elements in the drawings will be denoted by the same reference numerals as much as possible, and redundant description will be omitted.
 図1に示されるように、本実施形態のアクチュエータ装置10は、第1アクチュエータ部材21と、第2アクチュエータ部材22と、被作動部30と、固定部材40と、張力付与装置50とを備えている。 As shown in FIG. 1, the actuator device 10 of the present embodiment includes a first actuator member 21, a second actuator member 22, an actuated portion 30, a fixing member 40, and a tension applying device 50. Yes.
 第1アクチュエータ部材21及び第2アクチュエータ部材22は、被作動部30を挟んで直列に配置されている。各アクチュエータ部材21,22は、軸線m1に沿って配置されたワイヤ状の部材からなる。各アクチュエータ部材21,22は、ポリアミド等のポリマ繊維により形成されている。各アクチュエータ部材21,22の表面には、銀等の金属めっきが形成されている。各アクチュエータ部材21,22の表面に形成された金属めっきに電流を流すことにより、各アクチュエータ部材21,22を加熱することが可能となっている。各アクチュエータ部材21,22は、加熱という熱エネルギの供給に基づいて、軸線m1を中心としてねじり変形する特性を有している。 The first actuator member 21 and the second actuator member 22 are arranged in series with the actuated portion 30 in between. Each actuator member 21 and 22 consists of a wire-shaped member arrange | positioned along the axis line m1. Each actuator member 21 and 22 is formed of polymer fibers such as polyamide. On the surface of each actuator member 21, 22, metal plating such as silver is formed. The actuator members 21 and 22 can be heated by passing a current through the metal plating formed on the surfaces of the actuator members 21 and 22. Each actuator member 21, 22 has a characteristic of being torsionally deformed about the axis m 1 based on the supply of heat energy called heating.
 具体的には、図中に二点鎖線で示されるように、第1アクチュエータ部材21の構成分子であるポリアミド分子の配向方向は、軸線m1に対して所定角度で傾斜するかたちで軸線m1を中心に螺旋状をなしている。これにより、第1アクチュエータ部材21は、加熱による熱エネルギの付与に基づき軸線m1を中心とする第1方向R11にねじり変形するとともに、自然冷却等により冷却されることで第1方向R11とは逆の方向にねじり変形する特性を有している。すなわち、第1アクチュエータ部材21の変形方向は第1方向R11である。 Specifically, as shown by a two-dot chain line in the figure, the orientation direction of the polyamide molecule that is a constituent molecule of the first actuator member 21 is centered on the axis line m1 in a manner inclined at a predetermined angle with respect to the axis line m1. It has a spiral shape. As a result, the first actuator member 21 is torsionally deformed in the first direction R11 centered on the axis m1 based on the application of thermal energy by heating, and is cooled by natural cooling or the like, thereby being opposite to the first direction R11. And torsionally deform in the direction of. That is, the deformation direction of the first actuator member 21 is the first direction R11.
 一方、第2アクチュエータ部材22の構成分子であるポリアミド分子の配向方向は、軸線m1に対して第1アクチュエータ部材21の構成分子の配向方向とは逆方向に所定角度で傾斜するかたちで軸線m1を中心に螺旋状をなしている。これにより、第2アクチュエータ部材22は、加熱による熱エネルギの付与に基づき第1方向R11とは逆の第2方向R12にねじり変形するとともに、自然冷却等により冷却されることで第2方向R12とは逆の方向にねじり変形する特性を有している。すなわち、第2アクチュエータ部材22の変形方向は第2方向R12である。なお、第2アクチュエータ部材22の断面形状や長さは、第1アクチュエータ部材21の断面形状や長さと同一である。 On the other hand, the orientation direction of the polyamide molecule that is the constituent molecule of the second actuator member 22 is set to the axis m1 in a manner that it is inclined at a predetermined angle in the direction opposite to the orientation direction of the constituent molecule of the first actuator member 21 with respect to the axis m1. It has a spiral shape in the center. As a result, the second actuator member 22 is torsionally deformed in the second direction R12 opposite to the first direction R11 based on the application of thermal energy by heating, and is cooled by natural cooling or the like, thereby being changed into the second direction R12. Has the property of torsional deformation in the opposite direction. That is, the deformation direction of the second actuator member 22 is the second direction R12. The cross-sectional shape and length of the second actuator member 22 are the same as the cross-sectional shape and length of the first actuator member 21.
 なお、以降の図では、特に言及が無い限りアクチュエータ部材の配向方向の図示を割愛する。 In the following figures, illustration of the orientation direction of the actuator member is omitted unless otherwise specified.
 被作動部30は、第1アクチュエータ部材21の一端部21aに連結されている。よって、加熱により第1アクチュエータ部材21が第1方向R11にねじり変形すると、被作動部30には第1方向R11の回転力が付与されるため、被作動部30が第1方向R11に回転変位する。 The actuated part 30 is connected to one end part 21 a of the first actuator member 21. Therefore, when the first actuator member 21 is torsionally deformed in the first direction R11 by heating, a rotational force in the first direction R11 is applied to the operated part 30, so that the operated part 30 is rotationally displaced in the first direction R11. To do.
 また、被作動部30は、第2アクチュエータ部材22の一端部22aにも連結されている。よって、加熱により第2アクチュエータ部材22が第2方向R12にねじり変形すると、被作動部30には第2方向R12の回転力が付与されるため、被作動部30が第2方向R12に回転変位する。 The actuated portion 30 is also connected to one end portion 22 a of the second actuator member 22. Therefore, when the second actuator member 22 is torsionally deformed in the second direction R12 by heating, a rotational force in the second direction R12 is applied to the operated part 30, so that the operated part 30 is rotationally displaced in the second direction R12. To do.
 被作動部30には、センサ装置31が固定して設けられている。センサ装置31は、所要の物理量を検出する装置や撮像装置等である。センサ装置31は、被作動部30と一体となって第1方向R11及び第2方向R12に回転変位する。なお、被作動部30は、図示しない支持機構により軸線m1を中心に回転可能に支持されている。 A sensor device 31 is fixedly provided on the operated part 30. The sensor device 31 is a device that detects a required physical quantity, an imaging device, or the like. The sensor device 31 is rotationally displaced in the first direction R11 and the second direction R12 together with the operated part 30. The actuated portion 30 is supported by a support mechanism (not shown) so as to be rotatable about the axis m1.
 固定部材40は、アクチュエータ装置10の筐体等である。固定部材40には、第2アクチュエータ部材22における被作動部30に連結されている端部22aとは反対側の端部22bが固定して取り付けられている。固定部材40は、第2アクチュエータ部材22を保持している。 The fixing member 40 is a housing of the actuator device 10 or the like. An end 22b opposite to the end 22a connected to the operated part 30 in the second actuator member 22 is fixedly attached to the fixing member 40. The fixing member 40 holds the second actuator member 22.
 張力付与装置50は、通電に基づき各アクチュエータ部材21,22に張力を付与する装置である。張力付与装置50は、可動部51を有している。可動部51には、第1アクチュエータ部材21における被作動部30に連結されている端部21aとは反対側の端部21bが連結されている。張力付与装置50は、通電に基づき可動部51を矢印A1で示される方向に変位させる。矢印A1で示される方向は、軸線m1に平行な方向であって、且つ被作動部30から離間する方向である。この可動部51の変位により、各アクチュエータ部材21,22に矢印A1で示される方向の張力が付与される。また、張力付与装置50への通電量を調整することにより、各アクチュエータ部材21,22に付与される張力を調整することが可能となっている。このように、張力付与装置50は、各アクチュエータ部材21,22に付与される張力を電気的に制御可能である。このような張力付与装置50としては、例えば電磁力により可動部51を変位させる電磁アクチュエータ装置や、ロータの回転力を利用して可動部51を変位させるモータ装置を用いることができる。 The tension applying device 50 is a device that applies tension to the actuator members 21 and 22 based on energization. The tension applying device 50 has a movable part 51. The movable portion 51 is connected to an end portion 21 b opposite to the end portion 21 a connected to the operated portion 30 in the first actuator member 21. The tension applying device 50 displaces the movable portion 51 in the direction indicated by the arrow A1 based on energization. The direction indicated by the arrow A <b> 1 is a direction parallel to the axis m <b> 1 and a direction away from the operated part 30. Due to the displacement of the movable portion 51, a tension in the direction indicated by the arrow A1 is applied to each actuator member 21, 22. Further, the tension applied to each actuator member 21, 22 can be adjusted by adjusting the energization amount to the tension applying device 50. Thus, the tension applying device 50 can electrically control the tension applied to each actuator member 21, 22. As such a tension | tensile_strength provision apparatus 50, the electromagnetic actuator apparatus which displaces the movable part 51 by electromagnetic force, for example, and the motor apparatus which displaces the movable part 51 using the rotational force of a rotor can be used.
 なお、張力付与装置50は、第1アクチュエータ部材21を保持している。張力付与装置50及び固定部材40は、各アクチュエータ部材21,22を介して被作動部30を保持する機能も有している。 Note that the tension applying device 50 holds the first actuator member 21. The tension applying device 50 and the fixing member 40 also have a function of holding the operated part 30 via the actuator members 21 and 22.
 次に、アクチュエータ装置10の電気的な構成について説明する。
 図2に示されるように、アクチュエータ装置10は、第1加熱部61と、第2加熱部62と、制御部70とを更に備えている。
Next, the electrical configuration of the actuator device 10 will be described.
As shown in FIG. 2, the actuator device 10 further includes a first heating unit 61, a second heating unit 62, and a control unit 70.
 第1加熱部61は、第1アクチュエータ部材21の金属めっきに電流を流すことにより、第1アクチュエータ部材21をジュール熱で加熱する。これにより、第1アクチュエータ部材21が第1方向R11にねじり変形することで、被作動部30が第1方向R11に回転変位する。このように、本実施形態の第1加熱部61は、第1アクチュエータ部材21にエネルギを付与することにより被作動部30を第1アクチュエータ部材21の変形方向に変位させる駆動部として機能している。 The first heating unit 61 heats the first actuator member 21 with Joule heat by passing a current through the metal plating of the first actuator member 21. Thereby, the actuated part 30 is rotationally displaced in the first direction R11 by the first actuator member 21 being torsionally deformed in the first direction R11. Thus, the 1st heating part 61 of this embodiment is functioning as a drive part which displaces the to-be-acted part 30 in the deformation | transformation direction of the 1st actuator member 21 by providing energy to the 1st actuator member 21. .
 第2加熱部62は、第2アクチュエータ部材22の金属めっきに電流を流すことにより、第2アクチュエータ部材22をジュール熱で加熱する。これにより、第2アクチュエータ部材22が第2方向R12にねじり変形することで、被作動部30が第2方向R12に回転変位する。このように、本実施形態の第2加熱部62は、第2アクチュエータ部材22にエネルギを付与することにより被作動部30を第2アクチュエータ部材22の変形方向に変位させる駆動部として機能している。 The second heating unit 62 heats the second actuator member 22 with Joule heat by passing a current through the metal plating of the second actuator member 22. Thereby, the actuated part 30 is rotationally displaced in the second direction R12 by the second actuator member 22 being twisted and deformed in the second direction R12. Thus, the second heating unit 62 of the present embodiment functions as a drive unit that displaces the actuated unit 30 in the deformation direction of the second actuator member 22 by applying energy to the second actuator member 22. .
