WO2018054007A1 - 列车的制动回收系统和方法及列车 - Google Patents

列车的制动回收系统和方法及列车 Download PDF

Info

Publication number
WO2018054007A1
WO2018054007A1 PCT/CN2017/075175 CN2017075175W WO2018054007A1 WO 2018054007 A1 WO2018054007 A1 WO 2018054007A1 CN 2017075175 W CN2017075175 W CN 2017075175W WO 2018054007 A1 WO2018054007 A1 WO 2018054007A1
Authority
WO
WIPO (PCT)
Prior art keywords
train
battery
power
braking
voltage
Prior art date
Application number
PCT/CN2017/075175
Other languages
English (en)
French (fr)
Inventor
任林
李道林
罗文刚
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to EP17852086.2A priority Critical patent/EP3517342A1/en
Priority to BR112019005492-8A priority patent/BR112019005492B1/pt
Priority to KR1020197007837A priority patent/KR20190039435A/ko
Priority to US16/335,400 priority patent/US11465508B2/en
Publication of WO2018054007A1 publication Critical patent/WO2018054007A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/06Two-wire systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/24Using the vehicle's propulsion converter for charging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M1/00Power supply lines for contact with collector on vehicle
    • B60M1/12Trolley lines; Accessories therefor
    • B60M1/13Trolley wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M3/00Feeding power to supply lines in contact with collector on vehicles; Arrangements for consuming regenerative power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M3/00Feeding power to supply lines in contact with collector on vehicles; Arrangements for consuming regenerative power
    • B60M3/06Arrangements for consuming regenerative power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61BRAILWAY SYSTEMS; EQUIPMENT THEREFOR NOT OTHERWISE PROVIDED FOR
    • B61B13/00Other railway systems
    • B61B13/04Monorail systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61CLOCOMOTIVES; MOTOR RAILCARS
    • B61C17/00Arrangement or disposition of parts; Details or accessories not otherwise provided for; Use of control gear and control systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61CLOCOMOTIVES; MOTOR RAILCARS
    • B61C3/00Electric locomotives or railcars
    • B61C3/02Electric locomotives or railcars with electric accumulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/102Parallel operation of dc sources being switching converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/106Parallel operation of dc sources for load balancing, symmetrisation, or sharing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/1423Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle with multiple batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/30Railway vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/143Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle with multiple generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T30/00Transportation of goods or passengers via railways, e.g. energy recovery or reducing air resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present application relates to the field of rail transit technology, and in particular to a brake recovery system for a train, a train having the system, and a brake recovery method for a train.
  • the present application aims to solve at least one of the technical problems in the related art to some extent. To this end, it is an object of the present application to provide a brake recovery system for a train that can achieve recovery and reuse of braking electrical energy.
  • Another object of the present application is to propose a train. Still another object of the present application is to provide a brake recovery method for a train.
  • a brake recovery system for a train proposed by an embodiment of the present application includes: a traction network, a train, and an energy storage power station.
  • the train includes: an electric brake; a battery; a distributor, the distributor is connected to the electric brake, a node between the distributor and the electric brake; a bidirectional DC/DC converter, the bidirectional DC/ One end of the DC converter is connected to the battery, the other end of the bidirectional DC/DC converter is connected to the node; and a first controller, the first controller is respectively connected to the distributor and the two-way a DC/DC converter connected, the first controller configured to control the power distributor and the two-way DC/DC converter to feed braking power of the train to the traction network when the train brakes, and according to The voltage of the traction net controls the bidirectional DC/DC converter through the battery pair
  • the braking electrical energy of the train is absorbed.
  • the energy storage power station is connected to the traction network, and the energy storage power station includes a second controller, and the second controller is configured to
  • the first controller controls the power distribution device and the bidirectional DC/DC converter to feed the braking power to the traction network during the train braking, and controls the two-way according to the voltage of the traction network.
  • the DC/DC converter absorbs the braking power of the train through the battery, and when the voltage of the traction network continues to rise, the energy storage power station is used for absorption.
  • the energy storage power station can also discharge the traction net according to the voltage of the traction network, thereby avoiding the voltage of the traction network being too low and maintaining the normal operation of the traction network.
  • the braking electric energy is first fed back to the traction net.
  • the vehicle battery is preferentially used for absorption, if it is absorbed in the vehicle battery. After the voltage of the traction network continues to rise, the energy storage power station is used for absorption.
  • the vehicle battery Since the vehicle battery is installed on the train, it is preferred to use the battery for absorption, so as to avoid the problem that the brake power is too large to be quickly absorbed or consumed, thereby causing the electric appliance of the traction net to be burned.
  • the braking energy is absorbed by the battery and the energy storage power station on the train, thereby realizing the recovery and reuse of the braking electric energy, reducing energy waste and reducing the load of the traction net.
  • the embodiment of the present application can effectively monitor the voltage of the traction network, protect system components, and improve system security.
  • the first controller is configured to control the bidirectional DC/DC converter to enter a charging mode when the voltage of the traction net is greater than a first preset threshold to cause the battery to absorb the Brake power.
  • the first controller is configured to control the bidirectional DC/DC converter to be turned off to stop the battery from absorbing the system when the voltage of the traction net is less than a second preset threshold. Dynamic power, wherein the second preset threshold is less than a first preset threshold.
  • the train further includes: a power detector, the power detector is connected to the first controller, and the power detector is configured to detect a power of the battery, wherein, when When the battery absorbs the braking power, the first controller is further configured to control the bidirectional DC/DC converter to be turned off to stop the battery from absorbing when the amount of power of the battery is greater than a first power threshold Brake power.
  • the train further includes: a mechanical brake for mechanically braking the train.
  • the first controller is further configured to control the mechanical brake to cooperate when the voltage of the traction net is greater than a third preset threshold.
  • the electric brake brakes the train, wherein the third preset threshold is greater than the first predetermined threshold.
  • the second controller is configured to control the energy storage station to perform charging when a voltage of the traction network is greater than a fourth preset threshold.
  • the second controller is further configured to control the energy storage station to perform discharging when the voltage of the traction network is less than a fifth preset threshold, wherein the fifth preset threshold Less than the fourth preset threshold.
  • the second controller is further configured to control the storage when the voltage of the traction network is greater than a sixth preset threshold.
  • the power station stops discharging, wherein the sixth preset threshold is greater than the fifth preset threshold.
  • the second controller controls the energy storage power station to discharge to the traction network, and at the same time, the first control The bidirectional DC/DC converter is controlled to enter a discharge mode to discharge a battery of the train to the traction net, wherein the seventh predetermined threshold is less than the fifth predetermined threshold.
  • the first controller when the battery discharges to the traction net, is further configured to control the bidirectional DC/DC when a quantity of the battery is less than a second power threshold The converter is turned off to stop the battery from discharging.
  • the train further includes: a contactor detector, the contactor detector being connected to the first controller, the contactor detector for detecting whether the contactor of the train is broken Opening, wherein the first controller is further configured to control the power distribution to be turned off after the contactor is disconnected, and control the bidirectional DC/DC converter to enter a discharge mode to make the battery
  • the train is powered and controls the train's limited power operation.
  • the energy storage power station may be multiple, and the plurality of energy storage power stations are disposed at a preset distance interval.
  • two of the energy storage stations are provided every 3-6 km, and the power of the energy storage station may be 0.5-2 MW.
  • a train includes: an electric brake; a battery; a distributor, the distributor and the electric brake are connected, and between the distributor and the electric brake a node; a bidirectional DC/DC converter, one end of the bidirectional DC/DC converter being connected to the battery, and the other end of the bidirectional DC/DC converter being connected to the node; a first controller, a first controller is coupled to the power distributor and the bidirectional DC/DC converter, the first controller for controlling the power distributor and the bidirectional DC/DC converter when the train brakes Braking power of the train is fed back to the traction network, and the bidirectional DC/DC converter is controlled to absorb braking energy of the train through the battery according to the voltage of the traction network.
  • the braking power is fed back to the traction net by the first controller controlling the bidirectional DC/DC converter, and the bidirectional DC/DC converter is controlled to pass the battery according to the voltage of the traction net.
  • the braking electric energy is first fed back to the traction net. At this time, if there are more trains on the traction network, the feedback braking electric energy is evenly distributed to other trains, so the traction net is Electricity The pressure will not rise a lot.
  • the vehicle battery is preferentially used for absorption to avoid the occurrence of braking power. Too large to be quickly absorbed or consumed, resulting in the problem of the electrical appliances of the traction net being burned.
  • the braking electric energy is absorbed by the battery on the train, thereby realizing the recovery and reuse of the braking electric energy, reducing energy waste and reducing the load of the traction net.
  • the embodiment of the present application can effectively monitor the voltage of the traction network, protect system components, and improve system security.
  • the first controller is configured to control the bidirectional DC/DC converter to enter a charging mode when the voltage of the traction net is greater than a first preset threshold to cause the battery to absorb the Brake power.
  • the first controller is configured to control the bidirectional DC/DC converter to be turned off to stop the battery from absorbing the system when the voltage of the traction net is less than a second preset threshold. Dynamic power, wherein the second preset threshold is less than a first preset threshold.
  • the train further includes: a power detector, the power detector is connected to the first controller, and the power detector is configured to detect a power of the battery, wherein, when When the battery absorbs the braking power, the first controller is further configured to control the bidirectional DC/DC converter to be turned off to stop the battery from absorbing when the amount of power of the battery is greater than a first power threshold Brake power.
  • the train further includes: a mechanical brake for mechanically braking the train.
  • the first controller is further configured to control the mechanical brake to be started when a voltage of the traction net is greater than a third preset threshold.
  • the train is braked in conjunction with the electric brake, wherein the third preset threshold is greater than the first predetermined threshold.
  • the first controller when the battery discharges to the traction net, is further configured to control the bidirectional DC/DC when a quantity of the battery is less than a second power threshold The converter is turned off to stop the battery from discharging.
  • the train further includes: a contactor detector, the contactor detector being connected to the first controller, the contactor detector for detecting whether the contactor of the train is broken Opening, wherein the first controller is further configured to control the bidirectional DC/DC converter to perform a discharge mode after the contactor is disconnected to enable the battery to supply power to the train, and control the train Limited power operation.
  • the train may be a straddle monorail train.
  • the train further includes: a bogie adapted to straddle the rail beam; a vehicle body connected to the bogie and towed by the bogie Drive along the track beam.
  • the bogie includes: a bogie frame, the bogie frame is adapted to straddle And on the track beam and connected to the vehicle body; a running wheel pivotally mounted on the bogie frame and fitted on an upper surface of the track beam; a power device, A power unit is mounted on the bogie frame and is coupled to the running wheel; a horizontal wheel pivotally mounted on the bogie frame and mated on a side surface of the track beam.
  • the bogie further includes: a traction device mounted on the bogie frame and connected to the vehicle body; supporting a suspension device, the support suspension device being installed at the The steering frame is connected to the vehicle body.
  • a braking recovery method for a train includes: braking the train, generating braking energy according to braking force, and feeding back the braking power. To the traction net; detecting the voltage of the traction network; controlling the battery to absorb the braking energy of the train according to the voltage of the traction network; and controlling the energy storage station to charge or discharge according to the voltage of the traction network.
  • the train is first braked, and braking energy is generated according to the braking force, and the braking energy is fed back to the traction net, and then the voltage of the traction net is monitored, and according to the traction
  • the voltage control battery of the net absorbs the braking electric energy of the train, continues to monitor the voltage of the traction net, and judges whether the voltage of the traction net continues to rise. If it is judged that the voltage of the traction net continues to be tall, the control energy storage station absorbs the braking electric energy. .
  • the energy storage power station can be controlled to discharge according to the voltage of the traction network, thereby avoiding the voltage of the traction network being too low and maintaining the normal operation of the traction network.
  • the braking energy is first fed back to the traction network, and the number of trains on the traction network is determined. At this time, if there are more trains on the traction network, the feedback braking energy is evenly distributed. In other trains, the voltage of the traction network will not increase much. On the other hand, if there are fewer trains on the traction network, or there are more trains braking at this time, the voltage of the traction net will rise rapidly.
  • the vehicle battery is preferentially controlled to absorb the braking power, if the vehicle power After the braking power is absorbed, the voltage of the traction net continues to rise, and the energy storage power station is controlled to absorb the braking power. Since the vehicle battery is installed above the train, the battery is preferentially controlled to absorb the braking power, thereby avoiding the problem that the braking power is too large to be quickly absorbed or consumed, thereby causing the electric appliance of the traction net to be burned.
  • the embodiment of the present application realizes the recovery and reuse of the braking electric energy by controlling the battery on the train and the energy storage power station to absorb the braking electric energy, thereby reducing energy waste and reducing the load of the traction net. Moreover, the embodiment of the present application can effectively monitor the voltage of the traction network, protect system components, and improve system security.
  • the controlling the battery to absorb the braking power of the train according to the voltage of the traction network comprises: determining whether the voltage of the traction network is greater than a first preset threshold; The voltage of the traction net is greater than the first predetermined threshold, and the battery is controlled to absorb the braking power.
  • the brake recovery method of the train further includes: determining whether a voltage of the traction net is less than a second preset threshold; if the voltage of the traction network is less than a second preset threshold, controlling The battery stops Absorbing the braking electrical energy, wherein the second predetermined threshold is less than a first predetermined threshold.
  • the controlling the battery to absorb the braking electrical energy further comprises the steps of: detecting a quantity of the battery, and determining whether the quantity of the battery is greater than a first power threshold; if the battery The amount of electricity is greater than the first battery threshold, and the battery is controlled to stop absorbing the braking power.
  • the brake recovery method of the train further includes: determining whether a voltage of the traction net is greater than a third preset threshold; and if the voltage of the traction network is greater than a third preset threshold, controlling The train is mechanically braked to perform electric braking to brake the train, wherein the third preset threshold is greater than the first preset threshold.
  • the controlling the energy storage power station to perform charging or discharging according to the voltage of the traction network specifically includes the following steps: determining whether the voltage of the traction network is greater than a fourth preset threshold; if the traction network The voltage is greater than a fourth predetermined threshold, and the energy storage station is controlled to be charged.
  • the brake recovery method of the train further includes: determining whether a voltage of the traction net is less than a fifth preset threshold; if the voltage of the traction network is less than a fifth preset threshold, controlling The energy storage station performs discharging, wherein the fifth preset threshold is less than the fourth preset threshold.
  • the brake recovery method of the train further includes: determining whether a voltage of the traction network is greater than a sixth preset threshold; and if the voltage of the traction network is greater than a sixth preset threshold, controlling The energy storage power station stops discharging, wherein the sixth preset threshold is greater than the fifth preset threshold.
  • the brake recovery method of the train further includes: determining whether a voltage of the traction net is less than a seventh preset threshold; and if the voltage of the traction network is less than a seventh preset threshold, controlling The energy storage station discharges to the traction network, and at the same time, controls the battery to discharge to the traction network, wherein the seventh preset threshold is less than the fifth preset threshold.
  • the controlling the discharging of the battery to the traction net further comprises the steps of: detecting a quantity of the battery, and determining whether the quantity of the battery is less than a second power threshold; If the battery's charge is less than the second charge threshold, then the battery is controlled to stop discharging.
  • the brake recovery method of the train further includes: detecting whether the contactor of the train is disconnected; if the contactor is detected to be disconnected, controlling the battery to supply power to the train, and Controlling the limited power operation of the train.
  • FIG. 1 is a block schematic diagram of a brake recovery system for a train according to an embodiment of the present application
  • FIG. 2 is a block schematic diagram of a brake recovery system for a train in accordance with one embodiment of the present application
  • FIG. 3 is a circuit schematic diagram of a brake recovery system of a train according to an embodiment of the present application, wherein the voltage U of the traction net is greater than a first predetermined threshold U1;
  • FIG. 4 is a circuit schematic diagram of a brake recovery system of a train according to an embodiment of the present application, wherein the voltage U of the traction net is less than a second predetermined threshold U2;
  • FIG. 5 is a circuit schematic diagram of a brake recovery system of a train according to an embodiment of the present application, wherein the voltage U of the traction net is greater than a fourth predetermined threshold U4;
  • FIG. 6 is a circuit schematic diagram of a brake recovery system of a train according to an embodiment of the present application, wherein the voltage U of the traction net is less than a fifth predetermined threshold U5;
  • FIG. 7 is a circuit schematic diagram of a brake recovery system of a train according to an embodiment of the present application, wherein the voltage U of the traction net is less than a seventh preset threshold U7;
  • FIG. 8 is a block schematic diagram of a brake recovery system for a train in accordance with an embodiment of the present application.
  • FIG. 9 is a block schematic diagram of a brake recovery system for a train according to another embodiment of the present application.
  • FIG. 10 is a block schematic diagram of a brake recovery system for a train according to still another embodiment of the present application.
  • FIG. 11 is a schematic diagram showing the working principle of a brake recovery system for a train according to an embodiment of the present application.
  • Figure 12 is a block schematic diagram of a train in accordance with an embodiment of the present application.
  • Figure 13 is a block schematic diagram of a train in accordance with an embodiment of the present application.
  • Figure 14 is a block schematic diagram of a train in accordance with another embodiment of the present application.
  • Figure 15 is a block schematic diagram of a train in accordance with yet another embodiment of the present application.
  • 16 is a schematic structural view of a train according to an embodiment of the present application.
  • 17 is a flow chart of a brake recovery method for a train according to an embodiment of the present application.
  • 19 is a flow chart of a brake recovery method for a train according to another embodiment of the present application.
  • 20 is a flow chart of a method for limiting charge and discharge power of a battery of a train according to an embodiment of the present application
  • 21 is a flow chart of a brake recovery method for a train according to an embodiment of the present application.
  • 22 is a flow chart of a brake recovery method for a train according to another embodiment of the present application.
  • Electric brake 201 battery 202, distributor 203, bidirectional DC/DC converter 204 and first controller 205;
  • a power detector 206 a mechanical brake 207 and a contactor detector 208;
  • Bogie 20 and body 30 are Bogie 20 and body 30;
  • a bogie frame 21 a running wheel 22, a power unit 23 and a horizontal wheel 24;
  • FIG. 1 it is a block schematic diagram of a brake recovery system for a train according to an embodiment of the present application.
  • the brake recovery system of the train includes a traction net 1, a plurality of trains 2 connected to the traction net 1, and a plurality of energy storage power stations 3 disposed on the traction net 1.
  • the traction net 1 supplies DC power to a plurality of trains 2, and the train 2 takes power from the traction net 1 through the power take-off device.
  • the train 2 is a straddle monorail train.
  • the braking electric energy generated by the train 2 can be recovered by the battery of the train 2 and/or the energy storage power station 3.
  • the train 2 not only the braking electric energy generated by itself but also the braking electric energy generated by the other trains 2 can be absorbed. Since the train 2 feeds back the braking power to the traction net 1, the voltage of the traction net 1 rises, so the train 2 and the energy storage station 3 can monitor the voltage of the traction net 1. When the voltage of the traction net 1 rises, it can be absorbed by the battery of the train 2 or the energy storage power station 3, thereby preventing the voltage of the traction net 1 from exceeding the maximum rated voltage and causing a malfunction.
  • the braking power absorbed by the battery of the train 2 can be used for lighting, air conditioning, and multimedia power of the train 2.
  • the braking power absorbed by the battery of the train 2 can also be used for emergency driving of the train 2, for example, when the train 2 cannot obtain electric energy from the traction net 1, such as the failure of the traction net 1, or When the net 1 is towed, the train 2 can be switched to battery drive.
  • the energy storage power station 3 may be disposed in the station to supply the absorbed braking power to the station, for example, to power supply, multimedia, lighting, etc. of the station.
  • the energy storage power station 3 is arranged according to a preset distance interval, for example, two energy storage power stations 3 are arranged every 3-6 km, and the power of each energy storage power station 3 is 0.5-2 MW.
  • a preset distance interval for example, two energy storage power stations 3 are arranged every 3-6 km, and the power of each energy storage power station 3 is 0.5-2 MW.
  • those skilled in the art can select the appropriate number and power of the energy storage power station 3 according to the specific operating environment of the train 2.
  • the train 2 is a block schematic diagram of a brake recovery system for a train in accordance with an embodiment of the present application. For the convenience of description, only one energy storage station is shown in this embodiment.
  • the train 2 includes an electric brake 201, a battery 202, a distributor 203, a bidirectional DC/DC converter 204, and a first controller 205.
  • the distributor 203 is connected to the traction grid 1 and the electric brake 201, respectively, and the distributor 203 and the electric brake 201 have a node.
  • the distributor 203 and the electric brake 201 have a positive node and a negative node; a first end of the bidirectional DC/DC converter 204 is coupled to the battery 202, and a second end of the bidirectional DC/DC converter 204 is coupled to a positive node between the distributor 203 and the electric brake 201, bidirectional DC/DC conversion
  • the third end of the device 204 is matched with The negative node between the electric appliance 203 and the electric brake 201 is connected.
  • the first controller 205 is configured to control the distributor 203 and the bidirectional DC/DC converter 204 to feed braking power to the traction net 1 during train braking, such as turning the distributor 203 on, and to couple the bidirectional DC/DC converter 204 It is turned off, so that the braking power is directly fed back to the traction net 1. And, the first controller 205 is respectively connected to the distributor 203 and the bidirectional DC/DC converter 204.
  • the first controller 205 is connected to the fourth end of the bidirectional DC/DC converter 204, and the first controller 205 is The voltage U of the traction net 1 controls the bidirectional DC/DC converter 204 to turn on and controls the bidirectional DC/DC converter 204 to enter a charging mode to cause the battery 202 to absorb the braking power of the train 2.
