WO2018049877A1 - 用于处理无人机信息的方法、装置和系统 - Google Patents

用于处理无人机信息的方法、装置和系统 Download PDF

Info

Publication number
WO2018049877A1
WO2018049877A1 PCT/CN2017/091837 CN2017091837W WO2018049877A1 WO 2018049877 A1 WO2018049877 A1 WO 2018049877A1 CN 2017091837 W CN2017091837 W CN 2017091837W WO 2018049877 A1 WO2018049877 A1 WO 2018049877A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
identifier
data
flight control
downlink
Prior art date
Application number
PCT/CN2017/091837
Other languages
English (en)
French (fr)
Inventor
历莹
王小祥
李旭
张潮
Original Assignee
北京京东尚科信息技术有限公司
北京京东世纪贸易有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京京东尚科信息技术有限公司, 北京京东世纪贸易有限公司 filed Critical 北京京东尚科信息技术有限公司
Publication of WO2018049877A1 publication Critical patent/WO2018049877A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/14Session management
    • H04L67/146Markers for unambiguous identification of a particular session, e.g. session cookie or URL-encoding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks

Definitions

  • the present invention relates to the field of drones, and more particularly to a method, apparatus and system for processing drone information.
  • each drone manufacturer mainly uses the Mavlink protocol to realize the interaction between the drone and the ground control system.
  • a payload field for carrying service data is provided in the Mavlink data frame.
  • different vendors set the service data in the payload field according to the data format set by themselves.
  • the ground control system set by each manufacturer can only communicate with the drone provided by the manufacturer, and cannot interact with the drone provided by other manufacturers. Since the ground control system cannot be compatible, it is impossible to manage the drones from different manufacturers conveniently and quickly, and different drone manufacturers have to set their own ground control systems, which also increases the cost of drone use. .
  • the object of the present invention is to provide a method, device and system for processing information of a drone, by adding corresponding flight control identifiers in the interaction information between the drone and the ground control platform, so as to interact with each other according to the interaction
  • the flight control identifier carried in the information processes the payload data accordingly, so that the ground control platform can be compatible with the drones provided by different manufacturers.
  • a method for processing drone information comprising:
  • the downlink load data in the downlink information is parsed according to the flight control data format.
  • the service information is transmitted to the ground station, wherein the service information includes service data obtained by parsing the downlink payload data.
  • the site identifier is extracted from the downlink information
  • Sending business information to the ground station includes:
  • the service information is sent to the ground station corresponding to the site identification.
  • the service information further includes a flight control identifier extracted from the downlink information, so that the ground station determines the source of the service data according to the flight control identifier.
  • the response data transmitted by the ground station for the service information is received, and the response data is converted into uplink load data according to the flight control data format;
  • the uplink information is sent, where the uplink information includes the uplink payload data and the flight control identifier, so that the drone with the flight control identifier receives the uplink payload data.
  • the uplink information also includes the site identification of the ground station so that the drone determines the source of the uplink payload data.
  • the area identifier is extracted from the downlink information
  • the alarm processing is performed when the area identifier is not within the current area.
  • a method for processing drone information comprising:
  • the downlink information is sent to the ground control platform, where the downlink information includes downlink load data and a vendor identifier associated with the flight control data format, so that the ground control platform determines the flight control data format according to the vendor identifier to parse the downlink payload data.
  • the downlink information further includes a site identifier, so that the ground control platform sends the service data obtained by parsing the downlink payload data to the ground station corresponding to the site identifier.
  • the downlink information further includes a flight control identifier, so that the ground station determines the source of the service data according to the flight control identifier.
  • the flight control identifier is extracted from the uplink information sent by the ground control platform;
  • the uplink payload data included in the uplink information is parsed according to the corresponding flight control data format.
  • a ground control platform for processing information of a drone including a receiving module, an extracting module, a querying module, and a parsing module, wherein:
  • a receiving module configured to receive downlink information sent by the drone
  • An extraction module configured to extract a vendor identifier of the drone from the downlink information
  • the query module is configured to query the flight control data format according to the manufacturer identifier
  • the parsing module is configured to parse downlink load data in the downlink information according to the flight control data format.
  • the ground control platform further includes an information transmission module, wherein:
  • the information transmission module is configured to send the service information to the ground station, where the service information includes the service data obtained by parsing the downlink load data.
  • the extraction module is further configured to extract the site identifier from the downlink information
  • the information transmission module specifically transmits the service information to the ground station corresponding to the site identifier.
  • the service information further includes an air control identifier extracted by the extraction module from the downlink information, so that the ground station determines the source of the service data according to the flight control identifier.
  • the ground control platform further includes a transmitting module, wherein:
  • the parsing module is further configured to: after the information transmission module receives the response data sent by the ground station for the service information, convert the response data into the uplink load data according to the flight control data format;
  • the sending module is configured to send uplink information, where the uplink information includes uplink load data and a flight control identifier, so that the drone with the flight control identifier receives the uplink payload data.
  • the uplink information also includes the site identification of the ground station so that the drone determines the source of the uplink payload data.
  • the ground control platform further includes a detection module, wherein:
  • the extraction module is further configured to extract the area identifier from the downlink information
  • the detecting module is configured to identify whether the area identifier is within the current area, and if the area identifier is not within the current area, perform alarm processing.
  • a ground control platform for processing information comprising a memory and a processor, wherein:
  • a memory for storing instructions
  • a processor coupled to the memory, the processor being configured to perform the method involved in any of the above embodiments based on the instructions stored in the memory.
  • a drone for processing drone information comprising a data processing unit and a transmitting unit, wherein:
  • a data processing unit configured to convert service data into downlink load data according to a flight control data format
  • a sending unit configured to send downlink information to the ground control platform, where the downlink information includes downlink load data, a vendor identifier associated with the flight control data format, so that the ground control platform determines the flight control data format according to the vendor identifier to the downlink load data. Analyze.
  • the downlink information further includes a site identifier, so that the ground control platform sends the service data obtained by parsing the downlink payload data to the ground station corresponding to the site identifier.
  • the downlink information further includes a flight control identifier, so that the ground station determines the source of the service data according to the flight control identifier.
  • the drone further includes a receiving unit, an extracting unit, and an identifying unit, wherein:
  • a receiving unit configured to receive uplink information sent by the ground control platform
  • An extracting unit configured to extract a flight control identifier from the uplink information sent by the ground control platform
  • An identification unit configured to determine, according to the flight control identifier, whether the drone itself is an uplink information receiver
  • the data processing unit is further configured to parse the uplink payload data included in the uplink information according to the corresponding flight control data format if the drone itself is the uplink information receiver.
  • a drone for processing information comprising a memory and a processor, wherein:
  • a memory for storing instructions
  • a processor coupled to the memory, the processor being configured to perform the method involved in any of the above embodiments based on the instructions stored in the memory.
  • a system for processing information comprising the ground control platform according to any of the above embodiments, and the drone according to any of the above embodiments.
  • FIG. 1 is a schematic diagram of an embodiment of a method for processing information of a drone according to the present invention.
  • FIG. 2 is a schematic diagram of another embodiment of a method for processing information of a drone according to the present invention.
  • FIG. 3 is a schematic diagram of still another embodiment of a method for processing information of a drone according to the present invention.
  • FIG. 4 is a schematic diagram of still another embodiment of a method for processing information of a drone according to the present invention.
  • Figure 5 is a schematic illustration of one embodiment of a ground control platform of the present invention.
  • FIG. 6 is a schematic diagram of another embodiment of a ground control platform of the present invention.
  • FIG. 7 is a schematic diagram of still another embodiment of a ground control platform of the present invention.
  • Figure 8 is a schematic illustration of one embodiment of a drone of the present invention.
  • Figure 9 is a schematic view of another embodiment of the drone of the present invention.