 制御部70は、第1加熱部61及び第2加熱部62を介して第1アクチュエータ部材21及び第2アクチュエータ部材22をそれぞれ加熱することにより被作動部30の第1方向R11及び第2方向R12の姿勢を変化させる姿勢制御を実行する部分である。制御部70は、CPUやROM、RAM等を有するマイクロコンピュータを中心に構成されている。CPUは、被作動部30の姿勢制御に関する演算処理を実行する。ROMには、姿勢制御に必要なプログラムやデータ等が記憶されている。RAMには、CPUの演算結果等が一時的に記憶される。 The control unit 70 heats the first actuator member 21 and the second actuator member 22 via the first heating unit 61 and the second heating unit 62, respectively, so that the first direction R11 and the second direction R12 of the operated unit 30 are achieved. This is a part that executes posture control for changing the posture of the robot. The control unit 70 is configured around a microcomputer having a CPU, ROM, RAM, and the like. The CPU executes a calculation process related to the attitude control of the operated part 30. The ROM stores programs and data necessary for attitude control. In the RAM, CPU calculation results and the like are temporarily stored.
 具体的には、制御部70は、被作動部30の姿勢を第1方向R11に変位させる場合には、第1加熱部61を介して第1アクチュエータ部材21を加熱する。制御部70は、被作動部30の姿勢を第2方向R12に変位させる場合には、第2加熱部62を介して第2アクチュエータ部材22を加熱する。 Specifically, the control unit 70 heats the first actuator member 21 via the first heating unit 61 when the attitude of the actuated unit 30 is displaced in the first direction R11. The control unit 70 heats the second actuator member 22 via the second heating unit 62 when the attitude of the operated unit 30 is displaced in the second direction R12.
 また、制御部70は、張力付与装置50を制御することにより、各アクチュエータ部材21,22に張力を付与する。具体的には、制御部70は、被作動部30の姿勢制御の開始時に、すなわち被作動部30の作動開始時に張力付与装置50への通電を行う。これにより、張力付与装置50が駆動し、各アクチュエータ部材21,22に所定の張力が付与される。なお、制御部70は、被作動部30の姿勢制御の開始時の直前に、すなわち被作動部30の作動開始時の直前に張力付与装置50を駆動させることにより、各アクチュエータ部材21,22に所定の張力を付与してもよい。制御部70は、被作動部30の姿勢制御を実行している期間、張力付与装置50への通電を維持することにより、各アクチュエータ部材21,22に所定の張力が付与されている状態を維持する。 Further, the control unit 70 applies tension to the actuator members 21 and 22 by controlling the tension applying device 50. Specifically, the control unit 70 energizes the tension applying device 50 when starting the attitude control of the operated unit 30, that is, when starting the operation of the operated unit 30. As a result, the tension applying device 50 is driven, and a predetermined tension is applied to each actuator member 21, 22. The control unit 70 drives the tension applying device 50 immediately before the start of the attitude control of the actuated unit 30, that is, immediately before the start of the operation of the actuated unit 30, thereby causing each actuator member 21, 22 to move. A predetermined tension may be applied. The controller 70 maintains a state in which a predetermined tension is applied to each actuator member 21, 22 by maintaining energization to the tension applying device 50 during the period during which the attitude control of the actuated part 30 is executed. To do.
 さらに、制御部70は、被作動部30の姿勢制御の終了時に、すなわち被作動部30の作動終了時に、張力付与装置50への通電を停止することにより、各アクチュエータ部材21,22に付与されている張力を解除する。 Further, the control unit 70 is applied to each actuator member 21 and 22 by stopping energization of the tension applying device 50 at the end of the posture control of the operated unit 30, that is, at the end of the operation of the operated unit 30. Release the tension.
 次に、本実施形態のアクチュエータ装置10の動作例について説明する。
 各アクチュエータ部材21,22に膨潤やクリープ変形、熱膨張等の自然変形が生じる状況下では、各アクチュエータ部材21,22が図1に示される軸線m1に沿った方向Bに伸長すると、図3に示されるように各アクチュエータ部材21,22に撓みが生じる可能性がある。以下、矢印Bで示される方向を、自然変形に基づく各アクチュエータ部材21,22の伸長方向とも称する。自然変形により各アクチュエータ部材21,22が伸長すると、各アクチュエータ部材21,22のねじり変形に基づく回転力が被作動部30に適切に付与され難くなる。これが、被作動部30の作動を不安定化させる要因となる。
Next, an operation example of the actuator device 10 of the present embodiment will be described.
Under the situation where natural deformation such as swelling, creep deformation, thermal expansion, etc. occurs in each actuator member 21, 22, when each actuator member 21, 22 extends in the direction B along the axis m1 shown in FIG. As shown, the actuator members 21 and 22 may bend. Hereinafter, the direction indicated by the arrow B is also referred to as the extending direction of the actuator members 21 and 22 based on natural deformation. When the actuator members 21 and 22 extend due to natural deformation, the rotational force based on the torsional deformation of the actuator members 21 and 22 is not easily applied to the actuated portion 30. This becomes a factor that destabilizes the operation of the operated part 30.
 この点、本実施形態のアクチュエータ装置10では、自然変形により各アクチュエータ部材21,22が軸線m1に沿った方向に伸長した場合でも、被作動部30の姿勢制御の開始時、又はその直前に、張力付与装置50から第1アクチュエータ部材21及び第2アクチュエータ部材22に矢印A1で示される方向の張力が付与される。この張力により、自然変形による第1アクチュエータ部材21及び第2アクチュエータ部材22の伸長に基づく張力変化が矯正されるため、第1アクチュエータ部材21及び第2アクチュエータ部材22の伸長状態を、図1に示されるような状態に戻すことができる。これにより、各アクチュエータ部材21,22のねじり変形に基づく回転力が被作動部30に適切に付与されるようになるため、被作動部30を適切に作動させ易くなる。 In this regard, in the actuator device 10 of the present embodiment, even when the actuator members 21 and 22 extend in the direction along the axis m1 due to natural deformation, at the time of starting the posture control of the actuated unit 30 or immediately before it, The tension in the direction indicated by the arrow A1 is applied from the tension applying device 50 to the first actuator member 21 and the second actuator member 22. Since the tension changes due to the extension of the first actuator member 21 and the second actuator member 22 due to natural deformation are corrected by this tension, the extension state of the first actuator member 21 and the second actuator member 22 is shown in FIG. It is possible to return to the state that is. Thereby, since the rotational force based on the torsional deformation of each actuator member 21 and 22 is appropriately given to the operated part 30, it becomes easy to operate the operated part 30 appropriately.
 以上説明した本実施形態のアクチュエータ装置10によれば、以下の(1)~(3)に示される作用及び効果を得ることができる。 According to the actuator device 10 of the present embodiment described above, the operations and effects shown in the following (1) to (3) can be obtained.
 (1)自然変形により各アクチュエータ部材21,22が軸線m1に沿った方向に伸長するような状況下でも、張力付与装置50から各アクチュエータ部材21,22に付与される張力により、各アクチュエータ部材21,22の伸長に基づく張力変化が矯正される。これにより、自然変形による各アクチュエータ部材21,22の伸長が被作動部30の作動に及ぼす影響を緩和することができるため、被作動部30の作動を安定化させることができる。 (1) Even under a situation where the actuator members 21 and 22 extend in the direction along the axis m1 due to natural deformation, the actuator members 21 are applied by the tension applied from the tension applying device 50 to the actuator members 21 and 22. , 22 is corrected for tension change. Thereby, since the influence which the expansion | extension of each actuator member 21 and 22 by natural deformation has on the action | operation of the to-be-actuated part 30 can be relieve | moderated, the action | operation of the to-be-actuated part 30 can be stabilized.
 (2)張力付与装置50は、被作動部30の作動開始時、又はその直前に各アクチュエータ部材21,22に張力を付与する。また、張力付与装置50は、被作動部30の作動停止時、又はその直後に各アクチュエータ部材21,22に付与されている張力を解除する。これにより、被作動部30が作動している期間以外の期間では各アクチュエータ部材21,22に付与される応力が緩和されるため、各アクチュエータ部材21,22の経時劣化を抑制することができる。 (2) The tension applying device 50 applies tension to the actuator members 21 and 22 at the start of the operation of the actuated portion 30 or immediately before the operation. Further, the tension applying device 50 releases the tension applied to each actuator member 21, 22 when the operation of the operated part 30 is stopped or immediately after that. Thereby, since the stress given to each actuator member 21 and 22 is relieved in periods other than the period in which the to-be-actuated part 30 is act | operating, the time-dependent deterioration of each actuator member 21 and 22 can be suppressed.
 (3)各アクチュエータ部材21,22に付与される張力を電気的に制御可能な張力付与部として、張力付与装置50を用いることとした。これにより、張力付与装置50の通電量や通電タイミングを制御することにより、各アクチュエータ部材21,22に付与される張力の大きさや張力の付与タイミングを任意に調整することができる。 (3) The tension applying device 50 is used as a tension applying unit that can electrically control the tension applied to each actuator member 21, 22. Thereby, the magnitude | size of the tension | tensile_strength given to each actuator member 21 and 22 and the provision timing of tension | tensile_strength can be arbitrarily adjusted by controlling the energization amount and energization timing of the tension | tensile_strength provision apparatus 50.
 <第2実施形態>
 次に、アクチュエータ装置10の第2実施形態について説明する。以下、第1実施形態との相違点を中心に説明する。
Second Embodiment
Next, a second embodiment of the actuator device 10 will be described. Hereinafter, the difference from the first embodiment will be mainly described.
 図4に示されるように、本実施形態のアクチュエータ装置10は、張力付与装置50に代えて、矯正用アクチュエータ部材23を備えている。矯正用アクチュエータ部材23は、軸線m1に沿って配置されるワイヤ状の部材からなる。矯正用アクチュエータ部材23の一端部23aは、第1アクチュエータ部材21の端部21bに連結されている。矯正用アクチュエータ部材23の他端部23bは、筐体等の固定部材41に固定して取り付けられている。固定部材41は、矯正用アクチュエータ部材23を保持している。また、固定部材40,41は、各アクチュエータ部材21,22及び矯正用アクチュエータ部材23を介して被作動部30を保持する機能も有している。 As shown in FIG. 4, the actuator device 10 of this embodiment includes a correction actuator member 23 instead of the tension applying device 50. The correction actuator member 23 is formed of a wire-like member disposed along the axis m1. One end 23 a of the correction actuator member 23 is connected to the end 21 b of the first actuator member 21. The other end 23b of the correcting actuator member 23 is fixedly attached to a fixing member 41 such as a housing. The fixing member 41 holds the correcting actuator member 23. The fixing members 40 and 41 also have a function of holding the actuated portion 30 via the actuator members 21 and 22 and the correction actuator member 23.
