WO2018054226A1 - 随吸供氧制氧机 - Google Patents

随吸供氧制氧机 Download PDF

Info

Publication number
WO2018054226A1
WO2018054226A1 PCT/CN2017/100880 CN2017100880W WO2018054226A1 WO 2018054226 A1 WO2018054226 A1 WO 2018054226A1 CN 2017100880 W CN2017100880 W CN 2017100880W WO 2018054226 A1 WO2018054226 A1 WO 2018054226A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen
gas sensor
human body
ultrasonic gas
oxygen supply
Prior art date
Application number
PCT/CN2017/100880
Other languages
English (en)
French (fr)
Inventor
吕合奇
李明
Original Assignee
深圳市润普科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市润普科技有限公司 filed Critical 深圳市润普科技有限公司
Publication of WO2018054226A1 publication Critical patent/WO2018054226A1/zh
Priority to US16/246,518 priority Critical patent/US11123508B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/06Respiratory or anaesthetic masks
    • A61M16/0666Nasal cannulas or tubing
    • A61M16/0672Nasal cannula assemblies for oxygen therapy
    • A61M16/0677Gas-saving devices therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/1005Preparation of respiratory gases or vapours with O2 features or with parameter measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/021Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes operated by electrical means
    • A61M16/022Control means therefor
    • A61M16/024Control means therefor including calculation means, e.g. using a processor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0051Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes with alarm devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/0816Measuring devices for examining respiratory frequency
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4836Diagnosis combined with treatment in closed-loop systems or methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0057Pumps therefor
    • A61M16/0078Breathing bags
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/20Valves specially adapted to medical respiratory devices
    • A61M16/201Controlled valves
    • A61M16/202Controlled valves electrically actuated
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/0015Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors
    • A61M2016/0018Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors electrical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/003Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter
    • A61M2016/0033Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter electrical
    • A61M2016/0039Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter electrical in the inspiratory circuit
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/1005Preparation of respiratory gases or vapours with O2 features or with parameter measurement
    • A61M2016/102Measuring a parameter of the content of the delivered gas
    • A61M2016/1025Measuring a parameter of the content of the delivered gas the O2 concentration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2202/00Special media to be introduced, removed or treated
    • A61M2202/02Gases
    • A61M2202/0208Oxygen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/18General characteristics of the apparatus with alarm
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3331Pressure; Flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3331Pressure; Flow
    • A61M2205/3334Measuring or controlling the flow rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3375Acoustical, e.g. ultrasonic, measuring means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/50General characteristics of the apparatus with microprocessors or computers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/70General characteristics of the apparatus with testing or calibration facilities
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/40Respiratory characteristics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/40Respiratory characteristics
    • A61M2230/42Rate

