WO2018053839A1 - 触摸传感器及其制作方法 - Google Patents

触摸传感器及其制作方法 Download PDF

Info

Publication number
WO2018053839A1
WO2018053839A1 PCT/CN2016/100112 CN2016100112W WO2018053839A1 WO 2018053839 A1 WO2018053839 A1 WO 2018053839A1 CN 2016100112 W CN2016100112 W CN 2016100112W WO 2018053839 A1 WO2018053839 A1 WO 2018053839A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
particles
insulating
conductive
layer
Prior art date
Application number
PCT/CN2016/100112
Other languages
English (en)
French (fr)
Inventor
胡耀
Original Assignee
深圳市柔宇科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市柔宇科技有限公司 filed Critical 深圳市柔宇科技有限公司
Priority to KR1020197006848A priority Critical patent/KR20190037316A/ko
Priority to US16/334,300 priority patent/US20190220150A1/en
Priority to PCT/CN2016/100112 priority patent/WO2018053839A1/zh
Priority to CN201680025656.6A priority patent/CN107624174B/zh
Priority to JP2019514725A priority patent/JP2019532417A/ja
Publication of WO2018053839A1 publication Critical patent/WO2018053839A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Definitions

  • the present invention relates to the field of electronic touch technology, and in particular, to a touch sensor and a method for fabricating the same.
  • the early glass touch panels used metal conductive layers and ITO etching to achieve the purpose of graphics.
  • the contact point capacitance is changed to achieve the purpose of the signal input chip.
  • the gap distance is greater than 20 um and the material of the conductive line and the material filling the gap have a large reflection coefficient, such a gap is perceived by the human eye.
  • Embodiments of the present invention provide a touch sensor and a method of fabricating the same, which can avoid exposing a gap between conductive patterns.
  • a touch sensor as described in the present application comprising a substrate, a conductive layer laminated on a surface of the substrate, the conductive layer comprising a conductive region and an insulating region, the conductive region and the insulating region being composed of a raw material layer containing conductive particles
  • the conductive particles are electrically connected to each other in a region where the original material layer is partially treated to form a conductive region, and the conductive particles are spaced apart from each other to form an insulating region in a region where the original material layer is not partially treated.
  • the original material layer further comprises insulating particles, the insulating particles of the insulating region are located between the conductive particles, and the insulating particles of the conductive region are located at the side of the conductive particles.
  • the insulating region comprises a plurality of layers of insulating particles and a plurality of layers of conductive particles, and adjacent two layers of conductive particles of the insulating region are separated by a layer of insulating particles.
  • the conductive region comprises a plurality of layers of conductive particles, the adjacent two layers of conductive particles of the conductive region are in contact, and the insulating particles of the conductive region are close to the substrate.
  • the particle diameter of the insulating particles of the conductive region is smaller than the particle diameter of the insulating particles of the insulating region.
  • the insulating particles of the conductive region are formed by decomposition of the insulating particles of the original material layer.
  • the original material layer comprises an insulating photosensitive layer
  • the insulating photosensitive layer forms a conductive area in a region where the light is received during the local processing, and the unilluminated area forms an insulating region.
  • the insulating particles of the original material layer comprise composite organogel particles of a calixarene protected by a T-phenylalanine molecular group and a triphenylsulfonic acid derivative of trifluoromethanesulfonate.
  • the insulating particles of the original material layer are detached during the local treatment, and the T-type phenylalanine molecular group is detached.
  • the method further includes a cover plate covering the conductive layer, and the cover plate and the conductive layer and the conductive region of the conductive layer are connected by an adhesive layer.
  • the difference in reflectance between the insulating region and the conductive region is less than 1%.
  • the touch sensor manufacturing method described in the present application includes:
  • the original material layer comprising insulating particles and conductive particles distributed between the insulating particles;
  • the raw material layer is locally treated, and the conductive particles are turned on in the treated region to form a conductive region, and the conductive particles are separated by the insulating particles in the untreated region to form an insulating region.
  • the insulating particles in the conductive region are located on the side of the conductive particles, and the insulating particles in the insulating region are located between the conductive particles.
  • the insulating particles and the conductive particles in the insulating region are alternately stacked layer by layer, and the insulating particles in the conductive region are gathered at a position close to the surface of the substrate.
  • the particle diameter of the insulating particles of the conductive region is smaller than the particle diameter of the insulating particles of the insulating region.
  • the original material layer is a photosensitive material layer.
  • the local processing of the original material layer includes:
  • the insulating particles of the original material layer comprise acidic particles protected by molecular groups, and the molecular groups are detached during local illumination to expose the acidic particles.
  • the acidic particles are neutralized with a weak alkaline solution to form insulating particles of the conductive region.
  • the conductive layer of the touch sensor described in the present application is doped with insulating photosensitive particles and conductive particles After the layer is patterned, the conductive particles in the illuminated area are turned on to form a conductive structure, while the unilluminated area remains insulated, since the illuminated area is not removed, but remains in place, and is illuminated and alkali Although the optical properties of the solution after immersion change, it is not obvious and will not be noticed by the human eye.
