WO2018054190A1 - 一种提高量子点墨水利用率的方法 - Google Patents

一种提高量子点墨水利用率的方法 Download PDF

Info

Publication number
WO2018054190A1
WO2018054190A1 PCT/CN2017/098305 CN2017098305W WO2018054190A1 WO 2018054190 A1 WO2018054190 A1 WO 2018054190A1 CN 2017098305 W CN2017098305 W CN 2017098305W WO 2018054190 A1 WO2018054190 A1 WO 2018054190A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum dot
dot ink
inks
fluorescence
difference
Prior art date
Application number
PCT/CN2017/098305
Other languages
English (en)
French (fr)
Inventor
邓承雨
刘政
谢相伟
杨一行
钱磊
Original Assignee
Tcl集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl集团股份有限公司 filed Critical Tcl集团股份有限公司
Publication of WO2018054190A1 publication Critical patent/WO2018054190A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/50Sympathetic, colour changing or similar inks

Definitions

  • the present invention relates to the field of quantum dots, and more particularly to a method for improving the utilization of quantum dot inks.
  • Quantum Dot and quantum dot related materials and devices have been hailed as one of the core technology engines of today's industrial age. Since each small particle in a quantum dot is a single crystal particle and has good tunability in size, it has high color purity, wide color gamut, high crystal stability, narrow and symmetrical fluorescence emission spectrum, and wide and continuous. Ultraviolet absorption spectroscopy makes it an ideal new material for printed displays. However, it is an urgent technical problem to convert quantum dots into quantum dot light-emitting diodes at the industrial scale and achieve high pixel and wide color gamut display.
  • the scheme for realizing quantum dot conversion generally has a series of related technologies such as an inkjet printing method, a stamping method, and a microcontact printing method.
  • an inkjet printing method because quantum dot inks with different fluorescence emission wavelengths are needed in the printing process, in practical applications, quantum dot inks lacking certain wavelengths usually occur, and other wavelength quantums There is a surplus of dot ink. If these remaining quantum dot inks are not fully utilized, it is easy to cause waste and discard of quantum dot ink, causing environmental pollution and the like.
  • the object of the present invention is to provide a method for improving the utilization rate of quantum dot inks, which aims to solve the problem that existing inkjet printing methods may have surplus or preparation after use of quantum dot inks in the implementation process. It is not applicable to related projects, resulting in waste and discarding of quantum dot ink, causing environmental pollution and other problems.
  • a method for improving the utilization of quantum dot inks comprising the steps of:
  • the two quantum dot inks are mixed and stirred in a volume ratio of 1:1 to obtain a quantum dot ink of a desired fluorescence emission wavelength.
  • the method for improving the utilization of the quantum dot ink wherein the step B further comprises:
  • the quantum dot ink having a relatively high fluorescence relative intensity is diluted by adding a solvent until the absolute value of the difference in fluorescence relative intensity of the two quantum dot inks is less than or equal to 5.
  • the two quantum dot inks are further mixed and stirred at a volume ratio of 1:1 to obtain a quantum dot ink of a desired fluorescence emission wavelength.
  • the method for improving the utilization of the quantum dot ink wherein the step B further comprises:
  • the quantum dot ink having a small relative fluorescence intensity is concentrated by adding a solid portion of the same color light quantum dot until the absolute difference in fluorescence relative intensity of the two quantum dot inks is absolute The value is less than or equal to 5, and the two quantum dot inks are mixed and stirred at a volume ratio of 1:1 to obtain a quantum dot ink of a desired fluorescence emission wavelength.
  • the method for improving the utilization of the quantum dot ink wherein the quantum dots are binary phase quantum dots CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, GaN, GaAs, InP, InAs, PbS, PbSe Or one of HgS.
  • the quantum dots are binary phase quantum dots CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, GaN, GaAs, InP, InAs, PbS, PbSe Or one of HgS.
  • the method for improving the utilization of quantum dot ink wherein the quantum dots are ternary phase quantum dots Zn X Cd 1-X S, Zn X Cd 1-X Se, Zn X Cd 1-X One of Te or PbSe X S 1-X , wherein 0.2 ⁇ X ⁇ 0.8.
  • the method for improving the utilization of the quantum dot ink wherein the solvent in the step A is n-hexane, cyclohexane, hexane, n-octane, toluene, xylene, ethanol, diethyl ether, acetone , one of chloroform, carbon disulfide, glacial acetic acid or distilled water.
