WO2011113191A1 - 制动能量管理系统及其控制方法 - Google Patents

制动能量管理系统及其控制方法 Download PDF

Info

Publication number
WO2011113191A1
WO2011113191A1 PCT/CN2010/071039 CN2010071039W WO2011113191A1 WO 2011113191 A1 WO2011113191 A1 WO 2011113191A1 CN 2010071039 W CN2010071039 W CN 2010071039W WO 2011113191 A1 WO2011113191 A1 WO 2011113191A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy
bus
braking
power supply
traction
Prior art date
Application number
PCT/CN2010/071039
Other languages
English (en)
French (fr)
Inventor
吴祥明
齐智平
史黎明
韦统振
Original Assignee
上海磁浮交通发展有限公司
上海磁浮交通工程技术研究中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海磁浮交通发展有限公司, 上海磁浮交通工程技术研究中心 filed Critical 上海磁浮交通发展有限公司
Priority to CN201080065461.7A priority Critical patent/CN103153683B/zh
Priority to PCT/CN2010/071039 priority patent/WO2011113191A1/zh
Publication of WO2011113191A1 publication Critical patent/WO2011113191A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/14Supplying electric power to auxiliary equipment of vehicles to electric lighting circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/24Electric propulsion with power supply external to the vehicle using ac induction motors fed from ac supply lines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/79Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/797Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only