  • the energy storage power station 3 is connected to the traction network 1, and the energy storage power station 3 includes a second controller 301 for controlling the energy storage power station according to the voltage U of the traction network 1. 3 Charge or discharge.
  • the energy storage power station 3 may include at least one energy storage battery and a corresponding bidirectional DC/DC converter. In the embodiment of the present application, as shown in FIG.
  • the energy storage power station 3 may include a plurality of 160KW-80KWh modules, and the positive poles of the plurality of 160KW-80KWh modules are connected, and connected to the positive pole of the traction net 1 through the positive cabinet, The negative poles of the 160KW-80KWh modules are connected and connected to the negative pole of the traction net 1 through the negative cabinet.
  • the traction motor is changed from the motor operating condition to the generator operating condition, and the electric brake 201 generates braking electric energy and feeds the braking electric energy to the traction net 1.
  • the number of trains on the traction net 1 is small, that is, the load on the traction net 1 is small, or the trains on the traction net 1 are more, the braking energy fed back to the traction net 1 exceeds the train on the traction net 1.
  • the required electrical energy is operated, causing an increase in the voltage U of the traction net 1.
  • the first controller 205 monitors the voltage U of the traction net 1 in real time.
  • the battery 202 of the train 2 is preferentially controlled by the first controller 205 to absorb the braking electric energy.
  • the second controller 301 of the energy storage power station 3 monitors the voltage U of the traction net 1, and if the voltage U of the traction net 1 continues to rise after the battery of the train 2 is absorbed, the second controller 301 controls the energy storage power station 3 The electric energy is absorbed from the traction net 1 for charging.
  • the number of trains on the traction net 1 is large, that is, the load on the traction net 1 is large, the voltage U of the traction net 1 is lowered, and the second controller 301 of the energy storage power station 3 monitors the traction network in real time.
  • the voltage U of 1 is preferentially controlled by the second controller 301 to discharge the energy storage station 3 to increase the voltage of the traction net 1 when the voltage U of the traction net 1 is lowered. If the voltage U of the traction net 1 continues to decrease, the first controller 205 can also control the battery 202 to discharge to increase the voltage of the traction net 1.
  • the battery 202 of the train 2 can supply power for lighting, air conditioning, and multimedia of the train.
  • the energy storage power station 3 can be installed in the station to use the recovered braking power for powering the station's lighting, air conditioning, multimedia, and the like. In this way, the braking energy can be recovered and reused by the battery 202 and the energy storage power station 3, and the load of the substation can be reduced, thereby saving energy.
  • the battery 202 is disposed on the train 2, and can quickly absorb the braking power generated by the train. Due to the long distance between the energy storage power station 3 and the train 2, the energy storage power station 3 absorbs the braking power lag. Therefore, in the embodiment of the present application, the battery 202 is preferentially selected to absorb the braking electric energy to achieve rapid absorption of the braking electric energy, thereby preventing the unabsorbed or consumed braking electric energy from causing the voltage U of the traction net 1 to rise, thereby protecting the battery. System parts, avoid pulling The electrical appliances on the lead net 1 are damaged, which improves the safety of the system.
  • the braking electric energy is Mainly absorbed by the energy storage power station 3, for example, first, the first controller 205 controls the battery 202 to absorb 30% of the braking power, and then the second controller 301 controls the energy storage power station 3 to absorb 70% of the braking power to complete the braking energy. Recycling.
  • the traction net can be The non-brake train on 1 charges the battery 202 of the non-brake train. Assuming that the braking power not absorbed or consumed on the traction net 1 is Q' and there are N trains on the traction net 1, the average value of the braking energy absorbed by the battery 202 of each train on the traction net 1 is Q'/ N.
  • the embodiment of the present application realizes the recovery and reuse of the braking electric energy by controlling the battery on the train and the energy storage power station to absorb the braking electric energy, thereby reducing energy waste and reducing the load of the traction net. Moreover, the embodiment of the present application can effectively monitor the voltage of the traction network, protect system components, and improve system security.
  • the first controller 205 monitors the voltage U of the traction net 1 when the voltage U of the traction net 1 is greater than a first preset threshold U1, such as 845V, the first controller 205 controls bidirectional DC/DC converter 204 to turn on and controls bidirectional DC/DC converter 204 to enter a charging mode to cause battery 202 to absorb braking power.
  • a first preset threshold U1 such as 845V
  • the first controller 205 controls bidirectional DC/DC converter 204 to turn on and controls bidirectional DC/DC converter 204 to enter a charging mode to cause battery 202 to absorb braking power.
  • the electric energy in the circuit flows in the direction indicated by the arrow shown in FIG. 3, wherein the braking electric energy generated by the train 2 is fed back to the traction net 1, and the battery 202 of the train 2 absorbs the braking electric energy.
  • the first control When the controller 205 controls the bidirectional DC/DC converter 204 to turn on and controls the bidirectional DC/DC converter 204 to enter the charging mode, the bidirectional DC/DC converter converts the DC power on the high voltage side to the DC power matched to the voltage of the battery 202, Charging the battery 202 controls the battery 202 to absorb braking power; when the first controller 205 controls the bidirectional DC/DC converter 204 to turn on and controls the bidirectional DC/DC converter 204 to enter the discharging mode, the bidirectional DC/DC converter The 204 is used to convert the DC power provided by the battery 202 into DC power matched with the voltage of the traction net 1 to control the battery 202 to perform discharge to feed back the braking energy stored in the battery 202 to the traction net 1.
  • the first controller 205 continues to monitor the voltage U of the traction net 1 when the traction net 1
  • the first controller 205 controls the bidirectional DC/DC converter 204 to be turned off to stop the battery 202 from absorbing braking power, wherein the second preset threshold U2 is smaller than the first The preset threshold U1.
  • the electric energy in the circuit flows in the direction indicated by the arrow shown in FIG. 4, the braking electric energy generated by the train 2 is fed back to the traction net 1, and neither the battery 202 nor the energy storage power station 3 of the train 2 absorbs the braking electric energy.
  • the first controller 205 monitors the voltage U of the traction net 1 in real time, if the voltage U of the traction net 1 More than the first preset threshold U1, for example, 845V, indicating that the brake power is fed back to the traction net 1 at this time, the first controller 205 controls the bidirectional DC/DC converter 204 to operate in the charging mode to brake the electric energy.
  • the battery 202 is charged.
  • the braking electric energy generated by the train 2 is fed back to the traction net 1 through the distributor 203, while the battery 202 is charged by the bidirectional DC/DC converter 204, that is, a part of the braking electric energy is absorbed by the battery 202.
  • the voltage U of the traction net 1 is less than the second preset threshold U2, for example, 830V, it indicates that the braking power fed back to the traction net 1 and the load requirement on the traction net 1 are substantially balanced, then the first controller 205 The bidirectional DC/DC converter 204 is controlled to be turned off.
  • the control battery 202 stops absorbing the braking electric energy, and the braking electric energy generated by the train 2 is fed back to the traction net 1 through the distributor 203.
  • the embodiment of the present application preferentially selects the battery 202 of the train 2 to absorb the braking electric energy to achieve rapid absorption of the braking electric energy, thereby preventing the un-consumed braking electric energy from causing the voltage U of the traction net 1 to rise and avoiding the traction net 1 The device is damaged.
  • the second controller 301 monitors the voltage U of the traction net 1, and when the voltage U of the traction net 1 is greater than a fourth preset threshold U4, such as 855V, the second controller The 301 controls the energy storage power station 3 to perform charging. At this time, the electric energy in the circuit flows in the direction indicated by the arrow shown in FIG. 5, the braking electric energy generated by the train 2 is fed back to the traction net 1, and the battery 202 and the energy storage power station 3 of the train 2 absorb the braking electric energy.
  • a fourth preset threshold U4 such as 855V
  • the energy storage power station 3 is controlled to absorb electric energy from the traction net 1 for charging, thereby preventing the voltage of the traction net 1 from exceeding the maximum rated voltage.
  • the second controller 301 monitors the power of the traction net 1. Pressing U, when the voltage U of the traction net 1 is less than the fifth preset threshold U5, for example 810V, the second controller 301 controls the energy storage power station 3 to perform discharging, wherein the fifth preset threshold U5 is smaller than the fourth preset threshold U4 . At this time, the electric energy in the circuit flows in the direction indicated by the arrow shown in FIG. 6, the braking electric energy generated by the train 2 is fed back to the traction net 1, and the energy storage power station 3 discharges the traction net 1. In the embodiment of the present application, if there are more trains on the traction net 1, the voltage of the traction net 1 will decrease.
  • the net 1 is discharged.
  • a plurality of energy storage power stations 3 are present on the traction net 1 , and the energy storage power station 3 with a high power is preferentially discharged to the traction net 1 , for example, the power storage power station 3 with high electric quantity has a large discharge power.
  • the power storage station 3 with low power discharge has a slightly lower power, thereby achieving a balance of power between the energy storage power stations 3.
  • the second controller 301 monitors the voltage U of the traction net 1, and when the voltage U of the traction net 1 is greater than the sixth preset threshold U6, The second controller 301 controls the energy storage power station 3 to stop discharging, wherein the sixth preset threshold U6 is greater than the fifth preset threshold U5.
  • the second controller 301 monitors the voltage U of the traction net 1, and when the voltage U of the traction net 1 is less than the seventh preset threshold U7, the second controller 301 controls the storage.
  • the power station 3 discharges to the traction net 1 while the first controller 205 controls the bidirectional DC/DC converter 204 to be turned on, and controls the bidirectional DC/DC converter 204 to enter the discharge mode to cause the battery 202 of the train 2 to be directed to the traction net 1
  • the discharging is performed, wherein the seventh preset threshold U7 is smaller than the fifth preset threshold U5. At this time, the electric energy in the circuit flows in the direction indicated by the arrow shown in FIG.
  • the braking electric energy generated by the train 2 is fed back to the traction net 1, and both the energy storage power station 3 and the battery 202 discharge the traction net 1.
  • both the energy storage power station 3 and the battery 202 discharge the traction net 1.
  • the batteries of the control energy storage station 3 and the train 2 are both discharged, thereby rapidly increasing the voltage of the traction net 1.
  • the voltage of the traction net 1 is after the battery 202 of the train 2 starts to absorb the braking electric energy.
  • the second controller 301 controls the energy storage power station 3 to absorb braking energy from the traction net 1 for charging to reduce the absorption of the battery 202.
  • the pressure of the electric energy thereby preventing the voltage U of the traction net 1 from exceeding the maximum rated voltage Un of the traction net 1.
  • the second controller 301 controls.
  • the energy storage power station 3 discharges to the traction net 1.
  • the second controller 301 continues to monitor the voltage U of the traction net 1, when the voltage U of the traction net 1 is greater than a sixth preset threshold.
  • U6 for example 830V, indicates that the braking power fed back to the traction net 1 and the load on the traction net 1 are substantially balanced, and the second controller 301 controls the energy storage power station 3 to stop discharging.
  • the second controller 301 controls the energy storage power station 3 to discharge to the traction net 1, while the first controller 205 controls the bidirectional DC/DC converter 204 to be turned on, and controls the bidirectional DC/DC converter 204 to enter the discharge mode to make the train
  • the battery 202 of 2 discharges to the traction net 1 to rapidly increase the voltage of the traction net 1.
  • the discharge power of the battery 202 is the smaller of the maximum allowable discharge power of the battery 202 and the maximum allowable discharge power of the bidirectional DC/DC converter 204.
  • the energy storage power station 3 may be a plurality of, and the plurality of energy storage power stations 3 are arranged at a preset distance interval.
  • the energy storage power station 3 may be disposed in the station to supply the absorbed braking power to the station, for example, to power supply, multimedia, lighting, etc. of the station.
  • two energy storage power stations 3 can be installed every 3-6 km, and the power of the energy storage power station 3 can be 0.5-2 MW.
  • the person skilled in the art can select the appropriate number and power of the energy storage power station 3 according to the specific operating environment of the train 2.
  • the train 2 further includes: a power detector 206, wherein the power detector 206 is connected to the first controller 205, and the power detector 206 is configured to detect the power of the battery 202.
  • the first controller 205 controls the bidirectional DC/DC converter 204 to be turned off to stop the battery 202 from being absorbed. Dynamic energy.
  • the charging power and the discharging power of the battery 202 are limited, and the battery 202 increases the electric quantity after absorbing the braking electric energy.
  • the bidirectional DC/DC converter 204 is controlled to be turned off to control the battery 202 to stop absorbing the braking electric energy.
  • the first controller 205 controls the bidirectional DC/DC converter 204. Turn off to stop the battery 202 from discharging.
  • the battery 202 is reduced in electric quantity after discharge, and when the electric quantity Q is smaller than the second electric quantity threshold Q2, the bidirectional DC/DC converter 204 is controlled to be turned off to control the battery 202 to stop discharging.
  • the charging power and the discharging power of the battery 202 are limited.
  • the power detector 206 detects the state of charge (State of Charge) of the battery 202 in real time. And determining whether the battery 202 is allowed to be charged and discharged according to the electric quantity Q of the battery 202.
  • the first controller 205 determines whether the electric quantity Q of the battery 202 is greater than the first electric energy threshold Q1, for example, 80%, and if the electric quantity Q of the battery 202 is greater than 80%, the maximum of the battery 202 The allowable charging power is limited to 0, at which time the control bidirectional DC/DC converter 204 is turned off to control the battery 202 to stop absorbing braking power; if the battery 202 is less than or equal to 80%, the bidirectional DC/DC converter 204 remains on, And controlling the bidirectional DC/DC converter 204 to operate in a charging mode to control the battery 202 to continue to absorb braking power.
  • the first electric energy threshold Q1 for example, 80%
  • the first controller 205 determines whether the electric quantity Q of the battery 202 is less than the second electric quantity threshold Q2, for example, 50%, and if the electric quantity Q of the battery 202 is lower than 50%, the battery is used. 202 The maximum allowable discharge power limit is zero. At this time, the first controller 205 controls the bidirectional DC/DC converter 204 to turn off to control the battery 202 to stop discharging.
  • the train 2 further includes a mechanical brake 207, wherein the mechanical brake 207 is used to mechanically brake the train 2.
  • the first controller 205 controls the mechanical brake 207 to activate the electric brake 201 to the train 2 Braking is performed, wherein the third preset threshold U3 is greater than the first preset threshold U1.
  • the voltage U of the traction net 1 will Continuing to increase, when the voltage of the traction net 1 is greater than the third predetermined threshold U3, the control mechanical brake 207 is activated to assist the train 2 in braking.
  • the voltage U of the traction net 1 continues to increase, and the first controller 205 monitors the voltage U of the traction net 1 in real time if the voltage U of the traction net 1 is greater than The third preset threshold value U3, the first controller 205 controls the mechanical brake 207 to be activated, so that the electric brake is applied to the train 2 while the train 2 is assisted to brake by the mechanical brake to reduce the system generated by the train 2.
  • the electric energy is used to prevent the voltage U of the traction net 1 from exceeding the maximum rated voltage, and precise and rapid parking can be achieved.
  • the mechanical brake 207 can also be controlled to open to brake the train 2.
  • the train 2 further includes a contactor detector 208, wherein the contactor detector 208 is coupled to a first controller 205 for detecting the train's Whether the contactor is open, wherein, after detecting the disconnection of the contactor, the first controller 205 controls the bidirectional DC/DC converter 204 to turn on, and controls the bidirectional DC/DC converter 204 to enter a discharge mode to cause the battery 202 to Train 2 is powered and controls the train 2 to limit power operation.
  • the first controller 205 determines that the train 2 enters the emergency drive mode, and issues an emergency traction signal to control the two-way DC/
  • the DC converter 204 is turned on and controls the bidirectional DC/DC converter 204 to enter the discharge mode, at which time the battery 202 supplies power to the train 2.
  • the first controller 205 controls the discharge power of the battery 202 to be less than or equal to a preset power threshold, for example, 70 KW, to cause the train 2 to operate in a limited power state.
  • the strategy for recovering and reusing the braking power of the embodiment of the present application is as follows:
  • the brake energy is integrated according to the voltage of the traction net 1, the electric quantity of the vehicle battery 202, and the number of the train 2 on the traction net 1, and the brake electric energy feedback
  • the excess braking power is preferentially controlled by the first controller 205 to absorb the battery 202.
  • the second The controller 301 controls the energy storage power station 3 for absorption.
  • the braking electric energy is fed back to the traction net 1, and it is first determined whether the electric quantity Q of the battery 202 is less than or equal to the first electric quantity threshold Q1, and if the electric quantity Q is less than or equal to the first electric quantity.
  • the threshold value Q1 the battery 202 can absorb the braking power.
  • the first controller 205 monitors the voltage U of the traction net 1 in real time. If the number of trains on the traction net 1 is small, the load on the traction net 1 is small, or The train braking on the traction net 1 is more, which causes the voltage of the traction net 1 to rise.
  • the battery 202 of the control train 2 absorbs the brake. Electrical energy; if the voltage U of the traction net 1 continues to rise after the battery of the train 2 is absorbed, when the voltage U of the traction net 1 is greater than a fourth predetermined threshold U4, for example 855V, the second controller 301 controls the energy storage power station 3 Absorb brake energy.
  • the voltage U of the traction net 1 is lowered, when the voltage U of the traction net 1 is less than or equal to the second preset threshold U2, for example, 830V. At this time, the control battery 202 and the energy storage power station 3 stop absorbing the braking energy.
  • the voltage U of the traction net 1 will decrease, and at this time, the brake energy recovered by the battery 202 and the energy storage power station 3 is released to the traction net 1 to supplement the traction net 1 Power loss. Specifically, it is first determined whether the electric quantity Q of the battery 202 is greater than or equal to the second electric quantity threshold Q2. If the electric quantity Q is greater than or equal to the second electric quantity threshold Q2, the battery 202 can be discharged. At this time, the second controller 301 monitors the traction net 1 in real time. The voltage U is controlled to discharge the energy storage station 3 when the voltage U of the traction net 1 is less than a fifth predetermined threshold U5, for example 810V.
  • the first controller 205 monitors the voltage U of the traction net 1 and determines whether the voltage U of the traction net 1 is less than a seventh preset threshold U7. If the first controller 205 determines that the voltage U of the traction net 1 is smaller than the seventh pre- The threshold value U7 is set, the second controller 301 controls the energy storage power station 3 to discharge, and at the same time, the first controller 205 controls the bidirectional DC/DC converter 204 to be turned on, and controls the bidirectional DC/DC converter 204 to enter the discharge mode, so that The battery 202 of the train 2 is discharged to the traction net 1.
  • the battery 202 can be controlled to enter the discharge mode to achieve emergency driving of the train 2.
  • the braking power absorbed in the battery 202 and the energy storage power station 301 can be consumed, so that the battery 202 and the energy storage power station 301 can continue to recover the braking energy, thereby saving operating costs.
  • the first controller controls the power distribution device and the bidirectional DC/DC converter to feedback the braking power to the traction network during the train braking, and according to the traction network
  • the voltage-controlled bidirectional DC/DC converter absorbs the braking power of the train through the battery, and when the voltage of the traction network continues to rise, the energy storage power station is used for absorption.
  • the energy storage power station can also discharge the traction net according to the voltage of the traction network, thereby avoiding the voltage of the traction network being too low and maintaining the normal operation of the traction network.
  • the braking electric energy is first fed back to the traction net.
  • the vehicle battery is preferentially used for absorption, if it is absorbed in the vehicle battery. After the voltage of the traction network continues to rise, the energy storage power station is used for absorption.
  • the vehicle battery Since the vehicle battery is installed on the train, it is preferred to use the battery for absorption, so as to avoid the problem that the brake power is too large to be quickly absorbed or consumed, thereby causing the electric appliance of the traction net to be burned.
  • the braking energy is absorbed by the battery and the energy storage power station on the train, thereby realizing the recovery and reuse of the braking electric energy, reducing energy waste and reducing the load of the traction net.
  • the embodiment of the present application can effectively monitor the voltage of the traction network, protect system components, and improve system security.
  • Figure 12 is a block schematic diagram of a train in accordance with an embodiment of the present application.
  • the train 2 includes an electric brake 201, a battery 202, a distributor 203, a bidirectional DC/DC converter 204, and a first controller 205.
  • the distributor 203 is connected to the traction grid 1 and the electric brake 201, respectively, and the node between the distributor 203 and the electric brake 201; one end of the bidirectional DC/DC converter 204 is connected to the battery 202, and the bidirectional DC/DC converter 204 is The other end is connected to a node between the distributor 203 and the electric brake 201.
  • the first controller 205 is coupled to the distributor 203 and the bidirectional DC/DC converter 204.
  • the first controller 205 is configured to control the distributor 203 and the bidirectional DC/DC converter 204 to feed braking power to the train 2 when braking.
  • the traction net 1 for example, opens the distributor 203 and turns off the bidirectional DC/DC converter 204, thereby feeding back braking power directly to the traction net 1.
  • the first controller 205 controls the bidirectional DC/DC converter 204 to turn on according to the voltage of the traction net 1, and controls the bidirectional DC/DC converter 204 to enter the charging mode to cause the battery 202 to absorb the braking power of
  • the traction motor is changed from the motor operating condition to the generator operating condition, and the electric brake 201 generates braking electric energy and feeds the braking electric energy to the traction net 1.
  • the number of trains on the traction net 1 is small, that is, the load on the traction net 1 is small, or the trains on the traction net 1 are more, the braking energy fed back to the traction net 1 exceeds the train on the traction net 1.
  • the required electrical energy is operated, causing an increase in the voltage U of the traction net 1.
  • the first controller 205 monitors the voltage U of the traction net 1 in real time, and when the voltage U of the traction net 1 rises, the control battery 202 absorbs the braking electric energy.
  • the traction net 1 when the number of trains on the traction net 1 is large, that is, the load on the traction net 1 is large, the traction net The voltage U of 1 is lowered, and the first controller 205 controls the battery 202 to discharge to increase the voltage of the traction net 1.
  • the battery 202 of the train 2 can supply power for lighting, air conditioning, and multimedia of the train. In this way, the braking energy can be recovered and reused by the battery 202, and the load of the substation can be reduced, thereby saving energy.
  • the battery 202 is disposed on the train 2 and can quickly absorb the braking power generated by the train. Therefore, in the embodiment of the present application, the battery 202 is preferentially selected to absorb the braking electric energy to achieve rapid absorption of the braking electric energy, thereby preventing the unabsorbed or consumed braking electric energy from causing the voltage U of the traction net 1 to rise, thereby protecting the battery.
  • the components of the system avoid damage to the electrical appliances on the traction net 1 and improve the safety of the system.
  • the first controller 205 detects the voltage U of the traction net 1, and when the voltage U of the traction net 1 is greater than the first preset threshold U1, for example 845V, the first controller 205 controls the bidirectional DC/DC. Inverter 204 enters a charging mode to cause battery 202 to absorb braking power. At this time, the first controller 205 controls the bidirectional DC/DC to enter the charging mode to convert the direct current of the high voltage side into the direct current matched with the voltage of the battery 202 to charge the battery 202, that is, to absorb the braking power through the battery 202.
