WO2020050293A1 - Actuator - Google Patents

Actuator Download PDF

Info

Publication number
WO2020050293A1
WO2020050293A1 PCT/JP2019/034702 JP2019034702W WO2020050293A1 WO 2020050293 A1 WO2020050293 A1 WO 2020050293A1 JP 2019034702 W JP2019034702 W JP 2019034702W WO 2020050293 A1 WO2020050293 A1 WO 2020050293A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer material
actuator
fibrous polymer
resin film
hydrotalcite particles
Prior art date
Application number
PCT/JP2019/034702
Other languages
French (fr)
Japanese (ja)
Inventor
準 河原
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to JP2020541253A priority Critical patent/JP7292287B2/en
Publication of WO2020050293A1 publication Critical patent/WO2020050293A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/22Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
    • D02G3/36Cored or coated yarns or threads
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/73Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof
    • D06M11/76Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof with carbon oxides or carbonates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N10/00Electric motors using thermal effects

Definitions

  • the present invention relates to an actuator.
  • Priority is claimed on Japanese Patent Application No. 2018-167911, filed Sep. 7, 2018, the content of which is incorporated herein by reference.
  • Patent Literature 1 discloses a polymer actuator that includes a polymer fiber into which a twist is inserted in a coiled or non-coiled shape, and provides a twisting operation (that is, a rotational drive) by heating.
  • Actuators that include non-coil twisted polymer fibers select single-filament or multi-filament, high-strength, highly-chain-oriented precursor polymer fibers, up to a level that does not produce coiling. It is formed by inserting a twist into a body polymer fiber.
  • the actuator including the coiled twisted polymer fiber may be twisted into the precursor polymer fiber until coiling occurs or twisted into the precursor polymer fiber to a level that does not produce coiling. And then coiled in the same or opposite direction to the originally inserted strand.
  • ⁇ ⁇ One of the factors is the low thermal conductivity (approximately 0.15 to 0.3 W / mK) of the polymer material constituting the polymer fiber.
  • the driving stability of the actuator may be reduced depending on the temperature environment in which the actuator is driven.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide an actuator that can increase a cooling speed of a fibrous polymer material constituting an actuator and can improve a response speed. I do.
  • an actuator including a fibrous polymer material that is deformed by heating is further provided with hydrotalcite particles in a dispersed state. It has been found that the cooling speed of the polymer material can be increased, and the response speed can be improved.
  • the present invention includes the following aspects.
  • An actuator including a fibrous polymer material deformed by heating and hydrotalcite particles in a dispersed state.
  • the actuator of the present invention can accelerate the cooling of the heated fibrous polymer material, and can improve the response speed.
  • the actuator of the present invention includes, as one aspect, a fibrous polymer material that is deformed by heating, and hydrotalcite particles, The hydrotalcite particles are dispersed in a fibrous polymer material, or the hydrotalcite particles are dispersed in a resin film provided on a surface of the fibrous polymer material. “Dispersed in the fibrous polymer material” means dispersed in the surface and inside of the fibrous polymer material. “Dispersed in the resin film” means dispersed on the surface and inside of the resin film. In this specification, the term “dispersion” means a state that exists in the whole without significant bias.
  • FIG. 1 is a schematic diagram showing an actuator 1 according to the first embodiment of the present invention.
  • the actuator 1 includes a fibrous polymer material 10 that is deformed by heating, and hydrotalcite particles 11 dispersed in the fibrous polymer material 10, and the hydrotalcite particles are dispersed in the fibrous polymer material. Included in.
  • the actuator 1 can provide a torsional operation (ie, rotational drive) by external heating, and can provide a reverse rotational drive by returning the torsion by natural cooling (air cooling). Since the actuator 1 includes the hydrotalcite particles 11 in a dispersed state, the cooling of the fibrous polymer material 10 can be accelerated, and the response speed of the actuator 1 can be improved.
  • the hydrotalcite particles 11 are composed of hydrotalcite having heat dissipation.
  • Materials having high thermal conductivity and heat radiation include metals and ceramics in general, and those having a thermal conductivity of 1 to 1000 W / mK. Most of these materials are complicated to be combined with an organic material. There is a possibility that the actuator function may be hindered if a composite is formed due to a high elastic modulus. In addition, these materials generally do not transmit visible light, and if these materials are used, the state of the inside or surface of the fibrous polymer material 10 or the linear shape provided on the It may be difficult to visually recognize the state of the heating means such as the conductor 12.
  • the hydrotalcite particles 11 are composed of hydrotalcite having heat dissipation properties, it is possible to form a composite with a fibrous polymer material without impairing the actuator function. Further, the hydrotalcite particles 11 are transparent in a dispersed state, and have an advantage that they do not hinder visual observation of the inside of the fibrous conductor 12 at the time of production or inspection, for example.
  • the average particle diameter of the hydrotalcite particles 11 may be 0.05 to 100 ⁇ m, 0.1 to 30 ⁇ m, 0.5 to 10 ⁇ m, or 1.0 to 5 ⁇ m. 0.0 ⁇ m.
  • the average particle diameter can be measured by a laser diffraction / scattering particle size distribution analyzer.
  • the hydrotalcite particles 11 are preferably compounds having a structure represented by the following general formula.
  • M 2+ is a divalent metal
  • M 3+ is a trivalent metal
  • a n ⁇ is an n-valent anion
  • x is in the range of 0 ⁇ x ⁇ 0.33
  • m is 0 to Fifteen.
  • examples of the divalent metal M 2+ include Mg 2+ , Zn 2+ , and Ni 2+ .
  • the divalent metal M 2+ may be a mixture of two or more of the above metals.
  • the trivalent metal M 3+ include Al 3+ , Fe 3+ , and Cr 3+ .
  • n-valent anion A n- examples include I ⁇ , Cl ⁇ , NO 3 ⁇ , HCO 3 ⁇ , CO 3 2 ⁇ , salicylate ion, oxalate ion, and citrate ion.
  • hydrotalcite particles 11 Mg—Al—CO 3 based hydrotalcite particles in which M 2+ is Mg 2+ , M 3+ is Al 3+ , and A n ⁇ is CO 3 2- are available. And it has good heat dissipation and is more preferably used.
  • the actuator 1 can be manufactured by dispersing the hydrotalcite particles 11 in a material constituting the fibrous polymer material 10 and then forming the dispersion into a strand shape.
  • the content of the hydrotalcite particles 11 is preferably 0.1 to 10% by mass based on the total mass of the fibrous polymer material 10.
  • FIG. 2 is a schematic view showing an actuator 2 according to the second embodiment of the present invention.
  • the same components as those shown in the already described drawings are denoted by the same reference numerals as those in the already described drawings, and detailed description thereof will be omitted.
  • the actuator 2 has a fibrous polymer material 10 that is deformed by heating covered with a resin film 13, and hydrotalcite particles 11 are dispersed in the resin film 13.
  • the actuator 2 can provide a torsional operation (ie, rotational drive) by external heating, and can provide a reverse rotational drive by returning the torsion by natural cooling (air cooling).
  • “coating” means that a part or all of the surface of the fibrous polymer material 10 is covered with the resin film 13.
  • the resin film 13 including the dispersed hydrotalcite particles 11 is provided between the fibrous polymer material 10 and the air layer in the outside world (that is, the resin film 13 is formed on the surface of the fibrous polymer material 10).
  • the actuator 2 includes: A fibrous polymer material 10 deformed by heating, a resin film 13, and hydrotalcite particles 11 are provided.
  • the hydrotalcite particles 11 are contained in the resin film 13 in a dispersed state,
  • the resin film 13 is provided on the surface of the fibrous polymer material 10.
  • the resin film 13 covers the fibrous polymer material 10. If a heat-dissipating coating made of a fibrous polymer material is formed only from materials such as metals and ceramics that have high heat conductivity and dissipate heat, the function of the actuator may be impaired. There is also a concern that cracks may occur in the coating. On the other hand, since the actuator 2 has the fibrous polymer material 10 covered with the resin film 13 in which the hydrotalcite particles 11 are dispersed, the resin film 13 has cracks without impeding the actuator function. Can be avoided.
  • the thermal conductivity Y (W ⁇ m ⁇ 1 ⁇ K ⁇ 1 ) of the resin film 13 is preferably 0.3 or more, and more preferably 0.4 or more.
  • the upper limit of the thermal conductivity Y of the resin film 13 is not particularly limited, but is preferably 100 or less.
  • the thermal conductivity Y of the resin film 13 is preferably from 0.3 to 100, more preferably from 0.4 to 100.
  • the thermal conductivity can be obtained by, for example, an AC steady-state method using a surface-type thermal diffusivity measuring apparatus ai-Phase Mobile manufactured by i-Phase.
  • the resin film 13 includes a base resin and the hydrotalcite particles 11.
  • the resin film 13 only needs to have the hydrotalcite particles 11 dispersed in a base resin, and examples of the base resin include an acrylic resin, an epoxy resin, a silicone resin, a urethane resin, and an acrylic / silicone resin. And acrylic / isocyanate-based resins, polyester / melamine-based resins, and the like.
  • the actuator 2 can be manufactured by applying a suspension containing the base resin and the hydrotalcite particles 11 to the surface of the fibrous polymer material 10 to form the resin film 13.
  • the suspension can be a water-dilutable type, and if the base resin is an organic solvent-dispersible lacquer type.
  • the suspension can be of the thinner dilution type.
  • the suspension may contain 10 to 500 parts by mass, 30 to 400 parts by mass, or 50 to 300 parts by mass of hydrotalcite particles based on 100 parts by mass of the base resin. Is also good.
  • the resin film 13 may contain 10 to 500 parts by mass of hydrotalcite particles, 30 to 400 parts by mass, or 50 to 300 parts by mass with respect to 100 parts by mass of the base resin. It may be contained by mass.
  • the thickness of the coated resin film 13 is preferably 1 to 50 ⁇ m, more preferably 5 to 30 ⁇ m, and particularly preferably 10 to 20 ⁇ m.
  • the “thickness” can be measured by coating and drying the suspension, cutting the suspension including the fibrous polymer material in a direction perpendicular to the axis, and observing the suspension with an optical microscope.
  • suspension containing the base resin and hydrotalcite particles examples include JP-A-2003-309383, JP-A-2004-43612, JP-A-2006-124597, JP-A-2011-20870, It can be prepared with reference to the heat dissipating coating compositions disclosed in JP-A-2014-237805, WO 2010/050139, WO 2011/111414, and the like, and commercially available heat dissipating paints ( For example, Unicool (registered trademark) manufactured by Godo Ink and Cooltech (registered trademark) manufactured by Okitsumo can be used.
  • Unicool registered trademark
  • Cooltech registered trademark manufactured by Okitsumo
  • the actuator of the present invention may further include a conductor.
  • the conductor is preferably formed from a conductive linear material.
  • Figure 3 is a schematic view of an actuator 3 according to a third embodiment of the present invention, the fibrous polymer material 10 with a diameter D 10, a predetermined clearance linear conductor 12 is spirally with a diameter D 11 The example which is wound with an interval I is shown.
  • the actuator 3 has a fibrous polymer material 10 that is deformed by heating covered with a resin film 13, and hydrotalcite particles 11 are dispersed in the resin film 13. More specifically, the actuator 3 has a fibrous polymer material 10 that is deformed by heating, which is entirely or partially covered with a resin layer 13 containing dispersed hydrotalcite particles.
  • the conductor 12 is spirally wound with a predetermined gap.
  • an actuator 3 includes a fibrous polymer material 10 that is deformed by heating, a resin film 13, hydrotalcite particles 11, and a linear conductor 12, The hydrotalcite particles 11 are contained in the resin film 13 in a dispersed state, The resin film 13 is provided on the surface of the fibrous polymer material 10, The linear conductor 12 is spirally wound on the resin film 13 (on the surface of the resin film 13 on the air layer side of the outside world) with a predetermined gap.
  • the actuator 3 can provide a twisting operation (that is, rotational driving) by external heating, and can provide a reverse rotation driving by returning the torsion by natural cooling (air cooling). Since the resin film 13 containing the hydrotalcite particles 11 in a dispersed state is provided between the fibrous polymer material 10 and an external air layer, the resin film 13 functions as a heat radiation layer, and the heated fiber The cooling of the polymer material 10 can be accelerated, and the response speed of the actuator 3 can be improved.
  • a twisting operation that is, rotational driving
  • natural cooling air cooling
  • the linear conductor 12 is spirally wound outside the resin film 13.
  • the actuator 3 can be manufactured by forming the resin film 13 on the surface of the fibrous polymer material 10 and then spirally winding the linear conductor 12 outside the resin film 13.
  • the resin film 13 including the dispersed hydrotalcite particles 11 functions as a heat radiation layer, but the resin film 13 may also serve as a fixing means for the linear conductor 12.
  • the resin film 13 includes the base resin and the hydrotalcite particles 11, and is formed on the surface of the fibrous polymer material 10 by using a thermosetting or energy ray-curable resin as the base resin. After the coating composition containing the material component of the film 13 is applied to form an adhesive layer (that is, the resin film 13), the linear conductor 12 is wound on the adhesive layer, and the adhesive layer is dried. By curing, the linear conductor 12 can be bonded and fixed to the fibrous polymer material 10 by the resin film 13.
  • thermosetting resin examples include an epoxy resin, a vinyl ester resin, a vinyl ether resin, an acrylic resin, a methacryl resin, a styrene resin, and a phenol resin.
  • the energy ray-curable resin is not particularly limited, and a known resin can be used.
  • the linear conductor 12 wound in a spiral shape is heated by external heating, and the fibrous polymer material 10 is heated.
  • the spirally wound linear conductor 12 can also avoid a fear that a crack occurs in the linear conductor 12 without hindering the actuator function. If, for example, metal plating is used instead of the linear conductor 12, there is a concern that the actuator function may be impaired, and that the coating may crack during repeated driving.
  • the fibrous polymer material 10 around which the linear conductor 12 is wound, outside the fibrous polymer material 10 and the linear conductor 12 (that is, the fibrous polymer material 10 and the linear conductor 12)
  • the resin film 13 may be formed on the surface of the outer layer 12 on the air layer side, and the linear conductor 12 may be embedded in the resin film 13.
  • FIG. 4 is a schematic diagram showing an actuator 4 according to a fourth embodiment of the present invention.
  • the actuator 4 has a fibrous polymer material 10 that is deformed by heating covered with a resin film 13, and hydrotalcite particles 11 are dispersed in the resin film 13. More specifically, the actuator 4 is configured such that a linear conductor 12 is spirally wound around a fibrous polymer material 10 that is deformed by heating with a predetermined gap provided between the fibrous polymer material 10 and the wire. A resin layer 13 containing hydrotalcite particles in a dispersed state is formed outside the conductor 12. In the actuator 4, the linear conductor 12 is embedded in the resin film 13.
  • the actuator 4 can also provide a twisting operation (that is, rotational driving) by external heating, and can provide reverse rotation driving by returning the torsion by natural cooling (air cooling). Since the resin film 13 including the dispersed hydrotalcite particles 11 is provided between the fibrous polymer material 10 and the linear conductor 12 and the external air layer, the resin film 13 functions as a heat radiation layer. In addition, the cooling of the heated fibrous polymer material 10 can be accelerated, and the response speed of the actuator 3 can be improved.
  • a twisting operation that is, rotational driving
  • air cooling air cooling
  • the actuator 4 includes: A fibrous polymer material that is deformed by heating, a resin film, hydrotalcite particles, and a linear conductor;
  • the hydrotalcite particles 11 are contained in the resin film 13 in a dispersed state,
  • a linear conductor 12 is spirally wound on the fibrous polymer material 10 (that is, around the fibrous polymer material 10) with a predetermined gap,
  • a resin layer 13 is formed on the fibrous polymer material 10 and the linear conductor 12 (that is, on the outer air layer side surface of the fibrous polymer material 10 and the linear conductor 12),
  • the linear conductor 12 is embedded in the resin film 13.
  • the actuator 4 directly spirally winds the linear conductor 12 on the surface of the fibrous polymer material 10, and then, on the whole or a part of the outside of the fibrous polymer material 10 and the linear conductor 12, It can be manufactured by forming the resin film 13. Since the linear conductor 12 is embedded in the resin film 13 containing the hydrotalcite particles 11 in a dispersed state, the linear conductor 12 is fixed to the fibrous polymer material 10 by the resin film 13. Accordingly, the linear conductor 12 is not displaced around the fibrous polymer material 10, and uniform driving in the length direction of the actuator 13 is maintained for a long time.
  • the resin film 13 including the hydrotalcite particles 11 in a dispersed state is preferably in contact with the outside air because the cooling / radiation effect functions better, and no separate fixing means for the linear conductor 12 is provided. Is preferred. In this embodiment, even when the linear conductor 12 is embedded in the resin film 13, the resin film 13 including the hydrotalcite particles 11 in a dispersed state is transparent. The polymer material 10 and the linear conductor 12 can be visually recognized through the resin film 13.
  • the fibrous polymer material 10 that is deformed by heating is preferably twisted.
  • the fibrous polymer material 10 for obtaining an actuator driven by heating is usually obtained by inserting a twist after producing a fiber. Further, in a general fiber spinning and twisting process, a twist may be added in a step of forming a fibrous shape, that is, a twist may be performed in a process of manufacturing a fibrous polymer material.
  • the fibrous polymer material 10 is more preferably a monofilament fiber twisted until immediately before coiling occurs, that is, immediately before the occurrence of bumps, and until the coiling occurs, that is, bumps occur. It may be a coiled fiber that has been twisted to the maximum. Alternatively, it may be a coiled fiber obtained by winding a twisted monofilament fiber around a mandrel or the like.At this time, the coiled fiber may be wound in the same direction as the direction of the twist initially applied. Alternatively, the coiled fiber may be wound in a direction opposite to the direction of the initially applied twist. The coiled fiber wound in the same direction as the initially applied twist can function as an actuator that contracts upon heating. Wound in a direction opposite to the direction of the initially applied twist, the coiled fiber can act as an actuator that expands upon heating. In this case, it is preferable to insert the core rod inside the coil so that the elongating action does not escape laterally.
  • a monofilament of nylon 6,6 having a diameter of 500 ⁇ m is used as the fibrous polymer material 10.
  • a method of inserting a twist for example, a monofilament of nylon 6,6 having a diameter of 500 ⁇ m is used as the fibrous polymer material 10.
  • an appropriate tensile stress of 1 ⁇ 10 ⁇ 3 to 1 ⁇ 10 ⁇ 2 times the Young's modulus of nylon 6,6 monofilament is applied and twisted so as not to cause coiling
  • a non-coiled twisted monofilament rotated about 400 to 600 times per meter can be obtained.
  • 250,000 / x ⁇ 15 to 20% twist per m may be inserted into a fiber with a diameter of xmm.
  • a nylon 6,6 monofilament having a diameter of 250 ⁇ m is subjected to an environment of 25 ° C. at a Young's modulus of 1 ⁇ 10 ⁇ 3 to 1 ⁇ 10 ⁇ 2 of the nylon 6,6 monofilament.
  • a non-coiled twisted monofilament that has been rotated up to about 850 to 1150 times per meter can be obtained. If the nylon 6,6 monofilament is twisted, it may be coiled or broken. Further, when a tensile stress exceeding 1 ⁇ 10 ⁇ 2 times the Young's modulus of the filament is applied, there is a tendency that a snarl (winding bump) is generated or the filament is easily broken.
  • the temperature is equal to or higher than the glass transition temperature of the polymer. It is preferable to perform a residual stress relaxation treatment, such as placing in a certain environment for a certain period.
  • a fibrous polymer material exhibits high anisotropy in structure and physical properties in a fiber axis direction and in a direction perpendicular to the fiber axis when a polymer chain is oriented. This is because the polymer chains are oriented in parallel to the fiber axis direction, and a crystal structure is easily formed.
  • the polymer constituting the fibrous polymer material preferably includes a polymer having a regular polymer orientation that is non-parallel to the fiber axis of the fibrous polymer material.
  • the fact that the polymer constituting the fibrous polymer material includes one that has a regular polymer orientation that is non-parallel to the fiber axis is a means for imparting the function of driving rotation to the fibrous polymer material. is there.
  • the kind of polymer constituting the fibrous polymer material includes nylon such as nylon 6, nylon 6,6, acrylic resin such as polymethyl methacrylate, polyester resin such as polyethylene terephthalate, polycarbonate, and poly.
  • nylon such as nylon 6, nylon 6,6, acrylic resin such as polymethyl methacrylate
  • polyester resin such as polyethylene terephthalate
  • polycarbonate and poly.
  • polyolefin resins such as vinyl chloride, polycarbonate, polyetheretherketone, polyethylene, and polypropylene.
  • the polymer constituting the fibrous polymer material is preferably crystalline.
  • the crystallinity of the polymer in the fibrous polymer material is preferably 50% or more, more preferably 55% to 90%. When the crystallinity is in such a range, the anisotropy of molecular orientation is high, and it is easy to obtain an excellent effect as an actuator.
  • the fibrous polymer material may be a monofilament fiber or a multifilament fiber.
  • the “fibrous polymer material deformable by heating” according to the present invention includes a polymer chain having a regular polymer orientation that is non-parallel to the fiber axis, twists, and performs annealing. This is a fibrous polymer material in which a state in which the constituted polymer is obliquely aligned with the fiber axis and regularly oriented is fixed.
  • the twist is preferably 250,000 / x ⁇ 15 to 20% per meter for a fiber having a diameter of xmm
  • the polymer constituting the fibrous polymer material is nylon such as nylon 6, nylon 6, 6, acrylic resin such as polymethyl methacrylate, polyester resin such as polyethylene terephthalate, polycarbonate, polyvinyl chloride, polycarbonate, polyether ether. Polyolefin resins such as ketone, polyethylene and polypropylene are preferred.
  • the fibrous polymer material 10 is driven to rotate about the fiber axis by heating.
  • the actuator of the present invention may be provided with a linear conductor heated by external heating, and without the linear conductor, rotates around the fiber axis in response to an external environmental temperature. It may be driven.
  • linear conductor 12 examples include a metal wire and a carbon nanotube thread. Preferred metal wires include tungsten wires.
  • the linear conductor 12 is preferably wound on the fibrous polymer material 10 at a density of 1,000 to 10,000 turns / m.
  • the cross section of the linear conductor 12 is described below on the assumption that it is substantially circular, it may be substantially elliptical or flat. Then, it is possible to understand by replacing major axis of the oval or flat shape to the diameter D 11.
  • the diameter D 10 of the fibrous polymer material 10, the diameter D 11 of the linear conductor 12, and the pitch (I + D) of the linear conductor 12 11 ) can be appropriately designed.
  • 10 ⁇ m ⁇ D 11 ⁇ 150 ⁇ m may be satisfied.
  • the diameter D 10 of the fibrous polymeric material 10 the relationship between the diameter D 11 of the linear conductors 12, preferably 0.001 ⁇ D 11 / D 10 ⁇ 2, 0.005 ⁇ D 11 / D 10 ⁇ 1.0 is more preferred, and 0.01 ⁇ D 11 / D 10 ⁇ 0.5 is particularly preferred.
  • the “distance I between conductors of the linear conductor 12” means the shortest distance between adjacent linear conductors 12 in the spiral structure of the linear conductor 12.
  • the angle ⁇ between the linear conductor 12 and the fibrous polymer material 10 is 0 ° ⁇ ⁇ 90 °, preferably 30 ° ⁇ ⁇ ⁇ 90 °, and 45 ° ⁇ ⁇ ⁇ 75 °. Is more preferred.
  • the length of the actuator of the present invention when left standing horizontally is preferably 1 to 100 cm, more preferably 1 to 50 cm, and particularly preferably 1 to 10 cm.
  • the embodiments of the present invention have been described in detail with reference to the chemical formulas and the drawings. However, each configuration in the embodiment and a combination thereof are only examples, and the addition of the configuration, Omissions, substitutions, and other changes are possible. The present invention is not limited by each embodiment, but is limited only by the scope of the claims.
  • an actuator includes: A fibrous polymer material that is deformed by heating, a resin film, hydrotalcite particles, and a linear conductor, Hydrotalcite particles are contained in a dispersed state in the resin film, A linear conductor is spirally wound on the fibrous polymer material, A resin layer 13 is formed on the fibrous polymer material and the linear conductor, The linear conductor 12 is embedded inside the resin film 13,
  • the fibrous polymer material is nylon 6,6 filament
  • the nylon 6,6 filament preferably has a diameter D 10 of 0.1 mm ⁇ D 10 ⁇ 0.5 mm, and a twist density of 400 to 600 turns / m.
  • the thermal conductivity of the resin film is preferably 0.4 or more and 0.45 or less
  • the linear conductor is a copper wire
  • the copper wire is wound on the fibrous polymer material at 1,000 to 1600 turns / m, Actuator.
  • Cooling cycle time evaluation In the cooling rate evaluation, heating was restarted when the decrease in surface temperature reached 30 ° C., air cooling was started by removing voltage at a surface temperature of 110 ° C., and heating was restarted at a surface temperature of 30 ° C. was repeated. The cycle from the start of heating to the temperature drop to 50 ° C. after cooling was defined as one cycle, and the temperature change after each time in one cycle was tracked. The results are shown in FIG. In the figure, “Coated” indicates Example 1, and “Bare” indicates Comparative Example 1. The time required for one cycle (thermal cooling cycle time) was measured.
  • a heat-radiating paint high-heat-radiating hydrotalcite particles mixed with a resin
  • Unicool (registered trademark) UC-001, manufactured by Godo Ink Co., Ltd., thermal conductivity: 0.45 W / mK) was applied at a thickness of 20 ⁇ m, and dried at 120 ° C. for 20 minutes.
  • This processed filament was wound in a coil shape around a metal rod having a diameter of 2 mm in the same rotational direction as the twist, and an annealing treatment was performed at 180 ° C. for 40 minutes. Thereafter, the metal rod was removed to obtain a telescopic heating responsive actuator.
  • both the filament surface and the metal wire were visible through the coating film of the heat-radiating paint.
  • Example 1 had an extremely high cooling rate and a shorter thermal cooling cycle time than the actuator of Comparative Example 1.
  • the actuator of the present invention can be used for powering various articles as an actuator that is deformed by heating, and is extremely industrially effective.

