WO2018047966A1 - 波形分離装置、方法、プログラム - Google Patents

波形分離装置、方法、プログラム Download PDF

Info

Publication number
WO2018047966A1
WO2018047966A1 PCT/JP2017/032704 JP2017032704W WO2018047966A1 WO 2018047966 A1 WO2018047966 A1 WO 2018047966A1 JP 2017032704 W JP2017032704 W JP 2017032704W WO 2018047966 A1 WO2018047966 A1 WO 2018047966A1
Authority
WO
WIPO (PCT)
Prior art keywords
state
unit
waveform
abnormality
model
Prior art date
Application number
PCT/JP2017/032704
Other languages
English (en)
French (fr)
Inventor
鈴木 亮太
滋 河本
ムルトゥザ ペトラードワラー
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US16/331,193 priority Critical patent/US20190277894A1/en
Priority to JP2018538499A priority patent/JP7156029B2/ja
Publication of WO2018047966A1 publication Critical patent/WO2018047966A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R21/00Arrangements for measuring electric power or power factor
    • G01R21/133Arrangements for measuring electric power or power factor by using digital technique
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R21/00Arrangements for measuring electric power or power factor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R21/00Arrangements for measuring electric power or power factor
    • G01R21/01Arrangements for measuring electric power or power factor in circuits having distributed constants
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network

