WO2018049729A1 - 一种玻璃三维成型热压耐磨系统 - Google Patents

一种玻璃三维成型热压耐磨系统 Download PDF

Info

Publication number
WO2018049729A1
WO2018049729A1 PCT/CN2016/106777 CN2016106777W WO2018049729A1 WO 2018049729 A1 WO2018049729 A1 WO 2018049729A1 CN 2016106777 W CN2016106777 W CN 2016106777W WO 2018049729 A1 WO2018049729 A1 WO 2018049729A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
glass
cooling
wear
working
Prior art date
Application number
PCT/CN2016/106777
Other languages
English (en)
French (fr)
Inventor
莫勇
曾希
胡伟
Original Assignee
深圳市力沣实业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市力沣实业有限公司 filed Critical 深圳市力沣实业有限公司
Publication of WO2018049729A1 publication Critical patent/WO2018049729A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/02Re-forming glass sheets
    • C03B23/023Re-forming glass sheets by bending
    • C03B23/03Re-forming glass sheets by bending by press-bending between shaping moulds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the invention relates to the field of glass manufacturing, in particular to a glass three-dimensional forming hot pressing wear system.
  • the three-dimensional glass forming technology adopts the hot pressing technology, that is, using a certain pressure at a certain temperature and maintaining a certain time to make the glass workpiece slowly deform in the spatial direction in a partially softened state, and the mold is designed with a good size. Combine to achieve the design of the three-dimensional size of the technology.
  • the three-dimensional forming hot pressing system has the components of preheating module, pressing module and cooling module.
  • the working mold of the three-dimensional forming hot pressing system is directly placed on the bottom plate of the studio. Due to the high hardness of the bottom plate, during the process of the working mold being pushed and transported, it is highly susceptible to wear and dust at the same time, which affects the quality of the molded glass product. Greatly reduce the service life of the working mold.
  • the invention aims to solve the technical problem that the life of the working mold is easily worn out in the three-dimensional forming hot pressing system in the prior art, and the dust of the product in the wear process affects the quality of the finished product, and provides a three-dimensional three-dimensional glass which is wear-resistant and effectively improves the product quality. Forming hot pressing wear system.
  • Embodiments of the present invention provide a glass three-dimensional forming hot-pressing and wear-resistant system, including a sequentially connected preheating module, a molding module, and a cooling module;
  • the preheating module is configured to perform a preheating process on the glass to be processed
  • the molding module is configured to perform a pressing process on the preheated glass to be processed
  • the cooling module is configured to perform heat treatment, cooling or cooling process on the pressed glass
  • the preheating module, the molding module and the cooling module respectively have a plurality of working chambers, each of the working chambers having a tooling mold assembly for placing glass, the tooling mold assembly comprising a working mold and a carrying device a working carrier of the working mold;
  • the glass three-dimensional forming hot press wear system further includes a control module and a push module for pushing the work tool assembly in the working chamber by pushing the work carrier, the push module and the control module connection.
  • each of the work carriers is provided with a push rod for pushing a previously adjacent work load under the pushing of the push module, and the rear end of each work carrier is provided with a work behind The positioning hole of the carrier's push rod is matched.
  • the cooling module includes a first cooling module and a second cooling module that are sequentially connected;
  • the first cooling module is provided with a plurality of working chambers for performing heat preservation or cooling process on the pressed glass;
  • the second cooling module is also provided with a plurality of working chambers for performing a cooling process on the pressed glass conveyed by the first cooling module;
  • the preheating module, the profiling module and the first cooling module are connected in sequence, and are located in the same area space, and the second cooling module is located in another area space;
  • the control module is further electrically connected to the preheating module, the molding module, the first cooling module, and the second cooling module.
  • the glass three-dimensional forming hot press wear system further comprises:
  • Automatic feeding and discharging module for automatic pick and place processing of processed glass
  • a manual discharging module for manually discharging the pressed glass outputted by the second cooling module
  • the automatic feeding and discharging module is located between the manual discharging module and the manual feeding module, and is electrically connected to the control module.
  • the pushing module comprises:
  • a first push module for transporting the tooling die assembly in the working chamber through the work carrier in the preheating module, the molding module, and the first cooling module;
  • a second push module for transporting the tooling mold assembly in the working chamber through the work carrier in the second cooling module, the manual discharging module, the automatic feeding and discharging module, and the manual feeding module.
  • the glass three-dimensional forming hot press wear system further comprises:
  • a first transfer module for driving the tooling die assembly from the manual feed module to the preheating module, the first transfer module being disposed between the manual feed module and the preheating module;
  • a second transfer module for driving the fixture assembly from the first cooling module to the second cooling module, wherein the second relay module is disposed between the first cooling module and the second cooling module.
  • the first pushing module comprises a first driving device, a first pushing rod connected to the first driving device and movable back and forth, and the first pushing rod pushes each through the first relay module by cooperation with the positioning hole Transfer of the work vehicle of the tooling die assembly transferred;
  • the second pushing module includes a second driving device, and is connected to the second driving device and can move the second push rod back and forth.
  • the second push rod pushes the working load of each tooling mold assembly transferred through the second relay module. With the transmission.
  • the first relay module and the second relay module respectively comprise a driving device and an actuator for transferring the tooling die assembly in the corresponding one module working chamber to the next module working chamber,
  • the drive device is electrically connected to the control module.
  • a heating unit is respectively disposed in the preheating module, the molding module and the first cooling module.
  • the preheating module, the molding module, the first cooling module and the second cooling module are respectively provided with heat-receiving structural members, and an external cooling pipe is disposed on a sidewall of the heat-receiving structural member through a package
  • the protection plate encloses the heat-receiving structural member with the cooling pipe, and the cooling pipe is internally provided with a circulatory cooling medium.
  • the tooling die assembly in the working chamber of the preheating module, the pressing module and the cooling module is provided with a working die and a working carrier carrying the working die, and the working carrier is pushed by the pushing module to push
  • the technical solution of the tooling mold assembly conveying in the working chamber can effectively avoid the problem of the working mold caused by the working mold directly placed on the bottom plate of the system, and effectively improve the work of the working mold and the glass three-dimensional forming hot pressing system. life.
  • FIG. 1 is a schematic structural view of a three-dimensional forming hot pressing and wear resistant system of the present invention
  • FIG. 2 is a schematic structural view of a working chamber of a three-dimensional forming hot pressing and wear-resistant system of the present invention
  • FIG. 3 is a schematic view showing the positional structure of the push module and the corresponding tooling die assembly of the present invention
  • FIG. 4 is a schematic structural view of a cooling pipe on a heat-receiving structural member in each system module of the present invention
  • FIG. 5 is a flow chart of a three-dimensional glass forming hot pressing process method according to an embodiment of the present invention.
  • FIG. 6 is a flow chart of a glass three-dimensional forming hot pressing process according to another embodiment of the present invention.
  • an embodiment of the present invention provides a glass three-dimensional forming hot-pressing and wear-resistant system, including a sequentially connected preheating module 200, a molding module 300, and a cooling module;
