WO2018051576A1 - バーナ - Google Patents

バーナ Download PDF

Info

Publication number
WO2018051576A1
WO2018051576A1 PCT/JP2017/018788 JP2017018788W WO2018051576A1 WO 2018051576 A1 WO2018051576 A1 WO 2018051576A1 JP 2017018788 W JP2017018788 W JP 2017018788W WO 2018051576 A1 WO2018051576 A1 WO 2018051576A1
Authority
WO
WIPO (PCT)
Prior art keywords
expansion
central
burner
outlet
fluid
Prior art date
Application number
PCT/JP2017/018788
Other languages
English (en)
French (fr)
Inventor
岳志 斉藤
義之 萩原
康之 山本
尚樹 清野
Original Assignee
大陽日酸株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陽日酸株式会社 filed Critical 大陽日酸株式会社
Priority to CN201780053801.6A priority Critical patent/CN109642722B/zh
Priority to US16/330,457 priority patent/US11199323B2/en
Publication of WO2018051576A1 publication Critical patent/WO2018051576A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/20Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone
    • F23D14/22Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone with separate air and gas feed ducts, e.g. with ducts running parallel or crossing each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/48Nozzles
    • F23D14/56Nozzles for spreading the flame over an area, e.g. for desurfacing of solid material, for surface hardening, or for heating workpieces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/84Flame spreading or otherwise shaping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/32Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid using a mixture of gaseous fuel and pure oxygen or oxygen-enriched air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2900/00Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
    • F23D2900/14Special features of gas burners
    • F23D2900/14482Burner nozzles incorporating a fluidic oscillator