  • FIG. 1 is a schematic structural view of a touch sensor provided by the present invention.
  • FIG. 2 is a partial internal structural view of an insulating region of the touch sensor shown in FIG. 1.
  • FIG. 3 is a partial internal structural view of a conductive region of the touch sensor shown in FIG. 1.
  • FIG. 4 is a flow chart of a method for fabricating a touch sensor provided by the present invention.
  • FIG. 5-7 are schematic diagrams showing the steps of the method for fabricating the touch sensor shown in FIG. 4.
  • the present application provides a touch sensor and a touch device using the touch sensor.
  • Touch devices such as mobile phones, tablets, touch screens, and the like.
  • the touch sensor includes a substrate, a conductive layer laminated on a surface of the substrate, the conductive layer includes a conductive region and an insulating region, and the conductive region and the insulating region are formed by partial processing of a layer of original material containing conductive particles.
  • the conductive particles are electrically connected to each other in a region where the original material layer is partially treated to form a conductive region, and the conductive particles are spaced apart from each other to form an insulating region in a region where the original material layer is not partially treated.
  • the original material layer further includes insulating particles, the insulating particles of the insulating region are located between the conductive particles, and the insulating particles of the conductive region are located at the side of the conductive particles. Further, the original material layer includes an insulating photosensitive layer, the insulating photosensitive layer forms a conductive region in a region where the light is received during the local processing, and the unexposed region forms the insulating region.
  • the touch sensor includes a substrate 10, a conductive layer 12 laminated on the surface of the substrate 10, and a cover plate 14 laminated on the conductive layer 12.
  • the conductive layer 12 and the cover plate 14 are connected by an adhesive layer 100.
  • the conductive layer 12 is divided into a plurality of conductive regions 121 and an insulating region 123 spaced apart from the plurality of conductive regions 121 .
  • the conductive region 121 includes a plurality of layers of conductive particles, and adjacent two layers of conductive particles of the conductive region 121 are in contact with each other, and the insulating particles of the conductive region are close to the substrate.
  • the particle size of the insulating particles of the conductive region 121 is smaller than the particle diameter of the insulating particles of the insulating region 123.
  • the insulating particles of the conductive region 121 are formed by decomposition of insulating particles of the original material layer.
  • the conductive layer of the conductive region 121 includes an insulating particle layer 1211 and a first conductive particle layer 1212 laminated on the insulating particle layer 1211.
  • the lamination of the insulating particle layer 1211 and the first conductive particle layer 1212 of the present embodiment also includes the case where the conductive particles in the first conductive particle layer 1212 are partially embedded in the insulating particle layer 1211.
  • the insulating particle layer 1211 is formed of a plurality of insulating particles.
  • the insulating particle layer 1211 includes an insulating acidic small molecule plasmid 115.
  • the insulating particle layer 1211 of the conductive region 121 is located below the first conductive particle layer 1212, that is, adjacent to the substrate 10.
  • the first conductive particle layer 1212 is composed of a plurality of layers of conductive particles, and the layer of the plurality of conductive particles is located above the insulating particle layer 1211 and is turned on to realize the conductive property of the conductive region.
  • the insulating region 123 includes a plurality of layers of insulating particles and a plurality of layers of conductive particles, and adjacent two layers of conductive particles of the insulating region are separated by a layer of insulating particles.
  • the conductive layer in the insulating region 123 includes insulating particles 1231 and conductive particles 1232 spaced apart by the insulating photosensitive particles 1231.
  • the conductive particles 1232 in the insulating region 123 are insulated from each other in a direction perpendicular to the substrate 10.
  • the material of the conductive particles 1232 of the insulating region 123 is the same as the material of the conductive particles of the first conductive particle layer 1212.
  • the conductive particles 1232 form a plurality of second conductive particle layers 124, and each of the two second conductive particle layers 124 is isolated by the insulating photosensitive layer 125 formed by the insulating photosensitive particles 1231.
  • each layer of the insulating photosensitive layer 125 is located between the two layers of the second conductive particle layer 124 to prevent the two layers of the second conductive particle layer 124 from being in contact with each other.
  • the difference in reflectance between the insulating region 123 and the conductive region 121 is less than 1%.
  • the insulating photosensitive layer 125 is also a composite organic component of the insulating particles of the original material layer, which is protected by a T-type phenylalanine molecular group and a triphenylsulfonic acid derivative of trifluoromethanesulfonate.
  • the complex organogel of calixarene and triphenylsulfonic acid triphenyl sulfonate derivatives exhibits inactive chemistry due to the protection of the T-Boc molecular group.
  • the mass ratio of the calixarene to the triphenylmethanesulfonic acid derivative is 1:9.5 to 1:10. It is to be noted that the original composition of the insulating photosensitive particles forming the insulating particle layer 1211 is the same as that of the insulating photosensitive layer 125.
  • the insulating photosensitive particles in the insulating photosensitive layer 125 have a particle size of 80 to 150 nm.
  • the conductive particles in the first conductive particle layer 1212 and the second conductive particle layer 124 have a particle size of 30 nm to 70 nm.