  • the preheating module 200 is configured to perform a preheating process on the glass to be processed
  • the molding module 300 is configured to perform a pressing process on the preheated glass to be processed
  • the cooling module is configured to perform heat treatment, cooling or cooling process on the pressed glass
  • the preheating module 200, the molding module 300 and the cooling module respectively have a plurality of working chambers, as shown in FIG. 2, each of the working chambers has a tooling die assembly 010 for placing glass, each tooling
  • the mold assembly 010 includes a working mold and a work carrier 011 carrying the working mold;
  • the glass three-dimensional forming hot press wear system further includes a control module (not shown) and a push module for pushing the work tool set 010 to push the tooling die assembly 010 in the working chamber.
  • the push module is electrically connected to the control module.
  • each of the work carriers 011 is provided with a push rod 017 for pushing a previously adjacent work loader 011 under the push of the push module, after each work carrier 011
  • the positioning end is provided with a positioning hole 018 which cooperates with the pushing rod of the latter working carrier
  • the cooling module further includes a first cooling module 400 and a second cooling module 500 , and the preheating module 200 , the molding module 300 , the first cooling module 400 , and the second cooling module 500 are sequentially performed.
  • the connection, that is, in the process direction, the glass to be processed is sequentially transmitted through the preheating module 200, the molding module 300, the first cooling module 400, and the second cooling module 500.
  • the glass to be processed undergoes different processes in each module, and each process flow has precise control of the conveying speed, process temperature, process pressure and process time of the processed glass.
  • the glass to be processed is transferred to the next studio for the next process only after the previous process has been completely completed.
  • the preheating module 200 can be provided with N working chambers, each of which is used for preheating processing of the glass to be processed.
  • Each of the working chambers described herein can be set with different preheating temperatures, and the preheating operation of the glass to be processed is sequentially performed according to the conveying direction of the glass to be processed.
  • the profiling module 300 can be provided with M working chambers, each of which is used for performing a profiling process on the preheated glass to be processed.
  • Each of the studios described here can be set with different temperatures and pressures to achieve various press-type processes for the glass to be processed.
  • the first cooling module 400 can be provided with R working chambers for performing heat preservation or cooling process on the pressed glass; it should be noted here that the first cooling module 400 is used for insulating the pressed glass. Or cooling treatment, not just a simple cooling treatment, such as the glass temperature of the pressed type is 750 degrees, the next area we need to control at 600 degrees and keep for a period of time, then we can only set the first cooling in the cooling zone
  • the temperature of the working chamber of the module 400 is 600 degrees and the temperature is maintained for a period of time, waiting for the glass temperature after the molding to be reduced from 750 degrees to 600 degrees in the region, and maintaining the temperature for 600 degrees for the glass to be conveyed after the molding. Go to the second cooling module 500.
  • the second cooling module 500 can be provided with P working chambers for performing a cooling and cooling process on the pressed glass conveyed by the first cooling module 400.
  • the second cooling module 500 only has a simple cooling and cooling function.
  • the module can be provided with a cooling unit for auxiliary cooling. In this module, the process requirement is an annealing process to complete the stress treatment in the glass hot press forming.
  • the preheating module 200, the molding module 300, and the first cooling module 400 are located in the same area space.
  • the second cooling module 500 is located in another area space, and the N, M, R, and P are respectively integers greater than one;
  • the control module is further electrically connected to the preheating module 200, the molding module 300, the first cooling module 400, and the second cooling module 500 for controlling the process stroke, process time, process temperature, and process pressure of each of the working chambers.
  • the tooling die assembly 010 can be set into various three-dimensional shapes according to actual needs, and the glass is subjected to three-dimensional forming hot pressing treatment by setting a plurality of working chambers with precise control of time, temperature, stroke and pressure. Effective use of the studio's precise control of time, temperature, stroke and pressure, so that the glass of various shapes can be extended, compressed, stacked, bent, etc. in a predetermined direction in three dimensions to achieve the desired shape. With size.
  • the working mold includes a movable mold 013 and a static mold 012 that cooperates with the movable mold 013.
  • the glass to be processed can be placed between the movable mold 013 and the static mold 012.
  • the movable mold 013 can be pressed against the static mold 012 under the pressure of the pressure unit 015 to realize a molding process of the glass to be processed, and the pressure unit 015 is electrically connected to the control module.
  • the control module realizes the molding process of the glass to be processed by precisely controlling the working pressure of the pressure unit 015.
  • the working mold is made of a material such as graphite or a tungsten alloy.
  • the work carrier 011 is located directly below the working mold, and the working mold is disposed on the work carrier 011. As shown in FIG. 3, the front end of each of the work carriers 011 is provided with a push rod 017 for pushing a previously adjacent work loader 011, and the rear end of each work carrier 011 is provided with a rear end.
  • the push rod 017 of the work carrier 011 is matched with the positioning hole 018.
  • the push bar of the latter work carrier 011 can cooperate with the positioning hole of the previous work carrier and push the previous work carrier through the push bar.
  • a heating unit is disposed in the preheating module 200, the molding module 300, and the first cooling module 400 for heating the preheating module 200, the molding module 300, and the first cooling module 400.
  • the temperature in the module can be maintained only by the heating action of the heating unit and the cooperation of the cooling unit provided in the module.
  • no heating unit is disposed in the second temperature reducing module 500.
  • the preheating module 200, the molding module 300, and the first cooling module 400 are located in the same area space, and the second cooling module 500 is located in another area space. In this way, the temperature needs to be increased.
  • the heat preservation studio and the cooling cooling studio are strictly divided, and the turbidity zone above the glass strain temperature needs to be heated or maintained by the temperature. Therefore, it is necessary to set the heating unit and the first cooling module 400, the preheating module 200 and the molding module 300 in one space. Package.
  • the turbidity zone below the glass strain temperature does not set the heating unit, that is, in the second cooling module 500, the internal cooling unit is used for rapid cooling, thereby effectively reducing the process time and effectively reducing the energy consumption, and also Effectively improve product quality, improve production efficiency, and after many trials by the applicant, its energy consumption can be effectively reduced by more than 30%.
  • the heating unit in this embodiment is also distributed in various process chambers that need to be heated, including but not limited to the preheating module 200, the molding module 300, the first cooling module 400, and the second cooling module 500.
  • the heating unit can adopt various heating methods as follows: resistance wire heating, infrared addition line, silicon carbon rod heating, electromagnetic eddy current heating, and the like.
  • the heating unit is electrically connected to the control module, and the control module can automatically control the heating unit to work by a relay or a PID.
  • the distribution of the heating unit may adopt, but is not limited to, the following: single or multiple temperature control points of a single working chamber, single or multiple temperature control points of multiple working chambers.
  • the preheating module 200, the molding module 300, the first cooling module 400, and the second cooling module 500 are respectively provided with a heat receiving structural member 016, and the heat receiving structural member
  • the side wall 20 of the 016 is disposed adjacent to the side wall 20 and is provided with an external cooling pipe 30.