Definitions

  • the present invention relates to a burner, and more particularly to a burner that heats or melts an object to be heated by heat radiation from a flame.
  • heated objects such as billets and molten glass are placed in the lower part of the furnace, and a flame is created in the upper space.
  • the structure is such that the object to be heated is heated or melted by thermal radiation. Therefore, the flame of the burner is required to be a flame that has a strong heat radiation and can uniformly heat the object to be heated.
  • Patent Documents 1 and 2 disclose a flame by using a self-excited oscillation phenomenon of a jet and oscillating a gas ejected from a fluid jet (flow rate is periodically increased or decreased). Is disclosed in a wide range to enhance heat radiation and perform uniform heating. According to the method described in Patent Document 1, it is possible to heat a wider area than a normal burner by using a self-excited vibration phenomenon to cause the flame to swing left and right. In addition, according to the method described in Patent Document 2, by providing a second gas jet separately around the fluid outlet that generates self-excited vibration, the method disclosed in Patent Document 1 is further improved. A wide area can be heated.
  • the present invention has been made to solve the above-described problems, and can heat a wide range uniformly without reducing thermal radiation even when the amplitude of a flame for self-excited vibration is large.
  • the aim is to provide a burner.
  • a burner according to the present invention causes a main combustion fluid to be ejected from a centrally expanded jet opening that expands toward the tip while self-excited, and a pair of the burners provided on both sides of the centrally expanded jet outlet.
  • a burner for injecting and burning a sub-combustion fluid from a side outlet The pair of side jets are arranged at symmetrical positions with respect to the central axis of the central expansion jet, When the expansion angle of the central expansion outlet is ⁇ and the angle formed by the central axes of the pair of side injection outlets is ⁇ , the central expansion outlet satisfies the relationship ⁇ 5 ° ⁇ ⁇ ⁇ + 15 °.
  • An open jet outlet and a side jet outlet are provided.
  • the burner according to the present invention includes a central expanded jet opening that expands toward the tip and a pair of side expanded jet outlets that are provided on both sides of the central expanded jet and expand in the ejection direction.
  • the pair of side expansion nozzles are arranged at symmetrical positions with respect to the central axis of the central expansion nozzle, When the expansion angle of the central expansion outlet is ⁇ and the angle formed between the inner side walls of the pair of side expansion outlets is ⁇ in, the relationship ⁇ 5 ° ⁇ ⁇ in is satisfied, and the pair of pair When the angle formed between the outer walls of the side expansion nozzles is ⁇ out, the central expansion nozzle and the side expansion nozzle are provided so as to satisfy the relationship of ⁇ out ⁇ ⁇ + 15 °. It is characterized by.
  • the main combustion fluid is ejected from the centrally expanded nozzle that expands toward the tip while being self-excited, and from a pair of side nozzles provided on both sides of the centrally expanded nozzle.
  • a burner for injecting and burning a sub-combustion fluid wherein the pair of side jets are disposed at symmetrical positions with respect to a central axis of the central expansion jet, and the central expansion jet is expanded.
  • the central expansion jet and the side jets satisfy the relationship of ⁇ 5 ° ⁇ ⁇ ⁇ + 15 °. Is provided. For this reason, even when the amplitude of the self-excited flame is large, the mixing of the main combustion fluid and the subcombustion fluid is improved to increase the combustion efficiency, and the heat radiation can be increased while forming the flame in a wide range. it can.
  • FIG. 3 shows the state which the main fuel quantity fluid flows along one expansion wall of a center expansion injection outlet.
  • FIG. 3 (b) shows a state in which the main fuel quantity fluid flows along the other expanded wall of the central expanded outlet.
  • Fig.4 (a) is a state in which a flame is formed in the left side (expansion wall 3b side) of a center expansion jet nozzle.
  • 4 (b) shows a state in which the flame is formed near the central portion of the central expansion outlet, and
  • FIG. 4 (c) shows the right side of the central expansion outlet (expanded wall 3a side). Shows the state formed.
  • FIG. 11 (a) is a flame formed in the left side (side jet nozzle 7 side) of a center expansion jet nozzle.
  • FIG. 11 (b) shows a state in which the flame is formed near the central portion of the central expansion jet port
  • FIG. 11 (c) shows the right side of the central expansion jet port (side jet port 5). Side).
  • the combustion fluid means a fuel fluid, a combustion-supporting fluid, or a mixed fluid of a fuel fluid and a combustion-supporting fluid, and both support combustion as a combination of a main combustion fluid and a sub-combustion fluid.
  • the main combustion fluid or the sub-combustion fluid is a fuel fluid or a mixed fluid.
  • the burner 1 causes the main combustion fluid to be ejected from the central expansion outlet 3 that expands toward the tip while self-vibrating, and the central expansion outlet 3.
  • the sub-combustion fluid is ejected from the side jet outlets 5 and 7 provided on both sides of the gas and burned.
  • the central expansion outlet 3 ejects the main combustion fluid, and is provided at the front end of the main combustion fluid supply passage 9 for supplying the main combustion fluid, as shown in FIGS.
  • the cross section perpendicular to the flow direction of the main combustion fluid is rectangular.
  • the main combustion fluid supply passage 9 upstream of the duct opening 11 is provided with a rectangular cylinder-shaped straight body portion 13, and the main combustion fluid supply passage 9 downstream of the duct opening 11 is provided in the main combustion fluid supply passage 9.
  • a central expansion outlet 3 is provided.
  • the cross section of the central expansion jet port 3 orthogonal to the flow direction of the main combustion fluid is rectangular. More specifically, the shape of the central expanded jet outlet 3 in the plane cross section of the burner is a fan-shaped shape expanded toward the tip, and the side wall on the duct opening 11 installation side of the main combustion fluid supply passage 9 It can be expressed by the expansion angle ⁇ formed by the expanded walls 3a and 3b. That is, when the burner is viewed in a plan view, the shape of the central expanded outlet 3 is a fan shape, and the expanded wall formed by one expanded wall 3a and the other expanded wall 3b having two radii of the sector shape. The angle is ⁇ °.
  • the duct openings 11 communicate with each other by a communication duct 15 provided on the rear side of the burner 1.
  • a communication duct 15 provided on the rear side of the burner 1.
  • the amplitude of this self-excited vibration (the fluctuation width of the ejected main combustion fluid) and the frequency (frequency) are determined by the size of each part of the central expansion outlet 3, the duct opening 11, the straight body 13, and the communication duct 15. It can be adjusted by changing various conditions such as the flow rate of the main combustion fluid. Further, since the frequency of the self-excited vibration varies depending on the communication state of the duct opening 11, it can be controlled by providing a control valve in the communication duct 15 and adjusting the gas flow rate and pressure.
  • the side outlets 5 and 7 are for ejecting a sub-combustion fluid, and are provided at the front ends of sub-combustion fluid supply channels 17 and 19 for supplying the sub-combustion fluid.
  • the central expansion jet outlet 3 is disposed at a symmetrical position with respect to the central axis C.
  • the widening angle of the central spreader spout 3 and alpha, the angle between the center axis C b of the central axis C a and side spout 7 of the side spout 5 when the beta, -5 ⁇ and ⁇ are set so as to satisfy the relationship of ° ⁇ ⁇ ⁇ + 15 °.
  • the angle ⁇ is positive when measured in the counterclockwise direction (the direction indicated by the arrow in FIG. 1) with respect to the central axis C a of the side jet outlet 5, and measured in the clockwise direction. Make things negative.
  • the angle beta the angle measured in the clockwise direction, i.e. represented by a negative angle.
  • a fuel fluid is supplied as the main combustion fluid
  • a combustion-supporting fluid is supplied as the sub-combustion fluid.
  • the expansion angle ⁇ of the central expansion outlet 3 and the angle ⁇ formed by the central axes C a and C b are ⁇ 5 ° ⁇ ⁇ ⁇ + 15 °.
  • the combustion-supporting fluid ejected from the side ejection ports 5 and 7 is ejected in the directions of the central axes C a and C b , respectively.
  • the angle is set to be equal to or greater than the lower limit ( ⁇ 5 ° ⁇ ⁇ )
  • the amplitude of the self-excited vibration of the fuel fluid ejected from the center expansion ejection port 3 is ejected from the side ejection ports 5 and 7. This makes it possible to maintain a wide range of heat radiation from the flame without being limited by the secondary combustion fluid.
  • the offset distance L (refer FIG. 2) of the center expansion jet nozzle 3 and the side part jet nozzle 5 (or 7) is set to about 30 mm, It is not limited and can be changed as appropriate. Then, the combustion efficiency of the burner 1 can be adjusted by changing the angle ⁇ and the offset distance L between the central expanded outlet 3 and the side outlet 5 (or 7).
  • the side jet outlets 5 and 7 have a rectangular shape perpendicular to the fluid flow direction, but are not limited to this shape.
  • the shape can be applied according to a desired fluid flow rate and flow velocity.
  • the side injection ports 5 and 7 and the second injection ports 23 and 25 can be supplied with sub-combustion fluids, respectively, and these flow rates are set separately to obtain a desired combustion fluid (fuel). Fluids, combustion-supporting fluids and mixed fluids).
  • the direction in which the sub-combustion fluid is ejected from the second ejection ports 23 and 25 is not particularly limited.
  • the effect by providing the 2nd jet nozzles 23 and 25 is demonstrated in the Example mentioned later.
  • a burner 31 shown in FIG. 6 is provided with a centrally expanded jet outlet 3 that expands toward the tip and a pair of side expanded jet outlets 41 that are provided on both sides of the central expanded jet outlet 3 and expand in the ejection direction.
  • the main combustion fluid and the sub-combustion fluid are ejected from 51 while being self-excited and burned.