Abstract

An actuator which is provided with: a fibrous polymer material that is deformed by the application of heat; and hydrotalcite particles that are in a dispersed state.

Description

アクチュエータActuator
 本発明は、アクチュエータに関する。
 本願は、2018年9月7日に、日本に出願された特願2018-167911号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to an actuator.
Priority is claimed on Japanese Patent Application No. 2018-167911, filed Sep. 7, 2018, the content of which is incorporated herein by reference.
 先進国における高齢化社会の到来、ロボット工学の発達、人類の知的活動へのシフト等から、様々な物品の動力化が求められており、種々のアクチュエータが提案されている。
 例えば、特許文献1には、コイル状又は非コイル状に撚りが挿入されたポリマーファイバーを含み、加熱によりねじり作動(すなわち、回転駆動)を与える高分子アクチュエータが開示されている。
With the advent of an aging society in advanced countries, the development of robotics, the shift to intellectual activities of mankind, and the like, motorization of various articles is required, and various actuators have been proposed.
For example, Patent Literature 1 discloses a polymer actuator that includes a polymer fiber into which a twist is inserted in a coiled or non-coiled shape, and provides a twisting operation (that is, a rotational drive) by heating.
 非コイル状に撚りを挿入されたポリマーファイバーを含むアクチュエータは、シングルフィラメントまたはマルチフィラメントである、高強度で高度に鎖配向した前駆体ポリマーファイバーを選択し、コイル化を生成しないレベルまで、前記前駆体ポリマーファイバーに撚りを挿入することにより形成される。 Actuators that include non-coil twisted polymer fibers select single-filament or multi-filament, high-strength, highly-chain-oriented precursor polymer fibers, up to a level that does not produce coiling. It is formed by inserting a twist into a body polymer fiber.
 コイル状に撚りが挿入されたポリマーファイバーを含むアクチュエータは、前記前駆体ポリマーファイバーに、コイル化が起こるまで撚りを挿入するか、又は、コイル化を生成しないレベルまで、前記前駆体ポリマーファイバーに撚りを挿入し、次いで、最初に挿入された撚りに、同じ方向または反対方向にコイル化を挿入することにより形成される。 The actuator including the coiled twisted polymer fiber may be twisted into the precursor polymer fiber until coiling occurs or twisted into the precursor polymer fiber to a level that does not produce coiling. And then coiled in the same or opposite direction to the originally inserted strand.
特開2016-42783号公報JP 2016-42783 A
 このような、加熱により変形を起こすことで外界に仕事を取り出すことができる加熱応答性アクチュエータでは、加熱(例えば室温から80℃への加熱)による「形状A」から「形状B」への変形と、その後の冷却による変形(「形状B」から「形状A」)の二つの状態変化速度が、アクチュエータの応答速度を決定する。ポリマーファイバーに適用される加熱手段、例えば、その周囲に巻き付けた線状導電体への電圧印加による加熱と、自然冷却(空冷)による加熱・冷却プロセスを行った場合、加熱と比較して冷却が大幅に遅くなる問題がある。 In such a heat-responsive actuator that can take out work to the outside world by causing deformation by heating, the deformation from “shape A” to “shape B” due to heating (for example, heating from room temperature to 80 ° C.) The two state change speeds of the deformation due to cooling ("shape B" to "shape A") determine the response speed of the actuator. Heating means applied to the polymer fiber, for example, heating by applying a voltage to a linear conductor wound around the fiber, and a heating / cooling process by natural cooling (air cooling) perform cooling compared to heating. There is a problem that is much slower.
 この要因の一つにポリマーファイバーを構成する高分子材料の低い熱伝導率(大よそ0.15~0.3W/mK)が挙げられる。アクチュエータを駆動する温度環境によっては、アクチュエータの駆動安定性が低下する場合がある。 一 つ One of the factors is the low thermal conductivity (approximately 0.15 to 0.3 W / mK) of the polymer material constituting the polymer fiber. The driving stability of the actuator may be reduced depending on the temperature environment in which the actuator is driven.
 本発明は、上記事情に鑑みてなされたものであり、アクチュエータを構成する繊維状高分子材料の冷却速度を早めることができ、応答速度を向上させることが可能なアクチュエータを提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an actuator that can increase a cooling speed of a fibrous polymer material constituting an actuator and can improve a response speed. I do.
 上記目的を達成するために、本発明者らが検討した結果、加熱により変形する繊維状高分子材料を備えるアクチュエータが、さらに、分散状態のハイドロタルサイト粒子を備えることにより、加熱された繊維状高分子材料の冷却速度を早めることができ、応答速度を向上させることが可能なことを見出した。 In order to achieve the above object, as a result of investigations by the present inventors, an actuator including a fibrous polymer material that is deformed by heating is further provided with hydrotalcite particles in a dispersed state. It has been found that the cooling speed of the polymer material can be increased, and the response speed can be improved.
 すなわち、本発明は以下の態様を含む。
[1] 加熱により変形する繊維状高分子材料と、分散状態のハイドロタルサイト粒子とを備えるアクチュエータ。
[2] 前記繊維状高分子材料が樹脂膜により被覆され、前記ハイドロタルサイト粒子が前記樹脂膜中に分散している、前記[1]に記載のアクチュエータ。
That is, the present invention includes the following aspects.
[1] An actuator including a fibrous polymer material deformed by heating and hydrotalcite particles in a dispersed state.
[2] The actuator according to [1], wherein the fibrous polymer material is covered with a resin film, and the hydrotalcite particles are dispersed in the resin film.
[3] 前記繊維状高分子材料の熱伝導率X(W・m-1・K-1)と、前記樹脂膜の熱伝導率Y(W・m-1・K-1)との間に下記(式1)の関係が成立する、前記[2]に記載のアクチュエータ。
    Y≧X+0.2       ・・・(式1)
[4] 更に、導電体を備える、前記[2]又は[3]に記載のアクチュエータ。
[5] 前記導電体が導電性の線状材料から形成されている、前記[4]に記載のアクチュエータ。
[3] Between the thermal conductivity X (W · m −1 · K −1 ) of the fibrous polymer material and the thermal conductivity Y (W · m −1 · K −1 ) of the resin film The actuator according to [2], wherein a relationship represented by the following (Equation 1) is satisfied.
Y ≧ X + 0.2 (Equation 1)
[4] The actuator according to [2] or [3], further including a conductor.
[5] The actuator according to [4], wherein the conductor is formed of a conductive linear material.
[6] 前記線状材料が前記繊維状高分子材料に螺旋状に巻かれている、前記[5]に記載のアクチュエータ。
[7] 前記線状材料が前記樹脂膜中に埋設されている、前記[5]又は[6]に記載のアクチュエータ。
[8] 前記導電体が前記繊維状高分子材料に前記樹脂膜により接着又は固定されている、前記[4]~[7]のいずれか1項に記載のアクチュエータ。
[9] 前記繊維状高分子材料が捻られたものである、前記[1]~[8]のいずれか1項に記載のアクチュエータ。
[6] The actuator according to [5], wherein the linear material is spirally wound around the fibrous polymer material.
[7] The actuator according to [5] or [6], wherein the linear material is embedded in the resin film.
[8] The actuator according to any one of [4] to [7], wherein the conductor is bonded or fixed to the fibrous polymer material by the resin film.
[9] The actuator according to any one of [1] to [8], wherein the fibrous polymer material is twisted.
 本発明のアクチュエータは、加熱された繊維状高分子材料の冷却を早めることができ、応答速度を向上させることが可能である。 ア ク チ ュ エ ー タ The actuator of the present invention can accelerate the cooling of the heated fibrous polymer material, and can improve the response speed.
本発明の第一実施形態に係るアクチュエータを示す概略図である。It is a schematic diagram showing an actuator according to a first embodiment of the present invention. 本発明の第二実施形態に係るアクチュエータを示す概略図である。It is the schematic which shows the actuator which concerns on 2nd embodiment of this invention. 本発明の第三実施形態に係るアクチュエータを示す概略図である。It is a schematic diagram showing the actuator concerning a third embodiment of the present invention. 本発明の第四実施形態に係るアクチュエータを示す概略図である。It is a schematic diagram showing an actuator according to a fourth embodiment of the present invention. 本発明及び比較例のアクチュエータの応答速度評価の結果を示すグラフである。9 is a graph showing the results of response speed evaluation of the actuator of the present invention and a comparative example.
 本発明のアクチュエータは、1つの側面として、加熱により変形する繊維状高分子材料と、ハイドロタルサイト粒子とを備え、
 前記ハイドロタルサイト粒子は繊維状高分子材料中に分散しているか、又は
 前記ハイドロタルサイト粒子は前記繊維状高分子材料の表面に備えられた樹脂膜中に分散している。
 「繊維状高分子材料中に分散している」とは、繊維状高分子材料の表面及び内部に分散していることを意味する。
 「樹脂膜中に分散している」とは、樹脂膜の表面及び内部に分散していることを意味する。
 なお、本明細書において「分散」とは、顕著な偏りなく全体に存在する状態を意味する。
 図1は、本発明の第一実施形態に係るアクチュエータ1を示す概略図である。
 アクチュエータ1は、加熱により変形する繊維状高分子材料10と、繊維状高分子材料10に分散状態のハイドロタルサイト粒子11とを備え、前記ハイドロタルサイト粒子は分散状態で繊維状高分子材料中に含まれている。
 アクチュエータ1は、外部からの加熱によりねじり作動(すなわち、回転駆動)を与えることができ、自然冷却(空冷)によりねじりが戻ることで、逆回転駆動を与えることができる。アクチュエータ1は、分散状態のハイドロタルサイト粒子11を備えるので、繊維状高分子材料10の冷却を早めることができ、アクチュエータ1の応答速度を向上させることが可能である。
The actuator of the present invention includes, as one aspect, a fibrous polymer material that is deformed by heating, and hydrotalcite particles,
The hydrotalcite particles are dispersed in a fibrous polymer material, or the hydrotalcite particles are dispersed in a resin film provided on a surface of the fibrous polymer material.
“Dispersed in the fibrous polymer material” means dispersed in the surface and inside of the fibrous polymer material.
“Dispersed in the resin film” means dispersed on the surface and inside of the resin film.
In this specification, the term "dispersion" means a state that exists in the whole without significant bias.
FIG. 1 is a schematic diagram showing an actuator 1 according to the first embodiment of the present invention.
The actuator 1 includes a fibrous polymer material 10 that is deformed by heating, and hydrotalcite particles 11 dispersed in the fibrous polymer material 10, and the hydrotalcite particles are dispersed in the fibrous polymer material. Included in.
The actuator 1 can provide a torsional operation (ie, rotational drive) by external heating, and can provide a reverse rotational drive by returning the torsion by natural cooling (air cooling). Since the actuator 1 includes the hydrotalcite particles 11 in a dispersed state, the cooling of the fibrous polymer material 10 can be accelerated, and the response speed of the actuator 1 can be improved.
 本発明のアクチュエータにおいては、ハイドロタルサイト粒子11は放熱性を有するハイドロタルサイトにより構成される。熱伝導率が高く、放熱性を有する材料としては一般に金属やセラミックスが挙げられ、熱伝導率として、1~1000W/mKのものもあるが、これらの多くは有機材料との複合化が煩雑であり、また高い弾性率のため複合化するとアクチュエータ機能を阻害するおそれがある。加えて、これらの材料は一般に可視光を透過せず、これらの材料を用いると、繊維状高分子材料10の内部または表面の状態や、後述する繊維状高分子材料10に設けられた線状導電体12等の加熱手段の状態を視認することが難しくなってしまう場合がある。本発明のアクチュエータは、ハイドロタルサイト粒子11が放熱性を有するハイドロタルサイトにより構成されるので、アクチュエータ機能を阻害することなく、繊維状高分子材料との複合化が可能となる。また、ハイドロタルサイト粒子11は分散状態において透明であり、例えば、製造時、検品時に繊維状導電体12の内部等を視覚的に観察することの妨げとならないという利点がある。 ア ク チ ュ エ ー タ In the actuator of the present invention, the hydrotalcite particles 11 are composed of hydrotalcite having heat dissipation. Materials having high thermal conductivity and heat radiation include metals and ceramics in general, and those having a thermal conductivity of 1 to 1000 W / mK. Most of these materials are complicated to be combined with an organic material. There is a possibility that the actuator function may be hindered if a composite is formed due to a high elastic modulus. In addition, these materials generally do not transmit visible light, and if these materials are used, the state of the inside or surface of the fibrous polymer material 10 or the linear shape provided on the It may be difficult to visually recognize the state of the heating means such as the conductor 12. In the actuator of the present invention, since the hydrotalcite particles 11 are composed of hydrotalcite having heat dissipation properties, it is possible to form a composite with a fibrous polymer material without impairing the actuator function. Further, the hydrotalcite particles 11 are transparent in a dispersed state, and have an advantage that they do not hinder visual observation of the inside of the fibrous conductor 12 at the time of production or inspection, for example.