Definitions

  • the present invention is based on the priority claims of Japanese patent applications: Japanese Patent Application No. 2016-177605 (filed on September 12, 2016) and Japanese Patent Application No. 2017-100130 (filed on May 19, 2017), The entire contents of this application are incorporated herein by reference.
  • the present invention relates to an apparatus, a method, and a program for separating waveforms.
  • Non-intrusive Load Monitoring NIALM
  • NILM Non-intrusive load monitoring
  • NIALM Non-intrusive Load Monitoring
  • Patent Document 1 discloses a data extraction means for extracting data relating to fundamental currents and harmonic currents and phases with respect to those voltages from measurement data detected by a measurement sensor installed in the vicinity of a feeder line of a power consumer, Pattern recognition means for estimating the operating state of the electrical equipment used by the electric power consumer based on data relating to the fundamental and harmonic currents from the data extraction means and the phase with respect to their voltages.
  • An instrument monitoring system is disclosed.
  • a probability generation model As a related technique for performing waveform separation based on a probabilistic model, for example, in Patent Document 2, data representing the sum of electric signals of two or more electric devices including the first electric device is acquired, and a probability generation model is used. By processing the data, an estimated value of the operating state of the first electrical device is generated, and an estimated value of the electrical signal of the first electrical device is output.
  • the probability generation model has a factor corresponding to the first electric device and having three or more states.
  • the probability generation model is a factory HMM (Factoral Hidden Markov Model: FHMM).
  • FHMM Fractoral Hidden Markov Model
  • a second individual variance of the second estimate of the second electrical signal of the second electrical device is used as a parameter of a factor corresponding to the first electrical device; Individual variance is used as a parameter of the second factor corresponding to the second electrical device.
  • one state variable St corresponds to the observation data Y t at time t.
  • the state variable S t is set to St (1) , S t ( 2) ⁇ S t (M) and a plurality (M number) exist, the plurality of state variables S t (1) ⁇ S t (M) in basis one observation data Y t is generated.
  • the state variables S t (1) to S t (M) correspond to the M electric devices.
  • the state values of the state variables S t (1) to S t (M) correspond to the state of the electric device (operation state, for example, on or off).
  • an EM (Expectation-Maximization) algorithm used to estimate a parameter from an output (observation data) maximizes the log likelihood of observation data by repeating an E (Expection) step and an M (Maximization) step.
  • An algorithm which includes the following steps 1 to 3. 1. Set initial parameters. 2. An expected value of the likelihood of the model is calculated based on the currently estimated distribution of latent variables (E step). 3. A parameter that maximizes the expected likelihood value obtained in the E step is obtained (M step). The parameters obtained in this M step are used to determine the distribution of latent variables used in the next E step, and steps 2 and 3 are repeated until the expected value converges (no longer increases).
  • Patent Document 3 discloses a data acquisition unit that acquires time series data of a total value of current consumption of a plurality of electric devices, and an operating state of the plurality of electric devices based on the acquired time series data.
  • an electric device estimation device including parameter estimation means for obtaining a model parameter when modeled by a probabilistic model.
  • the probability model is a factory HMM.
  • the data acquisition means converts the acquired total value of the consumed current into non-negative data
  • the parameter estimation means converts the current waveform pattern of the factor H of the factory HMM into a pattern of the current waveform in the parameter estimation processing by the EM algorithm.
  • the observation probability parameter W (m) is obtained as the model parameter.
  • FIG. 19 is a diagram illustrating an outline based on FIG. 3 of Patent Document 2 (components and reference numerals thereof are changed from Patent Document 2).
  • the current waveform Y t as the sum data at each time t is an added value (sum) of the current waveform W (m) of the current consumed by each electrical device m, and the current waveform Y t
  • the current waveform W (m) consumed by each electric device m is obtained.
  • the state estimation unit 212 uses the current waveform Y t from the data acquisition unit 211 and the model parameter ⁇ of the entire model, which is a model of the entire home appliance stored in the model storage unit 213, to determine the operating state of each home appliance. State estimation is performed to estimate.
  • the model learning unit 214 uses the current waveform Y t supplied from the data acquisition unit 211 and the state estimation estimation result (operating state of each home appliance) supplied from the state estimation unit 212 to store in the model storage unit 213. Model learning is performed to update the model parameter ⁇ of the stored overall model.
  • the model parameter ⁇ includes initial probability, variance, eigen waveform W (m) and the like.
  • the model learning unit 214 obtains (updates) a current waveform parameter as a model parameter using the current waveform Y t supplied from the data acquisition unit 211 and the operating state of each home appliance supplied from the state estimation unit 212. ) Waveform separation learning is performed, and the current waveform parameter W (m) stored in the model storage unit 213 is updated with the current waveform parameter obtained by the waveform separation learning.
  • the model learning unit 214 obtains (updates) a dispersion parameter as a model parameter using the current waveform Y t supplied from the data acquisition unit 211 and the operating state of each home appliance supplied from the state estimation unit 212. Distributed learning is performed, and the distributed parameter C stored in the model storage unit 213 is updated with the distributed parameter obtained by the distributed learning.
  • the model learning unit 214 performs state variation learning to obtain (update) an initial state parameter and a state variation parameter as the model parameter ⁇ using the operating state of each home appliance supplied from the state estimation unit 212, and The initial state parameter and the state variation parameter stored in the model storage unit 213 are updated with the initial state parameter and the state variation parameter obtained by the variation learning.
  • An HMM can be adopted as the overall model stored in the model storage unit 213.
  • the data output unit 216 obtains the operating state of each home appliance supplied from the state estimation unit 212 and the power consumption of the home appliance represented by each home appliance model using the overall model stored in the model storage unit 213, and displays it on the display device or the like. .
  • Patent Document 4 extracts current waveform data averaged over one cycle of the commercial frequency of the total load current based on the total load current and voltage measured at a predetermined location on the service area. Then, from the averaged current waveform data, convex point information relating to a convex point indicating a point at which the change in current value changes from increasing to decreasing or a point at which decreasing changes to increasing is extracted.
  • the estimation unit holds in advance an estimation model that associates the type of electrical equipment, convex point information, and power consumption. And an estimation part estimates the power consumption of the electric equipment in operation separately based on the convex point information which the data extraction part extracted, and an estimation model.
  • Patent Document 5 discloses a power for receiving a current waveform and a voltage waveform measured for an electric device that consumes one or more electric powers, and estimating the electric power consumption of the electric device from the current waveform of the electric device.
  • a power estimation unit that estimates power for each electrical device, and represents characteristics of power consumption for each electrical device and variation in power consumption. It is determined whether the holding unit holding the power consumption pattern and the power estimated by the power estimation unit match the power consumption pattern held by the holding unit.
  • a power estimation device including an estimated power correction unit that corrects the power according to a consumption pattern.
  • the device power consumption estimation apparatus disclosed in Patent Literature 6 includes a device feature learning unit, a device feature database, an operation state estimation unit, and a power consumption estimation unit.
  • the device feature learning unit acquires a feature amount of the operation state of the device from the harmonics of the current or power obtained from the time-series data of the voltage and current measured in the power feeding path.
  • the device feature database stores the acquired feature amount of the operating state of the device.
  • the operation state estimation unit estimates the operation state of the device based on the feature quantity of the harmonic obtained from the harmonic of the current or power and the feature amount of the operation state of the device stored in the device feature database. To do.
  • the power consumption estimation unit estimates the power consumption of the device based on the estimated operation state.
  • Non-Patent Document 1 is referred to for FHMM, EM algorithm, Gibbs-Sampling, and the like.
  • waveform separation cannot be performed for a plurality of units having the same or substantially the same configuration. Or, even if the waveform can be separated, the accuracy is lowered. Moreover, there is actually no application example of waveform separation to a case (system) in which there are a plurality of similar devices, such as a production line.
  • the present invention has been made in view of the above problems, and one of its purposes is to enable separation of signal waveforms between, for example, units having the same or substantially the same configuration from a synthesized signal waveform.
  • One of its purposes is to enable separation of signal waveforms between, for example, units having the same or substantially the same configuration from a synthesized signal waveform.
  • a storage device that stores a first state transition model having a section that transitions in one direction with one path, and the first state transition
  • a composite signal waveform of a plurality of units including a first unit that operates based on a model is received as an input, and the signal waveform of the first unit is received from the composite signal waveform based on at least the first state transition model.
  • a waveform separation device including an estimation unit that performs estimation and separation.
  • a computer-based waveform separation method including a plurality of first units that operate based on a first state transition model having a section that transitions in one direction along one path.
  • a waveform separation method for estimating and separating the signal waveform of the first unit based on the first state transition model from the combined signal waveform of the unit.
  • a combined signal waveform of a plurality of units including a first unit that operates based on a first state transition model having a section that transitions in one direction along one path is input.
  • a program for causing a computer to execute processing for estimating and separating the signal waveform of the first unit based on the first state transition model is provided.
  • a computer-readable recording medium for example, RAM (Random Access Memory), ROM (Read Only Memory), or EEPROM (Electrically Erasable and Programmable ROM), HDD ( Non-transitory computer ready recording media such as Hard Disk Drive, CD (Compact Disc), DVD (Digital Versatile Disc), etc. are provided.
  • the waveform separation device is configured to estimate and separate a signal waveform of a plurality of units from a combined signal waveform of the plurality of units, and to separate the unit by the estimation unit.
  • An abnormality estimation unit may be provided that receives a signal waveform, calculates an abnormality degree indicating the degree of abnormality from the signal waveform or a predetermined state, and detects an abnormality of the unit.
  • FIG. 10 illustrates a structure of one embodiment of the present invention.
  • FIG. 5 is a diagram illustrating one embodiment of the present invention.
  • FIG. 5 is a diagram illustrating one embodiment of the present invention.
  • FIG. 5 is a diagram illustrating one embodiment of the present invention. It is a figure explaining a comparative example.
  • FIG. 5 is a diagram illustrating one embodiment of the present invention.
  • FIG. 5 is a diagram illustrating one embodiment of the present invention. It is a figure explaining an example of the system configuration of a 1st exemplary embodiment of the present invention. It is a figure explaining an example of an apparatus configuration of a 1st exemplary embodiment of the present invention. It is a figure explaining exemplary 1st Embodiment of this invention.
  • 1 is a schematic plan view illustrating a configuration of a mounter to which an exemplary first embodiment of the present invention is applied. It is a figure explaining the model of two stages of a mounter. It is a figure which shows the synthetic
  • FIG. 1 is a diagram for explaining a basic embodiment of the present invention.
  • the waveform separation device 10 stores a first state transition model having a section that transitions in one direction (state transition path: one way) in one direction as a model of the operation state of the unit.
  • a measurement result of a combined signal waveform of a plurality of units including a storage device 12 (memory) and a first unit that operates with restrictions corresponding to the first state transition model is received as an input, and at least from the combined signal waveform.
  • An estimation unit 11 (processor) that estimates and separates the signal waveform of the first unit based on the first state transition model is provided.
  • the model stored in the storage device 12 may be a factor of a factory HMM.
  • a single road section in one direction has one side (edge) that enters a state (node), and the state (node) from the state (node).
  • the plurality of units include a second unit that is the same as or the same type as the first unit, and the estimation unit 11 generates a combined signal waveform of the first and second units.
  • the signal waveform of the first unit and the signal waveform of the second unit are separated. It is good also as composition to do.
  • the first and second units are First and second units in one facility constituting one production line, First and second facilities constituting one production line, One of the first unit of the first equipment constituting the first production line and the second unit of the second equipment constituting the second production line is included.
  • the first and second units may be first or second personal computers (PCs) having the same or substantially the same configuration (first and second home appliances).
  • the waveform separation target signal may be current, voltage, power, or the like.
  • the first unit subjected to operation restriction and the combined waveform of a plurality of units including at least a second unit having the same or substantially the same configuration as the first unit,
  • the waveforms of the first unit and the second unit can be separated.
  • Reference numerals 1-1, 1-2, and 1-3 in FIG. 2A denote signal waveforms (for example, current waveforms) of the respective factor states (1), (2), and (3).
  • 1-1 represents the waveform of the stop state (state (1)) (holding a constant level)
  • 1-2 represents a waveform of a certain machining operation (state (2))
  • 1-3 represents a waveform of another machining operation (state (3)).
  • the horizontal axis represents time
  • the vertical axis represents amplitude (for example, current value in the case of current).
  • constraint I and constraint II are imposed on factor 1. However, only one of the constraints I and II may be used.
  • Constraint I When the state (2) is at a certain time t, the state (3) is at the next time t + 1.
  • Constraint II When the state is (2) at a certain time t, the state is (1) at the previous time t-1.
  • FIG. 2B illustrates a state transition diagram (2B-1) of factor 1 and a transition probability matrix A (2B-2).
  • the state transition diagram (2B-1) of factor 1 there is only one arrow flowing out from the state (2) toward the state (3).
  • the non-zero column element in the second row of the transition probability matrix A (2B-2) is only one of a 23 (element in the second row and third column: value 1).
  • the arrow flowing into the state (2) is only one from the state (1).
  • the non-zero element in the second column of the transition probability matrix A (2B-2) is the only element a 12 (the element in the first row and the second column).
  • FIG. 2C illustrates a state transition diagram (2C-1) of factor 2 and a transition probability matrix B (2C-2).
  • state (2) There is no one-way street between state (2) and state (3).
  • the state (1) and the state (2) are not one way in one direction.
  • the state (1), the state (2), or the state (3) at the previous time t-1 (element of the second row of the transition probability matrix B) b 12 , b 22 and b 23 are non-zero).
  • FIG. 3 is a diagram for explaining a comparative example (an example in which the configuration of the above-described form is not adopted).
  • (1), (2), (3) in the upper left of each waveform is the waveform of states (1), (2), (3). Represents.
  • both factors 1 and 2 are determined to be in state (2).
  • FIG. 6 schematically illustrates a production line as an example of the system configuration of the first exemplary embodiment.
  • SMT Surface Mount Technology
  • a loader (substrate supply device) 105 supplies a substrate (production substrate) set in a rack to the solder printer 106.
  • the solder printer 106 transfers (prints) the cream solder onto the pads of the substrate using a metal mask.
  • the inspection machine 1 (107) inspects the appearance of the solder printed board.
  • Mounter 1 (108A) to mounter 3 (108C) automatically mount surface-mounted components on a substrate printed with cream solder.
  • the reflow furnace 109 heats the mounted substrate from the upper and lower heaters in the furnace, melts the solder, and fixes the component to the substrate.
  • the inspection machine 2 (110) inspects the appearance.
  • the unloader 111 automatically stores the soldered board in a board rack (not shown).
  • the current sensor 102 measures, for example, a power supply current (combined power supply current of each facility on the production line) flowing in the main trunk of the distribution board 103.
  • the current sensor 102 transmits the measured current waveform (digital signal waveform) to the waveform separation device 10 via the communication device 101.
  • the current sensor 102 may be configured by a CT (Current Transformer) (for example, a zero-phase-sequence current transformer (ZCT)), a Hall element, or the like.
  • the current sensor 102 samples the current waveform (analog signal) with an analog-digital converter (not shown), converts it into a digital signal waveform, compresses and encodes it with an encoder (not shown), and then sends it to the communication apparatus 101 to the W-SUN. (Wireless Smart Utility Network) or the like may be used for wireless transmission.
  • the communication device 101 may be arranged in a factory (building).
  • the waveform separation device 10 may be arranged in a factory, or may be mounted on a cloud server connected to the communication device 101 via a wide area network such as the Internet.
  • FIG. 7 is a diagram for explaining an example of the configuration of the waveform separation device 10 of FIG.
  • the current waveform acquisition unit 13 acquires a power supply current waveform (a combined current waveform of a plurality of facilities) acquired by the current sensor (102 in FIG. 6).
  • the current waveform acquisition unit 13 may include a communication unit (not shown) and acquire a combined current waveform from the current sensor via the communication device 101 of FIG.
  • the current waveform acquisition unit 13 may acquire a composite current waveform by reading a waveform stored and held in advance in a storage device (a waveform database or the like) (not shown).
  • the storage device 12 is used in each facility (for example, loader 105, unloader 111, solder printer 106, inspection machines 1 and 2 (107, 110), mounters 108A to 108C, reflow furnace 109, etc.) constituting the line of FIG.
  • a state transition model obtained by modeling the transition of the operation state is stored.
  • a model obtained by combining state transition models of a plurality of units may constitute a factory HMM model, for example.
