WO2018053940A1 - 无磁钢制品及其粉末冶金制造方法 - Google Patents

无磁钢制品及其粉末冶金制造方法 Download PDF

Info

Publication number
WO2018053940A1
WO2018053940A1 PCT/CN2016/108279 CN2016108279W WO2018053940A1 WO 2018053940 A1 WO2018053940 A1 WO 2018053940A1 CN 2016108279 W CN2016108279 W CN 2016108279W WO 2018053940 A1 WO2018053940 A1 WO 2018053940A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
magnetic steel
steel product
metallurgy manufacturing
powder metallurgy
Prior art date
Application number
PCT/CN2016/108279
Other languages
English (en)
French (fr)
Inventor
朱权利
肖志瑜
陈家坚
马超
吴苑标
刘军
潘永汉
Original Assignee
广东粤海华金科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东粤海华金科技股份有限公司 filed Critical 广东粤海华金科技股份有限公司
Publication of WO2018053940A1 publication Critical patent/WO2018053940A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Definitions

  • the invention relates to the technical field of powder metallurgy, in particular to a non-magnetic steel product and a powder metallurgy manufacturing method thereof.
  • Non-magnetic steels are used in a wide variety of applications, including non-magnetic steels in automatic control systems, precision instruments, telecommunications and motors, and many military applications.
  • non-magnetic steels in automatic control systems, precision instruments, telecommunications and motors, and many military applications.
  • the material used for the balancing block is gradually changed from a high-cost copper base to a lower-cost high-manganese steel base, and the materials are required to be magnetic or not magnetized.
  • non-magnetic steel products such as balance blocks are mainly prepared by precision casting or forging processes.
  • the precision casting or forging has a long production cycle and high cost.
  • the size of the non-magnetic steel products is also reduced, which is not suitable for production by precision casting or forging. Therefore, it is increasingly difficult to meet the needs of the market by using conventional precision casting or forging processes.
  • the WC element powder in order to improve the density of the powder compact, the WC element powder is added to the Fe-Mn alloy powder for pressing, and the green density is increased by the high specific gravity of the WC element powder, but it is difficult to press-form due to the WC plasticity difference. Therefore, high-speed pressing is required to form the molding, and the pressing process is costly.
  • a powder metallurgy manufacturing method for a non-magnetic steel product comprising the following steps:
  • the Fe-Mn prealloy comprises the following components by weight: Mn 20-50%, C0.2-0.6%, Si 0.5-1.2%, S ⁇ 0.05%, P ⁇ 0.1%, O ⁇ 1.15%, the balance is Fe;
  • the alloy powder comprises, by weight percentage, 60-90% of Fe-Mn prealloyed powder, 10-25% of Cu powder, 0-5% of Cr powder, 0-5% of Ni powder, and 0-2 of P powder. % and Fe powder 0 to 30%;
  • the green body is sintered to obtain the non-magnetic steel product.
  • the above alloy powder preferably comprises, by weight percentage, 60 to 80% of the Fe-Mn prealloyed powder, 15 to 25% of Cu powder, 1 to 5% of Cr powder, 1 to 5% of Ni powder, and 1 to 5% of P powder. 2% and Fe powder 2 to 4%.
  • the Fe-Mn prealloyed powder has a particle size distribution of from 80 to 300 mesh.
  • the particle size distribution refers to the particle size distribution of the Fe-Mn prealloyed powder after sieving.
  • the Fe-Mn prealloy is prepared by smelting and mixing A3 steel, graphite and electrolytic manganese by water atomization.
  • A3 steel refers to steel with standard chemical composition of Fe and C, A3 is the steel label, and 3 refers to its carbon content of 0.003%.
  • the non-magnetic steel product comprises the following components by weight: Mn 16-30%, Cu10-25%, C 0.12-0.6%, Si 0.5-1.2%, S ⁇ 0.1%, Cr ⁇ 5%, Ni ⁇ 5%, P ⁇ 2%, and the balance is Fe.
  • the green density is from 5.8 to 6.4 g/cm 3 .
  • the sintering temperature is from 1150 ° C to 1200 ° C for a period of from 1 to 2 h.
  • the binder is added in an amount of from 0.6 to 1.0% by weight of the alloy powder.
  • the binder is zinc stearate.
  • the non-magnetic steel product is a counterweight.
  • the present invention also provides a non-magnetic steel product produced by the powder metallurgy manufacturing method of the non-magnetic steel product.
  • the present invention has the following beneficial effects:
  • the invention discloses a powder metallurgy manufacturing method for a non-magnetic steel product.
  • the method adopts a composite powdering method, that is, first preparing Fe-Mn prealloyed powder, and further adding Fe powder and Cu powder in the Fe-Mn prealloyed powder (preferably further adding P powder, Ni powder, Cr powder), etc.