 矯正用アクチュエータ部材23は、ポリアミド等のポリマ繊維の束により形成されている。矯正用アクチュエータ部材23は、第1アクチュエータ部材21と一体形成されている。なお、矯正用アクチュエータ部材23は、第1アクチュエータ部材21と別体からなるものであってもよい。この場合、矯正用アクチュエータ部材23は、接着等により第1アクチュエータ部材21に接合される。 The straightening actuator member 23 is formed of a bundle of polymer fibers such as polyamide. The correction actuator member 23 is formed integrally with the first actuator member 21. The correcting actuator member 23 may be a separate body from the first actuator member 21. In this case, the correcting actuator member 23 is joined to the first actuator member 21 by bonding or the like.
 矯正用アクチュエータ部材23の表面には、銀等の金属めっきが形成されている。矯正用アクチュエータ部材23の金属めっきと第1アクチュエータ部材21の金属めっきとは電気的に絶縁されており、矯正用アクチュエータ部材23の金属めっき及び第1アクチュエータ部材21の金属めっきのいずれか一方に電流を流すことが可能となっている。矯正用アクチュエータ部材23の表面に形成された金属めっきに電流を流すことにより、矯正用アクチュエータ部材23が加熱される。矯正用アクチュエータ部材23は、加熱という熱エネルギの付与に基づいて軸線m1に沿った方向Bに収縮する特性を有している。 A metal plating such as silver is formed on the surface of the straightening actuator member 23. The metal plating of the correction actuator member 23 and the metal plating of the first actuator member 21 are electrically insulated, and current is applied to either the metal plating of the correction actuator member 23 or the metal plating of the first actuator member 21. It is possible to flow. By applying a current to the metal plating formed on the surface of the correction actuator member 23, the correction actuator member 23 is heated. The correcting actuator member 23 has a characteristic of contracting in the direction B along the axis m1 based on application of thermal energy called heating.
 具体的には、図5に示されるように、矯正用アクチュエータ部材23は、構成分子の配列方向が螺旋状をなすポリマ繊維を軸線m1を中心に螺旋状に配置した構造を有している。この矯正用アクチュエータ部材23を構成するポリマ繊維は、加熱により収縮する特性を有している。このポリマ繊維の収縮により、矯正用アクチュエータ部材23全体としては、軸線m1に沿った方向Bに収縮する。この矯正用アクチュエータ部材23の軸線m1に沿った方向Bへの収縮により、各アクチュエータ部材21,22に矢印A1で示される方向の張力が付与される。また、矯正用アクチュエータ部材23の加熱量を調整することにより、矯正用アクチュエータ部材23の収縮量を調整することができるため、結果的に各アクチュエータ部材21,22に付与される張力を調整することができる。 Specifically, as shown in FIG. 5, the correcting actuator member 23 has a structure in which polymer fibers in which the arrangement direction of constituent molecules is helical are arranged in a spiral shape around the axis m1. The polymer fiber constituting the straightening actuator member 23 has a characteristic of contracting by heating. Due to the contraction of the polymer fiber, the correction actuator member 23 as a whole contracts in the direction B along the axis m1. Due to the contraction of the correcting actuator member 23 in the direction B along the axis m1, a tension in the direction indicated by the arrow A1 is applied to each actuator member 21, 22. Further, since the amount of contraction of the correction actuator member 23 can be adjusted by adjusting the heating amount of the correction actuator member 23, the tension applied to each actuator member 21, 22 can be adjusted as a result. Can do.
 次に、本実施形態のアクチュエータ装置10の電気的な構成について説明する。
 図6に示されるように、アクチュエータ装置10は、第3加熱部63を更に備えている。第3加熱部63は、矯正用アクチュエータ部材23の金属めっきに電流を流すことにより、矯正用アクチュエータ部材23をジュール熱で加熱する。これにより、矯正用アクチュエータ部材23が収縮することで、各アクチュエータ部材21,22に張力が付与される。このように、本実施形態の第3加熱部63は、矯正用アクチュエータ部材23にエネルギを付与する矯正用駆動部として機能する。
Next, the electrical configuration of the actuator device 10 of the present embodiment will be described.
As shown in FIG. 6, the actuator device 10 further includes a third heating unit 63. The third heating unit 63 heats the correction actuator member 23 with Joule heat by passing a current through the metal plating of the correction actuator member 23. As a result, the correction actuator member 23 contracts, so that tension is applied to the actuator members 21 and 22. As described above, the third heating unit 63 of the present embodiment functions as a correction driving unit that applies energy to the correction actuator member 23.
 制御部70は、第3加熱部63を介して矯正用アクチュエータ部材23を収縮させることにより、各アクチュエータ部材21,22に張力を付与する。具体的には、制御部70は、被作動部30の姿勢制御の開始時に、すなわち被作動部30の作動開始時に矯正用アクチュエータ部材23の加熱を行うことにより、各アクチュエータ部材21,22に張力を付与する。なお、制御部70は、被作動部30の姿勢制御の開始時の直前に、すなわち被作動部30の作動開始時の直前に矯正用アクチュエータ部材23を加熱することにより、各アクチュエータ部材21,22に所定の張力を付与してもよい。制御部70は、被作動部30の姿勢制御を実行している期間、矯正用アクチュエータ部材23の加熱を維持することにより、各アクチュエータ部材21,22に所定の張力が付与されている状態を維持する。 The control unit 70 applies tension to the actuator members 21 and 22 by contracting the correcting actuator member 23 via the third heating unit 63. Specifically, the control unit 70 applies tension to each actuator member 21, 22 by heating the correction actuator member 23 at the start of attitude control of the operated unit 30, that is, at the start of operation of the operated unit 30. Is granted. The controller 70 heats the actuator member 23 for correction immediately before the start of the attitude control of the actuated part 30, that is, immediately before the start of the operation of the actuated part 30. A predetermined tension may be applied to the. The controller 70 maintains the state in which the predetermined tension is applied to the actuator members 21 and 22 by maintaining the heating of the correcting actuator member 23 during the period during which the attitude control of the actuated portion 30 is being performed. To do.
 さらに、制御部70は、被作動部30の姿勢制御の終了時に、すなわち被作動部30の作動終了時に、矯正用アクチュエータ部材23の加熱を停止することにより、各アクチュエータ部材21,22に付与されている張力を解除する。 Further, the control unit 70 is applied to each actuator member 21 and 22 by stopping the heating of the correcting actuator member 23 at the end of the attitude control of the operated unit 30, that is, at the end of the operation of the operated unit 30. Release the tension.
 以上説明した本実施形態のアクチュエータ装置10によれば、第1実施形態による上記の(1)及び(2)と同一又は類似の作用及び効果を得ることができるとともに、以下の(4)に示される作用及び効果を得ることができる。 According to the actuator device 10 of the present embodiment described above, the same or similar actions and effects as the above (1) and (2) according to the first embodiment can be obtained, and are shown in the following (4). Functions and effects can be obtained.
 (4)各アクチュエータ部材21,22に付与される張力を電気的に制御可能な張力付与部として、矯正用アクチュエータ部材23及び第3加熱部63を用いることとした。これにより、矯正用アクチュエータ部材23の加熱量や加熱タイミングを制御することにより、各アクチュエータ部材21,22に付与される張力の大きさや張力の付与タイミングを任意に調整することができる。 (4) The straightening actuator member 23 and the third heating unit 63 are used as a tension applying unit capable of electrically controlling the tension applied to each actuator member 21, 22. Thereby, by controlling the heating amount and heating timing of the correcting actuator member 23, the magnitude of the tension applied to each actuator member 21, 22 and the timing of applying the tension can be arbitrarily adjusted.
 (変形例)
 次に、第2実施形態のアクチュエータ装置10の変形例について説明する。以下、第2実施形態のアクチュエータ装置10との相違点を中心に説明する。
(Modification)
Next, a modified example of the actuator device 10 of the second embodiment will be described. Hereinafter, the description will focus on differences from the actuator device 10 of the second embodiment.
 本変形例のアクチュエータ装置10では、矯正用アクチュエータ部材23が、図7に示されるような構造を有している。すなわち、矯正用アクチュエータ部材23は、軸線m1に沿って配置されている。図中に二点鎖線で示されるように、矯正用アクチュエータ部材23の構成分子であるポリアミド分子の配向方向は、軸線m1を中心に螺旋状をなしている。軸線m1に対する矯正用アクチュエータ部材23の配向方向の螺旋角度は、軸線m1に対する第1アクチュエータ部材21の配向方向の螺旋角度よりも大きくなっている。これにより、矯正用アクチュエータ部材23を構成するポリマ繊維が加熱により収縮すると、矯正用アクチュエータ部材23全体として軸線m1に沿った方向に収縮する。この矯正用アクチュエータ部材23の軸線m1に沿った方向への収縮により、各アクチュエータ部材21,22に矢印A1で示される方向の張力を付与することができる。 In the actuator device 10 of this modification, the correcting actuator member 23 has a structure as shown in FIG. That is, the correction actuator member 23 is disposed along the axis m1. As indicated by the two-dot chain line in the figure, the orientation direction of the polyamide molecules, which are the constituent molecules of the correcting actuator member 23, is helical with the axis m1 as the center. The spiral angle in the orientation direction of the correcting actuator member 23 with respect to the axis m1 is larger than the spiral angle in the orientation direction of the first actuator member 21 with respect to the axis m1. Accordingly, when the polymer fiber constituting the correction actuator member 23 contracts by heating, the correction actuator member 23 as a whole contracts in the direction along the axis m1. By contraction of the correcting actuator member 23 in the direction along the axis m1, tension in the direction indicated by the arrow A1 can be applied to each actuator member 21, 22.
 このような矯正用アクチュエータ部材23であっても、第2実施形態による上記の(1)、(2)、及び(4)と同一又は類似の作用及び効果を得ることができる。 Even with such a correcting actuator member 23, the same or similar actions and effects as the above (1), (2), and (4) according to the second embodiment can be obtained.
 <第3実施形態>
 次に、アクチュエータ装置10の第3実施形態について説明する。以下、第1実施形態のアクチュエータ装置10との相違点を中心に説明する。
<Third Embodiment>
Next, a third embodiment of the actuator device 10 will be described. Hereinafter, the description will focus on the differences from the actuator device 10 of the first embodiment.
 図8に示されるように、本実施形態のアクチュエータ装置10は、張力付与装置50に代えて、弾性部材80を有している。弾性部材80は、第1アクチュエータ部材21と、筐体等の固定部材41との間に、第1アクチュエータ部材21及び固定部材41に直列に配置されている。弾性部材80は、各アクチュエータ部材21,22の弾性率よりも小さい弾性率を有するコイルばねにより構成されている。弾性部材80の一端部80aは、第1アクチュエータ部材21の端部21bに連結されている。弾性部材80の他端部80bは、筐体等の固定部材41に固定されている。 As shown in FIG. 8, the actuator device 10 of this embodiment has an elastic member 80 instead of the tension applying device 50. The elastic member 80 is disposed in series with the first actuator member 21 and the fixing member 41 between the first actuator member 21 and the fixing member 41 such as a housing. The elastic member 80 is configured by a coil spring having an elastic modulus smaller than the elastic modulus of each actuator member 21, 22. One end 80 a of the elastic member 80 is connected to the end 21 b of the first actuator member 21. The other end 80b of the elastic member 80 is fixed to a fixing member 41 such as a housing.