  • the heat receiving structural member 016 and the cooling pipe 30 are packaged together by a package protection plate, and the cooling pipe 30 is internally provided.
  • Cooling medium may be water, air or cooling oil or the like.
  • the conventional cooling scheme is that a deep air drill in the heat-receiving structural member forms a cooling duct to form a cooling unit, which is not only difficult to process, but also has a small water-cooling area and a relatively low cooling efficiency.
  • the cooling unit 30 is formed outside the heat-receiving structural member to form a cooling unit and then the protective plate is packaged. This method is not only easy to process, but also has a large water-cooling area and high cooling efficiency.
  • the cooling pipe 30 in this embodiment may be uniformly disposed on the outer side wall of the heat receiving structural member, and the cross section of the cooling pipe may be various shapes such as a circle or a square.
  • the cooling line is preferably a square tube.
  • the pipeline is arranged in a U-shape or an S-shape on the heat-receiving structural member 016 to form a cooling unit having uniform heat dissipation.
  • the water-cooling pipeline system adopts the external pipeline system network close to each heat-receiving unit, which can reduce the processing difficulty, increase the cooling area, and ensure that each working module is rapidly cooled when needed, thereby maintaining a friendly production process environment. .
  • the control module is electrically connected to each of the cooling units to control the operation of the respective cooling units.
  • the glass three-dimensional forming hot-pressing and wear-resistant system further comprises:
  • the automatic feeding and discharging module 700 is configured to perform automatic pick and place processing on the glass to be processed
  • the manual discharging module 600 is configured to perform manual discharging processing on the pressed glass outputted by the second cooling module 500;
  • Manual feeding module 800 for manual discharging processing of the glass to be processed
  • the automatic feeding and discharging module 700 is located between the manual discharging module 600 and the manual feeding module 800.
  • the automatic feeding and discharging module 700 adopts a cylinder or a motor but is not limited to a picking and pushing mode of a cylinder or a motor.
  • the automatic feeding and discharging module is electrically connected with the control module, and the control module controls the operation of the automatic feeding and discharging module.
  • the push module includes:
  • the first pushing module 910 is configured to push the tooling mold assembly 010 in the working chamber in the preheating module 200, the molding module 300, and the first cooling module 400.
  • the second pushing module 920 is configured to push the tooling mold assembly 010 in the working chamber in the second cooling module 500, the manual discharging module 600, the automatic feeding and discharging module 700, and the manual feeding module 800.
  • the first pushing module 910 includes a first driving device, and the first driving device may be a push cylinder with adjustable stroke. a first push rod connected to the first driving device and movable back and forth, the first push rod pushing each working carrier 011 of the tooling die assembly 010 transferred through the first relay module 930 by cooperation with the positioning hole, thereby The transfer of the tooling die assembly 010 in the working chamber in the preheating module 200, the molding module 300, and the first cooling module 400 is promoted.
  • the second pushing module 920 includes a second driving device, and the second driving device may also be a push cylinder with adjustable stroke.
  • the second driving device is connected to the second driving device, and the second pushing rod is moved forward and backward.
  • the second pushing rod pushes the working tool 011 of the tooling mold assembly 010 which is transferred through the second relay module 940, thereby pushing the tooling in the working chamber.
  • the first pushing module 910 and the second pushing module 920 are respectively electrically connected to the control module
  • the control module controls the operations of the first push module 910 and the second push module 920.
  • the working mold Due to the traditional glass three-dimensional hot pressing process, the working mold is directly placed on the bottom plate of the working chamber. Due to the high hardness of the bottom plate, the working mold is easily worn during work, and dust is generated, which affects the quality and yield of the product and effectively reduces The life of the mold, while long-term floor wear will affect the life of the equipment.
  • the work carrier 011 when the push module is working, the work carrier 011 is pushed forward, and the work carrier 011 preferably adopts a high temperature resistance between the working mold and the materials used in the bottom platform of each working chamber.
  • the material with small deformation is made, and the adjacent one of the working carriers 011 is pushed by the pushing rod 017 at the front end of the working carrier 011, and the rear end of the working carrier 011 receives the pushing of the next adjacent working carrier 011 through the positioning hole 018.
  • the work vehicle 011 is pushed forward in the push-back of the rear-end push module, thereby sequentially completing the process of the studio, which is designed for each time, temperature, stroke and pressure, which is designed by the three-dimensional glass forming process.
  • the glass will be shaped in this process to achieve the process design shape and size.
  • the embodiment of the invention is driven by a single driving device, has a simple structure and reliable operation, and the working carrier 011 is made of a material with low hardness and high temperature deformation between the working mold and the material used in the bottom platform of each working chamber.
  • the working carrier 011 will preferentially wear to ensure the delayed wear of the platform at the bottom of the working chamber and the delayed wear of the working mold, thereby prolonging the production life of the entire equipment and the production life of the working mold, and at the same time reducing the dust pollution in the working chamber. Effectively improve the quality and yield of products.
  • the glass three-dimensional forming hot press wear system further includes:
  • the first relay module 930 is disposed between the manual feeding module 800 and the preheating module 200 for propelling the tooling die assembly 010 from the manual feeding module 800 to the preheating module 200.
  • the second transition module 940 is disposed between the first cooling module 400 and the second cooling module 500 for driving the fixture assembly 010 from the first cooling module 400 to the second cooling module 500.
  • the first relay module 930 and the second relay module 940 respectively include a driving device and an actuator, and the driving device is electrically connected to the control module, and the driving device may be a cylinder or a motor.
  • the driving device works to drive the actuator to push the tooling die assembly in the corresponding working chamber of the manual feeding module 800 to the corresponding working chamber of the preheating module 200.
  • the driving device operates to drive the corresponding tooling die assembly in the working chamber of the first cooling module 400 to the corresponding working chamber in the second cooling module 500.
  • the functions of the first transfer module 930 and the second transfer module 940 in the present invention are the transfer effects, so that the process of the glass three-dimensional forming hot press wear system becomes a closed loop process, which can be cyclically reciprocated.
  • each of the working chambers is provided with an environmental protection unit, the environmental protection unit and the control
  • the module is electrically connected.
  • the environmental protection unit may vacuum the entire working chamber to form an oxygen-free environment, or fill the working chamber with an inert protective gas to facilitate three-dimensional forming and hot pressing of the glass.
  • the anaerobic protection treatment is provided.
  • an embodiment of the present invention provides a process flow method for utilizing the above-described glass three-dimensional forming hot-pressing and wear-resistant system, which specifically includes the following steps:
  • the method before the step of preheating the glass to be processed, the method further includes the step S010: manually and automatically placing the glass to be processed.
  • step S410 After the step of cooling the cooled and insulated glass, the method further includes step S410:
  • the cooled glass is manually and automatically removed.
  • the process of the three-dimensional forming process of the glass in the embodiment of the invention is basically a preheating-pressing type-cooling process flow, wherein the temperature range is from 200 degrees Celsius to 1200 degrees Celsius, and the working time of each studio is several seconds to several. Hours can be fine controlled.