  • the element powder is used to prepare the alloy powder, and the composition of the Fe-Mn prealloyed powder and the elemental powder in the alloy powder is reasonably arranged. Since the elemental powder has good compaction and formability, the Fe-Mn prealloyed powder and the elemental powder are mixed.
  • the problem that the pre-alloyed Fe-Mn powder has poor compressibility and formability can be effectively solved, and the obtained alloy powder has good compressibility and can be press-formed by an ordinary mechanical press, and the obtained non-magnetic steel product has stable dimensional and density of 7.3 ⁇ . 7.5g/cm 3 , tensile strength up to 380 ⁇ 480MPa, elongation of up to 3 ⁇ 5%.
  • the powder metallurgy manufacturing method of the non-magnetic steel product of the invention not only has high performance of the non-magnetic steel product, but also has simple process and low cost, and can be used for occasions with high mechanical performance requirements, and greatly expands the existing non-magnetic material.
  • non-magnetic steel product of the present invention and its powder metallurgy manufacturing method will be further described in detail below in conjunction with specific embodiments.
  • the Fe-Mn prealloyed powder used in the invention has a particle size distribution of 80 to 300 mesh, and the preparation method is as follows:
  • Fe-Mn prealloyed powder According to the required composition of Fe-Mn prealloyed powder, A3 steel is placed in an intermediate frequency furnace to be heated and melted in a certain ratio, and then electrolytic manganese and graphite are added; after being melted, it is deoxidized with ferrosilicon and prepared by water atomization method. Fe-Mn prealloyed powder.
  • the powder metallurgy manufacturing method of the non-magnetic steel product (balance block) of the embodiment comprises the following steps:
  • the Fe-Mn prealloyed powder includes the following components by weight: Mn 50%, C 0.2%, Si 1%, S ⁇ 0.05%, P ⁇ 0.1%, O ⁇ 1.15%, and the balance is Fe.
  • the mixed mixed powder is sent to a general mechanical press to form a green body of the balance block, and the density is controlled at 6.4 g/cm 3 .
  • the pressed green body is sintered in a pusher furnace at a sintering temperature of 1150 ° C to 1200 ° C and a sintering time of 1.5 h.
  • the obtained weight block comprises the following components by weight: Mn 30%, Cu 25%, C 0.12%, Si 0.6%, S ⁇ 0.1%, Cr 5 %, Ni 5%, P 1%, and the balance is Fe.
  • the powder metallurgy manufacturing method of the non-magnetic steel product (balance block) of the embodiment comprises the following steps:
  • the Fe-Mn prealloyed powder includes the following components by weight: Mn 30%, C 0.3%, Si 0.8%, S ⁇ 0.05%, P ⁇ 0.1%, O ⁇ 1.15%, and the balance is Fe.
  • the mixed mixed powder is sent to a general mechanical press to form a green body of the balance block, and the density is controlled at 6.0 g/cm 3 .
  • the pressed green body is sintered in a pusher furnace at a sintering temperature of 1150 ° C to 1200 ° C and a sintering time of 1.5 h.
  • the sintered green body is subjected to polishing deburring treatment, and the obtained balance block comprises the following components by weight: Mn 24%, Cu 15%, C 0.24%, Si 0.64%, S ⁇ 0.1%, Cr1% Ni 1%, P 1%, and the balance is Fe.
  • the powder metallurgy manufacturing method of the non-magnetic steel product (balance block) of the embodiment comprises the following steps:
  • the Fe-Mn prealloyed powder includes the following components by weight: Mn 20%, C 0.6%, Si 0.6%, S ⁇ 0.05%, P ⁇ 0.1%, O ⁇ 1.15%, and the balance is Fe.
  • the mixed mixed powder is sent to a common mechanical press to form a green body of the balance block, and the density is controlled at 5.8 g/cm 3 .
  • the pressed green body is sintered in a pusher furnace at a sintering temperature of 1150 ° C to 1200 ° C and a sintering time of 1.5 h.
  • the obtained weight block comprises the following components by weight: Mn 18%, Cu 10%, C 0.54%, Si 0.54%, S ⁇ 0.1%, balance For Fe.
  • the present invention relates to a powder metallurgy manufacturing method for a non-magnetic steel product (balance block) comprising the following steps:
  • the mixed alloy powder is sent to a common mechanical press to form a green body of the balance block, and the density is controlled at 6.2 g/cm 3 .
  • the pressed green body is sintered in a pusher furnace at a sintering temperature of 1150 ° C to 1200 ° C and a sintering time of 1.5 h.
  • the obtained weight block comprises the following components by weight: Mn 20%, Cu 15%, C 0.5%, Si 1%, S ⁇ 0.5%, Cr 2 %, Ni 2%, P 1%, and the balance is Fe.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种无磁钢制品及其粉末冶金制造方法。该粉末冶金制造方法包括如下步骤:Fe-Mn预合金粉制备:该Fe-Mn预合金粉包括如下重量百分比的成分:Mn 20~50%、C 0.2~0.6%、Si 0.5~1.2%、S≤0.05%、P≤0.1%、O≤1.15%,余量为Fe;于所述Fe-Mn预合金粉中加入其它合金粉末和粘结剂,混合后成型,得到生坯;将所述生坯进行烧结,得到所述无磁钢制品。该方法制备得到的无磁钢制品尺寸稳定、密度高、强韧性好,且制造方法简单、制造成本低。