 ハイドロタルサイト粒子11の平均粒子径としては、0.05~100μmであってもよく、0.1~30μmであってもよく、0.5~10μmであってもよく、1.0~5.0μmであってもよい。
 平均粒子径はレーザー回折/散乱式粒度分布測定装置によって測定することができる。
 ハイドロタルサイト粒子11は、下記一般式で示される構造を有する化合物であることが好ましい。
 [M2+ 1-x3+ (OH)x+[An- x/n・mHO]x-
[式中、M2+は二価金属であり、M3+は三価金属であり、An-はn価アニオンであり、xは0<x<0.33の範囲にあり、mは0~15である。]
 上記一般式において、二価金属M2+としては、例えば、Mg2+、Zn2+、Ni2+などが挙げられる。ここで、二価金属M2+は、上記金属の2種以上の混合物であってもよい。また、三価金属M3+としては、例えば、Al3+、Fe3+、Cr3+などが挙げられる。n価アニオンAn-としては、例えば、I、Cl、NO3-、HCO 、CO 2-、サリチル酸イオン、しゅう酸イオン、クエン酸イオンなどが挙げられる。 
 ハイドロタルサイト粒子11としては、M2+がMg2+であり、M3+がAl3+であり、An-がCO 2-である、Mg-Al-CO系ハイドロタルサイト粒子が、入手性および放熱性が良好であり、より好ましく用いられる。
The average particle diameter of the hydrotalcite particles 11 may be 0.05 to 100 μm, 0.1 to 30 μm, 0.5 to 10 μm, or 1.0 to 5 μm. 0.0 μm.
The average particle diameter can be measured by a laser diffraction / scattering particle size distribution analyzer.
The hydrotalcite particles 11 are preferably compounds having a structure represented by the following general formula.
[M 2+ 1-x M 3+ x (OH) 2 ] x + [A n− x / n · mH 2 O] x−
Wherein M 2+ is a divalent metal, M 3+ is a trivalent metal, A n− is an n-valent anion, x is in the range of 0 <x <0.33, and m is 0 to Fifteen. ]
In the above general formula, examples of the divalent metal M 2+ include Mg 2+ , Zn 2+ , and Ni 2+ . Here, the divalent metal M 2+ may be a mixture of two or more of the above metals. Examples of the trivalent metal M 3+ include Al 3+ , Fe 3+ , and Cr 3+ . Examples of the n-valent anion A n- include I , Cl , NO 3 , HCO 3 , CO 3 2− , salicylate ion, oxalate ion, and citrate ion.
As the hydrotalcite particles 11, Mg—Al—CO 3 based hydrotalcite particles in which M 2+ is Mg 2+ , M 3+ is Al 3+ , and A n− is CO 3 2- are available. And it has good heat dissipation and is more preferably used.
 アクチュエータ1は、繊維状高分子材料10を構成する材料にハイドロタルサイト粒子11を分散させた後に、ストランド状に成型することで作製することができる。
 ハイドロタルサイト粒子11の含有量は、繊維状高分子材料10の総質量に対して、0.1~10質量%が好ましい。
The actuator 1 can be manufactured by dispersing the hydrotalcite particles 11 in a material constituting the fibrous polymer material 10 and then forming the dispersion into a strand shape.
The content of the hydrotalcite particles 11 is preferably 0.1 to 10% by mass based on the total mass of the fibrous polymer material 10.
 図2は、本発明の第二実施形態に係るアクチュエータ2を示す概略図である。なお、図2以降の図において、既に説明済みの図に示すものと同じ構成要素には、その説明済みの図の場合と同じ符号を付し、その詳細な説明は省略する。 FIG. 2 is a schematic view showing an actuator 2 according to the second embodiment of the present invention. In the drawings after FIG. 2, the same components as those shown in the already described drawings are denoted by the same reference numerals as those in the already described drawings, and detailed description thereof will be omitted.
 アクチュエータ2は、加熱により変形する繊維状高分子材料10が樹脂膜13により被覆され、樹脂膜13中にはハイドロタルサイト粒子11が分散している。アクチュエータ2は、外部からの加熱によりねじり作動(すなわち、回転駆動)を与えることができ、自然冷却(空冷)によりねじりが戻ることで、逆回転駆動を与えることができる。
 ここでいう「被覆」とは、繊維状高分子材料10の表面の一部または全てが樹脂膜13により覆われていることを意味する。
 分散状態のハイドロタルサイト粒子11を備える樹脂膜13が、繊維状高分子材料10と外界の空気層との間に設けられている(すなわち、樹脂膜13が、繊維状高分子材料10の表面に設けられている)ので、樹脂膜13は放熱層として機能し、加熱された繊維状高分子材料10の冷却を早めることができ、アクチュエータ2の応答速度を向上させることが可能である。
 1つの側面として、本発明の一実施形態であるアクチュエータ2は、
 加熱により変形する繊維状高分子材料10と、樹脂膜13と、ハイドロタルサイト粒子11とを備え、
 ハイドロタルサイト粒子11が樹脂膜13中に分散状態で含まれており、
 樹脂膜13は、繊維状高分子材料10の表面に設けられている。
The actuator 2 has a fibrous polymer material 10 that is deformed by heating covered with a resin film 13, and hydrotalcite particles 11 are dispersed in the resin film 13. The actuator 2 can provide a torsional operation (ie, rotational drive) by external heating, and can provide a reverse rotational drive by returning the torsion by natural cooling (air cooling).
Here, “coating” means that a part or all of the surface of the fibrous polymer material 10 is covered with the resin film 13.
The resin film 13 including the dispersed hydrotalcite particles 11 is provided between the fibrous polymer material 10 and the air layer in the outside world (that is, the resin film 13 is formed on the surface of the fibrous polymer material 10). ), The resin film 13 functions as a heat radiating layer, can accelerate the cooling of the heated fibrous polymer material 10, and can improve the response speed of the actuator 2.
As one aspect, the actuator 2 according to an embodiment of the present invention includes:
A fibrous polymer material 10 deformed by heating, a resin film 13, and hydrotalcite particles 11 are provided.
The hydrotalcite particles 11 are contained in the resin film 13 in a dispersed state,
The resin film 13 is provided on the surface of the fibrous polymer material 10.
 第二実施形態に係るアクチュエータ2においては、樹脂膜13が、繊維状高分子材料10を被覆している。熱伝導率が高く、放熱性を有する金属やセラミックス等の材料のみから繊維状高分子材料の放熱性被覆を形成した場合には、アクチュエータ機能を阻害するおそれがあるうえに、駆動を繰り返すうちに被覆にクラックが生じる懸念もある。これに対して、アクチュエータ2は、ハイドロタルサイト粒子11が分散している樹脂膜13が、繊維状高分子材料10を被覆しているので、アクチュエータ機能を阻害することなく、樹脂膜13にクラックが生じる懸念を回避することができる。 樹脂 In the actuator 2 according to the second embodiment, the resin film 13 covers the fibrous polymer material 10. If a heat-dissipating coating made of a fibrous polymer material is formed only from materials such as metals and ceramics that have high heat conductivity and dissipate heat, the function of the actuator may be impaired. There is also a concern that cracks may occur in the coating. On the other hand, since the actuator 2 has the fibrous polymer material 10 covered with the resin film 13 in which the hydrotalcite particles 11 are dispersed, the resin film 13 has cracks without impeding the actuator function. Can be avoided.
 ハイドロタルサイト粒子11を含んでいない繊維状高分子材料10の熱伝導率X(W・m-1・K-1)と、ハイドロタルサイト粒子11を含む樹脂膜13の熱伝導率Y(W・m-1・K-1)との間に下記(式1)の関係が成立することが好ましい。
    Y≧X+0.2       ・・・(式1)
The thermal conductivity X (W · m −1 · K −1 ) of the fibrous polymer material 10 not containing the hydrotalcite particles 11 and the thermal conductivity Y (W · W) of the resin film 13 containing the hydrotalcite particles 11 · M -1 · K -1 ), the following relationship (Equation 1) is preferably satisfied.
Y ≧ X + 0.2 (Equation 1)
 (式1)の関係が成立することにより、樹脂膜13の放熱層として機能が強化され、加熱された繊維状高分子材料10の冷却をより早めることができ、アクチュエータ2の応答速度をより向上させることが可能である。前記熱伝導率Xと、前記熱伝導率Yとの間は、「Y≧X+0.3・・・(式1’)」であることがより好ましく、「Y≧X+0.4・・・(式1”)」であることがより好ましい。 By satisfying the relationship of (Equation 1), the function as a heat dissipation layer of the resin film 13 is strengthened, and the cooling of the heated fibrous polymer material 10 can be further accelerated, and the response speed of the actuator 2 is further improved. It is possible to do. It is more preferable that “Y ≧ X + 0.3... (Equation 1 ′)” between the thermal conductivity X and the thermal conductivity Y, and “Y ≧ X + 0.4. 1 ")" is more preferable.
 樹脂膜13の熱伝導率Y(W・m-1・K-1)は、0.3以上が好ましく、0.4以上がより好ましい。樹脂膜13の熱伝導率Yの上限には特に制限はないが、100以下が好ましい。
 1つの側面として、樹脂膜13の熱伝導率Yは、0.3以上100以下が好ましく、0.4以上100以下がより好ましい。
 本明細書において、熱伝導率は、例えばアイフェイズ社の表面型熱拡散率測定装置ai-Phase Mobileなどを用いた交流定常法により得ることができる。
The thermal conductivity Y (W · m −1 · K −1 ) of the resin film 13 is preferably 0.3 or more, and more preferably 0.4 or more. The upper limit of the thermal conductivity Y of the resin film 13 is not particularly limited, but is preferably 100 or less.
As one side surface, the thermal conductivity Y of the resin film 13 is preferably from 0.3 to 100, more preferably from 0.4 to 100.
In this specification, the thermal conductivity can be obtained by, for example, an AC steady-state method using a surface-type thermal diffusivity measuring apparatus ai-Phase Mobile manufactured by i-Phase.
 樹脂膜13は、基材樹脂とハイドロタルサイト粒子11とを含む。
 樹脂膜13は、基材樹脂中にハイドロタルサイト粒子11が分散されていればよく、基材樹脂としては、アクリル系樹脂、エポキシ系樹脂、シリコーン系樹脂、ウレタン系樹脂、アクリル/シリコーン系樹脂、アクリル/イソシアネート系樹脂、ポリエステル/メラミン系樹脂等を挙げることができる。
The resin film 13 includes a base resin and the hydrotalcite particles 11.
The resin film 13 only needs to have the hydrotalcite particles 11 dispersed in a base resin, and examples of the base resin include an acrylic resin, an epoxy resin, a silicone resin, a urethane resin, and an acrylic / silicone resin. And acrylic / isocyanate-based resins, polyester / melamine-based resins, and the like.
 アクチュエータ2は、繊維状高分子材料10の表面に、前記基材樹脂及びハイドロタルサイト粒子11を含有する懸濁液を塗装することにより樹脂膜13を形成することで作製することができる。前記基材樹脂が水分散性の水系タイプのものであれば、懸濁液は、水希釈タイプのものとすることができ、前記基材樹脂が有機溶剤分散性のラッカータイプのものであれば、懸濁液は、シンナー希釈タイプのものとすることができる。懸濁液は、基材樹脂100質量部に対して、ハイドロタルサイト粒子を10~500質量部含有してもよく、30~400質量部含有してもよく、50~300質量部含有してもよい。
 1つの側面として、樹脂膜13は、基材樹脂100質量部に対して、ハイドロタルサイト粒子を10~500質量部含有してもよく、30~400質量部含有してもよく、50~300質量部含有してもよい。
 前記塗装された樹脂膜13の厚さは、1~50μmが好ましく、5~30μmがより好ましく、10~20μmが特に好ましい。
 本明細書において、「厚さ」は、懸濁液を塗装・乾燥した後に繊維状高分子材料を含めて軸に垂直方向に切断し、光学顕微鏡による観察で測定することができる。
The actuator 2 can be manufactured by applying a suspension containing the base resin and the hydrotalcite particles 11 to the surface of the fibrous polymer material 10 to form the resin film 13. If the base resin is a water-dispersible aqueous type, the suspension can be a water-dilutable type, and if the base resin is an organic solvent-dispersible lacquer type. The suspension can be of the thinner dilution type. The suspension may contain 10 to 500 parts by mass, 30 to 400 parts by mass, or 50 to 300 parts by mass of hydrotalcite particles based on 100 parts by mass of the base resin. Is also good.
As one side surface, the resin film 13 may contain 10 to 500 parts by mass of hydrotalcite particles, 30 to 400 parts by mass, or 50 to 300 parts by mass with respect to 100 parts by mass of the base resin. It may be contained by mass.
The thickness of the coated resin film 13 is preferably 1 to 50 μm, more preferably 5 to 30 μm, and particularly preferably 10 to 20 μm.
In the present specification, the “thickness” can be measured by coating and drying the suspension, cutting the suspension including the fibrous polymer material in a direction perpendicular to the axis, and observing the suspension with an optical microscope.