Definitions

  • This invention relates to the field of oxygen generators that provide oxygen.
  • the oxygen generator is a medical and healthcare product that provides oxygen to people in need.
  • the oxygen generators currently used are divided into oxygen supply methods, mainly in the following two forms:
  • This kind of oxygen generator works continuously to deliver oxygen to the human body at a certain set flow rate regardless of the breathing state of the human body, and does not stop the delivery of oxygen even when the human body does not need oxygen for exhalation. Therefore, the oxygen supplied is often wasted, and the utilization of oxygen is very low.
  • the second is to be able to carry out oxygen generators with oxygen supply.
  • This type of oxygen generator always detects the breathing state of the human body, and only delivers oxygen to the human body in the early stage of the inhalation phase of the human body, and does not output oxygen at other times.
  • the oxygen concentrator of this type has a very high utilization rate of oxygen supplied, and there is almost no waste.
  • oxygen inhalation tube or an oxygen outlet near the nostril there is an open oxygen inhalation tube or an oxygen outlet near the nostril, and a sealed oxygen inhalation mask.
  • open oxygen is generally used.
  • the oxygen generator that can supply oxygen by the oxygen supply method can reduce the oxygen supply required to achieve the same therapeutic effect to 1/4 to 1/6 of the continuous oxygen supply mode by supplying oxygen only in the early inhalation of the human body. about. This is because:
  • the body's absorption ratio is generally 1:1.5 ⁇ 1:2, that is, the inhalation time is only about 33% to 40% of the entire respiratory cycle;
  • the normal human body tidal volume is about 500 ml
  • the volume of the human body's breathing pipeline (such as the trachea, etc.) does not participate in the gas exchange part is about 150 ml (this part of the volume is also called physiological ineffective cavity).
  • the first entry into the lung alveoli is the exhaust gas that stays in the breathing circuit during the last exhalation.
  • the 500 ml of gas that the human body inhales only about 350 ml enters the lungs, and about 150 ml stays in the breathing circuit. That is to say, taking 500 ml of moisture as an example, the rate of entering the alveoli is about 70%.
  • the above-mentioned 350 ml of gas entering the lung alveoli the gas part that entered the last 0.3 seconds, can not be completely discharged by gas and is discharged into the lungs, and its utilization rate is greatly reduced. Moreover, as the breathing cycle is shortened, the proportion of this part of the gas will increase greatly.
  • the respiratory rate is 12 to 20 times per minute, and the ratio of 1:1.5 to 1:2 is calculated.
  • the inspiratory time is about 1 to 2 seconds.
  • About 350 ml of gas that enters the alveoli, the part that the human body can fully utilize is up to about 85%, and the lowest is about 70%.
  • the oxygen utilization rate during continuous oxygen supply is at most 16.2% to 23.8%, that is, about 1/4 to 1/6.
  • Oxygen generators for continuous oxygen supply which are widely used at present, include: a control unit for controlling the operation of the oxygen generator, an oxygen generating unit, a flow regulating device, and an oxygen supply line for supplying oxygen supplied from the oxygen generating unit to the human body, and the oxygen generating unit is usually
  • the utility model comprises an oxygen generating unit for generating oxygen, a gas storage tank assembly for storing oxygen, and the like; a flow regulating device is arranged on the oxygen supply line of the continuous oxygen supply oxygen generator, and some oxygen concentration sensors for measuring the oxygen concentration are also provided, or A flow sensor for measuring oxygen flow and a humidification bottle for increasing oxygen humidity are provided.
  • the outer end of the oxygen supply line is usually connected to the nostrils of the human body, and the high-pressure oxygen outputted by the oxygen generating unit is adjusted to the flow rate by the flow regulating device, and the oxygen is continuously supplied to the human body through the oxygen supply line.
  • the oxygen concentration sensor and the flow sensor transmit the detected oxygen concentration and flow rate data to the control unit, which processes the data.
  • the control unit When the oxygen supply concentration is lower than the set value, the control unit will have an alarm signal to alarm.
  • An advantage of the above oxygen-providing oxygen generator is that the control is simple. Disadvantages are: First, the volume is large, the weight is heavier, it is not easy to carry, and the energy consumption is large, the noise is also large; in addition, because the oxygen pipeline is constantly outputting oxygen when the human body exhales, on the one hand, the user is comfortable. Poor sex, on the other hand, can cause serious waste of oxygen. Second, since the oxygen output from the oxygen generator is large and very dry, it is necessary to equip the humidification bottle to humidify the output oxygen, which further increases the equipment cost.
  • the oxygen concentrating machine currently used for absorbing oxygen includes: a control unit for controlling the operation of the oxygen concentrator, an oxygen generating unit, an oxygen supply unit for supplying oxygen supplied from the oxygen generating unit to the human body, and a detecting element capable of detecting human breathing;
  • the oxygen generating unit generally includes an oxygen generating unit for generating oxygen, a gas storage tank assembly for storing oxygen, and the like.
  • the oxygen supply unit generally includes an oxygen supply line for transporting oxygen, an oxygen supply valve disposed on the oxygen supply line, and an oxygen concentration sensor.
  • the detecting element capable of detecting human breathing is a differential pressure sensor. When in use, the outer end of the oxygen supply line is connected to the nostrils of the human body.
  • the differential pressure sensor can detect the air pressure between the tube and the external air pressure in the differential pressure sensor caused by the human exhalation and inhalation. Small differential pressure changes.
  • the pressure in the tube is slightly lower than the pressure outside the tube; when the human body exhales, the pressure inside the tube is slightly higher than the pressure outside the tube.
  • the oxygen supply valve is only turned on in the early stage of human inhalation, and is closed in the rest of the time.
  • the oxygen generating unit can supply oxygen to the human body through the oxygen supply line, and the rest of the time can not supply oxygen to the human body through the oxygen supply line, thereby realizing the working mode of oxygen supply.
  • the oxygen concentration data transmitted by the oxygen concentration sensor can be used as the oxygen supply concentration of the oxygen generator at this time.
  • the control unit will report the alarm signal. police.
  • the above-mentioned existing oxygen supply technology is mainly applied to a high-priced portable oxygen generator.
  • the advantages are: small volume, light weight, easy to carry, low energy consumption and low noise.
  • the disadvantage is that it requires an expensive differential pressure sensor and the differential pressure detection technology is difficult.
  • the high cost and high technical difficulty of the differential pressure sensor make the oxygen supply technology available only on expensive portable oxygen generators, and cannot be popularized in a larger and cheaper desktop oxygen generator.
  • the application range is very narrow. .
  • an ultrasonic gas sensor based on the principle of ultrasonic detection can be used to measure the flow rate and direction of a gas and the content of each gas component in a mixed gas (also referred to as a concentration of each gas component), and the ultrasonic gas sensor has a low cost. High precision, long life, good stability, rapid response, short detection period, and the ability to measure gas concentration and gas flow volume and direction (ie bidirectional flow detection capability) separately or simultaneously.
  • the ultrasonic gas sensor is only used to detect the gas concentration, it is generally called an ultrasonic gas concentration sensor.
  • the ultrasonic gas sensor is only used to detect the gas flow rate
  • the ultrasonic gas sensor can detect both the gas concentration and the gas flow rate and the flow direction of the gas.
  • the invention creatively uses an inexpensive ultrasonic gas sensor as a detecting element in the oxygen generator, so that the oxygen generator can have the function of absorbing oxygen, thereby greatly reducing the manufacturing cost of the oxygen generator when the same oxygen absorbing effect is achieved. , volume and weight, thus reducing the price, and making the oxygen generator easy to carry, energy consumption and noise can be greatly reduced.
  • the present invention adopts the following technical solutions.
  • the oxygen concentrating machine includes: a control unit for controlling the operation of the oxygen generator, an oxygen generating unit, and an oxygen supply unit for supplying oxygen supplied by the oxygen generating unit to the human body, and the oxygen supply unit includes a body capable of communicating with the human respiratory apparatus.
  • the air oxygen generator is further provided with an airflow forming device, and the airflow forming device can form at least the airflow corresponding to the human body inhalation in the ultrasonic gas sensor when the human body breathes, so that the ultrasonic gas sensor can detect at least the inhalation of the human body;
  • the oxygen supply unit supplies oxygen to the human body through the oxygen supply line only when the human body inhales, and does not provide the human body at other times. Oxygen, so as to achieve oxygen supply.
  • the ultrasonic gas sensor adopts an ultrasonic gas sensor capable of detecting a human body's inhalation or respiratory airflow and detecting an oxygen concentration, so that the ultrasonic gas sensor can detect the human body suction.
  • the gas or respiratory airflow can be used to detect the oxygen concentration of the gas output from the oxygen generator.
  • a bypass pipe is connected to the oxygen supply line communicating with the air outlet of the oxygen supply valve, and the outer end of the bypass pipe is connected with a vent on the ultrasonic gas sensor.
  • the other vent on the ultrasonic gas sensor is open to the atmosphere; at the beginning of the operation of the oxygen generator, the oxygen supply valve is in a closed state; and at least when the human body inhales, the bypass tube can be formed in the ultrasonic gas sensor.
  • the other vent on the ultrasonic gas sensor is passed through a section.
  • the pipeline is connected to the atmosphere, so that when the oxygen supply valve is closed every time the oxygen supply is closed, the oxygen concentration data detected by the ultrasonic gas sensor at this time can be used as the oxygen supply concentration data of the oxygen generator at this time.
  • the aforementioned oxygen supply and oxygen generator is further provided with a bypass control valve capable of controlling an oxygen supply line to pass through the bypass pipe and the atmosphere; the bypass control valve is disposed in the bypass pipe At the beginning of the operation of the oxygen generator, the oxygen supply valve is in a closed state, and the bypass control valve is in a conducting state, so that the bypass pipe can form an ultrasonic gas sensor in the initial state of the startup.
  • the oxygen concentration data detected by the ultrasonic gas sensor at this time can be obtained each time the bypass control valve is closed during operation. As the oxygen supply concentration data of the oxygen generator at this time.
  • the other vent on the ultrasonic gas sensor is connected to the air storage chamber and is no longer connected to the atmosphere, and the air storage chamber and the bypass tube make the ultrasonic gas sensor
  • the medium can form at least an inspiratory flow corresponding to the inspiratory phase of the human body, so that the ultrasonic gas sensor can detect the inhalation of the human body.
  • the air storage chamber is a storage air tank whose volume can change according to the change of the internal gas pressure; when the air storage tank is completely full or dry due to the breathing of the human body, the flow gas zero point can be performed on the ultrasonic gas sensor. Correction.
  • the oxygen concentration data detected by the ultrasonic gas sensor can be used as oxygen generation.
  • the oxygen concentration data of the machine at this time.
  • an ultrasonic gas sensor is disposed in an oxygen supply line connected to an air outlet of the oxygen supply valve, and an oxygen supply is communicated between the gas supply port of the oxygen supply valve and the ultrasonic gas sensor.
  • a bypass pipe is connected to the pipeline, and the outer end of the bypass pipe is open to the atmosphere; at the beginning of the operation of the oxygen generator, the oxygen supply valve is closed; and at least when the human body inhales, the bypass pipe makes
  • the ultrasonic gas sensor can form an inspiratory flow corresponding to the inspiratory phase of the human body, so that the ultrasonic gas sensor can detect the inhalation of the human body, and the data or signal corresponding to the inspiratory phase detected by the ultrasonic gas sensor is made during the operation.
  • the oxygen supply valve is only turned on when the human body inhales, and the remaining time is turned off, so that the oxygen supply unit can supply oxygen to the human body through the oxygen supply line only when the human body inhales.
  • the oxygen supply valve completes each oxygen supply during operation.
  • the oxygen concentration data detected by the ultrasonic gas sensor at this time can be used as the oxygen supply concentration data of the oxygen generator at this time.
  • a bypass control valve is disposed in the bypass pipe; at the beginning of the operation of the oxygen generator, the oxygen supply valve is in a closed state, and the bypass control is simultaneously performed.
  • the valve is in a conducting state, so that the bypass pipe can form an inspiratory flow corresponding to the inspiratory phase of the human body in the ultrasonic gas sensor at the initial time of starting the power, so that the ultrasonic gas sensor can detect the inhalation of the human body;
  • the bypass control valve is closed until the oxygen supply valve completes the oxygen supply and is closed, and the bypass control valve is re-conducted, so that the bypass tube can ensure the ultrasonic gas sensor is accurately detected.
  • the ultrasonic gas sensor can be used when the oxygen supply valve is closed every time the oxygen supply is turned off.
  • the detected oxygen concentration data is used as the oxygen supply concentration data of the oxygen generator at this time, and the bypass control valve is turned on after the oxygen concentration detection is completed, so that the bypass tube can ensure that the ultrasonic gas sensor accurately detects each inhalation of the human body.
  • the outer end of the bypass pipe is connected to the air storage chamber and is no longer connected to the atmosphere, and the air storage chamber and the bypass pipe make the ultrasonic gas sensor
  • the medium can form at least an inspiratory flow corresponding to the inspiratory phase of the human body, so that the ultrasonic gas sensor can detect the inhalation of the human body.
  • the gas storage chamber is a gas storage tank whose volume can change as the internal gas pressure changes.
  • the ultrasonic gas sensor capable of detecting the inhalation or the breathing airflow of the human body and detecting the oxygen concentration
  • the oxygen supply valve is closed every time the oxygen supply is closed, the ultrasonic gas sensor can be detected at this time.
  • the oxygen concentration data is used as the oxygen supply concentration data of the oxygen generator at this time.
  • the oxygen generator is provided with a bypass pipe
  • one end of the bypass pipe can communicate with the breathing passage of the human body outside the oxygen generator, and the other end of the bypass pipe Communicating with a vent on the ultrasonic gas sensor, the other vent on the ultrasonic gas sensor is open to the atmosphere; at the beginning of the operation of the oxygen generator, the oxygen supply valve is closed; and at least when the human body is inhaling
  • the bypass pipe enables the ultrasonic gas sensor to form an inspiratory flow corresponding to the inspiratory phase of the human body, so that the ultrasonic gas sensor can detect the inhalation of the human body, and the work corresponding to the inhalation of the human body is detected according to the ultrasonic gas sensor.
  • the data or signal causes the oxygen supply valve to be turned on for a set time only when the human body inhales, and the other time is turned off, so that the oxygen supply unit can supply oxygen to the human body through the oxygen supply line only when the human body inhales.
  • the other vent on the ultrasonic gas sensor is connected to the air storage chamber and is no longer connected to the atmosphere, and the air storage chamber and the bypass tube make the ultrasonic gas sensor
  • the medium can form at least an inspiratory flow corresponding to the inspiratory phase of the human body, so that the ultrasonic gas sensor can detect the inhalation of the human body.
  • the air storage chamber is a storage air tank whose volume can change according to the change of internal gas pressure; when the air storage tank is completely full or dry due to the breathing of the human body, the flow rate in the ultrasonic gas sensor is zero, the air pressure When the atmospheric pressure is close to the outside, the flow gas zero point correction can be performed on the ultrasonic gas sensor.
  • a bypass control valve is disposed in the bypass pipe; at the beginning of the operation of the oxygen generator, the oxygen supply valve is in a closed state, and the bypass control valve is simultaneously
  • the conduction state is such that the bypass pipe can form an inspiratory flow corresponding to the inspiratory phase of the human body in the ultrasonic gas sensor at the initial time of starting the power, so that the ultrasonic gas sensor can detect the inhalation of the human body.
  • the bypass control valve can be closed for a short time to perform the zero point correction of the ultrasonic gas sensor; that is, in addition to the time when the human body starts to inhale
  • the bypass control valve can be closed for a short period of time at any other time so that the flow zero point correction of the ultrasonic gas sensor can be performed.