  • the first controller 205 controls the bidirectional DC/DC to enter the charging mode to convert the direct current of the high voltage side into the direct current matched with the voltage of the battery 202 to charge the battery 202, that is, to absorb the braking power through the battery 202.
  • the bidirectional DC/DC converter 204 when the first controller 205 controls the bidirectional DC/DC into the discharge mode, the bidirectional DC/DC converter 204 is configured to convert the direct current provided by the battery 202 into a direct current that matches the voltage of the traction net 1. In order to control the battery 202 to discharge, the braking energy stored in the battery 202 is fed back to the traction net 1.
  • the first controller 205 detects the voltage U of the traction net 1 when the voltage U of the traction net 1 is smaller than the second pre-
  • the threshold U2 is set, for example, 830V
  • the first controller 205 controls the bidirectional DC/DC converter 204 to be turned off to stop the battery 202 from absorbing braking power, wherein the second preset threshold U2 is smaller than the first preset threshold U1.
  • the braking power is fed back to the traction net 1, and the first controller 205 monitors the voltage U of the traction net 1 in real time. If the voltage U of the traction net 1 is greater than the first preset threshold U1, For example, 845V, indicating that the brake power is fed back to the traction net 1 at this time, the first controller 205 controls the bidirectional DC/DC converter 204 to operate in the charging mode to charge the battery 202 with the braking power. At this time, the braking electric energy generated by the train 2 is fed back to the traction net 1 through the distributor 203, while the battery 202 is charged by the bidirectional DC/DC converter 204, that is, the partial braking electric energy is absorbed by the battery 202.
  • U1 the first preset threshold U1
  • the first controller 205 controls the bidirectional DC/DC converter 204 to operate in the charging mode to charge the battery 202 with the braking power.
  • the braking electric energy generated by the train 2 is fed back to the traction net 1 through the distributor 203, while the battery
  • the first controller 205 The bidirectional DC/DC converter 204 is controlled to be turned off. At this time, the control battery 202 stops absorbing the braking electric energy, and the braking electric energy generated by the train 2 is fed back to the traction net 1 through the distributor 203.
  • the embodiment of the present application preferentially selects the battery 202 of the train 2 to absorb the braking electric energy to achieve rapid absorption of the braking electric energy, thereby preventing the un-consumed braking electric energy from causing the voltage U of the traction net 1 to rise and avoiding the traction net 1 The device is damaged.
  • the train 2 further includes: a power detector 206, wherein The quantity detector 206 is connected to the first controller 205.
  • the power detector 206 is used to detect the power of the battery 202.
  • the first controller 205 controls the bidirectional DC/DC converter 204 to turn off to stop the battery from absorbing braking power.
  • the charging power and the discharging power of the battery 202 are limited, and the battery 202 increases the electric quantity after absorbing the braking electric energy.
  • the bidirectional DC/DC converter 204 is controlled to be turned off to control the battery 202 to stop absorbing the braking electric energy.
  • the first controller 205 controls the bidirectional DC/DC converter 204. Turn off to stop the battery 202 from discharging.
  • the charging power and the discharging power of the battery 202 are limited.
  • the power detector 206 detects the state of charge (State of Charge) of the battery 202 in real time. And determining whether the battery 202 is allowed to be charged and discharged according to the electric quantity Q of the battery 202.
  • the first controller 205 determines whether the electric quantity Q of the battery 202 is greater than the first electric quantity threshold Q1, for example, 80%, and if the electric quantity Q of the battery 202 is greater than 80%, the charging of the battery 202 is performed.
  • the power limit is 0.
  • the first controller 205 controls the bidirectional DC/DC converter 204 to be turned off to control the battery 202 to stop absorbing the braking power; if the battery 202 is less than or equal to 80%, the bidirectional DC/DC converter 204 remains open and controls bidirectional DC/DC converter 204 to operate in a charging mode to control battery 202 to continue to absorb braking power.
  • the first controller 205 determines whether the electric quantity Q of the battery 202 is less than the second electric quantity threshold Q2, for example, 50%, and if the electric quantity Q of the battery 202 is lower than 50%, the battery is used.
  • the discharge power limit of 202 is zero.
  • the first controller 205 controls the bidirectional DC/DC converter 204 to turn off to control the battery 202 to stop discharging.
  • the train 2 further includes a mechanical brake 207, wherein the mechanical brake 207 is used to mechanically brake the train 2.
  • the first controller 205 controls the mechanical brake 207 to activate the electric brake 201 to the train 2 Braking is performed, wherein the third preset threshold U3 is greater than the first preset threshold U1.
  • the voltage U of the traction net 1 will continue to increase when traction
  • the control mechanical brake 207 is activated to assist the train 2 in braking.
  • the first controller 205 monitors the voltage U of the traction net 1 in real time. If the voltage U of the traction net 1 is greater than the third preset threshold U3, the first controller 205 controls the machine.
  • the brake 207 is activated, so that when the electric brake is applied to the train 2, the train 2 is assisted to brake by the mechanical brake at the same time.
  • the braking power generated by the low train 2 prevents the voltage U of the traction net 1 from exceeding the maximum rated voltage, and accurate and rapid parking can be achieved.
  • the mechanical brake 207 can also be controlled to open to brake the train 2.
  • the train 2 further includes: a contactor detector 208, wherein the contactor detector 208 is connected to the first controller 205, and the contactor detector 208 is used to detect the train 2 Whether the contactor is disconnected, wherein when the contactor is detected to be disconnected, the first controller 205 controls the bidirectional DC/DC converter 204 to enter a discharge mode to cause the battery 202 to power the train 2 and control the train 2 to limit power operation. .
  • the first controller 205 determines that the train 2 enters the emergency drive mode and issues an emergency traction.
  • the signal is controlled to turn on the bidirectional DC/DC converter 204 and control the bidirectional DC/DC converter 204 to enter the discharge mode, at which time the battery 202 supplies power to the train 2.
  • the first controller 205 controls the discharge power of the battery 202 to be less than or equal to a preset power threshold, for example, 70 KW, to cause the train 2 to operate in a limited power state.
  • the train 2 may be a straddle monorail train.
  • the train 2 further includes: a bogie 20 and a vehicle body 30, wherein the bogie 20 is adapted to straddle the rail beam; the vehicle body 30 is coupled to the bogie 20 and Traction is carried by the bogie 20 along the rail beam.
  • the bogie 20 includes: a bogie frame 21, a running wheel 22, a power unit 23, and a horizontal wheel 24, wherein the bogie frame 21 is adapted to straddle the track beam And connected to the vehicle body 30; the running wheel 22 is pivotally mounted on the bogie frame 21 and fitted on the upper surface of the track beam; the power unit 23 is mounted on the bogie frame 21 and is drivingly connected to the running wheel 22; The wheel 24 is pivotally mounted on the bogie frame 21 and mated on a side surface of the track beam.
  • the bogie 20 further includes: a traction device 25 and a support suspension device 26, wherein the traction device 25 is mounted on the bogie frame 21 and connected to the vehicle body 30;
  • the device 26 is mounted on the bogie frame 21 and is coupled to the vehicle body 30.
  • the train according to the embodiment of the present application controls the power distribution device and the bidirectional DC/DC converter to feed the braking power to the traction network through the first controller during braking, and controls the bidirectional DC according to the voltage of the traction network.
  • the /DC converter absorbs the braking power of the train through the battery.
  • the battery can also discharge the traction net according to the voltage of the traction net, thereby avoiding the voltage of the traction network being too low and maintaining the normal operation of the traction network.
  • the braking electric energy is first fed back to the traction net. At this time, if there are many trains on the traction network, the feedback system will be adopted.
  • the vehicle battery is preferentially used for absorption to avoid the occurrence of braking power. Too large to be quickly absorbed or consumed, resulting in the problem of the electrical appliances of the traction net being burned.
  • the braking electric energy is absorbed by the battery on the train, thereby realizing the recovery and reuse of the braking electric energy, reducing energy waste and reducing the load of the traction net.
  • the embodiment of the present application can effectively monitor the voltage of the traction network, protect system components, and improve system security.
  • the brake recovery method includes:
  • S10 braking the train, generating braking energy according to the braking force, and feeding the braking energy to the traction net.
  • S30 Control the battery to absorb the braking energy of the train according to the voltage of the traction network.
  • S40 Control the energy storage station to charge or discharge according to the voltage of the traction network.
  • the train performs braking
  • braking electric energy is generated according to the braking force
  • the braking electric energy is fed back to the traction net.
  • the number of trains on the traction network is small, that is, the load on the traction network is small, or the number of trains that are pulled on the traction network is large
  • the braking energy fed back to the traction network will exceed the power required for the train running on the traction network, thereby causing the traction network.
  • the voltage U rises and monitors the voltage U of the traction network in real time.
  • the battery is first controlled to absorb the braking energy.
  • the voltage of the traction network is continuously monitored.
  • the control energy storage station absorbs the braking energy for charging.
  • the voltage U of the traction network is lowered, and the voltage U of the traction network is monitored in real time.
  • the energy storage is first controlled. The power station discharges to increase the voltage of the traction network. If the voltage U of the traction network continues to decrease, the battery is controlled to discharge to increase the voltage of the traction network.
  • the battery is placed on the train and can quickly absorb the braking energy. Due to the long distance between the energy storage station and the train, the energy storage station absorbs the brake energy and lags behind. Therefore, in the embodiment of the present application, the battery is preferentially selected to absorb the braking electric energy to achieve rapid absorption of the braking electric energy, thereby preventing the unabsorbed or consumed braking electric energy from causing the voltage U of the traction net to rise, thereby protecting the system. Parts, to avoid damage to the electrical appliances on the traction network, improve the safety of the system.
  • the braking electric energy is mainly absorbed by the energy storage power station. For example, first control the battery to absorb 30% of the braking power, and then control the energy storage station to absorb 70% of the braking energy to complete the recovery of braking power.
  • the non-brake train on the traction network can be Non-braking The battery of the train is charged. Assuming that the braking power that is not absorbed or consumed on the traction network is Q' and there are N trains on the traction network, the average value of the braking energy absorbed by the battery of each train on the traction network is Q'/N.
  • the embodiment of the present application realizes the recovery and reuse of the braking electric energy by controlling the battery on the train to absorb the braking electric energy, thereby reducing energy waste and reducing the load of the traction net. Moreover, the embodiment of the present application can effectively monitor the voltage of the traction network, protect system components, and improve system security.
  • controlling the battery to absorb the braking power of the train according to the voltage of the traction network comprises: determining whether the voltage of the traction network is greater than a first preset threshold, such as 845V; if the voltage of the traction network is greater than the first The preset threshold controls the bidirectional DC/DC converter of the train to turn on and controls the bidirectional DC/DC converter to enter the charging mode to control the battery to absorb the braking energy.
  • the control bidirectional DC/DC converter converts the DC power on the high voltage side into the DC power matched with the voltage of the battery to charge the battery, that is, control the battery to absorb the braking power.
  • the bidirectional DC/DC converter if the bidirectional DC/DC converter is controlled to enter the discharge mode, the direct current supplied by the battery is converted into a direct current matched with the voltage of the traction net to control the discharge of the battery to discharge the braking energy stored in the battery. Feedback to the traction network.
  • controlling the battery to absorb the braking electric energy after controlling the battery to absorb the braking electric energy, the voltage of the traction net is decreased, and controlling the battery to absorb the braking electric energy of the train according to the voltage of the traction net further comprises: determining whether the voltage of the traction net is less than The second preset threshold is, for example, 830V; if the voltage of the traction net is less than the second preset threshold, the control battery stops absorbing braking power, wherein the second preset threshold is less than the first preset threshold.
  • the second preset threshold is, for example, 830V
  • the method when the battery is controlled to absorb the braking power of the train, the method specifically includes:
  • S101 Braking the train, generating braking energy according to the braking force, and feeding the braking energy to the traction net.
  • S102 Monitor the voltage U of the traction network in real time.
  • S103 Determine whether the voltage U of the traction network is greater than a first preset threshold U1, such as 845V.
  • S104 Control the battery to absorb part of the braking power.
  • S105 Determine whether the voltage U of the traction network is less than a second preset threshold U2, for example, 830V.
  • S106 Control the battery to stop absorbing braking power, and the braking energy generated by the train is fed back to the traction net.
  • the embodiment of the present application preferentially selects the battery of the train to absorb the braking electric energy to achieve rapid absorption of the braking electric energy, thereby preventing the un-consumed braking electric energy from causing the voltage U of the traction net to rise and avoid damage of the device on the traction net.
  • controlling charging or discharging of the energy storage power station according to the voltage of the traction network specifically includes the following: determining whether the voltage of the traction network is greater than a fourth preset threshold, for example, 855V; if the voltage of the traction network is greater than the fourth pre- Set the threshold to control the energy storage station to charge.
  • a fourth preset threshold for example, 855V
  • the voltage of the traction net It will continue to increase.
  • the energy storage power station is controlled to absorb electric energy from the traction net for charging, thereby preventing the voltage of the traction net from exceeding the maximum rated voltage.
  • controlling the energy storage station to perform charging or discharging according to the voltage of the traction network further comprises: determining whether the voltage of the traction network is less than a fifth preset threshold, for example, 810V; if the voltage of the traction network is less than the fifth preset The threshold is used to control the energy storage station to perform discharge, wherein the fifth preset threshold is less than the fourth preset threshold.
  • a fifth preset threshold for example, 810V
  • the threshold is used to control the energy storage station to perform discharge, wherein the fifth preset threshold is less than the fourth preset threshold.
  • the voltage of the traction network is lowered. In this case, in order to prevent the voltage of the traction network from being lower than the minimum rated voltage, it is necessary to control the energy storage power station to discharge to the traction network.
  • a plurality of energy storage power stations exist on the traction network, and the energy storage power station with high power is preferentially discharged to the traction network, for example, the energy storage power station with high power discharge has large power, and the energy storage power station with low power is low.
  • the power of the discharge is slightly smaller, thereby achieving a balance of power between the energy storage stations.
  • the brake recovery method of the train further includes: determining whether the voltage of the traction net is greater than a sixth preset threshold; if the voltage of the traction network is greater than a sixth preset threshold, controlling the energy storage power station to stop discharging, The sixth preset threshold is greater than the fifth preset threshold.
  • the brake recovery method of the train further includes: determining whether the voltage of the traction net is less than a seventh preset threshold; and if the voltage of the traction network is less than a seventh preset threshold, controlling the energy storage power station to the traction network The discharging is performed, and at the same time, the battery is controlled to discharge to the traction net, wherein the seventh preset threshold is less than the fifth preset threshold.
  • the voltage U of the traction net is too small, the batteries of the control energy storage station and the train are both discharged, thereby rapidly increasing the voltage of the traction net.
  • the following specifically includes the following:
  • S202 Determine whether the voltage U of the traction network is greater than a fourth preset threshold U4, such as 855V.
  • S203 Control the energy storage power station to perform charging.
  • the pressure of the battery to absorb the braking electric energy can be alleviated, thereby preventing the voltage U of the traction net from exceeding the maximum rated voltage Un of the traction net.
  • S204 Determine whether the voltage U of the traction network is less than a fifth preset threshold U5, for example, 810V.
  • S207 Determine whether the voltage U of the traction network is rising.
  • S208 Determine whether the voltage U of the traction net is greater than a sixth preset threshold U6, for example, 830V.
  • S210 Determine whether the voltage U of the traction network is less than a seventh preset threshold U7.
  • the brake recovery method of the train further includes: determining whether the voltage of the traction net is greater than a third preset threshold; if the voltage of the traction network is greater than a third preset threshold, controlling the train to perform mechanical braking cooperation The electric brake is applied to brake the train, wherein the third preset threshold is greater than the first preset threshold.
  • the voltage U of the traction net will continue to increase after the battery and the energy storage power station absorb the braking power, when traction
  • the train is controlled to perform mechanical braking to assist the train in braking.
  • the voltage U of the traction network will continue to increase, and the voltage U of the traction network is monitored in real time. If the voltage U of the traction network is greater than the third preset threshold U3, the train is controlled. Mechanical braking is performed, so that the electric brake is applied to the train while the brake is assisted by the mechanical brake to reduce the braking energy generated by the train, thereby preventing the voltage U of the traction net from exceeding the maximum rated voltage, and Achieve precise and fast parking.
  • the brake recovery method of the train further includes: detecting whether the contactor of the train is disconnected; if the contactor is detected to be disconnected, controlling the battery to supply power to the train and controlling the train limited power operation.
  • the train when the contactor is detected to be disconnected, the train is in an abnormal state of power supply, the train is judged to enter the emergency drive mode, and an emergency traction signal is issued to control the battery to discharge. At this time, the battery supplies power to the train. At the same time, the discharge power of the control battery is less than or equal to a preset power threshold, for example, 70 KW, so that the train operates in a limited power state.
  • a preset power threshold for example, 70 KW
  • the brake recovery method of the train further includes: detecting a power quantity of the battery, and determining whether the battery power is greater than a first power threshold, for example, 80%; and if the battery power is greater than the first power threshold, controlling The battery stops absorbing braking power.
  • a first power threshold for example, 80%
  • the charging power and the discharging power of the battery are limited, and the battery will increase after the braking power is absorbed. If the battery is too large, the battery life will be affected.
  • the control battery stops absorbing braking power.
  • the brake recovery method of the train further includes: detecting the battery power, and determining whether the battery power is less than a second power threshold, for example, 50%; if the battery power is less than the second power threshold, controlling The battery stops discharging.
  • a second power threshold for example, 50%
  • the battery will decrease in electric quantity after discharging, and when the electric quantity Q is smaller than the second electric quantity threshold Q2, the battery is controlled to stop discharging.
  • the charging power and the discharging power of the battery are limited by the method shown in FIG.
  • S301 Determine whether the train is in an emergency driving mode.
  • S303 Determine whether the battery power Q is greater than the first power threshold Q1, for example, 80%.
  • S304 Control the battery to stop absorbing braking power. At this time, the maximum allowable charging power of the battery is limited to zero.
  • S305 Determine whether the battery power Q is smaller than the second power threshold Q2, for example, 50%.
  • S306 Control the battery to stop discharging. At this time, the maximum allowable discharge power of the battery is limited to zero.
  • S303 and S304 are performed during battery charging, and S305 and S306 are performed during battery discharging.
  • S401 Braking the train, generating braking energy according to the braking force, and feeding the braking energy to the traction net.
  • S402 Determine whether the battery power Q is less than or equal to the first power threshold Q1.
  • S403 Monitor the voltage U of the traction network in real time.
  • S404 Determine whether the voltage U of the traction net is greater than a first preset threshold U1, for example, 845V.
  • S405 Control the battery to absorb braking energy.
  • S407 Determine whether the voltage U of the traction net is greater than a fourth preset threshold U4, for example, 855V.
  • S501 Determine whether the battery power Q is greater than or equal to the second power threshold Q2.
  • S503 Determine whether the voltage U of the traction net is smaller than a fifth preset threshold U5, for example, 810V.
  • S506 Determine whether the voltage U of the traction network is less than a seventh preset threshold U7.
  • S507 Control the energy storage power station to discharge to the traction net, and at the same time, control the battery to discharge to the traction net, and return to S506.
  • the battery can be controlled to enter the discharge mode to achieve emergency driving of the train.
  • the braking power absorbed in the battery and the energy storage power station can be consumed, so that the battery and the energy storage power station can continue to recover the braking energy, thereby saving operating costs.
  • the train is first braked, and the braking electric energy is generated according to the braking force, and the braking electric energy is fed back to the traction net, and then the voltage of the traction net is monitored.
  • the battery is used to absorb the braking energy of the train, continue to monitor the voltage of the traction network, and determine whether the voltage of the traction network continues to rise. If it is judged that the voltage of the traction network continues to be tall, the energy storage station is controlled to absorb Brake power.
  • the energy storage power station can be controlled to discharge according to the voltage of the traction network, thereby avoiding the voltage of the traction network being too low and maintaining the normal operation of the traction network.
  • the braking energy is first fed back to the traction network, and the number of trains on the traction network is determined. At this time, if there are more trains on the traction network, the feedback braking energy is evenly distributed. In other trains, the voltage of the traction network will not increase much. On the other hand, if there are fewer trains on the traction network, or there are more trains braking at this time, the voltage of the traction net will rise rapidly.
  • the vehicle battery is preferentially controlled to absorb the braking power, if the vehicle power After the braking power is absorbed, the voltage of the traction net continues to rise, and the energy storage power station is controlled to absorb the braking power. Since the vehicle battery is installed above the train, the battery is preferentially controlled to absorb the braking power, thereby avoiding the problem that the braking power is too large to be quickly absorbed or consumed, thereby causing the electric appliance of the traction net to be burned.
  • the embodiment of the present application realizes the recovery and reuse of the braking electric energy by controlling the battery on the train and the energy storage power station to absorb the braking electric energy, thereby reducing energy waste and reducing the load of the traction net. Moreover, the embodiment of the present application can effectively monitor the voltage of the traction network, protect system components, and improve system security.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include at least one of the features, either explicitly or implicitly.
  • the meaning of "a plurality” is at least two, such as two, three, etc., unless specifically defined otherwise.
  • the terms “installation”, “connected”, “connected”, “fixed” and the like shall be understood broadly, and may be either a fixed connection or a detachable connection, unless otherwise explicitly stated and defined. , or integrated; can be mechanical or electrical connection; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of two elements or the interaction of two elements, unless otherwise specified Limited.
  • the specific meanings of the above terms in the present application can be understood on a case-by-case basis.
  • the first feature "on” or “below” the second feature may be the direct contact of the first and second features, or the first and second features are indirectly through the intermediate medium, unless otherwise explicitly stated and defined. contact.
  • the first feature "above”, “above” and “above” the second feature may be that the first feature is directly above or above the second feature, or merely that the first feature level is higher than the second feature.
  • the first feature “below”, “below” and “below” the second feature may be that the first feature is directly below or obliquely below the second feature, or merely that the first feature level is less than the second feature.