 基材樹脂及びハイドロタルサイト粒子を含有する懸濁液としては、特開2003-309383号公報、特開2004-43612号公報、特開2006-124597号公報、特開2011-20870号公報、特開2014-237805号公報、国際公開第2010/050139号、国際公開第2011/111414号、等に開示された放熱性塗料組成物を参考にして調製することができるほか、市販の放熱性塗料(例えば、合同インキ社製のユニクール(登録商標)、オキツモ社製のクールテック(登録商標))を用いることができる。 Examples of the suspension containing the base resin and hydrotalcite particles include JP-A-2003-309383, JP-A-2004-43612, JP-A-2006-124597, JP-A-2011-20870, It can be prepared with reference to the heat dissipating coating compositions disclosed in JP-A-2014-237805, WO 2010/050139, WO 2011/111414, and the like, and commercially available heat dissipating paints ( For example, Unicool (registered trademark) manufactured by Godo Ink and Cooltech (registered trademark) manufactured by Okitsumo can be used.
 本発明のアクチュエータはさらに導電体を備えていてもよい。導電体としては、導電性の線状材料から形成されていることが好ましい。 ア ク チ ュ エ ー タ The actuator of the present invention may further include a conductor. The conductor is preferably formed from a conductive linear material.
 図3は、本発明の第三実施形態に係るアクチュエータ3を示す概略図であり、直径D10の繊維状高分子材料10に、直径D11の線状導電体12が螺旋状に所定の隙間間隔Iを設けて巻かれている例を示している。 Figure 3 is a schematic view of an actuator 3 according to a third embodiment of the present invention, the fibrous polymer material 10 with a diameter D 10, a predetermined clearance linear conductor 12 is spirally with a diameter D 11 The example which is wound with an interval I is shown.
 アクチュエータ3は、加熱により変形する繊維状高分子材料10が樹脂膜13により被覆され、樹脂膜13中にハイドロタルサイト粒子11が分散している。より詳しくは、アクチュエータ3は、加熱により変形する繊維状高分子材料10が、分散状態のハイドロタルサイト粒子を含有する樹脂層13によって全部又は一部)が被覆されており、その周りに、線状導電体12が螺旋状に所定の隙間を設けて巻かれている。
 1つの側面として、本発明の一実施形態であるアクチュエータ3は
 加熱により変形する繊維状高分子材料10と、樹脂膜13と、ハイドロタルサイト粒子11と、線状導電体12とを備え、
 ハイドロタルサイト粒子11が樹脂膜13中に分散状態で含まれており、
 樹脂膜13は、繊維状高分子材料10の表面に設けられており、
 樹脂膜13上(樹脂膜13における外界の空気層側の面上)に線状導電体12が螺旋状に所定の隙間を設けて巻かれている。
The actuator 3 has a fibrous polymer material 10 that is deformed by heating covered with a resin film 13, and hydrotalcite particles 11 are dispersed in the resin film 13. More specifically, the actuator 3 has a fibrous polymer material 10 that is deformed by heating, which is entirely or partially covered with a resin layer 13 containing dispersed hydrotalcite particles. The conductor 12 is spirally wound with a predetermined gap.
As one aspect, an actuator 3 according to one embodiment of the present invention includes a fibrous polymer material 10 that is deformed by heating, a resin film 13, hydrotalcite particles 11, and a linear conductor 12,
The hydrotalcite particles 11 are contained in the resin film 13 in a dispersed state,
The resin film 13 is provided on the surface of the fibrous polymer material 10,
The linear conductor 12 is spirally wound on the resin film 13 (on the surface of the resin film 13 on the air layer side of the outside world) with a predetermined gap.
 アクチュエータ3は、外部からの加熱によりねじり作動(すなわち、回転駆動)を与えることができ、自然冷却(空冷)によりねじりが戻ることで、逆回転駆動を与えることができる。分散状態のハイドロタルサイト粒子11を含む樹脂膜13が、繊維状高分子材料10と外界の空気層との間に設けられているので、樹脂膜13は放熱層として機能し、加熱された繊維状高分子材料10の冷却を早めることができ、アクチュエータ3の応答速度を向上させることが可能である。 (4) The actuator 3 can provide a twisting operation (that is, rotational driving) by external heating, and can provide a reverse rotation driving by returning the torsion by natural cooling (air cooling). Since the resin film 13 containing the hydrotalcite particles 11 in a dispersed state is provided between the fibrous polymer material 10 and an external air layer, the resin film 13 functions as a heat radiation layer, and the heated fiber The cooling of the polymer material 10 can be accelerated, and the response speed of the actuator 3 can be improved.
 アクチュエータ3において、線状導電体12は樹脂膜13の外側に螺旋状に巻かれている。アクチュエータ3は、繊維状高分子材料10の表面に樹脂膜13を形成した後、樹脂膜13の外側に線状導電体12を螺旋状に巻くことで作製することができる。 に お い て In the actuator 3, the linear conductor 12 is spirally wound outside the resin film 13. The actuator 3 can be manufactured by forming the resin film 13 on the surface of the fibrous polymer material 10 and then spirally winding the linear conductor 12 outside the resin film 13.
 分散状態のハイドロタルサイト粒子11を備える樹脂膜13は放熱層として機能するが、樹脂膜13は、さらに線状導電体12の固定手段を兼ねるものとすることもできる。
 例えば、樹脂膜13は、基材樹脂とハイドロタルサイト粒子11とを含み、基材樹脂として、熱硬化性又はエネルギー線硬化性の樹脂を用いることで、繊維状高分子材料10の表面に樹脂膜13の材料成分を含有する塗料組成物を塗布して接着剤層(すなわち、樹脂膜13)を形成した後、接着剤層の上に線状導電体12を巻き付けて、接着剤層を乾燥・硬化させることで、線状導電体12が繊維状高分子材料10に樹脂膜13により接着及び固定されているものとすることができる。
 前記熱硬化性の樹脂としては、エポキシ樹脂、ビニルエステル樹脂、ビニルエーテル樹脂、アクリル樹脂、メタクリル樹脂、スチレン樹脂、及びフェノール樹脂等が挙げられる。
 前記エネルギー線硬化性の樹脂としては、特に限定されず、公知のものを用いることができる。
The resin film 13 including the dispersed hydrotalcite particles 11 functions as a heat radiation layer, but the resin film 13 may also serve as a fixing means for the linear conductor 12.
For example, the resin film 13 includes the base resin and the hydrotalcite particles 11, and is formed on the surface of the fibrous polymer material 10 by using a thermosetting or energy ray-curable resin as the base resin. After the coating composition containing the material component of the film 13 is applied to form an adhesive layer (that is, the resin film 13), the linear conductor 12 is wound on the adhesive layer, and the adhesive layer is dried. By curing, the linear conductor 12 can be bonded and fixed to the fibrous polymer material 10 by the resin film 13.
Examples of the thermosetting resin include an epoxy resin, a vinyl ester resin, a vinyl ether resin, an acrylic resin, a methacryl resin, a styrene resin, and a phenol resin.
The energy ray-curable resin is not particularly limited, and a known resin can be used.
 アクチュエータ3においては、外部からの加熱により、螺旋状に巻かれた線状導電体12が加熱され、繊維状高分子材料10が加熱される。
 螺旋状に巻かれ線状導電体12は、アクチュエータ機能を阻害することなく、線状導電体12にクラックが生じる懸念も回避することができる。
 線状導電体12の代わりに、例えば、金属メッキ等を用いた場合には、アクチュエータ機能を阻害するおそれがあるうえに、駆動を繰り返すうちに被覆にクラックが生じる懸念がある。
In the actuator 3, the linear conductor 12 wound in a spiral shape is heated by external heating, and the fibrous polymer material 10 is heated.
The spirally wound linear conductor 12 can also avoid a fear that a crack occurs in the linear conductor 12 without hindering the actuator function.
If, for example, metal plating is used instead of the linear conductor 12, there is a concern that the actuator function may be impaired, and that the coating may crack during repeated driving.
 1つの側面として、線状導電体12が巻き付けられた繊維状高分子材料10の、繊維状高分子材料10及び線状導電体12の外側(すなわち、繊維状高分子材料10及び線状導電体12における外界の空気層側の面上)に樹脂膜13を形成して、線状導電体12が樹脂膜13中に埋設されていてもよい。 As one side surface, the fibrous polymer material 10 around which the linear conductor 12 is wound, outside the fibrous polymer material 10 and the linear conductor 12 (that is, the fibrous polymer material 10 and the linear conductor 12) The resin film 13 may be formed on the surface of the outer layer 12 on the air layer side, and the linear conductor 12 may be embedded in the resin film 13.
 図4は、本発明の第四実施形態に係るアクチュエータ4を示す概略図である。
 アクチュエータ4は、加熱により変形する繊維状高分子材料10が樹脂膜13により被覆され、樹脂膜13中にハイドロタルサイト粒子11が分散している。より詳しくは、アクチュエータ4は、加熱により変形する繊維状高分子材料10の周りに、線状導電体12が螺旋状に所定の隙間を設けて巻かれており、繊維状高分子材料10及び線状導電体12の外側に、分散状態のハイドロタルサイト粒子を含有する樹脂層13が形成されている。アクチュエータ4において、線状導電体12は樹脂膜13中に埋設されている。アクチュエータ4も、外部からの加熱によりねじり作動(すなわち、回転駆動)を与えることができ、自然冷却(空冷)によりねじりが戻ることで、逆回転駆動を与えることができる。分散状態のハイドロタルサイト粒子11を備える樹脂膜13が、繊維状高分子材料10及び線状導電体12と外界の空気層との間に設けられているので、樹脂膜13は放熱層として機能し、加熱された繊維状高分子材料10の冷却を早めることができ、アクチュエータ3の応答速度を向上させることが可能である。
 1つの側面として、本発明の一実施形態であるアクチュエータ4は、
 加熱により変形する繊維状高分子材料10と、樹脂膜13と、ハイドロタルサイト粒子11と、線状導電体12とを備え、
 ハイドロタルサイト粒子11が樹脂膜13中に分散した状態で含まれており、
 繊維状高分子材料10上(すなわち、繊維状高分子材料10の周囲)に線状導電体12が螺旋状に所定の隙間を設けて巻かれており、
 繊維状高分子材料10及び線状導電体12上(すなわち、繊維状高分子材料10及び線状導電体12における外界の空気層側の面上)に、樹脂層13が形成されており、
 線状導電体12は樹脂膜13中に埋設されている。
FIG. 4 is a schematic diagram showing an actuator 4 according to a fourth embodiment of the present invention.
The actuator 4 has a fibrous polymer material 10 that is deformed by heating covered with a resin film 13, and hydrotalcite particles 11 are dispersed in the resin film 13. More specifically, the actuator 4 is configured such that a linear conductor 12 is spirally wound around a fibrous polymer material 10 that is deformed by heating with a predetermined gap provided between the fibrous polymer material 10 and the wire. A resin layer 13 containing hydrotalcite particles in a dispersed state is formed outside the conductor 12. In the actuator 4, the linear conductor 12 is embedded in the resin film 13. The actuator 4 can also provide a twisting operation (that is, rotational driving) by external heating, and can provide reverse rotation driving by returning the torsion by natural cooling (air cooling). Since the resin film 13 including the dispersed hydrotalcite particles 11 is provided between the fibrous polymer material 10 and the linear conductor 12 and the external air layer, the resin film 13 functions as a heat radiation layer. In addition, the cooling of the heated fibrous polymer material 10 can be accelerated, and the response speed of the actuator 3 can be improved.
As one aspect, the actuator 4 according to an embodiment of the present invention includes:
A fibrous polymer material that is deformed by heating, a resin film, hydrotalcite particles, and a linear conductor;
The hydrotalcite particles 11 are contained in the resin film 13 in a dispersed state,
A linear conductor 12 is spirally wound on the fibrous polymer material 10 (that is, around the fibrous polymer material 10) with a predetermined gap,
A resin layer 13 is formed on the fibrous polymer material 10 and the linear conductor 12 (that is, on the outer air layer side surface of the fibrous polymer material 10 and the linear conductor 12),
The linear conductor 12 is embedded in the resin film 13.
 アクチュエータ4は、繊維状高分子材料10の表面に、直接、線状導電体12を螺旋状に巻いた後に、繊維状高分子材料10及び線状導電体12の外側の全部または一部に、樹脂膜13を形成することによって作製することができる。線状導電体12が分散状態のハイドロタルサイト粒子11を含む樹脂膜13中に埋設されていることで、線状導電体12が繊維状高分子材料10に樹脂膜13により固定されている。これにより、線状導電体12が繊維状高分子材料10の周囲において位置がずれることなく、アクチュエータ13の長さ方向において均一な駆動が長期間維持される。分散状態のハイドロタルサイト粒子11を備える樹脂膜13は、冷却・放熱の効果がより良く機能することから、外気と接していることが好ましく、別途線状導電体12の固定手段を設けないことが好ましい。本実施形態において、線状導電体12が樹脂膜13中に埋設されていても、分散状態のハイドロタルサイト粒子11を備える樹脂膜13が透明であることにより、例えば、製造時、検品時に繊維状高分子材料10および線状導電体12を樹脂膜13越しに視認することが可能である。 The actuator 4 directly spirally winds the linear conductor 12 on the surface of the fibrous polymer material 10, and then, on the whole or a part of the outside of the fibrous polymer material 10 and the linear conductor 12, It can be manufactured by forming the resin film 13. Since the linear conductor 12 is embedded in the resin film 13 containing the hydrotalcite particles 11 in a dispersed state, the linear conductor 12 is fixed to the fibrous polymer material 10 by the resin film 13. Accordingly, the linear conductor 12 is not displaced around the fibrous polymer material 10, and uniform driving in the length direction of the actuator 13 is maintained for a long time. The resin film 13 including the hydrotalcite particles 11 in a dispersed state is preferably in contact with the outside air because the cooling / radiation effect functions better, and no separate fixing means for the linear conductor 12 is provided. Is preferred. In this embodiment, even when the linear conductor 12 is embedded in the resin film 13, the resin film 13 including the hydrotalcite particles 11 in a dispersed state is transparent. The polymer material 10 and the linear conductor 12 can be visually recognized through the resin film 13.
