WO2018049694A1 - 一种深冷工作台、深冷激光冲击强化实验系统及其控制方法 - Google Patents

一种深冷工作台、深冷激光冲击强化实验系统及其控制方法 Download PDF

Info

Publication number
WO2018049694A1
WO2018049694A1 PCT/CN2016/099513 CN2016099513W WO2018049694A1 WO 2018049694 A1 WO2018049694 A1 WO 2018049694A1 CN 2016099513 W CN2016099513 W CN 2016099513W WO 2018049694 A1 WO2018049694 A1 WO 2018049694A1
Authority
WO
WIPO (PCT)
Prior art keywords
cryogenic
liquid nitrogen
temperature
laser
zone
Prior art date
Application number
PCT/CN2016/099513
Other languages
English (en)
French (fr)
Inventor
孟宪凯
周建忠
苏纯
盛杰
徐家乐
李京
黄舒
Original Assignee
江苏大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏大学 filed Critical 江苏大学
Priority to US16/332,754 priority Critical patent/US11542572B2/en
Publication of WO2018049694A1 publication Critical patent/WO2018049694A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D10/00Modifying the physical properties by methods other than heat treatment or deformation
    • C21D10/005Modifying the physical properties by methods other than heat treatment or deformation by laser shock processing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/034Observing the temperature of the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/356Working by laser beam, e.g. welding, cutting or boring for surface treatment by shock processing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment
    • B23K26/703Cooling arrangements
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • C21D11/005Process control or regulation for heat treatments for cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/04Hardening by cooling below 0 degrees Celsius
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • F25D29/001Arrangement or mounting of control or safety devices for cryogenic fluid systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D3/00Devices using other cold materials; Devices using cold-storage bodies
    • F25D3/10Devices using other cold materials; Devices using cold-storage bodies using liquefied gases, e.g. liquid air
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon

Definitions

  • the invention relates to the field of laser processing technology and the field of surface strengthening, and proposes a cryogenic workbench, a cryogenic laser impact strengthening experimental system and a control method thereof, and uses the electromagnetic suction to adjust the cone gap to accurately control the volume of the liquid nitrogen gas and the surface temperature of the sample.
  • Cryogenic laser shock enhancement experimental system uses the electromagnetic suction to adjust the cone gap to accurately control the volume of the liquid nitrogen gas and the surface temperature of the sample.
  • Cryogenic laser shock peening technology combines the multiple advantages of laser shock-enhanced high-energy ultra-fast and ultra-low temperature deformation technology to induce higher dislocation densities, thereby significantly increasing the surface hardness of metal materials in aerospace, marine engineering and transportation. Transportation and other fields have extremely broad application prospects.
  • cryogenic laser shock peening technology has extremely high temperature requirements, and the optimal cryogenic temperature of different materials also has significant differences, which requires deep temperature laser shock strengthening equipment with large temperature adjustment interval and higher temperature. control precision.
  • liquid nitrogen is commonly used as a cooling medium for refrigeration in cryogenic laser shock peening equipment.
  • the patent publication number CN102492805B proposes a method and apparatus for deepening the metal material by cryogenic laser shock, using liquid nitrogen as a cooling medium.
  • this method can achieve deep-cold laser impact enhancement to a certain extent, there are still some shortcomings: 1. Influenced by the volume of the cryogenic treatment chamber, cooling The temperature rise rate is slower; 2. The temperature distribution in the cryogenic treatment chamber is not uniform and the response speed of the temperature regulation is low, so the control accuracy of the surface temperature of the sample is not high, and the error is large; 3.
  • Patent Application No. CN105063284A proposes a high-transmittance cryogenic laser impact head and laser shock system suitable for cryogenic laser shock technology, which achieves ultra-low temperature by immersing the sample in liquid nitrogen, but still exists.
  • the method and device can only achieve a single temperature, and can not achieve temperature adjustment; 2.
  • the temperature control accuracy of the invention is closely related to the sample size, cryostat volume, room temperature, etc., and the temperature control accuracy is not high; Liquid nitrogen is used in large quantities and costs are high.
  • the method of the invention proposes a high precision temperature controlled cryogenic laser shock strengthening experimental system for the cryogenic table and the sample Cooling, using the electromagnetic suction to adjust the cone gap to precisely control the volume of liquid nitrogen gasification, and then precisely control the surface temperature of the sample by adjusting the heat absorption of liquid nitrogen.
  • the invention provides a cryogenic worktable with high precision temperature control, a cryogenic laser shock strengthening experimental system and a control method thereof, and the electromagnetic suction force is used to adjust the cone gap to accurately control the volume of liquid nitrogen gasification, and then adjust the liquid nitrogen gasification.
  • the heat absorption accurately controls the surface temperature of the sample, which can expand the temperature adjustment range and response speed of the prior art and improve the temperature control precision, and is easy to operate and has high processing efficiency.
  • a cryogenic workbench comprising: a work surface, an upper assembly plate, a lower assembly plate, a double-headed screw, a spring, an electromagnet, a bottom plate, wherein a lower surface of the work surface is provided with a tapered groove, wherein the upper surface
  • the surface of the mounting plate is provided with a conical protrusion
  • the conical protrusion is provided with a liquid nitrogen outlet penetrating through the upper assembly plate
  • the lower assembly plate is provided with a liquid nitrogen channel
  • the upper assembly plate and the lower assembly plate The upper surface is provided with a through hole, and the work surface, the upper assembly plate and the lower assembly plate are sequentially stacked from top to bottom, the number of the tapered grooves and the tapered protrusions are equal, and the tapered protrusion is located in the tapered groove
  • the liquid nitrogen channel can communicate with a liquid nitrogen outlet on the upper mounting plate, and one end of the double-headed screw is threadedly connected to the work surface through a through hole on the upper mounting
  • the number of the tapered grooves and the conical protrusions is plural, and is evenly distributed on the work surface and the upper assembly board, respectively.
  • the diameter of the liquid nitrogen outlet on the tapered protrusion is 0.5 to 1.2 mm.
  • a lock nut is further disposed on one end of the double-head screw connection work surface, and one end of the double-head screw threadedly connected to the bottom plate is further connected with the hexagon socket stud, and the hexagon socket stud is used for adjusting the work surface. Level.
  • a lower surface of the lower mounting plate is provided with a boss, and the spring is connected to the boss.
  • the cryogenic laser shock strengthening experimental system including the cryogenic workbench is characterized in that it mainly comprises a casing, a laser, an optical path adjusting system, the cryogenic working platform, a two-axis motion platform, a temperature sensor, a liquid nitrogen tank, and an automatic
  • the air compressor, the PLC integrated control system and the main control console, the outer casing is divided into a cryogenic treatment zone, an optical adjustment zone, a large equipment placement zone by the insulation layer, the laser, the liquid nitrogen tank, the automatic air compressor, and the main console All are placed in a large equipment placement area, the laser is located at the top of the large equipment placement area;
  • the optical path adjustment system is installed in the optical adjustment area, including an optical adjustment frame, a full mirror and a concentrating mirror, and the full mirror and the condensing mirror are mounted on
  • a through hole sealed by optical glass is disposed on the thermal insulation layer between the optical adjustment zone and the large equipment placement zone and the cryogenic treatment zone; the cryogenic workbench, the two-axis motion
  • the laser, the automatic air compressor, the two-axis motion platform, the temperature sensor, and the electromagnet are all connected with the PLC integrated control system and the computer on the main console; the computer on the main console controls the laser through the PLC integrated control system Process parameters, motion path and liquid nitrogen tank pressure, and according to the difference between the temperature of the workpiece surface detected by the temperature sensor and the predetermined temperature, the electro-magnet current of the electromagnet is controlled by the PLC integrated control system, thereby adjusting the tapered groove and the conical convexity
  • the gap d between the adjustments adjusts the nitrogenization rate of the liquid to achieve precise control of the surface temperature of the workpiece.
  • both the optical adjustment zone and the cryogenic treatment zone are provided with a dehumidifier, and the working state of the dehumidifier is controlled by a computer on the main console through a PLC integrated control system.
  • the utility model further includes a tooling assembly room, wherein the tooling assembly room is further provided with a single-axis motion platform, and the working state of the single-axis motion platform is controlled by a computer on the main console through a PLC integrated control system, and the tooling is arranged with An automatic door is provided between the cryogenic treatment zones.
  • liquid nitrogen enters the gap and vaporizes to take away the heat of the work surface to realize the work surface and the sample is cooled; when the sample temperature is close to or lower than the predetermined temperature, the computer controlled PLC integrated control system reduces the electromagnet When the current is applied, the upper assembly is moved upward to reduce the distance between the pyramidal groove and the conical convex d, so that the volume of liquid nitrogen gas per unit time is reduced, and the cryogenic table enters the heat preservation or temperature rising state;
  • the two-axis motion platform and the single-axis motion platform automatically cooperate to transport the cryogenic workbench and the sample to the tooling preparation room, and prepare to execute the next procedure.
  • the laser has a pulse width of 8 to 100 ns, and the set humidity of the optical adjustment zone is 20 to 25%, and the cryogenic treatment The set humidity of the zone is 10 to 15%.
  • the air compressor ensures that the pressure in the liquid nitrogen tank 20 is between 30 and 50 MPa; the temperature control range of the workpiece surface is -20 to -179 ° C, and the temperature error is ⁇ 8 ° C.
  • the working process of the cryogenic workbench is: when the system is not working, the conical convexity of the upper assembly plate is closely matched with the truncated groove of the work surface, and the liquid nitrogen cannot be cooled by the gasification of the cone surface.
  • the computer-controlled PLC integrated control system collects the surface temperature of the sample fed back by the temperature sensor in real time, and controls the energizing current of the electromagnet according to the difference between the real-time temperature and the predetermined temperature, so that the upper assembly moves down to the vertebra A gap of a certain distance d is formed between the groove and the conical convex, and liquid nitrogen enters the gap and vaporizes to take away the heat of the work surface to realize the work surface and the sample to cool down.
  • the computer-controlled PLC integrated control system reduces the energizing current of the electromagnet, and the upper assembly moves up to reduce the distance between the pyramid groove and the conical convex d, so that the liquid nitrogen volume per unit time Lower, the cryogenic workbench enters the insulation or warming state.
  • the method can effectively expand the temperature adjustment range and reduce the liquid nitrogen usage, and combines the closed-loop control to improve the control precision of the surface temperature of the sample.
  • the cryogenic workbench has a temperature control range of -20 ⁇ -179°C for common metal materials such as aluminum alloy, steel and titanium alloy, and the temperature error is ⁇ 8°C.
  • the highest adjustment precision of the invention can reach ⁇ 3°C.
  • the temperature adjustment range of the metal material is generally -20 ⁇ -179°C, which effectively widens the temperature regulation range of the traditional cryogenic laser impact strengthening device.
  • FIG. 1 is a right side view of the cryogenic laser impact strengthening experimental system of the present invention.
  • FIG. 2 is a top plan view of the cryogenic laser shock strengthening experimental system of the present invention.
  • Figure 3 is an assembly drawing of the cryogenic workbench.
  • Figure 4 is a view of the upper assembly plate.
  • Figure 5 is an assembly view of the lower assembly board.
  • the cryogenic laser shock strengthening experimental system of the present invention mainly comprises a casing 33, a laser 1, an optical path adjusting system, a cryogenic table 14, a two-axis motion platform 23, a temperature sensor, and a liquid.
  • the outer casing 33 is divided by the thermal insulation layer 16 into a cryogenic treatment zone, an optical adjustment zone, and a large equipment placement zone.
  • the laser 1, the liquid nitrogen tank, the automatic air compressor 29, and the main console 32 are all placed in a large equipment placement area, and the laser 1 is located at the top of a large equipment placement area.