Definitions

  • the invention relates to a management and utilization method of braking energy of a high-speed train, in particular to a braking energy management system of a magnetic floating train and a control method thereof.
  • the braking energy generated during the braking of the electric train is fed back to the DC bus of the power supply unit, causing the bus voltage to rise.
  • a supercapacitor connected to the DC bus side is used as an energy storage device to store excess braking energy, and this energy is released to provide partial energy when the train starts to accelerate.
  • a circuit and control method for recovering regenerative braking energy into a supercapacitor is proposed in the patent application WO2007134674A1.
  • the system is equipped with a supercapacitor on the train that absorbs the braking energy of the train and provides the energy needed to accelerate the train midway. After the train enters the station, the charging device of the station determines whether it is charged according to the remaining energy of the supercapacitor.
  • a similar scheme is also proposed by Japanese Hitachi's patent CN101 100170A, US Patent US20080000381, and US4523059.
  • U.S. Patent No. 20060005738A1 proposes an onboard energy storage system for absorbing regenerative braking energy.
  • the system is mainly used in electric locomotives, absorbing braking energy and providing energy for train acceleration.
  • the energy storage system can also accept external energy charging Electricity.
  • the train is equipped with a braking resistor to dissipate the energy that the energy storage device cannot absorb. But after all, a lot of energy is consumed unnecessarily.
  • Chinese patent CN101249802 proposes an urban rail transit vehicle braking energy recovery system that utilizes supercapacitor energy storage, wherein the energy of the supercapacitor is supplied by the auxiliary inverter for small loads such as interior ventilation and lighting.
  • the inverter scheme of this scheme cannot be applied to large loads.
  • the energy storage device of the above technology does not have the function of feeding back to the AC bus through the DC bus and effectively controlling the feedback to the common AC grid, and can only be consumed by the resistance on the DC bus. Drop it.
  • the present invention proposes a management system and a control method for effectively utilizing braking energy to reduce energy waste.
  • One aspect of the present invention provides a braking energy management system included in a traction system including a power supply system bus, a traction motor for pulling a power system, and a power signal for transforming the power supply bus to suit
  • the converter motor uses a converter device that includes an energy feedback device, an electrical energy storage device, an energy consuming device, and a control device.
  • the energy feedback device is coupled to the converter device and the power supply system bus.
  • the electrical energy storage device connects the converter device to one of the power supply system bus bars through a controllable first electrical energy conduction path.
  • the energy consuming device is coupled to the converter device via a controllable second electrical energy conduction path.
  • a control device configured to: when detecting the power system braking, first starting the energy feedback device to introduce braking energy into the power supply system bus;
  • the first power conduction path When detecting that the energy demand of the traction load and/or the non-traction load on the power supply busbar is less than the braking energy, opening the first power conduction path to store energy to the electrical energy storage device; and when detecting the electrical energy storage device When full power is applied, the second electrical energy conduction path is opened to introduce energy into the energy consuming device.
  • the energy feedback device can be configured independently of the converter device.
  • the energy feedback device can be an inverter.
  • the energy feedback device may be integrated into the converter device to enable the converter device to reversely convert the braking energy into a power signal suitable for the bus of the power supply system.
  • the braking energy management system may further include a connection protection device that opens or closes the first electrical energy conduction path in response to the control device to cause the electrical energy storage device to be charged or discharged.
  • the brake energy management system may further include a brake chopper device that opens or closes the second electrical energy conduction path in response to the control device to control whether energy is directed to the energy consuming device.
  • control device can open the first electrical energy conduction path at any time to provide energy to the traction motor to release energy from the electrical energy storage device.
  • the electrical energy storage device may include at least one of a battery, a supercapacitor, a flywheel energy storage, a superconducting energy storage, a flow battery, and a compressed air energy storage.
  • the converter device may comprise an inverter, a rectifier and a DC bus between the inverter and the rectifier, wherein the rectifier is a conventional rectifier that only rectifies.
  • the rectifier can be optimized to a four-quadrant rectifier capable of rectifying and inverting, such that the converter device achieves bi-directional power feeding capability.
  • the rectifier may be an uncontrolled rectifier, a semi-controlled rectifier, a fully controlled rectifier, or a combination thereof.
  • the inverter can be a two-level, three-level or multi-level topology.
  • Another aspect of the present invention provides a braking energy management method for a traction system including a power supply system bus, a traction motor for pulling a power system, and a power signal for transforming the bus of the power supply system to suit
  • the converter device used in the traction motor comprising the following steps: when detecting the braking of the power system, using an energy feedback device to prioritize the braking energy obtained by the converter device from the traction motor to the power supply system Busbar feedback, which is to supply non-traction load and/or traction load on the busbar of the power supply system; when it is detected that the energy demand of the traction load and/or the non-traction load on the busbar of the power supply system is less than the braking energy, the braking energy is Storing to an electrical energy storage device; and when detecting that the electrical energy storage device is full of electrical energy, introducing braking energy into an energy consuming device for consumption.
  • detecting whether the energy demand of the traction load and/or the non-traction load on the bus of the power supply system is less than the braking energy comprises detecting whether the voltage on the bus of the power supply system is greater than a voltage threshold.
  • supplying power to the non-traction load and/or the traction load on the bus of the power supply system includes: supplying power at a predetermined power corresponding to a non-traction load on the bus of the power supply system; and when detecting the When another power system is pulled on the power supply system bus, the energy feedback device continues to supply power to the power supply system bus.
  • detecting that the electrical energy storage device is full of electrical energy includes detecting whether the DC bus voltage in the converter device is greater than a voltage threshold.
  • the power to release energy from the electrical energy storage device is performed in accordance with a predetermined curve.
  • Yet another aspect of the present invention provides a braking energy management method for a traction system including a power supply system bus, a plurality of traction motors for pulling a plurality of power systems, and a power conversion bus of the power supply system
  • the signal is adapted to a plurality of converter devices for use with each traction motor, the method comprising the steps of: when any one of the plurality of power systems is braked, utilizing an energy feedback device to pull the converter device from the traction
  • the braking energy obtained by the motor is preferentially fed back to the power supply system bus; when it is detected that the energy demand of the traction load and/or the non-tracting load on the power supply system bus is less than the braking energy, the braking energy is stored into an electrical energy storage device And when the electrical energy storage device is detected to be full of electrical energy, the braking energy is introduced into an energy consuming device.
  • the power system in the present invention is not limited to a high-speed maglev train, but can be widely used in other rail transit, steel rolling, elevator, and the like.
  • FIG. 1 is a system block diagram of an embodiment of the present invention
  • FIG. 2 is a flow chart of energy management according to an embodiment of the present invention.
  • Figure 3 (a) is an energy storage-release control flow of the electrical energy storage device of Figure 1;
  • Figure 3 (b) is the flow control process for releasing the braking resistor in Figure 1;
  • FIG. 4 is a schematic diagram of the connection between the electrical energy storage device of FIG. 1 and the DC bus of the converter;
  • Figure 5 is a schematic diagram depicting the utilization of brake energy utilization of Figure 1;
  • Figure 6 is a diagram of a method of accessing a converter DC bus device in accordance with the present invention
  • Figure 7 is a diagram showing another way of accessing a converter DC bus device according to the present invention.
  • Figure 8 is an embodiment of the converter inverting portion of the present invention being a three-level inverter
  • FIG. 9 is another embodiment of the inverter inverting portion of the present invention being a three-level inverter;
  • FIG. 10 is an embodiment of the inverter inverting portion of the present invention being a two-level inverter;
  • FIG. 11 is an embodiment of the energy storage device of the present invention connected to an AC bus
  • Figure 12 is an embodiment of the rectifier rectification portion of the present invention for uncontrolled rectification
  • Figure 13 is an embodiment of the rectifier rectification portion of the present invention for half-controlled rectification
  • Figure 14 is an embodiment of the rectifier rectification portion of the present invention which is fully controlled rectification.
  • FIG. 1 shows a system block diagram of an embodiment of the present invention.
  • power is supplied to each energy conversion device, such as a traction converter device 70 for one train 50, and another traction converter device 70a for another train 50a, via a three-phase AC system bus 80.
  • the relevant load demand of the traction train 50a is referred to as a traction load.
  • Two or more trains are connected via a three-phase AC system bus 80 to share the power supplied by the power supply network.
  • the three-phase AC system bus 80 can also supply power to non-traction loads 30 that are not directly used for towing trains, such as relatively small power, lighting, and the like.
  • the present invention is not limited to the environment shown in Fig. 1, but can be widely applied to other systems such as rail transit, steel rolling, and elevators.
  • the upper-level power grid 100 After the upper-level power grid 100 is transformed by the three-phase AC main transformer 90, it can be sent to the three-phase AC system bus.
  • a converter device 70 comprising a rectifier 71, an intermediate DC bus 72 and an inverter 73 can be arranged between the three-phase AC system bus 80 and the train 50.
  • the converter device 70 can deliver electrical energy from the AC system bus 80 to the train 50 and can transfer the braking energy to the intermediate DC bus 72 at least in the opposite direction.
  • the braking energy management system 40 may include an energy feedback device 401, an energy feedback control device 41, an electrical energy storage device 42, and an energy consuming device 43.
  • the electrical energy storage device 42 can be a battery or other types of electrical energy storage devices such as supercapacitors, flywheel energy storage, superconducting energy storage, flow batteries, and compressed air energy storage.
  • the energy consuming device 43 is, for example, a device capable of dissipating energy in thermal energy or other manner. Typically, a resistor is selected as the component of the energy consuming device 43.
  • the braking energy is integrated in the following three aspects.
  • Energy Management The traction load 70a and/or the non-traction load 30 of the AC system bus 80 utilizes energy, the electrical energy storage device 42 stores energy, and the energy consuming device 43 consumes energy.
  • the energy feedback device 401 can be used to invert the AC power, and is preferentially supplied to the non-lead load 30 or the traction load 70a on the AC system bus 80.
  • the energy feedback device 401 can be constructed from a separate inverter, as will be described in the embodiment with reference to Figures 8-10.
  • the rectifier 71 can be configured as a rectifier having an inverter function, energy can flow in both directions (referred to as a four-quadrant rectifier), which will be described in the embodiments with reference to Figs. 6 and 7. This is equivalent to integrating the energy feedback device 401 into the converter device 70 so that it can transfer energy in both directions.
  • the system also includes an energy feedback control device 41.
  • the energy feedback control device 41 can be connected to part or all of the AC system bus 80, the energy feedback device 401, the converter device 70, the connection protection device 45, and the brake chopper device 44, as needed, to achieve system status detection. And energy management.
  • the braking energy fed back to the AC system bus 80 first satisfies the load 30 that is not directly used to pull the train, such as power, lighting, etc. on the bus.
  • the power of the non-rail traction load is usually essentially constant.
  • the energy feedback control device 41 can ensure that the load value is monitored in real time, or can be ensured by setting a fixed power value in advance and controlling the power delivered to the AC system bus 80 to be not greater than the set value.
  • the electrical energy fed back to the AC system bus 80 is not fed back to the upper grid 100.
  • the energy feedback control device 41 can determine whether there is train traction by detecting the current on the output side of the main transformer 90, and if so, the energy of the brake train 50 is continuously fed back to the AC system bus 80.
  • the energy feedback control device 41 detects that the load demand of the AC system bus 80 is less than the braking energy that may be fed back to the AC bus 80 at this time, the energy storage device 42 is activated for storage.