 本発明のアクチュエータにおいて、加熱により変形する繊維状高分子材料10は捻られたものであることが好ましい。加熱により駆動するアクチュエータを得るための繊維状高分子材料10は、通常、繊維を製造した後に撚りが挿入されることにより得られる。また、一般的な繊維の紡糸、撚糸の工程において、繊維状形状を形成させる段階において、捻りが加えられる、すなわち、繊維状高分子材料の製造工程において捻られてもよい。 に お い て In the actuator of the present invention, the fibrous polymer material 10 that is deformed by heating is preferably twisted. The fibrous polymer material 10 for obtaining an actuator driven by heating is usually obtained by inserting a twist after producing a fiber. Further, in a general fiber spinning and twisting process, a twist may be added in a step of forming a fibrous shape, that is, a twist may be performed in a process of manufacturing a fibrous polymer material.
 本発明のアクチュエータにおいて、繊維状高分子材料10はコイル化が生じる直前まで、すなわちコブが生じる直前まで捻りが加えられたモノフィラメントファイバーであることがより好ましく、コイル化が生じるまで、すなわちコブが生じるまで捻りが加えられたコイル状ファイバーであってもよい。
 また、捻りが加えられたモノフィラメントファイバーをマンドレルに巻き付ける等の方法により得られたコイル状ファイバーであってもよく、このとき、最初に加えられた捻りの方向と同じ方向に巻き付けてコイル状ファイバーにしてもよく、最初に加えられた捻りの方向と反対方向に巻き付けてコイル状ファイバーにしてもよい。最初に加えられた捻りの方向と同じ方向に巻き付けたコイル状ファイバーは、加熱により収縮するアクチュエータとして機能させることができる。最初に加えられた捻りの方向と反対方向に巻き付けてコイル状ファイバーは、加熱により伸長するアクチュエータとして機能させることができる。この場合、コイルの内側に芯棒を挿入しておくことにより、伸長する作用が横に逃げない様にしておくことが好ましい。
In the actuator of the present invention, the fibrous polymer material 10 is more preferably a monofilament fiber twisted until immediately before coiling occurs, that is, immediately before the occurrence of bumps, and until the coiling occurs, that is, bumps occur. It may be a coiled fiber that has been twisted to the maximum.
Alternatively, it may be a coiled fiber obtained by winding a twisted monofilament fiber around a mandrel or the like.At this time, the coiled fiber may be wound in the same direction as the direction of the twist initially applied. Alternatively, the coiled fiber may be wound in a direction opposite to the direction of the initially applied twist. The coiled fiber wound in the same direction as the initially applied twist can function as an actuator that contracts upon heating. Wound in a direction opposite to the direction of the initially applied twist, the coiled fiber can act as an actuator that expands upon heating. In this case, it is preferable to insert the core rod inside the coil so that the elongating action does not escape laterally.
 未処理の繊維状高分子材料を予め製造し、その後、撚りを挿入する方法により繊維状高分子材料を捻る場合、繊維状高分子材料10として、例えば、直径500μmのナイロン6,6のモノフィラメントを25℃の環境下で、例えば、ナイロン6,6のモノフィラメントのヤング率の1×10-3~1×10-2倍の適度な引張応力を加えてコイル化を生じさせないように捻じると、1m当たり400~600回程度まで回転させた非コイル状の捻り処理済みモノフィラメントを得ることができる。
 1つの側面として、直径xmmの繊維に対し、1mあたり250000/x±15~20%の撚りを挿入してもよい。
When an untreated fibrous polymer material is produced in advance, and then the fibrous polymer material is twisted by a method of inserting a twist, for example, a monofilament of nylon 6,6 having a diameter of 500 μm is used as the fibrous polymer material 10. In an environment of 25 ° C., for example, when an appropriate tensile stress of 1 × 10 −3 to 1 × 10 −2 times the Young's modulus of nylon 6,6 monofilament is applied and twisted so as not to cause coiling, A non-coiled twisted monofilament rotated about 400 to 600 times per meter can be obtained.
As one side, 250,000 / x ± 15 to 20% twist per m may be inserted into a fiber with a diameter of xmm.
 また、繊維状高分子材料10として、例えば、直径250μmのナイロン6,6のモノフィラメントを25℃の環境下で、ナイロン6,6のモノフィラメントのヤング率の1×10-3~1×10-2倍の適度な引張応力を加えてコイル化を生じさせないように捻じると、1m当たり850~1150回程度まで回転させた非コイル状の捻り処理済みモノフィラメントを得ることができ、この回転数を超えてナイロン6,6のモノフィラメントを捻じると、コイル化が生じ、又は破断してしまうおそれがある。また、フィラメントのヤング率の1×10-2倍を超えた引張応力を加えた場合には、スナール(巻き瘤)が生じたり、フィラメントが破断したりしやすい傾向がある。 Further, as the fibrous polymer material 10, for example, a nylon 6,6 monofilament having a diameter of 250 μm is subjected to an environment of 25 ° C. at a Young's modulus of 1 × 10 −3 to 1 × 10 −2 of the nylon 6,6 monofilament. By applying twice the moderate tensile stress and twisting so as not to cause coiling, a non-coiled twisted monofilament that has been rotated up to about 850 to 1150 times per meter can be obtained. If the nylon 6,6 monofilament is twisted, it may be coiled or broken. Further, when a tensile stress exceeding 1 × 10 −2 times the Young's modulus of the filament is applied, there is a tendency that a snarl (winding bump) is generated or the filament is easily broken.
 繊維状高分子材料10のガラス転移温度以下の温度環境下で捻じりを加えた繊維状高分子材料10において、捻じりが元に戻る作用を抑制するために、その高分子のガラス転移温度以上の環境に一定期間置く等の、残存応力緩和処理を行うことが好ましい。 In the fibrous polymer material 10 twisted in a temperature environment equal to or lower than the glass transition temperature of the fibrous polymer material 10, in order to suppress the effect of the twist returning to the original state, the temperature is equal to or higher than the glass transition temperature of the polymer. It is preferable to perform a residual stress relaxation treatment, such as placing in a certain environment for a certain period.
 繊維状高分子材料は、高分子鎖が配向することにより、繊維軸方向とこれと垂直方向で、構造及び物性において高い異方性を示すことが一般に知られている。これは繊維軸方向に平行に高分子鎖が配向し、結晶構造を形成しやすいことに起因する。繊維状高分子材料を構成する高分子は、繊維状高分子材料の繊維軸と非平行の規則的な高分子配向を有するものを含むことが好ましい。繊維状高分子材料を構成する高分子が、繊維軸と非平行の規則的な高分子配向をするものを含んでいることは、繊維状高分子材料に回転駆動する機能を付与する一手段である。繊維状高分子材料は、捻りを加え、アニールを行うことで繊維状高分子材料を構成する高分子が繊維軸に斜行して規則的に配向した状態が固定される。 It is generally known that a fibrous polymer material exhibits high anisotropy in structure and physical properties in a fiber axis direction and in a direction perpendicular to the fiber axis when a polymer chain is oriented. This is because the polymer chains are oriented in parallel to the fiber axis direction, and a crystal structure is easily formed. The polymer constituting the fibrous polymer material preferably includes a polymer having a regular polymer orientation that is non-parallel to the fiber axis of the fibrous polymer material. The fact that the polymer constituting the fibrous polymer material includes one that has a regular polymer orientation that is non-parallel to the fiber axis is a means for imparting the function of driving rotation to the fibrous polymer material. is there. By twisting and annealing the fibrous polymer material, a state in which the polymer constituting the fibrous polymer material is obliquely aligned with the fiber axis and regularly oriented is fixed.
 本発明のアクチュエータにおいて、繊維状高分子材料を構成する高分子の種類としては、ナイロン6、ナイロン6,6等のナイロン、ポリメチルメタクリレート等のアクリル樹脂、ポリエチレンテレフタレート等のポリエステル樹脂、ポリカーボネート、ポリ塩化ビニル、ポリカーボネート、ポリエーテルエーテルケトン、ポリエチレン、ポリプロピレン等のポリオレフィン樹脂等が挙げられる。 In the actuator of the present invention, the kind of polymer constituting the fibrous polymer material includes nylon such as nylon 6, nylon 6,6, acrylic resin such as polymethyl methacrylate, polyester resin such as polyethylene terephthalate, polycarbonate, and poly. Examples thereof include polyolefin resins such as vinyl chloride, polycarbonate, polyetheretherketone, polyethylene, and polypropylene.
 繊維状高分子材料を構成する高分子は結晶性であることが好ましい。繊維状高分子材料における高分子の結晶化度は、50%以上であることが好ましく55%~90%であることがさらに好ましい。結晶化度がこのような範囲にあることで、分子配向の異方性が高く、アクチュエータとしての効果に優れるものとすることが容易となる。 高分子 The polymer constituting the fibrous polymer material is preferably crystalline. The crystallinity of the polymer in the fibrous polymer material is preferably 50% or more, more preferably 55% to 90%. When the crystallinity is in such a range, the anisotropy of molecular orientation is high, and it is easy to obtain an excellent effect as an actuator.
 本発明のアクチュエータにおいて、繊維状高分子材料は、モノフィラメントファイバーであってもよく、マルチフィラメントファイバーからなるものであってもよい。
 1つの側面として、本発明に係る「加熱により変形する繊維状高分子材料」とは、繊維軸と非平行の規則的な高分子配向を有する高分子鎖を含み、捻りを加え、アニールを行うことにより構成する高分子が繊維軸に斜行して規則的に配向した状態が固定された繊維状の高分子材料である。
 前記捻りは、直径xmmの繊維に対し、1mあたり250000/x±15~20%であることが好ましく、
 前記繊維状高分子材料を構成する高分子は、ナイロン6、ナイロン6,6等のナイロン、ポリメチルメタクリレート等のアクリル樹脂、ポリエチレンテレフタレート等のポリエステル樹脂、ポリカーボネート、ポリ塩化ビニル、ポリカーボネート、ポリエーテルエーテルケトン、ポリエチレン、ポリプロピレン等のポリオレフィン樹脂が好ましい。
In the actuator of the present invention, the fibrous polymer material may be a monofilament fiber or a multifilament fiber.
As one aspect, the “fibrous polymer material deformable by heating” according to the present invention includes a polymer chain having a regular polymer orientation that is non-parallel to the fiber axis, twists, and performs annealing. This is a fibrous polymer material in which a state in which the constituted polymer is obliquely aligned with the fiber axis and regularly oriented is fixed.
The twist is preferably 250,000 / x ± 15 to 20% per meter for a fiber having a diameter of xmm,
The polymer constituting the fibrous polymer material is nylon such as nylon 6, nylon 6, 6, acrylic resin such as polymethyl methacrylate, polyester resin such as polyethylene terephthalate, polycarbonate, polyvinyl chloride, polycarbonate, polyether ether. Polyolefin resins such as ketone, polyethylene and polypropylene are preferred.
 本発明のアクチュエータにおいて、繊維状高分子材料10は、加熱により繊維軸を中心とした回転駆動をするものである。本発明のアクチュエータは外部からの加熱により加熱される線状導電体を備えるものであってもよく、線状導電体を備えずに、外部の環境温度に反応して繊維軸を中心とした回転駆動をするものであってもよい。 に お い て In the actuator of the present invention, the fibrous polymer material 10 is driven to rotate about the fiber axis by heating. The actuator of the present invention may be provided with a linear conductor heated by external heating, and without the linear conductor, rotates around the fiber axis in response to an external environmental temperature. It may be driven.
 線状導電体12としては、金属ワイヤやカーボンナノチューブの糸が挙げられる。好ましい金属ワイヤとしては、タングステンワイヤが挙げられる。
 線状導電体12は、繊維状高分子材料10上に1000~10000回巻き/mの密度で巻き付けることが好ましい。
Examples of the linear conductor 12 include a metal wire and a carbon nanotube thread. Preferred metal wires include tungsten wires.
The linear conductor 12 is preferably wound on the fibrous polymer material 10 at a density of 1,000 to 10,000 turns / m.
 繊維状高分子材料10の直径D10は、0.01mm<D10≦40mmであってもよく、0.05mm<D10≦10mmであってもよく、0.1mm<D10≦1mmであってもよく、0.1mm<D10≦0.5mmであってもよい。 The diameter D 10 of the fibrous polymeric material 10, 0.01 mm <be a D 10 ≦ 40mm, 0.05mm <be a D 10 ≦ 10mm, 0.1mm <D 10 ≦ 1mm met 0.1 mm <D 10 ≦ 0.5 mm.