  • the state transition model of at least one unit is unidirectional in order to perform waveform separation.
  • the model corresponding to the state transition diagram including the section of the single road is included.
  • the estimation unit 11 estimates and separates the power supply current waveform of each unit from the combined power supply current acquired by the current waveform acquisition unit 13 based on the state transition model stored in the storage device 12.
  • the circles of the models (state transition models) 123 and 134 stored in the storage device 12 represent an unobserved (hidden) state (Hidden state) ⁇ S t ⁇ .
  • the state variable S t at time t is the factor 1 to factor M, S t (1), S t (2), ⁇ , a plurality (M number) S t (M) present, these plural
  • One observation data Y t is generated from the state variables S t (1) to S t (M) .
  • the M state variables S t (1) to S t (M) correspond to M units, and the state value of the state variable S t (m) represents, for example, the operation state of the unit.
  • the m-th state variable S t (m) is also referred to as the m-th factor or factor m.
  • the shoulder (1) in the operation state p 1 (1) represents the factor 1 and is described in correspondence with the shoulder (1) in the state variable S t (1) .
  • the shoulder (2) of the operating state p 1 (2) of the model 124 of the second unit represents a factor 2 and is described in correspondence with (2) of the shoulder of the state variable S t (2). .
  • the output unit 14 outputs the current waveform of each unit estimated and separated by the estimation unit 11 to a display device or the like (FIGS. 11 and 13 described later).
  • the output unit 14 may obtain the power consumption based on the operation state of the unit and the separated current waveform and display the power consumption on a display device or the like.
  • the output unit 14 may transmit and display the current waveform and power of the unit to a terminal connected via a network (not shown).
  • a unit that is subject to estimation and separation of current waveforms and is subject to operation restrictions will be described later with reference to FIG. 6 may include a plurality of units (for example, a plurality of units having the same configuration).
  • the unit that is subject to estimation and separation of the current waveform and is subject to operation restrictions may be equipment.
  • the unit may be an entire production line (for example, the entire SMT line in FIG. 6).
  • the unit may be a combination of a unit a with the equipment A and a unit b with the equipment B.
  • the unit may be a home appliance such as the same personal computer.
  • FIG. 8 is a diagram for explaining an operation model of the three mounters 1, 2, 3 (108A-108C) in the SMT line of FIG.
  • Each mounter is represented as a queuing network.
  • the mounter serves as a service station, and the conveyor between the mounters serves as a buffer (queue).
  • the mounter performs a processing operation for mounting the component on the board according to the program, and then ejects the board.
  • emitted from a mounter is conveyed by the conveyor (the next mounter or reflow furnace) of a back
  • FIG. 9 is a diagram for explaining a model representing the operation of the mounter of FIG.
  • “Processing” indicates that the mounter is processing one substrate.
  • “Waiting: w” (waiting state) indicates that the mounter waits for the preceding or following process (waits for the arrival of the substrate from the previous process or waits for the substrate to be carried out to the subsequent process) or waits for error recovery.
  • the time required for one round from the state W to return to the state W through the states p 1 to p T is referred to as a cycle time.
  • Equation (2) when the time t-1 of the state variable S t-1 value (operating state) is w (wait state), the value of the state variable S t at the next time t (operating state) The probability of transitioning to p 1 is ⁇ (0 ⁇ ⁇ 1).
  • the estimation unit 11 uses a unit operation factor model (state transition model) stored in the storage device 12 to estimate and learn a current waveform parameter of a unit (factor).
  • a unit operation factor model state transition model
  • the EM algorithm Gibbs sampling, Completely factorized variational information, Structured variational information, etc. described in 1 may be used.
  • Patent Document 3 describes an example of an estimation process of a current waveform parameter or the like using a Completly Factorized Variational Inference or a Structured Variation Inference.
  • Structured Variational Inference is exemplified as E step, and Completly Factorized Variational Inference is used as the corresponding M step.
  • Structured Variational Inference is used (see Non-Patent Document 1).
  • Z in the above equation (4) is a normalization constant for setting the sum of posterior probabilities when an observation sequence is given to 1
  • Z Q is a normalization constant of a probability distribution (Appendix in Non-Patent Document 1).
  • H ( ⁇ S t , Y t ⁇ ) and H Q ( ⁇ S t ⁇ ) are expressions of Appendix C (C.2) and (C 4)).
  • ⁇ (m) diagonal (W (m) ′ C ⁇ 1 W (m) ) (diagonal is a diagonal component of the matrix).
  • the parameter h t (m) is an observation probability related to the state variable S t (m) in the hidden Markov model m.
  • a new set of expected values of ⁇ S t (m) > is obtained, and equations (6a), ( Feedback to 6b).
  • the transition probability matrix A i, j (m) has T + 2 non-zero components. For this reason, the calculation amount of each iteration of the E step of the EM algorithm is O (KTN) (see ⁇ Computation amount reduction effect> described later).
  • the state estimation at each time is to obtain a parameter j that can best explain the observation data X (Y t ) (maximum likelihood estimation).
  • non-patent document 1 Is represented by a vector called “1-of-N expression” (see Non-Patent Document 2).
  • the vector of “1-of-M expression” representing the state j is a vector in which only element j is 1 and the remaining is 0.
  • each element becomes a vector representing the probability of taking each state.
  • FIG. 10A is a schematic plan view showing an example in which a mounter (for example, mounter 1 in FIG. 8) includes a first half unit (stage 1) and a second half unit (stage 2).
  • a mounter for example, mounter 1 in FIG. 8
  • electronic components are mainly supplied by a reel or a tray, the reel is attached to a dedicated feeder, and the tray is set in an apparatus called a tray feeder.
  • the boards 1084A and 1084B are conveyed by the conveyor 1083, and the heads 1082A and 1082B suck the surface mount type electronic components from the feeder units 1081A to 1081D with negative pressure, move on the XY axis, and move on the boards 1084A and 1084B.
  • the surface-mounted electronic component is mounted. Some have two heads per stage.
  • the substrate 1084A on which the components are mounted on the stage 1 is mounted with another group of components on the stage 2.
  • 10B is a diagram illustrating a state transition model (5-1) of the first half unit (stage 1) of FIG. 10A and a state transition model (5-2) of the second half unit (stage 2) of FIG. 10A.
  • W represents the substrate waiting state of the mounter.
  • the K states transition with one transition probability in one direction. That is, a transition is made in one direction in one direction to a state of p 1 to p K , C (completion).
  • the substrate on which the component mounting operation on the stage in operation state C is completed is discharged and transported to the subsequent stage.
  • the state transits to the state W and waits for the arrival of the next board on the stage.
  • mounters equipped with aluminum robot arms for mounting components.
  • the nozzle at the tip of the arm sucks in the chip component on the tape feeder.
  • 10A is obtained by multiplying the transition probability matrix corresponding to the state transition model (5-1) in FIG. 10B by the transition probability matrix corresponding to the state transition model (5-2) in FIG. 10B. Represented as a matrix.
  • stage 2 The operation of the latter half unit (stage 2) does not have to be restricted as in the first half unit (stage 1). Or, of course, operation restrictions similar to those of stage 1 may be imposed on the operations of the latter half unit (stage 2).
  • the stages 1 and 2 may be configured to operate independently. Or you may operate
  • a waveform 6B indicates a current waveform of the first half unit (stage 1) estimated by separating from the combined current waveform 6A using the model of FIG. 10B.
  • one product process (about 60 seconds) corresponds to the period of the states p1 to pk, c in FIG. 5-1, the state transition of the first half unit (stage 1) in FIG. 10B.
  • the time between the waveforms of one product processing (about 60 seconds) in the 11 current waveforms 6B corresponds to the state W in the state transition diagram 5-1 of the first half unit (stage 1) in FIG. 10B.
  • a waveform 6C shows a current waveform of the latter half unit (stage 2) obtained by subtracting the current waveform 6B from the combined current waveform 6A.
  • one product process (about 60 seconds) corresponds to the period of the states p1 to pk, c in the state transition diagram 5-2 of the latter half unit (stage 2) in FIG. 10B.
  • 11 corresponds to the state W in the state transition diagram 5-2 of the second half unit (stage 2) in FIG. 10B.
  • the current waveform of the second half unit (stage 2) can be obtained in the same manner as the first half unit.
  • FIG. 12 shows that the harmonic component mainly generated by the servo driver that moves the mounter arm appears. Appearing as a bimodal shape (two peaks) corresponds to the waveform of the harmonic component whose main source is the mounter servo driver.
  • this harmonic component is extracted as a feature quantity of the three mounters.
  • the feature amount of the mounter appearing in the harmonic is extracted by a high-pass filter.
  • a high-pass FIR (Finite Impulse Response) filter is applied to the input data to obtain an effective value (every 100 ms (millisecond)).
  • an effective value every 100 ms (millisecond)
  • only a fluctuating component was extracted by applying a high-pass filter.
  • This waveform is 7A in FIG. In the waveform 7A of FIG. 13, the horizontal axis is time. The vertical axis represents an effective value (RMS: Root Mean Square value).
  • waveforms 7B to 7D represent current waveforms estimated and separated by the estimation unit 11 into three factors.
  • the horizontal axis of the waveforms 7B to 7D is the same time as the horizontal axis of the waveform 7A.
  • the horizontal axis of 7B to 7D is the effective (RMS) of the signal.
  • One repetitive operation of the factor (waveform in the range indicated by the arrow) represents one product process (about 60 seconds). As described above, for example, this corresponds to the period of the states p 1 to p k and c in FIG. 10B.
  • the time between a group of waveforms (one product process indicated by a double arrow) and an adjacent waveform (one product process indicated by a double arrow) corresponds to a waiting state (for example, waiting state W in FIG. 10B).
  • a waiting state for example, waiting state W in FIG. 10B.
  • one product processing is about 60 seconds.
  • the waveform separation learning is performed using the envelope for the signal waveforms of 7A to 7D in FIG. May be.
  • 8B is represented by connecting the end point of one product processing corresponding to the order of factor 3, factor 1 and factor 2 in the order of factor 3 to factor 3 in the signal waveforms of factors 1 to 3 from 7B to 7D in FIG. It corresponds to the product flow diagram.
  • 8A is the result (Actual) collected from the log data for mounter 1, mounter 2, and mounter 3. That is, the end point of one product process corresponding to the mounter 1, the mounter 2, and the mounter 3 in this order is connected by a line, and is graphically represented. In addition, you may connect the start time of one product process with a line.
  • FIG. 14 it can be seen from the diagrams 8A and 8B that the SMT line (mounter) is stopped. For example, at time 10:15, all the input side buffers of mounters 1, 2, and 3 are empty (buffer depletion). At time 10:50, mounters 1, 2, and 3 This corresponds to the situation where all the output buffers are full (buffer overflow).
  • mounters 1, 2, and 3 This corresponds to the situation where all the output buffers are full (buffer overflow).
  • FIG. 15 shows an example of the average cycle time (measured value and estimated value) and MAE (Mean Absolute Error) of the mounters 1, 2, and 3.
  • the cycle time represents the time from the start of processing of one product (substrate) by the mounter to the start of processing of the next product.
  • the average cycle time is an average of the cycle times and is given by the following formula (8).
  • MAE represents an error indicating how much the cycle time of each product is.
  • the first embodiment is effective for improving the production line efficiency.
  • the flow of the product in the production line is visualized by one sensor by applying the factory HMM in which each factor represents the cycle operation of the facility to the basic current waveform data.
  • the operation restriction is imposed on at least one unit (for example, the first half unit (stage 1)) among the units having the same or substantially the same configuration (the unidirectional one-way section is included in the state transition model).
  • the first half unit stage 1
  • the unidirectional one-way section is included in the state transition model.
  • a model creation unit 15 that creates models (125, 126, etc.) to be stored in the storage device 12 may be provided.
  • the model creation unit 15 creates a unit state transition model and stores it in the storage device 12 by performing unsupervised learning such as cluster analysis and main discriminant analysis, for example. For this reason, it is not necessary to create a model of the unit to be stored in the storage device 12 in advance.
  • the model creation unit 15 may be configured to have a parameter learning function.
  • the parameter learning function fixes a fixed operation constraint (transition state model having a one-way, one-way section) imposed on the unit, and based on the output of the estimation unit 11 from the observation data (for example, the synthesized current waveform) Solve as an optimization problem.
  • the parameter to be optimized may be a transition probability of a state transition model of a unit that imposes a certain operation constraint.
  • model preparation part 15 is good also as a structure provided with the model structure learning function.
  • the model structure learning function solves the problem as an optimization problem by sequentially changing the structure of certain operation constraints imposed on the unit (transition state model having a unidirectional single-way section), for example, from an initial setting value.
  • As a structure of a constant operation constraint to be changed there are some constraints (one-way, one-way section) at which state transition is imposed.
  • a certain operation constraint imposed on the unit may be changed, and the operation constraint that provides the best waveform separation may be determined based on the result of the waveform estimation separation by the estimation unit 11 based on the observation data.
  • Models 125 and 126 of a plurality of units of the storage device 12 indicate state transition models of each unit created by the model creation unit 15. .
  • the states p m1 to p m3 constitute a one-way single-way section corresponding to the operation constraint of the unit m.
  • a model obtained by combining the state transition models of the plurality of units may constitute the factory HMM.
  • the second embodiment it is possible to automate model creation, and it is possible to improve the accuracy of the model and set appropriate operation constraints through parameter optimization, model learning, and the like.
  • the output from the output unit 14 is not a unit (factor) power supply current waveform or power (power consumption), but a unit (factor) state sequence (operation state) using, for example, the Vierbi algorithm : For example, p 1 to p T ) in FIG. 9 may be output. Or as an operation state, the time when each unit completed the processing of a product, the number of productions within a certain period, etc. may be sufficient.
  • the input of the waveform separators 10 and 10A may be current / power waveforms, frequency components, principal components, effective values, average values, power factors, and the like.
  • a configuration may be provided that includes a signal acquisition unit that acquires an input other than power (such as an acoustic signal, vibration, and traffic).
  • the production line equipment has been mainly described as an example.
  • the embodiment of the present invention is not limited to the production line equipment. (PC) etc. may be sufficient.
  • the same plurality of personal computers are connected to the distribution board, and a printer or the like is further connected, and the waveforms for each device when a plurality of the same personal computers are connected are separated.
  • the power source current detected by the current sensor 23 through the main (or branch breaker) of the distribution board 22 in FIG. 17A PCs 24A and 24B connected from the distribution board 22 via the branch breaker, printer 25, etc.
  • a HEMS (Home Energy Management System) / BEMS (Building Energy Management System) controller may estimate the current waveform of the personal computer and the operation state.
  • the operating state after power-on of a personal computer depends on the usage of the user, and it can be said that it is almost impossible to impose certain operating restrictions.
  • the transition of the operating state of the personal computer power-on (power-up) and power-off (shutdown) is basically one-way in one direction.
  • the type model, model, etc.
  • the OS Operating System
  • the power-up sequence and shutdown sequence for the corresponding personal computer are basically the same (except when it does not start up due to trouble, etc.).
  • a model may be created by the model creation unit (15 in FIG. 16) from the power supply current monitor results of the power-up sequence and shutdown sequence of the personal computer of interest.
  • a waveform of a personal computer with a certain operation restriction can be extracted from a composite current waveform of a plurality of identical personal computers.
  • the operating status (such as when the power is turned on and when the power is turned off) of the same personal computer.
  • FIG. 18 is a diagram for explaining an exemplary fourth embodiment.
  • the computer device 30 includes a CPU (Central Processing Unit) 31, a storage device (memory) 32, a display device 33, and a communication interface 34.
  • the storage device 32 may be, for example, semiconductor storage such as RAM, ROM, EEPROM, HDD, CD, DVD, or the like.
  • the storage device 32 stores a program executed by the CPU 31.
  • the CPU 31 stores the function in the storage device 32 and executes the program, thereby realizing the function of the waveform separation device 10 in FIGS. 1, 6, and 7.
  • the communication interface 34 is connected for communication with the communication apparatus 101 of FIG. Similarly, the CPU 31 may realize the function of the waveform separation device 10A in FIG. 16 by being stored in the storage device 32 and executing a program.
  • the waveform of a plurality of units having the same configuration is separated by including a single-way section in one direction in the model of the operation state of the unit (state transition model). It is possible. That is, it is possible to determine which unit corresponds to which waveform. Furthermore, the amount of calculation is reduced by including a single road section in one direction in the state transition model. This will be described below.
  • Both the forward algorithm and the backward algorithm used for estimating the state require a product operation of the transition probability matrix and the probability vector. Since the transition probability matrix A is a sparse matrix (many components are 0), when calculating the product of the transition probability matrix A and the probability vector P, the calculation amount is greatly reduced by excluding the zero component from the calculation in advance. be able to.
  • the Viterbi algorithm used for estimating the state requires an operation for obtaining the maximum value in each column of the product of the elements of the transition probability matrix and the elements of the probability matrix. Also in this case, the amount of calculation can be greatly reduced by excluding the zero component of the probability matrix from the calculation of the maximum value in advance.
  • transition probability matrix A (3 ⁇ 3) in FIG. 2B
  • transition probability matrix B (3 ⁇ 3) in FIG. 2C
  • the calculation amount can be reduced by skipping the operation of the zero component. As the operation constraints of the present embodiment increase, the non-zero components become fewer and the calculation time is shortened.
  • the calculation amount of the matrix-vector product is proportional to the number of non-zero components of the matrix (Equation 9).