  • Figure 10 is a schematic view of still another embodiment of the drone of the present invention.
  • Figure 11 is a schematic illustration of one embodiment of a system for processing drone information in accordance with the present invention.
  • FIG. 12 is a schematic diagram of an embodiment of information processing of a drone according to the present invention.
  • FIG. 1 is a schematic diagram of an embodiment of a method for processing information of a drone according to the present invention.
  • the method steps of the embodiment may be performed by a ground control platform. among them:
  • Step 101 Receive downlink information sent by the drone, and extract a vendor identifier of the drone from the downlink information.
  • a vendor identification field may be set in a data frame of the downlink information, and a vendor identifier of the drone is set in the vendor identification field.
  • Step 102 Query the flight control data format according to the manufacturer identifier.
  • the corresponding flight control data format can be queried through the manufacturer identification.
  • Step 103 Analyze downlink load data in the downlink information according to the flight control data format.
  • the service information can be sent to the ground station, where the service information includes the service data obtained by parsing the downlink load data. This achieves compatibility with drones from different manufacturers.
  • the site identifier may also be extracted from the downlink information, where the site identifier is used to indicate the receiver of the downlink information.
  • the service information can be transmitted to the ground station corresponding to the station identification so that the ground station designated by the drone can process the corresponding service data process.
  • the corresponding flight control identifier is added to the interaction information between the drone and the ground control platform, so that the interaction parties can perform the flight control identifier pair carried in the interaction information.
  • the payload data is processed accordingly, making the ground control platform compatible with drones from different vendors.
  • the service information further includes a flight control identifier extracted from the downlink information, and the ground station identifier is sent to the ground station, so that the ground station determines the source of the service data according to the flight control identifier.
  • the downlink information further includes an area identifier, where the area identifier is used to indicate the flight area of the drone.
  • the area identifier is extracted from the downlink information, and it is detected whether the area identifier is within the current area. If the area ID is not within the current area, an alarm is processed.
  • each drone will be equipped with a work area, such as drone A performing a mission in the Beijing area, drone B performing a mission in the Shenzhen area, and a ground control platform located in Beijing in the Beijing area.
  • the drone inside the flight is under control. If the ground control platform located in Beijing finds that the drone B is flying in the Beijing area, and the working area of the drone B is in Shenzhen, in order to ensure that the drone B will not be illegally used, an alarm will be processed for the relevant departments and This is verified by personnel to ensure the safe use of the drone.
  • FIG. 2 is a schematic diagram of another embodiment of a method for processing information of a drone according to the present invention.
  • the method steps of the embodiment may be performed by a ground control platform. among them:
  • Step 201 Receive response data sent by the ground station for service information, and convert the response data into uplink load data according to the corresponding flight control data format.
  • Step 202 Send uplink information, where the uplink information includes uplink load data and a flight control identifier, so that the drone with the flight control identifier receives the uplink payload data.
  • the uplink information may be sent in a broadcast manner, but only the drone with the designated flight control identifier can receive the corresponding uplink payload data. Therefore, one-to-one communication can be effectively realized while achieving system compatibility.
  • the uplink information further includes a site identifier of the ground station, so that the drone determines the source of the uplink payload data.
  • FIG. 3 is a schematic diagram of still another embodiment of a method for processing information of a drone according to the present invention.
  • the method steps of this embodiment can be performed by a drone. among them:
  • Step 301 Convert the service data into downlink load data according to the flight control data format.
  • Step 302 Send downlink information to the ground control platform, where the downlink information includes downlink load data and a vendor identifier associated with the flight control data format, so that the ground control platform determines the flight control data format according to the vendor identifier to parse the downlink payload data. .
  • the corresponding flight control identifier is added to the interaction information between the drone and the ground control platform, so that the interaction parties can perform the flight control identifier pair carried in the interaction information.
  • the payload data is processed accordingly, making the ground control platform compatible with drones from different vendors.
  • the downlink information further includes a site identifier, so that the ground control platform sends the service data obtained by parsing the downlink payload data to the ground station corresponding to the site identifier.
  • the flight control identifier may be included in the downlink information, so that the ground station determines the source of the service data according to the flight control identifier.
  • FIG. 4 is a schematic diagram of still another embodiment of a method for processing information of a drone according to the present invention.
  • the method steps of this embodiment can be performed by a drone. among them:
  • Step 401 Extract the flight control identifier from the uplink information sent by the ground control platform.
  • Step 402 Determine, according to the flight control identifier, whether it is an uplink information receiver. If it is the uplink information receiver, step 403 is performed; otherwise, step 404 is performed.
  • the flight control identifier of the drone itself is consistent with the flight control identifier carried in the uplink information, it indicates that the drone itself is the receiver of the uplink information. If the flight control identifier of the drone itself is consistent with the flight control identifier carried in the uplink information, it indicates that the drone itself has nothing to do with the uplink information.
  • Step 403 Parse the uplink payload data included in the uplink information according to the corresponding flight control data format. Thereafter, other steps of the embodiment are not performed.
  • step 404 the uplink information is discarded.
  • one-to-one communication between the ground control platform and the drone can be realized by broadcasting.
  • FIG. 5 is a schematic illustration of one embodiment of a ground control platform for processing drone information in accordance with the present invention.
  • the ground control platform includes a receiving module 501, an extracting module 502, a query module 503, and a parsing module 504. among them:
  • the receiving module 501 is configured to receive downlink information sent by the drone.
  • the extraction module 502 is configured to extract the vendor identifier of the drone from the downlink information.
  • the query module 503 is configured to query the flight control data format according to the vendor identifier.
  • the parsing module 504 is configured to parse the downlink payload data in the downlink information according to the flight control data format.
  • the ground control platform adds a corresponding flight control identifier to the interaction information with the drone, so that the two parties perform corresponding processing on the payload data according to the flight control identifier carried in the interaction information. This makes the ground control platform compatible with drones from different manufacturers.
  • FIG. 6 is a schematic diagram of another embodiment of a ground control platform of the present invention. Compared with the embodiment shown in FIG. 5, in addition to the receiving module 601, the extracting module 602, the querying module 603, and the parsing module 604, an information transmission module 605 is further included. among them:
  • the information transmission module 605 is configured to send the service information to the ground station, where the service information includes the service data obtained by parsing the downlink load data, so that the ground station performs corresponding processing on the service data.
  • the extracting module 602 is further configured to extract the site identifier from the downlink information, where the information transmission module 605 specifically sends the service information to the ground station corresponding to the site identifier, so that the service information can be sent to the designated by the drone. Ground station.
  • the service information further includes the flight control identifier extracted by the extraction module 602 from the downlink information, so that the ground station determines the source of the service data according to the flight control identifier.
  • the ground control platform further includes a sending module 606, where:
  • the parsing module 604 is further configured to convert the response data into uplink payload data according to the flight control data format after the information transmission module 605 receives the response data sent by the ground station for the service information.
  • the sending module 606 is configured to send uplink information, where the uplink information includes uplink load data and a flight control identifier, so that the drone with the flight control identifier receives the uplink payload data.
  • the uplink information further includes a site identifier of the ground station, so that the drone determines the source of the uplink payload data.
  • the ground control platform further includes a detection module 607. among them:
  • the extraction module 602 is further configured to extract the area identifier from the downlink information, and the detecting module 607 is configured to identify whether the area identifier is within the current area, and perform alarm processing if the area identifier is not in the current area. Thereby, the safe use of the drone can be ensured.
  • the ground control platform includes a memory 701 and a processor 702. among them:
  • Memory 701 is for storing instructions
  • processor 702 is coupled to memory 701
