WO2018055946A1 - 水素吸蔵体、ガスクロミック型調光素子、水素感知素子及び水素センサー - Google Patents
水素吸蔵体、ガスクロミック型調光素子、水素感知素子及び水素センサー Download PDFInfo
- Publication number
- WO2018055946A1 WO2018055946A1 PCT/JP2017/029127 JP2017029127W WO2018055946A1 WO 2018055946 A1 WO2018055946 A1 WO 2018055946A1 JP 2017029127 W JP2017029127 W JP 2017029127W WO 2018055946 A1 WO2018055946 A1 WO 2018055946A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hydrogen storage
- hydrogen
- layer
- storage body
- catalyst layer
- Prior art date
Links
- 239000001257 hydrogen Substances 0.000 title claims abstract description 153
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 153
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 128
- 238000003860 storage Methods 0.000 title claims abstract description 90
- 150000002431 hydrogen Chemical class 0.000 title claims description 25
- 239000000463 material Substances 0.000 claims abstract description 28
- 229910000929 Ru alloy Inorganic materials 0.000 claims abstract description 23
- OYJSZRRJQJAOFK-UHFFFAOYSA-N palladium ruthenium Chemical compound [Ru].[Pd] OYJSZRRJQJAOFK-UHFFFAOYSA-N 0.000 claims abstract description 18
- 238000006356 dehydrogenation reaction Methods 0.000 claims abstract description 16
- 238000005984 hydrogenation reaction Methods 0.000 claims abstract description 16
- 230000003287 optical effect Effects 0.000 claims abstract description 14
- 239000010410 layer Substances 0.000 claims description 101
- 239000003054 catalyst Substances 0.000 claims description 46
- 230000008859 change Effects 0.000 claims description 15
- 238000009792 diffusion process Methods 0.000 claims description 13
- 239000011241 protective layer Substances 0.000 claims description 13
- 239000011232 storage material Substances 0.000 claims description 10
- 230000003197 catalytic effect Effects 0.000 abstract description 3
- 239000007789 gas Substances 0.000 description 29
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 28
- 238000002834 transmittance Methods 0.000 description 26
- 239000010409 thin film Substances 0.000 description 16
- 238000000034 method Methods 0.000 description 14
- 239000000758 substrate Substances 0.000 description 12
- 239000000203 mixture Substances 0.000 description 11
- 239000011521 glass Substances 0.000 description 10
- 239000002184 metal Chemical class 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 10
- 229910000861 Mg alloy Inorganic materials 0.000 description 9
- 239000010408 film Substances 0.000 description 9
- 230000002265 prevention Effects 0.000 description 9
- 229910052763 palladium Inorganic materials 0.000 description 8
- 229910000946 Y alloy Inorganic materials 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 7
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 6
- 239000011777 magnesium Substances 0.000 description 6
- 229910052707 ruthenium Inorganic materials 0.000 description 6
- 238000004544 sputter deposition Methods 0.000 description 6
- 229910052715 tantalum Inorganic materials 0.000 description 6
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- MIOQWPPQVGUZFD-UHFFFAOYSA-N magnesium yttrium Chemical compound [Mg].[Y] MIOQWPPQVGUZFD-UHFFFAOYSA-N 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 229910052761 rare earth metal Inorganic materials 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 229910001252 Pd alloy Inorganic materials 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 230000035699 permeability Effects 0.000 description 4
- 239000004033 plastic Substances 0.000 description 4
- 229920003023 plastic Polymers 0.000 description 4
- 229920000139 polyethylene terephthalate Polymers 0.000 description 4
- 239000005020 polyethylene terephthalate Substances 0.000 description 4
- 150000002910 rare earth metals Chemical class 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- -1 hydrogen ions Chemical class 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 238000001771 vacuum deposition Methods 0.000 description 3
- 239000004677 Nylon Substances 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000007429 general method Methods 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 229920000620 organic polymer Chemical class 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000011112 polyethylene naphthalate Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000003980 solgel method Methods 0.000 description 2
- 239000004408 titanium dioxide Substances 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- 229910001930 tungsten oxide Inorganic materials 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 2
- 229910000531 Co alloy Inorganic materials 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- 229910019083 Mg-Ni Inorganic materials 0.000 description 1
- 229910019403 Mg—Ni Inorganic materials 0.000 description 1
- 229910000914 Mn alloy Inorganic materials 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- HTXDPTMKBJXEOW-UHFFFAOYSA-N dioxoiridium Chemical compound O=[Ir]=O HTXDPTMKBJXEOW-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 238000000313 electron-beam-induced deposition Methods 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 229910000457 iridium oxide Inorganic materials 0.000 description 1
- DCYOBGZUOMKFPA-UHFFFAOYSA-N iron(2+);iron(3+);octadecacyanide Chemical compound [Fe+2].[Fe+2].[Fe+2].[Fe+3].[Fe+3].[Fe+3].[Fe+3].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-] DCYOBGZUOMKFPA-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 229960003351 prussian blue Drugs 0.000 description 1