  • the transition probability matrix is M ⁇ 2 ( ⁇ is a power operator) with respect to the number of states M.
  • the state transitions are w ⁇ p 1 , p 1 ⁇ p 2 , ..., p T-1 ⁇ p T, p T ⁇ w, w ⁇ since w become T + to two, the amount of calculation (not the square) of T becomes the first power of the order.
  • the E step of Structured Variational Inference in Non-Patent Document 1 is an iterative solution, and a forward-backward algorithm is executed at each iteration. In this case, the product of the transition probability matrix and the probability vector is performed KN times. Therefore, the order of calculation amount is O (KNT).
  • Patent Document 2 ⁇ Analysis of Related Technology (Patent Document 2)> Next, in the related technique (Patent Document 2) described with reference to FIG. 19, a constrained model cannot be obtained as a result of learning. This will be described below.
  • Patent Document 2 in order to happen that the elements of the transition probability matrix happen to be zero as a result of learning, an update formula of the state transition probability matrix A i, j (m) in M steps (patent In equation (15) of document 2, A i, j (m) new is P i, j (m) new ): (15) The right side of must be zero.
  • ⁇ S t-1, i (m) , S t, j (m) > is an element of i row and j column of K ⁇ K posterior probability ⁇ S t-1 (m) S t (m) >
  • the state probability is the state #j at the next time t.
  • ⁇ S t ⁇ 1, i (m) > represents the state probability of state #i at time t ⁇ 1.
  • the model learning unit 214 of FIG. 19 performs waveform separation learning using the measured waveform Y t , posterior probabilities ⁇ St (m) >, ⁇ St (m) St (n ′) >. To obtain the updated value W (m) new of the natural waveform W (m) .
  • the model learning unit 214 obtains an updated value of the variance C using the measured waveform Yt, the posterior probability ⁇ S t (m) >, and the natural waveform (updated value) W (m) .
  • the model learning unit 214 performs state variation learning using the posterior probabilities ⁇ S t (m) >, ⁇ S t-1 (m) S t (m) ′ >, thereby obtaining the transition probability.
  • An update value ⁇ (m) new of the update value A i, j (m) new and the initial state probability ⁇ (m) is obtained.
  • S t-1 ) is given by the following equation (17).
  • a dash (') represents transposition. From the above equation, P (Y t
  • transition probability matrix elements are zero before learning, they are not zero after learning. From the above, it has been shown that the constraints inserted in the exemplary embodiment of the present invention cannot be automatically learned by a known learning algorithm such as the EM algorithm.
  • the waveform separation device 10B according to the fifth embodiment is different from the waveform separation devices 10 and 10A according to the first and second embodiments in that the abnormality estimation unit 16 is provided. Note that components having the same functions as those described in the first and second embodiments are denoted by the same reference numerals, and description thereof is omitted.
  • the abnormality estimation unit 16 of the waveform separation device 10B receives the signal waveform separated from the estimation unit 11 that estimates and separates the signal waveforms of a plurality of units based on the state transition model from the combined signal waveform.
  • the abnormality of the unit is detected from the signal waveform or a predetermined state.
  • the state transition model may include a first state transition model having a section that transitions in one direction with one path, as a model of the operation state of the unit.
  • the waveform of the entire system (a plurality of unit composite signal waveforms) measured by a small number of sensors is separated into waveforms for each unit with high accuracy. Thus, it can be detected in which unit the abnormality has occurred.
  • the related technology reduces the separation accuracy when separating the waveforms into the respective units.
  • the generated unit can be detected with high accuracy.
  • the fifth embodiment for example, even when there are a plurality of units having the same or substantially the same configuration, it is possible to detect which operation of which unit is abnormal.
  • FIG. 21 is a diagram illustrating the abnormality estimation unit 16 in the fifth embodiment.
  • the abnormality estimation unit 16 includes an abnormality detection unit 161 and an abnormal part estimation unit 162.
  • the abnormality detection unit 161 calculates an abnormality level indicating the degree of occurrence of an abnormality for the waveform separated for each unit based on the signal waveform separation result by the estimation unit 11, and the abnormality level is determined in advance, for example. The presence or absence of abnormality is determined by comparing with the threshold value.
  • the abnormality detection unit 161 may use, for example, KL divergence for each time as an example of the degree of abnormality.
  • KL divergence for each time is obtained by extracting the contribution of the time t in the equation (4), and can be obtained by the following equation.
  • KL divergence for each time represents a measure of the difference in the model of the distribution and the measured value Y t, the more include abnormal measurements, KL divergence is considered to have a large value.
  • the abnormality detection unit 161 can detect the occurrence of an abnormality depending on whether or not the KL divergence value KL t for each time is larger than a predetermined threshold (first threshold). . That is, the abnormality detection unit 161 determines that an abnormality has occurred when KL t is greater than the first threshold.
  • the marginal likelihood (marginal likelihood) for every time is a probability density at which the measured value Y t is obtained from the model at time t.
  • the marginal likelihood L t for each time is obtained by the following equation (21) by using, for example, the residual to Y t (m) obtained by the equation (6b).
  • the abnormality detection unit 161 can detect the occurrence of an abnormality depending on whether or not the peripheral likelihood L t for each time is a value smaller than a predetermined threshold (second threshold). That is, the abnormality detection unit 161 determines that an abnormality has occurred when L t is smaller than the second threshold.
  • the abnormality location estimation unit 162 of the abnormality estimation unit 16 estimates in which unit (factor) the abnormality has occurred.
  • each factor m is in the state S t (m) .
  • the abnormal part estimation part 162 which unit is abnormal by estimating the group (m, S t (m) ) of the state S t (m) corresponding to the factor m where the abnormality has occurred, In addition, it is possible to estimate which operation of the unit is abnormal.
  • the estimated value of the state S t (m) corresponding to each factor m for example, the value of Expression (7) in the estimating unit 11 can be used.
  • the abnormal point estimation unit 162 sets the priority order according to the value of the state S t (m) among the M candidates of the combination of the factor and the state (m, St (m) ) where the abnormality has occurred. Put on.
  • the abnormal point estimation unit 162 outputs a set (m, St (m) ) of a factor and a state having a high priority.
  • the abnormal part estimation unit 162 for example, one or a combination of the following standards may be used as the standard for determining such priority order (however, it is not limited to the following).
  • State S t (m) is a state in which a certain time ⁇ t has elapsed from the start point of the constant motion constraint section within the constant motion constraint section in the model 123 (FIG. 7).
  • the reference (a) means that the unit m is in the middle of repeatedly performing the operation. For this reason, by using the reference (a) in the abnormal point estimation unit 162, in general, the abnormality is reflected, reflecting that the operating unit is more likely to generate an abnormality than the stopped unit. The generated factor can be correctly estimated.
  • the reference (b) means that the size of the waveform separated by the estimation unit 11 (for example, the amplitude or effective value of the waveform) is larger in the unit m.
  • the input signal of the waveform separation device 10B is an electric power, an acoustic signal, vibration, a communication amount, or the like, generally, a larger signal is emitted when the unit is in operation than when it is stopped.
  • the abnormality location estimation unit 162 uses the reference (b) to reflect the situation that “the operating unit is more likely to generate an abnormality than the stopped unit”. Can be estimated correctly.
  • the reference (c) means that the unit m is performing a specific operation that is being repeated. For this reason, by using the reference (c) in the abnormal point estimation unit 162, for example, “a unit that is in the middle of performing a specific operation is more likely to be abnormal than a unit that is not so”. Therefore, the factor in which the abnormality has occurred can be correctly estimated.
  • the abnormal point estimation unit 162 outputs a high-priority factor / state pair (m, St (m) ) in which an abnormality has occurred. , -You may output one set with the highest priority, or -Multiple sets may be output in order of priority, or -You may make it output corresponding to the numerical value showing a priority to each group.
  • the abnormal point estimation unit 162 uses the state S t (m) corresponding to each factor m as a candidate for the combination of the factor and state (m, St (m) ) where the abnormality has occurred. Although only one is determined using Expression (7), a plurality of values may be used as the state S t (m) corresponding to each factor m.
  • the priority order may be determined by applying the standard (d) in combination with the above-mentioned standards (a) to (c), for example.
  • the abnormal point estimation unit 162 selects a probable candidate for the abnormality occurrence point. Can be output.
  • the operation of the waveform separation device 10B may be executed sequentially (online processing) every time the current waveform acquisition unit 13 acquires a waveform, or the current waveform acquisition unit 13 acquires the waveform. Of course, after holding a plurality of waveforms, they may be executed together (batch processing).
  • the fifth embodiment it is possible not only to separate the unit waveforms, but also to detect an abnormality that has occurred in the unit and to estimate the unit in which the abnormality has occurred.
  • Patent Documents 1-6 and Non-Patent Documents 1 and 2 above are incorporated herein by reference.
  • the embodiments and examples can be changed and adjusted based on the basic technical concept.
  • Various disclosed elements can be combined and selected within the scope of the claims of the present invention. That is, the present invention of course includes various variations and modifications that could be made by those skilled in the art according to the entire disclosure including the claims and the technical idea.
  • a storage device that stores a first state transition model having a section that transitions in one direction with one path as a model of the operation state of the unit;
  • a composite signal waveform of a plurality of units including a first unit that performs an operation based on (corresponding to) the first state transition model is received as an input, and at least the first state transition model is received from the composite signal waveform.
  • a waveform separation device comprising:
  • the plurality of units includes a second unit that is the same as or the same type as the first unit,
  • the estimation unit is configured based on the first state transition model corresponding to the first unit and the state transition model of the second unit with respect to the combined signal waveform of the first and second units.
  • the waveform separation apparatus according to appendix 1, wherein the signal waveform of the first unit and the signal waveform of the second unit are separated.
  • the first and second units are: First and second units in one facility constituting one production line, First and second facilities constituting one production line, A first unit of the first equipment constituting the first production line, and a second unit of the second equipment constituting the second production line, First and second home appliances,
  • the waveform separation device according to supplementary note 2, including any of the above.
  • the waveform separation device according to any one of appendices 1 to 4, further comprising: a current waveform acquisition unit that acquires a combined current waveform of the plurality of units as the combined signal waveform.
  • (Appendix 6) The waveform separation device according to any one of appendices 1 to 5, further comprising a model creation unit that creates a model of an operation state of the unit and stores the model in the storage device.
  • Appendix 7 The waveform separation device according to any one of appendices 1 to 6, wherein the previous state or the next state is estimated based on the first state transition model and a predetermined state.
  • Appendix 8 The waveform separation device according to any one of appendices 1 to 6, wherein a predetermined state is estimated from the first state transition model and a state before or after one.
  • a waveform separation method by a computer For a combined signal waveform of a plurality of units including a first unit that performs (corresponding) an operation based on a first state transition model having a section that transitions in one direction with one path, the first A waveform separation method characterized by estimating and separating the signal waveform of the first unit based on a state transition model.
  • the plurality of units include a second unit that is the same as or the same type as the first unit, and the first signal corresponding to the first unit with respect to a combined signal waveform of the first and second units. And an estimation step of separating the signal waveform of the first unit and the signal waveform of the second unit based on the state transition model of the second unit and the state transition model of the second unit. 10. The waveform separation method according to 10.
  • the first and second units are: First and second units in one facility constituting one production line, First and second facilities constituting one production line, A first unit of the first equipment constituting the first production line, and a second unit of the second equipment constituting the second production line, First and second home appliances, The waveform separation method according to appendix 11, wherein any one of the above is included.
  • Appendix 16 The waveform separation method according to any one of appendices 10 to 15, wherein the previous state or the next state is estimated based on the first state transition model and a predetermined state.
  • Appendix 17 The waveform separation method according to any one of appendices 10 to 15, wherein a predetermined state is estimated from the first state transition model and a state before or after one.
  • Appendix 18 18. The waveform separation method according to any one of appendices 10 to 17, wherein the model of the operation state of the unit corresponds to a factor of a Factory Hidden Markov Model (FHMM).
  • FHMM Factory Hidden Markov Model
  • a composite signal waveform of a plurality of units including a first unit that performs (corresponding) an operation based on a first state transition model having a section that transitions by one path in one direction is input.
  • the plurality of units includes a second unit that is the same as or the same type as the first unit,
  • the estimation processing is based on the first state transition model corresponding to the first unit and the state transition model of the second unit for the combined signal waveform of the first and second units,
  • the first and second units are: First and second units in one facility constituting one production line, First and second facilities constituting one production line, A first unit of the first equipment constituting the first production line, and a second unit of the second equipment constituting the second production line, First and second home appliances,
  • Appendix 23 The program according to any one of appendices 19 to 22, including a current waveform acquisition process for acquiring a combined current waveform of the plurality of units as the combined signal waveform.
  • Appendix 24 24.
  • Appendix 25 The program according to any one of appendices 19 to 24, wherein the previous state or the next state is estimated based on the first state transition model and a predetermined state.
  • Appendix 26 The program according to any one of appendices 19 to 24, wherein a predetermined state is estimated from the first state transition model and a state before or after one.
  • Appendix 27 The program according to any one of appendices 19 to 26, wherein the model of the operation state of the unit corresponds to a factor of a Factory Hidden Markov Model (FHMM).
  • FHMM Factory Hidden Markov Model
  • Appendix 28 The waveform separation device according to any one of appendices 1 to 9, further comprising an abnormality estimation unit that detects an abnormality of the unit from the signal waveform separated by the estimation unit or a predetermined state.
  • the abnormality estimation unit Calculating the degree of abnormality indicating the degree of occurrence of abnormality from the signal waveform separated by the estimation unit or the predetermined state, and determining the presence or absence of abnormality by comparing the degree of abnormality with a threshold value.
  • the waveform separation device according to appendix 28.
  • the abnormality estimation unit From the signal waveform or the predetermined state separated by the estimation unit, 30.
  • the abnormality estimation unit In accordance with an estimated value of the state corresponding to the time when the abnormality is detected, a priority order is set for the set of the factor and the state, The set of the factor and the state having the higher priority The waveform separation device according to appendix 30, wherein estimation is performed as one or both of the factor causing the abnormality and the state where the abnormality occurs.
  • the abnormality estimation unit As a standard for determining the priority, (A) the state is included in the section; (B) the norm of the weight vector of the factory hidden Markov model corresponding to the state has a large value; (C) The state is a state in which a specific time has elapsed from the start point of the section. (D) has a high probability that the state will occur; 32.
  • the abnormality estimation step includes: (Supplementary note 33) characterized in that, from the separated signal waveform or the predetermined state, an abnormality degree indicating an abnormality occurrence degree is calculated, and the presence or absence of abnormality is determined by comparing the abnormality degree with a threshold value.
  • the abnormality estimation step includes: From the separated signal waveform or the predetermined state, 35.
  • the abnormality estimation step includes: In accordance with an estimated value of the state corresponding to the time when the abnormality is detected, a priority order is set for the set of the factor and the state, The set of the factor and the state having the higher priority 36.
  • the abnormality estimation step includes: As a standard for determining the priority, (A) the state is included in the section; (B) the norm of the weight vector of the factory hidden Markov model corresponding to the state has a large value; (C) The state is a state in which a specific time has elapsed from the start point of the section. (D) has a high probability that the state will occur; 37.
  • the waveform separation method according to appendix 36 wherein at least one of the following is used.
  • Appendix 38 The program according to appendix 19, which causes the computer to execute an abnormality determination process for detecting an abnormality of the unit from the separated signal waveform or a predetermined state.
  • the abnormality estimation process includes: 39.
  • the program according to appendix 38 wherein from the separated signal waveform or the predetermined state, a degree of abnormality indicating a degree of occurrence of abnormality is calculated, and the presence or absence of abnormality is determined by comparing the degree of abnormality with a threshold value.
  • the abnormality estimation process includes: From the separated signal waveform or the predetermined state, 40.
  • the abnormality estimation process includes: In accordance with an estimated value of the state corresponding to the time when the abnormality is detected, a priority order is set for the set of the factor and the state, The set of the factor and the state having the higher priority 41.
  • the abnormality estimation process includes: As a standard for determining the priority, (A) the state is included in the section; (B) the norm of the weight vector of the factory hidden Markov model corresponding to the state has a large value; (C) The state is a state in which a specific time has elapsed from the start point of the section. (D) has a high probability that the state will occur; 42.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