Description

无磁钢制品及其粉末冶金制造方法 技术领域
本发明涉及粉末冶金技术领域,特别是涉及一种无磁钢制品及其粉末冶金制造方法。
背景技术
无磁钢的用途非常广泛,在自动控制系统、精密仪表、电讯和电机,以及许多军事领域中都需要采用无磁钢。如随着制冷行业的发展,压缩机的需求越来越大,压缩机中的平衡块作用重大,其维持了曲轴在高速旋转时的平稳状态。平衡块所用的材料从成本高的铜基逐渐改用成本较低的高锰钢铁基,且材料均要求不带磁性或不被磁化。
目前,如平衡块等的无磁钢制品主要采用精密铸造或锻造工艺制备。而精密铸造或锻造的生产周期较长,成本较高,同时由于设备的尺寸不断变小,无磁钢制品的大小也在减小,不适合用精密铸造或锻造来生产。因此采用传统精密铸造或锻造工艺越来越难于满足市场的需求。
现有的粉末冶金制造无磁钢工艺,由于Fe-Mn合金粉的强度高,且具有强烈的加工硬化的特性,导致粉末压制性和成形性差,生坯强度低,使粉末冶金制品的密度和强韧性较差,而若采用元素粉Mn粉和Fe粉普通压制成形,烧结时由于Mn高温时升华产生较大的蒸汽压,材料合金化困难,达不到无磁性、高密度和强韧性的要求。
基于此,部分现有技术为改善粉末压制品的密度,在Fe-Mn合金粉中加入WC元素粉末进行压制,以WC元素粉末的高比重来提高生坯密度,但是由于WC塑性差难以压制成形,因此需采用高速压制才能得以成型,这种方法压制工艺成本较高。
发明内容
基于此,有必要提供一种高密度、强韧性好、方法简单、制造成本低的无磁钢制品的粉末冶金制造方法。
一种无磁钢制品的粉末冶金制造方法,包括如下步骤:
Fe-Mn预合金粉制备:该Fe-Mn预合金包括如下重量百分比的成分:Mn 20~50%、C0.2~0.6%、Si 0.5~1.2%、S≤0.05%、P≤0.1%、O≤1.15%,余量为Fe;
于所述Fe-Mn预合金粉中加入Cu粉、Cr粉、Ni粉、P粉和Fe粉,得合金粉末;再于所述合金粉末中加入粘结剂,混合后压制成型,得到生坯;其中,所述合金粉末以重量百分比计,包括Fe-Mn预合金粉60~90%、Cu粉10~25%、Cr粉0~5%、Ni粉0~5%、P粉0~2%和Fe粉0~30%;
将所述生坯进行烧结,得所述无磁钢制品。
上述合金粉末优选为,以重量百分比计,包括所述Fe-Mn预合金粉60~80%、Cu粉15~25%、Cr粉1~5%、Ni粉1~5%、P粉1~2%和Fe粉2~4%。
在其中一个实施例中,所述Fe-Mn预合金粉的粒度分布为80~300目。该粒度分布是指过筛后筛下的Fe-Mn预合金粉的粒度分布。
在其中一个实施例中,所述Fe-Mn预合金由A3钢、石墨和电解锰经熔炼混合后,采用水雾化法制备而成。
A3钢是指标准化学成分为Fe和C的钢,A3是钢的标号,3是指其含碳量0.003%。
在其中一个实施例中,所述无磁钢制品包括如下重量百分比的成分:Mn 16~30%、Cu10~25%、C 0.12~0.6%、Si 0.5~1.2%、S≤0.1%、Cr≤5%,Ni≤5%、P≤2%,余量为Fe。
在其中一个实施例中,所述生坯密度为5.8~6.4g/cm3
在其中一个实施例中,所述烧结的温度为1150℃~1200℃,时间1~2h。
在其中一个实施例中,所述粘结剂的加入量为所述合金粉末重量的0.6~1.0%。
在其中一个实施例中,所述粘结剂为硬脂酸锌。
在其中一个实施例中,所述无磁钢制品为平衡块。
本发明还提供所述的无磁钢制品的粉末冶金制造方法制造得到的无磁钢制品。
与现有技术相比,本发明具有以下有益效果:
本发明公开了一种无磁钢制品的粉末冶金制造方法。该方法采用复合配粉的方法,即先制备Fe-Mn预合金粉,再在Fe-Mn预合金粉中进一步添加Fe粉、Cu粉(优选为进一步添加P粉、Ni粉、Cr粉)等元素粉以制备合金粉末,并合理配置合金粉末中Fe-Mn预合金粉与元素粉的成分,由于元素粉具有较好的压制性和成形性,将Fe-Mn预合金粉和元素粉混合后,能够有效解决预合金Fe-Mn粉压缩性和成形性差的问题,所得合金粉末压缩性好,采用普通机械压机即可压制成型,制得的无磁钢制品尺寸稳定、密度可达到7.3~7.5g/cm3,抗拉强度达到380~480MPa,伸长率高达3~5%。
与现有技术相比,本发明的无磁钢制品的粉末冶金制造方法不仅无磁钢制品性能高,而且工艺简单、成本低,可用于对力学性能要求高的场合,大幅扩展现有无磁钢制品的工业化应用范围。
此外,合理控制各步骤的工艺参数,能够进一步保证制得的无磁钢制品的优良性能。
具体实施方式
以下结合具体实施例对本发明的无磁钢制品及其粉末冶金制造方法作进一步详细的说明。
本发明采用的Fe-Mn预合金粉的粒度分布为80~300目,制备方法如下:
根据所需的Fe-Mn预合金粉成分,按一定配比将A3钢置于中频炉中升温熔化后,加入电解锰和石墨;待熔清后,用硅铁脱氧,采用水雾化法制备Fe-Mn预合金粉。
实施例1
本实施例一种无磁钢制品(平衡块)的粉末冶金制造方法,包括如下步骤:
a)首先,按重量百分比为Fe-Mn预合金粉60%、Cu粉25%、Cr粉5%、Ni粉5%、P粉1%,剩余为Fe粉,配制混合粉末,再加入该混合粉末总重量0.6%的硬脂酸锌(粘结剂),用混粉机搅拌均匀备用;
其中,Fe-Mn预合金粉包括如下重量百分比的成分:Mn 50%、C 0.2%、Si 1%、S≤0.05%、P≤0.1%、O≤1.15%,余量为Fe。
b)将混好的混合粉末送普通机械压机压制成型,制得平衡块的生坯,密度控制在6.4g/cm3
c)将压制的生坯在推舟炉中进行烧结,其烧结温度为1150℃~1200℃,烧结时间1.5h。
d)对烧结后的生坯进行抛光去毛刺处理,即可,所得平衡块包括如下重量百分比的成分:Mn 30%、Cu 25%、C 0.12%、Si 0.6%、S≤0.1%、Cr 5%,Ni 5%、P 1%,余量为Fe。
实施例2
本实施例一种无磁钢制品(平衡块)的粉末冶金制造方法,包括如下步骤:
a)首先,按重量百分比Fe-Mn预合金粉80%、Cu粉15%、Cr粉1%、Ni粉1%、P粉1%,剩余为Fe粉,配制混合粉末,再加入该混合粉末总重量0.8%的硬脂酸锌(粘结剂),用混粉机搅拌均匀备用;
其中,Fe-Mn预合金粉包括如下重量百分比的成分:Mn 30%、C 0.3%、Si 0.8%、S≤0.05%、P≤0.1%、O≤1.15%,余量为Fe。
b)将混好的混合粉末送普通机械压机压制成型,制得平衡块的生坯,密度控制在6.0g/cm3
c)将压制的生坯在推舟炉中进行烧结,其烧结温度为1150℃~1200℃,烧结时间1.5h。
d)对烧结后的生坯进行抛光去毛刺处理,即可,所得平衡块包括如下重量百分比的成分:Mn 24%、Cu 15%、C 0.24%、Si 0.64%、S≤0.1%、Cr1%,Ni 1%、P 1%,余量为Fe。
实施例3
本实施例一种无磁钢制品(平衡块)的粉末冶金制造方法,包括如下步骤:
a)首先,按重量百分比Fe-Mn预合金粉90%、Cu粉10%,配制混合粉末,再加入该混合粉末总重量1.0%的硬脂酸锌锌(粘结剂),用混粉机搅拌均匀备用;
其中,Fe-Mn预合金粉包括如下重量百分比的成分:Mn 20%、C 0.6%、Si 0.6%、S≤0.05%、P≤0.1%、O≤1.15%,余量为Fe。
b)将混好的混合粉末送普通机械压机压制成型,制得平衡块的生坯,密度控制在5.8g/cm3
c)将压制的生坯在推舟炉中进行烧结,其烧结温度为1150℃~1200℃,烧结时间1.5h。
d)对烧结后的生坯进行抛光去毛刺处理,即可,所得平衡块包括如下重量百分比的成分:Mn 18%、Cu 10%、C 0.54%、Si 0.54%、S≤0.1%,余量为Fe。
