WO2018054045A1 - 一种光伏空调系统的控制参数确定方法、装置和控制系统 - Google Patents

一种光伏空调系统的控制参数确定方法、装置和控制系统 Download PDF

Info

Publication number
WO2018054045A1
WO2018054045A1 PCT/CN2017/080871 CN2017080871W WO2018054045A1 WO 2018054045 A1 WO2018054045 A1 WO 2018054045A1 CN 2017080871 W CN2017080871 W CN 2017080871W WO 2018054045 A1 WO2018054045 A1 WO 2018054045A1
Authority
WO
WIPO (PCT)
Prior art keywords
real
parameter
grid
time
control
Prior art date
Application number
PCT/CN2017/080871
Other languages
English (en)
French (fr)
Inventor
李建华
娄贺伟
刘克勤
倪卫涛
王京
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Priority to CA3034759A priority Critical patent/CA3034759C/en
Priority to US16/327,164 priority patent/US11796194B2/en
Publication of WO2018054045A1 publication Critical patent/WO2018054045A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0046Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0046Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground
    • F24F2005/0064Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground using solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0046Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground
    • F24F2005/0064Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground using solar energy
    • F24F2005/0067Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground using solar energy with photovoltaic panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/60Energy consumption
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • photovoltaic air-conditioning system As a green energy-saving home appliance that integrates electricity and electricity, photovoltaic air-conditioning system is very popular among people. In order to ensure its normal work, it needs to be able to carry out grid-connected power generation flexibly and friendlyly on the basis of meeting the requirements of its power consumption standards.
  • Currently applied to photovoltaic air conditioning systems is a proportional integral control scheme based on classical control theory. This technical solution is simple and reliable, and is very suitable for product development.
  • the proportional integral control parameters required by the control system based on the classical control theory are heavily dependent on the construction of the mathematical model of the controlled object, that is, the proportional integral control parameter is calculated according to the mathematical model of the pre-built controlled object.
  • Parameters cannot change in accordance with changes in the external environment.
  • the external parameters of the PV air conditioning system are complex and variable, such as the weather, the load of the press and the random variation of the grid-connected inductance, which will have a serious impact on the photovoltaic air-conditioning system as a power-generating integrated device, and the fixed parameters.
  • the control system will be seriously unstable when it is affected by the above, and it cannot meet the control requirements of the power supply.
  • an embodiment of the present invention provides an information transmission method and apparatus, and aims to solve the problem that the information transmission method between the existing electronic device and the user is not high.
  • a method for determining a control parameter of a photovoltaic air conditioning system is applied to a control system of the photovoltaic air conditioning system, and the method for determining a control parameter specifically includes the steps of:
  • the adjustment parameter corresponding to the grid-connected power range is selected to correct the basic control parameter to obtain a target control parameter.
  • determining real-time inductance parameters of the photovoltaic air conditioning system according to the real-time grid-connected power of the photovoltaic air conditioning system including:
  • the real-time inductance parameter determined according to the real-time grid-connected current.
  • the real-time inductance parameter determined according to the real-time grid-connected current includes:
  • a control parameter determining device for a photovoltaic air conditioning system is applied to a control system of the photovoltaic air conditioning system, and the control parameter determining device specifically includes:
  • An inductance parameter determining module configured to determine a real-time inductance parameter of the controlled object of the control system according to the real-time grid-connected power of the photovoltaic air conditioning system;
  • a basic parameter calculation module configured to substitute the real-time inductance parameter into a controlled object of the control system, and calculate a basic control parameter of the control system
  • a target parameter calculation module configured to: when the real-time grid-connected power matches a certain grid-connected power range, select an adjustment parameter corresponding to the grid-connected power range to adjust the control parameter to obtain a target Control parameters.
  • the inductance parameter determining module includes:
  • a grid-connected power acquisition unit configured to acquire real-time grid-connected power of the photovoltaic air-conditioning system
  • a grid-connected current calculation unit configured to calculate a real-time grid-connected current of the photovoltaic air-conditioning system according to the real-time grid-connected power
  • An inductance parameter calculation unit configured to determine the real-time inductance according to the real-time grid-connected current parameter.
  • the inductance parameter calculation unit is specifically configured to use the real-time grid-connected current, and determine the real-time inductance parameter from an inductor current relationship curve of a reactor in the controlled object.
  • a control system for a photovoltaic air conditioning system comprising control parameter determining means, the control parameter determining device comprising an inductance parameter determining module, a basic parameter calculating module, an adjusting parameter preset module and a target parameter calculating module, the inductor
  • the parameter determining module is configured to determine a real-time inductance parameter of the controlled object of the control system according to the real-time grid-connected power of the photovoltaic air conditioning system
  • the basic parameter calculation module is configured to substitute the real-time inductance parameter into the control system
  • the controlled object calculates a basic control parameter of the control system
  • the adjustment parameter preset module is configured to preset a plurality of adjustment parameters corresponding to different grid-connected power ranges
  • the target parameter calculation module is used to When the real-time grid-connected power is matched with a certain of the grid-connected power ranges, the adjustment parameters corresponding to the grid-connected power range are selected to adjust the control parameters to obtain target control parameters, and the control parameters are determined.
  • the device also
  • a grid-connected power receiving port configured to receive the real-time grid-connected power
  • a preset parameter receiving port configured to receive a plurality of the adjustment parameters input by a user
  • a control parameter output port for connecting a proportional integral control unit of the controlled object of the control system, and outputting the target control parameter to the proportional integral control unit.
  • the inductance parameter determining module includes:
  • a grid-connected power acquisition unit configured to acquire real-time grid-connected power of the photovoltaic air-conditioning system
  • a grid-connected current calculation unit configured to calculate a real-time grid-connected current of the photovoltaic air-conditioning system according to the real-time grid-connected power
  • an inductance parameter calculation unit configured to determine the real-time inductance parameter according to the real-time grid-connected current.
  • the inductance parameter calculation unit is specifically configured to use the real-time grid-connected current, and determine the real-time inductance parameter from an inductor current relationship curve of a reactor in the controlled object.
  • Embodiments of the present invention provide a method, a device, and a control system for determining a control parameter of a photovoltaic air conditioning system, and the method and device are applied to a control system of a photovoltaic air conditioning system for determining a target control parameter applied to the control system, specifically
  • the real-time grid-connected power of the photovoltaic air-conditioning system the real-time inductance parameters of the controlled object of the photovoltaic air-conditioning system are determined; the real-time inductance parameters are substituted into the control
  • the controlled object of the system calculates the basic control parameters of the control system; presets a plurality of adjustment parameters respectively corresponding to different grid-connected powers; when the real-time grid-connected power matches a certain grid-connected power, the selection and the grid connection
  • the power corresponding adjustment parameter corrects the basic control parameters to obtain the target control parameters.
  • the target control parameter determined by the present application is not a fixed control parameter, but a dynamic control parameter of the different grid-connected power determined according to different grid-connected powers, and because different grid-connected powers depend on changes in external parameters, the target here