  • the invention has the beneficial effects that the ultrasonic gas with low cost and simple and convenient detection technology is used in the oxygen generator compared with the oxygen-absorbing oxygen generator which has been introduced by the micro differential pressure sensor for detecting human breathing.
  • the sensor acts as a component of the breath detection, thereby achieving breath detection at a lower cost, thereby achieving oxygen supply with suction, which can greatly reduce the manufacturing cost of the oxygen concentrator.
  • an ultrasonic gas sensor capable of detecting both the gas flow rate and the oxygen concentration can be used, which further eliminates the cost of the oxygen concentration sensor and further reduces the cost of the oxygen generator.
  • the invention can make the oxygen-absorbing technology popular from the expensive portable oxygen generator to a larger and cheaper desktop oxygen generator, so that the oxygen-absorbing oxygen generator can be used by ordinary people. Healthcare products.
  • Figure 1 is a schematic view showing the structure of a first embodiment of the present invention.
  • FIG. 2 is a schematic view showing the structure of a second embodiment of the present invention.
  • Figure 3 is a schematic view showing the structure of a third embodiment of the present invention.
  • Figure 4 is a schematic view showing the structure of a fourth embodiment of the present invention.
  • Figure 5 is a schematic view showing the structure of a fifth embodiment of the present invention.
  • Figure 6 is a schematic view showing the structure of a sixth embodiment of the present invention.
  • Figure 7 is a schematic view showing the structure of a seventh embodiment of the present invention.
  • Figure 8 is a schematic view showing the structure of an eighth embodiment of the present invention.
  • Figure 9 is a schematic view showing the structure of a ninth embodiment of the present invention.
  • Figure 10 is a schematic view showing the structure of a tenth embodiment of the present invention.
  • Figure 11 is a schematic view showing the structure of an ultrasonic gas sensor selected in the present invention.
  • Fig. 12 is a view showing the waveforms of signals involved in the ultrasonic gas sensor shown in Fig. 11.
  • FIG. 1 is a first embodiment of the oxygen concentrating oxygen generator according to the present invention, comprising: a control unit 3 for controlling the normal operation of the oxygen generator, an oxygen generating unit 1, and an oxygen generating unit 1.
  • the oxygen supply unit is supplied to the oxygen supply unit of the human body.
  • the oxygen supply unit includes an oxygen supply line 2 that can communicate with the human respiratory apparatus, and an oxygen supply valve 5 disposed in the oxygen supply line 2.
  • the oxygen generator further includes a body capable of detecting the inhalation.
  • the ultrasonic gas sensor 6 is used as a detecting element for detecting inhalation or breathing of the human body, and the control unit 3 can perform data or signal transmission with the ultrasonic gas sensor 6;
  • the airflow forming device enables at least the airflow corresponding to the human body to be inhaled in the ultrasonic gas sensor 6 when the human body breathes, so that the ultrasonic gas sensor 6 can detect at least the inhalation of the human body;
  • the data or signal detected by the gas sensor 6 corresponding to the inhalation or breathing of the human body so that the oxygen supply unit can only be supplied to the human body through the oxygen supply line 2 when the human body inhales For oxygen, but it does not provide oxygen to the body at other times, to achieve with oxygen absorption.
  • a bypass pipe 4 is connected to the oxygen supply line 2 connected to the air outlet of the oxygen supply valve 5, and the outer end of the bypass pipe 4 communicates with a vent on the ultrasonic gas sensor 6, the ultrasonic gas sensor
  • the other vent on the 6 is open to the atmosphere, and the outer end of the oxygen supply line 2 is connected to the nostril of the human body 7 when in use.
  • the bypass pipe 4 and the portion of the oxygen supply line from the bypass pipe to the human respiratory organ constitute an air flow forming device.
  • the oxygen supply valve 5 is in a closed state; when the human body breathes, the airflow forming device including the bypass pipe 4 enables the ultrasonic gas sensor 6 to form an intake airflow corresponding to the inspiratory phase of the human body.
  • the exhalation airflow corresponding to the gas phase enables the ultrasonic gas sensor 6 to detect each inhalation of the human body as a respiratory detecting element, and of course, the initial time of each inhalation of the human body can be detected.
  • the oxygen supply valve 5 is turned on for a set time only when the human body inhales each time, and the other time is closed. The off state, so that the oxygen supply unit can only supply a set amount of oxygen to the human body through the oxygen supply line 2 every time the human body inhales.
  • the oxygen supply unit can supply oxygen to the human body through the oxygen supply line 2 only in the early stage of the inhalation of the human body.
  • the oxygen supply valve 5 can be controlled to start sucking in the human body every time. Any one of 0.01 to 0.1 seconds after the gas starts to conduct and maintain the required time, which can be set by the actual amount of oxygen supply required, and is turned off for the rest of the time.
  • the oxygen can be supplied to the alveoli as soon as possible, and the gas replacement can be fully completed to ensure that the oxygen supply required by the human body for each breath is met; and the invalid supply of the oxygen generator can be minimized.
  • the amount of oxygen greatly increases the utilization rate of oxygen supplied by the oxygen generator and improves the working efficiency of the oxygen generator.
  • the ultrasonic gas sensor 6 can also adopt an ultrasonic gas sensor capable of detecting the inhalation or respiratory airflow of the human body and detecting the oxygen concentration, and in actual operation, another ventilation on the ultrasonic gas sensor can be performed.
  • the mouth is connected to the atmosphere through a section of pipeline, so that when the oxygen supply valve 5 is closed every time the oxygen supply valve is closed, the ultrasonic gas sensor 6 is filled with the high concentration of oxygen released this time, and the control unit 3 can The oxygen concentration data detected by the ultrasonic gas sensor 6 is used as the real-time oxygen supply concentration data of the oxygen generator. When the oxygen supply concentration is lower than the set value, the control unit 3 will have an alarm signal to alarm.
  • the oxygen supplied is not only transported to the human body through the oxygen supply line 2 but also leaked into the atmosphere through the bypass pipe 4, the oxygen is wasted. Therefore, it is necessary to limit the amount of leakage of the bypass pipe 4 by technical means so that the generated leakage can only update the gas in the ultrasonic gas sensor 6. At the same time, this technical means cannot prevent the ultrasonic gas sensor 6 from detecting the normal flow of the human body.
  • the simplest technical means is to reduce the inner diameter of the bypass pipe so that the amount of oxygen leaked through the bypass pipe during oxygen supply is much smaller than the amount of oxygen delivered to the human body through the oxygen supply line, but at the same time it is necessary to ensure that the inner diameter of the reduced bypass pipe is not It will prevent the ultrasonic gas sensor from detecting the human respiratory airflow.
  • a second embodiment of the oxygen concentrator according to the present invention overcomes the disadvantages of the high oxygen waste in the first embodiment.
  • the second embodiment is different from the first embodiment shown in Fig. 1 in that it is provided with a bypass capable of controlling the passage of the oxygen supply line 2 through the bypass pipe 4 to the atmosphere.
  • the control valve 8; the bypass control valve 8 described in this embodiment is disposed in the bypass pipe 4; in the present embodiment, the bypass control valve 8, the bypass pipe 4, and the bypass pipe 4 are connected between the human respiratory organs
  • the portion of the oxygen supply line constitutes the air flow forming device.
  • the second embodiment realizes that the operation control flow with oxygen supply is different from that of the first embodiment in that the oxygen supply valve is started at the start of the operation of the oxygen generator. 5 is in the closed state, and the bypass control valve 8 is in an on state, so that the airflow forming device including the bypass pipe 4 at the initial timing of starting the power enables the ultrasonic gas sensor 6 to function as a respiratory detecting element to detect at least each suction of the human body. Air or the initial time of each inhalation; and in operation, when the oxygen supply valve 5 is turned on every time and the ventilation in the ultrasonic gas sensor 6 is completed, the bypass control valve 8 is closed until the oxygen supply valve 5 is completed.
  • the bypass control valve 8 When the oxygen supply is closed, the bypass control valve 8 is turned on again, so that the bypass pipe can ensure that the ultrasonic gas sensor accurately detects each inhalation of the human body and reduces the waste of oxygen.
  • the flow rate zero point correction can be performed on the ultrasonic gas sensor when the bypass control valve 8 is closed and the flow rate in the ultrasonic gas sensor is the same, that is, when the air pressure in the bypass pipe 4 is close to the external atmospheric pressure.
  • the ultrasonic gas sensor 6 can also adopt an ultrasonic gas sensor capable of detecting the inhalation or respiratory airflow of the human body and detecting the oxygen concentration, so that the bypass control valve 8 is closed every time during operation.
  • the control unit 3 can use the oxygen concentration data detected by the ultrasonic gas sensor 6 at this time as the oxygen supply concentration data of the oxygen generator; when the oxygen supply concentration is lower than the set value, the control unit 3 will have an alarm signal to alarm. .
  • a third embodiment of the oxygen concentrator according to the present invention can overcome the disadvantages of the high oxygen waste in the first embodiment.
  • the third embodiment is different from the first embodiment shown in FIG. 1 in that another vent on the ultrasonic gas sensor is connected to an external pipe with a bypass control valve 8.
  • the external pipe, the bypass control valve 8, the bypass pipe 4, and the portion of the oxygen supply line from the bypass pipe 4 to the human respiratory apparatus constitute an air flow forming device.
  • the third embodiment achieves the same work control flow as the oxygen supply is the same as the second embodiment.
  • the ultrasonic gas sensor employs an ultrasonic gas sensor capable of detecting both inhaled or respiratory airflow and detecting oxygen concentration
  • the third embodiment has the following differences in comparison with the second embodiment in terms of oxygen supply concentration detection:
  • the control unit 3 uses the oxygen concentration data detected by the ultrasonic gas sensor 6 at this time as the oxygen supply concentration data of the oxygen generator at this time;
  • the control unit 3 will have an alarm signal to alarm.
  • the flow rate zero point correction may be performed on the ultrasonic gas sensor when the bypass control valve 8 is closed and the flow rate in the ultrasonic gas sensor is zero, that is, when the air pressure in the bypass pipe 4 is close to the external atmospheric pressure.
  • the bypass control valve 8 is provided to: firstly, the bypass control valve 8 is turned off shortly after the oxygen supply valve 5 is turned on, and the oxygen leaking from the bypass pipe 4 is restricted. The amount of oxygen leaking from the bypass pipe 4 is only satisfied to complete the gas renewal in the ultrasonic gas sensor 6; second, when the bypass control valve 8 is closed, the gas flow rate in the bypass pipe 4 is zero, and the bypass pipe 4 When the air pressure in the middle is close to the external atmospheric pressure, the flow zero point correction of the ultrasonic gas sensor 6 can be performed, and the flow zero drift which is unavoidable for long-term use can be eliminated.
  • the fourth embodiment is different from the first embodiment shown in FIG. 1 in that the other vent on the ultrasonic gas sensor 6 is connected to the air reservoir chamber 9 and is no longer in contact with the atmosphere.
  • the air storage chamber described in this embodiment is a reservoir airbag 9 whose volume can change with a slight change in internal gas pressure.
  • the reservoir air bag 9, the bypass pipe 4, and the portion of the oxygen supply line from the bypass pipe 4 to the human respiratory apparatus constitute an air flow forming device.
  • the airflow forming means including the airbag 9 and the bypass duct 4 enables at least the intake airflow corresponding to the inspiratory phase of the human body to be formed in the ultrasonic gas sensor 6, so that the ultrasonic gas sensor 6 can detect the human body as a respiratory detecting element. Inhale or the initial moment of each inspiration.
  • the biggest benefit of this method is to prevent oxygen leakage and improve the utilization of oxygen supplied by the oxygen generator. At the same time, there is almost no increase in costs.
  • the disadvantage is that the real-time performance of oxygen concentration detection is slightly reduced.
  • the fourth embodiment realizes the same operation control flow as the oxygen supply is the same as the first embodiment.
  • the fourth embodiment has the following difference compared with the first embodiment: during the operation, when the oxygen supply valve 5 completes each oxygen supply shutdown, the human body The inspiratory airflow causes a part of the gas in the air bag 9 to be sucked out; when the human body completes the inhalation into the exhalation, the gas in the oxygen supply line 2 enters the air bag 9 and the ultrasonic gas sensor 6. Such a process is repeated, and the gas in the air bag 9 and the ultrasonic gas sensor 6 is gradually updated to the oxygen sent from the oxygen supply line.
  • the control unit 3 When the ultrasonic gas sensor adopts an ultrasonic gas sensor capable of detecting the inhalation or respiratory airflow of the human body and detecting the oxygen concentration, and when the oxygen supply valve 5 is closed every time the oxygen supply is completed, the control unit 3 will The oxygen concentration data detected by the ultrasonic gas sensor 6 is used as the oxygen supply concentration data at the time of the oxygen generator. When the oxygen supply concentration is lower than the set value, the control unit 3 has an alarm signal to give an alarm. In addition, when the air bag 9 is completely full or completely dry due to the breathing of the human body, the ultrasonic gas sensor 6 has a short time flow of zero in the ultrasonic gas sensor 6, and this characteristic can be utilized to perform the flow point zero correction of the ultrasonic gas sensor 6.
  • a suitable material for the air bag 9 can be selected to make the person's breathing airflow sufficient to make it full and dry.
  • a suitable volume of the reservoir 9 can also be selected to cause a corresponding flow of gas within the ultrasonic gas sensor 6 at least at the initial moment when the body is switched from exhalation to inhalation.
  • FIG. 5 is a fifth embodiment of the oxygen absorbing oxygen generator according to the present invention.
  • the fifth embodiment differs from the first embodiment shown in FIG. Yes, the ultrasonic gas sensor 6 is disposed in the oxygen supply line 2 that communicates with the gas supply port of the oxygen supply valve, and the bypass pipe 4 is connected to the oxygen supply line 2 between the gas supply port of the oxygen supply valve 5 and the ultrasonic gas sensor 6.
  • the outer end of the bypass pipe 4 is open to the atmosphere.
  • the bypass pipe 4 and the portion of the oxygen supply line from the bypass pipe 4 to the human respiratory apparatus constitute an air flow forming means.
  • the fifth embodiment realizes the same operation control flow as the oxygen supply is the same as the first embodiment.
  • the fifth embodiment has the following disadvantages: 1.
  • the bypass pipe 4 causes oxygen to leak and causes waste; 2.
  • the ultrasonic wave disposed in the oxygen supply pipe 2 The gas sensor 6 will repeatedly withstand a large flow of oxygen for the impact of the oxygen flow, which will have an adverse effect on the life and performance of the sensor.
  • Third, the ultrasonic gas sensor always has a human body's breathing airflow or oxygen supply flow, and the flow zero point correction cannot be performed.
  • the control unit 3 when an ultrasonic gas sensor capable of detecting the inhalation or the breathing airflow of the human body and detecting the oxygen concentration is used, when the oxygen supply valve is closed every time the oxygen supply is completed, the control unit 3 will ultrasonically The oxygen concentration data detected by the gas sensor is used as the oxygen supply concentration data of the oxygen generator at this time.
  • FIG. 6 is a sixth embodiment of the oxygen concentrator according to the present invention. As can be seen from FIG. 6, the difference between the sixth embodiment and the fifth embodiment shown in FIG. It is to provide a bypass control valve 8 in the bypass pipe 4. In the present embodiment, the bypass control valve 8, the bypass pipe 4, and the portion of the oxygen supply line from the bypass pipe 4 to the human respiratory apparatus constitute an air flow forming means.
  • the sixth embodiment can greatly reduce the amount of oxygen leakage.
  • the sixth embodiment realizes the operation control flow with the oxygen supply as compared with the second embodiment, and has the following difference: in operation, the bypass control valve 8 is closed each time the oxygen supply valve 5 is turned on. The bypass control valve 8 is re-conducted until the oxygen supply valve 5 completes the oxygen supply and is closed. This enables the bypass pipe 4 to ensure that the ultrasonic gas sensor 6 can accurately detect each inhalation of the human body, and Further reduce the loss of oxygen.
  • the ultrasonic gas sensor described in the actual application can also adopt an ultrasonic gas sensor capable of detecting the inhalation or the breathing airflow of the human body and detecting the oxygen concentration, so that the oxygen supply valve 5 can be closed every time the oxygen supply is turned off.
  • the control unit 3 uses the oxygen concentration data detected by the ultrasonic gas sensor 6 as the oxygen supply concentration data of the oxygen generator at this time to realize the oxygen supply concentration detecting function, and then the control unit 3 controls the bypass control valve 8 to be turned on, so that the side