  • the solvent in the step A is n-hexane, cyclohexane, hexane, n-octane, toluene, xylene, ethanol, diethyl ether, acetone , one of chloroform, carbon disulfide, glacial acetic acid or distilled water.
  • the method for improving the utilization rate of the quantum dot ink wherein the concentration of the prepared quantum dot ink in the step A is 0.001 to 0.1 g/L.
  • the method for improving the utilization rate of the quantum dot ink wherein N ⁇ 5 in the step A.
  • the method for improving the utilization of the quantum dot ink wherein the step B specifically includes:
  • the method for improving the utilization of the quantum dot ink wherein the stirring speed in the step C is 50 to 100 r/min.
  • the present invention prepares a quantum dot ink of a desired fluorescence emission wavelength by mixing and mixing two kinds of fluorescent light-emitting dots of the same color with a fluorescence emission wavelength of 2N nm in a volume ratio of 1:1.
  • the invention can effectively solve the problem that the quantum dot ink is surplus after use or is not suitable for the related items after preparation, thereby causing waste and discarding of the quantum dot ink, causing environmental pollution, that is, the invention can effectively improve the quantum dot ink.
  • the utilization method and the method for improving the utilization rate of the quantum dot ink provided by the invention have the advantages of easy regulation, easy realization, high reproducibility of experimental results, and the like.
  • FIG. 1 is a flow chart of a preferred embodiment of a method for improving the utilization of quantum electric ink according to the present invention.
  • Example 2 is a schematic view showing the preparation result of the blue quantum dot ink in Example 1 of the present invention.
  • the present invention provides a method for improving the utilization rate of quantum dot ink.
  • the present invention will be further described in detail below. It is understood that the specific embodiments described herein are merely illustrative of the invention and are not intended to limit the invention.
  • FIG. 1 is a flow chart of a preferred embodiment of a method for improving the utilization of quantum dot ink according to the present invention. As shown in the figure, the method includes the following steps:
  • the two quantum dot inks are mixed and stirred in a volume ratio of 1:1 to obtain a quantum dot ink of a desired fluorescence emission wavelength.
  • the present invention firstly modulates two kinds of quantum dot inks whose fluorescence emission wavelengths are different by 2N nm into a concentration close to the fluorescence relative intensity, and then mixes the prepared two quantum dot inks in a volume ratio of 1:1. A quantum dot ink of the desired fluorescence emission wavelength is obtained.
  • the homochromatic light quantum dot solid powder may be one of a blue quantum dot solid powder, a green light quantum dot solid powder, and a red light quantum dot solid powder;
  • the homochromatic light quantum dot solid powder is one of binary phase quantum dots CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, GaN, GaAs, InP, InAs, PbS, PbSe or HgS;
  • the solvent in the step A is one of n-hexane, cyclohexane, hexane, n-octane, toluene, xylene, ethanol, diethyl ether, acetone, chloroform, carbon disulfide, glacial acetic acid or distilled water.
  • the quantum dot solid powders exemplified in the present invention may be water-soluble or oil-soluble, and the present invention is preferably an oil-soluble quantum dot solid powder, and preferably n-hexane as a solvent, and the n-hexane is a petroleum fraction.
  • the hexacarbon compound obtained in the process of separation from natural gas, as a non-polar organic solvent, is liquid at normal temperature, has good solubility to oil and fat, and is inexpensive, and thus can be used as a better organic solvent.
  • the concentration of the prepared quantum dot ink is 0.001 to 0.1 g/L.
  • the present invention preferably configures the two quantum dot solid powders to have a concentration of 0.02 g/ L, the relative intensity of fluorescence of the quantum dot ink at this concentration is about 5000, which is more conducive to the conversion of quantum dots into quantum dot light-emitting diodes.
  • the present invention preferably has N ⁇ 5, that is, two kinds of homochromatic light quantum dot solid powders whose fluorescence emission wavelengths are different by 2, 4, 6, 8, or 10 are selected to be a quantum dot ink, and the two quantum dot inks in the range are more It is advantageous to realize quantum dot ink which is prepared by mixing with the same volume and preparing another fluorescence emission wavelength.
  • step S200 specifically includes:
  • 20 ⁇ L of the prepared quantum dot ink can be added to a four-pass fluorescent cuvette containing 3 ml of n-hexane for determination.
  • the relative fluorescence of the fluorescence was measured using a Hitachi F-7000 fluorescence spectrophotometer, which was fast and accurate.