  • the conductive particles in the first conductive particle layer 1212 and the second conductive particle layer 124 are Ag. Since the insulating particles in the insulating photosensitive layer 125 have a large particle diameter, the respective second conductive particle layers 124 are spaced apart to keep the entirety insulated.
  • a method for fabricating a touch sensor according to the present application includes the following steps:
  • step S1 a layer of original material 11 is formed on the substrate 10. among them,
  • the original material layer 11 includes insulating particles and conductive particles distributed between the insulating particles.
  • step S2 the original material layer is locally treated, and the conductive particles in the treated region are turned on to form a conductive region 121, and the conductive particles are separated by insulating particles in the untreated region to form an insulation.
  • the original material layer 11 is patterned by illumination to form a plurality of first regions 113 and a second region 114 that is spaced apart from the plurality of first regions 113.
  • the original material layer 11 has stable insulating properties under irradiation catalysis without external special light.
  • special lighting conditions such as a femtosecond laser having a wavelength of 780 to 820 nm
  • the chemical properties of the original material layer 11 are changed to produce an acidic substance.
  • the T-type phenylalanine molecular group falls off.
  • the (T-Boc) molecular group of the gel) is detached and decomposed into trifluoromethanesulfonic acid composite rubber particles, and the particle diameter is 80 to 150 nm.
  • the second region 113 is not subjected to illumination to maintain the original state, and the first region 114 is exposed to light to change the chemical properties.
  • the original material layer 11 is a photosensitive material layer.
  • the insulating particles in the conductive region 121 are located on the side of the conductive particles, and the insulating particles in the insulating region 123 are located between the conductive particles.
  • the insulating particles and the conductive particles in the insulating region 123 are alternately stacked layer by layer, and the insulating particles in the conductive region 121 are gathered at a position close to the surface of the substrate.
  • the particle diameter of the insulating particles of the conductive region 121 is smaller than the particle diameter of the insulating particles of the insulating region 123.
  • step S22 the patterned original material layer 11 is placed in a weakly alkaline solution.
  • the insulating photosensitive particles in the first region 113 are converted into a small molecule plasmid 115 to form an insulating particle layer, see FIG.
  • the trifluoromethanesulfonic acid composite gel particles are neutralized into a small molecule plasmid 115 under the action of the alkali solution, and the small molecule plasmid 115 is moved downward by gravity and diffusion, and the small molecule plasmid 115 leaves the conductive. Between particles 112.
  • the conductive particles 112 are moved to form a first conductive particle layer in contact with the direction perpendicular to the substrate, so that the illuminated first region is electrically formed to form the conductive region 121.
  • the small molecule plasmid has a particle size of 1 nm to 50 nm. Since the second region 114 does not receive light, the insulating photosensitive particles inside thereof are not easily affected by weak alkalinity, and thus the second region 114 remains as it is.
  • step 23 the cover 14 is fixed to the conductive layer 12 through the adhesive layer 100, and finally the touch sensor shown in FIG. 1 is formed.
  • step S2 actually includes: local illumination of the original material layer; neutralization of the original material layer after illumination.
  • the second region 114 forms the insulating region 123 including insulating photosensitive particles and conductive particles spaced apart by the insulating photosensitive particles. That is to say, the composition of the original material layer 11 after the above steps is changed to become the conductive layer 12 including the insulating region 123 and the conductive region 121.
  • the illumination patterning the insulating photoresist layer is mainly used for patterning, and the patterned light shielding plate 16 is used.
  • the light shielding plate 16 includes a light shielding region 161 and a light transmission region 162.
  • the visor 16 is placed above the original material layer 11, the light transmissive region 162 is located above the first region 113, and the opaque region 161 is located above the second region 114.
  • the first region 113 forms the conductive region when the light illuminates the first region 113 through the light transmitting region 162.
  • the conductive layer 12 of the touch sensor described in the present application is patterned by doping with insulating photosensitive particles and conductive particles, and the conductive particles in the illuminated region are electrically connected to form a conductive structure, and the unilluminated region remains insulated to form a pattern. Electrode. Since the illuminated area is not removed, but remains in place, and the optical properties after immersion in light and alkaline solution change, but it is not obvious, the difference in reflectance between the unirradiated area and the unilluminated area is 1%. Below, it will not be noticed by the human eye.
  • the manner of patterning the electrodes described above is achieved by photo-processing the photosensitive material. It is understood that the manner of patterning the electrodes can also be achieved by heat-treating the heat sensitive material.
  • the heat sensitive material may have insulating particles and conductive particles. By locally heat treating the heat sensitive material, the insulating particles are decomposed into small molecules, and the conductive particles are contacted to form a passage. The area that has not been locally heat treated remains in its original insulation state. Thereby, the effect of electrode patterning can also be achieved.
  • the structure and method of the above patterned electrode are also applicable to other touch sensors, such as a resistance sensor, a surface acoustic wave sensor, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Position Input By Displaying (AREA)
  • Laminated Bodies (AREA)
  • Materials For Photolithography (AREA)