  • the stored energy can be released at a rate to prepare for the next energy absorption.
  • the energy feedback control device 41 detects that the electrical energy storage device 42 is already full of energy, The remaining braking energy is then dissipated by the energy consuming device 43.
  • the inverter 73 may be a three-phase inverter, and the three-phase inverter 73 may be a three-level converter, a two-level converter, or other level.
  • the converter device 70 provides electrical energy to the motor 60 that can be regulated by voltage, current, and frequency to drive the train 50 to operate.
  • the converter device 70 is a dual pulse width modulated energy regenerable converter.
  • the converter unit 70 receives electrical energy from the three-phase AC system bus 80.
  • the braking energy can also be transmitted from the motor 60 to the AC bus 80.
  • the three phase AC system bus 80 is a 20 kV bus, however this is intended to exemplify the magnitude of the voltage to which the present invention can be applied, and not as a limitation.
  • the electrical energy storage device 42 can be comprised of an energy storage device, such as a supercapacitor and corresponding control device.
  • an energy storage device such as a supercapacitor and corresponding control device.
  • a connection protection device 45 is provided at the front end of the electrical energy storage device 42. The connection protection device 45 can control the electrical energy conduction path between the electrical energy storage device 42 and the intermediate DC bus 72 of the converter device connected thereto to determine the release of storage or release of energy.
  • the components of the energy consuming device 43 may be made of cast iron, or stainless steel, or other materials that meet the power requirements of the train for maximum possible braking.
  • the energy consuming device 43 is coupled to the converter device intermediate DC bus 72 via a brake chopper device 44.
  • the brake chopper device 44 can open or close the electrical energy conduction path between the energy consuming device 43 and the intermediate DC bus 72. Control whether current flows to the energy consuming device 43.
  • the non-traction load 30 may include non-traction devices such as power, lighting, etc. that are coupled to the AC system bus 80.
  • the converter device 70a is a traction load associated with pulling another train 50a on the AC system bus 80.
  • This other train 50a can have an energy management system 40a similar to train 50.
  • FIG. 2 is a flow chart showing a braking energy management flow in accordance with an embodiment of the present invention.
  • Figure 5 shows the three flow paths of the braking energy intuitively, and the broken line in Figure 5 represents the flow of energy.
  • the control flow of the energy management system in this embodiment will be described below with reference to Figs. 2 and 5.
  • step 301 when the traction train 50 is running, the system obtains energy from the three-phase AC system bus 80, and sends it to the motor 60 through the rectifier 71, the intermediate DC bus 72, and the inverter 73 to drive the train 50 to operate.
  • the kinetic energy of the train 50 is converted into electric energy by the motor 60, and then passed through the inverter.
  • the intermediate DC bus 72 and the rectifier 71 preferentially provide the braking energy to the three-phase AC system bus 80.
  • the lower loads 70a, 30 are used.
  • the braking energy fed back to the AC system bus 80 is first supplied to the load 30, which is not directly used to pull the train, such as power, lighting, etc. on the AC system bus.
  • the power of the non-train traction load is usually essentially constant.
  • a fixed power threshold P0 may be preset, the power threshold P0 being no greater than the power of the non-traction load 30, and the power delivered to the AC system bus 80 is controlled to be no greater than P0.
  • step 303 when a train, such as train 50, is braked, and another train, such as train 50a, is towed, the system obtains energy from upper grid 100, which is converted to AC system bus 80 by three-phase AC main transformer 90.
  • the voltage level is supplied to the long stator linear synchronous motor 60a via the converter device 70a corresponding to the train 50a to operate the traction train 50a.
  • the load voltage of the AC bus system 80 is detected by the bus voltage and current detection function of the energy feedback control device 41 (the load represents a comprehensive index of voltage and current), and it can be determined whether or not the train is being towed, and if so, the train is controlled.
  • the energy of 50 continues to be fed back to the AC bus system 80.
  • step 304 if the sum of the energy demands of the loads 70a, 30 on the AC system bus 80 is less than the braking energy that may be fed back to the straight bus at this time, the electrical energy storage device 42 is activated for storage.
  • the electrical energy storage device 42 By detecting the voltage Vx of the intermediate DC bus 72 of the converter device 70, it is determined whether the electric energy storage device 42 is full, and if it is already full, it proceeds to step 305.
  • the remaining braking energy is passed through the brake chopper 44, all of which flows to the energy consuming device 43, which is consumed by the energy consuming device 43.
  • the system energy feedback control device 41 prevents the braking energy from being fed back to the upper power grid 100 by detecting the voltage and/or current of the AC bus 80.
  • the charging and discharging control of the electric energy storage device 42 is as shown in Fig. 30).
  • the DC bus voltage VI of the intermediate DC bus 72 of the dual pulse width modulated energy regenerable converter device 70 and the current (or power) II of the rectifier input side (ie from the AC system bus 80 side) are referenced to implement energy.
  • the storage or release to the intermediate DC bus 72 is stored. This avoids complex coordinated control with the converter device 70 itself.
  • the control method is:
  • control unit 41 detects the DC bus voltage of the intermediate DC bus 72.
  • the electrical energy storage device 42 stores the energy until it is full in step S12.
  • step S13 the control means 41 detects the input side power P1 of the converter means or the current value II which reflects the power value.
  • the converter device 70 is shown to absorb energy from the side of the three-phase AC system bus 80, and is converted by the converter device 70 to supply traction energy to the traction motor.
  • the electrical energy storage device 42 also releases energy to the intermediate DC bus 72, releases the energy stored in the last braking phase to provide partial energy for the traction train, and simultaneously charges the electrical energy storage device 42 for the next train braking phase. ready.
  • timing at which the electrical energy storage device 42 releases energy is not limited to the above example, in fact.
  • the control device 41 can release the energy of the electrical energy storage device 42 at any time that it is deemed necessary to provide energy to the traction motor 60.
  • step S15 the electrical energy storage device 42 releases energy at the power P2.
  • step S16 No. I
  • the electrical energy storage device 42 releases energy at the power P1 (step S17).
  • step 305 the charge and discharge control of the energy consuming device 43 is as shown in FIG. 3(b), the DC bus voltage threshold V2 is set, and the DC bus voltage is detected by the converter device 70 (step S20), according to the intermediate DC bus.
  • step S21 controls whether or not the power is discharged to the energy consuming device 43.
  • the brake chopper device 44 is activated to release energy to the energy consuming device 43 (step S22).
  • the above thresholds VI and V2 are the DC bus voltages of the intermediate DC bus 72, and the magnitude relationship is V2>V1.
  • the intermediate DC bus voltage is ⁇ 2500V.
  • the threshold voltage can be found in the actual circuit as VI ⁇ 2300V and V2 as ⁇ 2700V.
  • Figure 5 shows a schematic diagram of the connection of the electrical energy storage device 42 to the DC bus.
  • the electrical energy storage device 42 and the converter device 70 require coordinated control in several respects.
  • One example is coordinated control of the protection strategy.
  • a fully controlled switch 46 is added between the pre-charge circuit 48 of the electrical energy storage device 42 and the circuit breaker 47.
  • the converter device 70 can immediately shut off the path through which the electrical energy storage device 42 provides energy to the converter device 70 via the intermediate DC bus 72.
  • the converter device 70 can disconnect the circuit breaker 47 during shutdown maintenance, thereby enabling electrical connection and disconnection between the electrical energy storage device 42 and the converter device 70.
  • the access mode and charging and discharging of the energy storage device 42 also need to be coordinated with the three-level midpoint voltage balance control.
  • FIG. 6 is a diagram of a method of accessing a DC bus of a converter according to the present invention.
  • a three-phase AC system bus 801 is connected to a rectifier 71 1 , 715 through a group of transformers 712 , 716 , 717 , and 718 , respectively .
  • Inductors 722, 722' are smoothing reactors, and capacitors 741, 742 are voltage Support capacitor.
  • the resistors 431, 431' and the cable, the cabinet, and possibly the associated cooling device, constitute an energy consuming device 44, and the switch tubes 441, 441' controlled by the control device 401 constitute the brake chopper device 44.
  • the inverter unit 73 1 is connected across the positive and negative DC bus bars to form one bridge arm of the inverter.
  • the inverter device includes three inverter units 731.
  • the electrical energy storage devices 421 and 422 are connected in series and connected across the positive and negative DC bus bars. When the energy storage devices 421, 422 release energy to the DC bus 72, a small current can be used to release energy, thereby avoiding the influence of the rectification portion controlling the midpoint voltage balance.
  • Figure 7 is a diagram of another way of accessing a converter DC bus arrangement in accordance with the present invention. Most of the structure in Fig. 7 is the same as that of Fig. 6, except that the electrical energy storage devices 421 and 422 are respectively connected between the positive and negative DC bus bars and the neutral line of the inverter. This way of connecting the upper and lower capacitors separately enhances the midpoint balance of the converter device.
  • the above two ways in which the electrical energy storage device is connected to the intermediate DC bus can assist in providing traction energy when the train accelerates, thereby eliminating spikes in energy absorption from the power grid.
  • the rectifier 71 is not limited to an inverter that can be inverted or rectified as in the inverter 73, and may be a three-phase full-bridge uncontrollable rectifier composed of a power diode as shown in FIG. 12, or FIG.
  • Fig. 8 is a view showing an embodiment in which the inverter inverting portion of the energy management system of the present invention is a three-level inverter. Similar to the example of FIG. 6, in the present embodiment, the energy feedback devices 401, 402, the electrical energy storage devices 421, 422, and the energy consuming devices 431, 432 are directly connected to the three-level inverters 731, 732, respectively. Positive and negative DC bus.
  • the energy feedback devices 401 and 402 are the same inverters as the inverters 731 and 732, and can convert DC power into AC power.
  • Fig. 9 is a view showing an embodiment in which the inverter inverting portion of the energy management system of the present invention is a three-level inverter. Similar to the example of FIG. 7, in the present embodiment, the energy feedback devices 401 and 402, 403 and 404, the electrical energy storage devices 421 and 422, 423 and 424, and the energy consuming devices 43 1 and 432, 433 and 434, respectively Connected between the positive and negative DC busses of the three-level inverters 731, 732 and the midpoint of the split capacitor.
  • Fig. 10 is a view showing an example in which the inverter inverting portion of the energy management system of the present invention is a two-level inverter.
  • the energy feedback devices 401, 402, the electrical energy storage devices 421, 422, and the energy consuming devices 431, 432 are directly connected to the positive and negative DC buses of the two-level inverters 731, 732, respectively.
  • Figure 11 is an embodiment of the power storage device of the present invention connected to an AC bus.
  • the electrical energy storage device 421 is not connected to the DC bus of the intermediate DC bus 72 of the inverter, but to the AC bus 80 of the system.
  • the embodiment connected to the system AC bus 80 has the following advantages: First, it can be applied to an inverter without a DC bus, such as an AC/AC motor drive system, matrix Motor drive system, etc. Second, an energy storage device can be used simultaneously by multiple inverter systems. In contrast, an energy storage system connected to the inverter DC bus can only be used by one inverter system.
  • Figure 12 is an embodiment of the rectifier rectifying portion of the present invention which is an uncontrolled rectifier bridge.
  • the uncontrolled rectifier bridge 761 is connected to the inverter 762 to supply power to the traction motor 763.
  • Fig. 13 is a view showing an example in which the rectifier portion of the converter is a half-controlled rectifier bridge in the present invention.
  • the semi-controlled rectifier bridge 764 is coupled to the inverter 765 to supply power to the traction motor 766.
  • Fig. 14 is a view showing an example in which the rectifier portion of the converter is a full-controlled rectifier bridge in the present invention.
  • the full control rectifier bridge 771 is connected to the inverter 772 to supply power to the traction motor 773.
  • the embodiment of the present invention recovers the braking energy by feeding the braking energy back to the system bus and storing it through the electric energy storage device for the next use, thereby reducing the waste of energy.
  • the energy fed back to the system bus is only used by non-traction devices or other traction devices in the area, it is not fed back to the upper-level grid, so it does not cause harmonic pollution and feedback current surge to the upper-level power grid.
  • the configuration conditions are as follows:
  • the braking energy is 391.2MJ.
  • the system bus non-traction device consumes a total of 90.42 MJ of braking energy
  • the electric energy storage device can absorb braking energy of 238.9 MJ
  • the braking resistor consumes braking energy of 61.85 MJ.
  • the braking energy utilization rate is as high as 84%, and the energy saving effect is obvious.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Inverter Devices (AREA)