- 239000013225 prussian blue Substances 0.000 description 1
- 229910000982 rare earth metal group alloy Inorganic materials 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 229910000687 transition metal group alloy Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/19—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on variable-reflection or variable-refraction elements not provided for in groups G02F1/015 - G02F1/169
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/0005—Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/44—Palladium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/46—Ruthenium, rhodium, osmium or iridium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/46—Ruthenium, rhodium, osmium or iridium
- B01J23/462—Ruthenium
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/59—Transmissivity
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/75—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
- G01N21/77—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/75—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
- G01N21/77—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
- G01N21/78—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
- G01N21/783—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour for analysing gases
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/0004—Gaseous mixtures, e.g. polluted air
- G01N33/0009—General constructional details of gas analysers, e.g. portable test equipment
- G01N33/0027—General constructional details of gas analysers, e.g. portable test equipment concerning the detector
- G01N33/0036—General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
- G01N33/005—H2
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/15—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect
- G02F1/153—Constructional details
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/75—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
- G01N21/77—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
- G01N2021/7769—Measurement method of reaction-produced change in sensor
- G01N2021/7773—Reflection
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/75—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
- G01N21/77—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
- G01N2021/7769—Measurement method of reaction-produced change in sensor
- G01N2021/7783—Transmission, loss
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/32—Hydrogen storage
Definitions
- the present invention relates to a hydrogen storage body, a gas chromic light control device, a hydrogen sensing device, and a hydrogen sensor.
- a hydrogen occlusion body comprising a hydrogen occlusion layer whose optical properties reversibly change due to hydrogenation and dehydrogenation, and a catalyst layer that promotes hydrogenation and dehydrogenation in the hydrogen occlusion layer is used at normal temperature and pressure. can do.
- the above-mentioned hydrogen occlusion body includes a gas chromic dimming element that can control the inflow and outflow of light and heat (for example, see Patent Documents 1 to 5) and a hydrogen sensing element (for example, Patent Documents). 6 and 7) and a hydrogen sensor (see, for example, Patent Documents 8 and 9).
- tungsten oxide As materials constituting the hydrogen storage layer, tungsten oxide, rare earth elements, alloys of magnesium and rare earth metals, and alloys of magnesium and transition metals (see, for example, Patent Documents 2 to 7) are known.
- the above-described hydrogen storage body has a problem that the manufacturing cost is high because the material constituting the catalyst layer is very expensive.
- an object of one embodiment of the present invention is to provide a hydrogen storage body that can be used at normal temperature and pressure while reducing manufacturing costs.
- One embodiment of the present invention includes a hydrogen storage body including a hydrogen storage layer including a material whose optical properties reversibly change due to hydrogenation and dehydrogenation, and a catalyst layer including a palladium-ruthenium alloy.
- the hydrogen storage body includes a hydrogen storage layer including a material whose optical properties reversibly change by hydrogenation and dehydrogenation (hereinafter referred to as “hydrogen storage material”), palladium, And a catalyst layer containing a ruthenium alloy.
- hydrogen storage material a material whose optical properties reversibly change by hydrogenation and dehydrogenation
- palladium a material whose optical properties reversibly change by hydrogenation and dehydrogenation
- a catalyst layer containing a ruthenium alloy a material whose optical properties reversibly change by hydrogenation and dehydrogenation
- FIG. 1 shows a configuration example of the hydrogen storage body according to the first embodiment of the present invention.
- the hydrogen storage body 100 includes a hydrogen storage layer 10 and a catalyst layer 20.
- the hydrogen storage layer 10 includes a hydrogen storage material, and the catalyst layer 20 includes a palladium-ruthenium alloy. For this reason, the hydrogen storage body 100 can be used at normal temperature and a normal pressure.
- ruthenium is about one-tenth the price of palladium.
- the hydrogen storage body 100 which has the catalyst layer 20 containing a palladium ruthenium alloy can lower manufacturing cost than the hydrogen storage body which has a catalyst layer containing palladium.