 また、線状導電体12の断面は、以下、略円形であるものを前提にして説明しているが、略楕円形のものであってもよく、偏平な形状であってもよい。そのとき、その楕円形又は偏平な形状の長径を直径D11に置き換えて理解することができる。 Although the cross section of the linear conductor 12 is described below on the assumption that it is substantially circular, it may be substantially elliptical or flat. Then, it is possible to understand by replacing major axis of the oval or flat shape to the diameter D 11.
 本発明のアクチュエータの長さあたりの電気抵抗を好適な範囲とするため、繊維状高分子材料10の直径D10、線状導電体12の直径D11、及び線状導電体12のピッチ(I+D11)を適宜設計することができる。繊維状高分子材料10の直径D10が、例えば、0.1mm<D10≦1mmであるとき、線状導電体12の直径D11は、1μm≦D11≦1000μmが好ましく、5μm≦D11≦500μmがより好ましく、10μm≦D11≦100μmが特に好ましい。別の側面として、10μm≦D11≦150μmであってもよい。 In order to set the electric resistance per length of the actuator of the present invention in a suitable range, the diameter D 10 of the fibrous polymer material 10, the diameter D 11 of the linear conductor 12, and the pitch (I + D) of the linear conductor 12 11 ) can be appropriately designed. The diameter D 10 of the fibrous polymeric material 10, for example, when it is 0.1 mm <D 10 ≦ 1 mm, the diameter D 11 of the linear conductor 12 is preferably 1μm ≦ D 11 ≦ 1000μm, 5μmD 11 ≦ 500 μm is more preferable, and 10 μm ≦ D 11 ≦ 100 μm is particularly preferable. As another aspect, 10 μm ≦ D 11 ≦ 150 μm may be satisfied.
 繊維状高分子材料10の直径D10と、線状導電体12の直径D11との関係は、0.001≦D11/D10<2が好ましく、0.005≦D11/D10≦1.0がより好ましく、0.01≦D11/D10≦0.5が特に好ましい。 The diameter D 10 of the fibrous polymeric material 10, the relationship between the diameter D 11 of the linear conductors 12, preferably 0.001 ≦ D 11 / D 10 < 2, 0.005 ≦ D 11 / D 10 ≦ 1.0 is more preferred, and 0.01 ≦ D 11 / D 10 ≦ 0.5 is particularly preferred.
 線状導電体12の直径D11と、線状導電体12の導電体間距離Iとの関係は、0.01≦I/D11≦10が好ましく、0.05≦I/D11≦5がより好ましく、0.1≦I/D11≦3が特に好ましい。
 なお「線状導電体12の導電体間距離I」とは、線状導電体12の螺旋構造における隣接する線状導電体12同士の最短距離を意味する。
The diameter D 11 of the linear conductors 12, the relationship between inter-conductor distance I of the linear conductors 12, preferably 0.01 ≦ I / D 11 ≦ 10 , 0.05 ≦ I / D 11 ≦ 5 Is more preferable, and 0.1 ≦ I / D 11 ≦ 3 is particularly preferable.
The “distance I between conductors of the linear conductor 12” means the shortest distance between adjacent linear conductors 12 in the spiral structure of the linear conductor 12.
 平面視で、線状導電体12と繊維状高分子材料10との成す角度θは、0°<θ≦90°であり、30°≦θ≦90°が好ましく、45°≦θ≦75°がより好ましい。 In a plan view, the angle θ between the linear conductor 12 and the fibrous polymer material 10 is 0 ° <θ ≦ 90 °, preferably 30 ° ≦ θ ≦ 90 °, and 45 ° ≦ θ ≦ 75 °. Is more preferred.
 本発明のアクチュエータは、横に静置したときの長さは1~100cmであることが好ましく、1~50cmであることがより好ましく、1~10cmであることが特に好ましい。
 以上、この発明の実施形態について化学式及び図面を参照して詳述してきたが、実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。また、本発明は各実施形態によって限定されることはなく、請求項(クレーム)の範囲によってのみ限定される。
The length of the actuator of the present invention when left standing horizontally is preferably 1 to 100 cm, more preferably 1 to 50 cm, and particularly preferably 1 to 10 cm.
As described above, the embodiments of the present invention have been described in detail with reference to the chemical formulas and the drawings. However, each configuration in the embodiment and a combination thereof are only examples, and the addition of the configuration, Omissions, substitutions, and other changes are possible. The present invention is not limited by each embodiment, but is limited only by the scope of the claims.
 1つの側面として、本発明の一実施形態であるアクチュエータは、
 加熱により変形する繊維状高分子材料と、樹脂膜と、ハイドロタルサイト粒子と、線状導電体とを備え、
 ハイドロタルサイト粒子が樹脂膜中に分散状態で含まれており、
 繊維状高分子材料上に線状導電体が螺旋状に巻かれており、
 繊維状高分子材料及び線状導電体上に、樹脂層13が形成されており、
 線状導電体12は樹脂膜13の内側に埋設されており、
 前記繊維状高分子材料は、ナイロン6,6フィラメントであることが好ましく、
 前記ナイロン6,6フィラメントは、直径D10が0.1mm<D10≦0.5mmであることが好ましく、捻り密度が、400~600回/mであることが好ましく、
 前記樹脂膜の熱伝導率は、0.4以上0.45以下であることが好ましく、
 前記線状導電体は、銅ワイヤであることが好ましく、
 前記銅ワイヤは、1000~1600回巻き/mで前記繊維状高分子材料上に巻き付いていることが好ましい、
 アクチュエータである。
In one aspect, an actuator according to an embodiment of the present invention includes:
A fibrous polymer material that is deformed by heating, a resin film, hydrotalcite particles, and a linear conductor,
Hydrotalcite particles are contained in a dispersed state in the resin film,
A linear conductor is spirally wound on the fibrous polymer material,
A resin layer 13 is formed on the fibrous polymer material and the linear conductor,
The linear conductor 12 is embedded inside the resin film 13,
Preferably, the fibrous polymer material is nylon 6,6 filament,
The nylon 6,6 filament preferably has a diameter D 10 of 0.1 mm <D 10 ≦ 0.5 mm, and a twist density of 400 to 600 turns / m.
The thermal conductivity of the resin film is preferably 0.4 or more and 0.45 or less,
Preferably, the linear conductor is a copper wire,
Preferably, the copper wire is wound on the fibrous polymer material at 1,000 to 1600 turns / m,
Actuator.
 以下、具体的実施例により、本発明についてより詳細に説明する。ただし、本発明は、以下に示す実施例に、何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to specific examples. However, the present invention is not limited to the examples described below.
[冷却速度評価]
 所定の方法で作成した加熱応答性アクチュエータの線状導電体に対して電圧(8V直流)を印加し、110℃まで加熱した後、電圧を除去し、室温(25℃)無風の環境下で50℃まで表面温度が下がるまで待った。その温度変化に要した時間を計測した。温度の計測はFLIR社製サーモカメラ「FLIROne」を用いて行った。
[Cooling rate evaluation]
A voltage (8 V DC) is applied to the linear conductor of the heat-responsive actuator prepared by a predetermined method, and after heating to 110 ° C., the voltage is removed, and the voltage is removed at room temperature (25 ° C.) in a windless environment. Waited for the surface temperature to drop to ° C. The time required for the temperature change was measured. The temperature was measured using a thermo camera “FLIROne” manufactured by FLIR.
[熱冷サイクル時間評価]
 冷却速度評価において、表面温度の低下が30℃に達した時点で加熱を再開し、表面温度110℃で電圧の除去により空冷開始、表面温度30℃で加熱を再開するという手順を繰り返した。加熱の開始から、冷却後に50℃まで温度が下がるまでを一サイクルとして、一サイクルにおける各時間経過時の温度変化を追跡した。結果を図5に示す。図中、「Coated」は実施例1を示し、「Bare」は比較例1を示す。また、一サイクルに要する時間(熱冷サイクル時間)を測定した。
[Heat-cooling cycle time evaluation]
In the cooling rate evaluation, heating was restarted when the decrease in surface temperature reached 30 ° C., air cooling was started by removing voltage at a surface temperature of 110 ° C., and heating was restarted at a surface temperature of 30 ° C. was repeated. The cycle from the start of heating to the temperature drop to 50 ° C. after cooling was defined as one cycle, and the temperature change after each time in one cycle was tracked. The results are shown in FIG. In the figure, “Coated” indicates Example 1, and “Bare” indicates Comparative Example 1. The time required for one cycle (thermal cooling cycle time) was measured.
[フィラメント及び金属ワイヤの視認性]
 加熱応答性アクチュエータを目視により観察し、フィラメント表面及び金属ワイヤが視認可能か否かを判断した。
[Visibility of filament and metal wire]
The heating-responsive actuator was visually observed to determine whether the filament surface and the metal wire were visible.
[実施例1]
 東レモノフィラメント製ナイロン6,6フィラメント(直径0.5mm,熱伝導率=0.2W/mK)を500回/mの捻り密度(単位長さあたりの捻り回数)で捻り,180℃40分間でアニール処理を行った。得られた撚糸済みフィラメントの周囲に1600回巻き/mの密度で銅ワイヤ(直径0.15mm)を巻き付け、その上から、樹脂に高放熱性のハイドロタルサイト粒子が混合された放熱性塗料(合同インキ社製ユニクール(登録商標)UC-001、熱伝導率0.45W/mK)を厚さ20μmで塗布し、120℃20分間で乾燥した。この加工フィラメントを捻りと同じ回転方向に直径2mmの金属棒を中心としてコイル状に巻き付け、180℃40分間のアニール処理を行った。その後、金属棒を取り除いて伸縮型の加熱応答性アクチュエータを得た。加熱応答性アクチュエータのフィラメント及び金属ワイヤの視認性に関し、フィラメント表面及び金属ワイヤのいずれもが、放熱性塗料の塗膜を通して視認可能であった。
[Example 1]
Toray monofilament nylon 6,6 filament (diameter 0.5 mm, thermal conductivity = 0.2 W / mK) twisted at a twist density of 500 turns / m (number of twists per unit length) and annealed at 180 ° C for 40 minutes Processing was performed. A copper wire (0.15 mm in diameter) is wound around the obtained twisted filament at a density of 1600 turns / m, and a heat-radiating paint (high-heat-radiating hydrotalcite particles mixed with a resin) is applied from above. Unicool (registered trademark) UC-001, manufactured by Godo Ink Co., Ltd., thermal conductivity: 0.45 W / mK) was applied at a thickness of 20 μm, and dried at 120 ° C. for 20 minutes. This processed filament was wound in a coil shape around a metal rod having a diameter of 2 mm in the same rotational direction as the twist, and an annealing treatment was performed at 180 ° C. for 40 minutes. Thereafter, the metal rod was removed to obtain a telescopic heating responsive actuator. Regarding the visibility of the filament and the metal wire of the heat-responsive actuator, both the filament surface and the metal wire were visible through the coating film of the heat-radiating paint.
 作成した実施例1のアクチュエータ10cm(コイル状の加熱応答性アクチュエータを横に静置したときの長さ)を採取し、上下方向に上端を固定し、下端に20gの錘を垂下した。アクチュエータ全長に対して8Vの直流電圧を印加(銅ワイヤに対して印加)したところ、アクチュエータは収縮して錘を引き上げた。その後、表面温度が110℃に達した時点で電圧を除去すると、徐々にアクチュエータは元の長さに伸長し、錘が下りた。 10 cm of the prepared actuator of Example 1 (length when the coil-shaped heat-responsive actuator was left to stand horizontally) was sampled, the upper end was fixed in the vertical direction, and a 20 g weight was suspended from the lower end. When a DC voltage of 8 V was applied to the entire length of the actuator (applied to the copper wire), the actuator contracted and lifted the weight. Thereafter, when the voltage was removed when the surface temperature reached 110 ° C., the actuator gradually expanded to its original length and the weight descended.
[比較例1]
放熱性塗料を塗布しない以外は実施例1と同様に加熱応答性アクチュエータを得た。
[Comparative Example 1]
A heat-responsive actuator was obtained in the same manner as in Example 1, except that the heat-radiating paint was not applied.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1のアクチュエータは、比較例1のアクチュエータに比べて、冷却速度が極めて速く、熱冷サイクル時間が短くすることができることが分かった。 ア ク チ ュ エ ー タ It was found that the actuator of Example 1 had an extremely high cooling rate and a shorter thermal cooling cycle time than the actuator of Comparative Example 1.
 本発明のアクチュエータは、加熱により変形するアクチュエータとして、様々な物品の動力化の用途において、使用することができるので、産業上極めて有効である。 The actuator of the present invention can be used for powering various articles as an actuator that is deformed by heating, and is extremely industrially effective.
 1・・・アクチュエータ
 10・・・繊維状高分子材料
 11・・・ハイドロタルサイト粒子
 12・・・線状導電体
 13・・・樹脂膜(放熱層)
 I・・・線状導電体の螺旋構造の隣接する線状導電体同士の隙間間隔
 D10・・・繊維状高分子材料の直径
 D11・・・線状導電体の直径
DESCRIPTION OF SYMBOLS 1 ... Actuator 10 ... Fibrous polymer material 11 ... Hydrotalcite particle 12 ... Linear conductor 13 ... Resin film (heat dissipation layer)
I: gap distance between adjacent linear conductors in a spiral structure of linear conductors D 10 : diameter of fibrous polymer material D 11 : diameter of linear conductors