对比例
本对比例一种无磁钢制品(平衡块)的粉末冶金制造方法,包括如下步骤:
a)首先,按照Mn 20%、Cu 15%、C 0.5%、Si 1%、S≤0.5%、Cr 2%,Ni 2%、P 1%, 余量为Fe,配制混合粉末,用混粉机搅拌均匀备用。
b)将混好的合金粉末送普通机械压机压制成型,制得平衡块的生坯,密度控制在6.2g/cm3
c)将压制的生坯在推舟炉中进行烧结,其烧结温度为1150℃~1200℃,烧结时间1.5h。
d)对烧结后的生坯进行抛光去毛刺处理,即可,所得平衡块包括如下重量百分比的成分:Mn 20%、Cu 15%、C 0.5%、Si 1%、S≤0.5%、Cr 2%,Ni 2%、P 1%,余量为Fe。
实施例1-3和对比例的性能测试结果如表1所示。
表1
Figure PCTCN2016108279-appb-000001
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种无磁钢制品的粉末冶金制造方法,其特征在于,包括如下步骤:
    Fe-Mn预合金粉制备:该Fe-Mn预合金粉包括如下重量百分比的成分:Mn 20~50%、C 0.2~0.6%、Si 0.5~1.2%、S≤0.05%、P≤0.1%、O≤1.15%,余量为Fe;
    于所述Fe-Mn预合金粉中加入Cu粉、Cr粉、Ni粉、P粉和Fe粉,得合金粉末;再于所述合金粉末中加入粘结剂,混合后压制成型,得到生坯;其中,所述合金粉末以重量百分比计,包括Fe-Mn预合金粉60~90%、Cu粉10~25%、Cr粉0~5%、Ni粉0~5%、P粉0~2%和Fe粉0~30%;
    将所述生坯进行烧结,得所述无磁钢制品。
  2. 根据权利要求1所述的无磁钢制品的粉末冶金制造方法,其特征在于,所述Fe-Mn预合金粉的粒度分布为80~300目。
  3. 根据权利要求1所述的无磁钢制品的粉末冶金制造方法,其特征在于,所述Fe-Mn预合金粉由A3钢、石墨和电解锰经熔炼混合后,采用水雾化法制备而成。
  4. 根据权利要求1所述的无磁钢制品的粉末冶金制造方法,其特征在于,所述无磁钢制品包括如下重量百分比的成分:Mn 16~30%、Cu 10~25%、C 0.12~0.6%、Si 0.5~1.2%、S≤0.1%、Cr≤5%,Ni≤5%、P≤2%,余量为Fe。
  5. 根据权利要求1所述的无磁钢制品的粉末冶金制造方法,其特征在于,所述生坯密度为5.8~6.4g/cm3
  6. 根据权利要求1所述的无磁钢制品的粉末冶金制造方法,其特征在于,所述烧结的温度为1150℃~1200℃,时间1~2h。
  7. 根据权利要求1-6任一项所述的无磁钢制品的粉末冶金制造方法,其特征在于,所述粘结剂的加入量为所述合金粉末重量的0.6~1%。
  8. 根据权利要求7所述的无磁钢制品的粉末冶金制造方法,其特征在于,所述粘结剂为硬脂酸锌。
  9. 根据权利要求1-6任一项所述的无磁钢制品的粉末冶金制造方法,其特征在于,所述无磁钢制品为平衡块。
  10. 权利要求1-9任一项所述的无磁钢制品的粉末冶金制造方法制造得到的无磁钢制品。
PCT/CN2016/108279 2016-09-26 2016-12-01 无磁钢制品及其粉末冶金制造方法 WO2018053940A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610858968.7 2016-09-26
CN201610858968.7A CN106270494B (zh) 2016-09-26 2016-09-26 无磁钢制品及其粉末冶金制造方法