  • the optical path adjustment system is installed in the optical adjustment area, and includes an optical adjustment frame 4, a full-reflection mirror 5, and a condensing mirror 6, and the total reflection mirror 5 and the condensing mirror 6 are mounted on the optical adjustment frame 4.
  • a through hole sealed by an optical glass is disposed on the heat insulating layer 16 between the optical adjustment zone and the large equipment placement zone and the cryogenic processing zone.
  • the first optical glass 3 between the optical adjustment zone and the large equipment placement zone is pressed against the insulation layer 16 by a vertical gland 2 .
  • the second optical glass 8 between the optical adjustment zone and the cryogenic treatment zone is pressed against the insulating layer 16 by a horizontal gland 9.
  • the laser beam emitted by the laser 1 enters the optical adjustment zone through the first optical glass 3, and then the laser enters the cryogenic treatment zone through the 45° total mirror 5, the focusing mirror 6, and the second optical glass 8.
  • the optical adjustment zone uses the first dehumidifier 7 to ensure air drying.
  • the cryogenic workbench 14, the two-axis motion platform, and the temperature sensor 13 are all disposed in the cryogenic processing zone, and the cryogenic workbench 14 is fixed on the two-axis motion platform through the transfer land 22.
  • the cryogenic workbench 14 mainly includes a work surface 14-1, an upper mounting plate 14-3, a lower mounting plate 14-4, a double-headed screw 14-5, a spring 14-6, and an electromagnet. 14-7, bottom plate 14-12.
  • a lower surface of the work surface 14-1 is provided with a tapered groove;
  • a top surface of the upper mounting plate 14-3 is provided with a conical projection, and the conical projection is provided with a liquid penetrating the upper mounting plate 14-3 a nitrogen outlet; the diameter of the liquid nitrogen outlet on the tapered projection is 0.5 to 1.2 mm.
  • a liquid nitrogen channel is disposed on the lower mounting plate 14-4.
  • the upper mounting plate 14-3 and the lower mounting plate 14-4 are each provided with a through hole, and the working surface 14-1, the upper mounting plate 14-3, and the lower mounting plate 14-4 are sequentially stacked from top to bottom.
  • the tapered groove and the cone The number of the shaped protrusions is equal, and the tapered protrusion is located in the tapered groove, and the number of the tapered groove and the tapered protrusion is plural, and is respectively on the work surface 14-1 and the upper mounting plate 14-3. Evenly distributed.
  • the liquid nitrogen channel can be in communication with a liquid nitrogen outlet on the upper mounting plate 14-3.
  • One end of the double-headed screw 14-5 is threadedly connected to the work surface 14-1 through a through hole in the upper mounting plate 14-3 and the lower mounting plate 14-4; the other end of the double-headed screw and the bottom plate 14- 12 threaded connection.
  • a locking nut is further disposed on one end of the double-headed screw 14-5 connected to the working surface 14-1, and one end of the double-headed screw and the bottom plate 14-12 is also connected to the hexagonal stud 14-11. Hexagon socket studs 14-11 are used to adjust the level of the work surface 14-1.
  • the spring 14-6 is mounted between the bottom plate 14-12 and the lower mounting plate 14-4 and is in a compressed state; the lower surface of the lower mounting plate 14-4 is provided with a boss, the spring 14-6 and the convex Station connection.
  • the electromagnet 14-7 is fixed to the bottom plate 14-12, the lower mounting plate 14-4 is made of a ferromagnetic material, and the upper mounting plate 14-3 is made of a non-ferromagnetic material.
  • the sample 12 coated with the absorbing layer 11 is mounted on the cryogenic table 14, and the sapphire glass is used as the constraining layer 10 above the absorbing layer 11, and the probe of the temperature sensor 13 is located on the upper surface of the table of the cryogenic table 13, for detecting The temperature of the surface of the sample to be processed; the temperature sensor 13 is attached to the side of the sample 12 and fed back to the PLC integrated control system 30 through the joint B to achieve closed-loop control of the sample temperature.
  • the liquid nitrogen channel on the lower mounting plate 14-4 of the cryogenic table 14 is connected to the liquid nitrogen tank through a liquid nitrogen line 18, and the automatic air compressor 29 passes through the high pressure gas pipe 28 and the second joint 21 as a liquid nitrogen tank. 20 provides a source of pressure.
  • the automatic air compressor 29 supplies a pressure source to the liquid nitrogen tank 20 through the high pressure gas pipe 28 and the second joint 21, and the liquid nitrogen enters through the first joint 19, the liquid nitrogen line 18 and the adapter 17 under pressure.
  • the treatment zone is cryogenically cooled and connected to the cryogenic station 14 via a flexible liquid nitrogen line 15.
  • the laser 1, the automatic air compressor 29, the two-axis motion platform, the temperature sensor 13, and the electromagnet are all connected to the PLC integrated control system 30 and the computer 31 on the main console 32; the computer on the main console 32 31 controls the laser process parameters, the motion path, and the liquid nitrogen tank pressure through the PLC integrated control system 30, and controls the energization of the electromagnet through the PLC integrated control system 30 according to the difference between the temperature of the workpiece surface detected by the temperature sensor 13 and the predetermined temperature.
  • the current thereby adjusting the gap d between the tapered groove and the tapered protrusion, adjusts the liquid nitrogenization rate, realizes precise control of the surface temperature of the workpiece, and greatly improves the processing efficiency.
  • the cryogenic treatment zone uses the second dehumidifier 27 to ensure air drying.
  • the operating states of the first dehumidifier 7 and the second dehumidifier 27 are controlled by the computer 31 on the main console 32 through the PLC integrated control system 30.
  • a single-axis motion platform 25 is arranged in the tooling assembly room to realize the movement of the cryogenic table 14.
  • the working state of the single-axis motion platform 25 is controlled by the computer 31 on the main console 32 through the PLC integrated control system. System 30 control.
  • the automatic door 24 is arranged in the tooling mixing room and the deep cooling processing section to ensure a certain airtightness in the cryogenic processing zone.
  • the safety door 26 is arranged on the side of the tooling assembly room, which is convenient for manual assembly and debugging.
  • the working principle of the cryogenic table 14 is to adjust the cone gap by electromagnetic attraction to precisely control the volume of liquid nitrogen gasification, and then precisely control the surface temperature of the sample by adjusting the heat absorption of the liquid nitrogen gas.
  • the specific process is as follows: when the system is not working, the conical convexity of the upper mounting plate 14-3 is closely matched with the truncated groove of the working surface 14-1, and the liquid nitrogen cannot be cooled by the gasification of the tapered surface.
  • the computer 31 controls the PLC integrated control system 30 to collect the surface temperature of the sample 12 fed back by the temperature sensor 13 in real time, and controls the energizing current of the electromagnet 14-7 according to the difference between the real-time temperature and the predetermined temperature.
  • the assembly 14-3 is moved down to form a gap between the pyramidal groove and the tapered protrusion with a certain distance d.
  • the liquid nitrogen enters the gap and is vaporized to take away the work surface heat to cool the work surface 14-1 and the sample 12.
  • the computer 31 controls the PLC integrated control system 30 to reduce the energizing current of the electromagnet 14-7, and the upper assembly 14-3 moves up to lower the pitch of the pyramid and the conical convexity d Therefore, the volume of liquid nitrogen gas per unit time is reduced, and the cryogenic table 14 enters the heat preservation or temperature rise state.
  • the method can effectively expand the temperature adjustment range and the rising/lowering speed while reducing the liquid nitrogen usage, and combined with the closed-loop control to improve the control precision of the sample surface temperature.
  • the control method of the cryogenic laser shock strengthening experimental system includes the following steps:
  • the two-axis motion platform 23 and the single-axis motion platform 25 automatically cooperate to transport the cryogenic table 14 and the sample 12 to the designated position of the cryogenic treatment zone, and the dehumidification of the optical adjustment zone and the cryogenic treatment zone.
  • the PLC integrated control system 30 collects the temperature of the surface of the workpiece detected by the temperature sensor 13 in real time, and controls the energization current of the electromagnet 14-7 according to the difference between the real-time temperature and the predetermined temperature, so that the upper assembly 14-3 Move down to form a gap between the pyramidal groove and the conical convex with a certain distance d, liquid nitrogen enters the gap and vaporizes to take away the work surface heat to achieve the work surface 14-1 and the sample 12 to cool down; when the sample 12 temperature
  • the computer 31 controls the PLC integrated control system 30 to reduce the energizing current of the electromagnets 14-7, and the upper assembly 14-3 moves up to lower the distance between the pyramid and the conical convexity d, so that the unit time is The volume of liquid nitrogen gas is reduced, and the cryogenic table 14 enters the heat preservation or temperature rise state;
  • the two-axis motion platform 23 and the single-axis motion platform 25 automatically cooperate to the cryogenic workbench 14
  • the sample 12 is transported to the tooling assembly to prepare for execution of the next procedure.
  • the laser 1 has a pulse width of 8 to 100 ns, a set humidity of the optical adjustment zone of 20 to 25%, and a set humidity of the cryogenic treatment zone of 10 to 15%.
  • the air compressor 29 ensures that the pressure in the liquid nitrogen tank 20 is between 30 and 50 MPa; the temperature control range of the surface of the workpiece of common metal materials such as aluminum alloy, steel and titanium alloy by the cryogenic table 14 is -20 to -179 ° C, and the temperature is The error is ⁇ 8°C and the maximum adjustment accuracy is ⁇ 3°C.
  • the deep cooling laser impact strengthening experiment of 2024 aviation aluminum alloy was carried out by using the cryogenic laser impact strengthening experimental system of the present invention, and the size of the 2024 aviation aluminum alloy was 40 mm ⁇ 40 mm ⁇ 2 mm.
  • the laser 1 uses a Nd:YAG nanosecond laser 1, the pulse width is 10 ns, the absorption layer is black lacquer, and the average thickness is 200 ⁇ m; the constraining layer is sapphire glass, and the thickness is 3 mm.
  • the dehumidifier 7 has a humidity of 22 ⁇ 2%, the dehumidifier 27 has a humidity of 13 ⁇ 0.5%, and the liquid nitrogen tank 20 has a pressure of 40 ⁇ 2 MPa.
  • the lower assembly plate 14-44 is made of 45# steel, and the upper assembly plate 14-34 is processed by 7075 aviation hard aluminum having a thickness of 10 mm.
  • the through-hole of the upper mounting plate 14-3 has a diameter of 1 mm.
  • the experimental results show that when the temperature error is within ⁇ 8 °C, the temperature control range of the cryogenic table 13 to 2024 aviation aluminum alloy can reach -16 ⁇ -182 °C. When the temperature error is within ⁇ 3 °C, the temperature control range of the cryogenic table 13 to 2024 aviation aluminum alloy can reach -58 ⁇ -137 °C.
  • the above results show that the device of the invention can broaden the temperature control interval of the cryogenic laser shock strengthening, and significantly improve the temperature control precision, and meet the experimental requirements of the cryogenic laser shock strengthening.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Thermal Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Plasma & Fusion (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Laser Beam Processing (AREA)
  • Heat Treatment Of Articles (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