  • the two quantum dot inks are mixed and stirred in a volume ratio of 1:1 to obtain a desired fluorescence emission wavelength.
  • the quantum dot ink preferably, the stirring speed is 50-100 r/min, preferably 60 r/min, so that the two quantum dot inks can be uniformly mixed to help obtain the quantum dot ink of the desired fluorescence emission wavelength.
  • the present invention only needs to prepare a quantum dot ink of a desired fluorescence emission wavelength by simply mixing and mixing the two quantum dot inks having a fluorescence emission wavelength of 2N nm in a volume ratio of 1:1.
  • the method for improving the utilization rate of quantum dot ink provided by the invention has the advantages of easy regulation, easy realization, high reproducibility of experimental results, and the like.
  • the method further includes:
  • the quantum dot ink having a relatively high fluorescence relative intensity is diluted by adding a solvent until the absolute value of the difference in fluorescence relative intensity of the two quantum dot inks is less than or equal to 5, mixing and mixing the two quantum dot inks in a volume ratio of 1:1 to obtain a quantum dot ink of a desired fluorescence emission wavelength;
  • the quantum dot ink with a small fluorescence relative intensity is concentrated by adding solids of the same color light quantum dot until the absolute difference of the fluorescence relative intensity of the two quantum dot inks is absolute.
  • the value is less than or equal to 5, and the two quantum dot inks are mixed and stirred at a volume ratio of 1:1 to obtain a quantum dot ink of a desired fluorescence emission wavelength.
  • Both of the above steps can realize that the two quantum dot inks with different fluorescence relative intensities are modulated to have similar fluorescence relative intensities, and the present invention preferably achieves the above object by dilution.
  • a 457 nm blue quantum dot ink was prepared by mixing two different fluorescent emission wavelengths (456, 458 nm) of blue quantum dot ink.
  • the above two kinds of blue quantum dot inks are formulated into quantum dots of the same fluorescence intensity: 20 ⁇ L of the prepared 456 and 458 nm blue quantum dot inks are used in a four-pass fluorescent cuvette containing 3 mL of n-hexane, passed through Hitachi The F-7000 fluorescence spectrophotometer measures and is made into a blue quantum dot ink with a relative fluorescence intensity of about 5000;
  • the blue light quantum dot ink prepared by the above embodiment is as shown in FIG. 2, and the 457 nm blue quantum dot ink has a relative fluorescence intensity of about 5,000.
  • a green light quantum dot ink of 537 nm was prepared by mixing two different fluorescent emission wavelengths (535, 539 nm) of green light quantum dot ink.
  • the above two green light quantum dot inks are formulated into quantum dots of the same fluorescence intensity: 20 ⁇ L of the prepared 535 and 539 nm green light quantum dot inks are used in a four-pass fluorescent cuvette containing 3 mL of n-hexane, passed through Hitachi The F-7000 fluorescence spectrophotometer measures the green light quantum dot ink with a relative fluorescence intensity of about 5000;
  • a 639 nm red light quantum dot ink was prepared by mixing red light quantum dot inks of two different fluorescence emission wavelengths (634, 644 nm).
  • 634 and 644nm two kinds of red light quantum dot ink preparation weigh 0.0200g at 80 ° C vacuum drying completely 634 and 644nm red light quantum dot solid powder into a 1L volumetric flask, add n-hexane to a volume of 1L, prepared a solution having a concentration of 0.02 g/L;
  • the above two red light quantum dot inks are formulated into quantum dot inks of the same fluorescence intensity: 20 ⁇ L of the prepared 634 and 644 nm red light quantum dot inks are passed through a four-pass fluorescent cuvette containing 3 mL of n-hexane.
  • the Hitachi F-7000 fluorescence spectrophotometer measures red light quantum dot ink with a relative fluorescence intensity of about 5000;
  • the present invention prepares a quantum dot ink of a desired fluorescence emission wavelength by mixing and mixing two fluorescent light-emitting dots of the same color with a fluorescence emission wavelength of 2N nm in a volume ratio of 1:1.
  • the invention can effectively solve the problem that the quantum dot ink is surplus after use or is not suitable for the related items after preparation, thereby causing waste and discarding of the quantum dot ink, causing environmental pollution, that is, the invention can effectively improve the quantum dot ink.
  • the utilization method and the method for improving the utilization rate of the quantum dot ink provided by the invention have the advantages of easy regulation, easy realization, high reproducibility of experimental results, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