  • processor 702 is configured to perform the methods involved in any of the embodiments of FIGS. 1-2 based on instructions stored in the memory.
  • the navigation device further includes a communication interface 703 for performing information interaction with other devices.
  • the apparatus further includes a bus 704, and the processor 702, the communication interface 703, and the memory 701 complete communication with each other via the bus 704.
  • FIG. 8 is a schematic illustration of one embodiment of a drone of the present invention. As shown in FIG. 8, the drone includes a data processing unit 801 and a transmitting unit 802. among them:
  • the data processing unit 801 is configured to convert the service data into downlink load data according to the flight control data format.
  • the sending unit 802 is configured to send downlink information to the ground control platform, where the downlink information includes downlink load data and a vendor identifier associated with the flight control data format, so that the ground control platform determines the flight control data format according to the vendor identifier to the downlink load data. Analyze.
  • the downlink information further includes a site identifier, so that the ground control platform sends the service data obtained by parsing the downlink payload data to the ground station corresponding to the site identifier.
  • the downlink information further includes a flight control identifier, so that the ground station determines the source of the service data according to the flight control identifier.
  • the unmanned aerial vehicle is provided with corresponding flight control identifiers in the interaction information with the ground control platform, so that the two parties perform corresponding processing on the load data according to the flight control identifier carried in the interaction information.
  • Figure 9 is a schematic view of another embodiment of the drone of the present invention. Compared with the embodiment shown in FIG. 8, in the embodiment shown in FIG. 9, in addition to the data processing unit 901 and the transmitting unit 902, a receiving unit 903, an extracting unit 904, and an identifying unit 905 are included. among them:
  • the receiving unit 903 is configured to receive the uplink information sent by the ground control platform, and the extracting unit 904 is configured to extract the flight control identifier from the uplink information sent by the ground control platform, and the identifying unit 905 is configured to determine, according to the flight control identifier, whether the drone is itself uplink. Information recipient. Wherein, if the non-empty identifier of the drone itself is consistent with the flight control identifier carried in the uplink information, it indicates that the drone itself is the receiver of the uplink information.
  • the data processing unit 901 is further configured to parse the uplink payload data included in the uplink information according to the corresponding flight control data format if the drone itself is the uplink information receiver. Thereby, one-to-one communication between the drone and the ground control platform can be realized.
  • FIG. 10 is a schematic view of still another embodiment of the drone of the present invention. As shown in FIG. 10, the drone includes a memory 1001 and a processor 1002. among them:
  • the memory 1001 is for storing instructions
  • the processor 1002 is coupled to the memory 1001, and the processor 1002 is configured to perform the methods involved in any of the embodiments of FIGS. 3-4 based on the instructions stored in the memory.
  • the navigation device further includes a communication interface 1003 for performing information interaction with other devices.
  • the apparatus further includes a bus 1004, and the processor 1002, the communication interface 1003, and the memory 1001 complete communication with each other via the bus 1004.
  • the memory 701 in FIG. 7 and the memory 1001 in FIG. 10 may include a high speed RAM memory, and may further include a non-volatile memory, such as at least one disk memory.
  • Memory 701 and memory 1001 may also be memory arrays.
  • the memory 701 and the memory 1001 may also be partitioned, and the blocks may be combined into a virtual volume according to certain rules.
  • processor 702 in FIG. 7 and the processor 1002 in FIG. 10 may be a central processing unit CPU, or may be an application specific integrated circuit (ASIC), or configured to implement the embodiment of the present invention.
  • ASIC application specific integrated circuit
  • FIG. 11 is a schematic illustration of one embodiment of a system for processing information in accordance with the present invention.
  • the system can include a ground control platform 1101 and a drone 1102.
  • the ground control platform 1101 can be any of the implementations of FIG. 5-7.
  • the drone 1102 can be the drone of any of the embodiments of Figures 8-10.
  • the Mavlink protocol for example, JDroneLink protocol of JD
  • fields such as area identifier, site identifier, vendor identifier, data source identifier, and data destination identifier are added in the modified data frame, correspondingly
  • the frame structure can be as shown in Table 1.
  • Start Flag SF (Start Flag)
  • SF can be used for the protocol version of the flag. For example, in the first version, "0xFE" is used as the frame flag.
  • LEN payload (payload) data length
  • the length of the entire frame can be calculated by the field at the receiving end of the message, which is convenient for judging the total length of the received message frame and calculating the CRC variable.
  • SEQ The serial number of the frame.
  • the sender of the message automatically adds one to each field after sending a frame.
  • the receiver can continuously determine whether there is any packet loss according to whether the field is continuously.
  • AREA Area ID, which is used to distinguish flight control in different areas. Such as 0: for the Beijing area, 1 for the Suqian area, etc.
  • STATE State ID, which is used to distinguish between different sites.
  • MENU Manufacturer ID (This is a field specially designed for compatibility with different manufacturers' flight control access to the Jingdong platform. Different manufacturers use different values.
  • SRCID The source ID of the frame data, which is the flight ID.
  • this field can identify which flight control sends data.
  • this field identifies which ground station received data. That is, in the uplink command and the downlink command, this field can identify the data source, and the ground station can set it.
  • DSTID Destination ID of the frame data. In the downlink command (the flight control sends data to the ground control system), this field is empty and the default value is 0. In the uplink command (the ground control system sends data to the flight controller), the ID number of the destination flight control, that is, the mid-SRCID value of the downlink command issued by the flight control, needs to be specified.
  • COMP Unit ID of the terminal device (flight control or ground control system).
  • the steering gear is 1:140 and the steering gear is 2:141.
  • MSG message ID. Different payloads correspond to different message numbers. That is, this field is used to identify the data content in the payload, such as 0: heartbeat packet.
  • PAYLOAD A valid data payload where the length of this field can be adjusted as needed.
  • the invention realizes the compatibility of the ground control platform for the drones from different manufacturers by utilizing the modified frame structure. This will be specifically described below with reference to FIG.
  • step 1201 when the UAV transmits information to the ground, the UAV converts the service data into downlink payload data according to a predetermined flight control data format.
  • step 1202 the drone sends downlink information to the ground control platform.
  • the downlink information includes downlink payload data, a vendor identifier associated with the flight control data format, a site identifier, a flight control identifier, and an area identifier.
  • Step 1203 After receiving the downlink information, the ground control platform extracts the area identifier from the downlink information.
  • step 1204 the ground control platform identifies the area identifier. If the area identifier is not in the current area, the alarm processing is performed; if the area identifier is in the current area, subsequent processing is performed.
  • Step 1205 The ground control platform extracts the manufacturer identifier, the station identifier, the flight control identifier, and the downlink load data of the drone from the downlink information.
  • step 1206 the ground control platform queries the corresponding flight control data format according to the manufacturer identifier.
  • Step 1207 The ground control platform parses the downlink load data according to the flight control data format.
  • Step 1208 The ground control platform sends the service information to the ground station corresponding to the site identifier.
  • the service information includes service data obtained by parsing downlink load data.
  • the service information also includes the flight control identifier extracted from the downlink information, so that the ground station determines the source of the service data according to the flight control identifier.
  • Step 1209 The ground station sends corresponding response information to the ground control platform according to the received service information.
  • the response information may be automatically sent by the ground station, or may be sent by the user to the ground control platform by operating the ground station.
  • step 1210 the ground control platform converts the response data into uplink payload data according to the flight control data format described above.
  • Step 1211 The ground control platform sends uplink information, where the uplink information includes uplink load data and the flight control identifier, so that the drone with the flight control identifier receives uplink load data.
  • the uplink information also includes the site identifier of the ground station, so that the drone determines the source of the uplink payload data.
  • step 1212 the drone extracts the flight control identifier from the uplink information sent by the ground control platform.
  • step 1213 the drone determines whether it is the uplink information receiver according to the proposed flight control identifier.
  • step 1214 if it is the uplink information receiver, the drone analyzes the uplink payload data included in the uplink information according to the corresponding flight control data format.
  • the uplink information is discarded.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention may take the form of a computer program product embodied on one or more computer-usable non-transitory storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer usable program code. .
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Traffic Control Systems (AREA)
  • Selective Calling Equipment (AREA)