- the palladium / ruthenium alloy contained in the catalyst layer 20 has a function of promoting hydrogenation and dehydrogenation of the hydrogen storage material contained in the hydrogen storage layer 10. For this reason, the time required for the change of the optical characteristic of the hydrogen storage layer 10, ie, switching time, can be shortened by the catalyst layer 20.
- the catalyst layer 20 may further contain an element other than the palladium / ruthenium alloy as a trace component (inevitable component).
- the palladium-ruthenium alloy is cheaper as the composition ratio of ruthenium is larger, but the composition ratio of ruthenium is not particularly limited.
- the palladium-ruthenium alloy has the general formula Pd 1-x Ru x (0.1 ⁇ x ⁇ 0.7) (1) from the viewpoint of shortening the switching time when stored in the atmosphere for a long time.
- the thickness of the catalyst layer 20 is appropriately selected depending on the reactivity of the hydrogen storage layer 10 and the catalytic ability of the palladium-ruthenium alloy, and is not particularly limited, but is preferably 1 nm or more and 20 nm or less. .
- the function of the catalyst layer 20 can be improved as the thickness of the catalyst layer 20 is 1 nm or more. On the other hand, when the thickness of the catalyst layer 20 is 20 nm or less, the light transmittance of the catalyst layer 20 can be improved.
- the method for forming the catalyst layer 20 is not particularly limited.
- a general method such as a sputtering method, a vacuum evaporation method, an electron beam evaporation method, a chemical vapor deposition method (CVD), a plating method, or a sol-gel method is used.
- a film formation method can be used.
- the hydrogen storage layer 10 preferably contains a hydrogen storage material whose optical properties reversibly change by hydrogenation and dehydrogenation at normal temperature and pressure.
- the hydrogen storage material is not particularly limited as long as the optical properties reversibly change due to hydrogenation and dehydrogenation.
- the hydrogen storage material may be a material having a chromic characteristic in which the optical characteristics are reversibly changed by hydrogenation and dehydrogenation.
- Hydrogen storage materials include metal oxides, organic polymers, metal complexes that change reversibly between a colored state and a transparent state by hydrogenation and dehydrogenation. It is preferable to use an alloy or a rare earth metal hydride whose state changes reversibly between the reflection state (metal state).
- metal oxide examples include tungsten oxide, molybdenum oxide, vanadium oxide, nickel oxide, titanium dioxide, iridium oxide, and the like.
- organic polymer examples include polyaniline, PEDOT-PSS, and polypyrrole.
- metal complexes examples include Prussian blue type complexes.
- the hydrogen storage layer 10 may further contain an element other than the hydrogen storage material as a trace component (inevitable component).
- a hydrogen storage body 200 may be formed by inserting a diffusion prevention layer 50 between the hydrogen storage layer 10 and the catalyst layer 20.
- a material constituting the diffusion preventing layer 50 a material capable of preventing the palladium / ruthenium alloy from diffusing into the hydrogen storage layer 10 and effectively diffusing the hydrogen permeated through the catalyst layer 20 into the hydrogen storage layer 10 is used. If it is, it will not specifically limit, However, It is preferable to use niobium, vanadium, titanium, and a tantalum.
- a method for forming the diffusion preventing layer 50 is not particularly limited, and examples thereof include general methods such as sputtering, vacuum deposition, electron beam deposition, chemical vapor deposition (CVD), plating, and sol-gel method. Any film forming method can be used.
- the hydrogen storage bodies 100 and 200 have chromic characteristics in which optical characteristics reversibly change, that is, switch due to hydrogenation and dehydrogenation. That is, since the hydrogen storage bodies 100 and 200 have a function of changing light transmittance and light reflectance by hydrogenation and dehydrogenation, they can be suitably applied to gaschromic light control elements. Furthermore, since the hydrogen storage bodies 100 and 200 can visually determine changes in light transmittance and light reflectance, they can be suitably applied to hydrogen sensing elements. Moreover, since the hydrogen storage bodies 100 and 200 can estimate the change of the amount of occlusion of hydrogen by measuring the change of light transmittance and light reflectance with a sensor or the like, it can be suitably applied to a hydrogen sensor. it can.
- the hydrogen storage body according to the second embodiment of the present invention further includes a protective layer on the surface of the hydrogen storage body according to the first embodiment of the present invention.
- FIG. 3 shows a configuration example of the hydrogen storage body according to the second embodiment of the present invention.