一种提高量子点墨水利用率的方法,包括步骤:A、将两种荧光发射波长相差2N nm的同色光量子点分别加入到溶剂中,配制成浓度相同的量子点墨水;B、分别测量两种配制好的量子点墨水的荧光相对强度并计算所述两种量子点墨水的荧光相对强度的差值;C、当所述差值的绝对值小于或等于5时,则将所述两种量子点墨水以1:1的体积比混合搅拌,得到需要的荧光发射波长的量子点墨水。

Description

一种提高量子点墨水利用率的方法 技术领域
本发明涉及量子点领域,尤其涉及一种提高量子点墨水利用率的方法。
背景技术
量子点(Quantum Dot)及量子点相关材料、器件被已经被誉为当今工业时代的核心科技引擎之一。因量子点中每一个小粒子都是单晶颗粒,且尺寸具有良好的可调谐性,所以具有高色纯度,宽色域、高晶体稳定性、窄且对称的荧光发射光谱、宽且连续的紫外吸收光谱,这使其成为一种理想的印刷显示的新材料。但要在工业生产规模级上将量子点转化为量子点发光二极管,并实现高像素,宽色域的显示是一个急需解决的技术难关。
目前实现量子点转化的方案大致有喷墨打印法、印章法,微接触式打印法等一系列相关技术。现阶段最常用的是喷墨打印法,由于在打印过程中需要用到不同荧光发射波长的量子点墨水,而在实际应用中,通常会出现缺少某种波长的量子点墨水,而其他波长量子点墨水却有剩余的情况,如果这些剩余的量子点墨水不能得到充分的利用,则容易造成量子点墨水的浪费和丢弃,从而引起环境污染等问题。
因此,现有技术还有待于改进和发展。
发明内容
鉴于上述现有技术的不足,本发明的目的在于提供一种提高量子点墨水利用率的方法,旨在解决现有的喷墨打印法在实施过程中可能存在量子点墨水使用后产生富余或配制后不适用于相关项目,从而造成量子点墨水的浪费和丢弃,引起环境污染等问题。
本发明的技术方案如下:
一种提高量子点墨水利用率的方法,其中,包括步骤:
A、将两种荧光发射波长相差2N nm的同色光量子点分别加入到溶剂中,配制成浓度相同的量子点墨水,所述N为整数;
B、分别测量两种配制好的量子点墨水的荧光相对强度并计算所述两种量子点墨水的荧光相对强度的差值;
C、当所述差值的绝对值小于或等于5时,则将所述两种量子点墨水以1:1的体积比混合搅拌,得到需要的荧光发射波长的量子点墨水。
较佳地,所述的提高量子点墨水利用率的方法,其中,所述步骤B之后还包括:
C1、当所述差值的绝对值大于5时,则通过添加溶剂将荧光相对强度大的量子点墨水进行稀释,直到所述两种量子点墨水的荧光相对强度差值的绝对值小于或等于5,再将所述两种量子点墨水1:1的体积比混合搅拌,得到需要的荧光发射波长的量子点墨水。
较佳地,所述的提高量子点墨水利用率的方法,其中,所述步骤B之后还包括:
C2、当所述差值的绝对值大于5时,则通过添加同色光量子点固体份将荧光相对强度小的量子点墨水进行浓缩,直到所述两种量子点墨水的荧光相对强度差值的绝对值小于或等于5,再将所述两种量子点墨水1:1的体积比混合搅拌,得到需要的荧光发射波长的量子点墨水。
较佳地,所述的提高量子点墨水利用率的方法,其中,所量子点为二元相量子点CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、GaN、GaAs、InP、InAs、PbS、PbSe或HgS中的一种。
较佳地,所述的提高量子点墨水利用率的方法,其中,所述量子点为三元相量子点ZnXCd1-XS、ZnXCd1-XSe、ZnXCd1-XTe或PbSeXS1-X中的 一种,其中,0.2≤X≤0.8。
较佳地,所述的提高量子点墨水利用率的方法,其中,所述步骤A中的溶剂为正己烷、环己烷、己烷、正辛烷、甲苯、二甲苯、乙醇、乙醚、丙酮、氯仿、二硫化碳、冰乙酸或蒸馏水中的一种。
较佳地,所述的提高量子点墨水利用率的方法,其中,所述步骤A中,配制的量子点墨水的浓度为0.001~0.1g/L。
较佳地,所述的提高量子点墨水利用率的方法,其中,所述步骤A中的N≤5。
较佳地,所述的提高量子点墨水利用率的方法,其中,所述步骤B具体包括:
B1、取适量配制好的量子点墨水加入装有溶剂的四通荧光比色皿中;
B2、采用荧光分光光度计测量所述量子点墨水的荧光相对强度。
较佳地,所述的提高量子点墨水利用率的方法,其中,所述步骤C中的搅拌速度为50~100r/min。