Abstract

本发明公开一种用于处理无人机信息的方法、装置和系统。其中地面控制平台在接收无人机发送的下行信息后,从下行信息中提取出无人机的厂商标识,根据厂商标识查询飞控数据格式,根据飞控数据格式对下行信息中的下行载荷数据进行解析。本发明通过在无人机与地面控制平台之间的交互信息中加入相应的飞控标识,以便交互双方根据交互信息中携带的飞控标识对载荷数据进行相应处理,从而使得地面控制平台能够兼容不同厂商提供的无人机。

Description

用于处理无人机信息的方法、装置和系统 技术领域
本发明涉及无人机领域,特别是涉及一种用于处理无人机信息的方法、装置和系统。
背景技术
随着无人机技术的高速发展,无人机越来越多地应用于诸多领域。目前,各无人机厂商主要采用Mavlink协议实现无人机与地面控制系统的交互。
其中,在Mavlink数据帧中设有用于承载业务数据的载荷(payload)字段。出于安全考虑,不同厂商均按照自己设定的数据格式对载荷字段中的业务数据进行设置。在这种情况下,各厂商设置的地面控制系统仅能对本厂商提供的无人机进行通信,而无法与其它厂商提供的无人机进行交互。由于地面控制系统无法实现兼容,因此无法对来自不同厂商的无人机进行方便快捷地管理,同时不同无人机厂商都要设置各自的地面控制系统,这也增大了无人机使用的成本。
发明内容
本发明的目的是:提供一种用于处理无人机信息的方法、装置和系统,通过在无人机与地面控制平台之间的交互信息中加入相应的飞控标识,以便交互双方根据交互信息中携带的飞控标识对载荷数据进行相应处理,从而使得地面控制平台能够兼容不同厂商提供的无人机。
根据本发明的一个方面,提供一种用于处理无人机信息的方法,包括:
接收无人机发送的下行信息,从下行信息中提取出无人机的厂商标识;
根据厂商标识查询飞控数据格式;
根据飞控数据格式对下行信息中的下行载荷数据进行解析。
在一个实施例中,将业务信息发送给地面站,其中业务信息中包括对下行载荷数据进行解析所得到的业务数据。
在一个实施例中,从下行信息中提取出站点标识;
将业务信息发送给地面站包括:
将业务信息发送给与站点标识相对应的地面站。
在一个实施例中,业务信息中还包括从下行信息中提取出的飞控标识,以便地面站根据飞控标识确定业务数据的来源。
在一个实施例中,接收地面站针对业务信息发送的响应数据,根据飞控数据格式将响应数据转换为上行载荷数据;
发送上行信息,其中上行信息中包括上行载荷数据和飞控标识,以便具有飞控标识的无人机接收上行载荷数据。
在一个实施例中,上行信息中还包括地面站的站点标识,以便无人机确定上行载荷数据的来源。
在一个实施例中,从下行信息中提取出区域标识;
在区域标识不在当前区域范围内的情况下,进行报警处理。
根据本发明的另一方面,提供一种用于处理无人机信息的方法,包括:
根据飞控数据格式将业务数据转换为下行载荷数据;
向地面控制平台发送下行信息,其中下行信息中包括下行载荷数据、与飞控数据格式相关联的厂商标识,以便地面控制平台根据厂商标识确定飞控数据格式以对下行载荷数据进行解析。
在一个实施例中,下行信息中还包括站点标识,以便地面控制平台将对下行载荷数据进行解析得到的业务数据发送给与站点标识相对应的地面站。
在一个实施例中,下行信息中还包括飞控标识,以便地面站根据飞控标识确定业务数据的来源。
在一个实施例中,从地面控制平台发送的上行信息中提取飞控标识;
根据飞控标识判断自身是否为上行信息接收方;
如果自身为上行信息接收方,则根据相应的飞控数据格式对上行信息中包括的上行载荷数据进行解析。
根据本发明的又一方面,提供一种用于处理无人机信息的地面控制平台,包括接收模块、提取模块、查询模块和解析模块,其中:
接收模块,用于接收无人机发送的下行信息;
提取模块,用于从下行信息中提取出无人机的厂商标识;
查询模块,用于根据厂商标识查询飞控数据格式;
解析模块,用于根据飞控数据格式对下行信息中的下行载荷数据进行解析。
在一个实施例中,地面控制平台还包括信息传输模块,其中:
信息传输模块,用于将业务信息发送给地面站,其中业务信息中包括对下行载荷数据进行解析所得到的业务数据。
在一个实施例中,提取模块还用于从下行信息中提取出站点标识;
信息传输模块具体将业务信息发送给与站点标识相对应的地面站。
在一个实施例中,业务信息中还包括提取模块从下行信息中提取出的飞控标识,以便地面站根据飞控标识确定业务数据的来源。
在一个实施例中,地面控制平台还包括发送模块,其中:
解析模块还用于在信息传输模块接收到地面站针对业务信息发送的响应数据后,根据飞控数据格式将响应数据转换为上行载荷数据;
发送模块用于发送上行信息,其中上行信息中包括上行载荷数据和飞控标识,以便具有飞控标识的无人机接收上行载荷数据。
在一个实施例中,上行信息中还包括地面站的站点标识,以便无人机确定上行载荷数据的来源。
在一个实施例中,地面控制平台还包括检测模块,其中:
提取模块还用于从下行信息中提取出区域标识;
检测模块用于识别区域标识是否在当前区域范围内,在区域标识不在当前区域范围内的情况下,进行报警处理。
根据本发明的又一方面,提供一种用于处理信息的地面控制平台,包括存储器和处理器,其中:
存储器,用于存储指令;
处理器,耦合到存储器,处理器被配置为基于存储器存储的指令执行实现上述任一实施例涉及的方法。
根据本发明的又一方面,提供一种用于处理无人机信息的无人机,包括数据处理单元和发送单元,其中:
数据处理单元,用于根据飞控数据格式将业务数据转换为下行载荷数据;
发送单元,用于向地面控制平台发送下行信息,其中下行信息中包括下行载荷数据、与飞控数据格式相关联的厂商标识,以便地面控制平台根据厂商标识确定飞控数据格式以对下行载荷数据进行解析。
在一个实施例中,下行信息中还包括站点标识,以便地面控制平台将对下行载荷数据进行解析得到的业务数据发送给与站点标识相对应的地面站。
在一个实施例中,下行信息中还包括飞控标识,以便地面站根据飞控标识确定业务数据的来源。
在一个实施例中,无人机还包括接收单元、提取单元和识别单元,其中:
接收单元,用于接收地面控制平台发送的上行信息;
提取单元,用于从地面控制平台发送的上行信息中提取飞控标识;
识别单元,用于根据飞控标识判断无人机自身是否为上行信息接收方;
数据处理单元还用于在无人机自身为上行信息接收方的情况下,根据相应的飞控数据格式对上行信息中包括的上行载荷数据进行解析。
根据本发明的又一方面,提供一种用于处理信息的无人机,包括存储器和处理器,其中:
存储器,用于存储指令;
处理器,耦合到存储器,处理器被配置为基于存储器存储的指令执行实现上述任一实施例涉及的方法。
根据本发明的又一方面,提供一种用于处理信息的系统,包括上述任一实施例涉及的地面控制平台,以及上述任一实施例涉及的无人机。
通过以下参照附图对本发明的示例性实施例的详细描述,本发明的其它特征及其优点将会变得清楚。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本发明用于处理无人机信息的方法一个实施例的示意图。
图2为本发明用于处理无人机信息的方法另一实施例的示意图。
图3为本发明用于处理无人机信息的方法又一实施例的示意图。
图4为本发明用于处理无人机信息的方法又一实施例的示意图。
图5为本发明地面控制平台一个实施例的示意图。
图6为本发明地面控制平台另一实施例的示意图。
图7为本发明地面控制平台又一实施例的示意图。
图8为本发明无人机一个实施例的示意图。
图9为本发明无人机另一实施例的示意图。
图10为本发明无人机又一实施例的示意图。
图11为本发明用于处理无人机信息的系统一个实施例的示意图。
图12为本发明无人机信息处理一个实施例的示意图。