- the hydrogen storage body 300 further includes a protective layer 30 on the surface of the hydrogen storage body 200.
- the hydrogen storage body 300 includes a protective layer 30 on at least a part of the surface of the catalyst layer 20 opposite to the hydrogen storage layer 10.
- the protective layer 30 is a layer having hydrogen permeability and water impermeability, and has a function of preventing the hydrogen storage layer 10 from being oxidized by water or oxygen in cooperation with the catalyst layer 20.
- the catalyst layer 20 also has a function of preventing the oxidation of the hydrogen storage layer 10, but by forming the protective layer 30, the function of preventing the oxidation of the hydrogen storage layer 10 can be enhanced.
- the material constituting the protective layer 30 is not particularly limited as long as it has permeability (hydrogen permeability) to hydrogen (hydrogen ions) and non-permeability to water.
- Polymers such as polyvinyl acetate, polyvinyl chloride, polystyrene, and cellulose acetate, and inorganic materials such as titanium dioxide are used.
- a general film forming method such as a method of applying a dispersion liquid in which a polymer is dispersed and then drying, a method of forming an inorganic thin film by a sputtering method, or a vacuum evaporation method, etc. Can be used.
- the protective layer 30 By forming the protective layer 30, the oxidation of the catalyst layer 20 and the hydrogen storage layer 10 by water or oxygen can be prevented. For this reason, it becomes possible to prevent deterioration of the catalyst layer 20 and the hydrogen storage layer 10, and to improve durability.
- diffusion prevention layer 50 may not be inserted between the hydrogen storage layer 10 and the catalyst layer 20 in the same manner as the hydrogen storage body 100.
- the hydrogen storage body according to the first embodiment of the present invention has a function of reversibly changing the optical characteristics by hydrogenation and dehydrogenation.
- the gas chromic light control device is hydrogenated or dehydrogenated by a change in the surrounding atmosphere, that is, by occluding or releasing hydrogen, By changing the light transmittance or light reflectance of the light, it is possible to control the inflow or outflow of light and heat.
- FIG. 4 shows a configuration example of the gaschromic light control device according to the third embodiment of the present invention.
- the gaschromic light control element 400 further includes a base material 40 on the surface of the hydrogen storage body 200.
- the gas chromic light control element 400 includes a base material 40 on at least a part of the surface of the hydrogen storage layer 200 opposite to the catalyst layer 20 of the hydrogen storage layer 10.
- the material constituting the substrate 40 is not particularly limited as long as it transmits visible light, but for example, glass or plastic is preferably used.
- PET polyethylene terephthalate
- PEN polyethylene naphthalate
- nylon acrylic
- diffusion prevention layer 50 may not be inserted between the hydrogen storage layer 10 and the catalyst layer 20 in the same manner as the hydrogen storage body 100.
- the gas chromic light control device further including the base material on the surface of the hydrogen storage body according to the first embodiment of the present invention has been described, but the surface of the hydrogen storage body according to the second embodiment of the present invention has been described. It can also be set as the gas chromic type light control element further provided with a base material. That is, as shown in FIG. 5, as a gaschromic dimming element 500 in which a substrate 40 is provided on at least a part of the surface of the hydrogen sensing layer 300 opposite to the catalyst layer 20 of the hydrogen storage layer 10. Also good.
- the hydrogen sensor according to the fourth embodiment of the present invention measures the change in light transmittance or light reflectance of the hydrogen occlusion body that occludes or releases hydrogen due to the change in the surrounding atmosphere. It can sense hydrogen in it.
- a base material A method of detecting reflected light or transmitted light from the 40 side or the catalyst layer 20 side can be used.
- the material constituting the substrate 40 is transparent to the light used for detection, that is, does not hinder the transmission of light used for detection. It is desirable.
- the optical characteristics of the substrate 40 are not particularly limited.
- diffusion prevention layer 50 may not be inserted between the hydrogen storage layer 10 and the catalyst layer 20 in the same manner as the hydrogen storage body 100.
- the hydrogen sensor further including the base material on the surface of the hydrogen storage body according to the first embodiment of the present invention has been described, but the base material on the surface of the hydrogen storage body according to the second embodiment of the present invention is described. It can also be set as the hydrogen sensor further equipped with. That is, it is good also as a structure similar to the gaschromic type light control element 500 (refer FIG. 5).
- the hydrogen sensing element according to the fifth embodiment of the present invention has the same configuration as that of the gas chromic light control element according to the third embodiment of the present invention, and thus the description thereof is omitted.