Claims (9)

  1.  加熱により変形する繊維状高分子材料と、分散状態のハイドロタルサイト粒子とを備えるアクチュエータ。 ア ク チ ュ エ ー タ An actuator comprising a fibrous polymer material that is deformed by heating and hydrotalcite particles in a dispersed state.
  2.  前記繊維状高分子材料が樹脂膜により被覆され、前記ハイドロタルサイト粒子が前記樹脂膜中に分散している、請求項1に記載のアクチュエータ。 The actuator according to claim 1, wherein the fibrous polymer material is covered with a resin film, and the hydrotalcite particles are dispersed in the resin film.
  3.  前記繊維状高分子材料の熱伝導率X(W・m-1・K-1)と、前記樹脂膜の熱伝導率Y(W・m-1・K-1)との間に下記(式1)の関係が成立する、請求項2に記載のアクチュエータ。
       Y≧X+0.2       ・・・(式1)
    The following formula is defined between the thermal conductivity X (W · m −1 · K −1 ) of the fibrous polymer material and the thermal conductivity Y (W · m −1 · K −1 ) of the resin film. 3. The actuator according to claim 2, wherein the relationship of 1) is established.
    Y ≧ X + 0.2 (Equation 1)
  4.  更に、導電体を備える、請求項2又は3に記載のアクチュエータ。 (4) The actuator according to claim 2 or 3, further comprising a conductor.
  5.  前記導電体が導電性の線状材料から形成されている、請求項4に記載のアクチュエータ。 The actuator according to claim 4, wherein the conductor is formed of a conductive linear material.
  6.  前記線状材料が前記繊維状高分子材料に螺旋状に巻かれている、請求項5に記載のアクチュエータ。 The actuator according to claim 5, wherein the linear material is spirally wound around the fibrous polymer material.
  7.  前記線状材料が前記樹脂膜中に埋設されている、請求項5又は6に記載のアクチュエータ。 7. The actuator according to claim 5, wherein the linear material is embedded in the resin film.
  8.  前記導電体が前記繊維状高分子材料に前記樹脂膜により接着又は固定されている、請求項4~7のいずれか1項に記載のアクチュエータ。 8. The actuator according to claim 4, wherein the conductor is bonded or fixed to the fibrous polymer material by the resin film.
  9.  前記繊維状高分子材料が捻られたものである、請求項1~8のいずれか1項に記載のアクチュエータ。 The actuator according to any one of claims 1 to 8, wherein the fibrous polymer material is twisted.
PCT/JP2019/034702 2018-09-07 2019-09-04 Actuator WO2020050293A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020541253A JP7292287B2 (en) 2018-09-07 2019-09-04 actuator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-167911 2018-09-07
JP2018167911 2018-09-07