  • the burner 31 will be described in detail with reference to FIG.
  • the side expanded jet nozzles 41 and 51 eject the sub-combustion fluid, and as shown in FIG. 6, the front end portions of the sub-combustion fluid supply channels 43 and 53 for supplying the sub-combustion fluid, respectively.
  • One side expanded jet outlet 41 includes an inner wall 41a close to the central expanded jet 3, and a far outer wall 41b.
  • the other side expanded jet outlet 51 includes an inner wall 51a close to the central expanded jet 3 and a far outer wall 41b.
  • the side expansion nozzle 41 and the side expansion nozzle 51 differ only in the direction of the respective central axes (the direction in which the auxiliary combustion fluid is ejected), and the structure and function of both are the same. Therefore, hereinafter, the side part expansion jet port 41 will be described except when necessary.
  • a pair of duct openings 45 are provided at opposing positions on the side wall 43 a of the intermediate portion of the sub-combustion fluid supply flow path 43.
  • the sub-combustion fluid supply passage 43 upstream of the duct opening 45 is provided with a rectangular cylinder-shaped straight body portion 47, and the sub-combustion fluid supply passage 43 downstream of the duct opening 45 A side expansion nozzle 41 is provided.
  • the duct openings 45 communicate with each other by a communication duct 49 provided on the rear side of the burner 31.
  • the pair of duct openings 45 communicated by the communication duct 49 are arranged opposite to the auxiliary combustion fluid supply flow path 43, so that the auxiliary combustion fluid ejected from the side expansion outlet 41 is self-excited. Vibration can be generated.
  • the side expansion nozzles 41 and 51 are set to have an expansion angle ⁇ of the central expansion nozzle 3, and the side expansion nozzles 41 and 51 have a central expansion nozzle 3.
  • ⁇ and ⁇ in satisfy the relationship ⁇ 5 ° ⁇ ⁇ in.
  • the angle formed between the outer side walls 41b and 51b far from the central expanded outlets of the side expanded outlets 41 and 51 is ⁇ out, the relationship of ⁇ out ⁇ ⁇ + 15 ° is satisfied.
  • ⁇ , ⁇ in, and ⁇ out are set.
  • the angles ⁇ in and ⁇ out are positive values measured in the counterclockwise direction with reference to the inner wall 41a or the outer wall 41b of the side expanded jet nozzle 41. And negative when measured clockwise. That is, in FIG. 7, the angle ⁇ in is expressed as a negative angle measured in the clockwise direction with respect to the side widened wall 41 a, and the angle ⁇ out is counterclockwise with respect to the side widened wall 41. Expressed as a positive angle measured in the direction.
  • the outlet is ejected from the central expanding outlet 3.
  • the amplitude of the self-excited vibration of the main combustion fluid (fuel fluid) can be increased.
  • the main combustion fluid (fuel fluid) ejected from the central expansion outlet 3 and the subcombustion fluid (supports) ejected from the side expansion outlets 41 and 51 may be set smaller than ⁇ 5 °.
  • the angle ⁇ in formed by the inner side walls 41a and 51a of the side expanded jet nozzles 41 and 51 is ⁇ If the angle is set to 5 ° or more, the self-excited vibration amplitude of the main combustion fluid is not limited by the sub-combustion fluid and a self-excited flame is formed as in the burner 1 according to the first embodiment. can do.
  • the fuel fluid ejected by the self-excited vibration from the central expansion jet outlet 3 and the support ejected by the self-excited vibration from the side expanded jet outlet 41 or 51 are ejected. Since the flammable fluid can be mixed and burned better, the flame can be formed over a wide range while improving the combustion efficiency, and the heat radiation can be further increased.
  • a self-excited and oscillating flame is formed by using the burner 1 shown in FIG. 1, the expansion angle ⁇ of the central expansion outlet 3 is set to 60 °, and one side outlet 5 a central axis burner 1 was changed to the angle ⁇ formed between C a and the center axis C b of the other side spout 7 and a plurality of prepared of the angle ⁇ was confirmed the effect of the thermal radiation from the flame.
  • Example 1 LP gas was used as the main combustion fluid, and oxygen-enriched air containing 40 vol% oxygen was used as the sub-combustion fluid. Then, LP gas is supplied at 8 Nm 3 / h to the central expansion outlet 3 through the main combustion fluid supply passage 9, and oxygen is supplied to the side injection outlets 5 and 7 through the subcombustion fluid supply passages 17 and 19. Enriched air was supplied at 105 Nm 3 / h, and LP gas was burned at an oxygen ratio of 1.05.
  • the oxygen ratio is a value indicating how many times the stoichiometric ratio of oxygen is supplied to a certain amount of fuel. For example, an oxygen ratio of 1.05 indicates that oxygen is being supplied slightly more (1.05 times) than the theoretical amount of oxygen for completely burning the fuel.
  • a heat transfer measuring board (not shown) was installed at a position 600 mm from the tip of the burner 1, the expansion angle ⁇ was fixed at 60 °, and the angle ⁇ was ⁇ 10 °, ⁇ 5 °, 0 °, 60 Using the burner 1 set at °, 75 °, and 90 °, the amount of heat radiation of the flame formed at each angle ⁇ was evaluated by the amount of heat transferred to the cooling water flowing through the heat transfer measurement panel.
  • the heat transfer measurement panel is a unit in which a plurality of water cooling pipes having a minute width for flowing cooling water are connected, and the cooling water inlet temperature and outlet temperature and the cooling water flow rate in each water cooling pipe can be measured.
  • LP gas and oxygen-enriched air are supplied to the burner 1 to ignite, and a self-excited and oscillating flame is applied to the heat transfer measurement board, and the outlet of the cooling water in the heat transfer measurement board
  • the amount of heat transfer in each water cooling tube was calculated from the temperature difference between the inlet and the inlet and the flow rate of the cooling water.
  • FIG. 8 shows the measurement results of the heat transfer amount at each angle ⁇ .
  • the horizontal axis represents the distance [mm] from the central axis of the burner 1 at a position 600 mm from the tip of the burner 1, and the vertical axis represents the transfer to the cooling water measured at each location of the heat transfer measurement panel. It represents the amount of heat [kJ / h].
  • Example 2 a flame that self-oscillates is formed using the burner 1 shown in FIG. 1, the expansion angle ⁇ of the central expansion outlet 3 is fixed at 45 °, and the central axis of the pair of side injection outlets was changed to -10 °, -5 °, 0 °, 45 °, 60 °, and 75 °, and the amount of heat transferred from the flame was measured in the same manner as in Example 1 described above.
  • the combustion condition is that LP gas is supplied as the main combustion fluid to the central expansion outlet 3 through the main combustion fluid supply passage 9 at 8 Nm 3 / h, and oxygen is used as the sub-combustion fluid.
  • Oxygen-enriched air containing 40 vol% was supplied to the outlets 5 and 7 through the subcombustion fluid supply passages 17 and 19 at 105 Nm 3 / h, and LP gas was burned at an oxygen ratio of 1.05.
  • the shape of the burner 1 other than the angle ⁇ was the same as in Examples 1 and 2, and the combustion conditions were the same as in Examples 1 and 2.
  • LP gas is supplied to the central expansion outlet 3, and oxygen-enriched air is ejected from the outlets 63 and 65 as a secondary combustion fluid.
  • the outlets 5 and 7 are provided on both sides of the central expanding outlet 3 in the expanding direction, and the second outlets 23 and 25 are provided in a direction orthogonal to the expanding direction.
  • Example 4 the expansion angle ⁇ of the central expansion outlet 3 is set to 60 °, the angle ⁇ of the side injection ports 5 and 7 is set to 60 °, and the angles formed by the central axes of the second outlets 23 and 25, respectively. ⁇ was set to 0 °.
  • LP gas was supplied at 8 Nm 3 / h as the main combustion fluid to the central expansion outlet 3, and 40 vol% of oxygen was supplied to the outlets 5 and 7 and the second outlets 23 and 25 as the auxiliary combustion fluid.
  • Contained oxygen-enriched air was supplied at 105 NM 3 / h.
  • the oxygen-enriched air is distributed so that the flow rate ratio supplied to the side jets 5 and 7 and the second jets 23 and 25 is 6: 4, respectively, and from the side jets 5 and 7.
  • the flow rate of the oxygen-enriched air to be ejected was 100 m / s
  • the flow rate of the oxygen-enriched air to be ejected from the second ejection ports 23 and 25 was 40 m / s.
  • the state in which the oxygen-enriched air was ejected was as shown in FIG.
  • Example 4 the angle ⁇ formed by the second ejection ports 23 and 25 is 0 °, but is not limited to this angle.
  • a self-excited vibration flame is formed using a burner 31 provided with side expansion nozzles 41 and 51 on both sides of the central expansion nozzle 3.
  • An experiment was conducted to measure the amount of heat transfer from.
  • the expansion angle ⁇ of the central expansion outlet 3 is set to 60 °, and the inner side wall 41a of the side expansion outlet 41 and the inner side of the side expansion outlet 51 are arranged.
  • the angle ⁇ in formed with the wall 51a was set to 0 °, and the angle ⁇ out formed between the outer wall 41b of the side expanding nozzle 41 and the outer wall 51b of the side expanding nozzle 51 was set to 60 °.
  • Fig. 12 shows the heat transfer measurement results.
  • FIG. 12 shows that when the burner 31 is used, the range of heat radiation is expanded and the total heat transfer amount is also increased. This is because the oxygen-enriched air ejected from the side expanded nozzles 41 and 51 undergoes self-excited vibration, whereby the fuel and the oxygen-enriched air in the direction of self-excited vibration are well mixed and the combustibility is improved. This is probably because
  • the range of thermal radiation can be expanded and the total amount of heat transfer can be increased by self-excited oscillation of the oxygen-enriched air ejected from both sides of the central expansion outlet that ejects the fuel fluid by self-excited oscillation. I understand.
  • the burner according to the present invention increases the combustion efficiency by mixing the main combustion fluid and the subcombustion fluid well even when the amplitude of the self-excited flame is large, and heat radiation while forming a flame in a wide range. Can be increased.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Pre-Mixing And Non-Premixing Gas Burner (AREA)
  • Gas Burners (AREA)