Abstract

公开了一种列车的制动回收系统和方法及列车。系统包括:牵引网(1)、列车(2)和储能电站(3)。储能电站(3)与牵引网(1)相连,储能电站(3)包括第二控制器,第二控制器根据牵引网(1)的电压控制储能电站(3)进行充电或放电。列车(2)包括:电制动器(201);电池(202);配电器(203),和电制动器(201)相连,两者之间具有节点;双向DC/DC变换器(204),其一端与电池(202)相连,其另一端与节点相连;第一控制器(205),用于在列车(2)制动时控制配电器(203)和双向DC/DC变换器(204)将列车(2)的制动电能回馈至牵引网(1),并根据牵引网(1)的电压控制双向DC/DC变换器(204)通过电池(202)对列车(2)的制动电能进行吸收。

Description

列车的制动回收系统和方法及列车
相关申请的交叉引用
本申请基于申请号为201610839860.3、申请日为2016年9月21日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及轨道交通技术领域,特别涉及一种列车的制动回收系统、一种具有该系统的列车和一种列车的制动回收方法。
背景技术
随着城市规模的不断扩大,交通日益拥堵,轨道列车,例如轻轨、地铁等已成为目前很多城市的主要交通方式。列车在制动的过程中会产生大量的制动电能,随着绿色环保的理念不断加深,对列车制动电能进行回收并再利用的问题已非常迫切。目前已有相关技术公开,在列车之中设置电池对制动电能进行回收,并为列车供电。然而列车制动时产生的制动电能非常大,如果要通过车载电池进行吸收,则需要在列车上安装大量的电池,不仅严重增加列车的重量,影响列车运行的能耗,并且还会增加不必要的成本。
发明内容
本申请旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本申请的一个目的在于提出一种列车的制动回收系统,该系统可以实现制动电能的回收和再利用。
本申请的另一个目的在于提出一种列车。本申请的又一个目的在于提出一种列车的制动回收方法。
为达到上述目的,本申请一方面实施例提出的一种列车的制动回收系统,包括:牵引网、列车和储能电站。所述列车包括:电制动器;电池;配电器,所述配电器和所述电制动器相连,所述配电器和所述电制动器之间具有节点;双向DC/DC变换器,所述双向DC/DC变换器的一端与所述电池相连,所述双向DC/DC变换器的另一端与所述节点相连;和第一控制器,所述第一控制器分别与所述配电器和所述双向DC/DC变换器相连,所述第一控制器用于在所述列车制动时控制所述配电器和所述双向DC/DC变换器将列车的制动电能回馈至所述牵引网,以及根据所述牵引网的电压控制所述双向DC/DC变换器通过所述电池对 所述列车的制动电能进行吸收。所述储能电站与所述牵引网相连,所述储能电站包括第二控制器,所述第二控制器用于根据所述牵引网的电压控制所述储能电站进行充电或放电。
根据本申请实施例提出的列车的制动回收系统,第一控制器在列车制动时控制配电器和双向DC/DC变换器将制动电能反馈至牵引网,并根据牵引网的电压控制双向DC/DC变换器通过电池对列车的制动电能进行吸收,当牵引网的电压继续升高时,再利用储能电站进行吸收。此外,储能电站还可以根据牵引网的电压对牵引网进行放电,从而避免牵引网的电压过低,维持牵引网的正常工作。在本申请实施例中,在列车进行制动时先将制动电能反馈至牵引网,此时如果牵引网上的列车比较多,则会将反馈的制动电能均匀到其他列车,因此牵引网的电压不会升高很多。反之如果此时牵引网上的列车较少,或者此时制动的列车较多,则牵引网的电压就会升高,在本申请实施例中,优先使用车载电池进行吸收,如果在车载电池吸收之后牵引网的电压继续升高,则再使用储能电站进行吸收。由于车载电池就安装在列车之上,因此优先采用电池进行吸收,避免出现制动电能过大,无法被快速吸收或消耗,从而导致牵引网的电器被烧毁的问题。本申请实施例通过列车上的电池和储能电站对制动电能进行吸收,从而实现了制动电能的回收和再利用,减少了能源浪费,降低牵引网的负载。并且,本申请实施例还可以有效监控牵引网的电压,保护系统零部件,提高系统安全性。
根据本申请的一个实施例,所述第一控制器用于在所述牵引网的电压大于第一预设阈值时,控制所述双向DC/DC变换器进入充电模式以使所述电池吸收所述制动电能。
根据本申请的一个实施例,所述第一控制器用于在所述牵引网的电压小于第二预设阈值时,控制所述双向DC/DC变换器关闭以使所述电池停止吸收所述制动电能,其中,所述第二预设阈值小于第一预设阈值。
根据本申请的一个实施例,所述列车还包括:电量检测器,所述电量检测器与所述第一控制器相连,所述电量检测器用于检测所述电池的电量,其中,当所述电池吸收所述制动电能时,所述第一控制器还用于在所述电池的电量大于第一电量阈值时,控制所述双向DC/DC变换器关闭以使所述电池停止吸收所述制动电能。
根据本申请的一个实施例,所述列车还包括:机械制动器,用于对列车进行机械制动。
根据本申请的一个实施例,在所述电池吸收所述制动电能之后,所述第一控制器还用于所述牵引网的电压大于第三预设阈值时,控制所述机械制动器启动配合所述电制动器对所述列车进行制动,其中,所述第三预设阈值大于所述第一预设阈值。
根据本申请的一个实施例,所述第二控制器用于在所述牵引网的电压大于第四预设阈值时,控制所述储能电站进行充电。
根据本申请的一个实施例,所述第二控制器还用于在所述牵引网的电压小于第五预设阈值时,控制所述储能电站进行放电,其中,所述第五预设阈值小于所述第四预设阈值。
根据本申请的一个实施例,在所述储能电站向所述牵引网放电之后,所述第二控制器还用于在所述牵引网的电压大于第六预设阈值时,控制所述储能电站停止放电,其中,所述第六预设阈值大于所述第五预设阈值。
根据本申请的一个实施例,当所述牵引网的电压小于第七预设阈值时,所述第二控制器控制所述储能电站向所述牵引网进行放电,同时,所述第一控制器控制所述双向DC/DC变换器进入放电模式以使所述列车的电池向所述牵引网进行放电,其中,所述第七预设阈值小于所述第五预设阈值。
根据本申请的一个实施例,当所述电池向所述牵引网进行放电时,所述第一控制器还用于在所述电池的电量小于第二电量阈值时,控制所述双向DC/DC变换器关闭以使所述电池停止放电。
根据本申请的一个实施例,所述列车还包括:接触器检测器,所述接触器检测器与所述第一控制器相连,所述接触器检测器用于检测所述列车的接触器是否断开,其中,所述第一控制器还用于在所述接触器断开之后,控制所述配电器关闭,并控制所述双向DC/DC变换器进入放电模式以使所述电池为所述列车供电,并控制所述列车限功率运行。
根据本申请的一个实施例,所述储能电站可为多个,所述多个储能电站按照预设距离间隔设置。
根据本申请的一个实施例,每3-6公里内设置两个所述储能电站,所述储能电站的功率可为0.5-2MW。
为达到上述目的,本申请另一方面实施例提出的一种列车,包括:电制动器;电池;配电器,所述配电器和所述电制动器相连,所述配电器和所述电制动器之间具有节点;双向DC/DC变换器,所述双向DC/DC变换器的一端与所述电池相连,所述双向DC/DC变换器的另一端与所述节点相连;第一控制器,所述第一控制器分别与所述配电器和所述双向DC/DC变换器相连,所述第一控制器用于在所述列车制动时控制所述配电器和所述双向DC/DC变换器将列车的制动电能回馈至所述牵引网,以及根据所述牵引网的电压控制所述双向DC/DC变换器通过所述电池对所述列车的制动电能进行吸收。
根据本申请实施例提出的列车,在制动时,通过第一控制器控制双向DC/DC变换器将制动电能回馈至牵引网,并根据牵引网的电压控制双向DC/DC变换器通过电池对列车的制动电能进行吸收。在本申请实施例中,在列车进行制动时先将制动电能反馈至牵引网,此时如果牵引网上的列车比较多,则会将反馈的制动电能均匀到其他列车,因此牵引网的电 压不会升高很多。反之如果此时牵引网上的列车较少,或者此时制动的列车较多,则牵引网的电压就会升高,在本申请实施例中,优先使用车载电池进行吸收以避免出现制动电能过大,无法被快速吸收或消耗,从而导致牵引网的电器被烧毁的问题。本申请实施例通过列车上的电池对制动电能进行吸收,从而实现了制动电能的回收和再利用,减少了能源浪费,降低牵引网的负载。并且,本申请实施例还可以有效监控牵引网的电压,保护系统零部件,提高系统安全性。
根据本申请的一个实施例,所述第一控制器用于在所述牵引网的电压大于第一预设阈值时,控制所述双向DC/DC变换器进入充电模式以使所述电池吸收所述制动电能。
根据本申请的一个实施例,所述第一控制器用于在所述牵引网的电压小于第二预设阈值时,控制所述双向DC/DC变换器关闭以使所述电池停止吸收所述制动电能,其中,所述第二预设阈值小于第一预设阈值。
根据本申请的一个实施例,所述列车还包括:电量检测器,所述电量检测器与所述第一控制器相连,所述电量检测器用于检测所述电池的电量,其中,当所述电池吸收所述制动电能时,所述第一控制器还用于在所述电池的电量大于第一电量阈值时,控制所述双向DC/DC变换器关闭以使所述电池停止吸收所述制动电能。
根据本申请的一个实施例,所述列车还包括:机械制动器,其用于对列车进行机械制动。
根据本申请的一个实施例,在所述电池吸收所述制动电能之后,所述第一控制器还用于在所述牵引网的电压大于第三预设阈值时,控制所述机械制动器启动配合所述电制动器对所述列车进行制动,其中,所述第三预设阈值大于所述第一预设阈值。
根据本申请的一个实施例,当所述电池向所述牵引网进行放电时,所述第一控制器还用于在所述电池的电量小于第二电量阈值时,控制所述双向DC/DC变换器关闭以使所述电池停止放电。
根据本申请的一个实施例,所述列车还包括:接触器检测器,所述接触器检测器与所述第一控制器相连,所述接触器检测器用于检测所述列车的接触器是否断开,其中,所述第一控制器还用于在所述接触器断开之后,控制所述双向DC/DC变换器进行放电模式以使所述电池为所述列车供电,并控制所述列车限功率运行。
根据本申请的一个实施例,所述列车可为跨座式单轨列车。
根据本申请的一个实施例,所述列车还包括:转向架,所述转向架适于跨座在轨道梁上;车体,所述车体与所述转向架相连且由所述转向架牵引沿所述轨道梁行驶。
根据本申请的一个实施例,所述转向架包括:转向架构架,所述转向架构架适于跨座 在所述轨道梁上且与所述车体相连;走行轮,所述走行轮可枢转地安装在所述转向架构架上且配合在所述轨道梁的上表面上;动力装置,所述动力装置安装在所述转向架构架上且与所述走行轮传动连接;水平轮,所述水平轮可枢转地安装在所述转向架构架上且配合在所述轨道梁的侧表面上。
根据本申请的一个实施例,所述转向架还包括:牵引装置,所述牵引装置安装在所述转向架构架上且与所述车体相连;支撑悬挂装置,所述支撑悬挂装置安装在所述转向架构架上且与所述车体相连。
为达到上述目的,本申请又一方面实施例提出的一种列车的制动回收方法,包括:对所述列车进行制动,并根据制动力生成制动电能,并将所述制动电能反馈至牵引网;检测所述牵引网的电压;根据所述牵引网的电压控制电池对所述列车的制动电能进行吸收;根据所述牵引网的电压控制储能电站进行充电或放电。
根据本申请实施例提出的列车的制动回收方法,首先对列车进行制动,并根据制动力生成制动电能,并将制动电能反馈至牵引网,然后监测牵引网的电压,并根据牵引网的电压控制电池对列车的制动电能进行吸收,继续监测牵引网的电压,并判断牵引网的电压是否继续升高,如果判断牵引网的电压继续身高,则控制储能电站吸收制动电能。此外,还可以根据牵引网的电压控制储能电站进行放电,从而避免牵引网的电压过低,维持牵引网的正常工作。在本申请实施例中,对列车进行制动后首先将制动电能反馈至牵引网,并判断牵引网上的列车数量,此时如果牵引网上的列车比较多,则将反馈的制动电能均匀到其他列车,牵引网的电压不会升高很多。反之,如果牵引网上的列车较少,或者此时制动的列车较多,则牵引网的电压会快速升高,在本申请的实施例中,优先控制车载电池吸收制动电能,如果车载电能吸收制动电能之后牵引网的电压继续升高,则控制储能电站吸收制动电能。由于车载电池安装在列车之上,因此优先控制电池吸收制动电能,避免出现制动电能过大,无法被快速吸收或消耗,从而导致牵引网的电器被烧毁的问题。本申请实施例通过控制列车上的电池和储能电站吸收制动电能,从而实现了制动电能的回收和再利用,减少了能源浪费,降低牵引网的负载。并且,本申请实施例还可以有效监控牵引网的电压,保护系统零部件,提高了系统安全性。
根据本申请的一个实施例,所述根据所述牵引网的电压控制电池对所述列车的制动电能进行吸收具体包括:判断所述牵引网的电压是否大于第一预设阈值;如果所述牵引网的电压大于第一预设阈值,则控制所述电池吸收所述制动电能。
根据本申请的一个实施例,所述列车的制动回收方法还包括:判断所述牵引网的电压是否小于第二预设阈值;如果所述牵引网的电压小于第二预设阈值,则控制所述电池停止 吸收所述制动电能,其中,所述第二预设阈值小于第一预设阈值。
根据本申请的一个实施例,所述控制所述电池吸收所述制动电能还包括以下步骤:检测所述电池的电量,并判断所述电池的电量是否大于第一电量阈值;如果所述电池的电量大于第一电量阈值,则控制所述电池停止吸收所述制动电能。
根据本申请的一个实施例,所述列车的制动回收方法还包括:判断所述牵引网的电压是否大于第三预设阈值;如果所述牵引网的电压大于第三预设阈值,则控制列车进行机械制动配合实施电制动对所述列车进行制动,其中,所述第三预设阈值大于所述第一预设阈值。
根据本申请的一个实施例,所述根据所述牵引网的电压控制储能电站进行充电或放电具体包括以下步骤:判断所述牵引网的电压是否大于第四预设阈值;如果所述牵引网的电压大于第四预设阈值,则控制所述储能电站进行充电。
根据本申请的一个实施例,所述列车的制动回收方法还包括:判断所述牵引网的电压是否小于第五预设阈值;如果所述牵引网的电压小于第五预设阈值,则控制所述储能电站进行放电,其中,所述第五预设阈值小于所述第四预设阈值。
根据本申请的一个实施例,所述列车的制动回收方法还包括:判断所述牵引网的电压是否大于第六预设阈值;如果所述牵引网的电压大于第六预设阈值,则控制所述储能电站停止放电,其中,所述第六预设阈值大于所述第五预设阈值。
根据本申请的一个实施例,所述列车的制动回收方法还包括:判断所述牵引网的电压是否小于第七预设阈值;如果所述牵引网的电压小于第七预设阈值,则控制所述储能电站向所述牵引网进行放电,同时,控制所述电池向所述牵引网进行放电,其中,所述第七预设阈值小于所述第五预设阈值。
根据本申请的一个实施例,所述控制所述电池向所述牵引网进行放电还包括以下步骤:检测所述电池的电量,并判断所述电池的电量是否小于第二电量阈值;如果所述电池的电量小于第二电量阈值,则控制所述电池停止放电。
根据本申请的一个实施例,所述列车的制动回收方法还包括:检测列车的接触器是否断开;如果检测到所述接触器断开,则控制所述电池为所述列车供电,并控制所述列车限功率运行。
附图说明
图1为根据本申请实施例的列车的制动回收系统的方框示意图;
图2为根据本申请一个实施例的列车的制动回收系统的方框示意图;
图3为根据本申请一个实施例的列车的制动回收系统的电路原理图,其中,牵引网的电压U大于第一预设阈值U1;
图4为根据本申请一个实施例的列车的制动回收系统的电路原理图,其中,牵引网的电压U小于第二预设阈值U2;
图5为根据本申请一个实施例的列车的制动回收系统的电路原理图,其中,牵引网的电压U大于第四预设阈值U4;
图6为根据本申请一个实施例的列车的制动回收系统的电路原理图,其中,牵引网的电压U小于第五预设阈值U5;
图7为根据本申请一个实施例的列车的制动回收系统的电路原理图,其中,牵引网的电压U小于第七预设阈值U7;
图8为根据本申请一个具体实施例的列车的制动回收系统的方框示意图;
图9为根据本申请另一个具体实施例的列车的制动回收系统的方框示意图;
图10为根据本申请又一个具体实施例的列车的制动回收系统的方框示意图;
图11为根据本申请一个具体实施例的列车的制动回收系统的工作原理示意图;
图12为根据本申请实施例的列车的方框示意图;
图13为根据本申请一个具体实施例的列车的方框示意图;
图14为根据本申请另一个具体实施例的列车的方框示意图;
图15为根据本申请又一个具体实施例的列车的方框示意图;
图16为根据本申请一个具体实施例的列车的结构示意图;
图17为根据本申请实施例的列车的制动回收方法的流程图;
图18为根据本申请一个实施例的列车的制动回收方法的流程图;
图19为根据本申请另一个实施例的列车的制动回收方法的流程图;
图20为根据本申请一个实施例的列车的电池的充放电功率限制方法的流程图;
图21为根据本申请一个具体实施例的列车的制动回收方法的流程图;以及
图22为根据本申请另一个具体实施例的列车的制动回收方法的流程图。
附图标记:
牵引网1、列车2和储能电站3;
电制动器201、电池202、配电器203、双向DC/DC变换器204和第一控制器205;
电量检测器206、机械制动器207和接触器检测器208;
转向架20和车体30;
转向架构架21、走行轮22、动力装置23和水平轮24;
牵引装置25和支撑悬挂装置26。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
下面参考附图来描述本申请实施例提出的列车的制动回收系统和方法及列车。
如图1所示,为根据本申请实施例的列车的制动回收系统的方框示意图。如图1所示,该列车的制动回收系统包括:牵引网1、连接在牵引网1上的多个列车2,以及设置在牵引网1上的多个储能电站3。其中,牵引网1向多个列车2提供直流电,列车2通过取电装置从牵引网1之中取电。在本申请的一个实施例中,列车2为跨座式单轨列车。在本申请的实施例中可以通过列车2的电池和/或储能电站3对列车2产生的制动电能进行回收。对于列车2而言,不仅可以吸收自身产生的制动电能,也可以吸收其他列车2产生的制动电能。由于列车2在向牵引网1反馈制动电能时,牵引网1的电压会升高,因此列车2和储能电站3可以对牵引网1的电压进行监控。当牵引网1的电压升高时,可通过列车2的电池或者储能电站3进行吸收,从而防止牵引网1的电压超过最大额定电压,而出现故障。具体的吸收过程,将在以下的实施例中进行详细介绍。在本申请的实施例中,列车2的电池吸收的制动电能可以用于列车2的照明、空调、多媒体的用电。在本申请的其他实施例中,列车2的电池吸收的制动电能还可以用于列车2的应急驱动,例如当列车2无法从牵引网1获取电能,如牵引网1出现故障,或者,没有牵引网1时,列车2可以切换为电池驱动。在本申请的实施例中,储能电站3可以设置在车站之中,将吸收的制动电能为车站进行供电,例如为车站的空调、多媒体、灯光等进行供电。在本申请的实施例中,储能电站3按照预设距离间隔设置,例如每3-6公里内设置两个储能电站3,每个储能电站3的功率为0.5-2MW。当然本领域技术人员可根据列车2的具体运营环境,选择合适的储能电站3的数量及功率。
如图2所示,为根据本申请一个实施例的列车的制动回收系统的方框示意图。为了便于描述,在该实施例中仅示出了一个储能电站。列车2包括:电制动器201、电池202、配电器203、双向DC/DC变换器204和第一控制器205。
其中,如图2所示,配电器203分别与牵引电网1和电制动器201相连,配电器203和电制动器201之间具有节点,具体的,配电器203和电制动器201之间具有正节点和负节点;双向DC/DC变换器204的第一端与电池202相连,双向DC/DC变换器204的第二端与配电器203和电制动器201之间的正节点相连,双向DC/DC变换器204的第三端与配 电器203和电制动器201之间的负节点相连。第一控制器205用于在列车制动时控制配电器203和双向DC/DC变换器204将制动电能回馈至牵引网1,例如将配电器203开启,并将双向DC/DC变换器204关闭,从而将制动电能直接回馈至牵引网1。以及,第一控制器205分别与配电器203和双向DC/DC变换器204相连,具体的,第一控制器205与双向DC/DC变换器204的第四端相连,第一控制器205根据牵引网1的电压U控制双向DC/DC变换器204开启,并控制双向DC/DC变换器204进入充电模式,以使电池202对列车2的制动电能进行吸收。并且,在本申请的一个实施例中,储能电站3与牵引网1相连,储能电站3包括第二控制器301,第二控制器301用于根据牵引网1的电压U控制储能电站3进行充电或放电。其中,储能电站3可包括至少一个储能电池及对应的双向DC/DC变换器。在本申请的实施例中,如图2所示,储能电站3可包括多个160KW-80KWh模块,多个160KW-80KWh模块的正极相连,并通过正极柜与牵引网1的正极相连,多个160KW-80KWh模块的负极相连,并通过负极柜与牵引网1的负极相连。