Publications (1)

Publication Number Publication Date
WO2020050293A1 true WO2020050293A1 (en) 2020-03-12

Family

ID=69721836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/034702 WO2020050293A1 (en) 2018-09-07 2019-09-04 Actuator

Country Status (3)

Country Link
JP (1) JP7292287B2 (en)
TW (1) TWI821387B (en)
WO (1) WO2020050293A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012087434A (en) * 2010-10-20 2012-05-10 Toyota Boshoku Corp Heat generating yarn and woven or knitted fabric using the same
WO2016189683A1 (en) * 2015-05-27 2016-12-01 オリンパス株式会社 Hardness-variable actuator
JP2017118811A (en) * 2015-12-18 2017-06-29 パナソニックIpマネジメント株式会社 Actuator, actuator set and shrinkable belt
JP2018019501A (en) * 2016-07-27 2018-02-01 株式会社デンソー Actuator, sensor device, and control apparatus
JP2018046592A (en) * 2016-09-12 2018-03-22 株式会社デンソー Actuator device
WO2018055972A1 (en) * 2016-09-20 2018-03-29 株式会社デンソー Actuator device
WO2018123240A1 (en) * 2016-12-27 2018-07-05 リンテック株式会社 Actuator and method for manufacturing same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7244497B2 (en) * 2001-09-21 2007-07-17 Outlast Technologies, Inc. Cellulosic fibers having enhanced reversible thermal properties and methods of forming thereof
JP2010283928A (en) 2009-06-02 2010-12-16 Kuraray Co Ltd Polymer transducer
JP6228605B2 (en) * 2012-08-01 2017-11-08 ザ ボード オブ リージェンツ,ザ ユニバーシティ オブ テキサス システム Coiled and non-coiled nanofiber twisted and polymer fiber torsion and tension actuators
JP5958162B2 (en) 2012-08-03 2016-07-27 セイコーエプソン株式会社 Actuator
EP2928064A4 (en) 2012-11-29 2015-11-25 Daicel Corp Elastic body for actuator, and piezoelectric actuator
KR101868780B1 (en) 2012-12-28 2018-06-20 다우 코닝 도레이 캄파니 리미티드 Curable organopolysiloxane composition for transducers and applications of such curable silicone composition for transducers
WO2014105965A1 (en) 2012-12-28 2014-07-03 Dow Corning Corporation Curable organopolysiloxane composition for transducers and applications of such curable silicone composition for transducers
US20170314539A1 (en) 2014-10-22 2017-11-02 Industry-University Cooperation Foundation Hanyang University Rotation-type actuator actuated by temperature fluctuation or temperature gradient and energy harvesting device using same
US10938328B2 (en) 2016-06-22 2021-03-02 General Electric Company Harvesting energy from composite aircraft engine components
JP2018019500A (en) 2016-07-27 2018-02-01 株式会社デンソー Actuator and sensor device
JP6663081B2 (en) * 2016-11-14 2020-03-11 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Stiffness control of electro-active actuator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012087434A (en) * 2010-10-20 2012-05-10 Toyota Boshoku Corp Heat generating yarn and woven or knitted fabric using the same
WO2016189683A1 (en) * 2015-05-27 2016-12-01 オリンパス株式会社 Hardness-variable actuator
JP2017118811A (en) * 2015-12-18 2017-06-29 パナソニックIpマネジメント株式会社 Actuator, actuator set and shrinkable belt
JP2018019501A (en) * 2016-07-27 2018-02-01 株式会社デンソー Actuator, sensor device, and control apparatus
JP2018046592A (en) * 2016-09-12 2018-03-22 株式会社デンソー Actuator device
WO2018055972A1 (en) * 2016-09-20 2018-03-29 株式会社デンソー Actuator device
WO2018123240A1 (en) * 2016-12-27 2018-07-05 リンテック株式会社 Actuator and method for manufacturing same

Also Published As

Publication number Publication date
JPWO2020050293A1 (en) 2021-08-30
TW202020241A (en) 2020-06-01
JP7292287B2 (en) 2023-06-16
TWI821387B (en) 2023-11-11

Similar Documents

Publication Publication Date Title
JP5866300B2 (en) Twisted thermoplastic polymer composite cable, method for making and using the same
JP5628172B2 (en) Twisted composite cable and method of manufacture and use thereof
US7987659B2 (en) Twisted electric heating cables and method for manufacturing thereof
WO2017022146A1 (en) Actuator
JP6889283B2 (en) Continuous production of muscle fibers
WO2018123240A1 (en) Actuator and method for manufacturing same
WO2020050293A1 (en) Actuator
JPWO2019083038A1 (en) Carbon nanotube composite wire, carbon nanotube coated wire and wire harness
JP5568028B2 (en) Insulated conducting wire, coil and method for producing insulated conducting wire
TWI784078B (en) Actuator
KR102004931B1 (en) Hybrid soft actuator and fabricating method for the same
JP2003252652A (en) Method of manufacturing optical fiber cord, its apparatus and optical fiber cord
JPWO2019083039A1 (en) Carbon nanotube composite wire, carbon nanotube coated wire and wire harness
JPWO2019083037A1 (en) Carbon nanotube composite wire, carbon nanotube coated wire, wire harness, robot wiring and train overhead wire
CN111834046B (en) Preparation method of wire and wire
JP5312184B2 (en) Suspension wire
JP4053348B2 (en) Twisted wire and coiled cable hanger and method for producing them
WO2023054036A1 (en) Electric wire, and method for manufacturing electric wire
JP2022148440A (en) Actuator and actuator manufacturing method
CN111834044B (en) Aluminum-coated carbon steel wire, preparation method thereof and wire
WO2023192807A1 (en) Composite conductors including radiative and/or hard coatings and methods of manufacture thereof
JP2003215414A (en) Manufacturing method for high-density optical fiber cable
JP2020184421A (en) Carbon nanotube composite wire, carbon nanotube coated electric wire and wire harness
JP2014073060A (en) Order wire for cable-passing and method of manufacturing the same
JP2010261980A (en) Tension member for communication cable

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19856926

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2020541253

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19856926

Country of ref document: EP

Kind code of ref document: A1