  • the control parameters can adapt to changes in external parameters, which can solve the problem that the current PV air conditioning system cannot meet the requirements of power generation control when the external parameters change.
  • FIG. 1 is a flow chart of an embodiment of a method for determining control parameters of a photovoltaic air conditioning system provided by the present application
  • FIG. 2 is a structural block diagram of an embodiment of a control parameter determining apparatus for a photovoltaic air conditioning system provided by the present application;
  • FIG. 3 is a structural block diagram of an embodiment of a control system for a photovoltaic air conditioning system provided by the present application.
  • FIG. 1 is a flow chart of an embodiment of a method for determining control parameters of a photovoltaic air conditioning system provided by the present application.
  • the control parameter determining method provided in this embodiment is applied to a control system of a photovoltaic air conditioning system for determining a target control parameter, and the target control parameter is used as a proportional integral control of a proportional integral control unit of the control system. parameter.
  • the method for determining the control parameter specifically includes the following steps:
  • S101 Determine a real-time inductance parameter of the controlled object according to the real-time grid-connected power.
  • the real-time grid-connected power refers to the exchange power of the photovoltaic air-conditioning system and the power grid, specifically the power generated when it is in the power generation state, and the power power when it is in the power-on state.
  • the real-time inductance parameters are used here because the inductance of the controlled object of the control system changes with the current, which is also the innovation of this application.
  • the process of specifically obtaining the real-time inductance parameters by using the grid-connected power is as follows:
  • the real-time grid-connected power of the photovoltaic air-conditioning system is obtained, that is, the grid-connected power at the current time, and the grid-connected power is determined by the grid-connected current and the grid-connected voltage, wherein the grid-connected voltage depends on the voltage of the grid connected to the grid.
  • the real-time grid-connected current is calculated according to the real-time grid-connected power, and the real-time grid-connected current is equal to the real-time grid-connected power divided by the current grid-connected voltage.
  • determining the controlled object of the control system according to the real-time grid-connected current and the inductor current relationship curve is an inductance parameter, specifically a real-time inductance parameter of the reactor disposed in the controlled object.
  • the essence here is to replace the real-time inductance parameter as a dynamic parameter with the fixed parameter of the original controlled object, and calculate the current basic control parameter of the controlled object according to the mathematical model of the controlled object containing the dynamic parameter.
  • the calculation of the basic control parameters is the same as the current method of calculating the control parameters according to a fixed mathematical model, and will not be described here.
  • pi is 3.1415926
  • f is the grid-connected power, that is, the real-time frequency of the grid, generally taking 50 Hz
  • L is the above-mentioned real-time inductance parameter.
  • the adjustment parameter may be multiple, corresponding to different grid-connected power ranges, to adjust the basic control parameters for different real-time grid-connected powers.
  • the adjustment parameter k1 when the grid-connected power range is 0 to 4000 W is 1; when the grid-connected power range is 4000 W to 6500 W, the adjustment parameter k2 is 0.8; when the grid-connected power range is 6500 W to 9500 W
  • the adjustment parameter k3 at time is 0.7; when the grid-connected power range exceeds 9500 W, the adjustment parameter k4 is 0.5. .
  • S104 Obtain target control parameters according to real-time grid-connected power and adjustment parameters.
  • the basic control parameter is adjusted by using an adjustment parameter corresponding to the grid-connected power, thereby obtaining a target control parameter.
  • the real-time grid-connected power is 5500 W
  • the real-time grid-connected power is matched to the grid-connected power range of 4000 W to 6500 W.
  • the present embodiment provides a method for determining a control parameter of a photovoltaic air conditioning system, and the method is applied to a control system of a photovoltaic air conditioning system for determining a target control parameter applied to the control system, specifically
  • the real-time grid-connected power of the photovoltaic air-conditioning system the real-time inductance parameters of the controlled object of the photovoltaic air-conditioning system are determined; the real-time inductance parameters are substituted into the controlled object of the control system, and the basic control parameters of the control system are calculated;
  • the target control parameter determined by the present application is not a fixed control parameter, but is based on The dynamic control parameters of the different grid-connected powers determined by different grid-connected powers, and because different grid-connected powers depend on changes in external parameters, the target control parameters here can adapt to changes in external parameters, thereby enabling the current photovoltaic air-conditioning system to be solved. When the external parameters change, the problem of power supply control requirements cannot be met.
  • FIG. 2 is a structural block diagram of an embodiment of a control parameter determining apparatus for a photovoltaic air conditioning system provided by the present application.
  • the control parameter determining apparatus is applied to a control system of a photovoltaic air conditioning system for determining a target control parameter, and the target control parameter is used as a proportional integral control of a proportional integral control unit of the control system. parameter.
  • the control parameter determining device specifically includes an inductance parameter determining module 10, a basic parameter calculating module 20, an adjusting parameter preset module 30, and a target parameter calculating module 40.
  • the inductance parameter calculation module 10 is configured to determine a real-time inductance parameter of the controlled object according to the real-time grid-connected power.
  • the real-time grid-connected power refers to the exchange power of the photovoltaic air-conditioning system and the power grid, specifically the power generated when it is in the power generation state, and the power power when it is in the power-on state.
  • the real-time inductance parameters are used here because the inductance of the controlled object of the control system changes with the current, which is also the innovation of this application.
  • the inductance parameter calculation module 10 includes a grid-connected power acquisition unit 11, a grid-connected current calculation unit 12, and an inductance parameter calculation unit 13.
  • the grid-connected power acquisition unit 11 is configured to obtain the real-time grid-connected power of the photovoltaic air-conditioning system, that is, the grid-connected power at the current time, and the grid-connected power is determined by the grid-connected current and the grid-connected voltage, wherein the grid-connected voltage depends on the connected network. The voltage of the grid.
  • the grid-connected current calculation unit 12 calculates the real-time grid-connected current according to the real-time grid-connected power acquired by the grid-connected power acquisition unit 11, and the real-time grid-connected current is equal to the real-time grid-connected power divided by the current grid-connected voltage.
  • the inductance parameter calculation unit 13 determines, according to the real-time grid-connected current and the inductor current relationship curve, that the controlled object of the control system is an inductance parameter, specifically, is set in the controlled object.
  • the basic parameter calculation module 20 is configured to substitute the real-time inductance parameter into the controlled object to calculate the basic control parameters of the control system.
  • the essence here is to replace the real-time inductance parameter as a dynamic parameter with the fixed parameter of the original controlled object, and calculate the current basic control parameter of the controlled object according to the mathematical model of the controlled object containing the dynamic parameter.
  • the calculation of the basic control parameters is the same as the current method of calculating the control parameters according to a fixed mathematical model, and will not be described here.
  • pi is 3.1415926
  • f is the grid-connected power, that is, the real-time frequency of the grid, generally taking 50 Hz
  • L is the above-mentioned real-time inductance parameter.
  • the adjustment parameter preset module 30 is configured to preset a plurality of adjustment parameters of different grid-connected power ranges according to a user's setting command.
  • the adjustment parameter may be multiple, corresponding to different grid-connected power ranges, to adjust the basic control parameters for different real-time grid-connected powers.