合成信号波形から、例えば同一又はほぼ同じ構成のユニット間での信号波形の分離を可能とする。波形分離装置は、ユニットの動作状態のモデルとして、一方向に一本のパスで遷移する区間を有する第1の状態遷移モデルを記憶する記憶装置と、前記第1の状態遷移モデルに基づいて動作する第1のユニットを含む複数のユニットの合成信号波形を入力として受け、前記合成信号波形から、少なくとも前記第1の状態遷移モデルに基づき、前記第1のユニットの信号波形を推定して分離する推定部と、を備える。

Description

波形分離装置、方法、プログラム
[関連出願についての記載]
 本発明は、日本国特許出願:特願2016-177605号(2016年 9月12日出願)及び特願2017-100130号(2017年 5月19日出願)の優先権主張に基づくものであり、同出願の全記載内容は引用をもって本書に組み込み記載されているものとする。
 本発明は波形を分離する装置、方法、プログラムに関する。
 配電盤(分電盤)等で計測した電流から、電気機器の状態を非侵入的に推定する技術(Nonintrusive load monitoring:NILM、あるいはNon intrusive Appliance Load Monitoring:NIALM)が各種提案されている。
 例えば、特許文献1には、電力需要家の給電線引込口付近に設置した測定センサで検出した測定データから基本波並びに高調波の電流とそれらの電圧に対する位相に関するデータを取り出すデータ抽出手段と、前記データ抽出手段からの基本波並びに高調波の電流とそれらの電圧に対する位相に関するデータを基に、当該電力需要家が使用している電気機器の動作状態を推定するパターン認識手段とを備えた電気機器モニタリングシステムが開示されている。
 確率モデルに基づき波形分離を行う関連技術として、例えば特許文献2には、第1の電気機器を含む2以上の電気機器の電気信号の総和を表すデータを取得し、確率生成モデルを使用して前記データを処理することにより、前記第1の電気機器の稼働状態の推定値を生成し、前記第1の電気機器の電気信号の推定値を出力する。確率生成モデルは、前記第1の電気機器に対応するファクタであって、3以上の状態を有するファクタを有する。前記確率生成モデルはファクトリアルHMM(Factorial Hidden Markov Model:FHMM)からなる。前記ファクトリアルHMMは、前記2以上の電気機器の中の第2の電気機器に対応する第2のファクタを有し、前記ファクトリアルHMMを使用して、前記データを処理することにより、前記第2の電気機器の第2の電気信号の第2の推定値を生成し、前記第1の電気機器の電気信号の推定値の第1の個別分散を計算し、前記第1の個別分散を、前記第1の電気機器に対応するファクタのパラメータとして使用し、前記第2の電気機器の前記第2の電気信号の前記第2の推定値の第2の個別分散を計算し、前記第2の個別分散を、前記第2の電気機器に対応する前記第2のファクタのパラメータとして使用する。
 通常のHMM(Hidden Markov Model)では、時刻tの観測データYに対して1つの状態変数Sが対応するが、ファクトリアルHMMでは、状態変数SがS (1)、S (2)~S (M)と複数(M個)存在し、複数の状態変数S (1)~S (M)に基づき1つの観測データYが生成される。状態変数S (1)~S (M)はM個のそれぞれの電気機器に対応する。状態変数S (1)~S (M)の状態値は、電気機器の状態(動作状態、例えばオン、オフ)に対応する。HMMでは出力(観測データ)からパラメータを推定するために用いられるEM(Expectation-Maximization)アルゴリズムは、観測データの対数尤度を、E(Expectation)ステップとM(Maximization)ステップの繰り返しにより最大化するアルゴリズムであり、以下の1~3のステップを含む。
1.初期パラメータを設定する。
2.現在推定されている潜在変数の分布に基づいてモデルの尤度の期待値を計算する(Eステップ)。
3.Eステップで求まった尤度の期待値を最大化するようなパラメータを求める(Mステップ)。このMステップで求められたパラメータは、次のEステップで使われる潜在変数の分布を決定するために用いられ、期待値が収束する(増大しなくなる)まで2と3のステップを繰り返す。
 また、特許文献3には、複数の電気機器の消費電流の合計値の時系列データを取得するデータ取得手段と、取得された前記時系列データに基づいて、前記複数の電気機器の稼働状態を確率モデルによりモデル化したときのモデルパラメータを求めるパラメータ推定手段とを備える電気機器推定装置が開示されている。前記確率モデルは、ファクトリアルHMMである。前記データ取得手段は、取得された前記消費電流の合計値を非負のデータに変換し、前記パラメータ推定手段は、EMアルゴリズムによるパラメータ推定処理において、前記ファクトリアルHMMのファクタmの電流波形のパターンに対応する観測確率のパラメータW(m)が非負であるという制約条件の下で、前記ファクトリアルHMMが、前記時系列データが表す前記消費電流の合計値のパターンを説明する度合いである尤度関数を最大化することにより、前記モデルパラメータとしての観測確率のパラメータW(m)を求める。
 ここで、特許文献2に開示されているファクトリアルHMMを用いた波形分離の概略を説明しておく。図19は、特許文献2の図3に基づきその概略を例示する図である(構成要素及びその参照符号は特許文献2から変更されている)。波形分離学習では、各時刻tの総和データとしての電流波形Yが、各電気機器mで消費されている電流の電流波形W(m)の加算値(総和)であるとして、電流波形Yから、個々の電気機器mで消費されている電流波形W(m)が求められる。
 状態推定部212は、データ取得部211からの電流波形Yとモデル記憶部213に記憶された家庭内の家電全体のモデルである全体モデルのモデルパラメータφとを用いて、各家電の稼働状態を推定する状態推定を行う。
 モデル学習部214は、データ取得部211から供給される電流波形Yと、状態推定部212から供給される状態推定の推定結果(各家電の稼働状態)とを用いて、モデル記憶部213に記憶された全体モデルのモデルパラメータφを更新するモデル学習を行う。モデルパラメータφは、初期確率、分散、固有波形W(m)等を含む。
 モデル学習部214は、データ取得部211から供給される電流波形Yと、状態推定部212から供給される各家電の稼働状態とを用いて、モデルパラメータとしての電流波形パラメータを求める(更新する)波形分離学習を行い、波形分離学習によって得られる電流波形パラメータによって、モデル記憶部213に記憶された電流波形パラメータW(m)を更新する。
 モデル学習部214は、データ取得部211から供給される電流波形Yと、状態推定部212から供給される各家電の稼働状態とを用いて、モデルパラメータとしての分散パラメータを求める(更新する)分散学習を行い、その分散学習によって得られる分散パラメータによって、モデル記憶部213に記憶された分散パラメータCを更新する。
 モデル学習部214は、状態推定部212から供給される各家電の稼働状態を用いて、モデルパラメータφとしての初期状態パラメータ、及び、状態変動パラメータを求める(更新する)状態変動学習を行い、状態変動学習によって得られる初期状態パラメータ、及び、状態変動パラメータによって、モデル記憶部213に記憶された初期状態パラメータ、及び、状態変動パラメータをそれぞれ更新する。モデル記憶部213に記憶される全体モデルとしてはHMMを採用することができる。データ出力部216は、状態推定部212から供給される各家電の稼働状態、モデル記憶部213に記憶される全体モデルを用いて各家電モデルが表す家電の消費電力を求め表示装置等に表示する。
 さらに別の関連技術として、特許文献4には、需要地の引込線における所定箇所で測定した総負荷電流及び電圧に基づいて、総負荷電流の商用周波数1周期分における平均化した電流波形データを抽出し、該平均化した電流波形データから、電流値の変化が増加から減少に転じる点、又は減少から増加に転じる点を示す凸点に関する凸点情報を抽出する。推定部は、電気機器の種別と、凸点情報と、消費電力と、を対応付けた推定モデルを予め保持する。そして、推定部は、データ抽出部が抽出した凸点情報と、推定モデルと、に基づいて、動作中の電気機器の消費電力を個別に推定する。
 特許文献5には、1または複数の電力を消費する電気機器について計測された電流波形と電圧波形とを受信して、前記電気機器の電流波形から前記電気機器の消費電力を推定するための電力推定装置において、受信された前記電流波形と電圧波形のデータに基づき、前記電気機器ごとの電力を推定する電力推定部と、前記電気機器ごとの消費電力と前記消費電力の変動量の特徴を表す電力消費パターンを保持する保持部と、前記電力推定部が推定した電力が、前記保持部で保持された電力消費パターンと一致しているかを判定し、一致していないと判定した場合、前記電力消費パターンに従って前記電力を補正する推定電力補正部と、を備えた電力推定装置が開示されている。
 特許文献6に開示される機器消費電力推定装置は、機器特徴学習部と、機器特徴データベースと、動作状態推定部と、消費電力推定部とを備える。機器特徴学習部は、給電経路において測定された電圧と電流の時系列データから得られる電流または電力の高調波から機器の動作状態の特徴量を取得する。機器特徴データベースは、取得された機器の動作状態の特徴量を記憶する。動作状態推定部は、電流または電力の高調波から取得された高調波の特徴量と、前記機器特徴データベースに記憶された前記機器の動作状態の特徴量とに基づいて前記機器の動作状態を推定する。消費電力推定部は、推定された動作状態に基づいて前記機器の消費電力を推定する。
 なお、FHMM、EMアルゴリズム、Gibbs-Sampling等は例えば非特許文献1等が参照される。
特開2000-292465号公報 特開2013-213825号公報 特開2013-218715号公報 特開2011-232061号公報 特開2015-102526号公報 特開2016-017917号公報
Zoubin Ghahramani and Michael I. Jordan, "Factorial Hidden Markov Models", Machine Learning Volume 29, Issue 2-3, Nov./Dec. 1997 自然言語処理のための深層学習(Deep Learning for Natural Language Processing)、ボレガラ ダヌシカ(Danushka Bollegala)、人工知能学会論文誌27巻4号X(2012年)、<インターネット検索:2016/09/01、URL:https://cgi.csc.liv.ac.uk/~danushka/papers/DeepNLP.pdf>
 以下に関連技術の分析を与える。
 波形分離に関する上記関連技術においては、例えば、同一又はほぼ同じ構成の複数のユニットについて波形分離することができない。あるいは、波形分離ができたとしても精度が落ちる。また、例えば生産ラインのように、複数の同種機器があるような事例(システム)への波形分離の適用例はないというのが実情である。
 したがって、本発明は、上記課題に鑑みて創案されたものであって、その目的の一つは、合成信号波形から、例えば同一又はほぼ同じ構成のユニット間での信号波形の分離を可能とする波形分離装置、方法、及びプログラムを提供することにある。
 本発明の一つの側面によれば、ユニットの動作状態のモデルとして、一方向に一本のパスで遷移する区間を有する第1の状態遷移モデルを記憶する記憶装置と、前記第1の状態遷移モデルに基づいて動作する第1のユニットを含む複数のユニットの合成信号波形を入力として受け、前記合成信号波形から、少なくとも前記第1の状態遷移モデルに基づき、前記第1のユニットの信号波形を推定して分離する推定部と、を備えた波形分離装置が提供される。
 本発明の一つの側面によれば、コンピュータによる波形分離方法であって、一方向に一本のパスで遷移する区間を有する第1の状態遷移モデルに基づいて動作する第1のユニットを含む複数のユニットの合成信号波形に対して、前記第1の状態遷移モデルに基づき、前記第1のユニットの信号波形を推定して分離する波形分離方法が提供される。
 本発明の一つの側面によれば、一方向に一本のパスで遷移する区間を有する第1の状態遷移モデルに基づいて動作する第1のユニットを含む複数のユニットの合成信号波形を入力とし、前記第1の状態遷移モデルに基づき、前記第1のユニットの信号波形を推定して分離する処理を、コンピュータに実行させるプログラムが提供される。本発明によれば、上記プログラムを記憶したコンピュータ読み出し可能な記録媒体(例えばRAM(Random Access Memory)、ROM(Read Only Memory)、又は、EEPROM(Electrically Erasable and Programmable ROM)等の半導体ストレージ、HDD(Hard Disk Drive)、CD(Compact Disc)、DVD(Digital Versatile Disc)等のnon-transitory computer readable recording medium)が提供される。
 本発明の別の側面によれば、波形分離装置は、複数のユニットの合成信号波形から、複数のユニットの信号波形を推定して分離する推定部と、前記推定部でユニット毎に分離された信号波形を受け、前記信号波形または所定の状態から、異常の程度を表す異常度を算出し、前記ユニットの異常を検出する異常推定部を備えた構成としてもよい。
 本発明によれば、合成信号波形から、例えば同一又はほぼ同じ構成のユニット間での信号波形の分離を可能としている。
本発明の一形態の構成を説明する図である。 本発明の一形態を説明する図である。 本発明の一形態を説明する図である。 本発明の一形態を説明する図である。 比較例を説明する図である。 本発明の一形態を説明する図である。 本発明の一形態を説明する図である。 本発明の例示的な第1の実施形態のシステム構成の一例を説明する図である。 本発明の例示的な第1の実施形態の装置構成の一例を説明する図である。 本発明の例示的な第1の実施形態を説明する図である。 本発明の例示的な第1の実施形態を説明する図である。 本発明の例示的な第1の実施形態が適用されるマウンタの構成を説明する模式平面図である。 マウンタの2つのステージのモデルを説明する図である。 本発明の例示的な第1の実施形態の一具体例の合成電流波形と分離波形を示す図である。 本発明の例示的な第1の実施形態の一具体例の合成電流波形を示す図である。 本発明の例示的な第1の実施形態の一具体例の合成電流波形と分離波形を示す図である。 本発明の例示的な第1の実施形態の一具体例を説明する図である。 本発明の例示的な第1の実施形態の一具体例を説明する図である。 本発明の例示的な第2の実施形態の装置構成の一例を説明する図である。 本発明の例示的な第3の実施形態の装置構成の一例を説明する図である。 本発明の例示的な第3の実施形態の動作状態の遷移モデルの一例を説明する図である。 本発明の例示的な第4の実施形態の装置構成の一例を説明する図である。 波形分離の関連技術(特許文献2)を説明する図である。 本発明の例示的な第5の実施形態の装置構成の一例を説明する図である。 本発明の例示的な第5の実施形態の異常推定部を説明する図である。
 本発明の一形態について説明する。図1は、本発明の基本的な一形態を説明する図である。図1を参照すると、波形分離装置10は、ユニットの動作状態のモデルとして、一方向に一本のパス(状態遷移パス:一本道)で遷移する区間を有する第1の状態遷移モデルを記憶する記憶装置12(メモリ)と、前記第1の状態遷移モデルに対応した制約で動作する第1のユニットを含む複数のユニットの合成信号波形の測定結果を入力として受け、前記合成信号波形から、少なくとも前記第1の状態遷移モデルに基づき、前記第1のユニットの信号波形を推定して分離する推定部11(プロセッサ)を備えている。記憶装置12に記憶されるモデルは、ファクトリアルHMMのファクタであってもよい。
 本発明の一形態によれば、一方向の一本道区間は、図1のモデル121に模式的に示すように、状態(ノード)に入る辺(エッジ)が一本、当該状態(ノード)から出る辺(エッジ)が一本の状態を少なくとも一つ含む(図1のモデル121のn>=1に対応)。すなわち、一方向の一本道区間では、ある時刻で第1の状態(例えば図1のモデル122のp)であるとき、次の時刻では遷移確率1で第2の状態(図1のモデル122のp)に遷移する。なお、図1のモデル121における状態の数n≧1の区間と、括弧内のモデル122における状態の数n≧2の区間(複数の辺を入力とする状態p1から状態p2へは一方向で一本の状態遷移パスが存在)は等価である。
 本発明の一形態によれば、前記複数のユニットが、前記第1のユニットと同一又は同型の第2のユニットを含み、推定部11は、前記第1及び第2のユニットの合成信号波形に対して、前記第1のユニットの前記第1の状態遷移モデルと、前記第2のユニットの状態遷移モデルに基づき、前記第1のユニットの信号波形と、前記第2のユニットの信号波形を分離する構成としてもよい。
 本発明の一形態によれば、前記第1、第2のユニットは、
 一つの生産ラインを構成する一つの設備内の第1、第2のユニット、
 一つの生産ラインを構成する第1、第2の設備、
 第1の生産ラインを構成する第1の設備の第1のユニットと、第2の生産ラインを構成する第2の設備の第2のユニットのうちのいずれかを含む。あるいは、第1、第2のユニットは、同一又はほぼ同一構成の第1、第2のパソコン(Personal Computer:PC)等(第1、第2の家電製品)であってもよい。
 本発明の一形態によれば、波形分離対象の信号は、電流、電圧、電力等であってもよい。
 本発明の一形態によれば、動作制約が課せられる第1のユニットと、該第1のユニットと同一であるかほぼ同じ構成の第2のユニットを少なくとも含む複数のユニットの合成波形から、第1のユニットと第2のユニットの波形を分離可能としている。
 次に、図2A~図2C、図3、及び図4を参照して、図1を参照して説明した本発明の一形態における波形の推定動作について説明する。3つの状態からなるファクタが2つあるものとする(ファクタ1、2は、第1、第2のユニットに対応する)。ファクタ1、2は同じ構成を持っており、瞬時波形は同じであるものとする。
 図2Aの1-1、1-2、1-3は、ファクタの状態(1)、(2)、(3)の各ファクタの信号波形(例えば電流波形)である。
図2Aにおいて、
1-1は停止状態(状態(1))の波形(一定レベルを保持)を表し、
1-2はある加工動作(状態(2))の波形を表し、
1-3は別の加工動作(状態(3))の波形を表している。なお、図2Aの各波形1-1~1-3において、横軸は時間、縦軸は振幅(例えば電流の場合、電流値)を表している。
 ここで、ファクタ1には、次の制約Iと制約IIを課す。ただし、制約Iと制約IIのどちらか一方だけでもよい。
制約I:ある時刻tで状態(2)であるとき、次の時刻t+1では状態(3)である。
制約II:ある時刻tで状態(2)であるとき、前の時刻t-1では状態(1)である。
 図2Bは、ファクタ1の状態遷移図(2B-1)と遷移確率行列A(2B-2)を例示している。制約Iの一例として、図2Bに示すように、ファクタ1の状態遷移図(2B-1)において、状態(2)から流出する矢印は状態(3)に向かう1本のみである。遷移確率行列A(2B-2)の第2行でゼロでない列要素はa23(第2行第3列の要素:値1)のただ1つである。
 制約IIの一例として、図2Bに示すように、ファクタ1の状態遷移図(2B-1)において、状態(2)に流入する矢印は状態(1)からのただ1本である。遷移確率行列A(2B-2)の第2列でゼロでない要素はa12(第1行第2列の要素)のただ1つである。
 図2Cは、ファクタ2の状態遷移図(2C-1)と遷移確率行列B(2C-2)を例示している。状態(2)と状態(3)の間は一方向の一本道ではない。また、状態(1)と状態(2)の間も一方向の一本道ではない。また、ある時刻tで状態(2)であるとき、前の時刻t-1では、状態(1)、状態(2)、又は状態(3)である(遷移確率行列Bの第2行の要素b12、b22、b23は非零)。
 図3は、比較例(上記一形態の構成を採らない一例)を説明する図である。図3の3-1~3-5は、各サンプル時刻(t=1、2、3、4、5)で観測された、ファクタ1、2の合成波形である。各合成波形3-1~3-5の下には、各サンプル時刻(t=1、2、3、4、5)において、各合成波形に対応するファクタ1とファクタ2の状態の組み合わせが示されている。図3のファクタ1とファクタ2の状態の組み合わせにおいて、各波形の左上の(1)、(2)、(3)は、状態(1)、(2)、(3)の波形であることを表している。
 なお、ファクタ1とファクタ2の状態(1)~(3)の組み合わせ(3×3)と、合成波形の対応は、図5に模式的に示したようなものとなる。図5において、3×3の合成波形に付した(i,j)は、ファクタ1、2の状態がそれぞれ#j、#i(i=1~3,j=1~3)のときの合成波形であることを表している。
 図3において、波形だけみると、時刻t=2では、ファクタ1、2の状態として、(1)と(2)の組み合わせがあることがわかる。しかしながら、時刻t=2の合成波形を波形分離する場合、図5に例示されるように、ファクタ1が状態(1)、ファクタ2が状態(2)の場合と、ファクタ1が状態(2)、ファクタ2が状態(1)の場合の2つの可能性がある。時刻t=2において、波形の分析だけからは、ファクタ1とファクタ2のどちらが状態(1)でどちらが状態(2)であるのか分からない。
 同様に、時刻t=4では、ファクタ1、2の状態として、状態(1)と(3)の組み合わせがあることがわかる。しかしながら、ファクタ1とファクタ2のどちらが状態(1)でどちらが状態(3)であるのかわからない。
 一方、本発明の一形態のように、状態遷移に制約がある場合には、図4に示すように、時刻t=2において、ファクタ1とファクタ2の各状態が状態(1)、(2)のどちらであるかが分かる。また時刻t=4において、ファクタ1とファクタ2の各状態が状態(1)、(3)のどちらであるかが分かる。なお、図4の各時刻の合成波形4-1~4-5は、図3の各時刻の合成波形3-1~3-5と同一である。
 図4を参照すると、例えば、時刻t=3では、ファクタ1、2はともに状態(2)であることが確定する。ここで、ファクタ1に課せられた制約IIにより、ファクタ1において、状態(2)の前は、状態(1)である。したがって、図1の推定部11では、ファクタ1の時刻t=2の状態は状態(1)であることが確定する。よって、時刻t=2でのファクタ2は、状態(2)である。
 また、ファクタ1の制約Iにより、状態(2)の次の時刻では状態(3)であるから、時刻t=4でのファクタ1は状態(3)であることが確定する。よって、時刻t=4でのファクタ2は状態(1)である。なお、図5に模式的に示した、合成波形とファクタ1、2の状態の対応を記憶装置12に記憶保持しておいてもよい。
 このように、本発明の一形態によれば、状態遷移に制約を導入することで、同一構成のユニットの状態を確定することができる。
 また、上記した制約を用いることで、計算量的にも有利である。この点については後に説明する。
 以上、本発明の一形態の構成と動作原理を説明した。以下、いくつかの例示的な実施形態に即して説明する。
<例示的な第1の実施形態>
 図6には、例示的な第1の実施形態のシステム構成の一例として、生産ラインが模式的に例示されている。特に制限されないが、例示的な第1の実施形態では、生産ラインとしてSMT(Surface Mount Technology)ラインへの適用が説明される。
 図6を参照すると、ローダ(基板供給装置)105は、ラックに入れてセッティングした基板(生産基板)を、はんだ印刷機106に供給する。はんだ印刷機106は、基板のパッド上にメタルマスクを用いてクリームはんだを転写(印刷)する。検査機1(107)は、はんだ印刷した基板の外観を検査する。マウンタ1(108A)~マウンタ3(108C)は、クリームはんだを印刷した基板上に、表面実装部品を自動で実装する。リフロー炉109は、実装が終了した基板を炉内の上下ヒーターから加熱してはんだを溶かし部品を基板に固定する。検査機2(110)は外観を検査する。アンローダ111は、はんだ付けが終わった基板を自動的に基板ラック(不図示)へ収納する。
 電流センサ102は、分電盤103の例えば主幹に流れる電源電流(生産ラインの各設備の合成電源電流)を測定する。電流センサ102は、測定した電流波形(デジタル信号波形)を、通信装置101を介して波形分離装置10に送信する。電流センサ102は、CT(Current Transformer)(例えば零相変流器(Zero-phase-sequence Current Transformer:ZCT))やホール素子等で構成してもよい。電流センサ102は、不図示のアナログデジタル変換器で電流波形(アナログ信号)をサンプリングしてデジタル信号波形に変換し不図示の符号化器で圧縮符号化した上で通信装置101に、W-SUN(Wireless Smart Utility Network)等により、無線伝送するようにしてもよい。
 なお、通信装置101は工場(建屋)内に配置されてもよい。波形分離装置10は工場内に配置されてもよいし、通信装置101とインターネット等広域ネットワークを介して接続するクラウドサーバ上に実装するようにしてもよい。
 図7は、図6の波形分離装置10の構成の一例を説明する図である。図7において、電流波形取得部13は、電流センサ(図6の102)で取得した電源電流波形(複数の設備の合成電流波形)を取得する。電流波形取得部13は、不図示の通信部を備え、図6の通信装置101を介して電流センサから合成電流波形を取得するようにしてもよい。あるいは、電流波形取得部13は、予め不図示の記憶装置(波形データベース等)に記憶保持されている波形を読み出して合成電流波形を取得するようにしてもよい。
 記憶装置12は、図6のラインを構成する各設備(例えば、ローダ105、アンローダ111、はんだ印刷機106、検査機1、2(107、110)、マウンタ108A~108C、リフロー炉109等)における動作状態の遷移をモデル化した状態遷移モデルを記憶する。特に制限されないが、複数のユニットの状態遷移モデルを組み合わせたモデルは、例えばファクトリアルHMMモデルを構成してもよい。
 なお、例示的な第1の実施形態において、設備が同一の複数のユニットを有する場合、これらの波形分離を行うために、少なくとも一つのユニット(第1のユニット)の状態遷移モデルは、一方向の一本道の区間を含む状態遷移図に対応するモデルを含む。
 推定部11は、電流波形取得部13が取得した合成電源電流に対して、記憶装置12に記憶された状態遷移モデルに基づき、各ユニットの電源電流波形を推定して分離する。
 なお、図7において、記憶装置12に記憶されるモデル(状態遷移モデル)123、134の丸印は、観測されない(隠れた)状態(Hidden state){S}を表す。例えば時刻tでの状態変数Sが、ファクタ1からファクタMまで、S (1)、S (2)、・・・、S (M)と複数(M個)存在し、これら複数の状態変数S (1)~S (M)から1つの観測データYが生成される。M個の状態変数S (1)乃至S (M)は、M個のユニットに対応し、状態変数S (m)の状態値は、例えばユニットの動作状態を表している。なお、m番目の状態変数S (m)は、m番目のファクタ又はファクタmとも称される。
 第1のユニットのモデル123において、一方向の一本道の区間(状態p (1)~p (1))は、第1のユニットの状態は、ある時刻tでの状態(隠れ状態S (1))がp (1)であるとき、次の時刻t+1での状態(隠れ状態St+1 (1))は遷移確率=1でp (1)であるという第1のユニットの動作制約に対応している。なお、動作状態p (1)の肩の(1)は、ファクタ1を表し、状態変数S (1)の肩の(1)に対応させて表記したものである。第2のユニットのモデル124の動作状態p (2)の肩の(2)は、ファクタ2を表し、状態変数S (2)の肩の(2)に対応させて表記したものである。
 出力部14は、推定部11で推定分離された各ユニットの電流波形を表示装置等に出力する(後に説明される図11、図13)。出力部14は、ユニットの動作状態、分離電流波形に基づき、消費電力を求め表示装置等に表示するようにしてもよい。出力部14は、不図示のネットーク等を介して接続する端末に、ユニットの電流波形、電力を送信して表示させるようにしてもよい。
 第1の実施形態において、電流波形の推定分離対象となり、動作制約が課せられるユニット(状態遷移モデルが一方向の一本道の区間を含む)は、後に、図10を参照して説明されるように、図6の設備(例えばマウンタ)が複数のユニット(例えば同一構成の複数のユニット)を含む場合、当該ユニットであってもよい。あるいは、電流波形の推定分離対象となり、動作制約が課せられるユニットは設備であってもよい。あるいは、当該ユニットは、1つの生産ライン全体(例えば図6のSMTライン全体)であってもよい。あるいは、当該ユニットは、設備Aのあるユニットaと、設備Bのあるユニットbの組み合わせであってもよい。あるいは、当該ユニットは、同一のパソコン等、家電製品であってもよい。
 図8は、図6のSMTラインにおける3つのマウンタ1、2、3(108A-108C)の動作モデルを説明する図である。各マウンタは、待ち行列ネットワークとして表される。マウンタがサービスステーション、マウンタ間のコンベヤがバッファ(待ち行列)の役割をしている。マウンタは、基板が到着すると、プログラムにしたがって部品を基板に搭載する加工動作を行ったのち基板を排出する。マウンタから排出される基板はコンベアで後段の設備(次のマウンタ又はリフロー炉)へ搬送される。マウンタの出力側のバッファが一杯になるか(バッファ溢れ)、入力側のバッファが空になるか(バッファ枯渇)、マウンタ自身が何らかのエラー(例えばチップ切れなど)になると、処理は止まる。
 図9は、図8のマウンタの動作を表すモデルを説明する図である。「processing」(処理中)は、マウンタが1枚の基板を処理中であることを表している。「waiting:w」(待ち状態)は、マウンタが前後工程待ち(前工程から基板の到着を待つか、後工程に基板を搬出することを待つ)やエラーの復旧待ちを表している。図9において、状態Wから状態p~pを経て、状態Wに戻る1周に要する時間をサイクルタイムという。
 状態間の状態遷移確率P(S|St-1)は以下で与えられる。
 P(S=p|St-1=pk-1)=P(St=w|St-1=p)=1   ・・・(1)
 P(S=p|St-1=w)=α             ・・・(2)
 P(S=w|St-1=w)=1-α           ・・・(3)
 上式(1)は時刻t-1の状態変数St-1の値(動作状態)がpk-1であるとき、次の時刻tの状態変数Sの値(動作状態)がpに遷移する確率は1(k=1~T)、時刻t-1の状態変数St-1の値(動作状態)がpであるとき、次の時刻tの状態変数Sの値(動作状態)がWに遷移する確率は1であることを表している。
 上式(2)は、時刻t-1の状態変数St-1の値(動作状態)がw(待ち状態)であるとき、次の時刻tの状態変数Sの値(動作状態)がpに遷移する確率はα(0<α<1)であることを表している。
 上式(3)は、時刻t-1の状態変数St-1の値(動作状態)がw(待ち状態)であるとき、次の時刻tの状態変数Sの値(動作状態)がw(待ち状態)に遷移する確率は1-αであることを表している。
 第1の実施形態では、推定部11において、記憶装置12に記憶されるユニットの動作状態モデル(状態遷移モデル)を用いたユニット(ファクタ)の電流波形パラメータの推定と学習には、非特許文献1に記載されたEMアルゴリズム、Gibbsサンプリング、Completely factorized Variational inference、Structured Variational inference等を用いてもよいことは勿論である。このうち、特許文献3には、Completely factorized Variational inference、Structured Variational inferenceを用いた電流波形パラメータ等の推定処理の例が説明されている。なお、特許文献3では、Structured Variational inferenceがEステップとして例示され、これに対応するMステップは、Completely factorized Variational inferenceが用いられている。なお、特に制限されないが、第1の実施形態では、例えばStructured Variational inferenceが用いられる(非特許文献1参照)。
 Structured Variational inferenceでは、非特許文献1のAppendix Dにも記載されるように、確率分布の類似尺度であるカルバックライブラーダイバージェンス(Kullback-Leibler divergence)KLを最小化するパラメータh (m)を以下で求める。なお、非特許文献1のStructured Variational inferenceでは、カルバックライブラーダイバージェンスKLは以下で与えられる。