Abstract

自励振動させる火炎の振り幅が大きい場合においても、熱放射が低下せずに広い範囲を均一に加熱することができるバーナを提供することを目的とし、先端に向かって拡開する中央拡開噴出口(3)から主燃焼用流体を自励振動させながら噴出させると共に、中央拡開噴出口(3)の両側に設けた一対の側部噴出口(5および7)から副燃焼用流体を噴出させて燃焼させるものであって、側部噴出口(5および7)は、中央拡開噴出口(3)の中心軸に対して対称位置に配置されてなり、中央拡開噴出口3の拡開角度をα、側部噴出口(5および7)の中心軸の成す角度をβとしたときに、-5°≦β≦α+15°の関係を満たすように前記中央拡開噴出口(3)および側部噴出口(5および7)が設けられていることを特徴とするバーナを提供する。

Description

バーナ
 本発明は、バーナに関し、特に、火炎からの熱放射によって被加熱物を加熱あるいは溶解させるバーナに関する。
 本願は、2016年9月16日に、日本に出願された特願2016-181092号に基づき優先権を主張し、その内容をここに援用する。
 一般に、鉄鋼用加熱炉やガラス溶解炉等の工業用の高温加熱プロセスでは、炉内下部にビレットや溶融ガラス等の被加熱物が置かれ、その上部空間に火炎が作られ、その火炎からの熱放射によって被加熱物を加熱あるいは溶解する構造となっている。
 そのため、バーナの火炎には、熱放射の強い火炎であるとともに、被加熱物を均一に加熱できるような火炎であることが求められている。
 熱放射の強い火炎を作る方法として、特許文献1および2には、噴流の自励振動現象を利用し、流体噴出口から噴出するガスを振動(流量を周期的に増減)させることで、火炎を広範囲に供給し、熱放射を高めるとともに均一加熱を行う方法が開示されている。
 特許文献1に記載された方法によれば、自励振動現象を利用して火炎を左右に振らせることにより、通常のバーナよりも広範囲の領域を加熱することができる。
 また、特許文献2に記載された方法によれば、自励振動を生じさせる流体噴出口の周囲に、別途、第2のガス噴流を設けることで、特許文献1に開示された方法より、さらに広範囲な領域を加熱することができる。
特開2005-113200号公報 特開2013-079753号公報
 しかしながら、特許文献2に記載の方法では、自励振動を生じさせる流体噴出口の方向と、第2のガス噴流の噴出口の方向との関係については何ら規定されておらず、自励振動させる火炎の振り幅が大きくなると、燃焼が緩慢になり火炎温度が低くなってしまうので、熱放射が弱くなるといった問題があった。
 本発明は、上記のような課題を解決するためになされたものであり、自励振動させる火炎の振り幅が大きい場合においても熱放射が低下せずに広い範囲を均一に加熱することができるバーナを提供することを目的とする。
(1)本発明に係るバーナは、先端に向かって拡開する中央拡開噴出口から主燃焼用流体を自励振動させながら噴出させると共に、前記中央拡開噴出口の両側に設けた一対の側部噴出口から副燃焼用流体を噴出させて燃焼させるバーナであって、
 前記一対の側部噴出口は、前記中央拡開噴出口の中心軸に対して対称位置に配置され、
 前記中央拡開噴出口の拡開角度をα、前記一対の側部噴出口の中心軸の成す角度をβとしたときに、-5°≦β≦α+15°の関係を満たすように前記中央拡開噴出口および側部噴出口が設けられていることを特徴とするものである。
(2)本発明に係るバーナは、先端に向かって拡開する中央拡開噴出口及び該中央拡開噴出口の両側に設けられて噴出方向に拡開する一対の側部拡開噴出口からそれぞれ主燃焼用流体および副燃焼用流体を自励振動させながら噴出させて燃焼させるバーナであって、
 前記一対の側部拡開噴出口は、前記中央拡開噴出口の中心軸に対して対称位置に配置されて、
 前記中央拡開噴出口の拡開角度をα、前記一対の側部拡開噴出口の内側壁同士の成す角度をβinとしたときに、-5°≦βinの関係を満たし、かつ前記一対の側部拡開噴出口の外側壁同士の成す角度をβoutとしたときに、βout≦α+15°の関係を満たすように、前記中央拡開噴出口および側部拡開噴出口が設けられていることを特徴とするものである。
 本発明においては、先端に向かって拡開する中央拡開噴出口から主燃焼用流体を自励振動させながら噴出させると共に、前記中央拡開噴出口の両側に設けた一対の側部噴出口から副燃焼用流体を噴出させて燃焼させるバーナであって、前記一対の側部噴出口は、前記中央拡開噴出口の中心軸に対して対称位置に配置され、前記中央拡開噴出口の拡開角度をα、前記一対の側部噴出口の中心軸の成す角度をβとしたときに、-5°≦β≦α+15°の関係を満たすように前記中央拡開噴出口および側部噴出口が設けられている。このため、自励振動させる火炎の振り幅が大きい場合においても主燃焼用流体と副燃焼用流体の混合を良好にして燃焼効率を増加させ、広範囲に火炎を形成しつつ熱放射を高めることができる。
第一実施形態に係るバーナの構成を説明する図である(平断面図)。 第一実施形態に係るバーナの構成を説明する図であり、中央拡開噴出口および側部噴出口を正面からみた状態を示している。 第一実施形態に係るバーナにおける主燃焼用流体の中央噴出状態を示す図であり、図3(a)は主燃料量流体が中央拡開噴出口の一方の拡開壁に沿って流れる状態を示し、図3(b)は主燃料量流体が中央拡開噴出口の他方の拡開壁に沿って流れる状態を示す。 第一実施形態に係るバーナにおいて自励振動する火炎の挙動を説明する図であって、図4(a)は火炎が中央拡開噴出口の左側(拡開壁3b側)に形成される状態を示し、図4(b)は火炎が中央拡開噴出口の中央部付近に形成される状態を示し、図4(c)は火炎が中央拡開噴出口の右側(拡開壁3a側)に形成される状態を示す。 第一実施形態における変形例のバーナを説明する図であり、中央拡開噴出口および側部噴出口を正面からみた状態を示している。 第二実施形態に係るバーナの構成を説明する図である(その1)。 第二実施形態に係るバーナの構成を説明する図である(その2)。 実施例1における伝熱量の測定結果のグラフである。 実施例3の比較例で用いたバーナの構成を説明する図である。 実施例3における伝熱量の測定結果のグラフである。 実施例3において用いたバーナにより形成された火炎の自励振動を説明する図であり、図11(a)は火炎が中央拡開噴出口の左側(側部噴出口7側)に形成される状態を示し、図11(b)は火炎が中央拡開噴出口の中央部付近に形成される状態を示し、図11(c)は火炎が中央拡開噴出口の右側(側部噴出口5側)に形成される状態を示す。 実施例5における伝熱量の測定結果のグラフである。
 以下、本発明における燃焼用流体について説明した後、各実施形態におけるバーナの構成を図1~3に基づいて詳細に説明する。なお、以下の説明で用いる図面は、特徴をわかりやすくするために、便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。
<燃焼用流体>
 本発明において、燃焼用流体とは燃料流体、支燃性流体、あるいは燃料流体と支燃性流体の混合流体のことをいい、主燃焼用流体と副燃焼用流体の組み合わせとして、双方とも支燃性流体であるものは除外し、主燃焼用流体あるいは副燃焼用流体のいずれか一方は、燃料流体又は混合流体とする。
[第一実施形態]
 本実施形態に係るバーナ1は、図1に示すように、先端に向かって拡開する中央拡開噴出口3から主燃焼用流体を自励振動させながら噴出させると共に、中央拡開噴出口3の両側に設けた側部噴出口5および7から副燃焼用流体を噴出させて燃焼させるものである。