  • the adjustment parameter k1 when the grid-connected power range is 0 to 4000 W is 1; when the grid-connected power range is 4000 W to 6500 W, the adjustment parameter k2 is 0.8; when the grid-connected power range is 6500 W to 9500 W
  • the adjustment parameter k3 at time is 0.7; when the grid-connected power range exceeds 9500 W, the adjustment parameter k4 is 0.5. .
  • the target parameter calculation module 40 obtains the target control parameters according to the real-time grid-connected power and the adjustment parameters.
  • the basic control parameter is adjusted by using an adjustment parameter corresponding to the grid-connected power, thereby obtaining a target control parameter.
  • the real-time grid-connected power is 5500 W
  • the real-time grid-connected power is matched to the grid-connected power range of 4000 W to 6500 W.
  • the target control parameter it can also be said to be the target proportional integral control parameter. Since Kp and Ki are decoupled in actual control, they are utilized.
  • the present embodiment provides a control parameter determining device for a photovoltaic air conditioning system, and the device is applied to a control system of a photovoltaic air conditioning system for determining a target control parameter applied to the control system, specifically
  • the real-time grid-connected power of the photovoltaic air-conditioning system the real-time inductance parameters of the controlled object of the photovoltaic air-conditioning system are determined; the real-time inductance parameters are substituted into the controlled object of the control system, and the basic control parameters of the control system are calculated;
  • the target control parameter determined by the present application is not a fixed control parameter, but a dynamic control parameter of the different grid-connected power determined according to different grid-connected powers, and because different grid-connected powers depend on changes in external parameters, the target here
  • the control parameters can adapt to changes in external parameters, which can solve the problem that the current PV air conditioning system cannot meet the requirements of power generation control when the external parameters change.
  • FIG. 3 is a structural block diagram of an embodiment of a control system for a photovoltaic air conditioning system provided by the present application.
  • the control system provided in this embodiment is used to control the operation of the photovoltaic air conditioning system, and the control system includes a control parameter control device, and the control parameter determining device 100 is configured to determine a target control parameter, and the target control The parameters are used as proportional integral control parameters for the proportional integral control unit of the control system.
  • the control parameter determining device specifically includes an inductance parameter determining module 10, a basic parameter calculating module 20, an adjusting parameter preset module 30, and a target parameter calculating module 40.
  • the inductance parameter calculation module 10 is configured to determine a real-time inductance parameter of the controlled object according to the real-time grid-connected power.
  • the real-time grid-connected power refers to the exchange power of the photovoltaic air-conditioning system and the power grid, specifically the power generated when it is in the power generation state, and the power power when it is in the power-on state.
  • the real-time inductance parameter is used because the inductance of the controlled object of the control system changes with the current, which is also the innovation of the present application.
  • the inductance parameter calculation module 10 includes a grid-connected power acquisition unit 11, a grid-connected current calculation unit 12, and an inductance parameter calculation unit 13.
  • the grid-connected power acquisition unit 11 is configured to obtain the real-time grid-connected power of the photovoltaic air-conditioning system, that is, the grid-connected power at the current time, and the grid-connected power is determined by the grid-connected current and the grid-connected voltage, wherein the grid-connected voltage depends on the connected network. The voltage of the grid.
  • the grid-connected current calculation unit 12 calculates the real-time grid-connected current according to the real-time grid-connected power acquired by the grid-connected power acquisition unit 11, and the real-time grid-connected current is equal to the real-time grid-connected power divided by the current grid-connected voltage.
  • the inductance parameter calculation unit 13 determines, according to the real-time grid-connected current and the inductor current relationship curve, that the controlled object of the control system is an inductance parameter, specifically a real-time inductance parameter of the reactor disposed in the controlled object.
  • the basic parameter calculation module 20 is configured to substitute the real-time inductance parameter into the controlled object to calculate the basic control parameters of the control system.
  • the essence here is to replace the real-time inductance parameter as a dynamic parameter with the fixed parameter of the original controlled object, and calculate the current basic control parameter of the controlled object according to the mathematical model of the controlled object containing the dynamic parameter.
  • the calculation of the basic control parameters is the same as the current method of calculating the control parameters according to a fixed mathematical model, and will not be described here.
  • pi is 3.1415926
  • f is the grid-connected power, that is, the real-time frequency of the grid, generally taking 50 Hz
  • L is the above-mentioned real-time inductance parameter.
  • the adjustment parameter preset module 30 is configured to preset a plurality of adjustment parameters of different grid-connected power ranges according to a user's setting command.
  • the adjustment parameter may be multiple, corresponding to different grid-connected power ranges, to adjust the basic control parameters for different real-time grid-connected powers.
  • the adjustment parameter k1 when the grid-connected power range is 0-4000 W is 1; when the grid-connected power range is 4000--6500 W, the adjustment parameter k2 is 0.8; The adjustment parameter k3 when the power range is from 6500W to 9500W is 0.7; when the grid-connected power range exceeds 9500W, the adjustment parameter k4 is 0.5. .
  • the target parameter calculation module 40 obtains the target control parameters according to the real-time grid-connected power and the adjustment parameters.
  • the basic control parameter is adjusted by using an adjustment parameter corresponding to the grid-connected power, thereby obtaining a target control parameter.
  • the real-time grid-connected power is 5500 W
  • the real-time grid-connected power is matched to the grid-connected power range of 4000 W to 6500 W.
  • control parameter determining apparatus in this embodiment further includes a grid-connected power receiving port 101, a preset parameter receiving port 102, and a control parameter output port 103.
  • the grid-connected power receiving port 101 is connected to the converter device of the photovoltaic air conditioning system for receiving real-time grid-connected power of the converter device.
  • the preset parameter receiving port 102 is configured to receive a plurality of adjustment parameters input by the user.
  • the control parameter output port 103 is for connecting a proportional integral control unit of the controlled object of the control system, and outputs the target control parameter to the proportional integral control unit.
  • the present embodiment provides a control system for a photovoltaic air conditioning system, the control system including a control parameter determining device for determining a target control parameter applied to the control system, Specifically, according to the real-time grid-connected power of the photovoltaic air-conditioning system, the real-time inductance parameter of the controlled object of the photovoltaic air-conditioning system is determined; the real-time inductance parameter is substituted into the controlled object of the control system, and the basic control parameters of the control system are calculated; The adjustment parameters corresponding to different grid-connected powers respectively; when the real-time grid-connected power matches a certain grid-connected power, the adjustment parameters corresponding to the grid-connected power are selected to correct the basic control parameters, and the target control parameters are obtained.
  • the target control parameter determined by the present application is not a fixed control parameter, but a dynamic control parameter of the different grid-connected power determined according to different grid-connected powers.
  • the same grid-connected power depends on the change of external parameters, so the target control parameters here can adapt to changes in external parameters, which can solve the problem that the current PV air-conditioning system can not meet the requirements of power-use control when the external parameters change.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Mathematical Physics (AREA)
  • Fuzzy Systems (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Atmospheric Sciences (AREA)
  • Air Conditioning Control Device (AREA)
  • Feedback Control In General (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种光伏空调系统的控制参数确定方法,具体为根据光伏空调系统的实时并网功率,确定光伏空调系统的受控对象的实时电感参数;将实时电感参数代入控制系统的受控对象,计算出控制系统的基本控制参数;预设多个分别与不同并网功率相对应的调整参数;当实时并网功率与某个并网功率相匹配时,选取与并网功率相对应的调整参数对基本控制参数进行修正,得到目标控制参数。还公开了一种光伏空调系统的控制参数确定装置和控制系统,该方法和装置应用于光伏空调系统的控制系统,用于确定应用于该控制系统的目标控制参数。