- a hydrogen storage layer 10 made of a magnesium / yttrium alloy, a diffusion prevention layer 50 made of tantalum, and a catalyst layer 20 made of a palladium-ruthenium alloy are sequentially laminated on a glass substrate as a base material 40. Then, a gas chromic light control device 400 having the hydrogen storage body 200 was produced.
- a magnesium / yttrium alloy thin film (hydrogen storage layer 10) having a thickness of 50 nm, a tantalum thin film having a thickness of 2 nm (diffusion prevention layer 50), A palladium-ruthenium alloy thin film (catalyst layer 20) having a thickness of 3 nm and having a changed composition ratio was formed.
- the tantalum thin film of the diffusion preventing layer 50, and the palladium-ruthenium alloy thin film of the catalyst layer 20 a magnetron sputtering apparatus capable of multi-element film formation was used.
- metal magnesium, metal yttrium, metal tantalum, metal palladium, and metal ruthenium were set as targets on the five sputter guns, respectively.
- the glass substrate was set in a vacuum apparatus and the chamber was evacuated.
- the composition ratio of the magnesium-yttrium alloy thin film (hydrogen storage layer 10) to be formed can be controlled by the power applied to each target. Moreover, the film thickness of the magnesium-yttrium alloy thin film (hydrogen storage layer 10) to be formed can be controlled by the time during which power is applied to the target.
- a tantalum thin film (diffusion prevention layer 50) was formed by applying a power of 20 W to a metal tantalum target under the same vacuum conditions as those for forming the hydrogen storage layer 10.
- a palladium-ruthenium alloy thin film represented by the following formula was formed to produce a gaschromic light control element 400 having the hydrogen storage bodies 200 of Examples 1 to 9.
- Table 1 shows the power applied to the target, the composition ratio of the catalyst layer 20, and the film thickness when forming the catalyst layer 20 in the gas chromic light control elements 400 of Examples 1 to 9 and Comparative Example 1.
- the time during which hydrogen is occluded, that is, hydrogenated to be transparent, and the time during which hydrogen is released, ie, dehydrogenated, is reflected is determined by the composition of the palladium-ruthenium alloy. The ratio varied greatly.
- a glass plate G1 having a thickness of 1 mm was bonded to the gaschromic dimming element 400 with a spacer S interposed therebetween.
- a flow of a predetermined amount of hydrogen-containing gas is performed for 95 seconds in the gap between the glass plate G1 and another glass plate G2 having a thickness of 1 mm by the mass flow controller M, and then the flow of hydrogen-containing gas is changed to 60. Stopped for a minute.
- the flow of the hydrogen-containing gas is stopped, air flows into the gap between the two glass plates G1 and G2 from the opening.
- the flow control of the hydrogen-containing gas with this operation as one cycle was repeated a predetermined number of times, during which the light transmittance was measured every 2 seconds.
- a light emitting diode L having a wavelength of 940 nm was used as the light source, and a photodiode P was used as the light receiving element.
- FIG. 7A, FIG. 7B, FIG. 8A, FIG. 8B, FIG. 9A, and FIG. 9B show the measurement results of the light transmittance of the gaschromic light control element 400 of Comparative Example 1, Examples 2 and 4.
- a and B are a case where the reflective state changes to the transparent state and a case where the transparent state changes to the reflective state, respectively.
- the elapsed time means the time that has elapsed since the start or stop of the flow of the hydrogen-containing gas.
- the light transmittance except when changing from the reflection state in the first cycle to the transparent state is the lowest value among the light transmittances in the eight reflection states excluding the light transmittance in the reflection state immediately after film formation. 0 [arbitrary unit], the light transmittance constant in the transparent state was normalized to 100 [arbitrary unit].
- the light transmittance when changing from the reflection state in the first cycle to the transparent state is 0 [arbitrary unit] immediately after film formation, and 100 [arbitrary unit] the light transmittance that is constant in the transparent state. ] And standardized.
- the time from the start of the flow of the hydrogen-containing gas to the light transmittance reaching 90 [arbitrary units] was defined as the switching time from the reflective state to the transparent state.
- the time from when the flow of the hydrogen-containing gas was stopped until the light transmittance reached 10 [arbitrary units] was defined as the switching time from the transparent state to the reflective state.