  • the through pipe 4 can ensure that the ultrasonic gas sensor 6 accurately detects each inhalation of the human body, and when the oxygen supply concentration is lower than the set value, the control unit 3 will have an alarm signal to alarm.
  • the control unit 3 can also perform flow zero correction on the ultrasonic gas sensor 6.
  • FIG. 7 is a seventh embodiment of the oxygen absorbing oxygen generator according to the present invention. As can be seen from FIG. 7, the seventh embodiment is different from the fifth embodiment shown in FIG. 5. The reason is that the outer end of the bypass pipe 4 is connected to the air storage chamber 9 and is no longer connected to the atmosphere.
  • the air storage chamber described in this embodiment is a reservoir airbag 9 whose volume can vary with a slight change in internal gas pressure.
  • the reservoir air bag 9, the bypass pipe 4, and the portion of the oxygen supply line from the bypass pipe 4 to the human respiratory apparatus constitute an air flow forming device.
  • the airflow forming means including the airbag 9 and the bypass duct 4 enables at least the intake airflow corresponding to the inspiratory phase of the human body to be formed in the ultrasonic gas sensor 6, so that the ultrasonic gas sensor 6 can detect the human body as a respiratory detecting element. Inhale or the initial moment of each inspiration.
  • the flow rate in the ultrasonic gas sensor is zero, that is, when the air pressure of the air chamber pipe in the ultrasonic gas sensor is close to the external atmospheric pressure, the flow gas zero point correction can be performed on the ultrasonic gas sensor.
  • the seventh embodiment has almost no increase in cost and eliminates the leakage of oxygen.
  • the disadvantage is that the real-time nature of the oxygen concentration detection is lowered.
  • the operation control flow of the seventh embodiment for implementing oxygen supply is the same as that of the fifth embodiment shown in FIG. 5 and will not be described again.
  • FIG. 8 is an eighth embodiment of the oxygen concentrator according to the present invention. As can be seen from FIG. 8, the eighth embodiment is different from the first embodiment shown in FIG. 1. It is: one end of the bypass pipe 4 can directly communicate with the breathing passage of the human body 7 outside the oxygen generator, and the other end of the bypass pipe 4 communicates with a vent on the ultrasonic gas sensor 6, and the ultrasonic gas sensor 6 The other vent is open to the atmosphere, that is, the bypass pipe 4 is no longer connected to the oxygen supply line 2, but becomes a separate pipe.
  • the independent bypass pipe 4 in this embodiment constitutes an air flow forming device.
  • the outer end of the oxygen supply line 2 and one end of the bypass tube 4 are connected to the nostrils of the human body 7 together.
  • the operation control flow of the eighth embodiment for realizing the oxygen supply with suction is the same as that of the first embodiment shown in FIG. 1, and will not be described again.
  • the advantages of the eighth embodiment are: first, there is no oxygen leakage; second, the body's respiratory airflow can be completely detected, and is almost unaffected by the oxygen supply flow.
  • the disadvantages are as follows: 1. There is always airflow in the ultrasonic gas sensor, and the flow zero point correction cannot be performed. Second, the oxygen supply concentration cannot be detected.
  • an ultrasonic gas sensor may be additionally disposed on the oxygen supply line 2 in the eighth embodiment, so that the oxygen generator can realize the function of detecting the oxygen concentration.
  • FIG. 9 is a ninth embodiment of the oxygen absorbing oxygen generator according to the present invention. As can be seen from FIG. 9, the ninth embodiment is different from the eighth embodiment shown in FIG.
  • the other vents on the ultrasonic gas sensor 6 that are not directly connected to the nostrils of the human body 7 are connected to the air reservoir chamber 9 and are no longer open to the atmosphere.
  • the air reservoir chamber 9 described in this embodiment is a reservoir airbag 9 whose volume can vary with a slight change in internal gas pressure.
  • the air bag 9 and the bypass pipe 4 constitute an air flow forming device.
  • the air bag 9 and the bypass pipe 4 enable at least an inspiratory flow corresponding to the inspiratory phase of the human body to be formed in the ultrasonic gas sensor 6, so that the ultrasonic gas sensor 6 can detect each inhalation or each time of the human body as a respiratory detecting element.
  • the initial moment of inhalation is the first moment of inhalation.
  • the ninth embodiment realizes the same as the eighth embodiment of the work control flow with the oxygen supply, and will not be described again.
  • the ninth embodiment can also realize the flow zero point correction of the ultrasonic gas sensor 6 by utilizing the feature that the air bag 9 is completely full or the flow rate is zero when dry.
  • FIG. 10 is a tenth embodiment of the oxygen absorbing oxygen generator according to the present invention. As can be seen from FIG. 10, the tenth embodiment is different from the eighth embodiment shown in FIG. It is provided that a bypass control valve 8 is provided in the bypass pipe 4. In the present embodiment, the bypass control valve 8 and the bypass pipe 4 constitute an air flow forming device.
  • the tenth embodiment realizes that the operation control flow with oxygen supply is compared with the eighth embodiment, and there are the following differences: in operation, at the start of the operation of the oxygen generator, the oxygen supply valve 5 is closed. State, while the bypass control valve 8 is in an on state, such that the airflow forming device including the bypass pipe 4 at the initial moment of starting up enables the ultrasonic gas sensor 6 to detect the human body as a breathing detection element; and in actual operation Under the premise of not obstructing the ultrasonic gas sensor to detect the inhalation of the human body, it is possible to select a certain time to close the bypass control valve for the zero point correction of the ultrasonic gas sensor. That is, in addition to the time when the human body starts to inhale, the bypass control valve can be closed for a short time at a certain time so that the flow zero point correction of the ultrasonic gas sensor can be performed.
  • an air filter may be disposed in the vent through the atmosphere through the bypass pipe or the ultrasonic gas sensor to prevent dust in the outside air from being sucked into the ultrasonic gas sensor to affect the accuracy of the detection.
  • the oxygen supply valve or the bypass control valve may be controlled by the control unit or by an ultrasonic gas sensor.
  • the control unit calculates the opening time of the oxygen supply valve according to the flow rate and air pressure set by the user, and then causes the oxygen supply valve to open for the set time when the human body inhales the ultrasonic gas sensor detects; or, the control unit According to the flow rate and air pressure set by the user, the opening time of the oxygen supply valve is calculated, and then sent to the ultrasonic gas sensor, and the ultrasonic gas sensor according to the data, when the human body is inhaled, the set time of the oxygen supply valve is turned on.
  • control unit sends the flow rate and air pressure set by the user to the ultrasonic gas sensor, and the ultrasonic gas sensor calculates the opening time of the oxygen supply valve based on the data, and then, when detecting the inhalation of the human body, the oxygen supply valve is activated. Turn on the set time.
  • the oxygen supply valve or the bypass control valve is not limited to the above control mode, and any technical solution formed by equivalent replacement or equivalent transformation should be within the protection scope required by the present invention.
  • FIG. 11 it is a structural schematic diagram of an ultrasonic gas sensor selected for use in the present invention, and the structure specifically includes: a closed air chamber 15 for accommodating a gas to be tested, and the air chamber 15 includes two
  • the end-closed hollow tube 11 is provided with a venting port, that is, a first venting port 141 and a second venting port 142, respectively, on the side walls adjacent to the two ends of the hollow tube 11.
  • the gas to be tested can be used as needed.
  • the first vent 141 enters the plenum 15 and flows out of the plenum 15 from the second vent 142.
  • the gas to be tested can also enter the plenum 15 from the second vent 142 and out of the first vent 141.
  • the chamber 15, the first ultrasonic transducer 21 and the second ultrasonic transducer 22 are respectively installed at two ends of the air chamber 15 at a set distance, and the two ends of the hollow tube 11 respectively form a large diameter section for mounting the ultrasonic transducer.
  • the left end of the hollow tube 11 is provided with a left large diameter section 121 for mounting the first ultrasonic transducer 21, and the right end is provided with a right large diameter section 122 for mounting the second ultrasonic transducer 22, the hollow tube
  • the diameter of the middle part of the 11 is smaller than the large diameter of the two ends.
  • the small diameter section 111 further includes a gas measurement control system including: a first ultrasonic transducer 21 and a second ultrasonic transducer 22 respectively coupled to selectively excite an ultrasonic transducer Ultrasonic,
  • the other ultrasonic transducer receives the ultrasonic switching network 13, a microprocessor 17 connected to the switching network 13, a transmitting circuit 18 and a receiving processing circuit 16 connected to the switching network 13 and the microprocessor 17;
  • the processor 17 excites the first ultrasonic transducer 21 to emit a first pulse of a plurality of pulses of a given frequency through the transmitting circuit 18 and the switching switch network 13, the first acoustic wave passing through the gas to be tested in the gas chamber 15 and being gas A standing wave is formed in the chamber 15, and the second ultrasonic transducer 22 receives the first acoustic wave signal, and the time from the start of the first sound wave to the reception is the first propagation time; then, the first sound wave is After the damped oscillation disappears in the plenum
  • the device 17 measures the flow rate of the gas and/or the content of each gas component in the gas to be tested according to the first propagation time and the second propagation time; the pipeline between the first ultrasonic transducer 21 and the second ultrasonic transducer 22
  • the equivalent cross-sectional area is not more than a quarter of the area of the circle having the diameter of the first acoustic wave; and, when the cross-sectional area of the small diameter section is not more than a quarter of the area of the emitting end of the ultrasonic transducer
  • the large diameter pipe sections at both ends of the hollow pipe are smoothly transitioned to the small pipe diameter section in the middle of the hollow pipe through a horn shape, that is, the left large pipe diameter section 121 smoothly transitions to the small pipe diameter section of the hollow pipe
  • the left end of the 111, the right large diameter section 122 smoothly transitions to the right end of the small diameter section 111 of the hollow tube by a right flared body 132.
  • the two vents are respectively disposed on the two horns on the hollow tube.
  • the first vent 141 is disposed on the left horn 131
  • the second vent 142 is disposed on the right horn 132.
  • the driving pulses of the first acoustic wave and the second acoustic wave described above are as shown by the waveform A in FIG. 12, and the envelope waveform of the standing wave signal is shown by the waveform of B in FIG.
  • the left large diameter section 121 and the right large diameter section 122, and the small diameter section 111 are all in the shape of a cylinder, and the horn is in the shape of a truncated cone, that is, the left horn body 131 and the right horn.
  • the bodies 132 are all in the shape of a truncated cone.
  • the equivalent cross-sectional area of the above-mentioned pipe means that there are two ultrasonic gas sensors, and the hollow pipe used in the pipe structure is different, but the spacing between the two ultrasonic transducers in one ultrasonic gas sensor and the other ultrasonic wave
  • the spacing between the two ultrasonic transducers in the gas sensor is equal, and the cross-sectional area of the hollow tube in the first ultrasonic gas sensor is varied, and the cross-sectional area of the hollow tube in the second ultrasonic gas sensor is not Change - for example, using a cylindrical pipe, when the same flow rate and flow rate of gas flow through the pipes in the two ultrasonic gas sensors, if the propagation time difference between the two ultrasonic gas sensors in the positive and negative directions is the same, then the second The cross-sectional area of the pipe of the ultrasonic gas sensor is referred to as the equivalent cross-sectional area of the pipe of the first ultrasonic gas sensor.
  • the microprocessor can use the first propagation time or the second propagation time to calculate the average molecular weight of the gas to be tested.
  • the gas to be tested is a binary mixed gas
  • the content of each gas in the gas to be tested ie, the concentration of each gas
  • the microprocessor can use the measured first propagation time and the second propagation time to calculate the time difference between the two, and further calculate the magnitude of the gas flow to be measured and the flow direction.
  • the gas to be measured is a binary mixed gas, and the content of each gas in the gas to be tested (that is, the concentration of each gas) can be further measured.
  • the receiving processing circuit 16 performs limiting and amplification on the received signal, and performs an OR or AND operation on the masked signal and the amplitude-amplified received signal to shield the received signal envelope.
  • the small amplitude portion thereby detecting the arrival time of the pulse of the large amplitude portion of the envelope of the received signal.
  • the small amplitude portion of the received signal envelope is at least a portion that is at least 60% of the maximum peak of the received signal envelope.
  • the above-mentioned limited-amplified received signal is shown in the waveform of C in FIG. 12.
  • the above-mentioned masked signal is shown by the waveform of D in FIG. 12, and the received signal received by the microprocessor 17 is shown in FIG.
  • the E waveform is shown.
  • the mask signal adopts a high-level pulse signal, and the mask signal is synchronously emitted with the ultrasonic signal of the excitation ultrasonic transducer.
  • the broken line in FIG. 12 indicates the start timing of the transmission drive; the shield signal and the received signal after the amplitude-amplified amplification
  • An OR operation is performed and the masking signal masks out the small amplitude portion of the front segment of the received signal envelope.
  • the small amplitude portion is at least a portion that is less than 60% of the maximum peak value of the received signal envelope. In actual operation, the portion of the front portion of the envelope that is less than 80% of the maximum peak value of the received signal envelope can be shielded.
  • the microprocessor 17 By shielding the amplitude-amplified portion of the received signal with a small amplitude in the front of the envelope, the microprocessor 17 starts detecting only when it is close to the maximum amplitude of the middle section of the envelope, thereby greatly reducing the noise and other interference signals to the detection result.
  • the effect is to greatly improve the signal-to-noise ratio and ensure the detection accuracy and anti-interference of the sensor.
  • the mask signal is set to mask out the small amplitude portion of the envelope of the received signal
  • the arrival time of the pulse of the large amplitude portion of the envelope of the received signal detected by the microprocessor 17 is compared with the actual propagation time of the ultrasonic signal.
  • the propagation time detected by the microprocessor 17 is a propagation time with a fixed delay. Since the ultrasonic gas sensor is calibrated, the distance between the two ultrasonic transducers, the gas temperature, and the molecular weight of the gas are all determined, and the actual propagation time can therefore be calculated and determined.
  • a certain pulse in the burst that occurs after the mask signal is specified as the pulse to be detected is determined, and the fixed delay of the arrival time of the pulse and the actual propagation time is determined.
  • the actual propagation time of the ultrasonic signal is obtained by subtracting the above fixed delay from the arrival time of the pulse.
  • the ultrasonic transducer in order to increase the emission intensity of the ultrasonic signal, is excited to emit an ultrasonic signal by adopting a method of simultaneously switching the levels of the two electrodes of the ultrasonic transducer.
  • a temperature sensor 14 for detecting the temperature of the gas to be tested is further provided, and the temperature sensor 14 may be disposed in the hollow tube 11
  • the recess in the inner chamber wall is disposed in either of the vents, and the temperature sensor 14 is connected to the microprocessor 17, and the microprocessor 17 can correct the measurement result based on the temperature data of the temperature sensor 14.
  • the ultrasonic gas sensor using the above technical solution can reach a range of 200 ml/min, and the flow rate can reach ⁇ 20 ml/min or even higher.
  • the invention has the beneficial effects that the ultrasonic gas with low cost and simple and convenient detection technology is used in the oxygen generator compared with the oxygen-absorbing oxygen generator which has been introduced by the micro differential pressure sensor for detecting human breathing.
  • the sensor acts as a component of the breath detection, thereby achieving breath detection at a lower cost, thereby achieving oxygen supply with suction, which can greatly reduce the manufacturing cost of the oxygen concentrator.
  • an ultrasonic gas sensor capable of detecting both the gas flow rate and the oxygen concentration can be used, which further eliminates the cost of the oxygen concentration sensor and further reduces the cost of the oxygen generator.
  • the invention can make the oxygen-absorbing technology popular from the expensive portable oxygen generator to a larger and cheaper desktop oxygen generator, so that the oxygen-absorbing oxygen generator can be used by ordinary people. Healthcare products, which are more widely used for promotion.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pulmonology (AREA)
  • Emergency Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Anesthesiology (AREA)
  • Hematology (AREA)
  • Otolaryngology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Physiology (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Respiratory Apparatuses And Protective Means (AREA)