具体实施方式
以下结合附图和实施例对本发明做进一步的详细说明。
图1为本发明用于处理无人机信息的方法一个实施例的示意图。可选地,本实施例的方法步骤可由地面控制平台执行。其中:
步骤101,接收无人机发送的下行信息,从下行信息中提取出无人机的厂商标识。
例如,可在下行信息的数据帧中设置厂商标识字段,在该厂商标识字段中设置无人机的厂商标识。
步骤102,根据厂商标识查询飞控数据格式。
由于各厂商都会定义自己的飞控数据格式,因此通过厂商标识可查询到相应的飞控数据格式。
步骤103,根据飞控数据格式对下行信息中的下行载荷数据进行解析。
之后,可将业务信息发送给地面站,其中业务信息中包括对下行载荷数据进行解析所得到的业务数据。由此实现了对来自不同厂商的无人机的兼容。
可选地,还可从下行信息中提取出站点标识,该站点标识用于表明该下行信息的接收方。从而,可将业务信息发送给与站点标识相对应的地面站,以便由该无人机指定的地面站对相应的业务数据进程处理。
根据本发明上述实施例提供的无人机信息处理方法,通过在无人机与地面控制平台之间的交互信息中加入相应的飞控标识,以便交互双方根据交互信息中携带的飞控标识对载荷数据进行相应处理,从而使得地面控制平台能够兼容不同厂商提供的无人机。
可选地,业务信息中还包括从下行信息中提取出的飞控标识,通过将提取出的飞控标识发送给地面站,以便地面站根据飞控标识确定业务数据的来源。
可选地,下行信息中还包括区域标识,该区域标识用于表明该无人机所述的飞行区域。
通过从下行信息中提取出区域标识,并检测该区域标识是否在当前的区域范围内。若该区域标识不在当前区域范围内,则进行报警处理。
例如,每个无人机都会设置有一个工作区域,例如无人机A在北京区域中执行飞行任务,无人机B在深圳区域中执行飞行任务,同时位于北京的地面控制平台对在北京区域内飞行的无人机进行管控。若位于北京的地面控制平台发现无人机B在北京区域内飞行,而无人机B的工作区域在深圳,为确保无人机B不会被非法使用,会进行报警处理,以便相关部门和人员对此进行核实,从而确保无人机的使用安全。
图2为本发明用于处理无人机信息的方法另一实施例的示意图。可选地,本实施例的方法步骤可由地面控制平台执行。其中:
步骤201,接收地面站针对业务信息发送的响应数据,根据相应的飞控数据格式将响应数据转换为上行载荷数据。
步骤202,发送上行信息,其中上行信息中包括上行载荷数据和飞控标识,以便具有飞控标识的无人机接收上行载荷数据。
例如,可采用广播方式发送上行信息,但只有具有指定飞控标识的无人机才能接收到相应的上行载荷数据。从而在实现系统兼容的同时还能有效实现一对一的通信。
可选地,上行信息中还包括地面站的站点标识,以便无人机确定上行载荷数据的来源。
图3为本发明用于处理无人机信息的方法又一实施例的示意图。可选地,本实施例的方法步骤可由无人机执行。其中:
步骤301,根据飞控数据格式将业务数据转换为下行载荷数据。
步骤302,向地面控制平台发送下行信息,其中下行信息中包括下行载荷数据、与飞控数据格式相关联的厂商标识,以便地面控制平台根据厂商标识确定飞控数据格式以对下行载荷数据进行解析。
根据本发明上述实施例提供的无人机信息处理方法,通过在无人机与地面控制平台之间的交互信息中加入相应的飞控标识,以便交互双方根据交互信息中携带的飞控标识对载荷数据进行相应处理,从而使得地面控制平台能够兼容不同厂商提供的无人机。
可选地,下行信息中还包括站点标识,以便地面控制平台将对下行载荷数据进行解析得到的业务数据发送给与站点标识相对应的地面站。
此外,下行信息中还可包括飞控标识,以便地面站根据飞控标识确定业务数据的来源。
图4为本发明用于处理无人机信息的方法又一实施例的示意图。可选地,本实施例的方法步骤可由无人机执行。其中:
步骤401,从地面控制平台发送的上行信息中提取飞控标识。
步骤402,根据飞控标识判断自身是否为上行信息接收方。若自身为上行信息接收方,则执行步骤403;否则,执行步骤404。
其中,若无人机自身的飞控标识与上行信息中携带的飞控标识一致,则表明该无人机自身就是上行信息的接收方。若无人机自身的飞控标识与上行信息中携带的飞控标识一致,则表明该无人机自身与上行信息无关。
步骤403,根据相应的飞控数据格式对上行信息中包括的上行载荷数据进行解析。之后,不再执行本实施例的其它步骤。
步骤404,丢弃该上行信息。
通过上述处理,可通过广播方式实现地面控制平台与无人机的一对一通信。
图5为本发明用于处理无人机信息的地面控制平台一个实施例的示意图。如图5所示,该地面控制平台包括接收模块501、提取模块502、查询模块503和解析模块504。其中:
接收模块501用于接收无人机发送的下行信息。
提取模块502用于从下行信息中提取出无人机的厂商标识。
查询模块503用于根据厂商标识查询飞控数据格式。
解析模块504用于根据飞控数据格式对下行信息中的下行载荷数据进行解析。
根据本发明上述实施例提供的地面控制平台,通过在与无人机之间的交互信息中加入相应的飞控标识,以便交互双方根据交互信息中携带的飞控标识对载荷数据进行相应处理,从而使得地面控制平台能够兼容不同厂商提供的无人机。
图6为本发明地面控制平台另一实施例的示意图。与图5所示实施例相比,除接收模块601、提取模块602、查询模块603和解析模块604之外,还包括信息传输模块605。其中:
信息传输模块605用于将业务信息发送给地面站,其中业务信息中包括对下行载荷数据进行解析所得到的业务数据,以便地面站对该业务数据进行相应处理。
可选地,提取模块602还用于从下行信息中提取出站点标识,信息传输模块605具体将业务信息发送给与站点标识相对应的地面站,从而能够将业务信息发送给无人机指定的 地面站。
可选地,业务信息中还包括提取模块602从下行信息中提取出的飞控标识,以便地面站根据飞控标识确定业务数据的来源。
可选地,上述地面控制平台还包括发送模块606,其中:
解析模块604还用于在信息传输模块605接收到地面站针对业务信息发送的响应数据后,根据飞控数据格式将响应数据转换为上行载荷数据。
发送模块606用于发送上行信息,其中上行信息中包括上行载荷数据和飞控标识,以便具有飞控标识的无人机接收上行载荷数据。
可选地,上行信息中还包括地面站的站点标识,以便无人机确定上行载荷数据的来源。
可选地,上述地面控制平台还包括检测模块607。其中:
提取模块602还用于从下行信息中提取出区域标识,检测模块607用于识别区域标识是否在当前区域范围内,在区域标识不在当前区域范围内的情况下,进行报警处理。从而,可以确保无人机的安全使用。
图7为本发明地面控制平台又一实施例的示意图。如图7所示,该地面控制平台包括存储器701和处理器702。其中:
存储器701用于存储指令,处理器702耦合到存储器701,处理器702被配置为基于存储器存储的指令执行实现如图1-图2中任一实施例涉及的方法。
此外,该导航设备还包括通信接口703,用于与其它设备进行信息交互。同时,该装置还包括总线704,处理器702、通信接口703、以及存储器701通过总线704完成相互间的通信。
图8为本发明无人机一个实施例的示意图。如图8所示,该无人机包括数据处理单元801和发送单元802。其中:
数据处理单元801用于根据飞控数据格式将业务数据转换为下行载荷数据。
发送单元802用于向地面控制平台发送下行信息,其中下行信息中包括下行载荷数据、与飞控数据格式相关联的厂商标识,以便地面控制平台根据厂商标识确定飞控数据格式以对下行载荷数据进行解析。
可选地,下行信息中还包括站点标识,以便地面控制平台将对下行载荷数据进行解析得到的业务数据发送给与站点标识相对应的地面站。