 弾性部材80は、自然変形に基づく各アクチュエータ部材21,22の伸長方向Bに予めの張力を各アクチュエータ部材21,22に付与している。具体的には、弾性部材80は、第1アクチュエータ部材21の端部21bに矢印A1で示される方向の付勢力を付与している。この付勢力により、各アクチュエータ部材21,22には矢印Bで示される方向の張力が付与されている。弾性部材80から各アクチュエータ部材21,22に付与される張力は、自然変形に基づく各アクチュエータ部材21,22の伸長量よりも大きく各アクチュエータ部材21,22を伸長させることのできるように予め実験等により設定されている。 The elastic member 80 applies a pretension to the actuator members 21 and 22 in the extension direction B of the actuator members 21 and 22 based on natural deformation. Specifically, the elastic member 80 applies an urging force in the direction indicated by the arrow A <b> 1 to the end 21 b of the first actuator member 21. Due to this urging force, each actuator member 21, 22 is given a tension in the direction indicated by arrow B. The tension applied from the elastic member 80 to the actuator members 21 and 22 is larger than the extension amount of the actuator members 21 and 22 based on natural deformation, so that the actuator members 21 and 22 can be extended in advance. It is set by.
 以上説明した本実施形態のアクチュエータ装置10によれば、第1実施形態による上記の(1)と同一又は類似の作用及び効果を得ることができるとともに、以下の(5)及び(6)に示される作用及び効果を得ることができる。 According to the actuator device 10 of the present embodiment described above, the same or similar actions and effects as the above (1) according to the first embodiment can be obtained, and are shown in the following (5) and (6). Functions and effects can be obtained.
 (5)各アクチュエータ部材21,22に張力を付与する張力付与部として、弾性部材80を用いることとした。弾性部材80は、自然変形に基づく各アクチュエータ部材21,22の伸長方向Bに予め張力を付与する。これにより、第1実施形態のような張力付与装置50を用いる構成と比較すると、より簡素な構成で各アクチュエータ部材21,22に張力を付与することができる。 (5) The elastic member 80 is used as a tension applying portion that applies tension to the actuator members 21 and 22. The elastic member 80 preliminarily applies tension in the extending direction B of the actuator members 21 and 22 based on natural deformation. Thereby, compared with the structure using the tension | tensile_strength provision apparatus 50 like 1st Embodiment, tension | tensile_strength can be provided to each actuator member 21 and 22 with a simpler structure.
 (6)弾性部材80は、自然変形に基づく各アクチュエータ部材21,22の伸長量よりも大きく各アクチュエータ部材21,22を伸長させることの可能な張力を各アクチュエータ部材21,22に付与する。これにより、自然変形に基づく各アクチュエータ部材21,22の伸長が被作動部30の作動に及ぼす影響を、より確実に抑制することができる。 (6) The elastic member 80 gives each actuator member 21 and 22 a tension capable of extending each actuator member 21 and 22 larger than the extension amount of each actuator member 21 and 22 based on natural deformation. Thereby, the influence which the expansion | extension of each actuator member 21 and 22 based on a natural deformation has on the action | operation of the to-be-actuated part 30 can be suppressed more reliably.
 (第1変形例)
 次に、第3実施形態のアクチュエータ装置10の第1変形例について説明する。以下、第3実施形態のアクチュエータ装置10との相違点を中心に説明する。
(First modification)
Next, a first modification of the actuator device 10 according to the third embodiment will be described. Hereinafter, a description will be given focusing on differences from the actuator device 10 of the third embodiment.
 図9に示されるように、本変形例の第1アクチュエータ部材21及び第2アクチュエータ部材22は、軸線m1を挟んで並列に配置されている。第1アクチュエータ部材21は、軸線m2に沿って配置されている。第1アクチュエータ部材21は、加熱による熱エネルギの付与に基づいて軸線m2を中心とする回転方向R21にねじり変形する。第2アクチュエータ部材22は、軸線m3に沿って配置されている。第2アクチュエータ部材22は、加熱による熱エネルギの付与に基づいて軸線m3を中心とする回転方向R22にねじれ変形する。 As shown in FIG. 9, the first actuator member 21 and the second actuator member 22 of this modification are arranged in parallel with the axis m1 interposed therebetween. The first actuator member 21 is disposed along the axis m2. The first actuator member 21 is torsionally deformed in a rotation direction R21 centering on the axis m2 based on application of thermal energy by heating. The second actuator member 22 is disposed along the axis m3. The second actuator member 22 is torsionally deformed in the rotation direction R22 about the axis m3 based on application of thermal energy by heating.
 第1アクチュエータ部材21の一端部21a及び第2アクチュエータ部材22の一端部22bは、被作動部30に連結されている。第1アクチュエータ部材21の他端部21b及び第2アクチュエータ部材22の他端部22aは、固定部材41に固定して取り付けられている。このような構造により、加熱により第1アクチュエータ部材21が回転方向R21にねじり変形すると、被作動部30には回転方向R21の回転力が付与される。この回転方向R21の回転力により、被作動部30は第1方向R11に回転変位する。また、加熱により第2アクチュエータ部材22が回転方向R22にねじり変形すると、被作動部30には回転方向R22の回転力が付与される。この回転方向R22の回転力により、被作動部30は第2方向R12に回転変位する。 The one end part 21 a of the first actuator member 21 and the one end part 22 b of the second actuator member 22 are connected to the actuated part 30. The other end 21 b of the first actuator member 21 and the other end 22 a of the second actuator member 22 are fixedly attached to the fixing member 41. With such a structure, when the first actuator member 21 is torsionally deformed in the rotation direction R21 by heating, a rotational force in the rotation direction R21 is applied to the operated part 30. Due to the rotational force in the rotational direction R21, the actuated portion 30 is rotationally displaced in the first direction R11. Further, when the second actuator member 22 is torsionally deformed in the rotation direction R22 by heating, a rotational force in the rotation direction R22 is applied to the operated part 30. The operated portion 30 is rotationally displaced in the second direction R12 by the rotational force in the rotational direction R22.
 被作動部30における各アクチュエータ部材21,22が連結されている側面とは反対側の側面には、弾性部材80の一端部80aが連結されている。弾性部材80の他端部80bは、固定部材40に固定して取り付けられている。弾性部材80は、自然変形に基づく各アクチュエータ部材21,22の伸長方向Bに予めの張力を各アクチュエータ部材21,22に付与している。具体的には、弾性部材80は、被作動部30に矢印A2で示される方向の付勢力を付与している。この付勢力により、各アクチュエータ部材21,22には矢印A2で示される方向の張力が付与されている。 The one end portion 80a of the elastic member 80 is connected to the side surface of the operated portion 30 opposite to the side surface to which the actuator members 21 and 22 are connected. The other end portion 80 b of the elastic member 80 is fixedly attached to the fixing member 40. The elastic member 80 applies a pretension to the actuator members 21 and 22 in the extension direction B of the actuator members 21 and 22 based on natural deformation. Specifically, the elastic member 80 applies an urging force in the direction indicated by the arrow A2 to the operated part 30. Due to this urging force, the actuator members 21 and 22 are applied with tension in the direction indicated by the arrow A2.
 このような構成を有するアクチュエータ装置10であっても、第3実施形態と同一又は類似の作用及び効果を得ることができる。 Even with the actuator device 10 having such a configuration, the same or similar actions and effects as those of the third embodiment can be obtained.
 (第2変形例)
 次に、第3実施形態のアクチュエータ装置10の第2変形例について説明する。以下、第3実施形態のアクチュエータ装置10との相違点を中心に説明する。
(Second modification)
Next, a second modification of the actuator device 10 according to the third embodiment will be described. Hereinafter, a description will be given focusing on differences from the actuator device 10 of the third embodiment.
 図10に示されるように、本変形例のアクチュエータ装置10では、第1アクチュエータ部材21と被作動部30との間に弾性部材80が配置されている。このような構成であっても、第3実施形態と同一又は類似の作用及び効果を得ることができる。 As shown in FIG. 10, in the actuator device 10 of this modification, an elastic member 80 is disposed between the first actuator member 21 and the actuated portion 30. Even with such a configuration, the same and similar operations and effects as those of the third embodiment can be obtained.
 <第4実施形態>
 次に、アクチュエータ装置10の第4実施形態について説明する。以下、第3実施形態のアクチュエータ装置10との相違点を中心に説明する。なお、本実施形態では、軸線m1を「第1アクチュエータ部材21の中心軸m1」及び「第2アクチュエータ部材22の中心軸m1」とも称する。
<Fourth embodiment>
Next, a fourth embodiment of the actuator device 10 will be described. Hereinafter, a description will be given focusing on differences from the actuator device 10 of the third embodiment. In the present embodiment, the axis m1 is also referred to as “the central axis m1 of the first actuator member 21” and “the central axis m1 of the second actuator member 22”.
 図11に示されるように、本実施形態のアクチュエータ装置10は、弾性部材80に代えて、第1アクチュエータ部材21の端部21bに設けられる第1張力付与機構100と、第2アクチュエータ部材22の端部22bに設けられる第2張力付与機構110とを備えている。 As shown in FIG. 11, the actuator device 10 according to the present embodiment includes a first tension applying mechanism 100 provided at an end 21 b of the first actuator member 21 and a second actuator member 22 instead of the elastic member 80. And a second tension applying mechanism 110 provided at the end 22b.
 第1張力付与機構100は、矢印A1で示される方向の張力を第1アクチュエータ部材21に付与する。具体的には、第1張力付与機構100は、固定部101と、ハウジング102と、コイルばね103とを有している。 The first tension applying mechanism 100 applies a tension in the direction indicated by the arrow A1 to the first actuator member 21. Specifically, the first tension applying mechanism 100 includes a fixing portion 101, a housing 102, and a coil spring 103.
 固定部101は、第1アクチュエータ部材21の端部21bに接着等により固定されている。固定部101は、第1アクチュエータ部材21の端部21bの外周面から、軸線m1を中心とする径方向に突出するようにフランジ状に形成されている。 The fixing portion 101 is fixed to the end portion 21b of the first actuator member 21 by adhesion or the like. The fixed portion 101 is formed in a flange shape so as to protrude from the outer peripheral surface of the end portion 21b of the first actuator member 21 in the radial direction centering on the axis m1.
 ハウジング102は、軸線m1を中心に有底筒状に形成されている。ハウジング102の内部には、固定部101が摺動可能に収容されている。ハウジング102は、被作動部30に対向する端部に底部102aを有している。底部102aには、軸線m1を中心軸とする貫通孔102bが形成されている。第1アクチュエータ部材21の端部21bは、この貫通孔102bを通じてハウジング102の内部に延びて固定部101に固定されている。ハウジング102における底部102aが設けられる端部とは反対側の端部は、固定部材41に固定されている。貫通孔102bの内径は、第1アクチュエータ部材21の外径よりも大きい。したがって、第1アクチュエータ部材21が方向Bに伸縮する際に、第1アクチュエータ部材21とハウジング102との間に摩擦力が発生し難くなっている。 The housing 102 is formed in a bottomed cylindrical shape around the axis m1. Inside the housing 102, a fixed portion 101 is slidably accommodated. The housing 102 has a bottom portion 102 a at an end facing the operated portion 30. A through hole 102b having the axis m1 as a central axis is formed in the bottom 102a. An end portion 21b of the first actuator member 21 extends into the housing 102 through the through hole 102b and is fixed to the fixing portion 101. The end of the housing 102 opposite to the end where the bottom 102 a is provided is fixed to the fixing member 41. The inner diameter of the through hole 102 b is larger than the outer diameter of the first actuator member 21. Therefore, when the first actuator member 21 expands and contracts in the direction B, it is difficult for a frictional force to be generated between the first actuator member 21 and the housing 102.