一种深冷工作台(14)、深冷激光冲击强化实验系统及其控制方法,利用电磁原理调节锥面间隙d从而精确控制液氮气化的体积,进而通过调节液氮气化的吸热量精确控制深冷工作台(14)以及试样(12)表面温度,有效扩大了深冷激光冲击强化实验系统的温度调节范围以及升/降温速度,并结合闭环控制提高了试样(12)表面温度的控制精度。另外,通过计算机(31)与PLC控制单元(30)实现了深冷激光冲击强化工艺过程的智能控制,降低了实验过程中的液氮使用量并提高了加工效率。

Description

一种深冷工作台、深冷激光冲击强化实验系统及其控制方法 技术领域
本发明涉及激光加工技术领域以及表面强化领域,提出深冷工作台、深冷激光冲击强化实验系统及其控制方法,利用电磁吸力调节锥面间隙从而精确控制液氮气化体积以及试样表面温度的深冷激光冲击强化实验系统。
背景技术
深冷激光冲击强化技术结合了激光冲击强化高能超快以及超低温变形技术的多重优点,可以诱导产生更高的位错密度,从而显著提高金属材料表面的强硬度,在航空航天、海洋工程以及交通运输等领域均具有极其广阔的应用前景。但是,深冷激光冲击强化技术对温度具有极高的要求,且不同材料的最佳深冷温度也存在明显差异,这要求深冷激光冲击强化设备具有较大的温度调整区间以及较高的温度控制精度。
目前,深冷激光冲击强化设备中普遍采用液氮作为冷却介质实现制冷,例如专利公开号为CN102492805B的专利提出一种采用深冷激光冲击强化金属材料的方法与装置,其使用液氮作为冷却介质,利用热传导原理为整个深冷处理腔降温进而控制试样表面温度,该方法虽然可以一定程度上实现深冷激光冲击强化,但是尚存在以下几点不足:1.受深冷处理腔体积的影响,降温与升温速度均较慢;2.深冷处理腔内温度分布不均匀且温度调节的响应速度较低,故试样表面温度的控制精度不高,误差较大;3.液氮使用量较大,成本较高。专利号为CN105063284A的专利申请提出一种适用于深冷激光冲击技术的高透光率的深冷激光冲击头及激光冲击系统,通过将试样浸泡在液氮中的方法实现超低温,但仍存在以下缺点:1.该方法及装置仅能实现单一温度,无法实现温度调节;2.该发明温度控制精度与试样大小、深冷箱体积、室温温度等密切相关,温度控制精度不高;3.液氮使用量较大,成本较高。
为了提高深冷激光冲击强化设备中的温度调节范围、升/降温响应速度以及温度控制精度,本发明方法提出一种高精度温度控制的深冷激光冲击强化实验系统对深冷工作台以及试样降温,利用电磁吸力调节锥面间隙从而精确控制液氮气化的体积,进而通过调节液氮气化的吸热量精确控制试样表面温度。通过对国内外文献进行检索,目前还没有发现通过电磁吸力调节锥面间隙进而控制深冷工作台温度的相关装置,也未发现相关方法在深冷激光冲击领域应用的相关报道,本发明为首次提出该装置。
发明内容
本发明提出一种高精度温度控制的深冷工作台、深冷激光冲击强化实验系统及其控制方法,利用电磁吸力调节锥面间隙从而精确控制液氮气化的体积,进而通过调节液氮气化的吸热量精确控制试样表面温度,可以拓展现有技术的调温范围及响应速度并提高其温度控制精度,同时操作简便、加工效率极高。
一种深冷工作台,其特征在于,主要包括工作台面、上装配板、下装配板、双头螺杆、弹簧、电磁铁、底板,所述工作台面的下表面设置锥形槽,所述上装配板上表面设置锥形凸起,所述锥形凸起上设置贯穿所述上装配板的液氮出口,所述下装配板上设置有液氮通道,所述上装配板、下装配板上均设置有通孔,所述工作台面、上装配板、下装配板从上到下依次层叠,所述锥形槽与锥形凸起的数量相等、且锥形凸起位于锥形槽内,所述液氮通道能够与上装配板上的液氮出口连通,所述双头螺杆的一端穿过上装配板、下装配板上的通孔与工作台面螺纹连接,所述双头螺杆的另一端与底板螺纹连接,所述弹簧装于底板与下装配板之间、且处于压缩状态,所述电磁铁固定在底板上,所述下装配板采用铁磁性材料制成,上装配板采用非铁磁性材料制成。
进一步地,所述锥形槽与锥形凸起的数量为多个,且分别在工作台面、上装配板上均匀分布。
进一步地,所述锥形凸起上的液氮出口的直径为0.5~1.2mm。
进一步地,所述双头螺杆连接工作台面的一端上还设置有锁紧螺母,双头螺杆与底板螺纹连接的一端还与内六角螺柱相连接,所述内六角螺柱用于调整工作台面水平。
进一步地,所述下装配板的下表面设置凸台,所述弹簧与凸台连接。
包括所述深冷工作台的深冷激光冲击强化实验系统,其特征在于,主要包括外壳、激光器、光路调节系统、所述深冷工作台、二轴运动平台、温度传感器、液氮罐、自动空气压缩机、PLC集成控制系统与总控台,所述外壳被保温层分割成深冷处理区、光学调整区、大型设备放置区,所述激光器、液氮罐、自动空气压缩机、总控台均放置在大型设备放置区,所述激光器位于大型设备放置区顶部;所述光路调节系统装于光学调整区,包括光学调节架、全反镜和聚光镜,所述全反镜和聚光镜均装在光学调节架上,所述光学调整区与大型设备放置区及深冷处理区之间的保温层上均设置由光学玻璃密封的通孔;所述深冷工作台、二轴运动平台、温度传感器均设置在深冷处理区,所述深冷工作台通过转接台面固定在二轴运动平台上,所述温度传感器探头位于深冷工作台的工作台面上部,用于检测待加工样品表面的温度;所述深冷工作台下装配板上的液氮通道通 过液氮管路与液氮罐相连,所述自动空气压缩机通过高压气管与接头为液氮罐提供压力源;
所述激光器、自动空气压缩机、二轴运动平台、温度传感器、电磁铁均与PLC集成控制系统与总控台上的计算机相连接;所述总控台上的计算机通过PLC集成控制系统控制激光工艺参数、运动路径以及液氮罐压力,并根据温度传感器检测到的工件表面的温度与预定温度的差值,通过PLC集成控制系统控制电磁铁的通电电流,从而调整锥形槽与锥形凸起之间的间隙d,调整液氮气化速率,实现对工件表面温度的精确控制。
进一步地,所述光学调整区与深冷处理区均设置有除湿机,所述除湿机的工作状态由总控台上的计算机通过PLC集成控制系统控制。
进一步地,还包括工装调配间,所述工装调配间内还设置有单轴运动平台,单轴运动平台的工作状态由总控台上的计算机通过PLC集成控制系统控制,所述工装调配间与深冷处理区之间设置有自动门。
深冷激光冲击强化实验系统的控制方法,其特征在于,包括以下步骤:
(1)开启总控台电源,开启计算机以及PLC集成控制系统,开启工装调配间安全门,安装试样、吸收层、约束层以及温度传感器;