<中央拡開噴出口>
 中央拡開噴出口3は、主燃焼用流体を噴出させるものであり、図1および2に示すように、主燃焼用流体を供給する主燃焼用流体供給流路9の先端部に設けられて、主燃焼用流体の流れ方向に直交する断面が矩形状である。
 ダクト開口部11より上流側の主燃焼用流体供給流路9には、角筒状の直胴部13が設けられており、ダクト開口部11より下流側の主燃焼用流体供給流路9に中央拡開噴出口3が設けられている。
 前述のとおり、主燃焼用流体の流れ方向に直交する、中央拡開噴出口3の断面は矩形状である。より具体的には、バーナの平断面における中央拡開噴出口3の形状は、先端に向かって拡開した扇形形状であり、主燃焼用流体供給流路9のダクト開口部11設置側の側壁である拡開壁3aと3bのなす拡開角度αにより表わすことができる。つまり、バーナを平断面視した場合の中央拡開噴出口3の形状は扇形であり、その扇形の2本の半径をなす一方の拡開壁3aと他方の拡開壁3bとのなす拡開角度はα°である。
 ダクト開口部11同士は、バーナ1の後部側に設けられた連通ダクト15によって連通している。このように、バーナ1の主燃焼用流体供給流路9に、連通ダクト15で連通した一対のダクト開口部11を対向配置することにより、中央拡開噴出口3から噴出する主燃焼用流体に対して、図3に示すような、いわゆるフリップフロップノズル噴流の自励振動を発生させることができる。
 すなわち、直胴部13に流入した主燃焼用流体は、中央拡開噴出口3へ流出する際に、中央拡開噴出口3の一方の拡開壁3aに沿って流出する状態(図3(b)参照)と、他方の拡開壁3bに沿って流出する状態(図3(a)参照)とを交互に繰り返して、自励振動する(左右に振れる)。
 この自励振動の振幅(噴出した主燃焼用流体の振れ幅)や振動数(周波数)は、中央拡開噴出口3、ダクト開口部11、直胴部13および連通ダクト15の各部の寸法や、主燃焼用流体の流速などといった各種条件を変更することによって調整できる。
 また、自励振動の周波数は、ダクト開口部11の連通状態によって変動するので、連通ダクト15に調節弁を設けてガス流量や圧力を調節することにより制御することも可能である。
<側部噴出口>
 側部噴出口5および7は、図1に示すように、副燃焼用流体を噴出させるものであり、副燃焼用流体を供給する副燃焼用流体供給流路17および19の先端部に設けられ、中央拡開噴出口3の中心軸Cに対して対称位置に配置されている。
 そして、中央拡開噴出口3の拡開角度をαとし、側部噴出口5の中心軸Cと側部噴出口7の中心軸Cとの成す角度をβとしたときに、-5°≦β≦α+15°の関係を満たすようにαとβが設定されている。ここで、角度βは、側部噴出口5の中心軸Cを基準として反時計回りの方向(図1中、矢印の示す方向)に測ったものを正とし、時計回りの方向に測ったものを負とする。そして、側部噴出口5の中心軸Cと側部噴出口7の中心軸Cとが交差する場合、角度βは、時計回りの方向に測った角度、すなわち負の角度で表す。
 本実施形態に係るバーナ1により自励振動する火炎の挙動を、図4に基づいて説明する。
 本実施形態おいては、主燃焼用流体としては燃料流体を、副燃焼用流体としては支燃性流体を供給している。主燃焼用流体供給流路9の直胴部13から噴出する燃料流体は、中央拡開噴出口3へ噴出する際に、中央拡開噴出口3の両側の拡開壁3a、3bに交互に沿って流れて自励振動する(左右に振れる)状態となる。
 そして、燃料流体が拡開壁3bに沿って噴出した場合は、中央拡開噴出口3の左側に位置する側部噴出口7から噴出した支燃性流体と混合し、中央拡開噴出口3の左側に火炎が形成される(図4(a))。一方、燃料流体が拡開壁3aに沿って噴出した場合は、中央拡開噴出口3の右側に位置する側部噴出口5から噴出した支燃性流体と混合し、中央拡開噴出口3の右側に火炎が形成される(図4(c))。
 本実施形態のバーナ1においては、上述したように、中央拡開噴出口3の拡開角度αと、中心軸CとCとの成す角度βが、-5°≦β≦α+15°となるように設定されており、側部噴出口5および7から噴出する支燃性流体は、それぞれ中心軸CとCの方向に噴出される。
 側部噴出口5および7と、中央拡開噴出口3との形状および位置関係を、β≦α+15°となるように設定することにより、火炎の自励振動による振り幅が大きくなっても、中央拡開噴出口3から噴出する燃料流体は、側部噴出口5又は7のいずれかから噴出する支燃性流体と混合して燃焼させることができるため、燃焼効率を向上させつつ火炎を広範囲に形成し、熱放射を高めることができる。
 一方、角度の下限(-5°≦β)以上に設定することにより、中央拡開噴出口3から噴出する燃料流体の自励振動の振り幅は、側部噴出口5および7から噴出される副燃焼用流体によって制限されることなく、これにより火炎からの熱放射範囲を広く維持できる。
 なお、角度βの上限値(=α+15°)と下限値(=-5°)については、後述する実施例にて実証する。
 また、第一実施形態に係るバーナ1において、中央拡開噴出口3と側部噴出口5(又は7)とのオフセット距離L(図2参照)は30mm程度に設定されているが、これに限定されるものではなく、適宜変更することができる。
 そして、バーナ1の燃焼効率は、角度βと、中央拡開噴出口3と側部噴出口5(又は7)とのオフセット距離Lとを代えることで調整が可能である。
 なお、側部噴出口5および7は、図2に示すように、流体の流れ方向に直行した面が矩形状のものであるが、この形状に限定されるものではなく、円筒状、マルチホール状などを所望の流体流量や流速に応じて適用可能である。
 また、本実施形態の変形例として、図5に示すように、中央拡開噴出口3の左右両側に設けた側部噴出口5および7に加えて、中央拡開噴出口3の上下に第2噴出口23および25を設けたバーナ21が挙げられる。
 側部噴出口5および7と、第2噴出口23および25とには、それぞれ副燃焼用流体を供給できるようになっており、これらの流量を別々に設定し、所望の燃焼用流体(燃料流体、支燃性流体および混合流体)を供給することが可能である。
 このとき、第2噴出口23および25から副燃焼用流体を噴出させる方向(第2噴出口23と25の中心軸の成す角度)は、特に限定されない。
 なお、第2噴出口23および25を設けることによる効果は、後述する実施例において説明する。
[第二実施形態]
 本発明の第二実施形態に係るバーナ31を、図6に基づいて説明する。なお、前述の第一実施形態で述べた構成要素と同じ構成要素については、同一の符号を付し、以下において当該構成要素の説明は省略する。
 図6に示すバーナ31は、先端に向かって拡開する中央拡開噴出口3及び中央拡開噴出口3の両側に設けられて噴出方向に拡開する一対の側部拡開噴出口41、51からそれぞれ主燃焼用流体および副燃焼用流体を自励振動させながら噴出させて燃焼させるものである。
 以下、図6に基づいてバーナ31を詳細に説明する。
<側部拡開噴出口>
 側部拡開噴出口41および51は、副燃焼用流体を噴出させるものであり、図6に示すように、副燃焼用流体を供給する副燃焼用流体供給流路43および53それぞれの先端部に設けられている。
 一方の側部拡開噴出口41は、中央拡開噴出口3に近い内側壁41aと、遠い外側壁41bとを具備する。他方の側部拡開噴出口51は、中央拡開噴出口3に近い内側壁51aと、遠い外側壁41bとを具備する。
 ここで、側部拡開噴出口41と側部拡開噴出口51とは、それぞれの中心軸の向き(副燃焼用流体を噴出する方向)が異なるだけで、双方の構造と機能は同一であるので、以下、必要な場合を除いて、側部拡開噴出口41について説明する。