Abstract

一种触摸传感器,其包括衬底(10)、层叠于所述衬底(10)表面的导电层(12),所述导电层(12)包括导电区域(121)及绝缘区域(123),导电区域(121)及绝缘区域(123)由包含导电颗粒的原始材料层(11)经过局部处理形成,在原始材料层(11)被局部处理的区域导电颗粒相互导通而形成导电区域(121),在原始材料层(11)未被局部处理的区域导电颗粒相互隔开而形成绝缘区域(123)。

Description

触摸传感器及其制作方法 技术领域
本发明涉及电子触控技术领域,尤其涉及一触摸传感器及其制作方法。
背景技术
随着电子行业的高速发展,触控技术(Touch technology)已经逐渐走入人们的生活当中,早期的玻璃触控面板采用对金属导电层、ITO刻蚀,以达到图形化的目的。当手指接触图形化的面板,通过接触点电容改变,而达到信号输入芯片的目的。图形化的导电线路之间存在间隙,间隙一般是通过形成于导电线路上的保护层、光学层或粘合层进行填充。当间隙距离大于20um且导电线路的材料与填充间隙的材料的反射系数较大时,这样的间隙就会被人眼所察觉。
发明内容
本发明实施例提供一触摸传感器及其制作方法,可以避免暴露导电图形之间的空隙。
本申请所述的一种触摸传感器,其包括衬底、层叠于所述衬底表面的导电层,所述导电层包括导电区域及绝缘区域,导电区域及绝缘区域由包含导电颗粒的原始材料层经过局部处理形成,在原始材料层被局部处理的区域导电颗粒相互导通而形成导电区域,在原始材料层未被局部处理的区域导电颗粒相互隔开而形成绝缘区域。
其中,原始材料层还包括绝缘颗粒,绝缘区域的绝缘颗粒位于导电颗粒之间,导电区域的绝缘颗粒位于导电颗粒侧部。
其中,绝缘区域包括多层绝缘颗粒及多层导电颗粒,绝缘区域的相邻的两层导电颗粒被一层绝缘颗粒所隔开。
其中,导电区域包括多层导电颗粒,导电区域的相邻的两层导电颗粒接触,导电区域的绝缘颗粒靠近衬底。
其中,导电区域的绝缘颗粒的粒径小于绝缘区域的绝缘颗粒的粒径。
其中,导电区域的绝缘颗粒由原始材料层的绝缘颗粒经过分解后形成。
其中,原始材料层包括绝缘感光层,绝缘感光层在局部处理过程中接受光照的区域形成导电区域,未接受光照的区域形成绝缘区域。
其中,所述原始材料层的绝缘颗粒包括T型苯丙氨酸分子团保护的杯芳烃与三氟甲磺酸三苯锍鎓酸衍生物的复合有机凝胶颗粒。
其中,所述杯芳烃与三氟甲磺酸三苯锍鎓酸衍生物的质量比为1∶9.5~1∶10。
其中,原始材料层的绝缘颗粒在局部处理过程中,T型苯丙氨酸分子团脱落。
其中,还包括覆盖导电层的盖板,盖板与所述导电层绝缘区域及导电区域通过粘结胶层连接。
其中,绝缘区域与导电区域的反射率差小于1%。
本申请所述的触摸传感器制作方法,包括:
在衬底上形成原始材料层,所述原始材料层包括绝缘颗粒及分布于绝缘颗粒之间导电颗粒;
对原始材料层进行局部处理,被处理过的区域中导电颗粒导通而形成导电区域,未被处理过的区域中导电颗粒被绝缘颗粒隔开而形成绝缘区域。
其中,导电区域中的绝缘颗粒位于导电颗粒的侧部,绝缘区域中的绝缘颗粒位于导电颗粒之间。
其中,绝缘区域中的绝缘颗粒与导电颗粒逐层交替堆叠,导电区域中的绝缘颗粒聚集于靠近衬底表面的位置。
其中,导电区域的绝缘颗粒的粒径小于绝缘区域的绝缘颗粒的粒径。
其中,原始材料层为感光材料层。
其中,对原始材料层进行局部处理包括:
对原始材料层进行局部光照;
对光照后的原始材料层进行中和。
其中,原始材料层的绝缘颗粒包括由分子团保护的酸性颗粒,在局部光照时分子团脱落而使酸性颗粒外露。
其中,在光照后采用弱碱性溶液对酸性颗粒进行中和,形成导电区域的绝缘颗粒。
本申请所述的触摸传感器的导电层采用绝缘感光颗粒和导电颗粒掺杂涂 层后再进行构图,被光照的区域导电颗粒导通就形成了导电结构,而没有被光照的区域保持绝缘,由于被光照后的区域并未去除,而是保留在原处,并且经过光照及碱性溶液浸泡后的光学特性虽发生变化,但并不明显,不会被人眼所察觉。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明提供的触摸传感器的结构示意图。