Figure JPOXMLDOC01-appb-I000001
                              (4)
 上式(4)のZは、観測シーケンスが与えられたときの事後確率の和を1とするための正規化定数、Zは、確率分布の正規化定数である(非特許文献1のAppendix Cの式(C.1)、(C.3)。なお、H({S、Y})、H({S})は、Appendix Cの式(C.2)、(C.4)に定義される)。

Figure JPOXMLDOC01-appb-I000002
 上式(4)をloghτ (m)で偏微分すると、次式(5)となる。

Figure JPOXMLDOC01-appb-I000003
                              (5)
Figure JPOXMLDOC01-appb-I000004
 カルバックライブラーダイバージェンスKLを最小化するh (m)は、上式(5)の括弧[]の中を0とおくことで、次式(6a)が求まる。なお、m=1~M(ファクタの数)について、式(6a)、(6b)を求める。

Figure JPOXMLDOC01-appb-I000005
                          (6a)
 ただし、Δ(m) =diagonal (W(m)’-1(m))である(diagonalは行列の対角成分)。
 残差 (m)は以下で定義される。

Figure JPOXMLDOC01-appb-I000006
                                       (6b)
 パラメータh (m)は、隠れマルコフモデルmにおける状態変数S (m)に関連した観測確率である。この観測確率と状態遷移確率行列Ai,j (m)を用いたフォーワードバックワードアルゴリズムを用いて、<S (m)>の期待値の新たなセットを求め、式(6a)、(6b)にフィードバックする。
 図9の例では、遷移確率行列Ai,j (m)の非零成分はT+2個である。このため、EMアルゴリスムのEステップの各反復の計算量はO(KTN)で済む(後述する<計算量削減効果>参照)。
 各時刻の状態推定は、観測データX(Y)を最もよく説明できるパラメータjを求めることなる(最尤推定)。

Figure JPOXMLDOC01-appb-I000007
                        (7)
 なお、式(7)の表記を非特許文献1に合わせて記載すると、

Figure JPOXMLDOC01-appb-I000008
                        (7’)
となる。
 ここで、表記に関して補足すると、図7の説明で用いたS (m)や式(4)等、非特許文献1における
Figure JPOXMLDOC01-appb-I000009
は、「1-of-N表現」と呼ばれるベクトルで表されている(非特許文献2参照)。状態数Mのとき、状態jを表す「1-of-M表現」のベクトルは、要素jのみが1で残りが0のベクトルになる。このベクトルの期待値をとると、各要素が、各状態をとる確率を表すベクトルになる。
Figure JPOXMLDOC01-appb-I000010
 ここで、右辺の
Figure JPOXMLDOC01-appb-I000011
は、式(7)の

Figure JPOXMLDOC01-appb-I000012
に対応している。すなわち、St,j (m)に関して以下が成り立つ。

(St,j (m)が1になる確率)=(時刻tのファクタmの状態がjである確率)
 次に、例示的な第1の実施形態の具体例として、図6の生産ラインにおいて、同一の複数のユニットの波形分離への適用例を説明する。
 図10Aは、マウンタ(例えば図8のマウンタ1)が前半ユニット(ステージ1)と後半ユニット(ステージ2)を備えた例を模式的な平面図で示す図である。マウンタ108において、電子部品は主にリールやトレーで供給され、リールは専用のフィーダに取り付け、トレーはトレーフィーダと呼ばれる装置にセットされる。基板1084A、1084Bは、コンベア1083で搬送され、ヘッド1082A、1082Bはフィーダ部1081A~1081Dから表面実装型電子部品を負圧で吸着し、XY軸上で移動して、基板1084A、1084B上の目的の場所に移動し該表面実装型電子部品を搭載する。なお、ステージあたり2ヘッドを有するものもある。ステージ1で部品が搭載された基板1084Aは、ステージ2で別の群の部品が搭載される。
 特に制限されるものではないが、ここでは、前半ユニットに、一定の動作制約が課されるものとする。図10Bは、図10Aの前半ユニット(ステージ1)の状態遷移モデル(5-1)と、図10Aの後半ユニット(ステージ2)の状態遷移モデル(5-2)を表す図である。
 図10Bにおいて、Wは、マウンタの基板待ち状態を表す。マウンタに入力側のコンベアから基板が搬送されてステージにセットされると状態pに遷移し、フィーダからヘッダが部品を取り出して基板上の所定の位置に搭載する処理を繰り返す。特に制限されないが、各状態を1つの部品のマウント処理に対応させると、例えばK個の部品を搭載する場合、K個の状態が一方向に遷移確率1で推移する。すなわち、p~p、C(完了:Completion)の状態に一方向で一本のパス(道)で遷移する。動作状態Cで当該ステージにおける部品のマウント動作が完了した基板は、排出され、後段に搬送される。1つの基板への部品搭載動作が完了すると、状態Wに遷移し、当該ステージに次の基板の到着を待つ。なお、部品の実装にはアルミ製のロボットアームを備えたマウンタもある。アームの先にあるノズルが例えばテープフィーダに乗っているチップ部品を吸い込む。図10Aの設備の遷移確率行列は、図10Bの状態遷移モデル(5-1)に対応する遷移確率行列に、図10Bの状態遷移モデル(5-2)に対応する遷移確率行列を掛け合わせた行列として表される。
 後半ユニット(ステージ2)の動作には、前半ユニット(ステージ1)のような動作制約は課さなくてもよい。あるいは、後半ユニット(ステージ2)の動作には、ステージ1と同様の動作制約は課してもよいことは勿論である。なお、ステージ1、2は、それぞれ独立に動作する構成としてもよい。あるいは、同期して動作してもよい。
 図11において、波形6Bは、合成電流波形6Aから、図10Bのモデルを用いて分離推定した前半ユニット(ステージ1)の電流波形を示している。なお、図11の電流波形6Bにおいて、一製品処理(約60秒)は、図10Bの前半ユニット(ステージ1)の状態遷移図5-1の状態p1~pk、cの期間に対応し、図11の電流波形6Bにおいて一製品処理(約60秒)の波形の間の時間は、図10Bの前半ユニット(ステージ1)の状態遷移図5-1の状態Wに対応する。
 図11において、波形6Cは、合成電流波形6Aから、電流波形6Bを差し引いて求めた後半ユニット(ステージ2)の電流波形を示している。なお、図11の電流波形6Cにおいて、一製品処理(約60秒)は、図10Bの後半ユニット(ステージ2)の状態遷移図5-2の状態p1~pk、cの期間に対応し、図11の電流波形6Cにおいて一製品処理(約60秒)の波形の間の時間は、図10Bの後半ユニット(ステージ2)の状態遷移図5-2の状態Wに対応する。
 なお、後半ユニット(ステージ2)の動作には、前半ユニット(ステージ1)と同様の動作制約を課した場合、後半ユニット(ステージ2)の電流波形も、前半ユニットと同様に求めることができる。
 図12は、マウンタのアームを動かすサーボドライバを主な発生源とする高調波成分が現れているのがわかる。バイモーダルな形状(ピークが2つ)としてあらわれているのが、マウンタのサーボドライバを主な発生源とする高調波成分の波形に対応する。以下では、この高調波成分をマウンタ3台の特徴量として抽出する。実施形態の具体的な一例として、高調波に現れるマウンタの特徴量をハイパスフィルタで取り出した。入力データに例えばハイパスFIR(Finite Impulse Response)フィルタをかけて、実効値(100ms(millisecond:ミリ秒)ごと)をとった。さらにハイパスフィルタをかけて、変動する成分のみを抽出した。この波形が、図13の7Aである。図13の波形7Aにおいて、横軸は時刻である。縦軸は、実効値(RMS:Root Mean Square value)である。
 図13において、波形7B~7Dは、推定部11で3つのファクタに推定分離した電流波形を表している。図13において、波形7B~7Dの横軸は、波形7Aの横軸と共通の時刻である。7B~7Dの横軸は信号の実効(RMS)である。ファクタの1つの繰り返し動作(矢印で示す範囲の波形)が1つの製品処理(約60秒)を表している。前述したように、例えば、図10Bの状態p~p、cの期間に対応する。ひとかたまりの波形(両矢印で示す一製品処理)と隣の波形(両矢印で示す一製品処理)の間の時間は、待ち状態(例えば、図10Bの待ち状態W)に対応する。特に制限されないが、図13の7B~7Dにおいても、一製品処理は約60秒である。
 なお、特に制限されないが、図7の推定部11においてはユニット(ファクタ)毎の波形分離学習を行う場合、図13の7A乃至7Dの信号波形に関して包絡線を用いて波形分離学習を行うようにしてもよい。
 図14において、8Bは、図13の7Bから7Dのファクタ1~ファクタ3の信号波形において、ファクタ3、ファクタ1、ファクタ2の順で対応する一製品処理の終了時点を線でつないで図式化したものであり(Estimation)、製品のフロー図に対応する。図14において、8Aは、マウンタ1、マウンタ2、マウンタ3について、ログデータから集めた結果(Actual)である。すなわち、マウンタ1、マウンタ2、マウンタ3の順で対応する一製品処理の終了時点を線でつないで図式化したものである。なお、一製品処理の開始時点を線でつないでもよい。
 図14において、図式8Aと8Bから、SMTライン(マウンタ)が止まっている状況が読み取れる。たとえば、時刻10:15頃は、マウンタ1、2、3の全ての入力側のバッファが空になってしまっている状況(バッファ枯渇)、時刻10:50頃は、マウンタ1、2、3の全ての出力側のバッファが一杯(バッファ溢れ)になってしまっている状況に対応する。7Bと7Aとを対比すると、互いに、よく一致していることがわかる。
 図15は、マウンタ1、2、3の平均サイクルタイム(実測値と推定値)とMAE(Mean Absolute Error:平均絶対誤差)の一例を示している。ここで、サイクルタイムは、マウンタで1つの製品(基板)の処理を開始してから、次の製品の処理を開始するまでの時間を表す。平均サイクルタイムは、サイクルタイムの平均であり、以下の式(8)で与えられる。