 副燃焼用流体供給流路43の中間部の側壁43aには、対向する位置に一対のダクト開口部45が設けられている。
 ダクト開口部45より上流側の副燃焼用流体供給流路43には、角筒状の直胴部47が設けられており、ダクト開口部45より下流側の副燃焼用流体供給流路43に側部拡開噴出口41が設けられている。
 そして、ダクト開口部45同士は、バーナ31の後部側に設けられた連通ダクト49によって連通している。このように、副燃焼用流体供給流路43に、連通ダクト49で連通した一対のダクト開口部45を対向配置することにより、側部拡開噴出口41から噴出する副燃焼用流体に自励振動を発生させることができる。
 さらに、側部拡開噴出口41および51は、図7に示すように、中央拡開噴出口3の拡開角度αとし、側部拡開噴出口41および51の中央拡開噴出口3に近い内側壁41aと51aとの成す角度をβinとした場合、αとβinとは、-5°≦βinの関係を満たす。同時に側部拡開噴出口41および51の中央拡開噴出口から遠い外側壁41bと51bとの成す角度をβoutとした場合、βout≦α+15°の関係を満たす。このように、α、βinおよびβoutが設定されている。
 なお、角度βinおよびβoutは、第一実施形態に係るバーナ1と同様に、側部拡開噴出口41の内側壁41a又は外側壁41bを基準として、反時計回りの方向に測ったものを正とし、時計回りの方向に測ったものを負とする。すなわち、図7において、角度βinは、側部拡開壁41aを基準として時計回りの方向に測った負の角度で表され、角度βoutは、側部拡開壁41を基準として反時計回りの方向に測った正の角度で表される。
 前述の第一実施形態に係るバーナ1においては、中央拡開噴出口3の両側に設けられた噴出口5と7の角度βが-5°以上であれば、中央拡開噴出口3から噴出する主燃焼用流体(燃料流体)の自励振動の振り幅を大きくできる。
 しかしながら、本第二実施形態に係るバーナ31において、中央拡開噴出口3から噴出する主燃焼用流体(燃料流体)と、側部拡開噴出口41および51から噴出する副燃焼用流体(支燃性流体)とのいずれもが位相差なく自励振動する場合、側部拡開噴出口41および51の内側壁41aと51aとの成す角度βinを-5°よりも小さく設定よい。
 一方、主燃焼用流体の自励振動と、副燃焼用流体の自励振動との間に位相差が生じると、主燃焼用流体の噴流と副燃焼用流体の噴流とが交差して、火炎の自励振動が制限され、火炎からの熱放射による伝熱面積が減少してしまう。
 よって、側部拡開噴出口41および51の内側壁41aと51aとの成す角度βinを-5°よりも小さい角度に設定した場合においては、主燃焼用流体の自励振動と副燃焼用流体の自励振動との位相を合わせることが重要となる。
 ただし、主燃焼用流体と副燃焼用流体との自励振動の位相差を合わせることは必ずしも容易であるとは限らず、位相差が生じたまま主燃焼用流体と副燃焼用流体とが自励振動しながら噴出する場合がある。
 位相差が生じたまま主燃焼用流体と副燃焼用流体とが自励振動しながら噴出する場合においても、側部拡開噴出口41および51の内側壁41aと51aとの成す角度βinを-5°以上に設定しておけば、第一実施形態に係るバーナ1と同様、主燃焼用流体の自励振動の振り幅が副燃焼用流体によって狭く制限されずに自励振動する火炎を形成することができる。
 以上、本第二実施形態に係るバーナ31によれば、中央拡開噴出口3から自励振動して噴出する燃料流体と側部拡開噴出口41又は51から自励振動して噴出する支燃性流体とをより良好に混合させて燃焼させることができるため、燃焼効率を向上させつつ火炎を広範囲に形成し、熱放射をさらに高めることができる。
 本発明に係るバーナの効果について確認するための具体的な実験を行ったので、その結果について以下に説明する。
 実施例1では、図1に示すバーナ1を用いて自励振動する火炎を形成させるものであって、中央拡開噴出口3の拡開角度αを60°とし、一方の側部噴出口5の中心軸Cと他方の側部噴出口7の中心軸Cとの成す角度βを変更したバーナ1を複数本用意し、角度βが火炎からの熱放射に与える影響を確認した。
 実施例1では、主燃焼用流体としてLPガスを用い、副燃焼用流体として酸素40vol%を含む酸素富化空気を用いた。そして、主燃焼用流体供給流路9を通じて中央拡開噴出口3にLPガスを8Nm/hで供給するとともに、副燃焼用流体供給流路17および19を通じて側部噴出口5および7に酸素富化空気を105Nm/hで供給し、酸素比1.05でLPガスを燃焼させた。
 ここで、酸素比とは、一定量の燃料に対し量論比の何倍の酸素が供給されたかを示す値である。例えば、酸素比1.05とは、燃料を完全燃焼させるための理論的な酸素量より、やや過剰(1.05倍)に酸素が供給されている状態であることを示す。
 実験では、バーナ1の先端から600mmの位置に伝熱測定盤(図示なし)を設置し、拡開角度αを60°に固定し、角度βを-10°、-5°、0°、60°、75°、90°に設定したバーナ1を用い、各角度βで形成された火炎の熱放射量を、伝熱測定盤に流す冷却水への伝熱量により評価した。
 伝熱測定盤とは、冷却水を流すための微小幅の水冷管を複数連結したものであり、各水冷管における冷却水の入口温度と出口温度、および冷却水の流量を測定可能である。
 本実施例1では、上記の通り、バーナ1にLPガスと酸素富化空気とを供給して着火し、自励振動する火炎を伝熱測定盤に当て、伝熱測定盤における冷却水の出口と入口の温度差および冷却水の流量から各水冷管における伝熱量を算出した。
 図8に、各角度βにおける伝熱量の測定結果を示す。図8において、横軸は、バーナ1の先端から600mmの位置におけるバーナ1の中心軸からの距離[mm]を表し、縦軸は、伝熱測定盤の各箇所で測定した冷却水への伝熱量[kJ/h]を表している。
 β=60°および75°の場合、他の角度の場合に比べて広範囲に熱放射が行われていることがわかる。しかしながら、β=90°の場合においては、伝熱測定盤への総伝熱量が低下している。これは、自励振動するLPガスの振り幅よりも酸素富化空気が外側に噴出されているため、中央拡開噴出口3から噴出されるLPガスと酸素富化空気とが十分に混合されないことが原因であると推測される。
 一方、β≦0の場合、火炎の拡がりが抑えられて熱放射の範囲が中心軸に寄っている。
 β=0°および-5°の場合、熱放射される範囲にある程度の拡がりがあるが、β=-10°の場合では、熱放射が狭い範囲に制限されてしまい、自励振動により広範囲の熱放射を得ることが困難であることがわかる。
 以上より、噴出口5および7の角度βを、-5°≦β≦α+15°とすることにより、総伝熱量を低下させず、自励振動により広範囲に熱放射することができることが示された。
 実施例2では、図1に示すバーナ1を用いて自励振動する火炎を形成し、中央拡開噴出口3の拡開角度αを45°に固定し、一対の側部噴出口の中心軸の成す角度βを-10°、-5°、0°、45°、60°、75°となるように変更し、前述の実施例1と同様に火炎からの伝熱量を測定した。
 燃焼条件は、実施例1と同様に、主燃焼用流体としてLPガスを主燃焼用流体供給流路9を通じて中央拡開噴出口3に8Nm/hで供給するとともに、副燃焼用流体として酸素40vol%を含む酸素富化空気を副燃焼用流体供給流路17および19を通じて噴出口5および7に105Nm/hで供給し、酸素比1.05でLPガスを燃焼させた。