图2是图1所示的触摸传感器的绝缘区域的部分内部结构示意图。
图3是图1所示的触摸传感器的导电区域的部分内部结构示意图。
图4是本发明提供的触摸传感器制作方法流程图。
图5-图7是图4所示的触摸传感器制作方法的步骤工艺示意图。
具体实施方式
下面将结合本发明实施方式中的附图,对本发明实施方式中的技术方案进行清楚、完整地描述。
本申请提供一种触摸传感器及使用所述触摸传感器的触控装置。所触控装置如手机、平板电脑、触控屏幕等。所述触摸传感器,其包括衬底、层叠于所述衬底表面的导电层,所述导电层包括导电区域及绝缘区域,导电区域及绝缘区域由包含导电颗粒的原始材料层经过局部处理形成,在原始材料层被局部处理的区域导电颗粒相互导通而形成导电区域,在原始材料层未被局部处理的区域导电颗粒相互隔开而形成绝缘区域。原始材料层还包括绝缘颗粒,绝缘区域的绝缘颗粒位于导电颗粒之间,导电区域的绝缘颗粒位于导电颗粒侧部。进一步的,原始材料层包括绝缘感光层,绝缘感光层在局部处理过程中接受光照的区域形成导电区域,未接受光照的区域形成绝缘区域。
本发明以以下具体实施例进行说明,请参阅图1,所述触摸传感器包括衬底10、层叠于所述衬底10表面的导电层12以及层叠于导电层12上的盖板14。 本实施例中,所述导电层12与所述盖板14之间通过粘结胶层100连接。请参阅图2与图3,所述导电层12分为多个导电区域121及间隔所述多个导电区域121的绝缘区域123。
导电区域121包括多层导电颗粒,导电区域121的相邻的两层导电颗粒接触,导电区域的绝缘颗粒靠近衬底。其中,导电区域121的绝缘颗粒的粒径小于绝缘区域123的绝缘颗粒的粒径。导电区域121的绝缘颗粒由原始材料层的绝缘颗粒经过分解后形成。具体的,所述导电区域121的导电层包括绝缘颗粒层1211及层叠于所述绝缘颗粒层1211的第一导电颗粒层1212。需要说明的是,本实施例的所述绝缘颗粒层1211与第一导电颗粒层1212层叠也包括第一导电颗粒层1212内的导电颗粒部分嵌于所述绝缘颗粒层1211内的情况。所述绝缘颗粒层1211由多个绝缘颗粒形成。特别地,绝缘颗粒层1211包括绝缘的酸性的小分子物质粒115。所述导电区域121的绝缘颗粒层1211位于第一导电颗粒层1212的下方,也就是靠近所述衬底10。所述第一导电颗粒层1212由多层导电颗粒层构成,多层导电颗粒层位于绝缘颗粒层1211上方并导通,进而实现导电区域的导电性能。
如图2,绝缘区域123包括多层绝缘颗粒及多层导电颗粒,绝缘区域的相邻的两层导电颗粒被一层绝缘颗粒所隔开。具体的,所述绝缘区域123内的所述导电层包括绝缘颗粒1231和由绝缘感光颗粒1231间隔的导电颗粒1232。其中,所述绝缘区域123内的导电颗粒1232在垂直于衬底10方向上互相绝缘。绝缘区域123的导电颗粒1232的材料与第一导电颗粒层1212的导电颗粒的材料相同。
优选的,所述导电颗粒1232形成多个第二导电颗粒层124,每两层第二导电颗粒层124之间通过所述绝缘感光颗粒1231形成的所述的绝缘感光层125隔离。本实施例中,每一层绝缘感光层125位于两层所述第二导电颗粒层124之间,避免两层第二导电颗粒层124接触导通。绝缘区域123与导电区域121的反射率差小于1%。
本实施例中,所述绝缘感光层125也就是原始材料层的绝缘颗粒的成分为T型苯丙氨酸分子团保护的杯芳烃与三氟甲磺酸三苯锍鎓酸衍生物的复合有机凝胶颗粒。由于有T-Boc分子团的保护,所以杯芳烃与三氟甲磺酸三苯锍鎓酸衍生物的复合有机凝胶呈现出不活跃的化学性质。
本实施例中,所述杯芳烃与三氟甲磺酸三苯锍鎓酸衍生物的质量比为1∶9.5~1∶10。需要说明的是形成所述绝缘颗粒层1211的绝缘感光颗粒的原始成分与所述绝缘感光层125成分相同。
本实施例中,所述绝缘感光层125内的绝缘感光颗粒的粒径尺寸为80~150nm。所述第一导电颗粒层1212及第二导电颗粒层124内的导电颗粒的粒径尺寸为30nm~70nm。所述第一导电颗粒层1212及第二导电颗粒层124内的导电颗粒为Ag。由于绝缘感光层125内的绝缘颗粒粒径较大,将各第二导电颗粒层124之间隔开,从而使整体保持绝缘。