可选地,下行信息中还包括飞控标识,以便地面站根据飞控标识确定业务数据的来源。
根据本发明上述实施例提供的无人机,通过在与地面控制平台之间的交互信息中加入相应的飞控标识,以便交互双方根据交互信息中携带的飞控标识对载荷数据进行相应处理,从而使得地面控制平台能够兼容不同厂商提供的无人机。
图9为本发明无人机另一实施例的示意图。与图8所示实施例相比,在图9所示实施例中,除数据处理单元901和发送单元902之外,还包括接收单元903、提取单元904和识别单元905。其中:
接收单元903用于接收地面控制平台发送的上行信息,提取单元904用于从地面控制平台发送的上行信息中提取飞控标识,识别单元905用于根据飞控标识判断无人机自身是否为上行信息接收方。其中,若无人机自身的非空标识与上行信息中携带的飞控标识一致,则表明该无人机自身就是上行信息的接收方。
数据处理单元901还用于在无人机自身为上行信息接收方的情况下,根据相应的飞控数据格式对上行信息中包括的上行载荷数据进行解析。由此,可实现无人机与地面控制平台的一对一通信。
图10为本发明无人机又一实施例的示意图。如图10所示,无人机包括存储器1001和处理器1002。其中:
存储器1001用于存储指令,处理器1002耦合到存储器1001,处理器1002被配置为基于存储器存储的指令执行实现如图3-图4中任一实施例涉及的方法。
此外,该导航设备还包括通信接口1003,用于与其它设备进行信息交互。同时,该装置还包括总线1004,处理器1002、通信接口1003、以及存储器1001通过总线1004完成相互间的通信。
其中,上述图7中的存储器701和图10中的存储器1001可以包含高速RAM存储器,也可还包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。存储器701和存储器1001也可以是存储器阵列。存储器701和存储器1001还可能被分块,并且块可按一定的规则组合成虚拟卷。
此外,上述图7中的处理器702和图10中的处理器1002可以是一个中央处理器CPU,或者可以是专用集成电路ASIC(Application Specific Integrated Circuit),或者是被配置成实施本发明实施例的一个或多个集成电路。
图11为本发明用于处理信息的系统一个实施例的示意图。如图11所示,该系统可包括地面控制平台1101和无人机1102。其中,地面控制平台1101可为图5-图7中任一实施 例涉及的地面控制平台,无人机1102可为图8-图10中任一实施例涉及的无人机。
下面通过一个具体示例对本发明进行说明。
为了实现本发明,通过对Mavlink协议进行改造(例如,京东的JDroneLink协议),在改造后的数据帧中,增加区域标识、站点标识、厂商标识、数据源标识、数据目的标识等字段,相应的帧结构可如表1所示。
Figure PCTCN2017091837-appb-000001
表1
其中,各字段的含义如下:
SF:起始标志位SF(Start Flag),SF可以用于协议版本的标志。例如在第一版本以“0xFE”作为帧标志位。
LEN:payload(有效载荷)数据长度,在消息的接收端通过该字段可以计算出整个帧的长度,便于判断接收消息帧的总长度及计算CRC变量。
SEQ:帧的序列号(Serial number),消息的发送端每发送一个帧就会将改字段自动加一,接收端可以根据该字段是否连续判断是否有丢包。
AREA:区域ID(Area ID),该字段是为了区分不同区域的飞控。如0:代表北京区域,1代表宿迁区域等。
STATE:站点ID(State ID),该字段用于区分不同站点。
MENU:厂商ID(Manufacturer ID),该字段是为了兼容不同厂商的飞控接入到京东平台特设的字段,不同厂商使用不同数值。
SRCID:帧数据的来源ID(Source ID),即飞控标识。在下行指令中(飞控向地面控制系统发送数据),该字段可以识别哪个飞控发来的数据。在上行指令中,该字段标识哪个地面站传来的数据。即上行指令和下行指令中,该字段可以标识数据来源,地面站可进行设置。
DSTID:帧数据的目的ID(Destination ID),在下行指令(飞控向地面控制系统发送数据)中,该字段为空,默认值为0。在上行指令(地面控制系统向飞控发送数据)中,需指定目的飞控的ID号,即飞控下发的下行指令的中SRCID值。
COMP:终端设备(飞控或地面控制系统)的单元编号(Component ID)。例如舵机1:140,舵机2:141。
MSG:消息编号(message ID),不同的有效载荷对应不同的消息编号,即该字段用于识别有效载载荷中的数据内容,如0:心跳包。
PAYLOAD:有效数据载荷,其中该字段的长度可根据需要进行调整。
CKA、CKB:校验码。
本发明通过利用修改后的帧结构,实现地面控制平台对来自不同厂商的无人机进行兼容。下面通过图12对此具体说明。
步骤1201,无人机在向地面发送信息时,根据预定的飞控数据格式将业务数据转换为下行载荷数据。
步骤1202,无人机向地面控制平台发送下行信息。
其中下行信息中包括下行载荷数据、与飞控数据格式相关联的厂商标识、站点标识、飞控标识、区域标识。
步骤1203,地面控制平台接收到下行信息后,从下行信息中提取出区域标识。
步骤1204,地面控制平台对区域标识进行识别。若该区域标识不在当前区域范围内,则进行报警处理;若区域标识在当前区域范围内,则进行后续处理。
步骤1205,地面控制平台从下行信息中提取出无人机的厂商标识、站点标识、飞控标识和下行载荷数据。
步骤1206,地面控制平台根据厂商标识查询相应的飞控数据格式。
步骤1207,地面控制平台根据飞控数据格式对下行载荷数据进行解析。
步骤1208,地面控制平台将业务信息发送给与站点标识相对应的地面站。其中业务信息中包括对下行载荷数据进行解析所得到的业务数据。
业务信息中还包括从下行信息中提取出的飞控标识,以便地面站根据飞控标识确定业务数据的来源。
步骤1209,地面站根据接收到的业务信息,向地面控制平台发送相应的响应信息。该响应信息可以是地面站自动发送的,也可以是用户通过操作地面站向地面控制平台发送的。
步骤1210,地面控制平台根据上述的飞控数据格式将响应数据转换为上行载荷数据。
步骤1211,地面控制平台发送上行信息,其中上行信息中包括上行载荷数据和上述飞控标识,以便具有上述飞控标识的无人机接收上行载荷数据。
其中上行信息中还包括所述地面站的站点标识,以便无人机确定上行载荷数据的来源。
步骤1212,无人机从地面控制平台发送的上行信息中提取飞控标识。
步骤1213,无人机根据提出的飞控标识判断自身是否为上行信息接收方。
步骤1214,如果自身为上行信息接收方,则无人机根据相应的飞控数据格式对上行信息中包括的上行载荷数据进行解析。
若经判断该无人机不是上行信息的接收方,则丢弃该上行信息。
通过实施本发明,能够通过地面控制平台,与来自不同厂商的无人机实现通信交互,从而实现一站多机、数据汇总及兼容百家等功能。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用非瞬时性存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
本发明的描述是为了示例和描述起见而给出的,而并不是无遗漏的或者将本发明限于所公开的形式。很多修改和变化对于本领域的普通技术人员而言是显然的。选择和描述实施例是为了更好说明本发明的原理和实际应用,并且使本领域的普通技术人员能够理解本 发明从而设计适于特定用途的带有各种修改的各种实施例。