 実験を行った結果、β=-10°、-5°、0°としたバーナ1においては、中央拡開噴出口3の拡開角度αを60°とした実施例1と同様の結果が得られた。すなわち、β=-5°、0°とした場合、火炎からの熱放射の範囲はある程度の拡がりがある良好な火炎が形成されたが、β=-10°とした場合、熱放射が狭い範囲に制限される結果であった。
 β=45°、60°(≦α+15°)としたバーナ1においては、火炎から広範囲に良好な熱放射が得られた。しかしながらβ=75°とした場合、実施例1においてβ=90°とした場合と同様、伝熱測定盤への総伝熱量が大きく低下する結果となった。
 以上より、中央拡開噴出口3の拡開角度αを45°とした場合においても、一対の噴出口5および7の角度βを、-5°≦β≦α+15°とすることにより、総伝熱量を低下させず、自励振動により広範囲に熱放射することができた。
 実施例3では、図1および2に示すバーナ1を用いて自励振動する火炎を形成し、中央拡開噴出口3の拡開角度をα=90°とし、側部噴出口の中心軸の成す角度βを-10°~120°の範囲で変更し、前述の実施例1および2と同様に火炎からの伝熱量を測定した。
 ここで、角度β以外のバーナ1の形状は実施例1および2と同一であり、また燃焼条件についても実施例1および2と同条件とした。
 β=-5°~0°としたバーナ1において、火炎からの熱放射の範囲は、ある程度の拡がりがあり良好な熱放射が得られたが、β=-10°としたバーナ1では、熱放射が狭い範囲に制限される結果となった。
 一方、β≦105°(=α+15°)としたバーナ1においては、火炎から広範囲に良好な熱放射が得られるのに対し、β>105°としたバーナ1においては、伝熱測定盤への総伝熱量が大きく低下する結果となった。
 さらに、実施例3では、比較例として、拡開角度α=90°の中央拡開噴出口3の拡開方向(自励振動する方向)に直交する方向に一対の噴出口63および65を設けたバーナ61(図9参照)を用い、バーナ61の前方に設置した伝熱測定盤により火炎からの熱放射を測定した。比較例においては実施例1および2と同様、中央拡開噴出口3にLPガスを供給するとともに、噴出口63および65から副燃焼用流体として酸素富化空気を噴出するものとし、LPガスと酸素富化空気の供給量と酸素比は、実施例1および2と同条件(=1.05)とした。
 図10に、本実施例3においてβ=0°および90°に設定したバーナ1における伝熱量と、比較例に係るバーナ61による伝熱量との測定結果を示す。
 比較例のバーナにおいて、中央拡開噴出口3の拡開角度がα=90°と大きいため、火炎の振り幅が大きくなる様子が観察されたが、図10に示すように、実施例1および2の結果と比較すると、総伝熱量は低下し、熱放射が効果的に行われていない結果となった。
 これに対し、中央拡開噴出口3の拡開方向に噴出口5を設けたバーナ1(β=0°および90°)においては、中央拡開噴出口3の拡開角度をα=90°としても、比較例に比べると総伝熱量が低下することはなかった(図10参照)。また、噴出口5と7の成す角度βを調整することにより、熱放射の範囲と伝熱量を適切に調整できることがわかる。
 以上より、中央拡開噴出口3の拡開角度αを90°とした場合においても、噴出口5と7の成す角度βを、-5°≦β≦α+15°の範囲に設定することにより、総伝熱量を低下させず、自励振動により広範囲に熱放射することができた。
 実施例4では、図5に示すように、中央拡開噴出口3の拡開方向の両側に噴出口5および7を設け、さらに拡開方向に直交する方向に第2噴出口23および25を設けたバーナ21を用いて自励振動する火炎を形成し、火炎からの伝熱量を測定する実験を行った。
 実施例4において、中央拡開噴出口3の拡開角度αを60°とし、側部噴出口5と7の角度βを60°とし、第2噴出口23と25それぞれの中心軸の成す角度γを0°とした。
 実験は、中央拡開噴出口3に主燃焼用流体としてLPガスを8Nm/hで供給するとともに、噴出口5および7と第2噴出口23および25に副燃焼用流体として酸素40vol%を含む酸素富化空気を105NM/hで供給した。
 ここで、酸素富化空気は、側部噴出口5および7と第2噴出口23および25それぞれに供給される流量比が6:4となるように振り分けるとともに、側部噴出口5および7から噴出される酸素富化空気の流速を100m/s、第2噴出口23および25から噴出させる酸素富化空気の流速を40m/sとした。ここで、バーナ21において、酸素富化空気が噴出する様子は、図11に示すようであった。
 燃焼実験を行った結果、中央拡開噴出口3の上下方向に第2噴出口23および25を設けたバーナ21を用いることにより、燃焼効率を向上し、火炎からの熱放射をさらに高めることができることが確認された。
 なお、実施例4においては、第2噴出口23と25のなす角度γを0°としたが、この角度に限定されるものではない。
 実施例5では、図6および7に示すように、中央拡開噴出口3の両側に側部拡開噴出口41および51を設けたバーナ31を用いて自励振動する火炎を形成し、火炎からの伝熱量を測定する実験を行った。
 実験は、中央拡開噴出口3に主燃焼用流体としてLPガスを8Nm/hで供給するとともに、側部拡開噴出口41および51に副燃焼用流体として酸素40vol%を含む酸素富化空気を105NM/hで供給した。
 そして、バーナ31の先端から600mmの位置に設置した伝熱測定盤(図示なし)により伝熱量を測定した。
 実施例5で用いたバーナ31の形状については、中央拡開噴出口3の拡開角度αを60°とし、側部拡開噴出口41の内側壁41aと側部拡開噴出口51の内側壁51aとの成す角度βinを0°とし、側部拡開噴出口41の外側壁41bと側部拡開噴出口51の外側壁51bとの成す角度βoutを60°に設定した。
 さらに、中央拡開噴出口3から噴出する燃料流体の自励振動と、側部拡開噴出口41および51から噴出する酸素富化空気の自励振動とは、位相差がない(同じタイミングで左右に振れる)ように調節して実験を行った。
 図12に伝熱量の測定結果を示す。図12においては、比較対象として、図1に示すバーナ1を用いて酸素富化空気を自励振動させずに側部拡開噴出口5および7から噴出させた場合(実施例1におけるβ=60°)の結果を併記している。
 図12より、バーナ31を用いた場合においては、熱放射の範囲が拡がり、総伝熱量も増加していることがわかる。これは、側部拡開噴出口41および51から噴出する酸素富化空気を自励振動させることにより、自励振動する方向における燃料と酸素富化空気とが良好に混合して燃焼性が向上したためであると考えられる。
 以上より、燃料流体を自励振動させて噴出する中央拡開噴出口の両側から噴出する酸化富化空気も自励振動させることにより、熱放射の範囲が拡がり、さらに、総伝熱量が増加できることがわかる。
 本発明のバーナは、自励振動させる火炎の振り幅が大きい場合においても主燃焼用流体と副燃焼用流体とを良好に混合させて燃焼効率を増加させ、広範囲に火炎を形成しつつ熱放射を高めることができる。
  1 バーナ
  3 中央拡開噴出口
  3a、3b 拡開壁
  5、7 側部噴出口
  9 主燃焼用流体供給流路
  9a 側壁
 11 ダクト開口部
 13 直胴部
 15 連通ダクト
 17、19 副燃焼用流体供給流路
 21 バーナ
 23、25 第2噴出口
 31 バーナ
 41、51 側部拡開噴出口
 41a、51a 側部拡開壁(内側壁)
 41b、51b 側部拡開壁(外側壁)
 43、53 副燃焼用流体供給流路
 45、55 ダクト開口部
 47、57 直胴部
 49、59 連通ダクト
 61 バーナ(比較例)
 63、65 噴出口(比較例)