Abstract

提供了一种包括顺次连接的预热模块(200)、压型模块(300)及降温模块;所述预热模块(200),用于对待加工玻璃进行预热工艺处理;所述压型模块(300),用于对预热后的待加工玻璃进行压型工艺处理;所述降温模块,用于对压型后的玻璃进行保温、降温或冷却工艺处理;所述预热模块(200)、压型模块(300)及降温模块分别具有多个工作室,所述每个工作室中具有用于放置玻璃的工装模具组件(010),所述每个工装模具组件包括一个工作模具及一个搭载所述工作模具的工作载具(011);所述玻璃三维成型热压耐磨系统还包括控制模块及用于通过推动工作载具(011)从而推动所述工装模具组件(010)在所述工作室中传送的推送模块,所述推送模块与所述控制模块电连接。该技术方案可以有效提供模具及系统的工作寿命。

Description

一种玻璃三维成型热压耐磨系统 技术领域
本发明涉及玻璃制造领域,尤其涉及一种玻璃三维成型热压耐磨系统。
背景技术
玻璃三维成型技术采用的是热压技术,即在一定的温度下采用一定的压力并保持一定的时间使玻璃工件在部分软化的状态下慢慢的在空间方向产生变形和尺寸设计好的模具贴合,从而达到设计的三维尺寸的技术。
三维成型热压系统有预热模块、压型模块、降温模块等模块构成,从操作方式上区分有以下两种:1、手动方式,各模块单独成为一个设备独立分布,人工操作连接各工艺过程,需要在开放的高温条件下操作,低效率、低品质,高危险;2、自动方式,各模块在同一个或多个封闭空间内,整个过程由程序控制;不管是手动还是自动方式,传统的三维成型热压系统中工作模具直接置于工作室底板上,由于底板硬度较高,在工作模具被推动传送的过程中,极易受到磨损并且同时产生粉尘,影响成型玻璃产品质量的同时,大大降低了工作模具的使用寿命。
技术问题
本发明旨在解决现有技术中三维成型热压系统中工作模具极易磨损造成的寿命降低,同时磨损过程产品粉尘影响成品质量的技术问题,提供一种耐磨且有效提高产品品质的玻璃三维成型热压耐磨系统。
技术解决方案
本发明的实施例提供一种玻璃三维成型热压耐磨系统,包括顺次连接的预热模块、压型模块及降温模块;
所述预热模块,用于对待加工玻璃进行预热工艺处理;
所述压型模块,用于对预热后的待加工玻璃进行压型工艺处理;
所述降温模块,用于对压型后的玻璃进行保温、降温或冷却工艺处理;
所述预热模块、压型模块及降温模块分别具有多个工作室,所述每个工作室中具有用于放置玻璃的工装模具组件,所述每个工装模具组件包括一个工作模具及一个搭载所述工作模具的工作载具;
所述玻璃三维成型热压耐磨系统还包括控制模块及用于通过推动工作载具从而推动所述工装模具组件在所述工作室中传送的推送模块,所述推送模块与所述控制模块电连接。
优选地,所述每个工作载具的前端设有推送杆,用于在推送模块的推动下推送前面相邻一个工装载具,所述每个工作载具的后端设有与后面一个工作载具的推送杆相配合的定位孔。
优选地,所述降温模块包括顺次连接的第一降温模块及第二降温模块;
所述第一降温模块设有多个工作室,用于对压型后的玻璃进行保温或降温工艺处理;
所述第二降温模块也设有多个工作室,用于对第一降温模块输送过来的压型后的玻璃进行冷却工艺处理;
其中,所述预热模块、压型模块及第一降温模块顺次连接,且位于同一区域空间,所述第二降温模块位于另一区域空间;
所述控制模块还与预热模块、压型模块、第一降温模块及第二降温模块电连接。
优选地,所述玻璃三维成型热压耐磨系统还包括:
对待加工玻璃进行自动取放处理的自动进出料模块;
对第二降温模块输出的压型后的玻璃进行手动出料处理的手动出料模块;
对待加工玻璃进行手动放料处理的手动进料模块;
所述自动进出料模块位于手动出料模块与手动进料模块之间,并与所述控制模块电连接。
优选地,所述推送模块包括:
用于通过所述工作载具推动工作室中的工装模具组件在预热模块、压型模块及第一降温模块中传送的第一推送模块;及
用于通过所述工作载具推动工作室中的工装模具组件在第二降温模块、手动出料模块、自动进出料模块及手动进料模块中传送的第二推送模块。
优选地,所述玻璃三维成型热压耐磨系统还包括:
用于推动工装模具组件从手动进料模块输送到预热模块的第一中转模块,所述第一中转模块设置于手动进料模块与预热模块之间;
用于推动工装夹具组件从第一降温模块输送到第二降温模块的第二中转模块,所述第二中转模块设置于第一降温模块与第二降温模块之间。
优选地,所述第一推送模块包括第一驱动装置,与第一驱动装置相连接并可前后运动的第一推杆,第一推杆通过与定位孔的配合推动每个通过第一中转模块中转过来的工装模具组件的工作载具的传送;
所述第二推送模块包括第二驱动装置,与第二驱动装置相连接并可前后运动第二推杆,第二推杆通过推动每个通过第二中转模块中转过来的工装模具组件的工作载具的传送。
优选地,所述第一中转模块及第二中转模块分别包括一个驱动装置和一个用于将对应上一个模块工作室中的工装模具组件中转推送到下一个模块工作室中的执行机构,所述驱动装置与所述控制模块电连接。
优选地,所述预热模块、压型模块及第一降温模块中分别设有加热单元。
优选地,所述预热模块、压型模块、第一降温模块及第二降温模块中分别设有承热结构件,所述承热结构件的侧壁上外置冷却管路,通过一封装保护板将所述承热结构件与所述冷却管路封装在一起,冷却管路内部设有可循环流动的冷却介质。
有益效果
以上技术方案中,所述预热模块、压型模块及降温模块的工作室中的工装模具组件设置一个工作模具及一个搭载所述工作模具的工作载具,通过推送模块推动工作载具从而推动所述工装模具组件在所述工作室中传送的技术方案,可以有效避免工作模具直接置于系统底板上带来的磨损工作模具的问题,有效提高了工作模具及玻璃三维成型热压系统的工作寿命。
附图说明
图1是本发明玻璃三维成型热压耐磨系统的结构示意图;
图2是本发明玻璃三维成型热压耐磨系统的工作室的结构示意图;
图3是本发明的推送模块与对应工装模具组件的位置结构示意图;
图4是本发明各个系统模块中承热结构件上的冷却管路结构示意图;