Claims (25)

  1. 一种用于处理无人机信息的方法,其特征在于,包括:
    接收无人机发送的下行信息,从所述下行信息中提取出所述无人机的厂商标识;
    根据所述厂商标识查询飞控数据格式;
    根据所述飞控数据格式对所述下行信息中的下行载荷数据进行解析。
  2. 根据权利要求1所述的方法,其特征在于,还包括:
    将业务信息发送给地面站,其中所述业务信息中包括对所述下行载荷数据进行解析所得到的业务数据。
  3. 根据权利要求2所述的方法,其特征在于,还包括:
    从所述下行信息中提取出站点标识;
    将业务信息发送给地面站包括:
    将所述业务信息发送给与所述站点标识相对应的地面站。
  4. 根据权利要求2所述的方法,其特征在于,
    所述业务信息中还包括从所述下行信息中提取出的飞控标识,以便所述地面站根据所述飞控标识确定所述业务数据的来源。
  5. 根据权利要求4所述的方法,其特征在于,
    接收所述地面站针对所述业务信息发送的响应数据,根据所述飞控数据格式将所述响应数据转换为上行载荷数据;
    发送上行信息,其中所述上行信息中包括所述上行载荷数据和所述飞控标识,以便具有所述飞控标识的无人机接收所述上行载荷数据。
  6. 根据权利要求5所述的方法,其特征在于,
    所述上行信息中还包括所述地面站的站点标识,以便所述无人机确定所述上行载荷数据的来源。
  7. 根据权利要求1-6中任一项所述的方法,其特征在于,还包括:
    从所述下行信息中提取出区域标识;
    在所述区域标识不在当前区域范围内的情况下,进行报警处理。
  8. 一种用于处理无人机信息的方法,其特征在于,包括:
    根据飞控数据格式将业务数据转换为下行载荷数据;
    向地面控制平台发送下行信息,其中所述下行信息中包括所述下行载荷数据、与所述飞控数据格式相关联的厂商标识,以便所述地面控制平台根据所述厂商标识确定所述飞控数据格式以对所述下行载荷数据进行解析。
  9. 根据权利要求8所述的方法,其特征在于,
    所述下行信息中还包括站点标识,以便所述地面控制平台将对所述下行载荷数据进行解析得到的业务数据发送给与所述站点标识相对应的地面站。
  10. 根据权利要求9所述的方法,其特征在于,
    所述下行信息中还包括飞控标识,以便所述地面站根据所述飞控标识确定所述业务数据的来源。
  11. 根据权利要求10所述的方法,其特征在于,还包括:
    从地面控制平台发送的上行信息中提取飞控标识;
    根据所述飞控标识判断自身是否为上行信息接收方;
    如果自身为上行信息接收方,则根据相应的飞控数据格式对所述上行信息中包括的上行载荷数据进行解析。
  12. 一种用于处理无人机信息的地面控制平台,其特征在于,包括接收模块、提取模块、查询模块和解析模块,其中:
    接收模块,用于接收无人机发送的下行信息;
    提取模块,用于从所述下行信息中提取出所述无人机的厂商标识;
    查询模块,用于根据所述厂商标识查询飞控数据格式;
    解析模块,用于根据所述飞控数据格式对所述下行信息中的下行载荷数据进行解析。
  13. 根据权利要求12所述的地面控制平台,其特征在于,还包括信息传输模块,其中:
    信息传输模块,用于将业务信息发送给地面站,其中所述业务信息中包括对所述下行载荷数据进行解析所得到的业务数据。
  14. 根据权利要求13所述的地面控制平台,其特征在于,
    提取模块还用于从所述下行信息中提取出站点标识;
    信息传输模块具体将所述业务信息发送给与所述站点标识相对应的地面站。
  15. 根据权利要求13所述的地面控制平台,其特征在于,
    所述业务信息中还包括提取模块从所述下行信息中提取出的飞控标识,以便所述地面站根据所述飞控标识确定所述业务数据的来源。
  16. 根据权利要求15所述的地面控制平台,其特征在于,还包括发送模块,其中:
    解析模块还用于在信息传输模块接收到所述地面站针对所述业务信息发送的响应数据后,根据所述飞控数据格式将所述响应数据转换为上行载荷数据;
    发送模块用于发送上行信息,其中所述上行信息中包括所述上行载荷数据和所述飞控标识,以便具有所述飞控标识的无人机接收所述上行载荷数据。
  17. 根据权利要求16所述的地面控制平台,其特征在于,
    所述上行信息中还包括所述地面站的站点标识,以便所述无人机确定所述上行载荷数据的来源。
  18. 根据权利要求12-17中任一项所述的地面控制平台,其特征在于,还包括检测模块,其中:
    提取模块还用于从所述下行信息中提取出区域标识;
    检测模块用于识别所述区域标识是否在当前区域范围内,在所述区域标识不在当前区 域范围内的情况下,进行报警处理。
  19. 一种用于处理无人机信息的地面控制平台,其特征在于,其特征在于,包括存储器和处理器,其中:
    存储器,用于存储指令;
    处理器,耦合到所述存储器,所述处理器被配置为基于所述存储器存储的指令执行实现如权利要求1-7中任一项所述的方法。
  20. 一种用于处理无人机信息的无人机,其特征在于,包括数据处理单元和发送单元,其中:
    数据处理单元,用于根据飞控数据格式将业务数据转换为下行载荷数据;
    发送单元,用于向地面控制平台发送下行信息,其中所述下行信息中包括所述下行载荷数据、与所述飞控数据格式相关联的厂商标识,以便所述地面控制平台根据所述厂商标识确定所述飞控数据格式以对所述下行载荷数据进行解析。
  21. 根据权利要求20所述的无人机,其特征在于,
    所述下行信息中还包括站点标识,以便所述地面控制平台将对所述下行载荷数据进行解析得到的业务数据发送给与所述站点标识相对应的地面站。
  22. 根据权利要求21所述的无人机,其特征在于,
    所述下行信息中还包括飞控标识,以便所述地面站根据所述飞控标识确定所述业务数据的来源。
  23. 根据权利要求22所述的无人机,其特征在于,还包括接收单元、提取单元和识别单元,其中:
    接收单元,用于接收地面控制平台发送的上行信息;
    提取单元,用于从地面控制平台发送的上行信息中提取飞控标识;
    识别单元,用于根据所述飞控标识判断无人机自身是否为上行信息接收方;
    数据处理单元还用于在无人机自身为上行信息接收方的情况下,根据相应的飞控数据 格式对所述上行信息中包括的上行载荷数据进行解析。
  24. 一种用于处理无人机信息的无人机,其特征在于,包括存储器和处理器,其中:
    存储器,用于存储指令;
    处理器,耦合到所述存储器,所述处理器被配置为基于所述存储器存储的指令执行实现如权利要求8-11中任一项所述的方法。
  25. 一种用于处理无人机信息的系统,其特征在于,包括如权利要求12-19中任一项所述的地面控制平台,以及如权利要求20-24中任一项所述的无人机。
PCT/CN2017/091837 2016-09-14 2017-07-05 用于处理无人机信息的方法、装置和系统 WO2018049877A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610825863.1 2016-09-14
CN201610825863.1A CN106850728A (zh) 2016-09-14 2016-09-14 用于处理无人机信息的方法、装置和系统