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nonlinear Science (AREA)
- Pathology (AREA)
- Immunology (AREA)
- Biochemistry (AREA)
- Analytical Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Combustion & Propulsion (AREA)
- Materials Engineering (AREA)
- Optics & Photonics (AREA)
- Food Science & Technology (AREA)
- Inorganic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Plasma & Fusion (AREA)
- Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
- Hydrogen, Water And Hydrids (AREA)
- Catalysts (AREA)
Abstract
Description
本実施形態では、本発明の第1の実施形態に係る水素吸蔵体について説明する。
Pd1-xRux(0.1<x<0.7)・・・(1)
で表される化合物であることが好ましく、一般式
Pd1-xRux(0.15<x<0.55)・・・(2)
で表される化合物であることがより好ましい。
本実施形態では、本発明の第2の実施形態に係る水素吸蔵体について説明する。
本実施形態では、本発明の第3の実施形態に係るガスクロミック型調光素子について説明する。
本実施形態では、本発明の第4の実施形態に係る水素センサーについて説明する。
本発明の第5の実施形態に係る水素感知素子は、本発明の第3の実施形態に係るガスクロミック型調光素子と同様の構成であるため、説明を省略する。
本実施例では、基材40としての、ガラス基板上に、マグネシウム・イットリウム合金からなる水素吸蔵層10、タンタルからなる拡散防止層50、パラジウム-ルテニウム合金からなる触媒層20が順次積層されている、水素吸蔵体200を有するガスクロミック型調光素子400を作製した。
Mg0.4Y0.6
で表わされるマグネシウム・イットリウム合金薄膜(水素吸蔵層10)を成膜した。このとき、スパッタ中のアルゴンガス圧を0.3Paとし、直流スパッタ法により、それぞれのターゲットに所定時間印加することでスパッタした。
Pd1-xRux(x=0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9)
で表わされるパラジウム・ルテニウム合金薄膜(触媒層20)を成膜し、実施例1~9の水素吸蔵体200を有するガスクロミック型調光素子400を作製した。
金属パラジウムのみに電力を印加して、x=0とした、即ち、パラジウム薄膜(触媒層20)を成膜した以外は、実施例1~9と同様にして、水素吸蔵体200を有するガスクロミック型調光素子400を作製した。
以上の手順によって作製したガスクロミック型調光素子400は、金属光沢の反射状態になっていた。さらに、大気中で500時間放置しても、ガスクロミック型調光素子400は、同様に金属光沢の反射状態になっていた。パラジウム・ルテニウム合金薄膜の表面をアルゴンで4体積%に希釈した1気圧の水素ガス(以下、「水素含有ガス」という)に曝すと、マグネシウム・イットリウム合金薄膜が水素を吸蔵すること、即ち、水素化することにより、透明状態に変化した。この状態で、パラジウム・ルテニウム合金薄膜の表面を大気に曝すと、水素を放出すること、即ち、脱水素化することにより、反射状態に戻った。以上のように、常温・常圧における水素の吸蔵及び放出、即ち、水素化及び脱水素化により、ガスクロミック型調光素子400の光学特性は変化した。
ガスクロミック型調光素子400を大気中で500時間放置した後、ガスクロミック型調光素子400の光透過率を測定した。
0.1<x<0.7
を満たすとき、スイッチング時間が短いことがわかる。これは、ルテニウムと合金化することで、パラジウムの触媒作用が大気中に放置しても劣化しないためであると考えられる。
20 触媒層
30 保護層
40 基材
50 拡散防止層
100、200、300 水素吸蔵体
400、500 ガスクロミック型調光素子
Claims (8)
- 水素化及び脱水素化により、光学特性が可逆的に変化する材料を含む水素吸蔵層と、
パラジウム・ルテニウム合金を含む触媒層とを備えることを特徴とする水素吸蔵体。 - 前記パラジウム・ルテニウム合金が、一般式
Pd1-xRux(0.1<x<0.7)
で表わされることを特徴とする請求項1に記載の水素吸蔵体。 - 前記触媒層の厚さが、1nm以上20nm以下であることを特徴とする請求項1に記載の水素吸蔵体。
- 前記水素吸蔵層と前記触媒層との間に、拡散防止層をさらに備えることを特徴とする請求項1に記載の水素吸蔵体。
- 前記触媒層に対して、前記水素吸蔵層とは反対側に、保護層をさらに備えることを特徴とする請求項1に記載の水素吸蔵体。
- 請求項1に記載の水素吸蔵体を備えることを特徴とするガスクロミック型調光素子。
- 請求項1に記載の水素吸蔵体を備えることを特徴とする水素感知素子。
- 請求項1に記載の水素吸蔵体を備えることを特徴とする水素センサー。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018540913A JP6715500B2 (ja) | 2016-09-23 | 2017-08-10 | 水素吸蔵体、ガスクロミック型調光素子、水素感知素子及び水素センサー |
US16/335,790 US11016359B2 (en) | 2016-09-23 | 2017-08-10 | Hydrogen occlusion body, gasochromic light control element, hydrogen sensing element, and hydrogen sensor |
CN201780057606.0A CN109715552B (zh) | 2016-09-23 | 2017-08-10 | 吸氢体、气致变色式调光元件、氢敏元件及氢传感器 |
EP17852727.1A EP3517495B1 (en) | 2016-09-23 | 2017-08-10 | Hydrogen storage body, gasochromic dimming element, hydrogen sensing element, and hydrogen sensor |