图5是本发明一种实施例的玻璃三维成型热压工艺方法流程图;
图6是本发明另一种实施例的玻璃三维成型热压工艺方法流程图。
本发明的实施方式
为了使本发明所解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
如图1所示,本发明的实施例提供一种玻璃三维成型热压耐磨系统,包括顺次连接的预热模块200、压型模块300及降温模块;
所述预热模块200,用于对待加工玻璃进行预热工艺处理;
所述压型模块300,用于对预热后的待加工玻璃进行压型工艺处理;
所述降温模块,用于对压型后的玻璃进行保温、降温或冷却工艺处理;
所述预热模块200、压型模块300及降温模块分别具有多个工作室,结合图2所示,所述每个工作室中具有用于放置玻璃的工装模具组件010,所述每个工装模具组件010包括一个工作模具及一个搭载所述工作模具的工作载具011;
所述玻璃三维成型热压耐磨系统还包括控制模块(图中未示出)及用于通过推动工作载具011从而推动所述工装模具组件010在所述工作室中传送的推送模块,所述推送模块与所述控制模块电连接。
结合图3所示,所述每个工作载具011的前端设有推送杆017,用于在推送模块的推动下推送前面相邻一个工装载具011,所述每个工作载具011的后端设有与后面一个工作载具的推送杆相配合的定位孔018
进一步地,结合图1所示,降温模块还包括第一降温模块400及第二降温模块500,所述预热模块200、压型模块300、第一降温模块400及第二降温模块500顺次连接,即在工艺方向上,待加工玻璃会依次传送经过预热模块200、压型模块300、第一降温模块400及第二降温模块500。待加工玻璃在每个模块中都会经过不同的工艺流程,每个工艺流程对待加工玻璃的传送速度、工艺温度、工艺压力及工艺时间都会有精确的控制。只有在彻底完成前一个工艺后,才会将待加工玻璃传送到下一个工作室进行下一个工艺流程。
所述预热模块200可设置N个工作室,每个工作室用于对待加工玻璃进行预热工艺处理。这里所述的每个工作室,可设置不同的预热温度,按照待加工玻璃的传送方向依次给待加工玻璃进行预热操作。
所述压型模块300可设置M个工作室,每个工作室用于对预热后的待加工玻璃进行压型工艺处理。这里所述的每个工作室,可设置不同的温度以及压力,实现对待加工玻璃的各种压型工艺处理。
所述第一降温模块400可设置R个工作室,用于对压型后的玻璃进行保温或降温工艺处理;这里需要注意,所述第一降温模块400用于对压型后的玻璃进行保温或降温处理,并不仅仅是单纯的降温处理,如压型出来的玻璃温度为750度,下一个区域我们需要控制在600度并保持一段时间,那么我们只能在降温区设定第一降温模块400的工作室的温度为600度并要保持该温度一段时间,等待压型后的玻璃温度在该区域从750度降到600度,并维持600度一定时间才能将压型后的玻璃输送到第二降温模块500中。
所述第二降温模块500可设置P个工作室,用于对第一降温模块400输送过来的压型后的玻璃进行降温冷却工艺处理。第二降温模块500仅仅具有单纯的降温冷却功能,当然该模块可设置冷却单元进行辅助降温。该模块中,其工艺需求为退火工艺,以完成玻璃热压成型中的应力处理。
其中,所述预热模块200、压型模块300及第一降温模块400位于同一区域空间。所述第二降温模块500位于另一区域空间,所述N、M、R、P分别为大于1的整数;
所述控制模块还与预热模块200、压型模块300、第一降温模块400及第二降温模块500电连接,用于控制每个工作室的工艺行程、工艺时间、工艺温度及工艺压力。
上述实施例中,所述的工装模具组件010根据实际需求,可设置成各种三维形状,通过设置多个时间、温度、行程与压力可精控的工作室对玻璃进行三维成型热压处理,有效的利用工作室对时间、温度、行程与压力的精控,从而起到让各种形状的玻璃在三维方向按预设的方向延展、压缩、堆集、弯曲等,以达到所需求设计的形状与尺寸。
如图2所示,所述工作模具包括动模具013及与所述动模具013相配合的静模具012,动模具013与静模具012之间可放置待加工玻璃,在压型工艺的时候,动模具013可在压力单元015的压力作用下与静模具012相压合,从而实现对待加工玻璃的压型工艺,所述压力单元015与所述控制模块电连接 ,控制模块通过精确控制压力单元015的工作压力实现对待加工玻璃的压型工艺处理。本实施例中,优选地,所述工作模具为石墨或钨合金等材料制成。
所述工作载具011位于所述工作模具的正下方,所述工作模具设置在工作载具011上。结合图3所示,所述每个工作载具011的前端设有推送杆017,用于推送前面相邻一个工装载具011,所述每个工作载具011的后端设有与后面一个工作载具011的推送杆017相配合的定位孔018。后面一个工作载具011的推送杆可以与前面一个工作载具的定位孔相配合,并通过推送杆推送前面一个工作载具。
进一步地,所述预热模块200、压型模块300及第一降温模块400中分别设有加热单元,用于对所述预热模块200、压型模块300及第一降温模块400进行加热操作。在所述第一降温模块400中,只有通过加热单元的加热作用和模块中设有的冷却单元的配合才能实现该模块中温度的保持。
本实施例中,第二降温模块500中不设置加热单元。本实施例中,将所述预热模块200、压型模块300及第一降温模块400位于同一区域空间,所述第二降温模块500位于另一区域空间,通过这种方式,将需要升温与保温的工作室与降温冷却工作室严格分区,玻璃应变温度以上的浊区需要温度加热或保持,因此需要设定加热单元与第一降温模块400、预热模块200及压型模块300在一个空间封装。而玻璃应变温度以下的浊区不设定加热单元,即在第二降温模块500内,利用其内部的冷却单元进行快速降温,通过这种方式不但有效减少工艺时间、有效降低能耗,而且也有效提高产品品质,提升生产效率,而且经过申请人的多次试验,其能耗可有效降低30%以上。