(2)在计算机上设置激光器能量,试样预定温度、液氮罐压力以及光学调整区与深冷处理区的预定湿度,并编制二轴运动平台运动轨迹;
(3)执行计算机设定程序,二轴运动平台与单轴运动平台自动配合将深冷工作台与试样输送至深冷处理区指定位置,光学调整区与深冷处理区的除湿机开始初始,PLC集成控制系统实时收集温度传感器检测到的工件表面的温度,根据实时温度与预定温度之间的差值控制电磁铁的通电电流,使上装配体下移以在椎形槽与锥形凸之间形成一定间距d的空隙,液氮进入空隙并气化后带走工作台面热量实现工作台面以及试样降温;当试样温度接近或低于预定温度时,计算机控制PLC集成控制系统减少电磁铁的通电电流,上装配体上移以降低椎形槽与锥形凸间距d,使得单位时间内液氮气化体积降低,深冷工作台进入保温或升温状态;
(4)当光学调整区与深冷处理区的湿度、液氮罐压力与试样温度满足设定条件后,激光器1开启,同时二轴运动平台按设定轨迹运动,实现深冷激光冲击强化;
(5)强化结束后,二轴运动平台与单轴运动平台自动配合将深冷工作台与试样输送至工装调配间,准备执行下一程序。
进一步地,所述激光器脉宽8~100ns,光学调整区的设定湿度为20~25%,深冷处理 区的设定湿度为10~15%。空气压缩机保证液氮罐20内压力在30~50MPa之间;工件表面的控温范围为-20~-179℃,温度误差为±8℃。
所述深冷工作台的工作过程为:系统不工作时,上装配板的锥形凸与工作台面的椎形槽紧密配合,液氮无法通过锥面间隙气化而制冷。当系统开启时,计算机控制PLC集成控制系统实时收集温度传感器反馈的试样表面温度,并根据实时温度与预定温度之间的差值控制电磁铁的通电电流,使上装配体下移以在椎形槽与锥形凸之间形成一定间距d的空隙,液氮进入空隙并气化后带走工作台面热量实现工作台面以及试样降温。当试样温度接近或低于预定温度时,计算机控制PLC集成控制系统减少电磁铁的通电电流,上装配体上移以降低椎形槽与锥形凸间距d,使得单位时间内液氮气化体积降低,深冷工作台进入保温或升温状态。该方法可以有效扩大温度调节范围同时降低液氮使用量,并结合闭环控制提高了试样表面温度的控制精度。深冷工作台对铝合金,钢,钛合金等常见金属材料的控温范围为-20~-179℃,温度误差为±8℃,本发明最高调节精度可达±3℃。
本发明的有益效果为:
1.通过电磁原理调节锥面间隙的方法调节深冷工作台温度,金属材料的调温范围普遍可达-20~-179℃,有效拓宽了传统深冷激光冲击强化装置的调温范围。
2.直接对深冷工作台与试样进行降温,升/降温速度较快,调温响应速度较高。
3.结合闭环控制有效提高了超低温环境的温度控制精度,最高精度可达±3℃。
4.实现了激光能量,试样温度、液氮压力、湿度以及运动轨迹的智能控制,操作简便、加工效率极高。
5.液氮使用量较低,加工成本降低。
附图说明
图1为本发明所述深冷激光冲击强化实验系统右视图。
图2为本发明所述深冷激光冲击强化实验系统俯视图。
图3为深冷工作台装配图。
图4为上装配板零件图。
图5为下装配板装配图。
图中:
1.激光器,2.垂直压盖,3.第一光学玻璃,4.光学调节架,5.全反镜,6.聚光镜,7.第一除湿机,8.第二光学玻璃,9.水平压盖,10.约束层,11.吸收层,12.试样,13.温度传 感器,14.深冷工作台,15.柔性液氮管路,16.保温层,17.转接头,18.液氮管路,19.第一接头,20.液氮罐,21.第二接头,22.转接台面,23.二轴运动平台,24.自动门,25.单轴运动平台,26.安全门,27.第二除湿机,28.高压气管,29.自动空气压缩机,30.PLC集成控制系统,31.计算机,32.总控台,33.外壳;14-1.工作台面,14-2.紧固螺母,14-3.上装配板,14-4.下装配板,14-5.双头螺杆,14-6.弹簧,14-7.电磁铁,14-8.压盖,14-9.螺柱,14-10.紧固螺母,14-11.内六角螺柱,14-12.底板,14-13.内六角螺柱。
具体实施方式
下面结合附图以及具体实施例对本发明作进一步的说明,但本发明的保护范围并不限于此。
如图1、图2所示,本发明所述的深冷激光冲击强化实验系统,主要包括外壳33、激光器1、光路调节系统、深冷工作台14、二轴运动平台23、温度传感器、液氮罐、自动空气压缩机29、PLC集成控制系统30与总控台32。所述外壳33被保温层16分割成深冷处理区、光学调整区、大型设备放置区。所述激光器1、液氮罐、自动空气压缩机29、总控台32均放置在大型设备放置区,所述激光器1位于大型设备放置区顶部。所述光路调节系统装于光学调整区,包括光学调节架4、全反镜5和聚光镜6,所述全反镜5和聚光镜6均装在光学调节架4上。所述光学调整区与大型设备放置区及深冷处理区之间的保温层16上均设置由光学玻璃密封的通孔。光学调整区与大型设备放置区之间的第一光学玻璃3通过垂直压盖2压紧在保温层16上。光学调整区与深冷处理区之间的第二光学玻璃8通过水平压盖9压紧在保温层16上。激光器1发射的激光束经第一光学玻璃3进入光学调整区,随后激光经45°全反镜5、聚焦镜6以及第二光学玻璃8进入深冷处理区。为降低空气中水分对全反镜5、聚焦镜6以及第一光学玻璃3光学性能的影响,光学调整区使用第一除湿机7保证空气干燥。
所述深冷工作台14、二轴运动平台、温度传感器13均设置在深冷处理区,所述深冷工作台14通过转接台面22固定在二轴运动平台上。
如图3所示,所述深冷工作台14,主要包括工作台面14-1、上装配板14-3、下装配板14-4、双头螺杆14-5、弹簧14-6、电磁铁14-7、底板14-12。所述工作台面14-1的下表面设置锥形槽;所述上装配板14-3上表面设置锥形凸起,所述锥形凸起上设置贯穿所述上装配板14-3的液氮出口;所述锥形凸起上的液氮出口的直径为0.5~1.2mm。所述下装配板14-4上设置有液氮通道。所述上装配板14-3、下装配板14-4上均设置有通孔,所述工作台面14-1、上装配板14-3、下装配板14-4从上到下依次层叠,所述锥形槽与锥 形凸起的数量相等、且锥形凸起位于锥形槽内,所述锥形槽与锥形凸起的数量为多个,且分别在工作台面14-1、上装配板14-3上均匀分布。所述液氮通道能够与上装配板14-3上的液氮出口连通。所述双头螺杆14-5的一端穿过上装配板14-3、下装配板14-4上的通孔与工作台面14-1螺纹连接;所述双头螺杆的另一端与底板14-12螺纹连接。所述双头螺杆14-5连接工作台面14-1的一端上还设置有锁紧螺母,双头螺杆与底板14-12螺纹连接的一端还与内六角螺柱14-11相连接,所述内六角螺柱14-11用于调整工作台面14-1水平。所述弹簧14-6装于底板14-12与下装配板14-4之间、且处于压缩状态;所述下装配板14-4的下表面设置凸台,所述弹簧14-6与凸台连接。所述电磁铁14-7固定在底板14-12上,所述下装配板14-4采用铁磁性材料制成,上装配板14-3采用非铁磁性材料制成。