Abstract

一种随吸供氧制氧机,在制氧机中使用超声波气体传感器(6)作为检测人体吸气或呼吸的检测元件,控制单元(3)根据超声波气体传感器(6)检测到的与人体吸气相对应的数据,使氧气产生单元(1)只在人体吸气时才通过输氧管路(2)给人体提供氧气、而在其它时间不给人体提供氧气,从而实现随吸供氧。廉价且控制简单方便地实现了制氧机的随吸供氧,进而大幅降低了制氧机的成本、体积、重量、能耗以及噪音,提高了便携性。

Description

随吸供氧制氧机 技术领域
本发明涉及到能提供氧气的制氧机领域。
背景技术
制氧机是一种医疗和保健产品,它能为需要的人们提供氧气。目前所使用的制氧机以供氧方式来分,主要有以下二种形式:
一是只能持续供氧的制氧机。这种制氧机工作时不管人体的呼吸状态,持续不断地以某个设定流量输送氧气给人体,即使在人体呼气不需要氧气时也不停止氧气的输送。因此,很多时候所供应的氧气被白白浪费了,所供氧气的利用率非常低。
二是能进行随吸供氧的制氧机。这种制氧机工作时会始终检测人体的呼吸状态,并且只在人体吸气阶段的早期才输送氧气给人体,而在其它时间则不会输出氧气。这种方式的制氧机其所供氧气的利用率非常高,几乎不存在浪费。
若再以人体吸氧的方式来分,则有插鼻管或出氧口位于鼻孔附近的开放式吸氧,以及戴面罩的密封式吸氧二种方式。出于舒适性考虑,一般都采用开放式吸氧方式。
能以随吸供氧方式进行供氧的制氧机通过只在人体吸气早期供应氧气,能将达到同样治疗效果所需的供氧量降低到持续供氧方式的1/4~1/6左右。这是因为:
一、人体的吸呼比一般是1:1.5~1:2,即吸气时间大约仅占整个呼吸周期的33%~40%;
二、正常人体的潮气量是500毫升左右,人体的呼吸管路(如气管等)中不参与气体交换部分的容积为150毫升左右(这部分容积又称生理无效腔)。当人体吸气时,首先进入肺部肺泡的是上次呼气时停留在呼吸管路中的废气。人体每次所吸入的500毫升左右的气体中,只有350毫升左右进入肺部,还有150毫升左右停留在呼吸管路中。也就是说,以500毫升潮气为例,进入肺泡的比率大约为70%。
三、上述350毫升左右进入肺部肺泡的气体,最后0.3秒进入的气体部分,无法完全完成气体交换就被排出肺部,其利用率大大降低。并且,随着呼吸周期的缩短,这部分气体所占的比例会大大增加。以每分钟12~20次的呼吸频率、1:1.5~1:2的吸呼比计算,每次吸气时间为1~2秒左右。350毫升左右进入肺泡的气体中,人体能充分全部利用的部分最高为85%左右,最低为70%左右。
四、当人体吸入氧浓度约为21%左右的大气时,人体完成正常气体交换需要0.3秒左右的时间。而当人体要充分利用制氧机输出的、混合浓度可能达到30%左右的高浓度氧气 时,就需要有更长的气体交换时间,因此,350毫升左右进入肺泡的气体中,人体能充分利用的部分会比上述70%~85%更低。
综合上述数据,持续供氧时氧气的利用率最多为16.2%~23.8%,也就是大约1/4~1/6。
目前所广泛使用的持续供氧的制氧机包括:控制制氧机工作的控制单元、氧气产生单元、流量调节装置和将氧气产生单元提供的氧气输送给人体的输氧管路,氧气产生单元通常包含产生氧气的制氧单元、储存氧气的储气罐组件等;在持续供氧制氧机的输氧管路上设置有流量调节装置,有的还设置有用于测量氧气浓度的氧浓度传感器,或者还设置有用于测量氧气流量的流量传感器,以及增加氧气湿度的湿化瓶。使用时,通常将输氧管路的外端连通至人体的鼻孔,氧气产生单元输出的高压氧气经流量调节装置调节流量后,通过输氧管路持续不断地为人体提供氧气。在此过程中,氧浓度传感器和流量传感器将检测到的氧气浓度和流量的数据传送给控制单元,由控制单元对这些数据进行处理。当供氧浓度低于设定值时,控制单元会有报警信号进行报警。
上述持续供氧的制氧机的优点是控制简单。缺点是:一、体积庞大、重量较重,不便于携带,而且能耗很大、噪音也较大;另外,由于在人体呼气时输氧管路依然不停地输出氧气,一方面使得用户舒适性欠佳,另一方面还会造成氧气浪费严重。二、由于制氧机输出的氧气量较大并且十分干燥,所以需要配备湿化瓶对输出的氧气进行加湿处理,这进一步增加了设备成本。
目前所使用的随吸供氧的制氧机包括:控制制氧机工作的控制单元、氧气产生单元、将氧气产生单元提供的氧气输送给人体的供氧单元,能检测人体呼吸的检测元件;氧气产生单元通常包括产生氧气的制氧单元、储存氧气的储气罐组件等,供氧单元通常包括输送氧气的输氧管路、设置在输氧管路上的供氧阀、有的还有氧浓度传感器等,能够检测人体呼吸的检测元件为微差压传感器。使用时,将输氧管路的外端连通至人体的鼻孔,人体呼吸时,微差压传感器能检测到人体呼气和吸气所导致的微差压传感器中的管内气压与外界气压之间的微小压差变化。当人体吸气时,管内气压略低于管外气压;当人体呼气时,管内气压略高于管外气压。工作中根据微差压传感器所检测出的人体吸气和呼气时的微小压差数据,再使供氧阀只在人体吸气的早期导通、其余时间则处于关闭状态。也就是说,只有在人体吸气时,氧气产生单元才能通过输氧管路给人体提供氧气,其余时间则不能通过输氧管路给人体提供氧气,从而实现随吸供氧的工作方式。在工作过程中,可以将氧浓度传感器传送的氧浓度数据作为制氧机此时的供氧浓度。当供氧浓度低于设定值时,控制单元会有报警信号进行报 警。
上述现有的随吸供氧技术主要应用在高售价的便携式制氧机上。其优点是:体积较小,重量较轻,便于携带,能耗较低,噪音也较小。其缺点是:需要配备昂贵的微差压传感器,并且微差压检测技术难度高。微差压传感器的高成本和高技术难度使得随吸供氧技术目前仅在昂贵的便携式制氧机上得到使用,无法普及到数量更大、更为廉价的台式制氧机中,应用范围十分狭小。
目前,基于超声波检测原理的超声波气体传感器能用来测量气体的流量大小、方向以及混合气体中各气体组分的含量(也称为各气体组分的浓度),这种超声波气体传感器具有成本低、精度高、寿命长、稳定性好、反应迅速、检测周期短、可单独或同时测量气体浓度以及气体流量的大小和方向(即双向流量检测能力)等优点。在实际应用中,当超声波气体传感器仅用于检测气体浓度时,一般又被称为超声波气体浓度传感器,当超声波气体传感器仅用于检测气体流量时,一般又被称为超声波气体流量计,通常所述的超声波气体传感器既能检测气体浓度、又能检测气体流量以及气体的流动方向。
综上所述,在制氧机领域,特别是在开放式吸氧方式下,如何使制氧机简单、方便、准确并且低成本地实现随吸供氧一直是本领域存在和探索的技术难题。
发明内容
本发明的目的是提供一种能大大降低制氧机的制造成本、体积以及重量,能耗和噪音也能大大降低的随吸供氧制氧机。
本发明创造性地使用廉价的超声波气体传感器作为制氧机中的检测元件,使制氧机能具有随吸供氧的功能,从而在达到同样吸氧效果的情况下,大大降低制氧机的制造成本、体积以及重量,从而降低售价,并使制氧机便于携带,能耗和噪音也能大大降低。
为实现上述目的,本发明采用了如下的技术方案。
随吸供氧制氧机,包括:控制制氧机工作的控制单元、氧气产生单元、将氧气产生单元提供的氧气输送给人体的供氧单元,供氧单元包括能与人体呼吸器官相连通的输氧管路、设置在输氧管路上的供氧阀;制氧机中还包括能检测人体吸气或呼吸的检测元件;其特点是:使用超声波气体传感器作为检测人体吸气或呼吸的检测元件;制氧机中还设置有气流形成装置,在人体呼吸时该气流形成装置使超声波气体传感器中能至少形成与人体吸气所对应的气流,从而使得超声波气体传感器至少能检测到人体的吸气;工作中根据超声波气体传感器检测到的与人体吸气或呼吸相对应的数据或信号,使供氧单元只在人体吸气时才通过输氧管路给人体提供氧气、而在其它时间不给人体提供氧气,从而实现随吸供氧。
进一步的,前述的随吸供氧制氧机,其中,所述的超声波气体传感器采用既能检测人体吸气或呼吸气流又能检测氧浓度的超声波气体传感器,这样超声波气体传感器既能检测人体吸气或呼吸气流,又能进行制氧机所输出气体的氧浓度检测。
进一步的,前述的随吸供氧制氧机,其中,在连通于供氧阀出气口的输氧管路上连通有旁通管,旁通管的外端与超声波气体传感器上的一个通气口相连通,超声波气体传感器上的另一个通气口与大气相通;在制氧机开始工作的起始时刻,供氧阀处于关闭状态;并且至少在人体吸气时,旁通管使超声波气体传感器中能形成与人体吸气相对应的吸气气流,使得超声波气体传感器能检测到人体的吸气,工作中根据超声波气体传感器检测到的与人体吸气相对应的数据或信号,使供氧阀只在人体吸气时导通设定的时间、其余时间则处于关闭状态,从而使得供氧单元只在人体吸气时才能通过输氧管路给人体提供氧气。
更进一步的,前述的随吸供氧制氧机,其中,当采用既能检测人体吸气或呼吸气流又能检测氧浓度的超声波气体传感器时,使超声波气体传感器上的另一个通气口经过一段管道与大气相通,这样,工作中当供氧阀完成每次供氧而关闭时,就能将此时超声波气体传感器检测到的氧浓度数据作为制氧机此时的供氧浓度数据。
更进一步的,前述的随吸供氧制氧机,其中,还设置有能控制输氧管路通过旁通管与大气相通时间的旁通控制阀;所述的旁通控制阀设置在旁通管中;在制氧机开始工作的起始时刻,供氧阀处于关闭状态、同时旁通控制阀处于导通状态,这样在开机的初始时刻旁通管就使超声波气体传感器中能形成与人体吸气相对应的吸气气流、从而使超声波气体传感器能检测到人体的吸气;并且在工作中,当供氧阀每次导通并且待超声波气体传感器中完成换气时、旁通控制阀就关闭,直至供氧阀完成此次供氧而关闭时、旁通控制阀再导通,使得旁通管既能保障超声波气体传感器准确检测到人体的每次吸气,又减少了氧气的浪费。另外,在实际工作中,当旁通控制阀关闭时,能对超声波气体传感器进行流量零点校正。并且,当采用既能检测人体吸气或呼吸气流又能检测氧浓度的超声波气体传感器时,工作中在旁通控制阀每次关闭时,就能将此时超声波气体传感器检测到的氧浓度数据作为制氧机此时的供氧浓度数据。
更进一步的,前述的随吸供氧制氧机,其中,超声波气体传感器上的另一个通气口连通有贮气腔室而不再与大气相通,贮气腔室和旁通管使超声波气体传感器中能至少形成与人体吸气相对应的吸气气流,使得超声波气体传感器能检测到人体的吸气。在实际制作中,所述的贮气腔室为一个容积能随内部气体压力变化而发生变化的贮气囊;当贮气囊因人体的呼吸而完全饱满或干瘪时,能对超声波气体传感器进行流量零点校正。并且,当采用既能检 测人体吸气或呼吸气流又能检测氧浓度的超声波气体传感器时,工作中当供氧阀完成每次供氧而关闭时,就能将此时超声波气体传感器检测到的氧浓度数据作为制氧机此时的供氧浓度数据。
进一步的,前述的随吸供氧制氧机,其中,在连通于供氧阀出气口的输氧管路中设置有超声波气体传感器,在连通于供氧阀出气口与超声波气体传感器之间的输氧管路上连通有旁通管,所述旁通管的外端与大气相通;在制氧机开始工作的起始时刻,供氧阀处于关闭状态;并且至少在人体吸气时,旁通管使超声波气体传感器中能形成与人体吸气相对应的吸气气流,使得超声波气体传感器能检测到人体的吸气,工作中根据超声波气体传感器检测到的与人体吸气相对应的数据或信号,使供氧阀只在人体吸气时导通设定的时间、其余时间则处于关闭状态,从而使得供氧单元只在人体吸气时才能通过输氧管路给人体提供氧气。
更进一步的,前述的随吸供氧制氧机,其中,当采用既能检测人体吸气或呼吸气流又能检测氧浓度的超声波气体传感器时,工作中当供氧阀完成每次供氧而关闭时,就能将此时超声波气体传感器检测到的氧浓度数据作为制氧机此时的供氧浓度数据。
更进一步的,前述的随吸供氧制氧机,其中,在旁通管中设置有旁通控制阀;在制氧机开始工作的起始时刻,供氧阀处于关闭状态、同时旁通控制阀处于导通状态,这样在开机的初始时刻旁通管就使超声波气体传感器中能形成与人体吸气相对应的吸气气流、从而使超声波气体传感器能检测到人体的吸气;并且在工作中,当供氧阀每次导通时旁通控制阀就关闭,直至供氧阀完成此次供氧而关闭时旁通控制阀再导通,使得旁通管能保障超声波气体传感器准确检测到人体的每次吸气。并且当旁通控制阀关闭时,能对超声波气体传感器进行流量零点校正。在实际制作中,当采用既能检测人体吸气或呼吸气流又能检测氧浓度的超声波气体传感器时,工作中当供氧阀完成每次供氧而关闭时,就能将此时超声波气体传感器检测到的氧浓度数据作为制氧机此时的供氧浓度数据,完成氧浓度检测后再使旁通控制阀导通,使得旁通管能保障超声波气体传感器准确检测到人体的每次吸气。
更进一步的,前述的随吸供氧制氧机,其中,所述的旁通管的外端连接有贮气腔室而不再与大气相通,贮气腔室和旁通管使超声波气体传感器中能至少形成与人体吸气相对应的吸气气流,使得超声波气体传感器能检测到人体的吸气。在实际制作中,所述的贮气腔室为一个容积能随内部气体压力变化而发生变化的贮气囊。当贮气囊因人体的呼吸而完全饱满或干瘪、超声波气体传感器中流量为零、气压接近外界大气压时,能对超声波气体传感器进行流量零点校正。并且,当采用既能检测人体吸气或呼吸气流又能检测氧浓度的超声波气体传感器时,工作中当供氧阀完成每次供氧而关闭时,就能将此时超声波气体传感器检测到的 氧浓度数据作为制氧机此时的供氧浓度数据。