当然,进一步地,本实施例中的加热单元还分布于需要加热的各个工艺工作室,包括但不限于预热模块200、压型模块300、第一降温模块400及第二降温模块500。加热单元可以采用如下的各种加热方式:电阻丝加热,红外加线,硅碳棒加热,电磁涡流加热等。所述加热单元与所述控制模块电连接,控制模块可以通过继电器或PID自动控制所述加热单元工作。
本实施例中,所述的加热单元的分布可以采用但不限以下的方式:单个工作室单个或多个温控点,多个工作室单个或多个温控点。
更进一步地,结合图4所示,所述预热模块200、压型模块300、第一降温模块400及第二降温模块500中还分别设有承热结构件016,所述承热结构件016的侧壁20上紧贴所述侧壁20设有外置冷却管路30,通过封装保护板将所述承热结构件016与冷却管路30封装在一起,冷却管路30内部设有冷却介质。所述冷却介质可以为水、空气或冷却油等。
传统的冷却方案为,在承热结构件内深空钻形成冷却管道从而形成冷却单元,这种方式不但加工困难,水冷面积小,而且冷却效率比较低。通过本实施例所述的冷却方式,在承热结构件外置冷却管路30形成冷却单元然后再封装保护板,这种方式不但加工容易,水冷面积大,而且冷却效率高。
本实施例中的冷却管路30可以均匀设置在承热结构件的外侧壁上,冷却管路的横截面可以为各种形状,如圆形或方形等。为了进一步增强本实施例中的冷却效率,所述冷却管路优选为方形管路。管路在承热结构件016上呈U型或S型布置,从而形成散热均匀的冷却单元。通过水冷各管路系统采用紧贴各承热单元外置管路系统网方式,可以降低加工难度,增大冷却面积,保证各工作模块在需求时进行快速冷却,从而保持一个友好的生产工艺环境。
所述控制模块与各个冷却单元电连接,从而控制各个冷却单元的工作。
作为本发明实施例的进一步改进,为了方便玻璃三维成型热压耐磨系统的出料、进料及放料、取料的操作,所述玻璃三维成型热压耐磨系统还包括:
自动进出料模块700,用于对待加工玻璃进行自动取放处理;
手动出料模块600,用于对第二降温模块500输出的压型后的玻璃进行手动出料处理;
手动进料模块800,用于对待加工玻璃进行手动放料处理;
所述自动进出料模块700位于手动出料模块600与手动进料模块800之间。
优选地,所述自动进出料模块700采用气缸或电机但不限于气缸或电机的拾取与推送方式,自动进出料模块与所述控制模块电连接,控制模块控制自动进出料模块的工作。
进一步地,结合图1及图3所示,所述推送模块包括:
第一推送模块910,用于推动工作室中的工装模具组件010在预热模块200、压型模块300及第一降温模块400中的传送。
第二推送模块920,用于推动工作室中的工装模具组件010在第二降温模块500、手动出料模块600、自动进出料模块700及手动进料模块800中的传送。
所述第一推送模块910包括第一驱动装置,第一驱动装置可以为一个行程可调的推送汽缸。与第一驱动装置相连接并可前后运动的第一推杆,第一推杆通过与定位孔的配合推动每个通过第一中转模块930中转过来的工装模具组件010的工作载具011,从而推动工作室中的工装模具组件010在预热模块200、压型模块300及第一降温模块400中的传送。
所述第二推送模块920包括第二驱动装置,第二驱动装置也可以为一个行程可调的推送汽缸。与第二驱动装置相连接并可前后运动第二推杆,第二推杆通过推动每个通过第二中转模块940中转过来的工装模具组件010的工作载具011,从而推动工作室中的工装模具组件010在第二降温模块500、手动出料模块600、自动进出料模块700及手动进料模块800中的传送。
所述第一推送模块910与第二推送模块920分别与所述控制模块电连接 ,控制模块控制第一推送模块910及第二推送模块920的工作。
由于传统的玻璃三维热压工艺中,由工作模具直接置于工作室的底板上,由于底板硬度较高,工作中极易磨损工作模具,并产生粉尘,影响产品的质量与良率,有效减少模具的寿命,同时长时间地板磨损将影响设备的寿命。而本发明实施例中的方案,在推送模块工作时,推动工作载具011往前运动,工作载具011优选采用硬度介于工作模具与各工作室底部平台所使用的材料之间的耐高温变形小的材料制作,通过工作载具011前端具有的推送杆017推送前面的相邻一个工作载具011,而工作载具011后端通过定位孔018接受后面相邻一个工作载具011的推送,工作时,工作载具011在后端推送模块的推送下,依次前行,从而依次完成玻璃三维成型所设计的各个时间、温度、行程与压力可精控的工作室的工艺过程,各型玻璃将在这个过程中成型以达到工艺设计形状与尺寸。
本发明的实施例,采用单一驱动装置推送,结构简单,工作可靠,而工作载具011采用硬度介于工作模具与各工作室底部平台所使用的材料之间的耐高温变形小的材料制作而成,此工作载具011将优先磨损从而保证工作室底部平台的延迟磨损和工作模具的延迟磨损,从而延长整个设备的生产寿命和工作模具的生产寿命,同时将减少工作室中的粉尘污染,有效提高产品的质量与良率。
如图1所示,所述玻璃三维成型热压耐磨系统还包括:
第一中转模块930,设置于手动进料模块800与预热模块200之间,用于推动工装模具组件010从手动进料模块800输送到预热模块200。
第二中转模块940,设置于第一降温模块400与第二降温模块500之间,用于推动工装夹具组件010从第一降温模块400输送到第二降温模块500。
所述第一中转模块930及第二中转模块940分别包括一个驱动装置和一个执行机构,所述驱动装置与所述控制模块电连接,所述驱动装置可以为汽缸或电机。在第一中转模块930中,在控制模块的控制下,驱动装置工作带动执行机构将手动进料模块800中对应工作室内的工装模具组件推送到预热模块200对应的工作室中。第二中转模块940中,在控制模块的控制下,驱动装置工作带动执行机构将第一降温模块400工作室中对应的工装模具组件推送到第二降温模块500中对应的工作室中。所述第一中转模块930及第二中转模块940在本发明中所起的作用即为中转作用,使得玻璃三维成型热压耐磨系统的工艺变为一个闭环的工艺过程,能够循环往复进行。