 コイルばね103は、その内部に第1アクチュエータ部材21の端部21bを内包するように配置されている。コイルばね103は、その中心軸が第1アクチュエータ部材21の中心軸m1に一致するように第1アクチュエータ部材21の端部21bの外周に設けられている。コイルばね103は、固定部101とハウジング102の底部102aとの間に圧縮された状態で配置されることにより、固定部101に矢印A1に示される方向の弾性力を付与している。これにより、第1アクチュエータ部材21には、矢印A1に示される方向の張力が付与されている。 The coil spring 103 is disposed so as to include the end 21b of the first actuator member 21 therein. The coil spring 103 is provided on the outer periphery of the end 21 b of the first actuator member 21 so that the center axis thereof coincides with the center axis m <b> 1 of the first actuator member 21. The coil spring 103 is arranged in a compressed state between the fixed portion 101 and the bottom portion 102a of the housing 102, thereby applying an elastic force in the direction indicated by the arrow A1 to the fixed portion 101. Thereby, the tension | tensile_strength of the direction shown by arrow A 1 is provided to the 1st actuator member 21. FIG.
 コイルばね103の一端部は、固定部101に形成された凹状の溝101aに挿入されている。コイルばね103の他端部は、ハウジング102に形成された凹状の溝102cに挿入されている。コイルばね103の両端部が溝101a,102cにそれぞれ挿入されることにより、コイルばね103の外周部分が位置決めされている。これにより、コイルばね103の内周部分と第1アクチュエータ部材21の外周部分との間に隙間が設けられるとともに、コイルばね103の外周部分とハウジング102の内周部分との間に隙間が設けられている。これらの隙間により、コイルばね103が弾性変形する際に、コイルばね103と第1アクチュエータ部材21との間に摩擦力が発生し難くなるとともに、コイルばね103とハウジング102との間に摩擦力が発生し難くなっている。 One end of the coil spring 103 is inserted into a concave groove 101 a formed in the fixed portion 101. The other end of the coil spring 103 is inserted into a concave groove 102 c formed in the housing 102. By inserting both end portions of the coil spring 103 into the grooves 101a and 102c, the outer peripheral portion of the coil spring 103 is positioned. Accordingly, a gap is provided between the inner peripheral portion of the coil spring 103 and the outer peripheral portion of the first actuator member 21, and a gap is provided between the outer peripheral portion of the coil spring 103 and the inner peripheral portion of the housing 102. ing. Due to these gaps, when the coil spring 103 is elastically deformed, a friction force is hardly generated between the coil spring 103 and the first actuator member 21, and a friction force is generated between the coil spring 103 and the housing 102. It is hard to occur.
 第2張力付与機構110は、矢印A1で示される方向とは反対の矢印A2で示される方向の張力を第2アクチュエータ部材22に付与している。第2張力付与機構110は、第1張力付与機構100と同様に、固定部111と、ハウジング112と、コイルばね113とを有している。なお、これらの要素の構造及び機能は、第1張力付与機構100の各要素の構造及び機能と同一であるため、それらの詳細な説明は割愛する。 The second tension applying mechanism 110 applies the tension in the direction indicated by the arrow A2 opposite to the direction indicated by the arrow A1 to the second actuator member 22. Similar to the first tension applying mechanism 100, the second tension applying mechanism 110 includes a fixing portion 111, a housing 112, and a coil spring 113. In addition, since the structure and function of these elements are the same as the structure and function of each element of the 1st tension | tensile_strength provision mechanism 100, those detailed description is omitted.
 以上説明した本実施形態のアクチュエータ装置10によれば、第1実施形態による上記の(1)と同一又は類似の作用及び効果を得ることができるとともに、以下の(7)~(9)に示される作用及び効果を得ることができる。 According to the actuator device 10 of the present embodiment described above, the same or similar operations and effects as the above (1) according to the first embodiment can be obtained, and the following (7) to (9) are shown. Functions and effects can be obtained.
 (7)各アクチュエータ部材21,22に張力を付与する張力付与部として、コイルばね103,113を用いることとした。コイルばね103,113は、自然変形に基づく各アクチュエータ部材21,22の伸長方向Bに予め張力を付与する。これにより、第1実施形態のような張力付与装置50を用いる構成と比較すると、より簡素な構成で各アクチュエータ部材21,22に張力を付与することができる。 (7) The coil springs 103 and 113 are used as tension applying portions that apply tension to the actuator members 21 and 22. The coil springs 103 and 113 preliminarily apply tension in the extending direction B of the actuator members 21 and 22 based on natural deformation. Thereby, compared with the structure using the tension | tensile_strength provision apparatus 50 like 1st Embodiment, tension | tensile_strength can be provided to each actuator member 21 and 22 with a simpler structure.
 (8)コイルばね103は、第1アクチュエータ部材21の外周に設けられている。また、コイルばね113は、第2アクチュエータ部材22の外周に設けられている。これにより、第1実施形態のような張力付与装置50をアクチュエータ部材21,22のそれぞれの端部に設ける場合と比較すると、軸線m1に沿った方向におけるアクチュエータ装置10の大型化を回避することができる。 (8) The coil spring 103 is provided on the outer periphery of the first actuator member 21. The coil spring 113 is provided on the outer periphery of the second actuator member 22. Thereby, compared with the case where the tension | tensile_strength providing apparatus 50 like 1st Embodiment is provided in each edge part of the actuator members 21 and 22, it can avoid the enlargement of the actuator apparatus 10 in the direction along the axis line m1. it can.
 (9)コイルばね103,113は、アクチュエータ部材21,22をそれぞれ内包している。これにより、軸線m1を中心とする径方向におけるアクチュエータ装置10の大型化を回避することができる。 (9) The coil springs 103 and 113 contain the actuator members 21 and 22, respectively. Thereby, the enlargement of the actuator device 10 in the radial direction around the axis m1 can be avoided.
 (変形例)
 次に、第4実施形態のアクチュエータ装置10の変形例について説明する。以下、第4実施形態のアクチュエータ装置10との相違点を中心に説明する。
(Modification)
Next, a modification of the actuator device 10 according to the fourth embodiment will be described. Hereinafter, the difference from the actuator device 10 of the fourth embodiment will be mainly described.
 図12に示されるように、本変形例の第1張力付与機構100は、2つのコイルばね104a,104bを有している。コイルばね104a,104bは、それらの中心軸m10,m11がアクチュエータ部材21の中心軸m1からずれた位置となるように第1アクチュエータ部材21の端部21bの外周に設けられている。より詳しくは、図13に示されるように、2つのコイルばね104a,104bのそれぞれの中心軸m10,m11は、第1アクチュエータ部材21の中心軸m1を中心とする同一円周Cにおいて等角度間隔となる位置に配置されている。これにより、第1アクチュエータ部材21にモーメントを発生させることなく、矢印A1で示される方向の張力を第1アクチュエータ部材21に付与することができる。 As shown in FIG. 12, the first tension applying mechanism 100 of this modification has two coil springs 104a and 104b. The coil springs 104a and 104b are provided on the outer periphery of the end portion 21b of the first actuator member 21 so that their center axes m10 and m11 are shifted from the center axis m1 of the actuator member 21. More specifically, as shown in FIG. 13, the central axes m10 and m11 of the two coil springs 104a and 104b are equiangularly spaced at the same circumference C around the central axis m1 of the first actuator member 21. It is arranged at the position. Thereby, tension in the direction indicated by the arrow A <b> 1 can be applied to the first actuator member 21 without generating a moment in the first actuator member 21.
 図12に示されるように、コイルばね104aの一端部は、固定部101に形成された突出部101bに挿入されている。また、コイルばね104aの他端部は、ハウジング102に形成された突出部102dに挿入されている。コイルばね104aの両端部が突出部101b,102dにそれぞれ挿入されることにより、コイルばね104aの内周部分が位置決めされている。同様に、コイルばね104bの内周部分も、固定部101に形成された突出部101c、及びハウジング102に形成された突出部102eにより位置決めされている。これにより、コイルばね104a,104bのそれぞれの内周部分と第1アクチュエータ部材21の外周部分との間に隙間が設けられるとともに、コイルばね104a,104bのそれぞれの外周部分とハウジング102の内周部分との間に隙間が設けられている。これらの隙間により、コイルばね104a,104bが弾性変形する際に、コイルばね104a,104bと第1アクチュエータ部材21との間に摩擦力が発生し難くなるとともに、コイルばね104a,104bとハウジング102との間に摩擦力が発生し難くなっている。 As shown in FIG. 12, one end of the coil spring 104 a is inserted into a protruding portion 101 b formed on the fixed portion 101. The other end of the coil spring 104 a is inserted into a protruding portion 102 d formed on the housing 102. By inserting both end portions of the coil spring 104a into the protruding portions 101b and 102d, the inner peripheral portion of the coil spring 104a is positioned. Similarly, the inner peripheral portion of the coil spring 104 b is also positioned by the protruding portion 101 c formed on the fixed portion 101 and the protruding portion 102 e formed on the housing 102. Accordingly, a gap is provided between the inner peripheral portion of each of the coil springs 104 a and 104 b and the outer peripheral portion of the first actuator member 21, and the outer peripheral portion of each of the coil springs 104 a and 104 b and the inner peripheral portion of the housing 102. There is a gap between them. Due to these gaps, when the coil springs 104a and 104b are elastically deformed, frictional force is hardly generated between the coil springs 104a and 104b and the first actuator member 21, and the coil springs 104a and 104b and the housing 102 are Friction is less likely to occur during
 図12に示されるように、第2張力付与機構110も、第1張力付与機構100と同様に、2つのコイルばね114a,114bを有している。これらのコイルばね114a,114bの構造は、第1張力付与機構100のコイルばね104a,104bと同一であるため、それらの詳細な説明は割愛する。 As shown in FIG. 12, the second tension applying mechanism 110 also has two coil springs 114a and 114b, similar to the first tension applying mechanism 100. Since the structure of these coil springs 114a and 114b is the same as that of the coil springs 104a and 104b of the first tension applying mechanism 100, their detailed description is omitted.
 このようなアクチュエータ装置10によれば、第4実施形態のアクチュエータ装置10による上記の(7)及び(8)に示される作用及び効果を得ることができる。また、第4実施形態のアクチュエータ装置10と比較すると、コイルばねの数が増える分だけ、各アクチュエータ部材21,22に付与される張力を増加させることができる。 According to such an actuator device 10, the actions and effects shown in the above (7) and (8) by the actuator device 10 of the fourth embodiment can be obtained. Further, as compared with the actuator device 10 of the fourth embodiment, the tension applied to the actuator members 21 and 22 can be increased by the increase in the number of coil springs.