Description

制动能量管理系统及其控制方法 技术领域
本发明涉及高速列车制动能量的管理、 利用方法, 尤其是涉及一种磁浮列 车的制动能量管理系统及其控制方法。 背景技术
电气列车制动过程中产生的制动能量回馈到供电单元的直流母线, 导致母 线电压升高。
为了将母线电压限制在安全可靠的范围内, 必须及时转移母线上的多余能 量。 一般地, 有以下几种转移能量的方案:
目前, 在轨道交通、 电梯及轧机等传动系统中, 大多通过制动电阻将多余 能量以热的形式消耗掉。 采用这种方案构建的系统结构简单, 成本低, 但会造 成大量电能的浪费。
随着并网逆变技术的逐渐成熟, 可以通过并网逆变器将多余的制动能量回 馈到电网。 目前在轨道交通及电梯中出现了相关的应用及产品。 这一方案的缺 点是会向电网注入冲击电流和谐波, 导致电网电能质量下降。
近几年, 在一些地铁系统中采用了利用接在直流母线侧的超级电容器作为 储能装置存储多余的制动能量, 并在列车启动加速时释放这些能量以提供部分 能量的方法。在西门子公司的专利申请 WO2007134674A1中提出了一种将再生 制动能量回收到超级电容器中的电路和控制方法。 该系统在列车上配备了超级 电容器, 该超级电容器吸收列车的制动能量, 为列车在中途加速过程提供所需 的能量。 列车进站后, 车站的充电装置根据超级电容器剩余能量的大小决定是 否对之充电。 日本日立公司的专利 CN101 100170A、美国专利 US20080000381、 US4523059也提出了类似的方案。 但是有些储能装置, 例如镍氢电池、 飞轮储 能装置的充放电速度过慢, 不能满足高速磁浮列车制动能量存储的要求。 更重 要的是, 目前包括超级电容器的储能装置存储的能量有限, 不能满足大量的制 动能量的存储。
也存在一些结合了上述方案的技术。例如美国专利 US 20060005738A1 提 出了一种车载的储能系统,用于吸收再生制动能量。该系统主要用于电力机车, 吸收制动能量, 并为列车加速提供能量。 该储能系统还可以接受外部能源的充 电。 列车上装备了制动电阻来消耗储能装置无法吸收的能量。 但是毕竟会有大 量的能量被不必要地消耗了。中国专利 CN101249802提出利用超级电容器储能 的城市轨道交通车辆制动能量回收系统, 其中超级电容器的能量通过辅助逆变 器提供电力, 用于车内通风、 照明等小负荷。 但是该方案的逆变方案并无法推 广应用到大负荷。
总体来说, 当超过其容量的制动能量出现时, 上述技术的储能装置不具备 通过直流母线向交流母线回馈并有效控制向公共交流电网回馈的功能, 只能通 过直流母线上的电阻消耗掉。
高速磁悬浮列车在制动过程中产生巨大的制动能量, 由于缺乏合适的能量 转移方案, 这些制动能量被制动斩波器以热能的形式消耗在制动电阻上, 造成 大量能量的浪费。 这些问题同样存在于诸如轨道交通、 轧钢、 电梯等频繁加减 速的电机驱动系统中。 发明内容
本发明提出一种有效利用制动能量的管理系统和控制方法, 以减少能量的浪 费。
本发明的一个方面提出一种制动能量管理系统, 包含于一牵引系统内, 该 牵引系统包含供电系统母线、 用于牵引一动力系统的牵引电机、 以及变换该供 电系统母线的电力信号以适合该牵引电机使用的变流器装置, 该制动能量管理 系统包括能量回馈装置、 电能储存装置、 耗能装置、 以及控制装置。 能量回馈 装置连接变流器装置与供电系统母线, 当能量回馈装置被启动时, 从变流器装置 获取制动能量并向供电系统母线回馈所述制动能量。 电能储存装置, 通过可控 的第一电能传导路径连接该变流器装置与该供电系统母线其中之一。耗能装置通 过可控的第二电能传导路径连接该变流器装置。 控制装置, 用以执行以下操作: 当检测到动力系统制动时, 首先启动能量回馈装置, 以将制动能量导入至该 供电系统母线;
当检测到该供电系统母线上的牵引负荷和 /或非牵引负荷的能量需求小于 制动能量时, 打开第一电能传导路径以将能量储存到该电能储存装置; 以及 当检测到电能储存装置存满电能时, 打开第二电能传导路径以将能量导入到 该耗能装置消耗。
在本发明的一实施例中, 能量回馈装置可独立于变流器装置配置。 在此例 中, 能量回馈装置可为逆变器。 在另一实施例中, 能量回馈装置可以是集成于 变流器装置内, 使变流器装置能够反向地将制动能量变换为适合于供电系统母 线的电力信号。
在本发明的一实施例中, 制动能量管理系统还可包括一连接保护装置, 其 响应控制装置而打开或关闭第一电能传导路径, 使电能储存装置进行充电或放 电。
在本发明的一实施例中, 制动能量管理系统还可包括一制动斩波装置, 其 响应控制装置而打开或关闭第二电能传导路径, 以控制能量是否导入耗能装置。
在本发明的一实施例中, 控制装置可在需要向牵引电机提供能量的任意时 刻打开第一电能传导路径, 以释放电能储存装置的能量。
在本发明的一实施例中, 电能储存装置可包括蓄电池、 超级电容器、 飞轮 储能、 超导电感储能、 液流电池、 压缩空气储能中的至少一种。
在本发明的一实施例中, 变流器装置可包括逆变器、 整流器和介于逆变器 与整流器之间的直流母线, 其中整流器是只进行整流的常规整流器。 在另一实 施例中, 整流器可优化为能够进行整流和逆变的四象限整流器, 从而变流器装 置获得双向电力馈送能力。
在本发明的一实施例中, 整流器可以是不控整流器、 半控整流器、 全控整 流器或者其组合。
在本发明的一实施例中, 逆变器可以是两电平、 三电平或者多电平拓扑结 构。
本发明的另一方面提出一种制动能量管理方法, 应用于一牵引系统, 该牵 引系统包含供电系统母线、 用于牵引一动力系统的牵引电机、 以及变换该供电 系统母线的电力信号以适合该牵引电机使用的变流器装置, 该方法包括以下步 骤: 当检测到该动力系统制动时, 使用一能量回馈装置将该变流器装置从牵引电 机获取的制动能量优先向该供电系统母线回馈,以为该供电系统母线上的非牵引 负荷和 /或牵引负荷供电;当检测到该供电系统母线上的牵引负荷和 /或非牵引负 荷的能量需求小于制动能量时, 将制动能量储存到一电能储存装置; 以及当检测 到电能储存装置存满电能时, 将制动能量导入到一耗能装置消耗。
在本发明的一实施例中,检测供电系统母线上的牵引负荷和 /或非牵引负荷 的能量需求是否小于制动能量包括检测该供电系统母线上的电压是否大于一电 压阈值。 在本发明的一实施例中,为该供电系统母线上的非牵引负荷和 /或牵引负荷 供电包括: 以对应于该供电系统母线上的非牵引负荷的一预定功率供电; 以及 当检测到该供电系统母线上存在另一动力系统被牵引时, 使该能量回馈装置继 续向该供电系统母线供电。
在本发明的一实施例中, 检测到电能储存装置存满电能包括检测变流器装置 中的直流母线电压是否大于一电压阈值。
在本发明的一实施例中, 释放电能储存装置的能量的功率是按照预定的曲 线进行。
本发明的又一方面提出一种制动能量管理方法, 应用于一牵引系统, 该牵 引系统包含供电系统母线、 用于牵引多个动力系统的多个牵引电机、 以及变换 该供电系统母线的电力信号以适合各牵引电机使用的多个变流器装置, 该方法 包括以下步骤: 当多个动力系统中的任一动力系统被制动时, 利用一能量回馈 装置将该变流器装置从牵引电机获取的制动能量优先向该供电系统母线回馈; 当 检测到该供电系统母线上的牵引负荷和 /或非牵引负荷的能量需求小于制动能 量时, 将制动能量储存到一电能储存装置; 以及当检测到电能储存装置存满电能 时, 将制动能量导入到一耗能装置消耗。
本发明中的动力系统并不仅限于高速磁浮列车, 而是可广泛用于其它轨道 交通、 轧钢、 电梯等系统。
上述的本发明一般描述和以下的具体实施方式不应视为限制性的。 此外, 除 在此阐述的内容之外还可提供特征或变换。例如在具体实施方式中描述的实施例可 涉及多种特征的组合和子组合。 附图概述
本发明的特征、 性能由以下的实施例及其附图进一步描述。
图 1是本发明一实施例的系统框图;
图 2是本发明实施例的能量管理流程图;
图 3(a)是图 1中的电能储存装置的能量存储-释放控制流程;
图 3(b)是图 1中的向制动电阻释放能量控制流程;
图 4是图 1中的电能储存装置与变流器直流母线的连接示意图;
图 5是描绘图 1制动能量利用管理的示意图; 图 6是根据本发明的一种接入变流器直流母线装置的方式;
图 7是根据本发明的另一种接入变流器直流母线装置的方式;
图 8是本发明中变流器逆变部分为三电平逆变器的一个实施例;