在上述实施例中,为了防止各个工作模块处于高温下工作不被氧化导致变质及老化,优选地,在所述每个工作室中都设有环境保护单元,所述环境保护单元与所述控制模块电连接,在控制模块的控制下,所述环境保护单元可以将整个工作室抽真空形成一个无氧环境,或者将工作室中充满惰性保护气体,以便于对玻璃进行三维成型热压过程中的无氧保护处理。从而保证在玻璃三维成型热压过程中的整个成型玻璃的品质。
如图5所示,本发明的实施例提供一种利用上述玻璃三维成型热压耐磨系统的工艺流程方法,具体包括以下步骤:
S100,将待加工玻璃进行预热处理;
S200,将经过预热处理的待加工玻璃进行压型处理;
S300,将压型处理过的玻璃进行降温、保温处理;
S300,将降温、保温后的玻璃进行冷却处理;
本实例中的上述步骤,可顺序重复。
作为本发明实施例的进一步改进,在所述将待加工玻璃进行预热处理的步骤之前,还包括步骤S010:将待加工玻璃进行手动及自动放入。
在所述将降温、保温后的玻璃进行冷却处理的步骤之后,还包括步骤S410:
将冷却后的玻璃手动及自动取出。
本发明实施例中的玻璃三维成型工序工艺流程基本为预热-压型-冷却工艺流程,其中温度区间为摄氏200度到摄氏1200度可精控,而各个工作室的工作时间几秒到几小时可精控。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种玻璃三维成型热压耐磨系统,其特征在于:所述玻璃三维成型热压耐磨系统包括顺次连接的预热模块、压型模块及降温模块;
    所述预热模块,用于对待加工玻璃进行预热工艺处理;
    所述压型模块,用于对预热后的待加工玻璃进行压型工艺处理;
    所述降温模块,用于对压型后的玻璃进行保温、降温或冷却工艺处理;
    所述预热模块、压型模块及降温模块分别具有多个工作室,所述每个工作室中具有用于放置玻璃的工装模具组件,所述每个工装模具组件包括一个工作模具及一个搭载所述工作模具的工作载具;
    所述玻璃三维成型热压耐磨系统还包括控制模块及用于通过推动工作载具从而推动所述工装模具组件在所述工作室中传送的推送模块,所述推送模块与所述控制模块电连接。
  2. 根据权利要求1所述的玻璃三维成型热压耐磨系统,其特征在于:
    所述每个工作载具的前端设有推送杆,用于在推送模块的推动下推送前面相邻一个工装载具,所述每个工作载具的后端设有与后面一个工作载具的推送杆相配合的定位孔。
  3. 根据权利要求2所述的耐磨玻璃三维成型热压耐磨系统,其特征在于:所述降温模块包括顺次连接的第一降温模块及第二降温模块;
    所述第一降温模块设有多个工作室,用于对压型后的玻璃进行保温或降温工艺处理;
    所述第二降温模块也设有多个工作室,用于对第一降温模块输送过来的压型后的玻璃进行冷却工艺处理;
    其中,所述预热模块、压型模块及第一降温模块顺次连接,且位于同一区域空间,所述第二降温模块位于另一区域空间;
    所述控制模块还与预热模块、压型模块、第一降温模块及第二降温模块电连接。
  4. 根据权利要求3所述的玻璃三维成型热压耐磨系统,其特征在于:所述玻璃三维成型热压耐磨系统还包括:
    对待加工玻璃进行自动取放处理的自动进出料模块;
    对第二降温模块输出的压型后的玻璃进行手动出料处理的手动出料模块;
    对待加工玻璃进行手动放料处理的手动进料模块;
    所述自动进出料模块位于手动出料模块与手动进料模块之间,并与所述控制模块电连接。
  5. 根据权利要求4所述的玻璃三维成型热压耐磨系统,其特征在于:所述推送模块包括:
    用于通过所述工作载具推动工作室中的工装模具组件在预热模块、压型模块及第一降温模块中传送的第一推送模块;及
    用于通过所述工作载具推动工作室中的工装模具组件在第二降温模块、手动出料模块、自动进出料模块及手动进料模块中传送的第二推送模块。
  6. 根据权利要求5所述的玻璃三维成型热压耐磨系统,其特征在于:所述玻璃三维成型热压耐磨系统还包括:
    用于推动工装模具组件从手动进料模块输送到预热模块的第一中转模块,所述第一中转模块设置于手动进料模块与预热模块之间;
    用于推动工装夹具组件从第一降温模块输送到第二降温模块的第二中转模块,所述第二中转模块设置于第一降温模块与第二降温模块之间。
  7. 根据权利要求6所述的玻璃三维成型热压耐磨系统,其特征在于:
    所述第一推送模块包括第一驱动装置,与第一驱动装置相连接并可前后运动的第一推杆,第一推杆通过与定位孔的配合推动每个通过第一中转模块中转过来的工装模具组件的工作载具的传送;
    所述第二推送模块包括第二驱动装置,与第二驱动装置相连接并可前后运动第二推杆,第二推杆通过推动每个通过第二中转模块中转过来的工装模具组件的工作载具的传送。
  8. 根据权利要求7所述的玻璃三维成型热压耐磨系统,其特征在于:所述第一中转模块及第二中转模块分别包括一个驱动装置和一个用于将对应上一个模块工作室中的工装模具组件中转推送到下一个模块工作室中的执行机构,所述驱动装置与所述控制模块电连接。
  9. 根据权利要求3所述的玻璃三维成型热压耐磨系统,其特征在于:所述预热模块、压型模块及第一降温模块中分别设有加热单元。
  10. 根据权利要求9所述的玻璃三维成型热压耐磨系统,其特征在于:所述预热模块、压型模块、第一降温模块及第二降温模块中分别设有承热结构件,所述承热结构件的侧壁上外置冷却管路,通过一封装保护板将所述承热结构件与所述冷却管路封装在一起,冷却管路内部设有可循环流动的冷却介质。
PCT/CN2016/106777 2016-09-14 2016-11-22 一种玻璃三维成型热压耐磨系统 WO2018049729A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201621057254.8U CN206089439U (zh) 2016-09-14 2016-09-14 一种玻璃三维成型热压耐磨系统
CN201621057254.8 2016-09-14