KR1020197008114A KR20190040986A (ko) | 2016-09-23 | 2017-08-10 | 수소 흡장체, 가스크로믹형 조광 소자, 수소 감지 소자 및 수소 센서 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-185565 | 2016-09-23 | ||
JP2016185565 | 2016-09-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018055946A1 true WO2018055946A1 (ja) | 2018-03-29 |
Family
ID=61689410
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/029127 WO2018055946A1 (ja) | 2016-09-23 | 2017-08-10 | 水素吸蔵体、ガスクロミック型調光素子、水素感知素子及び水素センサー |
Country Status (6)
Country | Link |
---|---|
US (1) | US11016359B2 (ja) |
EP (1) | EP3517495B1 (ja) |
JP (1) | JP6715500B2 (ja) |
KR (1) | KR20190040986A (ja) |
CN (1) | CN109715552B (ja) |
WO (1) | WO2018055946A1 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111118330B (zh) * | 2019-12-16 | 2021-05-04 | 北京凯恩特技术有限公司 | 钯基三元合金氢敏材料、薄膜、元件及制备方法,氢传感器 |
JP7354989B2 (ja) * | 2020-10-30 | 2023-10-03 | トヨタ自動車株式会社 | 複合合金の製造方法及び電極の製造方法 |
WO2022211541A1 (ko) * | 2021-03-31 | 2022-10-06 | 한국화학연구원 | 수소 가스 센서 및 이의 제조방법 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5992350A (ja) * | 1982-11-19 | 1984-05-28 | Fuji Photo Film Co Ltd | 分析要素 |
JP2007057233A (ja) * | 2005-08-22 | 2007-03-08 | Hitachi Cable Ltd | 光学式ガスセンサ |
JP2008298724A (ja) * | 2007-06-04 | 2008-12-11 | Atsumi Tec:Kk | 水素センサ |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4132668A (en) * | 1977-04-06 | 1979-01-02 | Gryaznov Vladimir M | Method of preparing a hydrogen-permeable membrane catalyst on a base of palladium or its alloys for the hydrogenation of unsaturated organic compounds |
WO1996038758A1 (en) | 1995-05-30 | 1996-12-05 | Philips Electronics N.V. | Switching device and the use thereof |
DE69727551T2 (de) | 1996-09-05 | 2004-12-30 | Koninklijke Philips Electronics N.V. | Gerät für optische Kommunikation |
US6006582A (en) | 1998-03-17 | 1999-12-28 | Advanced Technology Materials, Inc. | Hydrogen sensor utilizing rare earth metal thin film detection element |
US6596236B2 (en) | 1999-01-15 | 2003-07-22 | Advanced Technology Materials, Inc. | Micro-machined thin film sensor arrays for the detection of H2 containing gases, and method of making and using the same |
US6647166B2 (en) | 2000-08-17 | 2003-11-11 | The Regents Of The University Of California | Electrochromic materials, devices and process of making |
CN101121116A (zh) * | 2007-05-29 | 2008-02-13 | 中国工程物理研究院总体工程研究所 | 不可逆吸氢材料、制品及制备方法 |
JP5166347B2 (ja) | 2008-08-12 | 2013-03-21 | 独立行政法人産業技術総合研究所 | 反射型調光素子、並びに、反射型調光素子を用いた反射型調光部材及び複層ガラス |
JP5789357B2 (ja) | 2010-04-14 | 2015-10-07 | 株式会社アツミテック | 水素センサ |
US9045335B2 (en) * | 2010-08-18 | 2015-06-02 | The Governors Of The University Of Alberta | Kinetic stabilization of magnesium hydride |
CN102002608B (zh) * | 2010-11-23 | 2012-11-21 | 昆明贵金属研究所 | 钯钌新型催化材料及其制备方法 |