图 9是本发明中变流器逆变部分为三电平逆变器的另一个实施例; 图 10是本发明中变流器逆变部分为两电平逆变器的一个实施例;
图 11是本发明中的储能装置与交流母线连接的一个实施例;
图 12是本发明中变流器整流部分为不控整流的一个实施例;
图 13是本发明中变流器整流部分为半控整流的一个实施例;
图 14是本发明中变流器整流部分为全控整流的一个实施例。 本发明的最佳实施方式
图 1示出本发明一实施例的系统框图。 在图 1所示环境中, 通过三相交流 系统母线 80向各能量变换装置, 例如用于一列车 50的牵引变流器装置 70、 以 及另一列车 50a的另一牵引变流器装置 70a供电。 在本实施例中, 将牵引列车 50a的有关负荷需求称为牵引负荷。 两部或两部以上的列车通过三相交流系统 母线 80组成的供电网络连接, 可共享由供电网络提供的电能。 三相交流系统 母线 80也可向诸如相对小的动力、 照明等非直接用于牵引列车的非牵引负荷 30供电。 可以理解的是, 本发明并不限定于如图 1所示的环境, 而是可广泛用 于其它轨道交通、 轧钢、 电梯等系统。
上级电网 100经过三相交流主变压器 90变换后, 可向三相交流系统母线
80提供电能。 在三相交流系统母线 80与列车 50之间可设置包含整流器 71、 中间直流母线 72和逆变器 73的变流器装置 70。 在本发明的实施例中, 变流器 装置 70可将电能从交流系统母线 80输送到列车 50, 并至少可以相反的方向将 制动能量变换后输送到中间直流母线 72。
在本实施例中, 制动能量管理系统 40可包括能量回馈装置 401、 能量回馈 控制装置 41、 电能储存装置 42、 以及耗能装置 43。 电能储存装置 42可以是蓄 电池, 也可以是超级电容器、 飞轮储能、 超导电感储能、 液流电池、 压缩空气 储能等其它类型的电能存储装置。 耗能装置 43例如是能够将能量以热能或其 它方式耗散的装置。 通常, 选择电阻作为耗能装置 43的元件。
在图 1所示实施例中, 当列车制动时, 实现制动能量在以下三个方面的综合 能量管理: 交流系统母线 80的牵引负荷 70a和 /或非牵引负荷 30利用能量, 电能 储存装置 42储存能量, 耗能装置 43消耗能量。
根据本实施例, 当系统中的列车 50制动时, 制动能量通过逆变器 73反馈 到中间直流母线 72。 为了实现将中间直流母线 72的直流电逆变为交流电, 可 利用能量回馈装置 401逆变为交流电, 优先提供给交流系统母线 80上的非牵 引负荷 30或牵引负荷 70a使用。在一个实施例中, 能量回馈装置 401可由单独 的逆变器构成, 这将在参照图 8- 10的实施例中描述。 在另一个实施例中, 可将 整流器 71配置为具有逆变功能、 能量可以双向流动的整流器 (被称为四象限 整流器) , 这将在参照图 6和图 7的实施例中描述。 这相当于将能量回馈装置 401集成到变流器装置 70中, 使其可以双向传输能量。
为了实施制动能量控制, 系统还包含能量回馈控制装置 41。 根据需要, 能 量回馈控制装置 41可连接到交流系统母线 80、 能量回馈装置 401、 变流器装 置 70、 连接保护装置 45、 制动斩波装置 44中的部分或全部, 以实现系统状态 的检测和能量管理。
在一方面, 回馈至交流系统母线 80上的制动能量首先满足该母线上的动 力、 照明等非直接用于牵引列车的负荷 30使用。 对一个交流系统母线, 非列 车牵引负荷的功率通常为基本不变。 在本实施例中, 能量回馈控制装置 41既 可以通过实时监测该负荷值, 也可以通过预先设置一个固定的功率值并控制向 交流系统母线 80上输送的电能不大于此设定值, 来确保回馈至交流系统母线 80上的电能不向上级电网 100回馈。
另一方面, 当一部列车 (如列车 50 ) 制动, 而另一趟列车 (如列车 50a) 被牵引时, 从上级电网 100获得能量, 通过变压器 90变换成系统母线电压等 级, 通过与被牵引的列车相关联的变流器装置 (图未示;)向列车供电, 牵引列车 运行。 这时, 能量回馈控制装置 41通过检测主变压器 90输出侧电流的情况, 可判断是否有列车牵引, 如有, 则控制制动列车 50的能量继续向交流系统母 线 80回馈。
进一步, 如果能量回馈控制装置 41检测到交流系统母线 80的负荷需求小 于此时可能回馈至交流母线 80的制动能量,则启动电能储存装置 42进行存储。 在列车 50再次启动或者加速时, 储存的能量可以按一定速率释放出去, 以便 为下次能量吸收做好准备。
另外, 如果能量回馈控制装置 41检测到电能储存装置 42已经存满能量, 则剩下的制动能量通过耗能装置 43消耗掉。
在本发明的实施例中, 逆变器 73可为三相逆变器, 此三相逆变器 73可以 是三电平变流器, 也可以是两电平变流器、 或其它电平级数大于 3的多电平变 流器。 变流器装置 70向电机 60提供电压、 电流和频率可以调节的电能, 以牵 引列车 50运行。
在本实施例中, 变流器装置 70是双脉宽调制的能量可回馈型变流器。 在 实施列车牵引阶段, 变流器装置 70从三相交流系统母线 80获得电能。 而在列 车制动阶段, 制动能量也能从电机 60向交流母线 80方向传送。 在高速磁浮交 通的背景中, 三相交流系统母线 80是 20kV母线, 然而这旨在示例性地说明本 发明能够应用的电压量级, 而非作为限制。
电能储存装置 42可由储能装置, 例如超级电容器和相应的控制装置组成。 为了保护电能储存装置 42, 在电能储存装置 42的前端设置连接保护装置 45。 连接保护装置 45可以控制电能储存装置 42和与之连接的变流器装置的中间直 流母线 72之间的电能传导路径, 以决定释放储存或者释放能量。
当制动能量无法向其它方向流动、 消耗时, 通过耗能装置 43消耗掉。 耗 能装置 43的元件可以是铸铁、 或不锈钢、 或其它材料制成的满足列车最大可 能制动情况下功率需求的电阻。 耗能装置 43经制动斩波装置 44连接到变流器 装置中间直流母线 72, 该制动斩波装置 44可打开或关闭耗能装置 43与中间直 流母线 72之间的电能传导路径, 以控制电流是否流向耗能装置 43。
非牵引负荷 30可包括接在交流系统母线 80上的动力、 照明装置等非牵引 装置。
变流器装置 70a是接在交流系统母线 80上的与牵引另一列车 50a有关的牵 引负荷。 此另一列车 50a可具有与列车 50相似的能量管理系统 40a。
图 2是以流程图的形式示出本发明一实施例的制动能量管理流程。 图 5直 观地示出制动能量的 3种流通路径, 图 5中的虚线代表能量的流向。 下面参照 图 2和图 5描述本实施例中能量管理系统的控制流程:
在步骤 301, 当牵引列车 50运行时, 系统从三相交流系统母线 80获取能 量, 通过整流器 71、 中间直流母线 72、 逆变器 73, 送到电机 60, 驱动列车 50 运行。
当列车 50制动时, 列车 50的动能通过电机 60变为电能, 再通过逆变器
73、 中间直流母线 72、 整流器 71将制动能量优先提供给三相交流系统母线 80 下的负荷 70a、 30使用。
具体地说, 在步骤 302, 回馈至交流系统母线 80上的制动能量首先向交流 系统母线上的动力、 照明等非直接用于牵引列车的负荷 30提供电能。 对一个 交流系统母线, 非列车牵引负荷的功率通常为基本不变。 可以预先设置一个固 定的功率阈值 P0, 此功率阈值 P0不大于非牵引负荷 30的功率, 并且控制向交 流系统母线 80上输送的功率不大于 P0。
在步骤 303, 当一趟列车, 如列车 50制动, 而另一趟列车, 如列车 50a被 牵引时, 系统从上级电网 100获得能量, 通过三相交流主变压器 90变换成交 流系统母线 80的电压等级,通过对应于列车 50a的变流器装置 70a向其长定子 直线同步电机 60a供电, 以牵引列车 50a运行。 这时, 通过能量回馈控制装置 41的母线电压、 电流检测功能检测交流母线系统 80负荷情况 (该负荷代表电 压和电流的综合指标) , 可判断是否有列车正被牵引, 如有, 则控制列车 50 的能量继续向交流母线系统 80回馈。
在步骤 304, 如果交流系统母线 80上的负荷 70a、 30的能量需求之和小于 此时可能回馈直母线的制动能量, 则启动电能储存装置 42进行存储。 通过检 测变流器装置 70的中间直流母线 72的电压 Vx, 判定电能储存装置 42是否存 满, 如已经存满, 则进入到步骤 305。