 なお、アクチュエータ部材21,22の外周に配置されるコイルばねの数は2個に限らず、適宜変更可能である。例えば第1アクチュエータ部材21の外周に3個のコイルばねを設ける場合には、図14に示されるように、3つのコイルばねのそれぞれの中心軸m10~m12は、第1アクチュエータ部材21の中心軸m1を中心とする同一円周Cにおいて等角度間隔となる位置に配置される。 Note that the number of coil springs arranged on the outer periphery of the actuator members 21 and 22 is not limited to two and can be changed as appropriate. For example, when three coil springs are provided on the outer periphery of the first actuator member 21, the center axes m10 to m12 of the three coil springs are the center axes of the first actuator member 21, as shown in FIG. It arrange | positions in the position which becomes equiangular spacing in the same periphery C centering on m1.
 <他の実施形態>
 なお、各実施形態は、以下の形態にて実施することもできる。
 ・第1実施形態の張力付与装置50は、アクチュエータ部材21,22に付与される張力が一定の大きさとなるように、アクチュエータ部材21,22に付与する張力の大きさを調整してもよい。例えばアクチュエータ部材21,22が熱の付与により図1の方向Bに膨張する特性を有している場合には、張力付与装置50は、アクチュエータ部材21,22が熱膨張した際に、可動部51を方向A1へ変位させることにより、アクチュエータ部材21,22に付与される張力を一定の大きさに調整する。一方、アクチュエータ部材21,22が熱の付与により方向Bに収縮する特性を有している場合には、張力付与装置50は、アクチュエータ部材21,22が熱収縮した際に、可動部51を方向A1とは逆の方向に変位させることにより、アクチュエータ部材21,22に付与される張力を一定の大きさに調整する。これにより、アクチュエータ部材21,22が熱膨張又は熱収縮する特性を有している場合でも、アクチュエータ部材21,22の張力変化を矯正することができる。なお、類似の構成は、第2実施形態のアクチュエータ装置10でも実現することができる。
<Other embodiments>
In addition, each embodiment can also be implemented with the following forms.
-The tension | tensile_strength provision apparatus 50 of 1st Embodiment may adjust the magnitude | size of the tension | tensile_strength provided to the actuator members 21 and 22 so that the tension | tensile_strength provided to the actuator members 21 and 22 may become a fixed magnitude | size. For example, when the actuator members 21 and 22 have the characteristic of expanding in the direction B of FIG. Is displaced in the direction A1, and the tension applied to the actuator members 21 and 22 is adjusted to a constant magnitude. On the other hand, when the actuator members 21 and 22 have a characteristic of contracting in the direction B by the application of heat, the tension applying device 50 moves the movable part 51 in the direction when the actuator members 21 and 22 are thermally contracted. By displacing in the direction opposite to A1, the tension applied to the actuator members 21, 22 is adjusted to a constant magnitude. Thereby, even when the actuator members 21 and 22 have the characteristic of thermal expansion or contraction, the tension change of the actuator members 21 and 22 can be corrected. A similar configuration can also be realized by the actuator device 10 of the second embodiment.
 ・第3実施形態の弾性部材80としては、コイルばねに限らず、ぜんまいばねや板ばね、その他の適宜の弾性部材を用いることができる。また、弾性部材80の数は、単数に限らず、複数であってもよい。 The elastic member 80 of the third embodiment is not limited to a coil spring, and a mainspring spring, a leaf spring, and other appropriate elastic members can be used. Further, the number of elastic members 80 is not limited to one, and may be plural.
 ・第3実施形態のアクチュエータ装置10では、仮にアクチュエータ部材21,22が熱収縮により方向Bに収縮する特性を有している場合であっても、アクチュエータ部材21の端部21bに弾性部材80が接続されていれば、方向Bに弾性部材80が変形することで各アクチュエータ部材21,22に加わる応力を緩和することができる。よって、アクチュエータ部材21,22の耐久性が向上する効果を奏することができる。 In the actuator device 10 according to the third embodiment, even if the actuator members 21 and 22 have a characteristic of contracting in the direction B due to thermal contraction, the elastic member 80 is provided at the end 21b of the actuator member 21. If connected, the elastic member 80 is deformed in the direction B, so that the stress applied to the actuator members 21 and 22 can be relaxed. Therefore, an effect of improving the durability of the actuator members 21 and 22 can be obtained.
 ・第4実施形態のアクチュエータ装置10では、コイルばねの数や配置を適宜変更してもよい。例えば第4実施形態の変形例のアクチュエータ装置10では、第1アクチュエータ部材21の外周にコイルばね104a,104bのいずれか一方のみが設けられ、且つ第2アクチュエータ部材22の外周にコイルばね114a,114bのいずれか一方のみが設けられていてもよい。また、例えば図15に示されるように、図11に示されるアクチュエータ装置10のコイルばねの構成と、図12に示されるアクチュエータ装置10のコイルばねの構成とを組み合わせてもよい。 In the actuator device 10 of the fourth embodiment, the number and arrangement of coil springs may be changed as appropriate. For example, in the actuator device 10 of the modification of the fourth embodiment, only one of the coil springs 104a and 104b is provided on the outer periphery of the first actuator member 21, and the coil springs 114a and 114b are provided on the outer periphery of the second actuator member 22. Only one of these may be provided. Further, for example, as shown in FIG. 15, the configuration of the coil spring of the actuator device 10 shown in FIG. 11 may be combined with the configuration of the coil spring of the actuator device 10 shown in FIG.
 ・第4実施形態のアクチュエータ装置10では、第1張力付与機構100及び第2張力付与機構110のいずれか一方のみが設けられていてもよい。 In the actuator device 10 according to the fourth embodiment, only one of the first tension applying mechanism 100 and the second tension applying mechanism 110 may be provided.
 ・第4実施形態のアクチュエータ装置10では、コイルばね103,104a,104b,113,114a,114bに代えて、メッシュばね等の適宜の弾性部材を用いてもよい。 In the actuator device 10 of the fourth embodiment, an appropriate elastic member such as a mesh spring may be used instead of the coil springs 103, 104a, 104b, 113, 114a, 114b.
 ・図11に示される第4実施形態のコイルばね103は、その内周部分が固定部101及びハウジング102により位置決めされていてもよい。コイルばね113についても同様である。また、図12に示される第4実施形態の変形例のコイルばね104a,104bは、それらの外周部分が固定部101及びハウジング102により位置決めされていてもよい。コイルばね114a,114bについても同様である。 · The coil spring 103 of the fourth embodiment shown in Fig. 11 may be positioned at the inner peripheral portion thereof by the fixing portion 101 and the housing 102. The same applies to the coil spring 113. Further, the coil springs 104a and 104b of the modification of the fourth embodiment shown in FIG. 12 may have their outer peripheral portions positioned by the fixing portion 101 and the housing 102. The same applies to the coil springs 114a and 114b.
 ・各アクチュエータ部材21~23を加熱する方法としては、表面に形成された金属めっきに電流を流して加熱する方法に限らず、適宜の方法を採用することができる。例えば各アクチュエータ部材21~23の外周面にコイルを巻回するとともに、このコイルへの通電により各アクチュエータ部材21~23を加熱してもよい。あるいは、ヒータ等を用いて各アクチュエータ部材21~23を加熱してもよい。 The method of heating each actuator member 21 to 23 is not limited to a method of heating by supplying an electric current to the metal plating formed on the surface, and an appropriate method can be adopted. For example, a coil may be wound around the outer peripheral surfaces of the actuator members 21 to 23, and the actuator members 21 to 23 may be heated by energizing the coils. Alternatively, each actuator member 21 to 23 may be heated using a heater or the like.
 ・各アクチュエータ部材21,22としては、エネルギの付与に基づきねじり変形するものに限らず、エネルギの付与に基づき長手方向に直動変位するものを用いることもできる。例えば各アクチュエータ部材21,22としては、加熱に基づき軸線m1に平行な方向に伸張変形するとともに、冷却に基づき軸線m1に平行な方向に収縮変形するアクチュエータ部材を用いることもできる。 The actuator members 21 and 22 are not limited to those that are torsionally deformed based on energy application, but may be those that are linearly displaced in the longitudinal direction based on energy application. For example, as each of the actuator members 21 and 22, an actuator member that expands and deforms in a direction parallel to the axis m1 based on heating and contracts and deforms in a direction parallel to the axis m1 based on cooling can be used.
 ・各アクチュエータ部材21~23の素材としては、ポリマ繊維に限らず、電気的、光学的、化学的、熱的、吸収、もしくは他の手段による外部からのエネルギ入力に応じて変形する適宜の素材を用いることができる。このような素材には、例えば形状記憶合金や誘電エラストマ、磁性ゲル、導電性高分子等がある。 The material of each of the actuator members 21 to 23 is not limited to polymer fiber, but is an appropriate material that deforms in response to external energy input by electrical, optical, chemical, thermal, absorption, or other means. Can be used. Examples of such materials include shape memory alloys, dielectric elastomers, magnetic gels, and conductive polymers.
 ・第1実施形態の変形例の矯正用アクチュエータ部材23の素材に関しては、外部からのエネルギ入力に応じて変形する適宜の素材を用いることができる。なお、矯正用アクチュエータ部材23の素材は、第1アクチュエータ部材21の素材と同一であってもよいし、異なっていてもよい。矯正用アクチュエータ部材23の素材と第1アクチュエータ部材21の素材とが同一である場合には、矯正用アクチュエータ部材23と第1アクチュエータ部材21とが一体形成されていてもよい。 As for the material of the correcting actuator member 23 according to the modification of the first embodiment, an appropriate material that deforms in response to external energy input can be used. Note that the material of the correcting actuator member 23 may be the same as or different from the material of the first actuator member 21. When the material of the correction actuator member 23 and the material of the first actuator member 21 are the same, the correction actuator member 23 and the first actuator member 21 may be integrally formed.
 ・制御部70が提供する手段及び/又は機能は、実体的な記憶装置に記憶されたソフトウェア及びそれを実行するコンピュータ、ソフトウェアのみ、ハードウェアのみ、あるいはそれらの組み合わせにより提供することができる。例えば制御部70がハードウェアである電子回路により提供される場合、それは多数の論理回路を含むデジタル回路、またはアナログ回路により提供することができる。 The means and / or function provided by the control unit 70 can be provided by software stored in a substantial storage device and a computer that executes the software, only software, only hardware, or a combination thereof. For example, when the control unit 70 is provided by an electronic circuit that is hardware, it can be provided by a digital circuit including a large number of logic circuits or an analog circuit.
 ・本開示は上記の具体例に限定されるものではない。上記の具体例に、当業者が適宜設計変更を加えたものも、本開示の特徴を備えている限り、本開示の範囲に包含される。前述した各具体例が備える各要素、及びその配置、条件、形状等は、例示したものに限定されるわけではなく適宜変更することができる。前述した各具体例が備える各要素は、技術的な矛盾が生じない限り、適宜組み合わせを変えることができる。 ・ This disclosure is not limited to the above specific examples. Any of the above specific examples that are appropriately modified by those skilled in the art are also included in the scope of the present disclosure as long as they have the features of the present disclosure. Each element included in each of the specific examples described above, and the arrangement, conditions, shape, and the like thereof are not limited to those illustrated, and can be appropriately changed. Each element included in each of the specific examples described above can be appropriately combined as long as no technical contradiction occurs.