Publications (1)

Publication Number Publication Date
WO2018053940A1 true WO2018053940A1 (zh) 2018-03-29

Family

ID=57716466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/108279 WO2018053940A1 (zh) 2016-09-26 2016-12-01 无磁钢制品及其粉末冶金制造方法

Country Status (2)

Country Link
CN (1) CN106270494B (zh)
WO (1) WO2018053940A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114505486A (zh) * 2022-02-11 2022-05-17 三明辰亿五金制品有限公司 一种粉末冶金高密度平衡块的不锈钢粉末及其制造方法
CN114645220A (zh) * 2022-03-29 2022-06-21 浙江百达精工股份有限公司 高锰无磁性高密度平衡块制造方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6822308B2 (ja) * 2017-05-15 2021-01-27 トヨタ自動車株式会社 焼結鍛造部材
CN107034420B (zh) * 2017-06-21 2018-10-23 广东粤海华金科技股份有限公司 无磁钢制品及其制造方法
CN108677098A (zh) * 2018-04-16 2018-10-19 华南理工大学 一种低镍高锰奥氏体无磁钢及其制备方法
CN108580911B (zh) * 2018-05-02 2021-04-20 山东鲁银新材料科技有限公司 一种高锰无磁钢粉的制备方法
CN110756814B (zh) * 2018-07-26 2022-08-05 广东美芝制冷设备有限公司 无铜冶金材料的制备方法及无铜冶金材料、平衡块和压缩机
CN111468711B (zh) * 2019-01-23 2022-02-15 广东粤海华金科技股份有限公司 复合活化烧结的无磁钢材料及其制造方法
CN109811274A (zh) * 2019-02-27 2019-05-28 江门市阳浩金属制品有限公司 一种无磁钢及其制备方法
CN110000389B (zh) * 2019-03-14 2020-07-31 全亿大科技(佛山)有限公司 不锈钢的制备方法
CN115125429A (zh) * 2021-03-25 2022-09-30 华南理工大学 活化烧结的高锰无磁钢及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101733400A (zh) * 2008-11-10 2010-06-16 株式会社神户制钢所 高强度组成铁粉和使用它的烧结部件
CN102528040A (zh) * 2012-02-24 2012-07-04 王兴民 压缩机平衡块粉末冶金制做工艺方法
JP2013047378A (ja) * 2011-07-26 2013-03-07 Jfe Steel Corp 粉末冶金用鉄基混合粉および高強度鉄基焼結体ならびに高強度鉄基焼結体の製造方法
CN103509985A (zh) * 2013-06-09 2014-01-15 广东美芝制冷设备有限公司 合金及其制备方法和应用
CN103691955A (zh) * 2013-12-31 2014-04-02 舒思雄 一种压缩机用平衡块的制造方法及采用该方法生产的平衡块
CN105463291A (zh) * 2015-12-09 2016-04-06 博深工具股份有限公司 全预合金化粉末及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0790512A (ja) * 1993-09-13 1995-04-04 Mitsubishi Materials Corp 耐摩耗性のすぐれたコンプレッサ用銅溶浸Fe基焼結合金製摺動部材
CN102517520B (zh) * 2011-12-16 2013-06-12 欧阳文 一种无磁压缩机电机平衡块
CN104032219B (zh) * 2014-04-30 2016-03-23 益阳世龙新材料有限公司 一种无磁合金及制备方法
CN104264073A (zh) * 2014-10-30 2015-01-07 新野德艺精密铸造有限公司 一种多元合金高锰钢材料及利用该材料制备平衡块的工艺