Figure JPOXMLDOC01-appb-I000013

                        (8)
 したがって、MAEは、1つ1つの製品のサイクルタイムがどのくらいずれているかを表す誤差を表している。
 第1の実施形態では、例えば1つのセンサで複数の生産設備の動作状態を見える化する手法への適用を例示した。
 上記のとおり、第1の実施形態は、生産ライン効率化のために有効である。 
 また、第1の実施形態では、各ファクタが設備のサイクル動作を表すファクトリアルHMMを基幹電流波形データに適用することにより、1つのセンサで生産ライン中の製品のフローを見える化した。
 サイクルタイムを推定したところ、例えば図15に示すように、誤差6.4%(=5.34/83.7=0.06451)~36.3%(30.46/83.8=0.3634)で推定できた。
 第1の実施形態によれば、同一又はほぼ同じ構成のユニットのうち、少なくとも一つのユニット(例えば前半ユニット(ステージ1))に動作制約を課す(状態遷移モデルに一方向の一本道区間を有する)ことで、複数のユニットの合成電流波形から、例えば同一又はほぼ同じ構成のユニット間での電流波形を分離することを可能としている。
<例示的な第2の実施形態>
 例示的な第2の実施形態として、図16に示すように、記憶装置12に記憶するモデル(125、126等)を作成するモデル作成部15を備えてもよい。モデル作成部15は、例えばクラスタ分析や主判別分析等の教師なし学習を行うことで、ユニットの状態遷移モデルを作成し記憶装置12に記憶する。このため、記憶装置12に格納するユニットのモデルを予め作成しておくことは必要とされない。
 モデル作成部15は、パラメータ学習機能を備えた構成としてもよい。パラメータ学習機能は、ユニットに課す一定の動作制約(一方向、一本道の区間を有する遷移状態モデル)を固定し、観測データ(例えば合成電流波形)から、推定部11の出力に基づき、パラメータの最適化問題として解く。最適化するパラメータとしては、一定の動作制約を課すユニットの状態遷移モデルの遷移確率等であってもよい。
 あるいは、モデル作成部15は、モデル構造学習機能を備えた構成としてもよい。モデル構造学習機能は、ユニットに課す一定の動作制約(一方向の一本道の区間を有する遷移状態モデル)の構造を、例えば初期設定値から順次可変させ、最適化問題として解く。変化させる一定の動作制約の構造としていくつかの制約(一方向、一本道の区間)を、どこの状態遷移で課すか等がある。ユニットに課す一定の動作制約を変化させ、観測データに基づく推定部11での波形の推定分離の結果に基づき、最良の波形分離を提供する動作制約を決定するようにしてもよい。記憶装置12の複数のユニット(ユニットm、ユニットn:m、nは互いに異なる所定の正整数)のモデル125、126は、モデル作成部15で作成された各ユニットの状態遷移モデルを示している。モデル125では、状態pm1~pm3が、ユニットmの動作制約に対応した一方向の一本道区間を構成している。なお、前記第1の実施形態と同様、これら複数のユニットの状態遷移モデルを組み合わせたモデルがファクトリアルHMMを構成するようにしてもよいことは勿論である。
 第2の実施形態によれば、モデル作成の自動化を可能とし、パラメータの最適化、モデル学習等により、モデルの精度の向上や適切な動作制約の設定を可能としている。
<変形例1>
 波形分離装置10、10Aにおいて、出力部14からの出力は、ユニット(ファクタ)の電源電流波形や電力(消費電力)ではなく、例えばVierbiアルゴリズムを用いて、ユニット(ファクタ)の状態列(動作状態:例えば図9のp~p)を出力してもよい。あるいは、動作状態として、それぞれのユニットが製品の処理を完了した時刻や、ある期間内の生産数等であってもよい。
<変形例2>
 さらに、波形分離装置10、10Aの入力として、電流・電力の、波形・周波数成分・主成分・実効値・平均値や力率などであってもよい。さらに、出力が電力以外(動作状態)の場合、電力以外の入力(音響信号、振動、通信量等)を取得する信号取得部を備えた構成としてもよい。
 前記第1、第2の実施形態では、主に、生産ラインの設備を例に説明したが、本発明の実施形態は、生産ラインの設備に制限されるものではなく、例えば家庭や企業のパソコン(PC)等であってもよい。
<例示的な第3の実施形態>
 次に、本発明の例示的な第3の実施形態について説明する。第3の実施形態では、分電盤に、同一の複数のパソコンが接続され、さらにプリンタ等が接続され、このうち同一のパソコンが複数接続されている場合の各機器毎の波形を分離する。例えば図17Aの分電盤22の主幹(又は分岐ブレーカ)に流れる電流を電流センサ23で検知した電源電流(分電盤22から分岐ブレーカ等を介して接続されるパソコン24A、24B、プリンタ25等を含む家電製品の合成電流波形)、又は、家屋20の引き込み口に設置されたスマートメータ26で取得した電流波形、電圧波形を、HEMS(Home Energy Management System)/BEMS(Building Energy Management System)コントローラ等の通信装置21を介して波形分離装置10に転送し、波形分離装置10でパソコンの電流波形の推定、動作状態の推定を行うようにしてもよい。
 一般に、パソコンの電源立ち上げ後の動作状態はユーザの使い方に依存し、一定の動作制約を課すことはほぼ不可能といえる。
 しかし、パソコンの電源オン(パワーアップ時)、電源オフ(シャットダウン時)の動作状態の推移は、基本的に一方向に一本道で推移する。例えば、型(モデル、機種等)が同一である場合や、OS(Operating System)が同一である場合、また、OSの起動後に自動で立ち上がるアプリケーションや、シャットダウン前に自動的に動作するアプリケーション等が同一である場合、該当するパソコンに関して、パワーアップシーケンスやシャットダウンシーケンスは、基本的に、同一である(トラブル等で立ち上がらない場合等は例外)。あるいは、着目するパソコンのパワーアップシーケンス、シャットダウンシーケンスの電源電流モニタ結果から、モデル作成部(図16の15)でモデルを作成してもよい。
 図17Bに示すように、ユニットの動作状態が、ある時刻で第1の状態にあるとき、時刻t+1で第2の状態にあるという制約(状態遷移が一方向で一本道の区間を有する)を、パワーアップシーケンス(例えば状態p11~p1S:Sは1以上の整数)とパワーダウンシーケンス(例えば状態p21~p2T:Tは1以上の整数)に適用する。なお、パワーアップシーケンス後は、状態Sにおいて、操作入力(コマンド入力)に応じて、状態Sに遷移し、コマンド処理を実行し、処理実行後、状態Sに遷移する。操作入力が、シャットダウンの場合、シャットダウンシーケンスに遷移する。ただし、パワーアップ後のパソコンの状態遷移は、状態S、S間の遷移に簡略化してある。
 第3の実施形態によれば、例えば複数の同一のパソコンの合成電流波形から、一定の動作制約のパソコンの波形を抽出することができる。この結果、同一パソコンの稼働状況(何時の電源オン、何時の電源オフ等)を推定することができる。
<例示的な第4の実施形態>
 図18は、例示的な第4の実施形態を説明する図である。例示的な第4の実施形態では、図1、図6、図7の波形分離装置10を、コンピュータ装置30で実現した構成を例示する図である。図18を参照すると、コンピュータ装置30は、CPU(Central Processing Unit)31、記憶装置(メモリ)32、表示装置33、通信インタフェース34を備える。記憶装置32は、例えばRAM、ROM、EEPROM等の半導体ストレージ、HDD、CD、DVD等であってもよい。記憶装置32は、CPU31で実行されるプログラムを格納する。CPU31は、記憶装置32に格納されてプログラムを実行することで、図1、図6、図7の波形分離装置10の機能を実現する。通信インタフェース34は、図6の通信装置101と通信接続する。同様に、CPU31は、記憶装置32に格納されてプログラムを実行することで、図16の波形分離装置10Aの機能を実現するようにしてもよい。
<計算量削減効果>
 前述したように、上記各例示的な実施形態では、ユニットの動作状態のモデル(状態遷移モデル)に、一方向で一本道の区間を含ませることで、同一構成の複数のユニットの波形を分離可能としている。すなわち、どのユニットがどの波形に対応するかを判別可能としている。さらに、状態遷移モデル)に、一方向で一本道の区間を含ませることで計算量が削減する。この点について以下に説明する。
 状態を推定する場合に用いられるフォーワードアルゴリズム、バックワードアルゴリズムでは、いずれも遷移確率行列と確率ベクトルの積演算が必要とされる。遷移確率行列Aはスパース行列(多くの成分が0)であるから、遷移確率行列Aと確率ベクトルPの積を計算する際、零成分を予め計算から除外することで計算量を大幅に削減することができる。

Figure JPOXMLDOC01-appb-I000014
                            (9)
 同様に、状態を推定する場合に用いられるViterbiアルゴリズムでは、遷移確率行列の要素と確率行列の要素の積の各列における最大値を求める演算が必要とされる。この場合も、確率行列の零成分を予め最大値の計算から除外することで、計算量を大幅に削減することができる。

Figure JPOXMLDOC01-appb-I000015

                            (10)
 これは、図2Bのような制約を課したとき、有り得ない状態遷移を除外することで、予め選択肢を絞り込むことに対応する。
 ある時刻tでファクタ1の状態変数S (1)の値が状態#i、ファクタ2の状態変数S (2)の値が状態#jである確率が

Figure JPOXMLDOC01-appb-I000016
                            (11)
で与えられたとき、次の時刻t+1でファクタ1の状態変数St+1 (1)の値が状態#k、ファクタ2の状態変数St+1 (2)の値が状態#lである確率は次式(12)で与えられる。

Figure JPOXMLDOC01-appb-I000017
                            (12)
 ここで、クロネッカー積

Figure JPOXMLDOC01-appb-I000018
は、A=(aij)をm×n行列、B=(bkl)をp×q行列とすると、

Figure JPOXMLDOC01-appb-I000019
                            (13)
のmp×nq区分行列である。
 例えば、図2Bの遷移確率行列A(3×3)、図2Cの遷移確率行列B(3×3)の場合(状態は#1、#2、#3)、以下で与えられる。

Figure JPOXMLDOC01-appb-I000020
                            (14)
 この行列は9×9=81個の要素のうち非零成分は54個である。フォーワードアルゴリズムまたはバックワードアルゴリズムで現れるこの行列・ベクトル積の計算、またはViterbiアルゴリズムで現れる最大値の計算において、零成分の演算をスキップすることで計算量を削減することができる。本実施形態の動作制約が増えると、非零成分はより少なくなり、計算時間は短縮する。
 次に、本実施形態によるStructured Variational InferenceのEステップの反復の計算量について説明する。
 行列-ベクトル積の計算量は、行列の非零成分の個数に比例する(上式9)。スパースでない通常のファクトリアルHMMの場合、遷移確率行列は、状態数Mに対して、遷移確率行列の非零成分はM^2個(^は冪乗演算子)となる。
 本実施形態においては、図9に示した例のように、状態がw、p、・・・、pのT+1個の場合、状態遷移は、w→p、p→p、 …、pT-1→p、p→w、w→wのT+2個になるので、計算量はTの(2乗ではなく)1乗のオーダーとなる。非特許文献1のStructured Variational InferenceのEステップは反復解法であり、各反復でフォアワード-バックワードアルゴリズムを実行する。この場合、遷移確率行列と確率ベクトルの積をKN回行うことになる。したがって、計算量のオーダーはO(KNT)となる。
<関連技術(特許文献2)の分析>
 次に、図19を参照して説明した関連技術(特許文献2)では、学習の結果、制約付きモデルがたまたま得られることはあり得ない。以下に説明する。
 関連技術(特許文献2)において、学習の結果、遷移確率行列の要素がたまたま零になることが起こるためには、Mステップにおける、状態遷移確率行列Ai,j (m)の更新式(特許文献2の式(15)ではAi,j (m)newはPi,j (m)new):

Figure JPOXMLDOC01-appb-I000021
                                            (15)
の右辺がゼロにならなければならない。
 なお、<St-1,i (m) t,j (m)>は、K×Kの事後確率<St-1 (m)t (m)>のi行j列の要素であり、ファクタmにおいて、時刻t-1に状態#iであるとき、次の時刻tで状態#jである状態確率を表す。<St-1、i (m)>は、時刻t-1に状態#iである状態確率を表す。
 Mステップでは、図19のモデル学習部214は、計測波形Y、事後確率<St (m)>、<St (m)t (n’)>を用いて波形分離学習を行うことで固有波形W(m)の更新値W(m)newを求める。次に、モデル学習部214は、計測波形Yt、事後確率<St (m)>、固有波形(更新値)W(m)を用いて、分散Cの更新値を求める。次に、モデル学習部214は、事後確率<St (m)>、<St-1 (m)t (m)’>を用いて、状態変動学習を行うことで、上記遷移確率の更新値Ai,j (m)newと初期状態確率π(m)の更新値π(m)newを求める。
 上式(15)の右辺の分子がゼロとなるためには、事後確率<St-1 (m)t (m)’>(特許文献2の式(11))