具体来说,在列车2进行制动时,牵引电机从电动机工况转变为发电机工况,电制动器201产生制动电能并将制动电能反馈至牵引网1。当牵引网1上的列车数量较少即牵引网1上的负载较小,或者牵引网1上制动的列车较多时,反馈到牵引网1上的制动电能会超过牵引网1上的列车运行所需的电能,从而引起牵引网1的电压U的升高。此时,第一控制器205实时监测牵引网1的电压U,当牵引网1的电压U升高时,优先通过第一控制器205控制列车2的电池202吸收制动电能。同时,储能电站3的第二控制器301监测牵引网1的电压U,如果在列车2的电池进行吸收之后牵引网1的电压U继续升高,则第二控制器301控制储能电站3从牵引网1吸收电能进行充电。同样地,当牵引网1上的列车数量较多,即牵引网1上的负载较大时,牵引网1的电压U会降低,此时储能电站3的第二控制器301实时监测牵引网1的电压U,当牵引网1的电压U降低时,优先通过第二控制器301控制储能电站3进行放电以提高牵引网1的电压。如果牵引网1的电压U继续降低,则第一控制器205也可控制电池202进行放电以提高牵引网1的电压。
需要说明的是,列车2的电池202可以为列车的照明、空调、多媒体进行供电。储能电站3可设置在车站之中,以将回收的制动电能用于为车站的照明、空调、多媒体等进行供电。这样,通过电池202和储能电站3可以将制动电能进行回收和再利用,同时可以降低变电站的负荷,节约了能源。
还需要说明的是,电池202设置在列车2上,可以快速吸收列车产生的制动电能,由于储能电站3与列车2之间的距离较远,导致储能电站3吸收制动电能滞后。因此,在本申请的实施例中优先选择电池202吸收制动电能,以实现制动电能的快速吸收,从而防止未被吸收或者消耗的制动电能引起牵引网1的电压U升高,保护了系统的零部件,避免牵 引网1上的电器损坏,提高了系统的安全性。
根据本申请的另一个具体实施例,如果牵引网1上只有一列列车2运行即牵引网1上没有其他列车吸收制动电能,且列车2制动产生的制动电能较大,则制动电能主要由储能电站3吸收,例如首先第一控制器205控制电池202吸收制动电能的30%,然后第二控制器301控制储能电站3吸收制动电能的70%,以完成制动电能的回收。
根据本申请的再一个具体实施例,如果牵引网1上有多列列车2运行,且在储能电站3吸收制动电能之后,牵引网1的电压U仍继续升高,则可以通过牵引网1上的非制动列车向非制动列车的电池202进行充电。假设牵引网1上未被吸收或消耗的制动电能为Q',牵引网1上有N列列车,则牵引网1上每个列车的电池202吸收的制动电能的平均值为Q'/N。在本申请的实施例中,由于列车制动产生的制动电能非常大,例如表1所示,可以看出在AW2和AW3的工况下会产生大于220KW的制动电能。此时如果利用列车的车载电池吸收这些制动电能,则会导致列车的车载电池非常大。因此在本申请的实施例中,对于此类情况采用电池和储能电站结合进行吸收,从而避免列车上设置大量的电池。
表1
Figure PCTCN2017075175-appb-000001
由此,本申请实施例通过控制列车上的电池和储能电站吸收制动电能,实现了制动电能的回收和再利用,减少了能源浪费,降低牵引网的负载。并且,本申请实施例还可以有效监控牵引网的电压,保护系统零部件,提高系统安全性。
下面参考图3-7来分析本申请实施例的列车的制动回收系统的具体工作原理。
根据本申请的一个实施例,如图3所示,第一控制器205监测牵引网1的电压U,当牵引网1的电压U大于第一预设阈值U1,例如845V时,第一控制器205控制双向DC/DC变换器204开启,并控制双向DC/DC变换器204进入充电模式,以使电池202吸收制动电能。此时,电路中的电能按照图3所示箭头指示的方向流动,其中,列车2产生的制动电能反馈至牵引网1,并且列车2的电池202吸收制动电能。在本申请的实施例中当第一控 制器205控制双向DC/DC变换器204开启,并控制双向DC/DC变换器204进入充电模式时,双向DC/DC变换器将高压侧的直流电变换为与电池202的电压匹配的直流电,以对电池202进行充电即控制电池202吸收制动电能;当第一控制器205控制双向DC/DC变换器204开启,并控制双向DC/DC变换器204进入放电模式时,双向DC/DC变换器204用于将电池202提供的直流电转变为与牵引网1的电压匹配的直流电,以控制电池202进行放电即将电池202中储存的制动电能反馈至牵引网1。
根据本申请的一个实施例,如图4所示,在电池202开始吸收制动电能之后,牵引网1的电压会下降,第一控制器205继续监测牵引网1的电压U,当牵引网1的电压U小于第二预设阈值U2,例如830V时,第一控制器205控制双向DC/DC变换器204关闭以使电池202停止吸收制动电能,其中,第二预设阈值U2小于第一预设阈值U1。此时,电路中的电能按照图4所示箭头指示的方向流动,列车2产生的制动电能反馈至牵引网1,且列车2的电池202和储能电站3均不吸收制动电能。
具体来说,如图3和4所示,在列车2进行制动时,制动电能反馈至牵引网1,第一控制器205实时监测牵引网1的电压U,如果牵引网1的电压U大于第一预设阈值U1,例如845V,说明此时反馈到牵引网1上的制动电能过剩,则第一控制器205控制双向DC/DC变换器204工作在充电模式,以将制动电能为电池202充电。此时,列车2产生的制动电能通过配电器203反馈给牵引网1,同时通过双向DC/DC变换器204对电池202进行充电,即通过电池202吸收部分制动电能。之后如果牵引网1的电压U小于第二预设阈值U2例如830V,说明此时反馈到牵引网1上的制动电能与牵引网1上的负载要求基本达到了平衡,则第一控制器205控制双向DC/DC变换器204关闭。此时,控制电池202停止吸收制动电能,列车2产生的制动电能通过配电器203反馈至牵引网1。
本申请实施例优先选择列车2的电池202吸收制动电能,以实现制动电能的快速吸收,从而,防止未消耗掉的制动电能引起牵引网1的电压U升高,避免牵引网1上的器件损坏。
根据本申请的一个实施例,如图5所示,第二控制器301监测牵引网1的电压U,当牵引网1的电压U大于第四预设阈值U4,例如855V时,第二控制器301控制储能电站3进行充电。此时,电路中的电能按照图5所示箭头指示的方向流动,列车2产生的制动电能反馈至牵引网1,并且列车2的电池202和储能电站3均吸收制动电能。在本申请的实施例中,当列车2的电池开始吸收制动电能时,此时由于牵引网1上的列车较少,或者此时制动的列车2较多,因此牵引网1的电压还会持续增加。当牵引网1的电压U大于第四预设阈值U4时,控制储能电站3从牵引网1吸收电能进行充电,从而避免牵引网1的电压超过最大额定电压。
同样地,根据本申请的一个实施例,如图6所示,第二控制器301监测牵引网1的电 压U,当牵引网1的电压U小于第五预设阈值U5,例如810V时,第二控制器301控制储能电站3进行放电,其中,第五预设阈值U5小于第四预设阈值U4。此时,电路中的电能按照图6所示箭头指示的方向流动,列车2产生的制动电能反馈至牵引网1,且储能电站3对牵引网1进行放电。在本申请的实施例中,如果牵引网1上的列车较多就会导致牵引网1的电压下降,此时为了避免牵引网1的电压低于最低额定电压,需要控制储能电站3向牵引网1进行放电。在本申请的一个具体实施例中,牵引网1上存在多个储能电站3,优先选择电量高的储能电站3向牵引网1放电,例如电量高的储能电站3放电的功率大,电量低的储能电站3放电的功率略小,从而达到储能电站3之间的电量平衡。
根据本申请的一个实施例,在储能电站3向牵引网1放电之后,第二控制器301监测牵引网1的电压U,当牵引网1的电压U大于第六预设阈值U6时,第二控制器301控制储能电站3停止放电,其中,第六预设阈值U6大于第五预设阈值U5。
根据本申请的一个实施例,如图7所示,第二控制器301监测牵引网1的电压U,当牵引网1的电压U小于第七预设阈值U7时,第二控制器301控制储能电站3向牵引网1进行放电,同时,第一控制器205控制双向DC/DC变换器204开启,并控制双向DC/DC变换器204进入放电模式以使列车2的电池202向牵引网1进行放电,其中,第七预设阈值U7小于第五预设阈值U5。此时,电路中的电能按照图7所示箭头指示的方向流动,列车2产生的制动电能反馈至牵引网1,且储能电站3和电池202均对牵引网1进行放电。在本实施例中,如果牵引网1的电压U太小,则控制储能电站3和列车2的电池均进行放电,从而将牵引网1的电压快速提高。
具体来说,如图5所示,如果牵引网1上的列车较少,或者此时制动的列车2较多,则在列车2的电池202开始吸收制动电能之后,牵引网1的电压继续增加,当牵引网1的电压U大于第四预设阈值U4,例如855V时,第二控制器301控制储能电站3从牵引网1吸收制动电能进行充电,以减轻电池202吸收制动电能的压力,从而避免牵引网1的电压U超过牵引网1的最大额定电压Un。如图6所示,如果牵引网1上的列车较多就会导致牵引网1的电压下降,当牵引网1的电压U小于第五预设阈值U5,例如810V时,第二控制器301控制储能电站3向牵引网1进行放电。
进一步地,在储能电站3向牵引网1放电之后,牵引网1的电压U回升,第二控制器301继续监测牵引网1的电压U,当牵引网1的电压U大于第六预设阈值U6,例如830V时,说明此时反馈到牵引网1上的制动电能与牵引网1上的负载基本达到了平衡,则第二控制器301控制储能电站3停止放电。
更进一步地,如图7所示,如果牵引网1上的列车数量较多,在控制储能电站3进行放电之后,牵引网1的电压U会继续降低,当牵引网1的电压U小于第七预设阈值U7时, 第二控制器301控制储能电站3向牵引网1进行放电,同时,第一控制器205控制双向DC/DC变换器204开启,并控制双向DC/DC变换器204进入放电模式,以使列车2的电池202向牵引网1进行放电,从而将牵引网1的电压快速提高。其中,电池202的放电功率为电池202的最大允许放电功率和双向DC/DC变换器204的最大允许放电功率中的较小值。
根据本申请的一个实施例,储能电站3可为多个,多个储能电站3按照预设距离间隔设置。在本申请的实施例中,储能电站3可以设置在车站之中,以将吸收的制动电能为车站进行供电,例如为车站的空调、多媒体、灯光等进行供电。
根据本申请的一个实施例,可每3-6公里内设置两个储能电站3,储能电站3的功率可为0.5-2MW。其中,本领域技术人员可根据列车2的具体运营环境,选择合适的储能电站3的数量及功率。
根据本申请的一个实施例,如图8所示,列车2还包括:电量检测器206,其中,电量检测器206与第一控制器205相连,电量检测器206用于检测电池202的电量,其中,当电池202吸收制动电能时,如果电池202的电量Q大于第一电量阈值Q1,例如80%,则第一控制器205控制双向DC/DC变换器204关闭以使电池202停止吸收制动电能。在本申请的实施例中,电池202的充电功率和放电功率受到限制,电池202在吸收制动电能后电量会增加,如果电池202的电量过大,会影响电池202的使用寿命,因此,当电量Q大于第一电量阈值Q1时,控制双向DC/DC变换器204关闭,以控制电池202停止吸收制动电能。
根据本申请的一个实施例,当电池202向牵引网1进行放电时,如果电池202的电量Q小于第二电量阈值Q2,例如50%,则第一控制器205控制双向DC/DC变换器204关闭以使电池202停止放电。在本申请的实施例中,电池202在放电之后电量会减小,当电量Q小于第二电量阈值Q2时,控制双向DC/DC变换器204关闭,以控制电池202停止放电。
具体来说,电池202的充电功率和放电功率受到限制,在第一控制器205控制电池202进行充放电时,通过电量检测器206实时检测电池202的电量SOC(State of Charge,荷电状态),并根据电池202的电量Q判断是否允许电池202进行充放电。
具体地,在电池202吸收制动电能时,第一控制器205判断电池202的电量Q是否大于第一电量阈值Q1例如80%,如果电池202的电量Q大于80%,则将电池202的最大允许充电功率限制为0,此时控制双向DC/DC变换器204关闭,以控制电池202停止吸收制动电能;如果电池202的电量小于等于80%,则双向DC/DC变换器204保持开启,并控制双向DC/DC变换器204工作在充电模式,以控制电池202继续吸收制动电能。
进一步地,在电池202向牵引网1进行放电时,第一控制器205判断电池202的电量Q是否小于第二电量阈值Q2例如50%,如果电池202的电量Q低于50%,则将电池202 的最大允许放电功率限制为0,此时,第一控制器205控制双向DC/DC变换器204关闭以控制电池202停止放电。
根据本申请的一个实施例,如图9所示,列车2还包括:机械制动器207,其中,机械制动器207用于对列车2进行机械制动。
根据本申请的一个实施例,在电池202吸收制动电能之后,当牵引网1的电压U大于第三预设阈值U3时,第一控制器205控制机械制动器207启动配合电制动器201对列车2进行制动,其中,第三预设阈值U3大于第一预设阈值U1。在本申请的实施例中,如果牵引网1上的列车较少,或者此时制动的列车较多,则在电池202和储能电站3吸收制动电能之后,牵引网1的电压U会继续增加,当牵引网1的电压大于第三预设阈值U3时,控制机械制动器207启动,以对列车2进行辅助制动。
具体来说,在电池202和储能电站3吸收制动电能之后,牵引网1的电压U会继续增加,第一控制器205实时监测牵引网1的电压U,如果牵引网1的电压U大于第三预设阈值U3,则第一控制器205控制机械制动器207启动,这样,在对列车2进行电制动的同时通过机械制动对列车2进行辅助制动,以降低列车2产生的制动电能,从而避免牵引网1的电压U超过最大额定电压,并且可以实现精准快速停车。
需要说明的是,当列车2的行驶速度低于5Km/h或者需要进站停车时,同样可以控制机械制动器207开启以对列车2进行制动。
根据本申请的一个实施例,如图10所示,列车2还包括:接触器检测器208,其中,接触器检测器208与第一控制器205相连,接触器检测器208用于检测列车的接触器是否断开,其中,当检测到接触器断开之后,第一控制器205控制双向DC/DC变换器204开启,并控制双向DC/DC变换器204进入放电模式,以使电池202为列车2供电,并控制列车2限功率运行。
具体来说,当接触器检测器208检测到接触器断开时,说明列车2处于供电异常状态,第一控制器205判断列车2进入应急驱动模式,并发出应急牵引信号,以控制双向DC/DC变换器204开启,并控制双向DC/DC变换器204进入放电模式,此时,电池202为列车2进行供电。同时,第一控制器205控制电池202的放电功率小于等于预设功率阈值例如70KW,以使列车2运行在限功率状态。
由此,通过电池202实现了列车的应急驱动,避免了列车半路抛锚引起的调度困难的问题,同时避免故障列车占用运行线路。
如上所述,如图11所示,以牵引网1的电压等级为750VDC为例,本申请实施例的制动电能的回收和再利用的策略具体如下:
一)制动电能的回收
根据本申请的一个实施例,在列车制动时,根据牵引网1的电压、车载电池202的电量和牵引网1上的列车2的数量来综合进行制动电能的分配,在制动电能反馈到牵引网1之后,先由列车上的其他车辆进行消耗吸收,过剩的制动电能优先由第一控制器205控制电池202进行吸收,在车载电池202无法吸收或吸收能力有限时,由第二控制器301控制储能电站3进行吸收。
具体地,如图11所示,对列车2进行制动时,制动电能反馈至牵引网1,首先判断电池202的电量Q是否小于等于第一电量阈值Q1,如果电量Q小于等于第一电量阈值Q1,则电池202可以吸收制动电能,此时,第一控制器205实时监测牵引网1的电压U,如果牵引网1上的列车数量较少即牵引网1上的负载较小,或者牵引网1上制动的列车较多,会引起牵引网1的电压的升高,当牵引网1的电压U大于第一预设阈值U1,例如845V时,控制列车2的电池202吸收制动电能;如果在列车2的电池进行吸收之后牵引网1的电压U继续升高,当牵引网1的电压U大于第四预设阈值U4,例如855V时,第二控制器301控制储能电站3吸收制动电能。在本申请的实施例中,在控制电池202和储能电站3吸收制动电能之后,牵引网1的电压U会降低,当牵引网1的电压U小于等于第二预设阈值U2,例如830V时,控制电池202和储能电站3停止吸收制动能量。
也就是说,如图11所示,当牵引网1的电压U达到第四预设阈值U4时,控制储能电站3开始吸收制动电能;当牵引网1的电压U大于第一预设阈值U1小于第四预设阈值U4时,控制电池202吸收制动电能;当牵引网1的电压U低于第二预设阈值U2时,制动电能只反馈至牵引网1。
二)制动电能的再利用
在列车2起步或者牵引网1上运行的列车较多时,牵引网1的电压U会降低,此时将电池202和储能电站3回收的制动电能释放到牵引网1上可以补充牵引网1的电能损耗。具体地,首先判断电池202的电量Q是否大于等于第二电量阈值Q2,如果电量Q大于等于第二电量阈值Q2,则电池202可以进行放电,此时,第二控制器301实时监测牵引网1的电压U,当牵引网1的电压U小于第五预设阈值U5,例如810V时,控制储能电站3进行放电。进一步地,第一控制器205监测牵引网1的电压U,并判断牵引网1的电压U是否小于第七预设阈值U7,如果第一控制器205判断牵引网1的电压U小于第七预设阈值U7,则第二控制器301控制储能电站3进行放电,同时,第一控制器205控制双向DC/DC变换器204开启,并控制双向DC/DC变换器204进入放电模式,以使列车2的电池202向牵引网1进行放电。
除此之外,在牵引网1发生供电故障时,可以控制电池202进入放电模式,以实现列车2的应急驱动。
这样,可以将电池202和储能电站301中吸收的制动电能消耗掉,以便于电池202和储能电站301继续进行制动能量的回收,节省了运营成本。
综上,根据本申请实施例提出的列车的制动回收系统,第一控制器在列车制动时控制配电器和双向DC/DC变换器将制动电能反馈至牵引网,并根据牵引网的电压控制双向DC/DC变换器通过电池对列车的制动电能进行吸收,当牵引网的电压继续升高时,再利用储能电站进行吸收。此外,储能电站还可以根据牵引网的电压对牵引网进行放电,从而避免牵引网的电压过低,维持牵引网的正常工作。在本申请实施例中,在列车进行制动时先将制动电能反馈至牵引网,此时如果牵引网上的列车比较多,则会将反馈的制动电能均匀到其他列车,因此牵引网的电压不会升高很多。反之如果此时牵引网上的列车较少,或者此时制动的列车较多,则牵引网的电压就会升高,在本申请实施例中,优先使用车载电池进行吸收,如果在车载电池吸收之后牵引网的电压继续升高,则再使用储能电站进行吸收。由于车载电池就安装在列车之上,因此优先采用电池进行吸收,避免出现制动电能过大,无法被快速吸收或消耗,从而导致牵引网的电器被烧毁的问题。本申请实施例通过列车上的电池和储能电站对制动电能进行吸收,从而实现了制动电能的回收和再利用,减少了能源浪费,降低牵引网的负载。并且,本申请实施例还可以有效监控牵引网的电压,保护系统零部件,提高系统安全性。
图12是根据本申请实施例的列车的方框示意图。如图12所示,该列车2包括:电制动器201、电池202、配电器203、双向DC/DC变换器204和第一控制器205。
其中,配电器203分别与牵引电网1和电制动器201相连,配电器203和电制动器201之间具有节点;双向DC/DC变换器204的一端与电池202相连,双向DC/DC变换器204的另一端与配电器203和电制动器201之间的节点相连。第一控制器205与配电器203和双向DC/DC变换器204相连,第一控制器205用于在列车2制动时控制配电器203和双向DC/DC变换器204将制动电能回馈至牵引网1,例如将配电器203开启,并将双向DC/DC变换器204关闭,从而将制动电能直接回馈至牵引网1。以及,第一控制器205根据牵引网1的电压控制双向DC/DC变换器204开启,并控制双向DC/DC变换器204进入充电模式,以使电池202对列车的制动电能进行吸收。
具体来说,在列车2进行制动时,牵引电机从电动机工况转变为发电机工况,电制动器201产生制动电能并将制动电能反馈至牵引网1。当牵引网1上的列车数量较少即牵引网1上的负载较小,或者牵引网1上制动的列车较多时,反馈到牵引网1上的制动电能会超过牵引网1上的列车运行所需的电能,从而引起牵引网1的电压U的升高。此时,第一控制器205实时监测牵引网1的电压U,当牵引网1的电压U升高时,控制电池202吸收制动电能。同样地,当牵引网1上的列车数量较多,即牵引网1上的负载较大时,牵引网 1的电压U会降低,第一控制器205控制电池202进行放电以提高牵引网1的电压。
需要说明的是,列车2的电池202可以为列车的照明、空调、多媒体进行供电。这样,通过电池202可以将制动电能进行回收和再利用,同时可以降低变电站的负荷,节约了能源。
还需要说明的是,电池202设置在列车2上,可以快速吸收列车产生的制动电能。因此,在本申请的实施例中优先选择电池202吸收制动电能,以实现制动电能的快速吸收,从而防止未被吸收或者消耗的制动电能引起牵引网1的电压U升高,保护了系统的零部件,避免牵引网1上的电器损坏,提高了系统的安全性。
根据本申请的一个实施例,第一控制器205检测牵引网1的电压U,当牵引网1的电压U大于第一预设阈值U1,例如845V时,第一控制器205控制双向DC/DC变换器204进入充电模式以使电池202吸收制动电能。此时,第一控制器205控制双向DC/DC进入充电模式,以将高压侧的直流电变换为与电池202的电压匹配的直流电,以对电池202进行充电即通过电池202吸收制动电能。在本申请的实施例中,当第一控制器205控制双向DC/DC进入放电模式时,双向DC/DC变换器204用于将电池202提供的直流电转变为与牵引网1的电压匹配的直流电,以控制电池202进行放电即将电池202中储存的制动电能反馈至牵引网1。