进一步的,前述的随吸供氧制氧机,其中,在制氧机中设置有旁通管,旁通管的一端能与制氧机外的人体的呼吸通道相通,旁通管的另一端与超声波气体传感器上的一个通气口相连通,超声波气体传感器上的另一个通气口与大气相通;在制氧机开始工作的起始时刻,供氧阀处于关闭状态;并且至少在人体吸气时,旁通管使超声波气体传感器中能形成与人体吸气相对应的吸气气流,使得超声波气体传感器能检测到人体的吸气,工作中根据超声波气体传感器检测到的与人体吸气相对应的数据或信号,使供氧阀只在人体吸气时导通设定的时间、其余时间则处于关闭状态,从而使得供氧单元只在人体吸气时才能通过输氧管路给人体提供氧气。
更进一步的,前述的随吸供氧制氧机,其中,超声波气体传感器上的另一个通气口连接有贮气腔室而不再与大气相通,贮气腔室和旁通管使超声波气体传感器中能至少形成与人体吸气相对应的吸气气流,使得超声波气体传感器能检测到人体的吸气。在实际制作中,所述的贮气腔室为一个容积能随内部气体压力变化而发生变化的贮气囊;当贮气囊因人体的呼吸而完全饱满或干瘪、超声波气体传感器中流量为零、气压接近外界大气压时,能对超声波气体传感器进行流量零点校正。
进一步的,前述的随吸供氧制氧机,其中,在旁通管中设置有旁通控制阀;在制氧机开始工作的起始时刻,供氧阀处于关闭状态、同时旁通控制阀处于导通状态,这样在开机的初始时刻旁通管就使超声波气体传感器中能形成与人体吸气相对应的吸气气流、从而使超声波气体传感器能检测到人体的吸气。并且在不妨碍超声波气体传感器检测人体吸气的前提下,能选择某个时刻短时间关闭旁通控制阀,以便进行超声波气体传感器的流量零点校正;即:除了在人体开始吸气的那段时间之外,可以选择其它任意某个时刻短时间关闭旁通控制阀,以便可以进行超声波气体传感器的流量零点校正。
本发明的有益效果是:与目前已经面世的采用微差压传感器检测人体呼吸的随吸供氧式制氧机相比,本发明在制氧机中使用价格低廉且检测技术简单方便的超声波气体传感器作为呼吸检测的元件,从而以较低的成本实现了呼吸检测,进而实现随吸供氧,这能大大降低随吸供氧式制氧机的制造成本。并且,还能采用既能检测气体流量又能检测氧浓度的超声波气体传感器,可以进一步省掉氧浓度传感器的费用,进一步降低了制氧机成本。本发明能使随吸供氧技术从昂贵的便携式制氧机普及到数量更大、更为廉价的台式制氧机,使随吸供氧制氧机成为一种能让普通百姓消费得起的医疗保健产品。
附图说明
图1是本发明第一种实施例的结构原理示意图。
图2是本发明第二种实施例的结构原理示意图。
图3是本发明第三种实施例的结构原理示意图。
图4是本发明第四种实施例的结构原理示意图。
图5是本发明第五种实施例的结构原理示意图。
图6是本发明第六种实施例的结构原理示意图。
图7是本发明第七种实施例的结构原理示意图。
图8是本发明第八种实施例的结构原理示意图。
图9是本发明第九种实施例的结构原理示意图。
图10是本发明第十种实施例的结构原理示意图。
图11是本发明中所选用的一种超声波气体传感器的结构原理示意图。
图12是图11所示超声波气体传感器中所涉及到的信号波形示意图。
具体实施方式
下面结合附图和优选实施例对本发明作进一步的说明,但本发明并不仅限于这些实施例。
如图1所示是本发明所述的随吸供氧制氧机的第一种实施例,包括:控制制氧机正常工作的控制单元3、氧气产生单元1、将氧气产生单元1提供的氧气输送给人体的供氧单元,供氧单元包括能与人体呼吸器官相连通的输氧管路2、设置在输氧管路2中的供氧阀5,制氧机中还包括能检测人体吸气或呼吸的检测元件,本发明中,使用超声波气体传感器6作为检测人体吸气或呼吸的检测元件,控制单元3能和超声波气体传感器6之间进行数据或信号的传送;制氧机中还设置有气流形成装置,在人体呼吸时该气流形成装置使超声波气体传感器6中能至少形成与人体吸气所对应的气流,从而使得超声波气体传感器6至少能检测到人体的吸气;工作中根据超声波气体传感器6检测到的与人体吸气或呼吸相对应的数据或信号,使供氧单元只在人体吸气时才通过输氧管路2给人体提供氧气、而在其它时间不给人体提供氧气,从而实现随吸供氧。本实施例中,在连通于供氧阀5出气口的输氧管路2上连通有旁通管4,旁通管4的外端与超声波气体传感器6上的一个通气口相连通,超声波气体传感器6上的另一个通气口与大气相通,使用时,将输氧管路2的外端连通至人体7的鼻孔。旁通管4以及从旁通管至人体呼吸器官之间的那部分输氧管路构成了气流形成装置。在制氧机开始工作的起始时刻,供氧阀5处于关闭状态;人体呼吸时,包括旁通管4的气流形成装置使超声波气体传感器6中能形成与人体吸气相对应的吸气气流、还可以形成与人体呼 气相对应的呼气气流,使得超声波气体传感器6能作为呼吸检测元件而检测到人体的每次吸气,当然也能检测到人体每次吸气的初始时刻。工作中根据超声波气体传感器6检测到的与人体吸气或者吸气的初始时刻相对应的数据,使供氧阀5只在人体每次吸气时导通设定的时间,其余时间则处于关断状态,从而使得供氧单元只能在人体每次吸气时才通过输氧管路2给人体提供设定量的氧气。在实际工作中,可以使供氧单元只在人体每次吸气的早期才通过输氧管路2给人体提供氧气,例如,在实际使用过程中,可控制供氧阀5在人体每次开始吸气后的0.01~0.1秒中的任一时刻开始导通并保持所需要的时间,该保持时间可由实际所需的供氧量大小来设定,而在其余时间则处于关闭状态。在人体吸气的早期供氧既可以使所供氧气能尽早进入肺泡,充分完成气体更换,以确保满足人体每次呼吸所需要的供氧量;又能最大程度地减少制氧机的无效供氧量,从而大大提高制氧机所供氧气的利用率,提高了制氧机的工作效率。
本实施例中,所述的超声波气体传感器6还可以采用既能检测人体吸气或呼吸气流又能检测氧浓度的超声波气体传感器,并且在实际工作中,可以使超声波气体传感器上的另一个通气口经过一段管道与大气相通,这样,工作中当供氧阀5完成每次供氧而关闭时,超声波气体传感器6中就充满了本次释放的高浓度氧气,此时控制单元3就能将超声波气体传感器6检测到的氧浓度数据作为制氧机的实时供氧浓度数据。当供氧浓度低于设定值时控制单元3会有报警信号进行报警。
在第一种实施例中,由于在供氧阀5导通时,所输送的氧气不仅会通过输氧管路2输送到人体,也会通过旁通管4泄漏到大气中,造成氧气的浪费。因此,需要通过技术手段来限制旁通管4的泄漏量,使所发生的泄漏仅能使超声波气体传感器6中的气体更新即可。同时,这种技术手段又不能妨碍超声波气体传感器6对人体呼吸气流的正常检测。最简单的技术手段是缩小旁通管的内径,使得供氧时经旁通管泄漏的氧气量大大小于经输氧管路输送到人体的氧气量,但同时需要保证缩小后的旁通管内径不会妨碍超声波气体传感器对人体呼吸气流的检测。
如图2所示是本发明所述随吸供氧制氧机的第二种实施例,其能克服第一种实施例中氧气浪费多的缺点。由图2中可知,第二种实施例与图1所示的第一种实施例的不同之处在于:还设置有能控制输氧管路2通过旁通管4与大气相通的时间的旁通控制阀8;本实施例中所述的旁通控制阀8设置在旁通管4中;本实施例中旁通控制阀8、旁通管4以及从旁通管4至人体呼吸器官之间的那部分输氧管路构成了气流形成装置。第二种实施例实现随吸供氧的工作控制流程与第一种实施例的不同之处是:在制氧机开始工作的起始时刻,供氧阀 5处于关闭状态、同时旁通控制阀8处于导通状态,这样在开机的初始时刻包括旁通管4的气流形成装置使超声波气体传感器6能作为呼吸检测元件而至少检测到人体的每次吸气或者每次吸气的初始时刻;并且在工作中,当供氧阀5每次导通并且待超声波气体传感器6中完成换气时、旁通控制阀8就关闭,直至供氧阀5完成此次供氧而关闭时、旁通控制阀8再导通,使得旁通管既能保障超声波气体传感器准确检测到人体的每次吸气,又减少了氧气的浪费。并且在实际工作中,可以选择在旁通控制阀8关闭、超声波气体传感器中流量为时,即:旁通管4中的气压接近外界大气压时,对超声波气体传感器进行流量零点校正。
另外,本实施例中,所述的超声波气体传感器6还可以采用既能检测人体吸气或呼吸气流又能检测氧浓度的超声波气体传感器,这样,工作中在旁通控制阀8每次关闭时,控制单元3就能将此时超声波气体传感器6检测到的氧浓度数据作为制氧机此时的供氧浓度数据;当供氧浓度低于设定值时控制单元3会有报警信号进行报警。
如图3所示是本发明所述随吸供氧制氧机的第三种实施例,其也能克服第一种实施例中氧气浪费多的缺点。由图3中可知,第三种实施例与图1所示的第一种实施例的不同之处在于:使超声波气体传感器上的另一个通气口连接有一段带旁通控制阀8的外接管道,本实施例中该外接管道、旁通控制阀8、旁通管4以及从旁通管4至人体呼吸器官之间的那部分输氧管路构成了气流形成装置。
第三种实施例实现随吸供氧的工作控制流程与第二种实施例相同。但当超声波气体传感器采用既能检测人体吸气或呼吸气流又能检测氧浓度的超声波气体传感器时,在供氧浓度检测方面,第三种实施例与第二种实施例相比存在如下区别:工作中在供氧阀5每次关闭并且旁通控制阀8刚导通时,控制单元3就将此时超声波气体传感器6检测到的氧浓度数据作为制氧机此时的供氧浓度数据;当供氧浓度低于设定值时控制单元3会有报警信号进行报警。
另外,在实际工作中,可以选择在旁通控制阀8关闭、超声波气体传感器中流量为零时,即:旁通管4中的气压接近外界大气压时,对超声波气体传感器进行流量零点校正。
上述第二及第三种实施例中设置旁通控制阀8的作用是:一是在供氧阀5导通后不久,就关断旁通控制阀8,限制从旁通管4泄漏的氧气量,使从旁通管4泄漏的氧气量仅满足于完成超声波气体传感器6内的气体更新;二是关闭旁通控制阀8时,旁通管4中的气体流量为零,旁通管4中的气压接近外界大气压时,就可以进行超声波气体传感器6的流量零点校正,消除长期使用所不可避免的流量零点漂移。
如图4所示是本发明所述随吸供氧制氧机的第四种实施例,其也能克服第一种实施 例中氧气浪费多的缺点。由图4中可知,第四种实施例与图1所示的第一种实施例的不同之处在于:超声波气体传感器6上的另一个通气口连接有贮气腔室9而不再与大气相通,本实施例中所述的贮气腔室为一个容积能随内部气体压力微小变化而发生变化的贮气囊9。本实施例中贮气囊9、旁通管4以及从旁通管4至人体呼吸器官之间的那部分输氧管路构成了气流形成装置。包括贮气囊9和旁通管4的气流形成装置使超声波气体传感器6中能至少形成与人体吸气相对应的吸气气流,使得超声波气体传感器6能作为呼吸检测元件而检测到人体的每次吸气或者每次吸气的初始时刻。
这种方式的最大好处是防止了氧气的泄漏,提高了制氧机所供氧气的利用率。同时,又几乎没有增加成本。其缺点是氧浓度检测的实时性稍有降低。
第四种实施例实现随吸供氧的工作控制流程与第一种实施例相同。但在供氧浓度检测和流量零点校正方面,第四种实施例与第一种实施例相比存在如下区别:在工作过程中,当供氧阀5完成每次供氧关断后,人体的吸气气流会使贮气囊9内的部分气体被吸出;人体完成吸气转入呼气时,输氧管路2内的气体又进入贮气囊9和超声波气体传感器6。这样的过程不断重复,贮气囊9和超声波气体传感器6内的气体会逐步更新为输氧管路送出的氧气。当所述的超声波气体传感器采用既能检测人体吸气或呼吸气流又能检测氧浓度的超声波气体传感器时,并且当供氧阀5完成每次供氧而关闭时,控制单元3就将此时超声波气体传感器6检测到的氧浓度数据作为制氧机此时的供氧浓度数据,当供氧浓度低于设定值时控制单元3会有报警信号进行报警。另外,当贮气囊9由于人体的呼吸而完全饱满或完全干瘪时,超声波气体传感器6内会有一小段时间气流为零,可以利用这一特性进行超声波气体传感器6的流量零点校正。
在实际生产中,可选择合适的制作贮气囊9的材料,使人的呼吸气流足以使其饱满和干瘪。还可选择合适的贮气囊9容积,使其至少在人体由呼气转为吸气的初始时刻,能使超声波气体传感器6内形成相应的气流。
如图5所示是本发明所述随吸供氧制氧机的第五种实施例,由图5中可知,第五种实施例与图1所示的第一种实施例的不同之处是:将超声波气体传感器6设置在连通于供氧阀出气口的输氧管路2中,而将旁通管4连通在供氧阀5出气口与超声波气体传感器6之间的输氧管路2上,旁通管4的外端与大气相通。本实施例中旁通管4以及从旁通管4至人体呼吸器官之间的那部分输氧管路构成了气流形成装置。
第五种实施例实现随吸供氧的工作控制流程与第一种实施例相同。但第五种实施例存在如下缺点:一、旁通管4会使氧气泄漏而造成浪费;二、设置在输氧管路2中的超声波 气体传感器6会反复经受大流量供氧气流的冲击,对传感器的寿命和性能会产生不良影响;三、超声波气体传感器中始终有人体的呼吸气流或供氧气流,无法进行流量零点校正。
本实施例中,当采用既能检测人体吸气或呼吸气流又能检测氧浓度的超声波气体传感器时,工作中当供氧阀完成每次供氧而关闭时,控制单元3就将此时超声波气体传感器检测到的氧浓度数据作为制氧机此时的供氧浓度数据。
如图6所示是本发明所述随吸供氧制氧机的第六种实施例,由图6中可知,第六种实施例与图5所示的第五种实施例的不同之处在于:在旁通管4中设置有旁通控制阀8。本实施例中旁通控制阀8、旁通管4以及从旁通管4至人体呼吸器官之间的那部分输氧管路构成了气流形成装置。第六种实施例能大大减少氧气的泄漏量。
第六种实施例实现随吸供氧的工作控制流程与第二种实施例相比,存在如下的不同之处:工作中,当供氧阀5每次导通时旁通控制阀8就关闭,直至供氧阀5完成此次供氧而关闭时旁通控制阀8再导通,这样做既能使旁通管4保障超声波气体传感器6能准确检测到人体的每次吸气,又能进一步减少氧气的白白流失。