请参阅图4,本申请所述的触摸传感器的制作方法包括如下步骤:
如图5所示,步骤S1,在衬底10上形成原始材料层11。其中,
所述原始材料层11包括绝缘颗粒及分布于绝缘颗粒之间导电颗粒。
如图6所示,步骤S2,对原始材料层进行局部处理,被处理过的区域中导电颗粒导通而形成导电区域121,未被处理过的区域中导电颗粒被绝缘颗粒隔开而形成绝缘区域123;
具体包括,步骤S21,通过光照图案化所述原始材料层11,形成多个第一区域113及间隔所述多个第一区域113的第二区域114。所述原始材料层11,在无外界特殊光线的照射催化下,绝缘性质稳定。当施加特殊的光照条件时(比如波长在780~820nm的飞秒激光),原始材料层11的化学性质发生变化,产生酸性物质。原始材料层的绝缘颗粒在局部处理过程中,T型苯丙氨酸分子团脱落。具体的,所述原始材料层11内的绝缘感光颗粒(T型苯丙氨酸(T-Boc))分子团保护的杯芳烃与三氟甲磺酸三苯锍鎓酸衍生物的复合有机凝胶)的(T-Boc)分子团脱落分解成三氟甲磺酸复合胶颗粒,且颗粒径尺寸为80~150nm。本实施例中,第二区域113未接受光照而维持原状,第一区域114暴露于光照下而使化学性质发生变化。
其中,原始材料层11为感光材料层。导电区域121中的绝缘颗粒位于导电颗粒的侧部,绝缘区域123中的绝缘颗粒位于导电颗粒之间。绝缘区域123中的绝缘颗粒与导电颗粒逐层交替堆叠,导电区域121中的绝缘颗粒聚集于靠近衬底表面的位置。导电区域121的绝缘颗粒的粒径小于绝缘区域123的绝缘颗粒的粒径。
如图7所示,步骤S22,将图案化后的原始材料层11放入弱碱性溶液, 第一区域113内的绝缘感光颗粒变换为小分子物质粒115而形成绝缘颗粒层,参见图3。具体的,在碱溶液的作用下三氟甲磺酸复合胶颗粒会中和成小分子物质粒115,小分子物质粒115受到重力与扩散作用向下运动,所述小分子物质粒115离开导电颗粒112之间。由于没有小分子物质粒115隔离,使得导电颗粒112运动而在垂直于衬底方向接触形成第一导电颗粒层,从而使被光照的第一区域导电形成所述导电区域121。其中,所述小分子物质粒粒径尺寸为1nm~50nm。第二区域114由于未接受光照,其内部的绝缘感光颗粒不会受到弱碱性容易的影响,因而第二区域114仍旧保持原状。
步骤23,将盖板14通过粘结胶层100固定于所述导电层12上,最后形成图1所示的触摸传感器。
简而言之,步骤S2的局部处理实际上就是包括:对原始材料层进行局部光照;对光照后的原始材料层进行中和。
参见图2,所述第二区域114形成包括绝缘感光颗粒和由绝缘感光颗粒间隔的导电颗粒的所述绝缘区域123。也就是说,通过上述步骤后的所述原始材料层11成分变化,成为包括绝缘区域123与导电区域121形成的导电层12。
本实施例中,所述光照图案化所述绝缘感光胶层主要用于构图,其使用有图案设计的遮光板16,遮光板16包括遮光区域161及透光区域162。遮光板16放于原始材料层11上方,透光区域162位于第一区域113上方,遮光区域161位于第二区域114上方。光线透过透光区域162照射第一区域113时第一区域113形成所述导电区域。
本申请所述的触摸传感器的导电层12采用绝缘感光颗粒和导电颗粒掺杂进行构图,被光照的区域导电颗粒导通就形成了导电结构,而没有被光照的区域保持绝缘,从而形成图案化的电极。由于被光照后的区域并未去除,而是保留在原处,并且经过光照及碱性溶液浸泡后的光学特性虽发生变化,但并不明显,可以保持与未光照区域的反射率差异在1%以下,而不会被人眼所察觉。
上述图形化电极的方式是通过光照处理感光材料来实现的,可以理解地,图形化电极的方式也可以采用热处理热敏感材料来实现。比如可以热敏性材料中具有绝缘颗粒及导电颗粒,通过对热敏性材料局部热处理,使得绝缘颗粒被分解成小分子,使导电颗粒之间接触而形成通路。未被局部热处理的区域则保持原来的绝缘状态。由此,同样可以实现电极图案化的效果。
进一步地,上述图形化电极的结构及方法也同样适用于其他的触摸传感器,比如电阻传感器、表面声波传感器等等。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