有益效果:本发明通过将两种荧光发射波长相差2N nm的同色光量子点墨水以1:1的体积比混合搅拌,制备出需要的荧光发射波长的量子点墨水。通过本发明可有效解决量子点墨水使用后产生富余或配制后不适用于相关项目,从而造成量子点墨水的浪费和丢弃,引起环境污染的问题,也就是说本发明可有效提高量子点墨水的利用率;并且本发明提供的提高量子点墨水利用率的方法具有易于调控、易实现、实验结果重现性高等优点。
附图说明
图1为本发明一种提高量子电墨水利用率的方法较佳实施例的流程图。
图2为本发明实施例1中蓝光量子点墨水的配制结果示意图。
具体实施方式
本发明提供一种提高量子点墨水利用率的方法,为使本发明的目的、技术方案及效果更加清楚、明确,以下对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
请参阅图1,图1为本发明一种提高量子点墨水利用率的方法较佳实施例的流程图,如图所示,其包括步骤:
S100、将两种荧光发射波长相差2N nm的同色光量子点分别加入到溶剂中,配制成浓度相同的量子点墨水,所述N为整数;
S200、分别测量两种配制好的量子点墨水的荧光相对强度并计算所述两种量子点墨水的荧光相对强度的差值;
S300、当所述差值的绝对值小于或等于5时,则将所述两种量子点墨水以1:1的体积比混合搅拌,得到需要的荧光发射波长的量子点墨水。
由于现有技术在使用喷墨打印法实现量子点转化的过程中,可能存在量子点墨水在使用后产生富余或配制后不适用于相关项目,造成量子点墨水浪费和丢弃,从而引起环境污染的问题。为此,本发明通过先将两种富余的荧光发射波长相差2N nm的量子点墨水调制成荧光相对强度接近的浓度,再将调制好的两种量子点墨水以1:1的体积比混合搅拌得到需要的荧光发射波长的量子点墨水。
进一步,在本发明所述步骤S100中,所述同色光量子点固体粉末可以为蓝光量子点固体粉末、绿光量子点固体粉末以及红光量子点固体粉末中的一种;
进一步,所述同色光量子点固体粉末为二元相量子点CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、GaN、GaAs、InP、InAs、PbS、PbSe或HgS中的一种;
也可以为三元相量子点ZnXCd1-XS、ZnXCd1-XSe、ZnXCd1-XTe或PbSeXS1-X中的一种,其中,0.2≤X≤0.8。
进一步,所述步骤A中的溶剂为正己烷、环己烷、己烷、正辛烷、甲苯、二甲苯、乙醇、乙醚、丙酮、氯仿、二硫化碳、冰乙酸或蒸馏水中的一种。
较佳地,本发明所列举的量子点固体粉末可以是水溶性的,也可以是油溶性的,本发明优选油溶性量子点固体粉末,并且优选正己烷作为溶剂,所述正己烷是石油馏分与天然气分离过程中得到的六碳化合物,其作为一种非极性有机溶剂,常温下为液体,对油脂的溶解性较好,且价格低廉,因此可作为一种较好的有机溶剂。
进一步,在本发明所述步骤S100中,配制的量子点墨水的浓度为0.001~0.1g/L,较佳地,本发明优选将所述两种量子点固体粉末均配置成浓度为0.02g/L,在该浓度下的量子点墨水的荧光相对强度为5000左右,更有利于于量子点转化为量子点发光二极管。
进一步,本发明优选N≤5,即选择荧光发射波长相差为2、4、6、8或10的两种同色光量子点固体粉末配制成量子点墨水,在该范围内的两种量子点墨水更有利于实现同体积混合后制备出另一种荧光发射波长的量子点墨水。
进一步,所述步骤S200具体包括:
S201、取适量配制好的量子点墨水加入装有溶剂的四通荧光比色皿中;
较佳地,可选取20μL已配好的量子点墨水加入装有3ml正己烷的四通荧光比色皿中,待测定。
S202、采用Hitachi F-7000荧光分光光度计测量所述量子点墨水的荧光相对强度;
具体地讲,采用Hitachi F-7000荧光分光光度计进行荧光相对响度的测量,其测量快速、且测量结果精确。
进一步,在本发明所述步骤S300中,当所述差值的绝对值小于或等于5时,则将所述两种量子点墨水以1:1的体积比混合搅拌,得到需要的荧光发射波长的量子点墨水;较佳地,所述搅拌速度为50~100r/min,优选60r/min,可使两种量子点墨水混合均匀,有助于获得需要的荧光发射波长的量子点墨水。