Claims (2)

  1.  先端に向かって拡開する中央拡開噴出口から主燃焼用流体を自励振動させながら噴出させると共に、前記中央拡開噴出口の両側に設けた一対の側部噴出口から副燃焼用流体を噴出させて燃焼させるバーナであって、
     前記一対の側部噴出口は、前記中央拡開噴出口の中心軸に対して対称位置に配置されてなり、
     前記中央拡開噴出口の拡開角度をα、前記一対の側部噴出口の中心軸の成す角度をβとしたときに、-5°≦β≦α+15°の関係を満たすように前記中央拡開噴出口および側部噴出口が設けられていることを特徴とするバーナ。
  2.  先端に向かって拡開する中央拡開噴出口及び該中央拡開噴出口の両側に設けられて噴出方向に拡開する一対の側部拡開噴出口から、それぞれ主燃焼用流体および副燃焼用流体を自励振動させながら噴出させて燃焼させるバーナであって、
     前記一対の側部拡開噴出口は、前記中央拡開噴出口の中心軸に対して対称位置に配置され、
     前記中央拡開噴出口の拡開角度をα、前記一対の側部拡開噴出口の内側壁同士の成す角度をβinとしたときに、-5°≦βinの関係を満たし、かつ前記一対の側部拡開噴出口の外側壁同士の成す角度をβoutとしたときに、βout≦α+15°の関係を満たすように、前記中央拡開噴出口および側部拡開噴出口が設けられていることを特徴とするバーナ。
PCT/JP2017/018788 2016-09-16 2017-05-19 バーナ WO2018051576A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780053801.6A CN109642722B (zh) 2016-09-16 2017-05-19 燃烧器
US16/330,457 US11199323B2 (en) 2016-09-16 2017-05-19 Burner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016181092A JP6482513B2 (ja) 2016-09-16 2016-09-16 バーナ
JP2016-181092 2016-09-16

Publications (1)

Publication Number Publication Date
WO2018051576A1 true WO2018051576A1 (ja) 2018-03-22

Family

ID=61619931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/018788 WO2018051576A1 (ja) 2016-09-16 2017-05-19 バーナ

Country Status (5)

Country Link
US (1) US11199323B2 (ja)
JP (1) JP6482513B2 (ja)
CN (1) CN109642722B (ja)
TW (1) TWI709712B (ja)
WO (1) WO2018051576A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019013127A1 (ja) * 2017-07-10 2019-01-17 大陽日酸株式会社 酸素富化バーナ及び酸素富化バーナを用いた加熱方法
EP3677832A4 (en) * 2017-08-30 2021-05-26 Taiyo Nippon Sanso Corporation OXYGEN-ENRICHING BURNER AND HEATING METHOD WITH OXYGEN-ENRICHING BURNER

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6720245B2 (ja) * 2018-04-20 2020-07-08 大陽日酸株式会社 バーナ及びバーナを用いた加熱方法
JP6853806B2 (ja) * 2018-09-28 2021-03-31 大陽日酸株式会社 加熱炉

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04273904A (ja) * 1990-12-17 1992-09-30 Union Carbide Ind Gases Technol Corp 流体バーナー 
JP2001059602A (ja) * 1999-07-23 2001-03-06 Alstom Power Schweiz Ag 燃焼システムにおけるハイロドダイナミックな不安定性を積極的に抑制する方法及び該方法を実施するための燃焼システム
JP2005113200A (ja) * 2003-10-07 2005-04-28 Taiyo Nippon Sanso Corp バーナー又はランスのノズル構造及び金属の溶解・精錬方法
JP2013079753A (ja) * 2011-10-03 2013-05-02 Taiyo Nippon Sanso Corp バーナおよびバーナ燃焼方法
JP2014505851A (ja) * 2010-12-30 2014-03-06 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード 分散燃焼のプロセスおよびバーナ

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5601425A (en) * 1994-06-13 1997-02-11 Praxair Technology, Inc. Staged combustion for reducing nitrogen oxides
US5681526A (en) * 1996-04-23 1997-10-28 Usx Corporation Method and apparatus for post-combustion of gases during the refining of molten metal
JP3970139B2 (ja) * 2002-09-10 2007-09-05 三菱重工業株式会社 燃焼器
DE102010047969A1 (de) * 2010-03-31 2011-10-06 Sms Siemag Aktiengesellschaft Vorrichtung zur Einblasung von Gas in ein metallurgisches Gefäß
JP5485193B2 (ja) * 2011-01-26 2014-05-07 大陽日酸株式会社 バーナの燃焼方法
CN102721056B (zh) * 2012-05-24 2014-10-29 天津科技大学 一种微脉动燃烧器
CN203565235U (zh) * 2013-11-19 2014-04-30 重庆大学 低压自吸气增压喷嘴

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04273904A (ja) * 1990-12-17 1992-09-30 Union Carbide Ind Gases Technol Corp 流体バーナー 
JP2001059602A (ja) * 1999-07-23 2001-03-06 Alstom Power Schweiz Ag 燃焼システムにおけるハイロドダイナミックな不安定性を積極的に抑制する方法及び該方法を実施するための燃焼システム
JP2005113200A (ja) * 2003-10-07 2005-04-28 Taiyo Nippon Sanso Corp バーナー又はランスのノズル構造及び金属の溶解・精錬方法
JP2014505851A (ja) * 2010-12-30 2014-03-06 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード 分散燃焼のプロセスおよびバーナ
JP2013079753A (ja) * 2011-10-03 2013-05-02 Taiyo Nippon Sanso Corp バーナおよびバーナ燃焼方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019013127A1 (ja) * 2017-07-10 2019-01-17 大陽日酸株式会社 酸素富化バーナ及び酸素富化バーナを用いた加熱方法
EP3677832A4 (en) * 2017-08-30 2021-05-26 Taiyo Nippon Sanso Corporation OXYGEN-ENRICHING BURNER AND HEATING METHOD WITH OXYGEN-ENRICHING BURNER

Also Published As

Publication number Publication date
CN109642722B (zh) 2020-09-11
US11199323B2 (en) 2021-12-14
TW201814213A (zh) 2018-04-16
TWI709712B (zh) 2020-11-11
CN109642722A (zh) 2019-04-16
US20200088404A1 (en) 2020-03-19
JP2018044738A (ja) 2018-03-22
JP6482513B2 (ja) 2019-03-13

Similar Documents

Publication Publication Date Title
WO2018051576A1 (ja) バーナ
CA2856834C (en) Staged oxy-fuel burners and methods for using the same
JP5806550B2 (ja) ガスバーナ
JP4242247B2 (ja) バーナー又はランスのノズル構造及び金属の溶解・精錬方法
TWI415947B (zh) Top burner hot air stove
JP6720245B2 (ja) バーナ及びバーナを用いた加熱方法
EP3677832B1 (en) Oxygen-enriched burner and heating method using oxygen-enriched burner
US20200158333A1 (en) Burner and method for heating using burner
JP6633028B2 (ja) 酸素富化バーナ及び酸素富化バーナを用いた加熱方法
JP2020051710A (ja) 加熱炉
JP2005003360A (ja) 管状火炎バーナ
JP2021028567A (ja) バーナ
JP7150102B1 (ja) 二段燃焼装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17850483

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17850483

Country of ref document: EP

Kind code of ref document: A1