JP5900954B2 (ja) | 2011-09-30 | 2016-04-06 | 国立研究開発法人産業技術総合研究所 | 反射型調光素子、該反射型調光素子を用いた反射型調光部材、及び、複層ガラス。 |
JP5967568B2 (ja) * | 2012-05-24 | 2016-08-10 | 国立研究開発法人産業技術総合研究所 | 水素吸放出合金、水素吸放出体、及び水素センサー。 |
KR101683977B1 (ko) * | 2014-08-21 | 2016-12-20 | 현대자동차주식회사 | 수소 센서 및 그 제조 방법 |
JP2016131942A (ja) * | 2015-01-21 | 2016-07-25 | 国立大学法人京都大学 | 排ガス浄化用合金触媒及びその製造方法 |
-
2017
- 2017-08-10 EP EP17852727.1A patent/EP3517495B1/en active Active
- 2017-08-10 US US16/335,790 patent/US11016359B2/en active Active
- 2017-08-10 CN CN201780057606.0A patent/CN109715552B/zh active Active
- 2017-08-10 JP JP2018540913A patent/JP6715500B2/ja active Active
- 2017-08-10 WO PCT/JP2017/029127 patent/WO2018055946A1/ja unknown
- 2017-08-10 KR KR1020197008114A patent/KR20190040986A/ko not_active Application Discontinuation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5992350A (ja) * | 1982-11-19 | 1984-05-28 | Fuji Photo Film Co Ltd | 分析要素 |
JP2007057233A (ja) * | 2005-08-22 | 2007-03-08 | Hitachi Cable Ltd | 光学式ガスセンサ |
JP2008298724A (ja) * | 2007-06-04 | 2008-12-11 | Atsumi Tec:Kk | 水素センサ |
Non-Patent Citations (3)
Title |
---|
RADEVA, TSVETA ET AL.: "Highly sensitive and selective visual hydrogen detectors based on Y x Mgl-x thin films", SENS ACTUATORS B CHEM, vol. 203, 7 July 2014 (2014-07-07), pages 745 - 751, XP055498744 * |
See also references of EP3517495A4 * |
YASUSEI YAMADA: "A Novel Switchable Mirror Using Gasochromic Method", MATERIALS SCIENCE AND TECHNOLOGY, vol. 52, no. 3, 20 June 2015 (2015-06-20), pages 86 - 89, XP009513809 * |
Also Published As
Publication number | Publication date |
---|---|
US11016359B2 (en) | 2021-05-25 |
EP3517495A4 (en) | 2020-04-22 |
JP6715500B2 (ja) | 2020-07-01 |
CN109715552B (zh) | 2022-05-13 |
JPWO2018055946A1 (ja) | 2019-08-29 |
US20190250483A1 (en) | 2019-08-15 |
EP3517495A1 (en) | 2019-07-31 |
KR20190040986A (ko) | 2019-04-19 |
CN109715552A (zh) | 2019-05-03 |
EP3517495B1 (en) | 2021-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018055946A1 (ja) | 水素吸蔵体、ガスクロミック型調光素子、水素感知素子及び水素センサー | |
EP2559778B1 (en) | Hydrogen sensor using hydrogen-absorbing alloy | |
JP6057255B2 (ja) | 反射型調光素子。 | |
JP5900954B2 (ja) | 反射型調光素子、該反射型調光素子を用いた反射型調光部材、及び、複層ガラス。 | |
JP4399583B2 (ja) | マグネシウム・チタン合金を用いた全固体型反射調光エレクトロクロミック素子及び調光部材 | |
JP5164435B2 (ja) | 水素センサ | |
JP6697781B2 (ja) | 水素感知素子及び水素センサー | |
JP5967568B2 (ja) | 水素吸放出合金、水素吸放出体、及び水素センサー。 | |
JP4736090B2 (ja) | 界面の構造を制御した調光ミラー | |
JP4930990B2 (ja) | マグネシウム・ニオブ合金を用いた全固体型反射調光エレクトロクロミック素子及び調光部材 | |
JP2008298649A (ja) | マグネシウム・チタン合金薄膜を用いた水素センサ | |
JP2008298650A (ja) | マグネシウム・ニオブ合金薄膜を用いた水素センサ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17852727 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018540913 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20197008114 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017852727 Country of ref document: EP Effective date: 20190423 |