另外,在实际应用中所述的超声波气体传感器还可以采用既能检测人体吸气或呼吸气流又能检测氧浓度的超声波气体传感器,这样可在供氧阀5完成每次供氧而关闭时,控制单元3就将超声波气体传感器6检测到的氧浓度数据作为制氧机此时的供氧浓度数据,实现供氧浓度检测功能,然后控制单元3再控制旁通控制阀8导通,使得旁通管4能保障超声波气体传感器6准确检测到人体的每次吸气,当供氧浓度低于设定值时控制单元3会有报警信号进行报警。在实际工作中,在供氧阀5和旁通控制阀8都关闭、超声波气体传感器6中流量为零时,控制单元3还能对超声波气体传感器6进行流量零点校正。
如图7所示是本发明所述的随吸供氧制氧机的第七种实施例,由图7中可知,第七种实施例与图5所示的第五种实施例的不同之处在于:所述的旁通管4的外端连接有贮气腔室9而不再与大气相通。本实施例中所述的贮气腔室为一个容积能随内部气体压力微小变化而发生变化的贮气囊9。本实施例中贮气囊9、旁通管4以及从旁通管4至人体呼吸器官之间的那部分输氧管路构成了气流形成装置。包括贮气囊9和旁通管4的气流形成装置使超声波气体传感器6中能至少形成与人体吸气相对应的吸气气流,使得超声波气体传感器6能作为呼吸检测元件而检测到人体的每次吸气或者每次吸气的初始时刻。
当贮气囊因人体的呼吸而完全饱满或干瘪、超声波气体传感器中流量为零时,即:超声波气体传感器中的气室管道气压接近外界大气压时,可以对超声波气体传感器进行流量零点校正。
第七种实施例与第五种实施例相比,几乎没有增加成本,又杜绝了氧气的泄漏,其不足之处是降低了供氧浓度检测的实时性。
第七种实施例实现随吸供氧的工作控制流程与图5所示的第五种实施例相同,不再赘述。
如图8所示是本发明所述的随吸供氧制氧机的第八种实施例,由图8中可知,第八种实施例与图1所示的第一种实施例的不同之处是:旁通管4的一端能直接与制氧机外的人体7的呼吸通道相连通,旁通管4的另一端与超声波气体传感器6上的一个通气口相连通,超声波气体传感器6上的另一个通气口与大气相通,即:旁通管4不再与输氧管路2相连通,而是成为一条独立的管道。本实施例中独立的旁通管4构成了气流形成装置。
使用时,将输氧管路2的外端、以及旁通管4的一端一起连通至人体7的鼻孔即可。第八种实施例实现随吸供氧的工作控制流程与图1所示的第一种实施例相同,不再赘述。
第八种实施例的优点是:一、没有氧气泄漏;二、能完整检测人体的呼吸气流,几乎不受供氧气流的影响。其缺点是:一、超声波气体传感器中一直有气流,无法进行流量零点校正;二、无法检测供氧浓度。
当然,在实际工作过程中,还可在第八种实施例中的输氧管路2上另外再设置一个超声波气体传感器,使制氧机能实现供氧浓度检测的功能。
如图9所示是本发明所述的随吸供氧制氧机的第九种实施例,由图9中可知,第九种实施例与图8所示的第八种实施例的不同之处在于:超声波气体传感器6上不与人体7鼻孔直接相连接的另一个通气口连接有贮气腔室9而不再与大气相通。本实施例中所述的贮气腔室9为一个容积能随内部气体压力微小变化而发生变化的贮气囊9。本实施例中贮气囊9、旁通管4构成了气流形成装置。贮气囊9和旁通管4使超声波气体传感器6中能至少形成与人体吸气相对应的吸气气流,使得超声波气体传感器6能作为呼吸检测元件而检测到人体的每次吸气或者每次吸气的初始时刻。
第九种实施例实现随吸供氧的工作控制流程与第八种实施例相同,不再赘述。另外,第九种实施例还能利用贮气囊9完全饱满或干瘪时流量为零的特点,实现超声波气体传感器6的流量零点校正。
如图10所示是本发明所述的随吸供氧制氧机的第十种实施例,由图10中可知,第十种实施例与图8所示的第八种实施例的不同之处在于:在旁通管4中设置有旁通控制阀8。本实施例中旁通控制阀8、旁通管4构成了气流形成装置。
第十种实施例实现随吸供氧的工作控制流程与第八种实施例相比,存在如下的不同之处:工作中,在制氧机开始工作的起始时刻,供氧阀5处于关闭状态、同时旁通控制阀8处于导通状态,这样在开机的初始时刻包括旁通管4的气流形成装置使超声波气体传感器6能作为呼吸检测元件而检测到人体吸气;并且在实际工作中,在不妨碍超声波气体传感器检测人体吸气的前提下,能选择某个时刻短时间关闭旁通控制阀,以便进行超声波气体传感器的流量零点校正。即:除了在人体开始吸气的那段时间之外,可以选择某个时刻短时间关闭旁通控制阀,以便可以进行超声波气体传感器的流量零点校正。
在上述多个实施例中,还可以在旁通管或超声波气体传感器上与大气相通的通气口中设置空气过滤器,以防止外界空气中的灰尘被吸入超声波气体传感器中而影响检测的精度。
另外,在实际工作中,所述的供氧阀或旁通控制阀可以由控制单元控制,也可以通过超声波气体传感器进行控制。例如:控制单元根据用户设定的流量和气压,计算出供氧阀的开启时间,然后在超声波气体传感器检测到的人体吸气时,使供氧阀开启所设定的时间;或者,控制单元根据用户设定的流量和气压,计算出供氧阀的开启时间,然后发送给超声波气体传感器,超声波气体传感器根据此数据,在检测到人体吸气时,使供氧阀开启所设定的时间;再或者,控制单元将用户设定的流量和气压发送给超声波气体传感器,超声波气体传感器根据此数据,计算出供氧阀的开启时间,然后,在检测到人体吸气时,使供氧阀开启所设定的时间。当然,供氧阀或旁通控制阀并不仅限于上述的控制方式,凡采用等同替换或等效变换形成的技术方案,均应属于本发明所要求的保护范围之内。
如图11所示,是本发明所选用的一种超声波气体传感器的结构原理图,其结构具体包括:一个用以容纳待测气体的密闭的气室15,所述气室15包括一根两端封闭的空心管11,在靠近空心管11两端的侧壁上分别设置有一个通气口,即第一通气口141和第二通气口142,在实际工作中,可以根据需要使待测气体从第一通气口141进入气室15,并从第二通气口142流出气室15,同样的,待测气体也能从第二通气口142进入气室15,并从第一通气口141流出气室15,第一超声波换能器21和第二超声波换能器22以设定的距离分别安装在气室15的两端,空心管11两端分别形成大管径段用以安装超声波换能器,即:空心管11的左端设有用以安装第一超声波换能器21的左大管径段121、右端设有用以安装第二超声波换能器22的右大管径段122,空心管11中间部分的管径则小于两端的大管径段而形成小管径段111,还包括一个气体测量控制系统,所述气体测量控制系统包括:分别连到第一超声波换能器21和第二超声波换能器22并能选择性激励一个超声波换能器发出超声波、 而另一个超声波换能器接收超声波的切换开关网络13,一个连到切换开关网络13的微处理器17,连到切换开关网络13和微处理器17的发射电路18和接收处理电路16;微处理器17通过发射电路18和切换开关网络13激励第一超声波换能器21发出给定频率的多脉冲的第一声波,第一声波穿过气室15内的待测气体并在气室15内形成驻波,第二超声波换能器22则接收到该第一声波信号,从第一声波开始发射到被接收的时间为第一传播时间;然后,等第一声波在气室15内经过阻尼振荡消失以后,微处理器17通过发射电路18和切换开关网络13激励第二超声波换能器22发出与第一声波同样频率同样脉冲数的第二声波,第二声波穿过气室15内的待测气体并在气室15内形成驻波,第一超声波换能器21则接收到该第二声波信号,从第二声波开始发射到被接收的时间为第二传播时间;微处理器17根据第一传播时间和第二传播时间来测算出气体的流量和/或待测气体中各气体组成的含量;第一超声波换能器21和第二超声波换能器22之间的管道等效横截面积不大于以第一声波波长为直径的圆面积的四分之一;并且,当小管径段横截面积不大于超声波换能器的发射端面积的四分之一时,空心管两端的大管径段分别通过一个喇叭形体平滑过渡到空心管中间的小管径段,即:左大管径段121通过一个左喇叭形体131平滑过渡到空心管的小管径段111的左端,右大管径段122通过一个右喇叭形体132平滑过渡到空心管的小管径段111的右端。并且,二个通气口分别设置在空心管上的二个喇叭形体上,本实施例中,第一通气口141设置在左喇叭形体131上,第二通气口142设置在右喇叭形体132上。上述的第一声波和第二声波的驱动脉冲如图12中的A波形所示,上述驻波信号的包络波形参见图12中的B波形所示。本实施例中,左大管径段121和右大管径段122、以及小管径段111均为圆柱体形状,所述的喇叭形体为圆台体形状,即:左喇叭形体131和右喇叭形体132均为圆台体形状。
上述管道等效横截面积是指:假设有两个超声波气体传感器,它们所采用的空心管的管道结构不同,但一个超声波气体传感器中的二个超声波换能器之间的间距与另一个超声波气体传感器中的二个超声波换能器之间的间距相等,并且第一个超声波气体传感器中空心管的管道横截面积是变化的,第二个超声波气体传感器中空心管的管道横截面积不变——比如采用圆柱形管道,当同样流量和流速的气体流经这两个超声波气体传感器中的管道时,若两个超声波气体传感器的正、反两个方向的传播时间差相同,则第二个超声波气体传感器的管道横截面积被称为第一个超声波气体传感器的管道等效横截面积。
在实际工作中,当气室内的待测气体不流动时,微处理器能利用第一传播时间或第二传播时间来测算出待测气体的平均分子量,若待测气体是二元混合气体,还可进一步测算出待测气体中各气体的含量(即各气体的浓度)。当气室内的待测气体以一定的速度向某一 方向流动时,微处理器则能利用所测量到的第一传播时间和第二传播时间测算出二者之间的时间差值,并进一步测算出待测气体流量的大小、流量方向,若待测气体是二元混合气体,同样还可进一步测算出待测气体中各气体的含量(即各气体的浓度)。
本实施例中,接收处理电路16对接收到的信号进行限幅放大,并用一屏蔽信号与经过限幅放大后的接收信号进行“或”或“与”运算,以屏蔽掉接收信号包络中的小振幅部分,从而检测出接收信号包络中大振幅部分的脉冲的到达时间。优选地,所述的接收信号包络中的小振幅部分为至少小于接收信号包络最大峰值60%的部分。上述的限幅放大后的接收信号参见图12中的C波形所示,上述的屏蔽信号参见图12中的D波形所示,微处理器17接收到的屏蔽后的接收信号参见图12中的E波形所示。
本实施例中,屏蔽信号采用高电平脉冲信号,屏蔽信号与激励超声波换能器的超声波信号同步发出,图12中的虚线表示发射驱动的开始时刻;屏蔽信号与限幅放大后的接收信号进行“或”运算,并且屏蔽信号屏蔽掉接收信号包络前段中的小振幅部分。该小振幅部分为至少小于接收信号包络最大峰值60%的部分,实际操作中可将小于接收信号包络最大峰值80%的包络前段部分都进行屏蔽。通过对限幅放大后的接收信号的包络前段振幅较小的部分进行屏蔽,使微处理器17只在接近包络中段最大振幅处才开始检测,从而大大降低噪声等干扰信号对检测结果的影响,大大提高信噪比,确保传感器的检测精度和抗干扰性。
由于设置了屏蔽信号来屏蔽掉接收信号包络中的小振幅部分,因此,微处理器17所检测到的接收信号包络中大振幅部分的脉冲的到达时间与超声波信号的实际传播时间之间会存在一个固定延时,即:微处理器17所检测到的传播时间是一个带有固定延时的传播时间。由于超声波气体传感器标定时,两个超声波换能器之间的距离、气体温度、以及气体分子量都是确定的,实际传播时间也因此可以计算确定。在标定时指定屏蔽信号后出现的脉冲群中的某个脉冲作为将要检测的脉冲,则此脉冲的到达时间与实际传播时间的固定延时就被确定下来。实际检测时,用此脉冲的到达时间减去上述固定延时,就得到了超声波信号的实际传播时间。
本实施例中,为提高超声波信号的发射强度,通过采用使超声波换能器两电极的电平同时交替切换的方法来激励超声波换能器发出超声波信号。在实际工作中,也可以通过提高超声波换能器驱动信号的电压值,使发射功率更大;还可以采用上述二种方法的组合等形式来提高超声波的发射强度。
本实施例中,考虑到温度对超声波的传播速度会产生影响,因此为了提高测量精度,还设置有用以检测待测气体温度的温度传感器14,温度传感器14可以设置在空心管11 内腔壁上的凹槽中或者设置在任一个通气口中,温度传感器14连到微处理器17,微处理器17能根据温度传感器14的温度数据来修正测算结果。
采用上述技术方案的超声波气体传感器的量程范围能够达到200毫升/分钟,流量精度能够达到±20毫升/分钟甚至更高。
除上述各种实施例外,本发明还可以有其它实施方式,凡采用等同替换或等效变换形成的技术方案,均应属于本发明所要求的保护范围之内。
本发明的有益效果是:与目前已经面世的采用微差压传感器检测人体呼吸的随吸供氧式制氧机相比,本发明在制氧机中使用价格低廉且检测技术简单方便的超声波气体传感器作为呼吸检测的元件,从而以较低的成本实现了呼吸检测,进而实现随吸供氧,这能大大降低随吸供氧式制氧机的制造成本。并且,还能采用既能检测气体流量又能检测氧浓度的超声波气体传感器,可以进一步省掉氧浓度传感器的费用,进一步降低了制氧机成本。本发明能使随吸供氧技术从昂贵的便携式制氧机普及到数量更大、更为廉价的台式制氧机,使随吸供氧制氧机成为一种能让普通百姓消费得起的医疗保健产品,从而得到更加广泛的推广应用。