Claims (12)

  1.  外部からのエネルギの付与に応じて変形するアクチュエータ部材(21,22)と、
     前記アクチュエータ部材に連結される被作動部(30)と、
     前記アクチュエータ部材にエネルギを付与することにより前記被作動部を前記アクチュエータ部材の変形方向に変位させる駆動部(61,62)と、
     自然変形による前記アクチュエータ部材の伸長及び収縮の少なくとも一方に基づく張力変化を矯正することのできる張力を前記アクチュエータ部材に付与する張力付与部(23,50,63,80,103,104a,104b,113,114a,114b)と、を備える
     アクチュエータ装置。
    An actuator member (21, 22) that deforms in response to external energy application;
    An actuated portion (30) coupled to the actuator member;
    A drive section (61, 62) for displacing the actuated section in the deformation direction of the actuator member by applying energy to the actuator member;
    Tension applying portions (23, 50, 63, 80, 103, 104a, 104b, 113) that apply to the actuator member a tension that can correct a change in tension based on at least one of expansion and contraction of the actuator member due to natural deformation. 114a, 114b), and an actuator device.
  2.  前記張力付与部(23,50,63)は、
     前記アクチュエータ部材に付与される張力を電気的に制御可能であり、
     前記被作動部の作動開始時、又はその直前に前記アクチュエータ部材に張力を付与するとともに、
     前記被作動部の作動停止時、又はその直後に前記アクチュエータ部材に付与されている張力を解除する
     請求項1に記載のアクチュエータ装置。
    The tension applying portion (23, 50, 63)
    The tension applied to the actuator member can be electrically controlled;
    While applying tension to the actuator member at the start of operation of the actuated part or immediately before,
    The actuator device according to claim 1, wherein the tension applied to the actuator member is released at the time of stopping the operation of the operated part or immediately after that.
  3.  前記張力付与部(50)は、
     電磁アクチュエータ装置、又はモータ装置である
     請求項2に記載のアクチュエータ装置。
    The tension applying part (50)
    The actuator device according to claim 2, wherein the actuator device is an electromagnetic actuator device or a motor device.
  4.  前記張力付与部は、
     外部からのエネルギの付与に応じて、自然変形による前記アクチュエータ部材の伸長及び収縮の少なくとも一方による張力変化を矯正することのできる張力を前記アクチュエータ部材に付与する矯正用アクチュエータ部材(23)と、
     前記矯正用アクチュエータ部材にエネルギを付与する矯正用駆動部(63)と、により構成されている
     請求項2に記載のアクチュエータ装置。
    The tension applying unit is
    A correction actuator member (23) for applying a tension to the actuator member that can correct a change in tension due to at least one of expansion and contraction of the actuator member due to natural deformation in response to external energy application;
    The actuator device according to claim 2, further comprising: a correction driving unit (63) that applies energy to the correction actuator member.
  5.  前記張力付与部は、
     自然変形に基づく前記アクチュエータ部材の伸長方向に予め張力を前記アクチュエータ部材に付与する弾性部材(80)である
     請求項1に記載のアクチュエータ装置。
    The tension applying unit is
    2. The actuator device according to claim 1, wherein the actuator device is an elastic member (80) that preliminarily applies tension to the actuator member in an extension direction of the actuator member based on natural deformation.
  6.  前記弾性部材は、
     自然変形に基づく前記アクチュエータ部材の伸長量よりも大きく前記アクチュエータ部材を伸長させることの可能な張力を前記アクチュエータ部材に付与する
     請求項5に記載のアクチュエータ装置。
    The elastic member is
    The actuator device according to claim 5, wherein a tension capable of extending the actuator member larger than an extension amount of the actuator member based on natural deformation is applied to the actuator member.
  7.  前記弾性部材は、
     コイルばね、ぜんまいばね、及び板ばねのいずれかである
     請求項5又6に記載のアクチュエータ装置。
    The elastic member is
    The actuator device according to claim 5, wherein the actuator device is any one of a coil spring, a mainspring spring, and a leaf spring.
  8.  前記張力付与部(103,104a,104b,113,114a,114b)は、
     前記アクチュエータ部材の外周に設けられている
     請求項1に記載のアクチュエータ装置。
    The tension applying portions (103, 104a, 104b, 113, 114a, 114b)
    The actuator device according to claim 1, wherein the actuator device is provided on an outer periphery of the actuator member.
  9.  前記張力付与部(104a,104b,114a,114b)は、
     前記アクチュエータ部材の中心軸を中心とする同一円周上に複数配置されている
     請求項8に記載のアクチュエータ装置。
    The tension applying portions (104a, 104b, 114a, 114b)
    The actuator device according to claim 8, wherein a plurality of actuator devices are arranged on the same circumference centering on a central axis of the actuator member.
  10.  前記張力付与部(103,113)は、
     前記アクチュエータ部材を内包している
     請求項8又は9に記載のアクチュエータ装置。
    The tension applying portions (103, 113)
    The actuator device according to claim 8 or 9, comprising the actuator member.
  11.  前記張力付与部は、
     コイルばねからなる
     請求項8~10のいずれか一項に記載のアクチュエータ装置。
    The tension applying unit is
    The actuator device according to any one of claims 8 to 10, comprising a coil spring.
  12.  前記アクチュエータ部材は、
     ポリマ繊維からなる
     請求項1~11のいずれか一項に記載のアクチュエータ装置。
    The actuator member is
    The actuator device according to any one of claims 1 to 11, comprising a polymer fiber.
PCT/JP2017/030189 2016-09-20 2017-08-23 Actuator device WO2018055972A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112017004705.6T DE112017004705B4 (en) 2016-09-20 2017-08-23 Actuator device
US16/351,997 US11025178B2 (en) 2016-09-20 2019-03-13 Actuator device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-183297 2016-09-20
JP2016183297 2016-09-20
JP2017-065134 2017-03-29
JP2017065134A JP6610596B2 (en) 2016-09-20 2017-03-29 Actuator device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/351,997 Continuation US11025178B2 (en) 2016-09-20 2019-03-13 Actuator device