Description

一种光伏空调系统的控制参数确定方法、装置和控制系统 技术领域
本申请要求于2016年9月21日提交中国专利局、申请号为201610838835.3、发明名称为“一种光伏空调系统的控制参数确定方法、装置和控制系统”的国内申请的优先权,其全部内容通过引用结合在本申请中。
背景技术
光伏空调系统作为发用电一体化的绿色节能家电产品,深受人们的欢迎,为了保证其正常工作,在满足其用电标准要求的基础上,还需其能够柔性友好地进行并网发电。目前应用于光伏空调系统的是基于经典控制理论的比例积分控制方案,该技术方案简单可靠,非常适合产品开发。
但是,基于该经典控制理论的控制系统所需的比例积分控制参数,则严重依赖受控对象数学模型的搭建,即该比例积分控制参数是根据预先搭建的受控对象的数学模型进行计算得到固定参数,不能跟随外界环境变化而变化。但是在实际应用中,光伏空调系统的外界参数复杂多变,如天气、压机负载及并网电感随机变化,都会对作为发用电一体化设备的光伏空调系统造成严重的影响,而固定参数的控制系统则在受到上述影响时控制效果会严重失稳,无法满足发用电的控制要求。
发明内容
有鉴于此,本发明实施例提供了一种信息传递方法及装置,目的在于解决现有的电子设备与用户间的信息传递方法安全性不高的问题。
为了实现上述目的,本发明实施例提供了以下技术方案:
一种光伏空调系统的控制参数确定方法,应用于所述光伏空调系统的控制系统,所述控制参数确定方法具体包括步骤:
根据所述光伏空调系统的实时并网功率,确定所述控制系统的受控对象的实时电感参数;
将所述实时电感参数代入所述控制系统的受控对象,计算出所述控制 系统的基本控制参数;
预设多个分别与不同并网功率范围相对应的调整参数;
当所述实时并网功率与某个所述某个并网功率范围相匹配时,选取与所述并网功率范围相对应的调整参数对所述基本控制参数进行修正,得到目标控制参数。
可选的,所述根据所述光伏空调系统的实时并网功率,确定所述光伏空调系统的实时电感参数,包括:
获取所述光伏空调系统的实时并网功率;
根据所述实时并网功率计算出所述光伏空调系统的实时并网电流;
根据所述实时并网电流确定的所述实时电感参数。
可选的,所述根据所述实时并网电流确定的所述实时电感参数,包括:
根据所述实时并网电流,从所述受控对象中电抗器的电感电流关系曲线中确定所述实时电感参数。
一种光伏空调系统的控制参数确定装置,应用于所述光伏空调系统的控制系统,所述控制参数确定装置具体包括:
电感参数确定模块,用于根据所述光伏空调系统的实时并网功率,确定所述控制系统的受控对象的实时电感参数;
基本参数计算模块,用于将所述实时电感参数代入所述控制系统的受控对象,计算出所述控制系统的基本控制参数;
调整参数预置模块,用于预设多个与不同并网功率范围相对应的调整参数;
目标参数计算模块,用于当所述实时并网功率与某个所述并网功率范围相匹配时,选取与所述并网功率范围相对应的调整参数对所述控制参数进行调整,得到目标控制参数。
可选的,所述电感参数确定模块包括:
并网功率获取单元,用于获取所述光伏空调系统的实时并网功率;
并网电流计算单元,用于根据所述实时并网功率计算出所述光伏空调系统的实时并网电流;
电感参数计算单元,用于根据所述实时并网电流确定的所述实时电感 参数。
可选的,所述电感参数计算单元具体用于所述实时并网电流,从所述受控对象中电抗器的电感电流关系曲线中确定所述实时电感参数。
一种光伏空调系统的控制系统,所述控制系统包括控制参数确定装置,所述控制参数确定装置包括电感参数确定模块、基本参数计算模块、调整参数预置模块和目标参数计算模块,所述电感参数确定模块用于根据所述光伏空调系统的实时并网功率,确定所述控制系统的受控对象的实时电感参数;所述基本参数计算模块用于将所述实时电感参数代入所述控制系统的受控对象,计算出所述控制系统的基本控制参数;所述调整参数预置模块用于预设多个与不同并网功率范围相对应的调整参数;所述目标参数计算模块用于当所述实时并网功率与某个所述并网功率范围相匹配时,选取与所述并网功率范围相对应的调整参数对所述控制参数进行调整,得到目标控制参数,所述控制参数确定装置还包括:
并网功率接收端口,用于接收所述实时并网功率;
预置参数接收端口,用于接收用户输入的多个所述调整参数;
控制参数输出端口,用于连接所述控制系统的受控对象的比例积分控制单元,并将所述目标控制参数输出到所述比例积分控制单元。
可选的,所述电感参数确定模块包括:
并网功率获取单元,用于获取所述光伏空调系统的实时并网功率;
并网电流计算单元,用于根据所述实时并网功率计算出所述光伏空调系统的实时并网电流;
电感参数计算单元,用于根据所述实时并网电流确定的所述实时电感参数。
可选的,所述电感参数计算单元具体用于所述实时并网电流,从所述受控对象中电抗器的电感电流关系曲线中确定所述实时电感参数。
本发明实施例提供了一种光伏空调系统的控制参数确定方法、装置和控制系统,该方法和装置应用于光伏空调系统的控制系统,用于确定应用于该控制系统的目标控制参数,具体为根据光伏空调系统的实时并网功率,确定光伏空调系统的受控对象的实时电感参数;将实时电感参数代入控制 系统的受控对象,计算出控制系统的基本控制参数;预设多个分别与不同并网功率相对应的调整参数;当实时并网功率与某个并网功率相匹配时,选取与并网功率相对应的调整参数对基本控制参数进行修正,得到目标控制参数。由于本申请所确定的目标控制参数不是固定控制参数,而是根据不同并网功率确定的该不同并网功率的动态控制参数,还由于不同并网功率取决于外界参数的变化,因此这里的目标控制参数能够适应外界参数变化,从而能够解决目前的光伏空调系统在外界参数变化时无法满足发用电控制要求的问题。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请提供的一种光伏空调系统的控制参数确定方法实施例的流程图;
图2为本申请提供的一种光伏空调系统的控制参数确定装置实施例的结构框图;
图3为本申请提供的一种光伏空调系统的控制系统实施例的结构框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
实施例一
图1为本申请提供的一种光伏空调系统的控制参数确定方法实施例的流程图。
如图1所示,本实施例提供的控制参数确定方法应用于光伏空调系统的控制系统,用于确定目标控制参数,该目标控制参数用于作为该控制系统的比例积分控制单元的比例积分控制参数。这种控制参数确定方法具体包括如下步骤:
S101:根据实时并网功率确定受控对象的实时电感参数。
这里实时并网功率是指该光伏空调系统与电网的交换功率,具体是指当其处于发电状态时的发电功率,当其处于用电状态时的用电功率。这里采用实时电感参数是因为控制系统的受控对象的电感会随着电流的变化而变化,这也是本申请的创新性所在。这里,具体利用并网功率获取实时电感参数的过程具体如下:
首先,获取该光伏空调系统的实时并网功率,即当前时刻的并网功率,并网功率决定于并网电流和并网电压,其中并网电压取决于所并网的电网的电压。
然后,基于上述分析,根据该实时并网功率计算出实时并网电流,实时并网电流等于实时并网功率除以当前并网电压。
最后,根据该实时并网电流和电感电流关系曲线确定该控制系统的受控对象的是电感参数,具体为设置在该受控对象内的电抗器的实时电感参数。该关系曲线为L=a*I,其中L为该实时电感参数,a为该电抗器的电感电流系数,I为该实时并网电流。
S102:将实时电感参数代入受控对象,计算出控制系统的基本控制参数。
这里的实质是将该实时电感参数作为动态参数替代原有受控对象的固定参数,并根据包含该动态参数的受控对象的数学模型计算出该受控对象当前的基本控制参数。对基本控制参数的计算与目前根据固定的数学模型计算控制参数的方法相同,这里就不再赘述。
例如,可以将2*pi*f*L代入该受控对象,从而得到基本的比例积分控制参数Kp=1.05和Ki=0.4。其中pi取3.1415926;f为并网功率,即电网的实时频率,一般取50赫兹;L即为上述的实时电感参数。
S103:预设多个与不同并网功率范围的调整参数。
该调整参数可以为多个,分别对应于不同的并网功率范围,以针对不同的实时并网功率对该基本控制参数进行调整。
例如,本实施例中选取当并网功率范围为0~4000W时的调整参数k1为1;当并网功率范围为4000W~6500W时的调整参数k2为0.8;当并网功率范围为6500W~9500W时的调整参数k3为0.7;当并网功率范围超出9500W时的调整参数k4为0.5。。
S104:根据实时并网功率和调整参数得到目标控制参数。
具体为当实时并网功率与上述多个并网功率中某个并网功率相匹配时,利用与该并网功率相对应的调整参数对上述基本控制参数进行调整,从而得到目标控制参数。
例如,当实时并网功率为5500W时,与该实时并网功率匹配的是并网功率范围是4000W~6500W,此时选取调整参数k2=0.8,然后利用哎调整参数k2对基本控制参数进行修正,从而得到目标控制参数,也可以说是目标比例积分控制参数。由于Kp和Ki在实际控制中是除的关系,因此利用该调整参数单独对比例参数Kp进行修正即可,从而得到目标比例控制参数Kp’和目标积分控制参数Ki’,其中Ki=Ki’。
从上述技术方案可以看出,本实施例提供了一种光伏空调系统的控制参数确定方法,该方法应用于光伏空调系统的控制系统,用于确定应用于该控制系统的目标控制参数,具体为根据光伏空调系统的实时并网功率,确定光伏空调系统的受控对象的实时电感参数;将实时电感参数代入控制系统的受控对象,计算出控制系统的基本控制参数;预设多个分别与不同并网功率相对应的调整参数;当实时并网功率与某个并网功率相匹配时,选取与并网功率相对应的调整参数对基本控制参数进行修正,得到目标控制参数。由于本申请所确定的目标控制参数不是固定控制参数,而是根据 不同并网功率确定的该不同并网功率的动态控制参数,还由于不同并网功率取决于外界参数的变化,因此这里的目标控制参数能够适应外界参数变化,从而能够解决目前的光伏空调系统在外界参数变化时无法满足发用电控制要求的问题。
实施例二
图2为本申请提供的一种光伏空调系统的控制参数确定装置实施例的结构框图。
如图2所示,本实施例提供的控制参数确定装置应用于光伏空调系统的控制系统,用于确定目标控制参数,该目标控制参数用于作为该控制系统的比例积分控制单元的比例积分控制参数。这种控制参数确定装置具体包括电感参数确定模块10、基本参数计算模块20、调整参数预置模块30和目标参数计算模块40。
电感参数计算模块10用于根据实时并网功率确定受控对象的实时电感参数。
这里实时并网功率是指该光伏空调系统与电网的交换功率,具体是指当其处于发电状态时的发电功率,当其处于用电状态时的用电功率。这里采用实时电感参数是因为控制系统的受控对象的电感会随着电流的变化而变化,这也是本申请的创新性所在。这里,该电感参数计算模块10包括并网功率获取单元11、并网电流计算单元12和电感参数计算单元13。
并网功率获取单元11用于获取该光伏空调系统的实时并网功率,即当前时刻的并网功率,并网功率决定于并网电流和并网电压,其中并网电压取决于所并网的电网的电压。
基于上述分析,并网电流计算单元12根据并网功率获取单元11获取的实时并网功率计算出实时并网电流,实时并网电流等于实时并网功率除以当前并网电压。
最后,电感参数计算单元13则根据该实时并网电流和电感电流关系曲线确定该控制系统的受控对象的是电感参数,具体为设置在该受控对象内 的电抗器的实时电感参数。该关系曲线为L=a*I,其中L为该实时电感参数,a为该电抗器的电感电流系数,I为该实时并网电流。
基本参数计算模块20用于将实时电感参数代入受控对象,计算出控制系统的基本控制参数。
这里的实质是将该实时电感参数作为动态参数替代原有受控对象的固定参数,并根据包含该动态参数的受控对象的数学模型计算出该受控对象当前的基本控制参数。对基本控制参数的计算与目前根据固定的数学模型计算控制参数的方法相同,这里就不再赘述。
例如,可以将2*pi*f*L代入该受控对象,从而得到基本的比例积分控制参数Kp=1.05和Ki=0.4。其中pi取3.1415926;f为并网功率,即电网的实时频率,一般取50赫兹;L即为上述的实时电感参数。
调整参数预置模块30用于根据用户的设置命令预设多个与不同并网功率范围的调整参数。
该调整参数可以为多个,分别对应于不同的并网功率范围,以针对不同的实时并网功率对该基本控制参数进行调整。
例如,本实施例中选取当并网功率范围为0~4000W时的调整参数k1为1;当并网功率范围为4000W~6500W时的调整参数k2为0.8;当并网功率范围为6500W~9500W时的调整参数k3为0.7;当并网功率范围超出9500W时的调整参数k4为0.5。。
目标参数计算模块40根据实时并网功率和调整参数得到目标控制参数。
具体为当实时并网功率与上述多个并网功率中某个并网功率相匹配时,利用与该并网功率相对应的调整参数对上述基本控制参数进行调整,从而得到目标控制参数。