Claims (20)

  1. 随吸供氧制氧机,包括:控制制氧机工作的控制单元、氧气产生单元、将氧气产生单元提供的氧气输送给人体的供氧单元,供氧单元包括能与人体呼吸器官相连通的输氧管路、设置在输氧管路上的供氧阀;制氧机中还包括能检测人体吸气或呼吸的检测元件;其特征在于:使用超声波气体传感器作为检测人体吸气或呼吸的检测元件;制氧机中还设置有气流形成装置,在人体呼吸时该气流形成装置使超声波气体传感器中能至少形成与人体吸气所对应的气流,从而使得超声波气体传感器至少能检测到人体的吸气;工作中根据超声波气体传感器检测到的与人体吸气或呼吸相对应的数据或信号,使供氧单元只在人体吸气时才通过输氧管路给人体提供氧气、而在其它时间不给人体提供氧气,从而实现随吸供氧。
  2. 根据权利要求1所述的随吸供氧制氧机,其特征在于:所述的超声波气体传感器采用既能检测人体吸气或呼吸气流又能检测氧浓度的超声波气体传感器,这样超声波气体传感器既能检测人体吸气或呼吸气流,又能进行制氧机所输出气体的氧浓度检测。
  3. 根据权利要求1或2所述的随吸供氧制氧机,其特征在于:在连通于供氧阀出气口的输氧管路上连通有旁通管,旁通管的外端与超声波气体传感器上的一个通气口相连通,超声波气体传感器上的另一个通气口与大气相通;在制氧机开始工作的起始时刻,供氧阀处于关闭状态;并且至少在人体吸气时,旁通管使超声波气体传感器中能形成与人体吸气相对应的吸气气流,使得超声波气体传感器能检测到人体的吸气,工作中根据超声波气体传感器检测到的与人体吸气相对应的数据或信号,使供氧阀只在人体吸气时导通设定的时间、其余时间则处于关闭状态,从而使得供氧单元只在人体吸气时才能通过输氧管路给人体提供氧气。
  4. 根据权利要求3所述的随吸供氧制氧机,其特征在于:当采用既能检测人体吸气或呼吸气流又能检测氧浓度的超声波气体传感器时,使超声波气体传感器上的另一个通气口经过一段管道与大气相通,这样,工作中当供氧阀完成每次供氧而关闭时,就能将此时超声波气体传感器检测到的氧浓度数据作为制氧机此时的供氧浓度数据。
  5. 根据权利要求3所述的随吸供氧制氧机,其特征在于:还设置有能控制输氧管路通过旁通 管与大气相通时间的旁通控制阀;所述的旁通控制阀设置在旁通管中;在制氧机开始工作的起始时刻,供氧阀处于关闭状态、同时旁通控制阀处于导通状态,这样在开机的初始时刻旁通管就使超声波气体传感器中能形成与人体吸气相对应的吸气气流、从而使超声波气体传感器能检测到人体的吸气;并且在工作中,当供氧阀每次导通并且待超声波气体传感器中完成换气时旁通控制阀就关闭,直至供氧阀完成此次供氧而关闭时、旁通控制阀再导通,使得旁通管既能保障超声波气体传感器准确检测到人体的每次吸气,又减少了氧气的浪费。
  6. 根据权利要求5所述的随吸供氧制氧机,其特征在于:当采用既能检测人体吸气或呼吸气流又能检测氧浓度的超声波气体传感器时,工作中在旁通控制阀每次关闭时,就能将此时超声波气体传感器检测到的氧浓度数据作为制氧机此时的供氧浓度数据。
  7. 根据权利要求3所述的随吸供氧制氧机,其特征在于:超声波气体传感器上的另一个通气口连通有贮气腔室而不再与大气相通,贮气腔室和旁通管使超声波气体传感器中能至少形成与人体吸气相对应的吸气气流,使得超声波气体传感器能检测到人体的吸气。
  8. 根据权利要求7所述的随吸供氧制氧机,其特征在于:所述的贮气腔室为一个容积能随内部气体压力变化而发生变化的贮气囊。
  9. 根据权利要求7或8所述的随吸供氧制氧机,其特征在于:当采用既能检测人体吸气或呼吸气流又能检测氧浓度的超声波气体传感器时,工作中当供氧阀完成每次供氧而关闭时,就能将此时超声波气体传感器检测到的氧浓度数据作为制氧机此时的供氧浓度数据。
  10. 根据权利要求1或2所述的随吸供氧制氧机,其特征在于:在连通于供氧阀出气口的输氧管路中设置有超声波气体传感器,在连通于供氧阀出气口与超声波气体传感器之间的输氧管路上连通有旁通管,所述旁通管的外端与大气相通;在制氧机开始工作的起始时刻,供氧阀处于关闭状态;并且至少在人体吸气时,旁通管使超声波气体传感器中能形成与人体吸气相对应的吸气气流,使得超声波气体传感器能检测到人体的吸气,工作中根据超声波气体传感器检测到的与人体吸气相对应的数据或信号,使供氧阀只在人体吸气时导通设定的时间、 其余时间则处于关闭状态,从而使得供氧单元只在人体吸气时才能通过输氧管路给人体提供氧气。
  11. 根据权利要求10所述的随吸供氧制氧机,其特征在于:当采用既能检测人体吸气或呼吸气流又能检测氧浓度的超声波气体传感器时,工作中当供氧阀完成每次供氧而关闭时,就能将此时超声波气体传感器检测到的氧浓度数据作为制氧机此时的供氧浓度数据。
  12. 根据权利要求10所述的随吸供氧制氧机,其特征在于:在旁通管中设置有旁通控制阀;在制氧机开始工作的起始时刻,供氧阀处于关闭状态、同时旁通控制阀处于导通状态,这样在开机的初始时刻旁通管就使超声波气体传感器中能形成与人体吸气相对应的吸气气流、从而使超声波气体传感器能检测到人体的吸气;并且在工作中,当供氧阀每次导通时旁通控制阀就关闭,直至供氧阀完成此次供氧而关闭时旁通控制阀再导通,使得旁通管能保障超声波气体传感器准确检测到人体的每次吸气。
  13. 根据权利要求12所述的随吸供氧制氧机,其特征在于:当采用既能检测人体吸气或呼吸气流又能检测氧浓度的超声波气体传感器时,工作中当供氧阀完成每次供氧而关闭时,就能将此时超声波气体传感器检测到的氧浓度数据作为制氧机此时的供氧浓度数据,完成氧浓度检测后再使旁通控制阀导通,使得旁通管能保障超声波气体传感器准确检测到人体的每次吸气。
  14. 根据权利要求10所述的随吸供氧制氧机,其特征在于:所述的旁通管的外端连接有贮气腔室而不再与大气相通,贮气腔室和旁通管使超声波气体传感器中能至少形成与人体吸气相对应的吸气气流,使得超声波气体传感器能检测到人体的吸气。
  15. 根据权利要求14所述的随吸供氧制氧机,其特征在于:所述的贮气腔室为一个容积能随内部气体压力变化而发生变化的贮气囊。
  16. 根据权利要求14或15所述的随吸供氧制氧机,其特征在于:当采用既能检测人体吸气或呼吸气流又能检测氧浓度的超声波气体传感器时,工作中当供氧阀完成每次供氧而关闭时, 就能将此时超声波气体传感器检测到的氧浓度数据作为制氧机此时的供氧浓度数据。
  17. 根据权利要求1或2所述的随吸供氧制氧机,其特征在于:在制氧机中设置有旁通管,旁通管的一端能与制氧机外的人体的呼吸通道相通,旁通管的另一端与超声波气体传感器上的一个通气口相连通,超声波气体传感器上的另一个通气口与大气相通;在制氧机开始工作的起始时刻,供氧阀处于关闭状态;并且至少在人体吸气时,旁通管使超声波气体传感器中能形成与人体吸气相对应的吸气气流,使得超声波气体传感器能检测到人体的吸气,工作中根据超声波气体传感器检测到的与人体吸气相对应的数据或信号,使供氧阀只在人体吸气时导通设定的时间、其余时间则处于关闭状态,从而使得供氧单元只在人体吸气时才能通过输氧管路给人体提供氧气。
  18. 根据权利要求17所述的随吸供氧制氧机,其特征在于:超声波气体传感器上的另一个通气口连接有贮气腔室而不再与大气相通,贮气腔室和旁通管使超声波气体传感器中能至少形成与人体吸气相对应的吸气气流,使得超声波气体传感器能检测到人体的吸气。
  19. 根据权利要求18所述的随吸供氧制氧机,其特征在于:所述的贮气腔室为一个容积能随内部气体压力变化而发生变化的贮气囊。
  20. 根据权利要求17所述的随吸供氧制氧机,其特征在于:在旁通管中设置有旁通控制阀;在制氧机开始工作的起始时刻,供氧阀处于关闭状态、同时旁通控制阀处于导通状态,这样在开机的初始时刻旁通管就使超声波气体传感器中能形成与人体吸气相对应的吸气气流、从而使超声波气体传感器能检测到人体的吸气。
PCT/CN2017/100880 2016-09-22 2017-09-07 随吸供氧制氧机 WO2018054226A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/246,518 US11123508B2 (en) 2016-09-22 2019-01-13 Oxygen generator for respiration-synchronized oxygen supply

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610839387.9 2016-09-22
CN201610839387.9A CN106215299B (zh) 2016-09-22 2016-09-22 随吸供氧制氧机

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/246,518 Continuation US11123508B2 (en) 2016-09-22 2019-01-13 Oxygen generator for respiration-synchronized oxygen supply

Publications (1)

Publication Number Publication Date
WO2018054226A1 true WO2018054226A1 (zh) 2018-03-29

Family

ID=58076730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/100880 WO2018054226A1 (zh) 2016-09-22 2017-09-07 随吸供氧制氧机

Country Status (3)

Country Link
US (1) US11123508B2 (zh)
CN (1) CN106215299B (zh)
WO (1) WO2018054226A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2584206B (en) * 2017-10-06 2022-06-15 Fisher & Paykel Healthcare Ltd Closed loop oxygen control
CN116020024A (zh) * 2022-12-12 2023-04-28 皖南医学院 一种户外应急制氧调压调温呼吸系统

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106215299B (zh) 2016-09-22 2019-04-02 深圳市润普科技有限公司 随吸供氧制氧机
JP6520963B2 (ja) * 2017-01-20 2019-05-29 ダイキン工業株式会社 酸素濃縮装置
WO2018140874A1 (en) * 2017-01-30 2018-08-02 Aromatix, Inc. Ultrasound gas sensor system using machine learning
CN110292696A (zh) * 2018-03-23 2019-10-01 欧姆龙健康医疗(中国)有限公司 制氧机
CN110304606A (zh) * 2019-06-17 2019-10-08 张文霞 一种小型制氧机及其装配方法
WO2020258338A1 (zh) * 2019-06-28 2020-12-30 深圳迈瑞生物医疗电子股份有限公司 一种气体浓度测量方法及装置、医用通气设备、存储介质
CN112730606B (zh) * 2020-12-31 2022-09-27 青岛精安医疗科技有限责任公司 基于压力检测的超声波氧浓度测量方法、系统和制氧系统
CN113029906A (zh) * 2021-03-15 2021-06-25 华东师范大学 一种人体呼出气模拟装置
CN113877036A (zh) * 2021-10-13 2022-01-04 深圳麦科田生物医疗技术股份有限公司 制氧机和呼吸治疗方法
CN118202239A (zh) * 2021-10-29 2024-06-14 深圳迈瑞生物医疗电子股份有限公司 一种医疗设备及其氧浓度测量方法
CN114209941B (zh) * 2021-12-31 2023-09-15 深圳麦科田生物医疗技术股份有限公司 供氧装置、氧气输出控制方法及制氧机
CN114956005B (zh) * 2022-05-17 2023-11-10 江苏乐氧生命科技有限公司 一种便携式制氧机及其控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090107500A1 (en) * 2007-10-25 2009-04-30 Sequal Technologies, Inc. Portable Oxygen Concentrator System and Method Including Concentrated Oxygen Flow Delivery
CN203625036U (zh) * 2013-12-19 2014-06-04 南京鱼跃软件技术有限公司 一种家用脉冲制氧机
CN203861719U (zh) * 2014-05-14 2014-10-08 沈阳新松医疗科技股份有限公司 同步触发与节氧技术装置
CN105377346A (zh) * 2013-07-09 2016-03-02 皇家飞利浦有限公司 在呼吸药物递送设备中通过指示流量变化的超声测量结果来监测呼吸参数
CN106215299A (zh) * 2016-09-22 2016-12-14 深圳市润普科技有限公司 随吸供氧制氧机
CN106267496A (zh) * 2016-09-22 2017-01-04 深圳市润普科技有限公司 随吸供氧式节氧装置
CN206566327U (zh) * 2016-09-22 2017-10-20 深圳市润普科技有限公司 随吸供氧制氧机

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002065856A (ja) * 2000-08-29 2002-03-05 Fujisawa Pharmaceut Co Ltd 濃縮酸素供給装置
EP3508240A1 (en) * 2003-08-14 2019-07-10 Teijin Pharma Limited Oxygen concentrating apparatus
EP2500055B1 (en) * 2007-11-15 2013-12-25 Teijin Pharma Limited Oxygen concentrator
DE102010035167A1 (de) * 2010-08-23 2012-02-23 F. Stephan Gmbh Medizintechnik Respirator
US20120055475A1 (en) * 2010-09-07 2012-03-08 Wilkinson William R Oxygen concentrator system and methods for oral delivery of oxygen enriched gas
CN204468938U (zh) * 2015-02-09 2015-07-15 康军 具有电子感应开关的医用吸氧机输氧面罩

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090107500A1 (en) * 2007-10-25 2009-04-30 Sequal Technologies, Inc. Portable Oxygen Concentrator System and Method Including Concentrated Oxygen Flow Delivery
CN105377346A (zh) * 2013-07-09 2016-03-02 皇家飞利浦有限公司 在呼吸药物递送设备中通过指示流量变化的超声测量结果来监测呼吸参数
CN203625036U (zh) * 2013-12-19 2014-06-04 南京鱼跃软件技术有限公司 一种家用脉冲制氧机
CN203861719U (zh) * 2014-05-14 2014-10-08 沈阳新松医疗科技股份有限公司 同步触发与节氧技术装置
CN106215299A (zh) * 2016-09-22 2016-12-14 深圳市润普科技有限公司 随吸供氧制氧机
CN106267496A (zh) * 2016-09-22 2017-01-04 深圳市润普科技有限公司 随吸供氧式节氧装置
CN206566327U (zh) * 2016-09-22 2017-10-20 深圳市润普科技有限公司 随吸供氧制氧机

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2584206B (en) * 2017-10-06 2022-06-15 Fisher & Paykel Healthcare Ltd Closed loop oxygen control
CN116020024A (zh) * 2022-12-12 2023-04-28 皖南医学院 一种户外应急制氧调压调温呼吸系统

Also Published As

Publication number Publication date
US11123508B2 (en) 2021-09-21
US20190143061A1 (en) 2019-05-16
CN106215299B (zh) 2019-04-02
CN106215299A (zh) 2016-12-14

Similar Documents

Publication Publication Date Title
WO2018054226A1 (zh) 随吸供氧制氧机
AU2021221906B2 (en) Respiratory assistance apparatus
US8875697B2 (en) Drug delivery apparatus and method
US9259546B2 (en) Ventilator with integrated blower to provide negative or positive pressure in a ventilator system
CN106377823B (zh) 雾化器给药喷嘴和智能自调式雾化器给药设备及使用方法
JP2012505691A5 (zh)
CN104014062A (zh) 吸氧仪
CN105396206A (zh) 带吸气感应间歇送风式医用超声波雾化器
CN206880914U (zh) 雾化器给药喷嘴和智能自调式雾化器给药设备
CN107875489A (zh) 可控气量的呼吸装置
CN205515831U (zh) 带吸气感应间歇送风式医用超声波雾化器
CN106267496A (zh) 随吸供氧式节氧装置
CN206566327U (zh) 随吸供氧制氧机
RU2014150090A (ru) Системы и способы определения доли вдыхаемого кислорода во время вентиляции легких
JP3775138B2 (ja) 高頻度人工呼吸器
CN202283384U (zh) 多功能气管导管
Coppadoro et al. A novel Venturi system to generate high flow with titratable FiO2
CN110681013A (zh) 非线性气阻、冲洗模块及呼吸机
CN204017057U (zh) 吸氧仪
CN215309284U (zh) 一种便携式雾化吸入治疗仪
CN214970505U (zh) 一种自动检测多功能吸药器
CN220385046U (zh) 咳嗽敏感度及咳嗽峰流速检测仪
WO2019214020A1 (zh) 一种可以根据肺通量自动调整雾化速率的便携式雾化器
CN112754532A (zh) 呼气收集装置
CN114306847A (zh) 一种应用单传感器的呼吸设备供气系统及控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17852294

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17852294

Country of ref document: EP

Kind code of ref document: A1