根据本申请的一个实施例,在电池202开始吸收制动电能之后,牵引网1的电压会下降,第一控制器205检测牵引网1的电压U,当牵引网1的电压U小于第二预设阈值U2,例如830V时,第一控制器205控制双向DC/DC变换器204关闭以使电池202停止吸收制动电能,其中,第二预设阈值U2小于第一预设阈值U1。
具体来说,在列车2进行制动时,制动电能反馈至牵引网1,第一控制器205实时监测牵引网1的电压U,如果牵引网1的电压U大于第一预设阈值U1,例如845V,说明此时反馈到牵引网1上的制动电能过剩,则第一控制器205控制双向DC/DC变换器204工作在充电模式以将制动电能为电池202充电。此时,列车2产生的制动电能通过配电器203反馈给牵引网1,同时通过双向DC/DC变换器204对电池202进行充电即通过电池202吸收部分制动电能。之后如果牵引网1的电压U小于第二预设阈值U2例如830V,说明此时反馈到牵引网1上的制动电能与牵引网1上的负载要求基本达到了平衡,则第一控制器205控制双向DC/DC变换器204关闭。此时,控制电池202停止吸收制动电能,列车2产生的制动电能通过配电器203反馈至牵引网1。
本申请实施例优先选择列车2的电池202吸收制动电能,以实现制动电能的快速吸收,从而,防止未消耗掉的制动电能引起牵引网1的电压U升高,避免牵引网1上的器件损坏。
根据本申请的一个实施例,如图13所示,列车2还包括:电量检测器206,其中,电 量检测器206与第一控制器205相连,电量检测器206用于检测电池202的电量,其中,当电池202吸收制动电能时,如果电池202的电量Q大于第一电量阈值Q1,例如80%,则第一控制器205控制双向DC/DC变换器204关闭以使电池停止吸收制动电能。在本申请的实施例中,电池202的充电功率和放电功率受到限制,电池202在吸收制动电能后电量会增加,如果电池202的电量过大,会影响电池202的使用寿命,因此,当电量Q大于第一电量阈值Q1时,控制双向DC/DC变换器204关闭,以控制电池202停止吸收制动电能。
根据本申请的一个实施例,当电池202向牵引网1进行放电时,如果电池202的电量Q小于第二电量阈值Q2,例如50%,则第一控制器205控制双向DC/DC变换器204关闭以使电池202停止放电。
具体来说,电池202的充电功率和放电功率受到限制,在第一控制器205控制电池202进行充放电时,通过电量检测器206实时检测电池202的电量SOC(State of Charge,荷电状态),并根据电池202的电量Q判断是否允许电池202进行充放电。
具体地,在电池202吸收制动电能时,第一控制器205判断电池202的电量Q是否大于第一电量阈值Q1例如80%,如果电池202的电量Q大于80%,则将电池202的充电功率限制为0,此时,第一控制器205控制双向DC/DC变换器204关闭,以控制电池202停止吸收制动电能;如果电池202的电量小于等于80%,则双向DC/DC变换器204保持开启,并控制双向DC/DC变换器204工作在充电模式,以控制电池202继续吸收制动电能。
进一步地,在电池202向牵引网1进行放电时,第一控制器205判断电池202的电量Q是否小于第二电量阈值Q2例如50%,如果电池202的电量Q低于50%,则将电池202的放电功率限制为0,此时,第一控制器205控制双向DC/DC变换器204关闭以控制电池202停止放电。
根据本申请的一个实施例,如图14所示,列车2还包括:机械制动器207,其中,机械制动器207用于对列车2进行机械制动。
根据本申请的一个实施例,在电池202吸收制动电能之后,当牵引网1的电压U大于第三预设阈值U3时,第一控制器205控制机械制动器207启动配合电制动器201对列车2进行制动,其中,第三预设阈值U3大于第一预设阈值U1。在本申请的实施例中,如果牵引网1上的列车较少,或者此时制动的列车较多,则在电池202吸收制动电能之后,牵引网1的电压U会继续增加,当牵引网1的电压大于第三预设阈值U3时,控制机械制动器207启动,以对列车2进行辅助制动。
具体来说,在电池202吸收制动电能之后,第一控制器205实时监测牵引网1的电压U,如果牵引网1的电压U大于第三预设阈值U3,则第一控制器205控制机械制动器207启动,这样,在对列车2进行电制动时,同时通过机械制动对列车2进行辅助制动,以降 低列车2产生的制动电能,从而避免牵引网1的电压U超过最大额定电压,并且可以实现精准快速停车。
需要说明的是,当列车2的行驶速度低于5Km/h或者需要进站停车时,同样可以控制机械制动器207开启以对列车2进行制动。
根据本申请的一个实施例,如图15所示,列车2还包括:接触器检测器208,其中,接触器检测器208与第一控制器205相连,接触器检测器208用于检测列车2的接触器是否断开,其中,当检测到接触器断开之后,第一控制器205控制双向DC/DC变换器204进入放电模式以使电池202为列车2供电,并控制列车2限功率运行。
具体来说,当接触器检测器208检测到接触器断开时,说明列车2处于供电异常状态例如牵引网1故障断电,第一控制器205判断列车2进入应急驱动模式,并发出应急牵引信号,以控制双向DC/DC变换器204开启,并控制双向DC/DC变换器204进入放电模式,此时,电池202为列车2进行供电。同时,第一控制器205控制电池202的放电功率小于等于预设功率阈值例如70KW,以使列车2运行在限功率状态。
由此,通过电池202实现了列车的应急驱动,避免了列车半路抛锚引起的调度困难的问题,同时避免故障列车占用运行线路。
根据本申请的一个具体实施例,列车2可为跨座式单轨列车。
根据本申请的一个实施例,如图16所示,列车2还包括:转向架20和车体30,其中,转向架20适于跨座在轨道梁上;车体30与转向架20相连且由转向架20牵引沿轨道梁行驶。
根据本申请的一个实施例,如图16所示,转向架20包括:转向架构架21、走行轮22、动力装置23和水平轮24,其中,转向架构架21适于跨座在轨道梁上且与车体30相连;走行轮22可枢转地安装在转向架构架21上且配合在轨道梁的上表面上;动力装置23安装在转向架构架21上且与走行轮22传动连接;水平轮24可枢转地安装在转向架构架21上且配合在轨道梁的侧表面上。
根据本申请的一个实施例,如图16所示,转向架20还包括:牵引装置25和支撑悬挂装置26,其中,牵引装置25安装在转向架构架21上且与车体30相连;支撑悬挂装置26安装在转向架构架21上且与车体30相连。
综上,根据本申请实施例提出的列车,在制动时,通过第一控制器控制配电器和双向DC/DC变换器将制动电能回馈至牵引网,并根据牵引网的电压控制双向DC/DC变换器通过电池对列车的制动电能进行吸收。此外,电池还可以根据牵引网的电压对牵引网进行放电,从而避免牵引网的电压过低,维持牵引网的正常工作。在本申请实施例中,在列车进行制动时先将制动电能反馈至牵引网,此时如果牵引网上的列车比较多,则会将反馈的制 动电能均匀到其他列车,因此牵引网的电压不会升高很多。反之如果此时牵引网上的列车较少,或者此时制动的列车较多,则牵引网的电压就会升高,在本申请实施例中,优先使用车载电池进行吸收以避免出现制动电能过大,无法被快速吸收或消耗,从而导致牵引网的电器被烧毁的问题。本申请实施例通过列车上的电池对制动电能进行吸收,从而实现了制动电能的回收和再利用,减少了能源浪费,降低牵引网的负载。并且,本申请实施例还可以有效监控牵引网的电压,保护系统零部件,提高系统安全性。
图17是根据本申请实施例的列车的制动回收方法的流程图。如图17所示,该制动回收方法包括:
S10:对列车进行制动,并根据制动力生成制动电能,并将制动电能反馈至牵引网。
S20:监测牵引网的电压。
S30:根据牵引网的电压控制电池对列车的制动电能进行吸收。
S40:根据牵引网的电压控制储能电站进行充电或放电。
具体来说,在列车进行制动时,根据制动力生成制动电能,并将制动电能反馈至牵引网。当牵引网上的列车数量较少即牵引网上的负载较小,或者牵引网上制动的列车较多时,反馈到牵引网上的制动电能会超过牵引网上的列车运行所需的电能,从而引起牵引网的电压U升高,实时监测牵引网的电压U,当牵引网的电压U升高时,首先控制电池吸收制动电能。同时,继续监测牵引网的电压,如果在控制列车的电池进行吸收之后牵引网的电压U继续升高,则控制储能电站吸收制动电能进行充电。同样地,当牵引网上的列车数量较多,即牵引网上的负载较大时,牵引网的电压U会降低,实时监测牵引网的电压U,当牵引网的电压U降低时,首先控制储能电站进行放电以提高牵引网的电压,如果牵引网的电压U继续降低,则控制电池进行放电以提高牵引网的电压。
需要说明的是,电池设置在列车上,可以快速吸收制动电能,由于储能电站与列车之间的距离较远,导致储能电站吸收制动电能滞后。因此,在本申请的实施例中优先选择电池吸收制动电能,以实现制动电能的快速吸收,从而防止未被吸收或者消耗的制动电能引起牵引网的电压U升高,保护了系统的零部件,避免牵引网上的电器损坏,提高了系统的安全性。
根据本申请的另一个具体实施例,如果牵引网上只有一列列车运行即牵引网上没有其他列车吸收制动电能,且列车制动产生的制动电能较大,则制动电能主要由储能电站吸收,例如首先控制电池吸收制动电能的30%,然后控制储能电站吸收制动电能的70%,以完成制动电能的回收。
根据本申请的再一个具体实施例,如果牵引网上有多列列车运行,且在储能电站吸收制动电能之后,牵引网的电压U仍继续升高,则可以通过牵引网上的非制动列车向非制动 列车的电池进行充电。假设牵引网上未被吸收或消耗的制动电能为Q',牵引网上有N列列车,则牵引网上每个列车的电池吸收的制动电能的平均值为Q'/N。
由此,本申请实施例通过控制列车上的电池吸收制动电能,实现了制动电能的回收和再利用,减少了能源浪费,降低牵引网的负载。并且,本申请实施例还可以有效监控牵引网的电压,保护系统零部件,提高系统安全性。
根据本申请的一个实施例,根据牵引网的电压控制电池对列车的制动电能进行吸收具体包括:判断牵引网的电压是否大于第一预设阈值,例如845V;如果牵引网的电压大于第一预设阈值,则控制列车的双向DC/DC变换器开启并控制双向DC/DC变换器进入充电模式,以控制电池吸收制动电能。此时,控制双向DC/DC变换器将高压侧的直流电变换为与电池的电压匹配的直流电,以对电池进行充电即控制电池吸收制动电能。在本申请的实施例中,如果控制双向DC/DC变换器进入放电模式,则将电池提供的直流电转变为与牵引网的电压匹配的直流电,以控制电池进行放电即将电池中储存的制动电能反馈至牵引网。
根据本申请的一个实施例,在控制电池吸收制动电能之后,牵引网的电压会下降,根据牵引网的电压控制电池对列车的制动电能进行吸收还包括:判断牵引网的电压是否小于第二预设阈值,例如830V;如果牵引网的电压小于第二预设阈值,则控制电池停止吸收制动电能,其中,第二预设阈值小于第一预设阈值。
具体来说,如图18所示,在控制电池对列车的制动电能进行吸收时具体包括:
S101:对列车进行制动,并根据制动力生成制动电能,并将制动电能反馈至牵引网。
S102:实时监测牵引网的电压U。
S103:判断牵引网的电压U是否大于第一预设阈值U1,例如845V。
如果是,说明此时反馈到牵引网上的制动电能过剩,则执行S104;如果否,说明此时反馈到牵引网上的制动电能与牵引网上的负载要求基本达到了平衡,则执行S105。
S104:控制电池吸收部分制动电能。
S105:判断牵引网的电压U是否小于第二预设阈值U2,例如830V。
如果是,则执行S106;如果否,则执行S103。
S106:控制电池停止吸收制动电能,列车产生的制动电能反馈至牵引网。
本申请实施例优先选择列车的电池吸收制动电能,以实现制动电能的快速吸收,从而,防止未消耗掉的制动电能引起牵引网的电压U升高,避免牵引网上的器件损坏。
根据本申请的一个实施例,根据牵引网的电压控制储能电站进行充电或放电具体包括以下:判断牵引网的电压是否大于第四预设阈值,例如855V;如果牵引网的电压大于第四预设阈值,则控制储能电站进行充电。在本申请的实施例中,在控制列车的电池吸收制动电能之后,此时由于牵引网上的列车较少,或者此时制动的列车较多,因此牵引网的电压 还会持续增加。当牵引网的电压U大于第四预设阈值U4时,控制储能电站从牵引网吸收电能进行充电,从而避免牵引网的电压超过最大额定电压。
根据本申请的一个实施例,根据牵引网的电压控制储能电站进行充电或放电还包括:判断牵引网的电压是否小于第五预设阈值,例如810V;如果牵引网的电压小于第五预设阈值,则控制储能电站进行放电,其中,第五预设阈值小于第四预设阈值。在本申请的实施例中,如果牵引网上的列车较多就会导致牵引网的电压下降,此时为了避免牵引网的电压低于最低额定电压,需要控制储能电站向牵引网进行放电。在本申请的一个具体实施例中,牵引网上存在多个储能电站,优先选择电量高的储能电站向牵引网放电,例如电量高的储能电站放电的功率大,电量低的储能电站放电的功率略小,从而达到储能电站之间的电量平衡。
根据本申请的一个实施例,列车的制动回收方法还包括:判断牵引网的电压是否大于第六预设阈值;如果牵引网的电压大于第六预设阈值,则控制储能电站停止放电,其中,第六预设阈值大于第五预设阈值。
根据本申请的一个实施例,列车的制动回收方法还包括:判断牵引网的电压是否小于第七预设阈值;如果牵引网的电压小于第七预设阈值,则控制储能电站向牵引网进行放电,同时,控制电池向牵引网进行放电,其中,第七预设阈值小于第五预设阈值。在本实施例中,如果牵引网的电压U太小,则控制储能电站和列车的电池均进行放电,从而将牵引网的电压快速提高。
具体来说,如图19所示,在本申请的实施例中,控制储能电站对列车的制动电能进行吸收时具体包括以下:
S201:监测牵引网的电压U。
S202:判断牵引网的电压U是否大于第四预设阈值U4,例如855V。
如果是,说明此时反馈到牵引网上的制动电能大量过剩,则执行S203;如果否,则执行S204。
S203:控制储能电站进行充电。
具体来说,通过储能电站吸收制动电能,可以减轻电池吸收制动电能的压力,从而避免牵引网的电压U超过牵引网的最大额定电压Un。
S204:判断牵引网的电压U是否小于第五预设阈值U5,例如810V。
如果是,则执行S205;如果否,则重复S204。
S205:控制储能电站进行放电。
S206:监测牵引网的电压U。
S207:判断牵引网的电压U是否回升。
如果是,则执行S208;如果否,则执行S210。
S208:判断牵引网的电压U是否大于第六预设阈值U6例如830V。
如果是,说明此时反馈到牵引网上的制动电能与牵引网上的负载基本达到了平衡,则执行S209;如果否,则重复208。
S209:控制储能电站停止放电。
S210:判断牵引网的电压U是否小于第七预设阈值U7。
如果是,则执行S211;如果否,则重复S210。
S211:控制储能电站向牵引网进行放电,同时,控制电池向牵引网进行放电。
根据本申请的一个实施例,列车的制动回收方法还包括:判断牵引网的电压是否大于第三预设阈值;如果牵引网的电压大于第三预设阈值,则控制列车进行机械制动配合实施电制动对列车进行制动,其中,第三预设阈值大于第一预设阈值。在本申请的实施例中,如果牵引网上的列车较少,或者此时制动的列车较多,则在电池和储能电站吸收制动电能之后,牵引网的电压U会继续增加,当牵引网的电压大于第三预设阈值U3时,控制列车进行机械制动,以对列车进行辅助制动。
具体来说,在电池和储能电站吸收制动电能之后,牵引网的电压U会继续增加,实时监测牵引网的电压U,如果牵引网的电压U大于第三预设阈值U3,则控制列车进行机械制动,这样,在对列车进行电制动的同时通过机械制动对列车进行辅助制动,以降低列车产生的制动电能,从而避免牵引网的电压U超过最大额定电压,并且可以实现精准快速停车。
根据本申请的一个实施例,列车的制动回收方法还包括:检测列车的接触器是否断开;如果检测到接触器断开,则控制电池为列车供电,并控制列车限功率运行。
具体来说,当检测到接触器断开时,说明列车处于供电异常状态,判断列车进入应急驱动模式,并发出应急牵引信号,以控制电池进行放电,此时,电池为列车进行供电。同时,控制电池的放电功率小于等于预设功率阈值例如70KW,以使列车运行在限功率状态。
由此,通过电池实现了列车的应急驱动,避免了列车半路抛锚引起的调度困难的问题,同时避免故障列车占用运行线路。
根据本申请的一个实施例,列车的制动回收方法还包括:检测电池的电量,并判断电池的电量是否大于第一电量阈值,例如80%;如果电池的电量大于第一电量阈值,则控制电池停止吸收制动电能。在本申请的实施例中,电池的充电功率和放电功率受到限制,电池在吸收制动电能后电量会增加,如果电池的电量过大,会影响电池的使用寿命,当电量Q大于第一电量阈值Q1时,控制电池停止吸收制动电能。
根据本申请的一个实施例,列车的制动回收方法还包括:检测电池的电量,并判断电池的电量是否小于第二电量阈值,例如50%;如果电池的电量小于第二电量阈值,则控制 电池停止放电。在本申请的实施例中,电池在放电之后电量会减小,当电量Q小于第二电量阈值Q2时,控制电池停止放电。
具体来说,通过图20所示的方法对电池的充电功率和放电功率进行限制。
S301:判断列车是否处于应急驱动模式。
如果是,则重复S301;如果否,则执行S302。
S302:实时检测电池的电量Q。
S303:判断电池的电量Q是否大于第一电量阈值Q1例如80%。
如果是,则执行S304;如果否,则执行S305。
S304:控制电池停止吸收制动电能。此时,电池的最大允许充电功率限制为0。
S305:判断电池的电量Q是否小于第二电量阈值Q2例如50%。
如果是,则执行S306;如果否,则执行S307。
S306:控制电池停止放电。此时,电池的最大允许放电功率限制为0。
S307:结束。
需要说明的是,S303和S304在电池充电过程中执行,S305和S306在电池放电过程中执行。
如上所述,如图21和22所示,本申请实施例的制动电能的回收和再利用的具体如下:
一)制动电能的回收
S401:对列车进行制动,并根据制动力生成制动电能,并将制动电能反馈至牵引网。
S402:判断电池的电量Q是否小于等于第一电量阈值Q1。
如果是,则执行S403;如果否,则重复S402。
S403:实时监测牵引网的电压U。
S404:判断牵引网的电压U是否大于第一预设阈值U1例如845V。
如果是,则执行S405;如果否,则执行S406。
S405:控制电池吸收制动电能。
S406:控制电池不吸收制动能量。
S407:判断牵引网的电压U是否大于第四预设阈值U4例如855V。
如果是,则执行S408;如果否,则执行S404。
S408:控制储能电站吸收制动电能,返回S407。
二)制动电能的再利用
S501:判断电池的电量Q是否大于等于第二电量阈值Q2。
如果是,则执行S502;如果否,则重复S501。
S502:监测牵引网的电压U。
S503:判断牵引网的电压U是否小于第五预设阈值U5例如810V。
如果是,则执行S504;如果否,则执行S505。
S504:控制储能电站进行放电。
S505:控制储能电站不进行放电。
S506:判断牵引网的电压U是否小于第七预设阈值U7。
如果是,则执行S507;如果否,则重复S503。
S507:控制储能电站向牵引网进行放电,同时,控制电池向牵引网进行放电,返回S506。
除此之外,在牵引网发生供电故障时,可以控制电池进入放电模式,以实现列车的应急驱动。
这样,可以将电池和储能电站中吸收的制动电能消耗掉,以便于电池和储能电站继续进行制动能量的回收,节省了运营成本。
综上,根据本申请实施例提出的列车的制动回收方法,首先对列车进行制动,并根据制动力生成制动电能,并将制动电能反馈至牵引网,然后监测牵引网的电压,并根据牵引网的电压控制电池对列车的制动电能进行吸收,继续监测牵引网的电压,并判断牵引网的电压是否继续升高,如果判断牵引网的电压继续身高,则控制储能电站吸收制动电能。此外,还可以根据牵引网的电压控制储能电站进行放电,从而避免牵引网的电压过低,维持牵引网的正常工作。在本申请实施例中,对列车进行制动后首先将制动电能反馈至牵引网,并判断牵引网上的列车数量,此时如果牵引网上的列车比较多,则将反馈的制动电能均匀到其他列车,牵引网的电压不会升高很多。反之,如果牵引网上的列车较少,或者此时制动的列车较多,则牵引网的电压会快速升高,在本申请的实施例中,优先控制车载电池吸收制动电能,如果车载电能吸收制动电能之后牵引网的电压继续升高,则控制储能电站吸收制动电能。由于车载电池安装在列车之上,因此优先控制电池吸收制动电能,避免出现制动电能过大,无法被快速吸收或消耗,从而导致牵引网的电器被烧毁的问题。本申请实施例通过控制列车上的电池和储能电站吸收制动电能,从而实现了制动电能的回收和再利用,减少了能源浪费,降低牵引网的负载。并且,本申请实施例还可以有效监控牵引网的电压,保护系统零部件,提高了系统安全性。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (20)