本发明只需要通过将所述两种荧光发射波长相差2N nm的量子点墨水以1:1的体积比简单的混合搅拌,便可制备出需要的荧光发射波长的量子点墨水。本发明提供的提高量子点墨水利用率的方法具有易于调控、易实现、实验结果重现性高等优点。
进一步,本发明所述步骤S200之后还包括:
S301、当所述差值的绝对值大于5时,则通过添加溶剂将荧光相对强度大的量子点墨水进行稀释,直到所述两种量子点墨水的荧光相对强度差值的绝对值小于或等于5,再将所述两种量子点墨水1:1的体积比混合搅拌,得到需要的荧光发射波长的量子点墨水;
S302、当所述差值的绝对值大于5时,则通过添加同色光量子点固体份将荧光相对强度小的量子点墨水进行浓缩,直到所述两种量子点墨水的荧光相对强度差值的绝对值小于或等于5,再将所述两种量子点墨水1:1的体积比混合搅拌,得到需要的荧光发射波长的量子点墨水。
上述两个步骤均可以实现将荧光相对强度相差较大的两种量子点墨水调制成荧光相对强度接近,本发明优选通过稀释的方式来实现上述目的。
下面通过具体实施例来对本发明上述方案做进一步的讲解:
实施例1
以混合两种不同荧光发射波长(456、458nm)的蓝光量子点墨水制备出457nm蓝光量子点墨水为例。
1)、456和458nm两种蓝光量子点墨水的制备:分别称取 0.0200g在50℃真空干燥完全的456和458nm蓝光量子点固体粉末到1L容量瓶中,加正己烷定容到1L,配制成浓度为0.02g/L的溶液;
2)、将上述两种蓝光量子点墨水配制成相同荧光强度的量子点:取20μL已配好的456和458nm蓝光量子点墨水到装有3mL正己烷的四通荧光比色皿中,通过Hitachi F-7000荧光分光光度计测量,配制成荧光相对强度为5000左右的蓝光量子点墨水;
3)、混合配制成新的量子点:457nm蓝光量子点墨水的制备:将已经配制成荧光强度为5000左右的456和458nm蓝光量子点墨水以1:1的体积比混合搅拌。
通过上述实施例制备的蓝光量子点墨水如图2所示,制备出的457nm蓝光量子点墨水,其荧光相对强度也为5000左右。
实施例2
以混合两种不同荧光发射波长(535、539nm)的绿光量子点墨水制备出537nm绿光量子点墨水为例。
1)、535和539nm两种绿光量子点墨水的制备:分别称取0.0200g在50℃真空干燥完全的535和539nm绿光量子点固体粉末到1L容量瓶中,加正己烷定容到1L,配制成浓度为0.02g/L的溶液;
2)、将上述两种绿光量子点墨水配制成相同荧光强度的量子点:取20μL已配好的535和539nm绿光量子点墨水到装有3mL正己烷的四通荧光比色皿中,通过Hitachi F-7000荧光分光光度计测量,配制成荧光相对强度为5000左右的绿光量子点墨水;
3)、配制成波长537nm绿光量子点墨水:将已经配制成荧光强度为5000左右的535和539nm绿光量子点墨水以1:1的体积比混合搅拌。
实施例3
以混合两种不同荧光发射波长(634、644nm)的红光量子点墨水制备出639nm红光量子点墨水为例。
1)、634和644nm两种红光量子点墨水的制备:分别称取0.0200g在80℃真空干燥完全的634和644nm红光量子点固体粉末到1L容量瓶中,加正己烷定容到1L,配制成浓度为0.02g/L的溶液;
2)、将上述两种红光量子点墨水配制成相同荧光强度的量子点墨水:取20μL已配好的634和644nm红光量子点墨水到装有3mL正己烷的四通荧光比色皿中,通过Hitachi F-7000荧光分光光度计测量,配制成荧光相对强度为5000左右的红光量子点墨水;
3)、639nm红光量子点墨水的制备:将已经配制成荧光强度为5000左右的634和644nm红光量子点墨水以1:1的体积比混合搅拌。
综上所述,本发明通过将两种荧光发射波长相差2N nm的同色光量子点墨水以1:1的体积比混合搅拌,制备出需要的荧光发射波长的量子点墨水。通过本发明可有效解决量子点墨水使用后产生富余或配制后不适用于相关项目,从而造成量子点墨水的浪费和丢弃,引起环境污染的问题,也就是说本发明可有效提高量子点墨水的利用率;并且本发明提供的提高量子点墨水利用率的方法具有易于调控、易实现、实验结果重现性高等优点。
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (12)