涂覆吸收层11的试样12装配在深冷工作台14上,吸收层11上方采用蓝宝石玻璃作为约束层10,所述温度传感器13探头位于深冷工作台13的工作台面上部,用于检测待加工样品表面的温度;温度传感器13粘贴在试样12放入侧面,并通过接头B反馈至PLC集成控制系统30,实现试样温度的闭环控制。所述深冷工作台14下装配板14-4上的液氮通道通过液氮管路18与液氮罐相连,所述自动空气压缩机29通过高压气管28与第二接头21为液氮罐20提供压力源。为了实现温度控制,自动空气压缩机29通过高压气管28与第二接头21为液氮罐20提供压力源,液氮在压力作用下经第一接头19、液氮管路18与转接头17进入深冷处理区,并通过柔性液氮管路15与深冷工作台14相连接。
所述激光器1、自动空气压缩机29、二轴运动平台、温度传感器13、电磁铁均与PLC集成控制系统30与总控台32上的计算机31相连接;所述总控台32上的计算机31通过PLC集成控制系统30控制激光工艺参数、运动路径以及液氮罐压力,并根据温度传感器13检测到的工件表面的温度与预定温度的差值,通过PLC集成控制系统30控制电磁铁的通电电流,从而调整锥形槽与锥形凸起之间的间隙d,调整液氮气化速率,实现对工件表面温度的精确控制,大大提高了加工效率。
为避免空气中水分对第二光学玻璃8以及约束层10光学性能的影响,深冷处理区使用第二除湿机27保证空气干燥。所述第一除湿机7、第二除湿机27的工作状态由总控台32上的计算机31通过PLC集成控制系统30控制。
为方便试样的安装与拆卸,工装调配间内设置单轴运动平台25实现深冷工作台14的移动,单轴运动平台25的工作状态由总控台32上的计算机31通过PLC集成控制系 统30控制。工装调配间与深冷处理区间设置自动门24,保证深冷处理区具有一定密闭性。同时,工装调配间的侧面设置安全门26,方便人工装配与调试。
深冷工作台14的工作原理为:利用电磁吸力调节锥面间隙从而精确控制液氮气化的体积,进而通过调节液氮气化的吸热量精确控制试样表面温度。其具体过程为:系统不工作时,上装配板14-3的锥形凸与工作台面14-1的椎形槽紧密配合,液氮无法通过锥面间隙气化而制冷。当系统开启时,计算机31控制PLC集成控制系统30实时收集温度传感器13反馈的试样12表面温度,并根据实时温度与预定温度之间的差值控制电磁铁14-7的通电电流,使上装配体14-3下移以在椎形槽与锥形凸之间形成一定间距d的空隙,液氮进入空隙并气化后带走工作台面热量实现工作台面14-1以及试样12降温。当试样12温度接近或低于预定温度时,计算机31控制PLC集成控制系统30减少电磁铁14-7的通电电流,上装配体14-3上移以降低椎形槽与锥形凸间距d,使得单位时间内液氮气化体积降低,深冷工作台14进入保温或升温状态。该方法可以有效扩大温度调节范围以及升/降温速度同时降低液氮使用量,并结合闭环控制提高了试样表面温度的控制精度。
深冷激光冲击强化实验系统的控制方法,包括以下步骤:
(1)开启总控台32电源,开启计算机31以及PLC集成控制系统30,开启工装调配间安全门26,安装试样12、吸收层11、约束层10以及温度传感器13;
(2)在计算机31上设置激光器1能量,试样12预定温度、液氮罐20压力以及光学调整区与深冷处理区的预定湿度,并编制二轴运动平台23运动轨迹;
(3)执行计算机31设定程序,二轴运动平台23与单轴运动平台25自动配合将深冷工作台14与试样12输送至深冷处理区指定位置,光学调整区与深冷处理区的除湿机开始初始,PLC集成控制系统30实时收集温度传感器13检测到的工件表面的温度,根据实时温度与预定温度之间的差值控制电磁铁14-7的通电电流,使上装配体14-3下移以在椎形槽与锥形凸之间形成一定间距d的空隙,液氮进入空隙并气化后带走工作台面热量实现工作台面14-1以及试样12降温;当试样12温度接近或低于预定温度时,计算机31控制PLC集成控制系统30减少电磁铁14-7的通电电流,上装配体14-3上移以降低椎形槽与锥形凸间距d,使得单位时间内液氮气化体积降低,深冷工作台14进入保温或升温状态;
(4)当光学调整区与深冷处理区的湿度、液氮罐20压力与试样12温度满足设定条件后,激光器1开启,同时二轴运动平台23按设定轨迹运动,实现深冷激光冲击强化;
(5)强化结束后,二轴运动平台23与单轴运动平台25自动配合将深冷工作台14 与试样12输送至工装调配间,准备执行下一程序。
所述激光器1脉宽8~100ns,光学调整区的设定湿度为20~25%,深冷处理区的设定湿度为10~15%。空气压缩机29保证液氮罐20内压力在30~50MPa之间;深冷工作台14对铝合金、钢、钛合金等常见金属材料工件表面的控温范围为-20~-179℃,温度误差为±8℃,最高调节精度可达±3℃。
采用本发明所述的深冷激光冲击强化实验系统对2024航空铝合金进行深冷激光冲击强化实验,2024航空铝合金尺寸为40mm×40mm×2mm。其中,激光器1采用Nd:YAG纳秒激光器1,脉宽10ns,吸收层为黑漆,平均厚度200μm;约束层为蓝宝石玻璃,厚度3mm。除湿机7设定湿度为22±2%,除湿机27设定湿度为13±0.5%,液氮罐20压力为40±2MPa。深冷工作台14中,下装配板14-44采用45#钢,上装配板14-34采用厚度10mm的7075航空硬铝加工。上装配板14-3锥形凸的通孔直径为1mm。
实验结果表明,当温度误差在±8℃以内时,深冷工作台13对2024航空铝合金的控温范围可达-16~-182℃。当温度误差在±3℃以内时,深冷工作台13对2024航空铝合金的控温范围可达-58~-137℃。上述结果表明,本发明装置可以拓宽深冷激光冲击强化的控温区间,并显著提高控温精度,满足深冷激光冲击强化的实验需求。
所述实施例为本发明的优选的实施方式,但本发明并不限于上述实施方式,在不背离本发明的实质内容的情况下,本领域技术人员能够做出的任何显而易见的改进、替换或变型均属于本发明的保护范围。