Claims (20)

  1. 一种触摸传感器,其特征在于,包括衬底、层叠于所述衬底表面的导电层,所述导电层包括导电区域及绝缘区域,导电区域及绝缘区域由包含导电颗粒的原始材料层经过局部处理形成,在原始材料层被局部处理的区域导电颗粒相互导通而形成导电区域,在原始材料层未被局部处理的区域导电颗粒相互隔开而形成绝缘区域。
  2. 如权利要求1所述的触摸传感器,其特征在于,原始材料层、绝缘区域及导电区域包括绝缘颗粒,绝缘区域的绝缘颗粒位于导电颗粒之间,导电区域的绝缘颗粒位于导电颗粒侧部。
  3. 如权利要求2所述的触摸传感器,其特征在于,绝缘区域包括多层绝缘颗粒及多层导电颗粒,绝缘区域的相邻的两层导电颗粒被一层绝缘颗粒所隔开。
  4. 如权利要求2所述的触摸传感器,其特征在于,导电区域包括多层导电颗粒,导电区域的相邻的两层导电颗粒接触,导电区域的绝缘颗粒靠近衬底。
  5. 如权利要求2所述的触摸传感器,其特征在于,导电区域的绝缘颗粒的粒径小于绝缘区域的绝缘颗粒的粒径。
  6. 如权利要求2所述的触摸传感器,其特征在于,导电区域的绝缘颗粒由原始材料层的绝缘颗粒经过分解后形成。
  7. 如权利要求1至6任一项所述的触摸传感器,其特征在于,原始材料层包括绝缘感光层,绝缘感光层在局部处理过程中接受光照的区域形成导电区域,未接受光照的区域形成绝缘区域。
  8. 如权利要求2至6任一项所述的触摸传感器,其特征在于,所述原始材料层的绝缘颗粒包括T型苯丙氨酸分子团保护的杯芳烃与三氟甲磺酸三苯锍鎓酸衍生物的复合有机凝胶颗粒。
  9. 如权利要求8所述的触摸传感器,其特征在于,所述杯芳烃与三氟甲磺酸三苯锍鎓酸衍生物的质量比为1∶9.5~1∶10。
  10. 如权利要求8所述的触摸传感器,其特征在于,原始材料层的绝缘颗粒在局部处理过程中,T型苯丙氨酸分子团脱落。
  11. 如权利要求1至6任一项所述的触摸传感器,其特征在于,还包括覆 盖导电层的盖板,盖板与所述导电层绝缘区域及导电区域通过粘结胶层连接。
  12. 如权利要求1至6任一项所述的触摸传感器,其特征在于,绝缘区域与导电区域的反射率差小于1%。
  13. 一种触摸传感器制作方法,包括:
    在衬底上形成原始材料层,所述原始材料层包括绝缘颗粒及分布于绝缘颗粒之间导电颗粒;
    对原始材料层进行局部处理,被处理过的区域中导电颗粒导通而形成导电区域,未被处理过的区域中导电颗粒被绝缘颗粒隔开而形成绝缘区域。
  14. 如权利要求13所述的方法,其特征在于,导电区域中的绝缘颗粒位于导电颗粒的侧部,绝缘区域中的绝缘颗粒位于导电颗粒之间。
  15. 如权利要求13所述的方法,其特征在于,绝缘区域中的绝缘颗粒与导电颗粒逐层交替堆叠,导电区域中的绝缘颗粒聚集于靠近衬底表面的位置。
  16. 如权利要求13所述的方法,其特征在于,导电区域的绝缘颗粒的粒径小于绝缘区域的绝缘颗粒的粒径。
  17. 如权利要求13至16任一项所述的方法,其特征在于,原始材料层为感光材料层。
  18. 如权利要求17所述的方法,其特征在于,对原始材料层进行局部处理包括:
    对原始材料层进行局部光照;
    对光照后的原始材料层进行中和。
  19. 如权利要求18所述的方法,其特征在于,原始材料层的绝缘颗粒包括由分子团保护的酸性颗粒,在局部光照时分子团脱落而使酸性颗粒外露。
  20. 如权利要求19所述的方法,其特征在于,在光照后采用弱碱性溶液对酸性颗粒进行中和,形成导电区域的绝缘颗粒。
PCT/CN2016/100112 2016-09-26 2016-09-26 触摸传感器及其制作方法 WO2018053839A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020197006848A KR20190037316A (ko) 2016-09-26 2016-09-26 터치 센서 및 그 제조 방법
US16/334,300 US20190220150A1 (en) 2016-09-26 2016-09-26 Touch sensor and method for manufacturing the same
PCT/CN2016/100112 WO2018053839A1 (zh) 2016-09-26 2016-09-26 触摸传感器及其制作方法
CN201680025656.6A CN107624174B (zh) 2016-09-26 2016-09-26 触摸传感器及其制作方法
JP2019514725A JP2019532417A (ja) 2016-09-26 2016-09-26 タッチセンサー及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/100112 WO2018053839A1 (zh) 2016-09-26 2016-09-26 触摸传感器及其制作方法