  1. 一种提高量子点墨水利用率的方法,其特征在于,包括步骤:
    将两种荧光发射波长相差2N nm的同色光量子点分别加入到溶剂中,配制成浓度相同的量子点墨水,所述N为整数;
    获取两种配制好的量子点墨水的荧光相对强度的差值;
    根据所述荧光相对强度差值对所述量子点墨水进行处理。
  2. 根据权利要求1所述的提高量子点墨水利用率的方法,其特征在于,根据所述荧光相对强度差值对所述量子点墨水进行处理具体包括:根据所述荧光相对强度差值,将所述两种量子点墨水混合搅拌,得到需要的荧光发射波长的量子点墨水。
  3. 根据权利要求2所述的提高量子点墨水利用率的方法,其特征在于,根据所述荧光相对强度差值,将所述两种量子点墨水混合搅拌,得到需要的荧光发射波长的量子点墨水具体包括:当所述差值的绝对值小于或等于5时,将所述两种量子点墨水以1:1的体积比混合搅拌,得到需要的荧光发射波长的量子点墨水。
  4. 根据权利要求2所述的提高量子点墨水利用率的方法,其特征在于,根据所述荧光相对强度差值,将所述两种量子点墨水混合搅拌,得到需要的荧光发射波长的量子点墨水具体包括:当所述差值的绝对值大于5时,通过添加溶剂将荧光相对强度大的量子点墨水进行稀释,直到所述两种量子点墨水的荧光相对强度差值的绝对值小于或等于5,再将所述两种量子点墨水1:1的体积比混合搅拌,得到需要的荧光发射波长的量子点墨水。
  5. 根据权利要求2所述的提高量子点墨水利用率的方法,其特征在于,根据所述荧光相对强度差值,将所述两种量子点墨水混合搅拌,得到需要的荧光发射波长的量子点墨水具体还包括:当所述差值的绝对值大于5时,则通过添加同色光量子点固体份将荧光相对强度小的量子点墨水进行浓缩,直到所述两种量子点墨水的荧光相对强度差值的绝对值小于或等于5,再将所述两种量子点墨水1:1的体积比混合搅拌,得到需要的荧光发射波长的量子点墨水。
  6. 根据权利要求1所述的提高量子点墨水利用率的方法,其特征在于,所述步骤获取两种配制好的量子点墨水的荧光相对强度的差值具体包括:
    取适量配制好的量子点墨水加入装有溶剂的四通荧光比色皿中;
    采用荧光分光光度计测量所述量子点墨水的荧光相对强度。
  7. 根据权利要求1所述的提高量子点墨水利用率的方法,其特征在于,所述量子点为二元相量子点CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、GaN、GaAs、InP、InAs、PbS、PbSe或HgS中的一种。
  8. 根据权利要求1所述的提高量子点墨水利用率的方法,其特征在于,所述量子点为三元相量子点ZnXCd1-XS、ZnXCd1-XSe、ZnXCd1-XTe或PbSeXS1-X中的一种,其中,0.2≤X≤0.8。
  9. 根据权利要求1所述的提高量子点墨水利用率的方法,其特征在于,所述步骤将两种荧光发射波长相差2N nm的同色光量子点分别加入到溶剂中,配制成浓度相同的量子点墨水中的溶剂为正己烷、环己烷、己烷、正辛烷、甲苯、二甲苯、乙醇、乙醚、丙酮、氯仿、二硫化碳、冰乙酸或蒸馏水中的一种。
  10. 根据权利要求1所述的提高量子点墨水利用率的方法,其特征在于,所述步骤将两种荧光发射波长相差2N nm的同色光量子点分别加入到溶剂中,配制成浓度相同的量子点墨水中,配制的量子点墨水的浓度为0.001~0.1g/L。
  11. 根据权利要求1所述的提高量子点墨水利用率的方法,其特征在于,所述步骤将两种荧光发射波长相差2N nm的同色光量子点分别加入到溶剂中,配制成浓度相同的量子点墨水中的N≤5。
  12. 根据权利要求2所述的提高量子点墨水利用率的方法,其特征在于,所述步骤根据所述荧光相对强度差值,将所述两种量子点墨水混合搅拌,得到需要的荧光发射波长的量子点墨水中的搅拌速度为50~100r/min。
PCT/CN2017/098305 2016-09-21 2017-08-21 一种提高量子点墨水利用率的方法 WO2018054190A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610837242.5 2016-09-21
CN201610837242.5A CN106634205A (zh) 2016-09-21 2016-09-21 一种提高量子点墨水利用率的方法