Claims (10)

  1. 一种深冷工作台,其特征在于,主要包括工作台面(14-1)、上装配板(14-3)、下装配板(14-4)、双头螺杆(14-5)、弹簧(14-6)、电磁铁(14-7)、底板(14-12),所述工作台面(14-1)的下表面设置锥形槽,所述上装配板(14-3)上表面设置锥形凸起,所述锥形凸起上设置贯穿所述上装配板(14-3)的液氮出口,所述下装配板(14-4)上设置有液氮通道,所述上装配板(14-3)、下装配板(14-4)上均设置有通孔,所述工作台面(14-1)、上装配板(14-3)、下装配板(14-4)从上到下依次层叠,所述锥形槽与锥形凸起的数量相等、且锥形凸起位于锥形槽内,所述液氮通道能够与上装配板(14-3)上的液氮出口连通,所述双头螺杆(14-5)的一端穿过上装配板(14-3)、下装配板(14-4)上的通孔与工作台面(14-1)螺纹连接,所述双头螺杆的另一端与底板(14-12)螺纹连接,所述弹簧(14-6)装于底板(14-12)与下装配板(14-4)之间、且处于压缩状态,所述电磁铁(14-7)固定在底板14-12)上,所述下装配板(14-4)采用铁磁性材料制成,上装配板(14-3)采用非铁磁性材料制成。
  2. 根据权利要求1所述的深冷工作台,其特征在于,所述锥形槽与锥形凸起的数量为多个,且分别在工作台面(14-1)、上装配板(14-3)上均匀分布。
  3. 根据权利要求1所述的深冷工作台,其特征在于,所述锥形凸起上的液氮出口的直径为0.5~1.2mm。
  4. 根据权利要求1所述的深冷工作台,其特征在于,所述双头螺杆(14-5)连接工作台面(14-1)的一端上还设置有锁紧螺母,双头螺杆与底板(14-12)螺纹连接的一端还与内六角螺柱(14-11)相连接,所述内六角螺柱(14-11)用于调整工作台面(14-1)水平。
  5. 根据权利要求1所述的深冷工作台,其特征在于,所述下装配板(14-4)的下表面设置凸台,所述弹簧(14-6)与凸台连接。
  6. 一种包括权利要求1所述深冷工作台的深冷激光冲击强化实验系统,其特征在于,主要包括外壳(33)、激光器(1)、光路调节系统、所述深冷工作台(14)、二轴运动平台(23)、温度传感器(13)、液氮罐(20)、自动空气压缩机(29)、PLC集成控制系统(30)与总控台(32),所述外壳(33)被保温层(16)分割成深冷处理区、光学调整区、大型设备放置区,所述激光器(1)、液氮罐(20)、自动空气压缩机(29)、总控台(32)均放置在大型设备放置区,所述激光器(1)位于大型设备放置区顶部;所述光路调节系统装于光学调整区,包括光学调节架(4)、全反镜(5)和聚光镜(6),所述全反 镜(5)和聚光镜(6)均装在光学调节架(4)上,所述光学调整区与大型设备放置区及深冷处理区之间的保温层(16)上均设置由光学玻璃密封的通孔;所述深冷工作台、二轴运动平台(23)、温度传感器(13)均设置在深冷处理区,所述深冷工作台通过转接台面(22)固定在二轴运动平台(23)上,所述温度传感器(13)探头位于深冷工作台的工作台面上部,用于检测待加工样品表面的温度;所述深冷工作台(14)下装配板(14-4)上的液氮通道通过柔性液氮管路(15)与液氮罐(20)相连,所述自动空气压缩机(29)通过高压气管(28)与接头(21)为液氮罐(20)提供压力源;
    所述激光器(1)、自动空气压缩机(29)、二轴运动平台(23)、温度传感器(13)、电磁铁均与PLC集成控制系统(30)与总控台(32)上的计算机(31)相连接;所述总控台(32)上的计算机(31)通过PLC集成控制系统(30)控制激光工艺参数、运动路径以及液氮罐(20)压力,并根据温度传感器(13)检测到的工件表面的温度与预定温度的差值,通过PLC集成控制系统(30)控制电磁铁的通电电流,从而调整锥形槽与锥形凸起之间的间隙d,调整液氮气化速率,实现对工件表面温度的精确控制。
  7. 根据权利要求6所述的深冷激光冲击强化实验系统,其特征在于,所述光学调整区与深冷处理区均设置有除湿机,所述除湿机的工作状态由总控台(32)上的计算机(31)通过PLC集成控制系统(30)控制。
  8. 根据权利要求6所述的深冷激光冲击强化实验系统,其特征在于,还包括工装调配间,所述工装调配间内还设置有单轴运动平台,单轴运动平台的工作状态由总控台(32)上的计算机(31)通过PLC集成控制系统(30)控制,所述工装调配间与深冷处理区之间设置有自动门(24)。
  9. 一种深冷激光冲击强化实验系统的控制方法,其特征在于,包括以下步骤:
    (1)开启总控台(32)电源,开启计算机(31)以及PLC集成控制系统(30),开启工装调配间安全门(26),安装试样(12)、吸收层(11)、约束层(10)以及温度传感器(13)(13;
    (2)在计算机(31)上设置激光器(1)能量,试样(12)预定温度、液氮罐(20)压力以及光学调整区与深冷处理区的预定湿度,并编制二轴运动平台(23)运动轨迹;
    (3)执行计算机(31)设定程序,二轴运动平台(23)与单轴运动平台(25)自动配合将深冷工作台(14)与试样(12)输送至深冷处理区指定位置,光学调整区与深冷处理区的除湿机开始初始,PLC集成控制系统(30)实时收集温度传感器(13)检测到的工件表面的温度,根据实时温度与预定温度之间的差值控制电磁铁(14-7)的通电电流,使上装配体(14-3)下移以在椎形槽与锥形凸之间形成一定间距d的空隙,液氮进入空隙并 气化后带走工作台面热量实现工作台面(14-1)以及试样(12)降温;当试样(12)温度接近或低于预定温度时,计算机(31)控制PLC集成控制系统(30)减少电磁铁(14-7)的通电电流,上装配体(14-3)上移以降低椎形槽与锥形凸间距d,使得单位时间内液氮气化体积降低,深冷工作台(14)进入保温或升温状态;
    (4)当光学调整区与深冷处理区的湿度、液氮罐(20)压力与试样(12)温度满足设定条件后,激光器(1)开启,同时二轴运动平台(23)按设定轨迹运动,实现深冷激光冲击强化;
    (5)强化结束后,二轴运动平台(23)与单轴运动平台(25)自动配合将深冷工作台(14)与试样(12)输送至工装调配间,准备执行下一程序。
  10. 根据权利要求9所述的深冷激光冲击强化实验系统的控制方法,其特征在于,所述激光器(1)脉宽8~100ns,光学调整区的设定湿度为20~25%,深冷处理区的设定湿度为10~15%。空气压缩机(29)保证液氮罐(20)内压力在30~50MPa之间;工件表面的控温范围为-20~-179℃,温度误差为±8℃。
PCT/CN2016/099513 2016-09-13 2016-09-21 一种深冷工作台、深冷激光冲击强化实验系统及其控制方法 WO2018049694A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/332,754 US11542572B2 (en) 2016-09-13 2016-09-21 Cryogenic workbench, cryogenic laser peening experiment system and control method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610823153.5 2016-09-13
CN201610823153.5A CN106319176B (zh) 2016-09-13 2016-09-13 一种深冷工作台、深冷激光冲击强化实验系统及其控制方法

Publications (1)

Publication Number Publication Date
WO2018049694A1 true WO2018049694A1 (zh) 2018-03-22

Family

ID=57786674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/099513 WO2018049694A1 (zh) 2016-09-13 2016-09-21 一种深冷工作台、深冷激光冲击强化实验系统及其控制方法

Country Status (3)