Publications (1)

Publication Number Publication Date
WO2018053839A1 true WO2018053839A1 (zh) 2018-03-29

Family

ID=61088066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/100112 WO2018053839A1 (zh) 2016-09-26 2016-09-26 触摸传感器及其制作方法

Country Status (5)

Country Link
US (1) US20190220150A1 (zh)
JP (1) JP2019532417A (zh)
KR (1) KR20190037316A (zh)
CN (1) CN107624174B (zh)
WO (1) WO2018053839A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130049036A (ko) * 2011-11-03 2013-05-13 (주)삼원에스티 터치패널센서
CN103811099A (zh) * 2012-11-14 2014-05-21 罗门哈斯电子材料有限公司 制造图案化的透明导体的方法
CN104376898A (zh) * 2013-08-16 2015-02-25 财团法人工业技术研究院 图案化的导电薄膜、其制造方法及触控面板
CN104685976A (zh) * 2012-10-04 2015-06-03 东丽株式会社 导电图案的制造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120089108A (ko) * 2011-02-01 2012-08-09 삼성전기주식회사 터치패널
US9235298B2 (en) * 2011-11-29 2016-01-12 Eastman Kodak Company Transparent capacitor with multi-layer grid structure
US8592137B2 (en) * 2011-12-16 2013-11-26 Taiwan Semiconductor Manufacturing Company, Ltd. Methods for small trench patterning using chemical amplified photoresist compositions
US20140360763A1 (en) * 2012-01-19 2014-12-11 Toray Industries, Inc. Conductive paste and method for producing conductive pattern
US8884918B2 (en) * 2012-02-28 2014-11-11 Eastman Kodak Company Electronic device having metallic micro-wires

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130049036A (ko) * 2011-11-03 2013-05-13 (주)삼원에스티 터치패널센서
CN104685976A (zh) * 2012-10-04 2015-06-03 东丽株式会社 导电图案的制造方法
CN103811099A (zh) * 2012-11-14 2014-05-21 罗门哈斯电子材料有限公司 制造图案化的透明导体的方法
CN104376898A (zh) * 2013-08-16 2015-02-25 财团法人工业技术研究院 图案化的导电薄膜、其制造方法及触控面板

Also Published As

Publication number Publication date
CN107624174A (zh) 2018-01-23
CN107624174B (zh) 2020-11-24
KR20190037316A (ko) 2019-04-05
US20190220150A1 (en) 2019-07-18
JP2019532417A (ja) 2019-11-07

Similar Documents

Publication Publication Date Title
US10840275B2 (en) Double-sided electrode structure and patterning process thereof
US7106400B1 (en) Method of making LCD with asperities in insulation layer under reflective electrode
KR102052165B1 (ko) 터치스크린 패널의 제조방법
CN103455203A (zh) 触摸屏、其制作方法及显示装置
EP3285153B1 (en) Capacitive touch screen and manufacturing process thereof, and touch display panel
CN106909258B (zh) 一种触摸屏功能片引线的结构及其制作方法
WO2015143862A1 (zh) 触摸屏、其制作方法及显示装置
CN103500036A (zh) 触摸屏、其制作方法及显示装置
TW202006521A (zh) 觸控面板的製作方法及其觸控面板
KR20160066634A (ko) 터치 패널 및 그 제조방법
JP6227012B2 (ja) 静電容量式タッチセンサーの電極構造体を形成する方法
TWI625659B (zh) 單片式觸控面板結構及其製造方法
TWI650690B (zh) 觸控面板、觸控面板製造方法及使用觸控面板的電子設備
WO2019216273A1 (ja) 透明タッチパッドとその製造方法およびそれを用いた電子機器
TWI521417B (zh) 電路元件及其製造方法
US20200209752A1 (en) Method for double-sided patterning and method for manufacturing touch panel
CN103455204B (zh) 触摸屏、其制作方法及显示装置
KR20140143645A (ko) 터치 센서 패널 및 그 제조 방법
CN203480463U (zh) 触摸屏及显示装置
WO2016180092A1 (zh) 一种阵列基板及其制备方法、光学触摸屏和显示装置
WO2018053839A1 (zh) 触摸传感器及其制作方法
TW201629589A (zh) 帶有電極之彩色濾光片基板、含有該基板之顯示裝置、以及該基板之製造方法
TWM496804U (zh) 觸控顯示裝置
TWI592849B (zh) 觸控面板以及其製作方法
TWI416397B (zh) 觸控面板、其形成方法以及觸控顯示裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16916578

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197006848

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019514725

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 100719)

122 Ep: pct application non-entry in european phase

Ref document number: 16916578

Country of ref document: EP

Kind code of ref document: A1