Publications (1)

Publication Number Publication Date
WO2018054190A1 true WO2018054190A1 (zh) 2018-03-29

Family

ID=58852222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/098305 WO2018054190A1 (zh) 2016-09-21 2017-08-21 一种提高量子点墨水利用率的方法

Country Status (2)

Country Link
CN (1) CN106634205A (zh)
WO (1) WO2018054190A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11492547B2 (en) 2020-06-04 2022-11-08 UbiQD, Inc. Low-PH nanoparticles and ligands
CN116376357A (zh) * 2018-12-06 2023-07-04 科迪华公司 稳定的打印材料

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106634205A (zh) * 2016-09-21 2017-05-10 Tcl集团股份有限公司 一种提高量子点墨水利用率的方法
CN109929333A (zh) * 2017-12-15 2019-06-25 Tcl集团股份有限公司 一种提高无镉量子点墨水发光性能的方法
CN108250829A (zh) * 2018-01-25 2018-07-06 福州大学 一种含有量子点的纹身墨
CN109860427B (zh) * 2018-11-21 2021-11-19 苏州星烁纳米科技有限公司 量子点发光器件及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007022570A1 (en) * 2005-08-22 2007-03-01 Commonwealth Scientific And Industrial Research Organisation Method of monitoring and controlling of mixing processes
CN103227255A (zh) * 2013-04-12 2013-07-31 中山大学 一种生成白光的方法
CN103911155A (zh) * 2014-04-21 2014-07-09 巢湖学院 一种发射红光的核壳量子点及其合成方法
CN106634205A (zh) * 2016-09-21 2017-05-10 Tcl集团股份有限公司 一种提高量子点墨水利用率的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102837519A (zh) * 2012-08-01 2012-12-26 广东乐佳印刷有限公司 一种印刷品的荧光防伪方法
CN104966725B (zh) * 2015-05-07 2018-05-18 深圳市华星光电技术有限公司 一种量子点发光二极管显示器
CN105153807B (zh) * 2015-07-21 2016-10-19 京东方科技集团股份有限公司 量子点墨水

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007022570A1 (en) * 2005-08-22 2007-03-01 Commonwealth Scientific And Industrial Research Organisation Method of monitoring and controlling of mixing processes
CN103227255A (zh) * 2013-04-12 2013-07-31 中山大学 一种生成白光的方法
CN103911155A (zh) * 2014-04-21 2014-07-09 巢湖学院 一种发射红光的核壳量子点及其合成方法
CN106634205A (zh) * 2016-09-21 2017-05-10 Tcl集团股份有限公司 一种提高量子点墨水利用率的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116376357A (zh) * 2018-12-06 2023-07-04 科迪华公司 稳定的打印材料
US11492547B2 (en) 2020-06-04 2022-11-08 UbiQD, Inc. Low-PH nanoparticles and ligands

Also Published As

Publication number Publication date
CN106634205A (zh) 2017-05-10

Similar Documents

Publication Publication Date Title
WO2018054190A1 (zh) 一种提高量子点墨水利用率的方法
EP2757409B1 (en) Liquid crystal display device comprising a blue light source and a quantum-dot colour generating structure and method of manufacturing said device
CN103235442B (zh) 一种彩膜基板、显示面板及显示装置
Otto et al. Colloidal nanocrystals embedded in macrocrystals: Robustness, photostability, and color purity
CN104267520B (zh) 一种显示装置
US10287493B2 (en) Composite film and fabrication method thereof, photoelectric element and photoelectric apparatus
CN103728837A (zh) 感光树脂组合物及用感光树脂组合物制备量子点图案的方法
CN102084041A (zh) 制备发光纳米晶体的方法、形成的纳米晶体及其用途
CN103500803A (zh) 一种复合发光层及其制作方法、白光有机电致发光器件
JPWO2005071039A1 (ja) 波長変換器、発光装置、波長変換器の製造方法および発光装置の製造方法
KR101828214B1 (ko) 무기나노입자 구조체, 이를 포함하는 박막, 광학 부재, 발광 소자 및 양자점디스플레이 장치
CN105425540A (zh) 量子点膜及其制备方法、量子点膜的图案化方法及显示器
CN102336928B (zh) 一种柔性、环保、透明、发光色可调的薄膜材料及其制备方法
CN112259533B (zh) 一种基于量子点色彩转换的白平衡实现方法
CN108298577A (zh) 一种室温下合成超稳定的全无机CsPbX3钙钛矿的方法及其应用
CN105629362A (zh) 一种量子点与等离子体耦合的彩色滤色片制备方法
Sadeghi et al. High quality quantum dots polymeric films as color converters for smart phone display technology
CN113861972B (zh) 一种高显色性碳基白光量子点的制备方法
CN109860379B (zh) 一种全无机钙钛矿量子点多色发光膜及其制备方法
US11840655B2 (en) Yellow-red spectral quantum dot, synthesis method therefor and application thereof
Wang et al. Ultra-small α-CsPbI 3 perovskite quantum dots with stable, bright and pure red emission for Rec. 2020 display backlights
CN110408386B (zh) 一种从绿光到红光变化的硫化铟银量子点及其一步合成方法和应用
CN109929545A (zh) 一种量子点组合物及其制备方法
CN106601890A (zh) 量子点灯珠的制备方法及qled的显示器
Hu et al. Study on the enhancement of light intensity and high color rendering index of a white light emitting diode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17852259

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22.07.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17852259

Country of ref document: EP

Kind code of ref document: A1