Country Link
US (1) US11542572B2 (zh)
CN (1) CN106319176B (zh)
WO (1) WO2018049694A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210301367A1 (en) * 2020-03-30 2021-09-30 Airbus Sas Laser Shock Peening Apparatus
CN114465077A (zh) * 2022-04-14 2022-05-10 广东粤港澳大湾区硬科技创新研究院 一种非线性晶体夹持装置及其安装方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107502733B (zh) * 2017-06-20 2019-02-05 江苏大学 一种温度可控式深冷激光喷丸方法与装置
CN107267903A (zh) * 2017-07-14 2017-10-20 中国科学院沈阳自动化研究所 一种铝合金的超低温激光冲击强化方法
US11114346B2 (en) * 2019-08-06 2021-09-07 Tokyo Electron Limited High density logic formation using multi-dimensional laser annealing
CN110578048B (zh) * 2019-09-10 2021-04-20 江苏大学 一种深冷激光喷丸装置及加工方法
CN215947365U (zh) * 2021-07-14 2022-03-04 蓝达合智能装备(苏州)有限公司 一种激光冲击强化薄壁结构的防层裂装置
CN115145329B (zh) * 2021-07-16 2023-11-28 武汉帝尔激光科技股份有限公司 一种用于电池片激光加工的温度控制系统及温度控制方法
CN113579520B (zh) * 2021-07-30 2022-07-12 山东大学 一种用于构件连接的高强度小孔的制备方法
US11976981B2 (en) * 2021-09-10 2024-05-07 Haier Us Appliance Solutions, Inc. Temperature sensing assembly for a cooktop appliance
CN115232924B (zh) * 2022-07-25 2023-05-16 哈尔滨工业大学(深圳) 一种强脉冲电流与局部深冷辅助激光冲击成形装置及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102492805A (zh) * 2011-12-16 2012-06-13 江苏大学 一种采用深冷激光冲击强化金属材料的方法与装置
CN102728950A (zh) * 2012-06-16 2012-10-17 张家港富瑞特种装备股份有限公司 一种应用于超低温环境的金属薄板的激光焊接方法
CN102732707A (zh) * 2012-06-16 2012-10-17 张家港富瑞特种装备股份有限公司 一种超低温环境下激光冲击强化焊接件的方法和装置
CN102776521A (zh) * 2012-08-09 2012-11-14 江苏大学 基于激光喷丸辅助的钛合金表面低温渗硼方法及装置
US20130180969A1 (en) * 2012-01-18 2013-07-18 Purdue Research Foundation Laser shock peening apparatuses and methods
CN105063284A (zh) * 2015-09-07 2015-11-18 江苏大学 高透光率的深冷激光冲击头及激光冲击系统
CN105385839A (zh) * 2014-09-09 2016-03-09 中国科学院沈阳自动化研究所 一种激光冲击强化自动化控制系统和方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4336077A (en) * 1980-03-03 1982-06-22 Caterpillar Tractor Co. Method of cryogenically hardening an insert in an article
US5174122A (en) * 1989-10-02 1992-12-29 Applied Cryogenics, Inc. Method and means of low temperature treatment of items and materials with cryogenic liquid
US6359257B1 (en) * 1999-02-19 2002-03-19 Lsp Technologies, Inc. Beam path clearing for laser peening
US20080241546A1 (en) * 2007-03-30 2008-10-02 General Electric Company Machining features in laser shock peened regions
US9227268B1 (en) * 2007-04-13 2016-01-05 Lsp Technologies, Inc. Methods, systems, and apparatuses for laser shock peening metal materials
GB0816308D0 (en) * 2008-09-05 2008-10-15 Mtt Technologies Ltd Optical module
JP4977234B2 (ja) * 2010-06-02 2012-07-18 株式会社東芝 レーザ衝撃硬化処理方法および装置
CN102776506B (zh) * 2012-08-09 2014-04-09 江苏大学 获取高附着力纳米涂层的方法及装置
CN103409729B (zh) * 2013-08-27 2015-11-18 江苏大学 一种强激光辐照制备类金刚石薄膜的方法
CN104263884B (zh) * 2014-09-24 2016-05-04 江苏大学 基于空气层流的激光冲击波压力约束方法及装置
CN105316472B (zh) * 2015-08-13 2017-11-17 江苏大学 一种提高激光诱导冲击波压力的方法及装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102492805A (zh) * 2011-12-16 2012-06-13 江苏大学 一种采用深冷激光冲击强化金属材料的方法与装置
US20130180969A1 (en) * 2012-01-18 2013-07-18 Purdue Research Foundation Laser shock peening apparatuses and methods
CN102728950A (zh) * 2012-06-16 2012-10-17 张家港富瑞特种装备股份有限公司 一种应用于超低温环境的金属薄板的激光焊接方法
CN102732707A (zh) * 2012-06-16 2012-10-17 张家港富瑞特种装备股份有限公司 一种超低温环境下激光冲击强化焊接件的方法和装置
CN102776521A (zh) * 2012-08-09 2012-11-14 江苏大学 基于激光喷丸辅助的钛合金表面低温渗硼方法及装置
CN105385839A (zh) * 2014-09-09 2016-03-09 中国科学院沈阳自动化研究所 一种激光冲击强化自动化控制系统和方法
CN105063284A (zh) * 2015-09-07 2015-11-18 江苏大学 高透光率的深冷激光冲击头及激光冲击系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210301367A1 (en) * 2020-03-30 2021-09-30 Airbus Sas Laser Shock Peening Apparatus
CN114465077A (zh) * 2022-04-14 2022-05-10 广东粤港澳大湾区硬科技创新研究院 一种非线性晶体夹持装置及其安装方法
CN114465077B (zh) * 2022-04-14 2022-08-19 广东粤港澳大湾区硬科技创新研究院 一种非线性晶体夹持装置及其安装方法

Also Published As

Publication number Publication date
CN106319176B (zh) 2018-02-27
US11542572B2 (en) 2023-01-03
CN106319176A (zh) 2017-01-11
US20210277496A1 (en) 2021-09-09

Similar Documents

Publication Publication Date Title
WO2018049694A1 (zh) 一种深冷工作台、深冷激光冲击强化实验系统及其控制方法
WO2021189664A1 (zh) 一种紫外皮秒激光加工装置
CN101573207B (zh) 用于工件等温干切削和组装夹具的装置、系统与方法
CN103132071B (zh) 一种激光修复用超声振动耦合装置
CN104308648B (zh) 一种用于切削加工过程冷却的超音速低温气流发生装置
US20100150674A1 (en) System, apparatus and method for providing cooling
CN102658420A (zh) 一种小变形、高力学性能的控冷环境辅助下的搅拌摩擦焊工艺方法
CN109465577B (zh) 一种超薄合金堆焊修复冷却系统及冷却方法
CN113533414B (zh) 冰晶撞击试验用的竖式高速弹射装置
CN110756409A (zh) 热障涂层的喷涂方法及喷涂所用工装
JP2000095198A (ja) 温度コントロールベースプレート及びその制御方法
CN106399953B (zh) 一种溅射靶材自循环冷却装置
CN204356393U (zh) 一种用于金属材料表面热喷涂涂层基体冷却装置
CN106736180A (zh) 一种用于焊枪与传感器的随行焊接夹具
CN211072281U (zh) 一种金属加工用激光切割设备
CN106053215A (zh) 纳米压入仪用冷却平台
CN206425654U (zh) 一种用于结构损伤现场快速修复的温控‑钎焊一体化装置
CN208879950U (zh) 一种能调节平面角度的激光加工载台
CN106440482A (zh) 一种气压喷雾制冷装置
CN112404843A (zh) 一种钢材生产焊接用定位装置
CN205861452U (zh) 纳米压入仪用冷却平台
CN206449931U (zh) 一种超声喷雾制冷装置
CN115023018B (zh) 一种用于模拟边界局域模的放电电极系统
CN214868058U (zh) 一种激光切割头
CN113941796B (zh) 一种不锈钢箱式结构件高精度拼焊工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16916074

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16916074

Country of ref document: EP

Kind code of ref document: A1