例如,当实时并网功率为5500W时,与该实时并网功率匹配的是并网功率范围是4000W~6500W,此时选取调整参数k2=0.8,然后利用哎调整参数k2对基本控制参数进行修正,从而得到目标控制参数,也可以说是目标比例积分控制参数。由于Kp和Ki在实际控制中是除的关系,因此利用 该调整参数单独对比例参数Kp进行修正即可,从而得到目标比例控制参数Kp’和目标积分控制参数Ki’,其中Ki=Ki’。
从上述技术方案可以看出,本实施例提供了一种光伏空调系统的控制参数确定装置,该装置应用于光伏空调系统的控制系统,用于确定应用于该控制系统的目标控制参数,具体为根据光伏空调系统的实时并网功率,确定光伏空调系统的受控对象的实时电感参数;将实时电感参数代入控制系统的受控对象,计算出控制系统的基本控制参数;预设多个分别与不同并网功率相对应的调整参数;当实时并网功率与某个并网功率相匹配时,选取与并网功率相对应的调整参数对基本控制参数进行修正,得到目标控制参数。由于本申请所确定的目标控制参数不是固定控制参数,而是根据不同并网功率确定的该不同并网功率的动态控制参数,还由于不同并网功率取决于外界参数的变化,因此这里的目标控制参数能够适应外界参数变化,从而能够解决目前的光伏空调系统在外界参数变化时无法满足发用电控制要求的问题。
实施例三
图3为本申请提供的一种光伏空调系统的控制系统实施例的结构框图。
如图3所示,本实施例提供的控制系统用于对光伏空调系统的运行进行控制,该控制系统包括有控制参数控制装置,该控制参数确定装置100用于确定目标控制参数,该目标控制参数用于作为该控制系统的比例积分控制单元的比例积分控制参数。这种控制参数确定装置具体包括电感参数确定模块10、基本参数计算模块20、调整参数预置模块30和目标参数计算模块40。
电感参数计算模块10用于根据实时并网功率确定受控对象的实时电感参数。
这里实时并网功率是指该光伏空调系统与电网的交换功率,具体是指当其处于发电状态时的发电功率,当其处于用电状态时的用电功率。这里 采用实时电感参数是因为控制系统的受控对象的电感会随着电流的变化而变化,这也是本申请的创新性所在。这里,该电感参数计算模块10包括并网功率获取单元11、并网电流计算单元12和电感参数计算单元13。
并网功率获取单元11用于获取该光伏空调系统的实时并网功率,即当前时刻的并网功率,并网功率决定于并网电流和并网电压,其中并网电压取决于所并网的电网的电压。
基于上述分析,并网电流计算单元12根据并网功率获取单元11获取的实时并网功率计算出实时并网电流,实时并网电流等于实时并网功率除以当前并网电压。
最后,电感参数计算单元13则根据该实时并网电流和电感电流关系曲线确定该控制系统的受控对象的是电感参数,具体为设置在该受控对象内的电抗器的实时电感参数。该关系曲线为L=a*I,其中L为该实时电感参数,a为该电抗器的电感电流系数,I为该实时并网电流。
基本参数计算模块20用于将实时电感参数代入受控对象,计算出控制系统的基本控制参数。
这里的实质是将该实时电感参数作为动态参数替代原有受控对象的固定参数,并根据包含该动态参数的受控对象的数学模型计算出该受控对象当前的基本控制参数。对基本控制参数的计算与目前根据固定的数学模型计算控制参数的方法相同,这里就不再赘述。
例如,可以将2*pi*f*L代入该受控对象,从而得到基本的比例积分控制参数Kp=1.05和Ki=0.4。其中pi取3.1415926;f为并网功率,即电网的实时频率,一般取50赫兹;L即为上述的实时电感参数。
调整参数预置模块30用于根据用户的设置命令预设多个与不同并网功率范围的调整参数。
该调整参数可以为多个,分别对应于不同的并网功率范围,以针对不同的实时并网功率对该基本控制参数进行调整。
例如,本实施例中选取当并网功率范围为0~4000W时的调整参数k1为1;当并网功率范围为4000W~6500W时的调整参数k2为0.8;当并网 功率范围为6500W~9500W时的调整参数k3为0.7;当并网功率范围超出9500W时的调整参数k4为0.5。。
目标参数计算模块40根据实时并网功率和调整参数得到目标控制参数。
具体为当实时并网功率与上述多个并网功率中某个并网功率相匹配时,利用与该并网功率相对应的调整参数对上述基本控制参数进行调整,从而得到目标控制参数。
例如,当实时并网功率为5500W时,与该实时并网功率匹配的是并网功率范围是4000W~6500W,此时选取调整参数k2=0.8,然后利用哎调整参数k2对基本控制参数进行修正,从而得到目标控制参数,也可以说是目标比例积分控制参数。由于Kp和Ki在实际控制中是除的关系,因此利用该调整参数单独对比例参数Kp进行修正即可,从而得到目标比例控制参数Kp’和目标积分控制参数Ki’,其中Ki=Ki’。
另外,本实施例中的控制参数确定装置还包括并网功率接收端口101、预置参数接收端口102和控制参数输出端口103。
并网功率接收端口101与光伏空调系统的变流设备相连接,用于接收该变流设备的实时并网功率。预置参数接收端口102用于接收用户输入的多个调整参数。控制参数输出端口103用于连接控制系统的受控对象的比例积分控制单元,并将目标控制参数输出到所述比例积分控制单元。
从上述技术方案可以看出,本实施例提供了一种光伏空调系统的控制系统,该控制系统包括一个控制参数确定装置,该控制参数确定装置用于确定应用于该控制系统的目标控制参数,具体为根据光伏空调系统的实时并网功率,确定光伏空调系统的受控对象的实时电感参数;将实时电感参数代入控制系统的受控对象,计算出控制系统的基本控制参数;预设多个分别与不同并网功率相对应的调整参数;当实时并网功率与某个并网功率相匹配时,选取与并网功率相对应的调整参数对基本控制参数进行修正,得到目标控制参数。由于本申请所确定的目标控制参数不是固定控制参数,而是根据不同并网功率确定的该不同并网功率的动态控制参数,还由于不 同并网功率取决于外界参数的变化,因此这里的目标控制参数能够适应外界参数变化,从而能够解决目前的光伏空调系统在外界参数变化时无法满足发用电控制要求的问题。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本申请。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其它实施例中实现。因此,本申请将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (9)