  1. 一种列车的制动回收系统,其特征在于,包括:
    牵引网;
    列车,所述列车包括:
    电制动器;
    电池;
    配电器,所述配电器和所述电制动器相连,所述配电器和所述电制动器之间具有节点;
    双向DC/DC变换器,所述双向DC/DC变换器的一端与所述电池相连,所述双向DC/DC变换器的另一端与所述节点相连;和
    第一控制器,所述第一控制器分别与所述配电器和所述双向DC/DC变换器相连,所述第一控制器用于在所述列车制动时控制所述配电器和所述双向DC/DC变换器将所述列车的制动电能回馈至所述牵引网,以及根据所述牵引网的电压控制所述双向DC/DC变换器通过所述电池对所述列车的制动电能进行吸收;以及
    储能电站,所述储能电站与所述牵引网相连,所述储能电站包括第二控制器,所述第二控制器用于根据所述牵引网的电压控制所述储能电站进行充电或放电。
  2. 如权利要求1所述的列车的制动回收系统,其特征在于,所述第一控制器用于在所述牵引网的电压大于第一预设阈值时,控制所述双向DC/DC变换器进入充电模式以使所述电池吸收所述制动电能。
  3. 如权利要求1或2所述的列车的制动回收系统,其特征在于,
    所述第一控制器用于在所述牵引网的电压小于第二预设阈值时,控制所述双向DC/DC变换器关闭以使所述电池停止吸收所述制动电能,其中,所述第二预设阈值小于第一预设阈值。
  4. 如权利要求1-3任意一项所述的列车的制动回收系统,其特征在于,所述列车还包括:
    电量检测器,所述电量检测器与所述第一控制器相连,所述电量检测器用于检测所述电池的电量,其中,当所述电池吸收所述制动电能时,所述第一控制器还用于在所述电池的电量大于第一电量阈值时,控制所述双向DC/DC变换器关闭以使所述电池停止吸收所述制动电能。
  5. 如权利要求1-4任意一项所述的列车的制动回收系统,其特征在于,所述列车还包括:
    机械制动器,用于对列车进行机械制动。
  6. 如权利要求5所述的列车的制动回收系统,其特征在于,
    在所述电池吸收所述制动电能之后,所述第一控制器还用于在所述牵引网的电压大于第三预设阈值时,控制所述机械制动器启动配合所述电制动器对所述列车进行制动,其中,所述第三预设阈值大于所述第一预设阈值。
  7. 如权利要求1-6任意一项所述的列车的制动回收系统,其特征在于,
    所述第二控制器用于在所述牵引网的电压大于第四预设阈值时,控制所述储能电站进行充电。
  8. 如权利要求7所述的列车的制动回收系统,其特征在于,
    所述第二控制器用于在所述牵引网的电压小于第五预设阈值时,控制所述储能电站进行放电,其中,所述第五预设阈值小于所述第四预设阈值。
  9. 如权利要求8所述的列车的制动回收系统,其特征在于,在所述储能电站向所述牵引网放电之后,所述第二控制器还用于在所述牵引网的电压大于第六预设阈值时,控制所述储能电站停止放电,其中,所述第六预设阈值大于所述第五预设阈值。
  10. 如权利要求8所述的列车的制动回收系统,其特征在于,
    当所述牵引网的电压小于第七预设阈值时,所述第二控制器控制所述储能电站向所述牵引网进行放电,同时,所述第一控制器控制所述双向DC/DC变换器进入放电模式以使所述列车的电池向所述牵引网进行放电,其中,所述第七预设阈值小于所述第五预设阈值。
  11. 如权利要求10所述的列车的制动回收系统,其特征在于,当所述电池向所述牵引网进行放电时,所述第一控制器还用于在所述电池的电量小于第二电量阈值时,控制所述双向DC/DC变换器关闭以使所述电池停止放电。
  12. 如权利要求1-11任意一项所述的列车的制动回收系统,其特征在于,所述列车还包括:
    接触器检测器,所述接触器检测器与所述第一控制器相连,所述接触器检测器用于检测所述列车的接触器是否断开,其中,所述第一控制器还用于在所述接触器断开之后,控制所述配电器关闭,并控制所述双向DC/DC变换器进入放电模式以使所述电池为所述列车供电,并控制所述列车限功率运行。
  13. 如权利要求1-12任意一项所述的列车的制动回收系统,其特征在于,所述储能电站为多个,所述多个储能电站按照预设距离间隔设置。
  14. 一种列车,其特征在于,包括:
    电制动器;
    电池;
    配电器,所述配电器和所述电制动器相连,所述配电器和所述电制动器之间具有节点;
    双向DC/DC变换器,所述双向DC/DC变换器的一端与所述电池相连,所述双向DC/DC变换器的另一端与所述节点相连;以及
    第一控制器,所述第一控制器分别与所述配电器和所述双向DC/DC变换器相连,所述第一控制器用于在所述列车制动时控制所述配电器和所述双向DC/DC变换器将所述列车的制动电能回馈至所述牵引网,以及根据所述牵引网的电压控制所述双向DC/DC变换器通过所述电池对所述列车的制动电能进行吸收。
  15. 如权利要求14所述的列车,其特征在于,
    所述第一控制器用于在所述牵引网的电压大于第一预设阈值时,控制所述双向DC/DC变换器进入充电模式以使所述电池吸收所述制动电能。
  16. 如权利要求14或15所述的列车,其特征在于,所述第一控制器用于:
    在所述牵引网的电压小于第二预设阈值时,控制所述双向DC/DC变换器关闭以使所述电池停止吸收所述制动电能,其中,所述第二预设阈值小于第一预设阈值。
  17. 如权利要求16所述的列车,其特征在于,还包括:
    电量检测器,所述电量检测器与所述第一控制器相连,所述电量检测器用于检测所述电池的电量,其中,当所述电池吸收所述制动电能时,所述第一控制器还用于在所述电池的电量大于第一电量阈值时,控制所述双向DC/DC变换器关闭以使所述电池停止吸收所述制动电能。
  18. 如权利要求14-17任意一项所述的列车,其特征在于,所述第一控制器还用于:
    当所述电池向所述牵引网进行放电时,在所述电池的电量小于第二电量阈值时,控制所述双向DC/DC变换器关闭以使所述电池停止放电。
  19. 一种列车的制动回收方法,其特征在于,包括:
    对所述列车进行制动,并根据制动力生成制动电能,并将所述制动电能反馈至牵引网;
    监测所述牵引网的电压;
    根据所述牵引网的电压控制电池对所述列车的制动电能进行吸收;
    根据所述牵引网的电压控制储能电站进行充电或放电。
  20. 如权利要求19所述的列车的制动回收方法,其特征在于,所述根据所述牵引网的电压控制电池对所述列车的制动电能进行吸收具体包括:
    判断所述牵引网的电压是否大于第一预设阈值;
    如果所述牵引网的电压大于第一预设阈值,则控制所述电池吸收所述制动电能。
PCT/CN2017/075175 2016-09-21 2017-02-28 列车的制动回收系统和方法及列车 WO2018054007A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17852086.2A EP3517342A1 (en) 2016-09-21 2017-02-28 Train brake recovery system and method and train
BR112019005492-8A BR112019005492B1 (pt) 2016-09-21 2017-02-28 Sistema de recuperação de frenagem, trem e método para recuperação de frenagem para um trem
KR1020197007837A KR20190039435A (ko) 2016-09-21 2017-02-28 열차를 위한 제동 회수 시스템 및 방법과 열차
US16/335,400 US11465508B2 (en) 2016-09-21 2017-02-28 Braking recovery system and method for train, and train