在步骤 305,剩下的制动能量通过制动斩波装置 44,全部流向耗能装置 43, 由耗能装置 43消耗掉。
在实施上述能量管理控制过程中, 系统能量回馈控制装置 41, 通过检测交 流母线 80电压和 /或电流, 避免制动能量向上级电网 100回馈。
在上述步骤 304中, 电能储存装置 42的充电和放电控制如图 30)所示。 以 双脉宽调制能量可回馈型变流器装置 70的中间直流母线 72的直流母线电压 VI 和整流器输入侧 (即来自交流系统母线 80—侧) 电流 (或者功率) II为参考, 实施能量的储存或向中间直流母线 72的释放。 这可避免与变流器装置 70本身 在控制上开展复杂的协调控制。 控制方式为:
在步骤 S 10, 控制装置 41检测到中间直流母线 72的直流母线电压。 当于 步骤 S 11检测到直流母线电压高于电压阈值 VI时, 电能储存装置 42于步骤 S 12储存能量至存满为止。
在步骤 S 13, 控制装置 41检测变流器装置输入侧功率 Pl, 或者反应该功 率值的电流值 II。当于步骤 S14检测到整流器输入侧功率 P1 (;或电流值 II)大于 0时, 说明变流器装置 70从三相交流系统母线 80侧吸收能量, 由变流器装置 70变换后, 向牵引电机提供牵引能量。 此时, 电能储存装置 42也向中间直流 母线 72释放能量, 将上次制动阶段储存的能量释放出来为牵引列车提供部分 能量, 同时为下一次列车制动阶段向电能储存装置 42充电做好准备。
需要说明, 电能储存装置 42释放能量的时机并不限于上述的示例, 事实 上。 控制装置 41可在认为需要向牵引电机 60提供能量的任何时刻释放电能储 存装置 42的能量。
关于能量释放速率,假设 P2代表电能储存装置 42的最大功率、 P 1表示检 测到的整流器输入侧的功率, 当 P 1>P2时 (;步骤 S 15), 电能储存装置 42以功率 P2释放能量 (;步骤 S 16) ;否贝 I」,电能储存装置 42以功率 P 1释放能量 (;步骤 S 17)。 在上述的步骤 305中,耗能装置 43的充放电控制参照图 3(b)所示, 设置直流母 线电压阈值 V2, 由变流器装置 70检测直流母线电压 (步骤 S20), 根据中间直流 母线 72的直流母线电压是否大于阈值 V2(步骤 S21), 控制是否向耗能装置 43 释放电能。 在直流母线电压大于阈值 V2的情况下, 启动制动斩波装置 44, 向 耗能装置 43释放能量 (;步骤 S22)。
上述的阈值 VI、 V2为中间直流母线 72的直流母线电压, 其大小关系为 V2>V1。 作为例子, 中间直流母线电压为 ± 2500V。 阈值电压在实际电路中可 取 VI为 ± 2300V, V2为 ± 2700V。
图 5示出电能储存装置 42与直流母线连接示意图。 电能储存装置 42与变 流器装置 70在几个方面需要协调控制。 一个例子是保护策略的协调控制, 为 了避免影响变流器装置 70的保护策略, 在电能储存装置 42的预充电电路 48 和断路器 47之间增加全控开关 46。 实施故障保护时, 变流器装置 70可以立刻 切断电能储存装置 42通过中间直流母线 72向变流器装置 70提供能量的通路。
另一例子是停机放电协调控制。 变流器装置 70在停机检修时可以将断路 器 47断开, 从而实现电能储存装置 42和变流器装置 70之间的电气连接和切 断。
变流器装置 70为三电平变流器时, 电能储存装置 42的接入方式以及充放 电还需要与三电平中点电压平衡控制进行协调控制。
图 6是根据本发明的一种接入变流器直流母线的方式, 参照图 6所示, 三 相交流系统母线 801通过变压器 712、716、717和 718的组分别连接整流器 71 1、 715和整流器 713、 714。 电感 722、 722'为平波电抗器, 电容 741、 742为电压 支撑电容。 电阻 431、 431'以及图未示的电缆、 柜体、 以及可能附有的冷却装置 构成耗能装置 44, 受控制装置 401控制的开关管 441、 441 '构成制动斩波装置 44。 逆变单元 73 1跨接在正负直流母线之间, 形成逆变器的一个桥臂。 变流器 装置中包含三个逆变单元 731。 电能储存装置 421和 422串联后跨接在正、 负 直流母线上。 电能储存装置 421、 422在向直流母线 72释放能量时, 可采取小 电流释放能量的方式, 避免对整流部分控制中点电压平衡的影响。
图 7是根据本发明的另一种接入变流器直流母线装置的方式。 图 7中的大 部分结构与图 6相同, 只是电能储存装置 421和 422分别跨接在逆变器的正、 负直流母线与中线之间。 这种分别跨接在上下两个电容上的方式, 可增强变流 器装置的中点平衡能力。
电能储存装置接入中间直流母线的上述两种方式均可在列车加速时, 协助 提供牵引能量, 从而消去从电网吸收能量的尖峰。
整流器 71除了采用与逆变器 73同样结构的既可以逆变、 又可以整流的装 置外, 也可是如图 12所示的由功率二极管组成的三相全桥不可控整流器, 或 是图 13所示的半控整流器, 或是图 14所示的全控整流器。 以下介绍采用这些 不包含逆变功能的整流器的实施例。
图 8是本发明的能量管理系统中变流器逆变部分为三电平逆变器的一个实 施例。 与图 6的示例类似, 在本实施例中, 能量回馈装置 401、 402, 电能储存 装置 421、 422, 以及耗能装置 431、 432, 均分别直接接到三电平逆变器 731、 732的正、 负直流母线上。 能量回馈装置 401、 402为与逆变器 731、 732相同 的逆变器, 可以将直流电变换为交流电。
图 9是本发明的能量管理系统中变流器逆变部分为三电平逆变器的一个实 施例。 与图 7的示例类似, 在本实施例中, 能量回馈装置 401和 402、 403和 404, 电能储存装置 421和 422、 423和 424, 以及耗能装置 43 1和 432、 433和 434, 均分别跨接在三电平逆变器 731、 732的正、 负直流母线与分裂电容中点 之间。
图 10是本发明的能量管理系统中变流器逆变部分为两电平逆变器的一个 实例。 在本实施例中, 能量回馈装置 401、 402, 电能储存装置 421、 422, 以 及耗能装置 431、 432, 均分别直接接到两电平逆变器 731、 732的正、 负直流 母线上。
图 1 1是本发明中电能储存装置接到交流母线的一个实施例。 在本实施例 中, 电能储存装置 421不连接到逆变器的中间直流母线 72的直流母线, 而是 连接到系统的交流母线 80。 与连接到逆变器直流母线的实施例不同, 连接到系 统交流母线 80的实施例具有以下好处: 一是可以应用于无直流母线的逆变器 中, 如 AC/AC电机拖动系统、 矩阵式电机拖动系统等。 二是一套能量储存装 置可以同时供多套逆变系统共同使用, 相比之下, 在连接到逆变器直流母线的 能量存储系统仅可以供一套逆变系统使用。
图 12是本发明中变流器整流部分为不控整流桥的一个实施例。 在本实施 例中, 不控整流桥 761和逆变器 762相连, 为牵引电机 763供电。
图 13是本发明中变流器整流部分为半控整流桥的一个实例。 在本实施例 中, 半控整流桥 764和逆变器 765相连, 为牵引电机 766供电。
图 14是本发明中变流器整流部分为全控整流桥的一个实例。 在本实施例 中, 全控整流桥 771和逆变器 772相连, 为牵引电机 773供电。
本发明的实施例通过将制动能量回馈系统母线、 通过电能储存装置储存供 下次利用, 回收了制动能量, 减少了能量的浪费。 另外, 由于回馈到系统母线 的能量仅供本区域内的非牵引装置或者其它牵引装置使用, 并未回馈上级电 网, 所以不会导致对于上级电网的谐波污染和回馈电流冲击。
以某一牵引站各变流器情况为例, 其配置条件如下: 允许回馈系统母线的 功率按照非牵引装置的统计平均值 1MW进行计算; 储能单元配置为
105MJ/1MW (每套变流器各配一套) 。
对于一 5辆编组列车, 其制动能量共 391.2MJ。 其中, 系统母线非牵引装 置共消耗制动能量 90.42MJ, 电能储存装置可吸收制动能量 238.9MJ, 制动电 阻消耗制动能量 61.85MJ。 制动能量利用率高达 84%, 节能效果明显。
通过进一步合理编排运输组织, 在保证接在同一系统母线上的多个列车变 流器装置, 一列车制动时, 另有其他的车辆处于牵引状态, 则消耗于制动电阻 上的制动能量可以明显降低或为 0, 这样制动能量利用率可以更大提高。