Publications (1)

Publication Number Publication Date
WO2018049729A1 true WO2018049729A1 (zh) 2018-03-22

Family

ID=58476766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/106777 WO2018049729A1 (zh) 2016-09-14 2016-11-22 一种玻璃三维成型热压耐磨系统

Country Status (2)

Country Link
CN (1) CN206089439U (zh)
WO (1) WO2018049729A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI667207B (zh) * 2018-04-12 2019-08-01 秦文隆 Heating and heating field device for molding stereoscopic glass continuous forming device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11584674B2 (en) 2017-04-24 2023-02-21 Lg Electronics Inc. Curved glass manufacturing method
CN107226449A (zh) * 2017-07-24 2017-10-03 河北美思亿环保科技有限公司 纤维床垫自动化加工成型装置
CN107555768A (zh) * 2017-09-29 2018-01-09 贵州东太平洋自动化设备有限公司 一种自动化玻璃热弯成型设备及方法
WO2019084910A1 (zh) * 2017-11-03 2019-05-09 深圳市力沣实业有限公司 一种热弯机
CN109748487A (zh) * 2017-11-03 2019-05-14 深圳市力沣实业有限公司 一种热弯机
CN107673595A (zh) * 2017-11-21 2018-02-09 深圳市震仪实业有限公司 玻璃热弯机
CN110281637A (zh) * 2019-07-23 2019-09-27 中车工业研究院有限公司 采用模具加工铜基-石墨烯的装置
CN117020567B (zh) * 2023-10-08 2024-01-23 北京中科同志科技股份有限公司 具有还原功能的在线式热压压接设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06183753A (ja) * 1992-02-01 1994-07-05 Canon Inc 光学素子製造法およびその装置
CN1840490A (zh) * 2005-03-31 2006-10-04 Hoya株式会社 模块冲压装置以及模压成形品的制造方法
CN102329071A (zh) * 2010-07-13 2012-01-25 比亚迪股份有限公司 一种曲面视窗玻璃的成型方法
US20140373573A1 (en) * 2013-06-25 2014-12-25 Samsung Display Co., Ltd. Apparatus and method for manufacturing 3d glass
CN205205013U (zh) * 2015-11-18 2016-05-04 广东拓捷科技股份有限公司 曲面玻璃的热压成型设备
CN205528402U (zh) * 2016-03-24 2016-08-31 蓝思科技(长沙)有限公司 曲面玻璃的多工位热压成型机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06183753A (ja) * 1992-02-01 1994-07-05 Canon Inc 光学素子製造法およびその装置
CN1840490A (zh) * 2005-03-31 2006-10-04 Hoya株式会社 模块冲压装置以及模压成形品的制造方法
CN102329071A (zh) * 2010-07-13 2012-01-25 比亚迪股份有限公司 一种曲面视窗玻璃的成型方法
US20140373573A1 (en) * 2013-06-25 2014-12-25 Samsung Display Co., Ltd. Apparatus and method for manufacturing 3d glass
CN205205013U (zh) * 2015-11-18 2016-05-04 广东拓捷科技股份有限公司 曲面玻璃的热压成型设备
CN205528402U (zh) * 2016-03-24 2016-08-31 蓝思科技(长沙)有限公司 曲面玻璃的多工位热压成型机

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI667207B (zh) * 2018-04-12 2019-08-01 秦文隆 Heating and heating field device for molding stereoscopic glass continuous forming device

Also Published As

Publication number Publication date
CN206089439U (zh) 2017-04-12

Similar Documents

Publication Publication Date Title
WO2018049729A1 (zh) 一种玻璃三维成型热压耐磨系统
KR101735974B1 (ko) 성형 장치
WO2018049728A1 (zh) 散热结构及具有该散热结构的玻璃三维成型热压系统
KR100850601B1 (ko) 일체식 금속 처리 설비
WO2017071294A1 (zh) 一种多工位连续热冲压生产线及方法
JP4727110B2 (ja) はんだ接合部の製造方法および製造装置
JPH01252886A (ja) 熱加工炉並びにそれによる熱処理方法
KR20060120237A (ko) 가압성형장치, 금형 및 가압성형방법
CN105776828A (zh) 热弯机
WO2015156511A1 (ko) 프레임 일체형 진공 핫 프레스장치
WO2018049727A1 (zh) 一种玻璃三维成型热压系统及其工艺方法
JP6116366B2 (ja) 金型組
CN100474485C (zh) 用于生产平面荧光灯上板的系统
CN205420154U (zh) 一种热弯机
KR100646859B1 (ko) 단조가공용 소재 이송장치 및 그 작동방법
CZ302493B6 (cs) Zarízení na tvarování sklenených tabulí a príslušný zpusob
WO2018223439A1 (zh) 一种可实现连续生产的真空烧结炉
WO2019084910A1 (zh) 一种热弯机
JP4271833B2 (ja) インサート用筒体の取付装置
KR200385074Y1 (ko) 단조가공용 소재 이송장치
JP4550950B2 (ja) 連続ホットプレス装置
CN110117153B (zh) 一种3d玻璃热弯装置及其方法
CN112479571B (zh) 一种避免氧气进入炉内的3d曲面玻璃热弯机
KR100382622B1 (ko) 플라스틱 튜브벤딩장치 및 제조방법
CN211595423U (zh) 一种玻璃热弯机工装

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16916109

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16916109

Country of ref document: EP

Kind code of ref document: A1