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610839860.3A CN106809023B (zh) 2016-09-21 2016-09-21 列车的制动回收系统和方法及列车
CN201610839860.3 2016-09-21

Publications (1)

Publication Number Publication Date
WO2018054007A1 true WO2018054007A1 (zh) 2018-03-29

Family

ID=59106683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/075175 WO2018054007A1 (zh) 2016-09-21 2017-02-28 列车的制动回收系统和方法及列车

Country Status (5)

Country Link
US (1) US11465508B2 (zh)
EP (1) EP3517342A1 (zh)
KR (1) KR20190039435A (zh)
CN (1) CN106809023B (zh)
WO (1) WO2018054007A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109428331A (zh) * 2017-08-24 2019-03-05 株洲中车时代电气股份有限公司 一种牵引变电所用综合能源装置及其控制方法
CN107696873B (zh) * 2017-10-23 2023-12-22 西南交通大学 一种动车组牵引传动供电系统
CN111064177B (zh) * 2018-10-16 2022-06-10 比亚迪股份有限公司 直流汇流装置、直流汇流柜和轨道交通的能量回馈系统
CN111532146A (zh) * 2020-04-24 2020-08-14 北京北交新能科技有限公司 轨道交通用无网自走行储能及单向ac/dc变流系统
CN111806235B (zh) * 2020-07-22 2022-06-07 西南交通大学 一种车地一体多功能应急储能供电系统及其控制方法
CN112339620B (zh) * 2020-10-28 2022-04-19 株洲中车时代电气股份有限公司 一种多流制列车供电模式的切换方法、系统及相关组件
CN113442731B (zh) * 2021-08-31 2021-12-07 通号城市轨道交通技术有限公司 基于再生制动能量的智能列车控制方法、装置及电子设备
CN114132368B (zh) * 2021-11-23 2022-12-20 交控科技股份有限公司 一种车辆控制方法、装置、设备及可读存储介质
CN116331270A (zh) * 2021-12-24 2023-06-27 比亚迪股份有限公司 列车进入紧急牵引模式的控制方法和列车
CN115675191B (zh) * 2023-01-04 2023-03-21 新誉轨道交通科技有限公司 一种车地联控能量管理方法、系统、设备及存储介质
CN115833189B (zh) * 2023-02-14 2023-04-28 盾石磁能科技有限责任公司 飞轮储能系统的充放电控制方法、装置、设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003134604A (ja) * 2001-10-19 2003-05-09 Hitachi Ltd 鉄道車両
CN102358191A (zh) * 2011-08-05 2012-02-22 惠州市标顶空压技术有限公司 新型城市轨道交通再生电能回收系统
CN102487220A (zh) * 2010-12-03 2012-06-06 上海同沪电气科技股份有限公司 一种应用于城市轨道交通的车载混合储能装置
CN103840477A (zh) * 2014-01-03 2014-06-04 南车株洲电力机车研究所有限公司 电气化铁路牵引供电储能装置及其方法
CN204687864U (zh) * 2015-06-17 2015-10-07 湖北理工学院 一种新型城市轨道交通系统
CN206202001U (zh) * 2016-09-21 2017-05-31 比亚迪股份有限公司 储能电站、列车及列车的制动回收系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102133894A (zh) * 2010-01-25 2011-07-27 北京理工大学 一种电动汽车驱动电机系统馈电制动的控制方法
ITMI20120380A1 (it) * 2012-03-12 2013-09-13 Antonio Sambusseti Cuffia riassorbibile migliorata per l'ampliamento vescicale in pazienti con bassa compliance o per la sostituzione di una vasta porzione di vescica a seguito di bilarzia
CN103879433B (zh) * 2013-03-01 2016-05-04 上海富欣智能交通控制有限公司 轨道交通的能量分析方法
CN103427430B (zh) * 2013-04-08 2017-07-11 深圳市天智系统技术有限公司 一种混合储能系统在微网中的能量管理方法
CN103311950B (zh) 2013-05-15 2016-04-20 华中科技大学 城市轨道列车再生制动能量吸收利用系统及方法
CN103434420B (zh) * 2013-07-29 2016-02-17 华北电力大学(保定) 基于电动汽车充电的制动能量回收式直流牵引供电系统
CN105398353B (zh) * 2015-10-23 2019-01-08 惠州市亿能电子有限公司 一种轨道交通机车电源系统及其控制方法
CN105216638A (zh) * 2015-10-24 2016-01-06 夏一燕 一种城市轨道交通系统综合节能的方法及装置
CN105365585A (zh) * 2015-11-19 2016-03-02 深圳市华力特电气股份有限公司 基于超级电容的城市轨道交通列车制动方法及系统
CN206141340U (zh) * 2016-09-21 2017-05-03 比亚迪股份有限公司 列车的制动回收装置及列车
CN107128211A (zh) * 2017-06-05 2017-09-05 中车工业研究院有限公司 列车牵引及制动控制系统、列车牵引及制动控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003134604A (ja) * 2001-10-19 2003-05-09 Hitachi Ltd 鉄道車両
CN102487220A (zh) * 2010-12-03 2012-06-06 上海同沪电气科技股份有限公司 一种应用于城市轨道交通的车载混合储能装置
CN102358191A (zh) * 2011-08-05 2012-02-22 惠州市标顶空压技术有限公司 新型城市轨道交通再生电能回收系统
CN103840477A (zh) * 2014-01-03 2014-06-04 南车株洲电力机车研究所有限公司 电气化铁路牵引供电储能装置及其方法
CN204687864U (zh) * 2015-06-17 2015-10-07 湖北理工学院 一种新型城市轨道交通系统
CN206202001U (zh) * 2016-09-21 2017-05-31 比亚迪股份有限公司 储能电站、列车及列车的制动回收系统

Also Published As

Publication number Publication date
EP3517342A1 (en) 2019-07-31
CN106809023A (zh) 2017-06-09
BR112019005492A2 (pt) 2019-06-11
US11465508B2 (en) 2022-10-11
CN106809023B (zh) 2018-01-23
KR20190039435A (ko) 2019-04-11
US20190291584A1 (en) 2019-09-26

Similar Documents

Publication Publication Date Title
WO2018054007A1 (zh) 列车的制动回收系统和方法及列车
CN105398353B (zh) 一种轨道交通机车电源系统及其控制方法
WO2015135330A1 (zh) 有轨电车动力系统及控制方法
JP5752562B2 (ja) 直流電気鉄道用電力貯蔵装置の制御システム
JP2009072003A5 (zh)
CN102774385B (zh) 一种电力机车及其供电系统和供电方法
CN109968991B (zh) 用于轨道交通的直流牵引供电系统及其控制方法
JP6055258B2 (ja) 鉄道車両
WO2011113191A1 (zh) 制动能量管理系统及其控制方法
JP2011004566A (ja) 電気車補助電源装置
CN106809021B (zh) 列车的制动回收系统、用于列车调度的控制中心以及方法
CN206202001U (zh) 储能电站、列车及列车的制动回收系统
CN106809029B (zh) 列车的制动回收系统、用于列车调度的控制中心以及方法
JP5566977B2 (ja) 鉄道車両の駆動システム
JP2008154355A (ja) 蓄電設備
CN106809030B (zh) 列车的制动回收系统、用于列车调度的控制中心以及方法
CN106809025B (zh) 列车的制动回收系统、用于列车调度的控制中心以及方法
CN106809028B (zh) 列车的制动回收装置和方法及列车
CN106809031B (zh) 列车的制动回收系统、用于列车调度的控制中心以及方法
CN106809032B (zh) 列车的制动回收系统和方法
CN202764966U (zh) 一种电力机车及其供电系统
CN106809026B (zh) 列车的制动回收系统和方法、储能电站及控制中心
KR20180092203A (ko) 철도차량용 무선 급전전력 안정화를 위한 에너지 저장장치
CN112271763A (zh) 一种混合储能系统功率分配装置和方法
CN106809024B (zh) 列车的制动回收系统和方法及列车

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17852086

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197007837

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019005492

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2017852086

Country of ref document: EP

Effective date: 20190423

ENP Entry into the national phase

Ref document number: 112019005492

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190320