Claims

权 利 要 求
1. 一种制动能量管理系统, 包含于一牵引系统内, 该牵引系统包含供电 系统母线、 用于牵引一动力系统的牵引电机、 以及变换该供电系统母线的电力 信号以适合该牵引电机使用的变流器装置, 该制动能量管理系统包括:
能量回馈装置, 连接该变流器装置与该供电系统母线, 当该能量回馈装置被 启动时,从该变流器装置获取制动能量并向该供电系统母线回馈所述制动能量; 电能储存装置,通过可控的第一电能传导路径连接该变流器装置与该供电系统 母线其中之一;
耗能装置, 通过可控的第二电能传导路径连接该变流器装置; 以及
控制装置, 用以执行以下操作:
当检测到动力系统制动时, 首先启动能量回馈装置, 以将制动能量导入至该供 电系统母线;
当检测到该供电系统母线上的牵引负荷和 /或非牵引负荷的能量需求小于制 动能量时, 打开第一电能传导路径以将能量储存到该电能储存装置; 以及
当检测到电能储存装置存满电能时, 打开第二电能传导路径以将能量导入到该 耗能装置消耗。
2. 根据权利要求 1所述的制动能量管理系统, 其中所述能量回馈装置独立 于所述变流器装置配置。
3. 根据权利要求 2所述的制动能量管理系统, 其中所述能量回馈装置为逆 变器。
4. 根据权利要求 1所述的制动能量管理系统, 其中所述能量回馈装置是集 成于所述变流器装置内,使所述变流器装置能够反向地将制动能量变换为供电系统 母线的电力信号。
5. 根据权利要求 1所述的制动能量管理系统, 还包括一连接保护装置, 响 应所述控制装置而打开或关闭所述第一电能传导路径,使所述电能储存装置进行充 电或放电。
6. 根据权利要求 1所述的制动能量管理系统, 还包括一制动斩波装置, 响应所述控制装置而打开或关闭所述第二电能传导路径, 以控制能量是否导入所 述耗能装置。
7. 根据权利要求 1所述的制动能量管理系统, 其中控制装置在需要向牵引 电机提供能量的任意时刻打开该第一电能传导路径, 以释放该电能储存装置的能
8. 根据权利要求 1所述的制动能量管理系统, 其中所述电能储存装置包括 蓄电池、 超级电容器、 飞轮储能、 超导电感储能、 液流电池、 压缩空气储能中的至 少一种。
9. 根据权利要求 2所述的制动能量管理系统, 其中所述变流器装置包括逆 变器、 整流器和介于逆变器与整流器之间的直流母线。
10. 根据权利要求 4所述的制动能量管理系统, 其中所述变流器装置包括逆 变器、整流器和介于逆变器与整流器之间的直流母线,其中所述整流器是能够进行 整流和逆变的四象限整流器。
11. 根据权利要求 9所述的制动能量管理系统, 其中所述整流器是不控整流 器、 半控整流器、 全控整流器或者其组合。
12. 根据权利要求 9或 10所述的制动能量管理系统, 其中所述逆变器是两 电平、 三电平或者多电平拓扑结构。
13. 一种制动能量管理方法, 应用于一牵引系统, 该牵引系统包含供电系 统母线、 用于牵引一动力系统的牵引电机、 以及变换该供电系统母线的电力信 号以适合该牵引电机使用的变流器装置, 该方法包括以下步骤:
当检测到该动力系统制动时,使用一能量回馈装置将该变流器装置从牵引电 机获取的制动能量优先向该供电系统母线回馈,以为该供电系统母线上的非牵引 负荷和 /或牵引负荷供电;
当检测到该供电系统母线上的牵引负荷和 /或非牵引负荷的能量需求小于 制动能量时, 将制动能量储存到一电能储存装置;
当检测到电能储存装置存满电能时, 将制动能量导入到一耗能装置消耗。
14. 根据权利要求 13所述的制动能量管理方法, 其中检测该供电系统母线 上的牵引负荷和 /或非牵引负荷的能量需求是否小于制动能量包括检测该供电系统 母线上的电压是否大于一电压阈值。
15. 根据权利要求 13所述的制动能量管理方法, 其中为该供电系统母线 上的非牵引负荷和 /或牵引负荷供电包括:
以对应于该供电系统母线上的非牵引负荷的一预定功率供电; 以及 当检测到该供电系统母线上存在另一动力系统被牵引时, 使该能量回馈装置 继续向该供电系统母线供电。
16. 根据权利要求 13所述的制动能量管理方法, 其中该变流器装置包括 逆变器、 整流器和介于逆变器与整流器之间的直流母线; 该能量回馈装置连接 到该整流器和该供电系统母线。
17. 根据权利要求 16所述的制动能量管理方法, 其中检测到电能储存装 置存满电能包括检测该直流母线电压是否大于一电压阈值。
18. 根据权利要求 13所述的制动能量管理方法, 其中在需要向牵引电机 提供能量的任意时刻释放该电能储存装置的能量。
19. 根据权利要求 18所述的制动能量管理方法, 其中释放该电能储存装 置的能量的功率是按照预定的曲线进行。
20. 一种制动能量管理方法, 应用于一牵引系统, 该牵引系统包含供电系 统母线、 用于牵引多个动力系统的多个牵引电机、 以及变换该供电系统母线的 电力信号以适合各牵引电机使用的多个变流器装置, 该方法包括以下步骤: 当多个动力系统中的任一动力系统被制动时, 利用一能量回馈装置将该变 流器装置从牵引电机获取的制动能量优先向该供电系统母线回馈;
当检测到该供电系统母线上的牵引负荷和 /或非牵引负荷的能量需求小于 制动能量时, 将制动能量储存到一电能储存装置; 以及
当检测到电能储存装置存满电能时, 将制动能量导入到一耗能装置消耗。
PCT/CN2010/071039 2010-03-15 2010-03-15 制动能量管理系统及其控制方法 WO2011113191A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201080065461.7A CN103153683B (zh) 2010-03-15 2010-03-15 制动能量管理系统及其控制方法
PCT/CN2010/071039 WO2011113191A1 (zh) 2010-03-15 2010-03-15 制动能量管理系统及其控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/071039 WO2011113191A1 (zh) 2010-03-15 2010-03-15 制动能量管理系统及其控制方法