  1. 一种光伏空调系统的控制参数确定方法,应用于所述光伏空调系统的控制系统,其特征在于,所述控制参数确定方法具体包括步骤:
    根据所述光伏空调系统的实时并网功率,确定所述控制系统的受控对象的实时电感参数;
    将所述实时电感参数代入所述控制系统的受控对象,计算出所述控制系统的基本控制参数;
    预设多个分别与不同并网功率范围相对应的调整参数;
    当所述实时并网功率与某个所述某个并网功率范围相匹配时,选取与所述并网功率范围相对应的调整参数对所述基本控制参数进行修正,得到目标控制参数。
  2. 如权利要求1所述的控制参数确定方法,其特征在于,所述根据所述光伏空调系统的实时并网功率,确定所述光伏空调系统的实时电感参数,包括:
    获取所述光伏空调系统的实时并网功率;
    根据所述实时并网功率计算出所述光伏空调系统的实时并网电流;
    根据所述实时并网电流确定的所述实时电感参数。
  3. 如权利要求2所述的控制参数确定方法,其特征在于,所述根据所述实时并网电流确定的所述实时电感参数,包括:
    根据所述实时并网电流,从所述受控对象中电抗器的电感电流关系曲线中确定所述实时电感参数。
  4. 一种光伏空调系统的控制参数确定装置,应用于所述光伏空调系统的控制系统,其特征在于,所述控制参数确定装置具体包括:
    电感参数确定模块,用于根据所述光伏空调系统的实时并网功率,确定所述控制系统的受控对象的实时电感参数;
    基本参数计算模块,用于将所述实时电感参数代入所述控制系统的受控对象,计算出所述控制系统的基本控制参数;
    调整参数预置模块,用于预设多个与不同并网功率范围相对应的调整 参数;
    目标参数计算模块,用于当所述实时并网功率与某个所述并网功率范围相匹配时,选取与所述并网功率范围相对应的调整参数对所述控制参数进行调整,得到目标控制参数。
  5. 如权利要求4所述的控制参数确定装置,其特征在于,所述电感参数确定模块包括:
    并网功率获取单元,用于获取所述光伏空调系统的实时并网功率;
    并网电流计算单元,用于根据所述实时并网功率计算出所述光伏空调系统的实时并网电流;
    电感参数计算单元,用于根据所述实时并网电流确定的所述实时电感参数。
  6. 如权利要求5所述的控制参数确定装置,其特征在于,所述电感参数计算单元具体用于所述实时并网电流,从所述受控对象中电抗器的电感电流关系曲线中确定所述实时电感参数。
  7. 一种光伏空调系统的控制系统,所述控制系统包括控制参数确定装置,所述控制参数确定装置包括电感参数确定模块、基本参数计算模块、调整参数预置模块和目标参数计算模块,所述电感参数确定模块用于根据所述光伏空调系统的实时并网功率,确定所述控制系统的受控对象的实时电感参数;所述基本参数计算模块用于将所述实时电感参数代入所述控制系统的受控对象,计算出所述控制系统的基本控制参数;所述调整参数预置模块用于预设多个与不同并网功率范围相对应的调整参数;所述目标参数计算模块用于当所述实时并网功率与某个所述并网功率范围相匹配时,选取与所述并网功率范围相对应的调整参数对所述控制参数进行调整,得到目标控制参数,其特征在于,所述控制参数确定装置还包括:
    并网功率接收端口,用于接收所述实时并网功率;
    预置参数接收端口,用于接收用户输入的多个所述调整参数;
    控制参数输出端口,用于连接所述控制系统的受控对象的比例积分控制单元,并将所述目标控制参数输出到所述比例积分控制单元。
  8. 如权利要求7所述的控制参数确定装置,其特征在于,所述电感参 数确定模块包括:
    并网功率获取单元,用于获取所述光伏空调系统的实时并网功率;
    并网电流计算单元,用于根据所述实时并网功率计算出所述光伏空调系统的实时并网电流;
    电感参数计算单元,用于根据所述实时并网电流确定的所述实时电感参数。
  9. 如权利要求7所述的控制参数确定装置,其特征在于,所述电感参数计算单元具体用于所述实时并网电流,从所述受控对象中电抗器的电感电流关系曲线中确定所述实时电感参数。
PCT/CN2017/080871 2016-09-21 2017-04-18 一种光伏空调系统的控制参数确定方法、装置和控制系统 WO2018054045A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA3034759A CA3034759C (en) 2016-09-21 2017-04-18 Control parameter determining method and apparatus, and control system for photovoltaic air conditioning system
US16/327,164 US11796194B2 (en) 2016-09-21 2017-04-18 Control parameter determining method and apparatus, and control system for photovoltaic air conditioning system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610838835.3A CN106403182B (zh) 2016-09-21 2016-09-21 一种光伏空调系统的控制参数确定方法、装置和控制系统
CN201610838835.3 2016-09-21