Publications (1)

Publication Number Publication Date
WO2018055972A1 true WO2018055972A1 (en) 2018-03-29

Family

ID=61689422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/030189 WO2018055972A1 (en) 2016-09-20 2017-08-23 Actuator device

Country Status (1)

Country Link
WO (1) WO2018055972A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018173743A1 (en) * 2017-03-23 2018-09-27 株式会社デンソー Movable device, production method therefor, and control method therefor
WO2018173742A1 (en) * 2017-03-23 2018-09-27 株式会社デンソー Movable device
WO2020050293A1 (en) * 2018-09-07 2020-03-12 リンテック株式会社 Actuator
WO2021229924A1 (en) * 2020-05-11 2021-11-18 正毅 千葉 Rotation drive mechanism
WO2024079487A1 (en) * 2022-10-13 2024-04-18 Cambridge Mechatronics Limited Sma actuator assembly

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008111882A (en) * 2006-10-27 2008-05-15 Seiko Epson Corp Actuator, optical scanner and image forming apparatus
US20140060036A1 (en) * 2012-08-31 2014-03-06 GM Global Technology Operations LLC Compensating for incomplete reversal in mechanisms incorporating shape memory alloy wire
JP2015206331A (en) * 2014-04-23 2015-11-19 パナソニックIpマネジメント株式会社 Shape memory alloy actuator and pump, valve using the same
JP2016042783A (en) * 2012-08-01 2016-03-31 ザ ボード オブ リージェンツ,ザユニバーシティ オブ テキサス システム Coiled and non-coiled twisted nanofiber yarn and polymer fiber torsional and tensile actuators

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008111882A (en) * 2006-10-27 2008-05-15 Seiko Epson Corp Actuator, optical scanner and image forming apparatus
JP2016042783A (en) * 2012-08-01 2016-03-31 ザ ボード オブ リージェンツ,ザユニバーシティ オブ テキサス システム Coiled and non-coiled twisted nanofiber yarn and polymer fiber torsional and tensile actuators
US20140060036A1 (en) * 2012-08-31 2014-03-06 GM Global Technology Operations LLC Compensating for incomplete reversal in mechanisms incorporating shape memory alloy wire
JP2015206331A (en) * 2014-04-23 2015-11-19 パナソニックIpマネジメント株式会社 Shape memory alloy actuator and pump, valve using the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018173743A1 (en) * 2017-03-23 2018-09-27 株式会社デンソー Movable device, production method therefor, and control method therefor
WO2018173742A1 (en) * 2017-03-23 2018-09-27 株式会社デンソー Movable device
WO2020050293A1 (en) * 2018-09-07 2020-03-12 リンテック株式会社 Actuator
JPWO2020050293A1 (en) * 2018-09-07 2021-08-30 リンテック株式会社 Actuator
JP7292287B2 (en) 2018-09-07 2023-06-16 リンテック株式会社 actuator
WO2021229924A1 (en) * 2020-05-11 2021-11-18 正毅 千葉 Rotation drive mechanism
WO2024079487A1 (en) * 2022-10-13 2024-04-18 Cambridge Mechatronics Limited Sma actuator assembly

Similar Documents

Publication Publication Date Title
JP6610596B2 (en) Actuator device
WO2018055972A1 (en) Actuator device
JP6714858B2 (en) Actuator device
US7788921B2 (en) Shape memory alloy actuator
CN107205617B (en) Variable stiffness actuator
JP6568951B2 (en) Variable hardness actuator
US11596294B2 (en) Variable stiffness device and method of varying stiffness
WO2016174741A1 (en) Variable stiffness actuator
US11259690B2 (en) Variable stiffness apparatus
WO2018083763A1 (en) Variable stiffness actuator
WO2009084305A1 (en) Actuator array and method for driving actuator array
CN110462209B (en) Movable device
JP6841115B2 (en) Movable device
JP5276941B2 (en) Large displacement actuator
JP7091888B2 (en) Actuator device
WO2019159754A1 (en) Actuator device
JP2020072573A (en) Actuator device
JP2020188578A (en) Actuator device
JP2011027004A (en) Shape memory alloy actuator device
WO2016185562A1 (en) Variable-hardness actuator
JP2018159351A (en) Movable device
JP2020191721A (en) Actuator device
WO2020100458A1 (en) Actuator device, and method for manufacturing actuator device
WO2018083762A1 (en) Variable stiffness actuator
JP2016184077A (en) Optical system adjustment mechanism and optical system position adjustment method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17852752

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17852752

Country of ref document: EP

Kind code of ref document: A1