Publications (1)

Publication Number Publication Date
WO2018049877A1 true WO2018049877A1 (zh) 2018-03-22

Family

ID=59145873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/091837 WO2018049877A1 (zh) 2016-09-14 2017-07-05 用于处理无人机信息的方法、装置和系统

Country Status (2)

Country Link
CN (1) CN106850728A (zh)
WO (1) WO2018049877A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110908397A (zh) * 2019-11-29 2020-03-24 中国电子科技集团公司第二十研究所 一种支持无人系统互操作的装置
CN113022884A (zh) * 2019-12-25 2021-06-25 海鹰航空通用装备有限责任公司 无人机载荷试验仿真方法及系统

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106850728A (zh) * 2016-09-14 2017-06-13 北京京东尚科信息技术有限公司 用于处理无人机信息的方法、装置和系统
CN107438025B (zh) * 2017-07-31 2020-11-24 北京京东尚科信息技术有限公司 通信网关、无人机通信装置、无人机地面监控系统和方法
CN108061906A (zh) * 2017-11-30 2018-05-22 上海华测导航技术股份有限公司 一种包含支持MavLink协议的GNSS接收机的测绘系统及其方法
CN109496303A (zh) * 2017-12-28 2019-03-19 深圳市大疆创新科技有限公司 监听数据的展示方法及装置及无人机监听系统
CN110190887A (zh) * 2018-02-23 2019-08-30 北京京东尚科信息技术有限公司 地面站、无人机数据传输系统和方法以及存储介质
CN110622077B (zh) * 2018-03-23 2022-08-30 深圳市大疆创新科技有限公司 控制方法、服务器、设备及系统
CN108958125A (zh) * 2018-07-27 2018-12-07 上海与德科技有限公司 中控系统的处理方法、中控系统及车辆
CN109116863B (zh) * 2018-08-24 2021-12-03 北京京东乾石科技有限公司 无人机调度方法、装置、系统、电子设备及可读介质
CN111061291A (zh) * 2018-09-28 2020-04-24 易瓦特科技股份公司 用于对地面标识进行识别的方法及装置
CN109829004B (zh) * 2018-12-26 2022-03-01 阿波罗智能技术(北京)有限公司 基于无人车的数据处理方法、装置、设备以及存储介质
CN111866052B (zh) * 2019-04-28 2022-12-13 丰鸟航空科技有限公司 无人机数据处理方法、装置、终端、及存储介质
CN113744571A (zh) * 2020-05-29 2021-12-03 青岛云世纪信息科技有限公司 一种将无人机飞参信息转换为空管情报格式的接入终端

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101533106A (zh) * 2009-03-23 2009-09-16 民航数据通信有限责任公司 提取气象数据的方法和装置
CN101577601A (zh) * 2009-04-30 2009-11-11 西安民兴信息工程有限责任公司 Pcm设备间信令互联互通装置及应用方法
US20130113636A1 (en) * 2011-11-08 2013-05-09 Inha Industry Partnership Institute Apparatus and method for automatically applying meteorological information for aircraft traffic control
CN103984773A (zh) * 2014-06-05 2014-08-13 南京信息工程大学 一种多格式天气雷达基数据文件转NetCDF文件方法
CN106850728A (zh) * 2016-09-14 2017-06-13 北京京东尚科信息技术有限公司 用于处理无人机信息的方法、装置和系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105007115B (zh) * 2015-07-24 2019-01-18 华南理工大学 无人直升机中继数据链系统及其控制方法
CN105187384B (zh) * 2015-08-06 2019-01-29 广州飞米电子科技有限公司 飞行控制方法及装置、电子设备
CN105225540A (zh) * 2015-10-21 2016-01-06 杨珊珊 无人飞行器的飞行区域监控装置及其监控方法
CN106850050A (zh) * 2016-01-22 2017-06-13 广州极飞科技有限公司 无人机及地面站与无人机的通信系统、方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101533106A (zh) * 2009-03-23 2009-09-16 民航数据通信有限责任公司 提取气象数据的方法和装置
CN101577601A (zh) * 2009-04-30 2009-11-11 西安民兴信息工程有限责任公司 Pcm设备间信令互联互通装置及应用方法
US20130113636A1 (en) * 2011-11-08 2013-05-09 Inha Industry Partnership Institute Apparatus and method for automatically applying meteorological information for aircraft traffic control
CN103984773A (zh) * 2014-06-05 2014-08-13 南京信息工程大学 一种多格式天气雷达基数据文件转NetCDF文件方法
CN106850728A (zh) * 2016-09-14 2017-06-13 北京京东尚科信息技术有限公司 用于处理无人机信息的方法、装置和系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110908397A (zh) * 2019-11-29 2020-03-24 中国电子科技集团公司第二十研究所 一种支持无人系统互操作的装置
CN113022884A (zh) * 2019-12-25 2021-06-25 海鹰航空通用装备有限责任公司 无人机载荷试验仿真方法及系统

Also Published As

Publication number Publication date
CN106850728A (zh) 2017-06-13

Similar Documents

Publication Publication Date Title
WO2018049877A1 (zh) 用于处理无人机信息的方法、装置和系统
US11514783B2 (en) Vehicle navigation under control of an interactive terminal
CN107171809B (zh) 无人机广播签名的方法及装置、电子设备、存储介质
CN107438025B (zh) 通信网关、无人机通信装置、无人机地面监控系统和方法
WO2015161637A1 (zh) 一种信息发送方法、网络设备及终端
CN107483279B (zh) 一种基于以太网帧的本地批量操作网络设备的方法
CN103647869B (zh) 一种终端的配对方法、终端及系统
US20180181517A1 (en) Discovery mechanisms for universal serial bus (usb) protocol adaptation layer
DE102015107503A1 (de) Verfahren und System zum Starten einer Anwendung
US10609633B2 (en) Method for triggering registrar protocol interaction, access point, and station
EP2816828A1 (en) Message sending method, messaging read notification method, method receiving method and apparatus
EP2879426A1 (en) Method for service content distribution under heterogeneous network and service management platform
CN111880551A (zh) 一种无人机信号传输方法、系统、设备及存储介质
JP2016532928A5 (zh)
CN107979830B (zh) 一种智能后视镜的蓝牙连接方法、装置、设备及存储介质
WO2019127229A1 (zh) 监听数据的展示方法及装置及无人机监听系统
CN112199266A (zh) 车机系统的日志传输方法、系统、车辆及存储介质
US20140310359A1 (en) Vehicle information providing system
EP3026856B1 (en) Gre packet encapsulation method, decapsulation method, and corresponding apparatuses
WO2016171820A1 (en) Sensor input transmission and associated processes
CN107294723A (zh) 消息完整性认证信息的生成和验证方法、装置及验证系统
WO2023016241A1 (zh) 一种车辆远程诊断方法、装置及系统
CN109683155B (zh) 传感器融合系统、方法、终端及存储介质
CN105376636A (zh) 填写验证码的方法、辅助方法、智能电视及智能移动终端
JP2017526211A (ja) Wi−Fiに基づいて情報共有ブロードキャストを行う方法及び装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17850080

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 28/06/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17850080

Country of ref document: EP

Kind code of ref document: A1