Publications (1)

Publication Number Publication Date
WO2011113191A1 true WO2011113191A1 (zh) 2011-09-22

Family

ID=44648409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/071039 WO2011113191A1 (zh) 2010-03-15 2010-03-15 制动能量管理系统及其控制方法

Country Status (2)

Country Link
CN (1) CN103153683B (zh)
WO (1) WO2011113191A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104627004A (zh) * 2014-09-24 2015-05-20 中国北车集团大连机车车辆有限公司 内燃机车辅助传动及列车供电一体化电源
CN105699763A (zh) * 2016-03-09 2016-06-22 苏州市万松电气有限公司 列车用电设备能耗数据采集分析系统及方法
EP2965940A4 (en) * 2013-03-06 2016-12-28 Mitsubishi Electric Corp MAIN CONVERSION DEVICE FOR AN ELECTRIC VEHICLE
CN113258662A (zh) * 2021-06-21 2021-08-13 北京晟科网鼎网络科技有限公司 电动设备的能量分配方法、能量分配装置及电动装载机

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104494449B (zh) * 2014-11-20 2017-07-07 许继电气股份有限公司 模块化地铁制动回馈装置的智能休眠与轮换控制方法
CN105730251B (zh) * 2014-12-09 2018-08-21 株洲南车时代电气股份有限公司 应用于列车的过压斩波能耗均衡控制系统
CN107380187B (zh) * 2016-11-28 2019-12-03 盾石磁能科技有限责任公司 轨道交通再生制动能量综合回收利用装置及方法
CN109672348A (zh) * 2017-10-16 2019-04-23 株洲中车时代电气股份有限公司 一种高速磁浮列车供电系统
CN109823187B (zh) * 2017-11-23 2020-12-29 株洲中车时代电气股份有限公司 一种电制动能量回馈系统
CN109204012A (zh) * 2018-09-03 2019-01-15 中车大连机车车辆有限公司 用于轨道车辆的动力制动控制系统及轨道车辆
CN110182053B (zh) * 2019-06-04 2021-03-12 中电建路桥集团有限公司 一种磁悬浮储能飞轮能量制动保护系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19617048C1 (de) * 1996-04-18 1997-07-24 Elpro Ag Verfahren zur Energierückspeisung für Puls-Umrichter mit Spannungs-Zwischenkreis
WO1998044623A1 (fr) * 1997-04-03 1998-10-08 Fanuc Ltd Convertisseur du type a transformateur
CN101159425A (zh) * 2007-10-19 2008-04-09 王武 电梯扶梯组群变频驱动统一供电节能运行方法及装置
CN101249802A (zh) * 2008-03-27 2008-08-27 上海工程技术大学 城市轨道交通车辆制动能量回收系统
CN101376344A (zh) * 2008-09-28 2009-03-04 东南大学 地铁供电系统的多目标综合控制节能方法
CN101633322A (zh) * 2009-08-26 2010-01-27 上海磁浮交通发展有限公司 可向电网回馈制动能量的磁浮牵引供电系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19617048C1 (de) * 1996-04-18 1997-07-24 Elpro Ag Verfahren zur Energierückspeisung für Puls-Umrichter mit Spannungs-Zwischenkreis
WO1998044623A1 (fr) * 1997-04-03 1998-10-08 Fanuc Ltd Convertisseur du type a transformateur
CN101159425A (zh) * 2007-10-19 2008-04-09 王武 电梯扶梯组群变频驱动统一供电节能运行方法及装置
CN101249802A (zh) * 2008-03-27 2008-08-27 上海工程技术大学 城市轨道交通车辆制动能量回收系统
CN101376344A (zh) * 2008-09-28 2009-03-04 东南大学 地铁供电系统的多目标综合控制节能方法
CN101633322A (zh) * 2009-08-26 2010-01-27 上海磁浮交通发展有限公司 可向电网回馈制动能量的磁浮牵引供电系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2965940A4 (en) * 2013-03-06 2016-12-28 Mitsubishi Electric Corp MAIN CONVERSION DEVICE FOR AN ELECTRIC VEHICLE
CN104627004A (zh) * 2014-09-24 2015-05-20 中国北车集团大连机车车辆有限公司 内燃机车辅助传动及列车供电一体化电源
CN105699763A (zh) * 2016-03-09 2016-06-22 苏州市万松电气有限公司 列车用电设备能耗数据采集分析系统及方法
CN113258662A (zh) * 2021-06-21 2021-08-13 北京晟科网鼎网络科技有限公司 电动设备的能量分配方法、能量分配装置及电动装载机

Also Published As

Publication number Publication date
CN103153683B (zh) 2015-08-26
CN103153683A (zh) 2013-06-12

Similar Documents

Publication Publication Date Title
WO2011113191A1 (zh) 制动能量管理系统及其控制方法
CN103311950B (zh) 城市轨道列车再生制动能量吸收利用系统及方法
WO2019085228A1 (zh) 一种轨道交通混合动力电路、储能动力包及其供电方法
US7451842B2 (en) Control system for electric motor car
WO2020000843A1 (zh) 优化的城市轨道列车能源互联系统
CN101376344B (zh) 地铁供电系统的多目标综合控制节能方法
WO2018054007A1 (zh) 列车的制动回收系统和方法及列车
WO2019119495A1 (zh) 一种列车牵引救援方法及系统
JP5525492B2 (ja) 鉄道き電システム
WO2014206081A1 (zh) 一种储能装置供电的动车组牵引系统
CN111806235B (zh) 一种车地一体多功能应急储能供电系统及其控制方法
CN114362163B (zh) 一种可再生能源微网供电的铁路能量路由调控方法
CN107591870A (zh) 电梯用储能系统
CN109649222B (zh) 城轨列车再生能量综合利用系统及其控制方法
CN105059129A (zh) 复合电源、使用该复合电源的供能系统及电动汽车
CN109353367B (zh) 基于飞轮储能和电阻制动的再生能量回收系统及控制方法
Yang et al. An overview on braking energy regeneration technologies in Chinese urban railway transportation
CN112152270A (zh) 应用于地铁列车再生制动的超导磁储能装置及其控制方法
CN207311178U (zh) 高速动车组动力牵引和再生制动的能量储放电系统
CN112009272B (zh) 一种双流制机车储能系统的控制方法及系统
CN111660878B (zh) 制动能量回收和应急牵引储能系统、供电系统及控制方法
WO2019040488A1 (en) HYBRID ENERGY RECOVERY SYSTEMS IN TRACK EDGE
CN103151806B (zh) 一种牵引供电系统及方法
CN115579919A (zh) 一种适用于轨道交通的飞轮储能系统及方法
Kumar et al. Investigation on recuperation of regenerative braking energy using ESS in (urban) rail transit system

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080065461.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10847660

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 10847660

Country of ref document: EP

Kind code of ref document: A1