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101733400A (zh) * 2008-11-10 2010-06-16 株式会社神户制钢所 高强度组成铁粉和使用它的烧结部件
JP2013047378A (ja) * 2011-07-26 2013-03-07 Jfe Steel Corp 粉末冶金用鉄基混合粉および高強度鉄基焼結体ならびに高強度鉄基焼結体の製造方法
CN102528040A (zh) * 2012-02-24 2012-07-04 王兴民 压缩机平衡块粉末冶金制做工艺方法
CN103509985A (zh) * 2013-06-09 2014-01-15 广东美芝制冷设备有限公司 合金及其制备方法和应用
CN103691955A (zh) * 2013-12-31 2014-04-02 舒思雄 一种压缩机用平衡块的制造方法及采用该方法生产的平衡块
CN105463291A (zh) * 2015-12-09 2016-04-06 博深工具股份有限公司 全预合金化粉末及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114505486A (zh) * 2022-02-11 2022-05-17 三明辰亿五金制品有限公司 一种粉末冶金高密度平衡块的不锈钢粉末及其制造方法
CN114645220A (zh) * 2022-03-29 2022-06-21 浙江百达精工股份有限公司 高锰无磁性高密度平衡块制造方法

Also Published As

Publication number Publication date
CN106270494A (zh) 2017-01-04
CN106270494B (zh) 2019-01-15

Similar Documents

Publication Publication Date Title
WO2018053940A1 (zh) 无磁钢制品及其粉末冶金制造方法
CN103602922B (zh) 一种粉末冶金铁基合金及其制备方法
JP5308123B2 (ja) 高強度組成鉄粉とそれを用いた焼結部品
JP5958144B2 (ja) 粉末冶金用鉄基混合粉および高強度鉄基焼結体ならびに高強度鉄基焼結体の製造方法
KR101918431B1 (ko) 분말야금용 철계 합금 분말 및 소결단조부재
CN103572163A (zh) 一种粉末冶金阀座嵌件及其制备方法
CN114015942B (zh) 无磁平衡块及其制备方法、压缩机
CN104073723A (zh) 一种制造高密度零件的粉末冶金材料及其加工工艺
CN110508820B (zh) 一种高熔渗率渗铜粉末及其制造方法
KR100978901B1 (ko) 고인장강도 및 고경도를 가지는 철계 소결체 제조 방법
JP6645631B1 (ja) 粉末冶金用合金鋼粉および粉末冶金用鉄基混合粉末
JP2006283177A (ja) 鉄基焼結合金及びその製造方法
CN115341128B (zh) 无铜冶金材料的制备方法及无铜冶金材料、平衡块和压缩机
CN111014687A (zh) 一种含镍渗铜剂及其制备方法
CN111014690A (zh) 一种含铬渗铜剂及其制备方法
CN110964972A (zh) 一种稀土硅氮钒合金及其制备方法和应用
CN111014685A (zh) 一种含铋渗铜剂及其制备方法
CN111014688A (zh) 一种含磷渗铜剂及其制备方法
US10843269B2 (en) Method of producing sintered and forged member
KR102533137B1 (ko) 분말 야금용 철기 혼합 분말 및 철기 소결체
JP2017128764A (ja) 鉄基焼結摺動材料及びその製造方法
CN111020469A (zh) 一种含钼渗铜剂及其制备方法
CN111074200A (zh) 一种高熔渗铜剂及其制备方法
CN111014646A (zh) 一种含硅渗铜剂及其制备方法
CN116713472A (zh) 一种精密模具的生产方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16916679

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16916679

Country of ref document: EP

Kind code of ref document: A1