Publications (1)

Publication Number Publication Date
WO2018054045A1 true WO2018054045A1 (zh) 2018-03-29

Family

ID=57996737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/080871 WO2018054045A1 (zh) 2016-09-21 2017-04-18 一种光伏空调系统的控制参数确定方法、装置和控制系统

Country Status (4)

Country Link
US (1) US11796194B2 (zh)
CN (1) CN106403182B (zh)
CA (1) CA3034759C (zh)
WO (1) WO2018054045A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11796194B2 (en) 2016-09-21 2023-10-24 Gree Electric Appliances, Inc. Of Zhuhai Control parameter determining method and apparatus, and control system for photovoltaic air conditioning system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114552653B (zh) * 2022-03-21 2024-03-26 合肥工业大学 基于智能算法的并网逆变器系统控制参数多目标优化方法
CN115117899B (zh) * 2022-08-15 2024-03-05 合肥工业大学 参数摄动下光伏并网系统站内密集振荡模式的参与因子计算方法及应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102664421A (zh) * 2012-05-11 2012-09-12 中国电力科学研究院 用于平抑风电并网功率波动的储能电池系统功率给定方法
CN102856925A (zh) * 2012-09-03 2013-01-02 北京科诺伟业科技有限公司 一种风电场功率综合分配方法
CN103018575A (zh) * 2012-12-05 2013-04-03 合肥工业大学 大功率电感测试装置及其主电路及其测试的方法
CN104158417A (zh) * 2014-07-25 2014-11-19 特变电工新疆新能源股份有限公司 一种降低光伏并网逆变器中开关损耗的控制系统及方法
CN105373012A (zh) * 2015-12-02 2016-03-02 国家电网公司 一种基于混合仿真的光伏电站功率控制特性获取系统
CN105387569A (zh) * 2015-11-30 2016-03-09 珠海格力电器股份有限公司 光伏空调系统控制方法和装置
CN106403182A (zh) * 2016-09-21 2017-02-15 珠海格力电器股份有限公司 一种光伏空调系统的控制参数确定方法、装置和控制系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3794928B2 (ja) * 2000-04-17 2006-07-12 東京精電株式会社 低騒音・低損失リアクトル
US20130056993A1 (en) * 2011-09-07 2013-03-07 Eric William Newcomb Use of thermal hydraulic DC generators meets the requirements to qualify as a "Green Energy" source
JP2015060929A (ja) * 2013-09-18 2015-03-30 日立金属株式会社 コイル部品およびそれを用いた電源装置
CN104713176B (zh) * 2013-12-11 2018-05-22 珠海格力电器股份有限公司 光伏空调系统及其控制方法
CN104850166A (zh) * 2014-08-29 2015-08-19 国家电网公司 一种采用滑模层极值搜索控制的光伏发电最大功率追踪方法
CN104319814A (zh) * 2014-11-10 2015-01-28 国家电网公司 一种光伏并网逆变器的控制参数确定方法及系统
CN104776569A (zh) * 2015-03-25 2015-07-15 珠海格力电器股份有限公司 空调控制系统及空调机组
CN104979840B (zh) * 2015-07-30 2018-01-19 中国电力科学研究院 一种主动配电网三相无功优化方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102664421A (zh) * 2012-05-11 2012-09-12 中国电力科学研究院 用于平抑风电并网功率波动的储能电池系统功率给定方法
CN102856925A (zh) * 2012-09-03 2013-01-02 北京科诺伟业科技有限公司 一种风电场功率综合分配方法
CN103018575A (zh) * 2012-12-05 2013-04-03 合肥工业大学 大功率电感测试装置及其主电路及其测试的方法
CN104158417A (zh) * 2014-07-25 2014-11-19 特变电工新疆新能源股份有限公司 一种降低光伏并网逆变器中开关损耗的控制系统及方法
CN105387569A (zh) * 2015-11-30 2016-03-09 珠海格力电器股份有限公司 光伏空调系统控制方法和装置
CN105373012A (zh) * 2015-12-02 2016-03-02 国家电网公司 一种基于混合仿真的光伏电站功率控制特性获取系统
CN106403182A (zh) * 2016-09-21 2017-02-15 珠海格力电器股份有限公司 一种光伏空调系统的控制参数确定方法、装置和控制系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11796194B2 (en) 2016-09-21 2023-10-24 Gree Electric Appliances, Inc. Of Zhuhai Control parameter determining method and apparatus, and control system for photovoltaic air conditioning system

Also Published As

Publication number Publication date
CN106403182B (zh) 2018-11-30
CA3034759C (en) 2021-03-23
CA3034759A1 (en) 2018-03-29
US11796194B2 (en) 2023-10-24
CN106403182A (zh) 2017-02-15
US20190219286A1 (en) 2019-07-18

Similar Documents

Publication Publication Date Title
CN104713176B (zh) 光伏空调系统及其控制方法
US8483883B1 (en) System and method for controlling supply fan speed within a variable air volume system
CN104426156B (zh) 用于风力发电机的电压控制的系统和方法
WO2018054045A1 (zh) 一种光伏空调系统的控制参数确定方法、装置和控制系统
US9964978B2 (en) Control systems for microgrid power inverter and methods thereof
CN107255347B (zh) 一种空调器压缩机运行功率检测方法和空调器
CN104089378B (zh) 光伏空调系统的控制方法、控制装置及光伏空调系统
JP6731764B2 (ja) 切り換え式電源供給器及びそれを使用した電源供給設備
GB0401375D0 (en) A wind farm and method of controlling a wind farm
WO2018214704A1 (zh) 用于空调控制的方法及装置
WO2019128069A1 (zh) 一种自适应发电机空调控制方法及装置
CN104538951B (zh) 火力发电机组ctf运行方式下一次调频控制方法及系统
CN106786805B (zh) 一种计及光伏集群接入的交直潮流断面协调最优控制方法
CN105070251A (zh) 背光控制方法及装置
CN106403281A (zh) 热水器控制方法、热水器控制器及热水器
CN105162129B (zh) 计及分布式电源最优配置的配网无功电压控制方法
CN116455255A (zh) 一种适用于反激式微逆模式切换的控制方法
CN106712027B (zh) 一种基于动态基准的低压微电网改进下垂控制策略
CN105896591B (zh) 光伏并网逆变器自适应控制方法
CN108054787B (zh) 一种风电电力系统agc调节速率需求的确定方法
CN107612000B (zh) 火力发电机组一次调频双向转差功率修正控制方法
CN113067345B (zh) 光伏交流系统的功率因数补偿方法、控制器及系统
CN115085193A (zh) 面向微电网需求侧的电力弹簧调控系统及调控方法
CN106340905B (zh) 一种基于虚拟同步控制的并网逆变器功率分配方法
CN104728998A (zh) 光伏供电空调机组的控制方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17852121

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3034759

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17852121

Country of ref document: EP

Kind code of ref document: A1