                                      (16)
の右辺の分子の和の中が全てゼロでなければならない。なお、P(z|w)は、状態の組み合わせwから状態の組み合わせzに遷移する確率である。状態の組み合わせwを構成するファクタ#1の状態#i(1)から状態の組み合わせzを構成するファクタ#1の状態#j(1)への遷移確率P(1) i(1),j(1)から状態の組み合わせwを構成するファクタ#Mの状態#i(M)から状態の組み合わせzを構成するファクタ#Mの状態#j(M)への遷移確率P(M) i(M),j(M)の積として求められる。なお、遷移確率P(S|St-1)は、次式(17)で与えられる。

Figure JPOXMLDOC01-appb-I000023
                                      (17)
 P(St (m)|St-1 (m))は、ファクタmにおいて、時刻t-1に状態St-1 (m)であるとき、時刻tに状態S (m)に遷移する確率である。
 観測確率P(Y|S)は以下で与えられる(特許文献2の式(4))。

Figure JPOXMLDOC01-appb-I000024
                                      (18)
 ダッシュ(’)は転置を表す。上式より、P(Y|z)>0である。
 ファクトリアルHMMの前向き確率αt-1,wと、ファクトリアルHMMの後向き確率βt,zは確率変数であることから、あるw、zが存在して、
 αt-1,w>0、βt,z>0
                                      (19)
となる。
 よって、「更新後の遷移確率行列の要素がゼロ」となるためには、「更新前の遷移確率行列の要素がゼロ」となる。
 すなわち、遷移確率行列の要素を、学習前からゼロとしないかぎり、学習後にゼロとはならない。以上から、本発明の例示的な実施形態で挿入された制約は、EMアルゴリズム等の公知の学習アルゴリズムで自動学習できるものではないことが示された。
<例示的な第5の実施形態>
 次に、本発明の例示的な第5の実施形態について、図20を参照して説明する。図20を参照すると、第5の実施形態における波形分離装置10Bは、異常推定部16を備える点で、前記第1、第2の実施形態の波形分離装置10、10Aと相違している。なお、前記第1、第2の実施形態で説明した構成と同様の機能を有する構成には同一の参照符号を付し、その説明を省略する。
 第5の実施形態の波形分離装置10Bの異常推定部16は、合成信号波形から状態遷移モデルに基づき、複数のユニットの信号波形を推定して分離する推定部11から分離された信号波形を受け、該信号波形または所定の状態から、ユニットの異常を検出する。前記状態遷移モデルは、ユニットの動作状態のモデルとして、好ましくは、一方向に一本のパスで遷移する区間を有する第1の状態遷移モデルを含む構成としてもよい。
 関連技術において、例えば電流などの波形を用いてシステムの異常監視を行う場合、該システムが複数のユニットから成る場合には、どのユニットで異常が発生したかを検知することは容易ではない。
 これは、ユニット1つ1つの信号波形を用いて異常監視を行う場合、それぞれのユニットごとに多数のセンサが必要とされ、このため、コストが上昇(高騰)するためでもある。また、各ユニットにセンサを設置する代わりに、複数のユニットを含むシステムの全体の波形(合成信号波形)を用いて異常監視を行う場合、該システム全体の波形から異常の発生を検出することはできても、その異常がどのユニットに起因しているかを検知することは容易ではないことにもよる。
 第5の実施形態によれば、複数のユニットからなるシステムにおいて、少数のセンサによって測定されたシステム全体の波形(複数のユニット合成信号波形)を、高い精度で、ユニットごとに、波形分離することで、異常がどのユニットで発生しているかを検知することができる。
 例えば、同一またはほぼ同じ構成のユニットが複数存在する場合など、関連技術では各ユニットへ波形を分離する際の分離精度が低くなってしまう状況においても、第5の実施形態によれば、異常が発生したユニットを精度よく検出することができる。 
 特に限定されないが、例えば複数のユニットが生産ラインを構成する設備である場合、「いつもと違う(異常)状況」を監視することで、設備の故障や、製品の品質異常を早期に発見、対処することができ、結果として、生産停止時間(ダウンタイム)の削減や、製品の歩留まりを向上することができる。
 また、別の例として、複数のユニットがパソコンである場合、「いつもと違う状況」を監視することで、例えばパソコンのマルウェア(不正ソフトウェア)への感染を早期に発見、対処することができる。結果として、情報セキュリティ上のリスクを低減することができる。
 上記のような例の場合、複数のユニット(生産設備、パソコン等)は、同一またはほぼ同じ構成を持っているという事態が往々に発生する。このような場合、単純な「いつもと違う状況」の監視のみでは、どのユニットのどの動作に異常が発生しているかを検出することは容易ではない。
 第5の実施形態によれば、例えば同一またはほぼ同じ構成のユニットが複数存在する場合であっても、どのユニットのどの動作に異常が発生しているかを検出することができる。
 図21は、第5の実施形態における異常推定部16を説明する図である。異常推定部16は、異常検知部161と、異常箇所推定部162を備えている。
 異常検知部161は、推定部11による信号波形の分離結果を元に、ユニット毎に分離された波形について、異常の発生の度合いを表す異常度を計算し、該異常度を、例えば予め定められた閾値と比較することにより、異常の有無を判定する。
 異常検知部161では、異常度の例として、例えば、時刻ごとのKLダイバージェンスを用いるようにしてもよい。時刻ごとのKLダイバージェンスは、式(4)における時刻tの寄与を抜き出したものであり、次式によって求めることができる。

Figure JPOXMLDOC01-appb-I000025
                             (20)
 ここで、変数<S (m)>およびh (m)の値は、例えば前記第1、第2の実施形態で説明した推定部11で推定された値が用いられる。この場合、時刻ごとのKLダイバージェンスは、モデルの分布と測定値Yとの相違の尺度を表しており、測定値に異常が含まれるほど、KLダイバージェンスは大きな値を持つと考えられる。
 このため、異常検知部161では、時刻ごとのKLダイバージェンスの値KLが予め定められた閾値(第1の閾値)よりも大きい値となるか否かによって、異常の発生を検知することができる。すなわち、異常検知部161はKLが第1の閾値よりも大きい場合、異常が発生したと判定する。
 また、異常度の別の例として、例えば、時刻ごとの周辺尤度(marginal likelihood)を用いてもよい。ここで、時刻ごとの周辺尤度は、時刻tにおいて測定値Yがモデルから得られる確率密度である。時刻ごとの周辺尤度Lは、例えば式(6b)によって求まる残差 (m)を用いることで、次式(21)で求められる。


Figure JPOXMLDOC01-appb-I000026
                           (21)
 この場合、測定値Yに異常が含まれるほど、時刻ごとの周辺尤度Lは小さな値を持つと考えられる。このため、異常検知部161では、時刻ごとの周辺尤度Lが予め定められた閾値(第2の閾値)よりも小さな値となるか否かによって、異常の発生を検知することができる。すなわち、異常検知部161はLが第2の閾値よりも小さい場合、異常が発生したと判定する。
 次に、異常推定部16の異常箇所推定部162では、どのユニット(ファクタ)で異常が発生したかを推定する。
 異常検知部161によって時刻tで異常が検知されたとき、各ファクタmはそれぞれ状態S (m)にある。このため、異常箇所推定部162では、異常が発生したファクタmと対応する状態S (m)の組(m,S (m))を推定することで、どのユニットの異常であるか、また、そのユニットのどの動作における異常であるかを推定することができる。
 ここで、各ファクタmに対して対応する状態S (m)の推定値として、例えば、推定部11における式(7)の値を用いることができる。
 こうすることで、異常箇所推定部162では、異常が発生したファクタmと状態S (m)の組(m,S (m))の候補として、m=1,・・・,MのM通りが求まる。
 次に、異常箇所推定部162は、異常が発生したファクタと状態の組(m,S (m))のM通りの候補のうち、状態S (m)の値に応じて優先順位をつける。
 そして、異常箇所推定部162は、優先順位の高いファクタと状態の組(m,S (m))を出力する。
 なお、異常箇所推定部162において、このような優先順位を定める基準としては、例えば、次に挙げる基準の1つまたは複数の組み合わせを用いてもよい(ただし、以下に制限されない)。
(a)状態S (m)は、モデル123(図7)における一定の動作制約区間の内部である。
(b)状態S (m)=jに対応する重みベクトルW (m)のノルムがより大きい値をもつ。
(c)状態S (m)は、モデル123(図7)における一定の動作制約区間の内部で、一定の動作制約の区間の始点からある時刻Δtだけ経過した状態である。
 ここで、基準(a)は、ユニットmが繰り返し動作を行っている途中であるということを意味する。このため、異常箇所推定部162において、基準(a)を用いることで、一般に、「動作中のユニットの方が停止中のユニットよりも異常が発生し易い」という事情を反映して、異常が発生しているファクタを正しく推定することができる。
 また、基準(b)は、推定部11によって分離された波形の大きさ(例えば、該波形の振幅や実効値等)がユニットmにおいてより大きいことを意味する。例えば、波形分離装置10Bの入力信号が電力や音響信号、振動、通信量等である場合、一般に、ユニットが動作中にある方が停止中に比べてより大きな信号を発する。このため、異常箇所推定部162において、基準(b)を用いることで、「動作中のユニットの方が停止中のユニットよりも異常が発生し易い」という事情を反映して、異常が発生しているファクタを正しく推定することができる。
 また、基準(c)は、ユニットmが繰り返し動作中のある特定の動作を行っていることを意味する。このため、異常箇所推定部162において、基準(c)を用いることで、例えば「ある特定の動作を行っている最中にあるユニットの方がそうでないユニットよりも異常が発生し易い」という事情を反映して、異常が発生しているファクタを正しく推定することができる。
 上記の例では、異常箇所推定部162が、異常が発生したファクタと状態の組(m,S (m))について、優先順位の高いものを出力しているが、その出力形態として、例えば、
・優先順位が最高である1組を出力してもよいし、あるいは、
・優先順位が高い順に複数の組を出力してもよいし、あるいは、
・それぞれの組に優先順位を表す数値を対応させて出力するようにしてもよい。
 また、上記の例では、異常箇所推定部162は、異常が発生したファクタと状態の組(m,S (m))の候補として、各ファクタmに対応する状態S (m)を、式(7)を用いてただ1つに定めているが、各ファクタmに対応する状態S (m)として複数の値を用いてもよい。
 この場合、ファクタmの状態がS (m)=jである確率は<St,j (m)>であることから、異常箇所推定部162において、異常が発生したファクタと状態の組(m,S (m))の優先順位を定める際に、新たな基準
(d)状態S (m)=jに対応する確率<St,j (m)>がより大きい値をもつ、
を設けるようにしてもよい。この基準(d)を、例えば前述の基準(a)~(c)と組み合わせて適用することにより、優先順位を決定するようにしてもよい。これにより、例えば、推定部11における波形分離の精度が悪化する状況が発生し、各ファクタの状態が1つに定まらない場合においても、異常箇所推定部162は、異常発生箇所の有力な候補を出力することができる。
 さらに、第5の実施形態において、波形分離装置10Bの動作は、電流波形取得部13が波形を取得する毎に逐次的に実行(オンライン処理)してもよいし、電流波形取得部13が取得した波形を複数保持した後に、まとめて実行(バッチ処理)してもよいことは勿論である。
 ここで、異常が発生してから検出されるまでの時間を短縮する必要がある場合、オンライン処理を行うことで、波形を保持する時間を削減することが望ましい。一方、異常推定の速度よりも精度が求められる場合、バッチ処理を行うことが望ましい。
 上記のように、第5の実施形態によれば、ユニットの波形を分離するのみならず、ユニットに発生した異常を検出し、さらには異常が発生したユニットを推定することができる。
 なお、上記の特許文献1-6、非特許文献1、2の各開示を、本書に引用をもって繰り込むものとする。本発明の全開示(請求の範囲を含む)の枠内において、さらにその基本的技術思想に基づいて、実施形態ないし実施例の変更・調整が可能である。また、本発明の請求の範囲の枠内において種々の開示要素(各付記の各要素、各実施例の各要素、各図面の各要素等を含む)の多様な組み合わせ乃至選択が可能である。すなわち、本発明は、請求の範囲を含む全開示、技術的思想にしたがって当業者であればなし得るであろう各種変形、修正を含むことは勿論である。
 上記した実施形態は以下のように付記される(ただし、以下に制限されない)。
(付記1)
 ユニットの動作状態のモデルとして、一方向に一本のパスで遷移する区間を有する第1の状態遷移モデルを記憶する記憶装置と、
 前記第1の状態遷移モデルに基づいた(対応した)動作を行う第1のユニットを含む複数のユニットの合成信号波形を入力として受け、前記合成信号波形から、少なくとも前記第1の状態遷移モデルに基づき、前記第1のユニットの信号波形を推定して分離する推定部と、
 を備えたことを特徴とする波形分離装置。
(付記2)
 前記複数のユニットが、前記第1のユニットと同一又は同型の第2のユニットを含み、
 前記推定部は、前記第1及び第2のユニットの合成信号波形に対して、前記第1のユニットに対応する前記第1の状態遷移モデルと前記第2のユニットの状態遷移モデルとに基づき、前記第1のユニットの信号波形と前記第2のユニットの信号波形とを分離する、ことを特徴とする付記1に記載の波形分離装置。
(付記3)
 前記第1の状態遷移モデルの前記区間に対応した制約動作として、前記第1のユニットは、ある時刻で第1の状態であるとき、次の時刻では遷移確率が1で第2の状態に遷移する、ことを特徴とする付記1又は2に記載の波形分離装置。
(付記4)
 前記第1、第2のユニットは、
 一つの生産ラインを構成する一つの設備内の第1、第2のユニット、
 一つの生産ラインを構成する第1、第2の設備、
 第1の生産ラインを構成する第1の設備の第1のユニットと、第2の生産ラインを構成する第2の設備の第2のユニット、
 第1、第2の家電製品、
 のうちのいずれかを含む、ことを特徴とする付記2に記載の波形分離装置。
(付記5)
 前記合成信号波形として、前記複数のユニットの合成電流波形を取得する電流波形取得部を含む、ことを特徴とする付記1乃至4のいずれか一に記載の波形分離装置。
(付記6)
 前記ユニットの動作状態のモデルを作成し前記記憶装置に記憶するモデル作成部をさらに含む、ことを特徴とする付記1乃至5のいずれか一に記載の波形分離装置。
(付記7)
 前記第1の状態遷移モデルと、所定の状態とに基づいて、1つ前又は1つ後の状態を推定する、ことを特徴とする付記1乃至6のいずれか一に記載の波形分離装置。
(付記8)
 前記第1の状態遷移モデルと、1つ前又は1つ後の状態とから、所定の状態を推定する、ことを特徴とする付記1乃至6のいずれか一に記載の波形分離装置。
(付記9)
 前記ユニットの動作状態のモデルは、ファクトリアル隠れマルコフモデル(Factorial Hidden Markov Model:FHMM)のファクタに対応する、ことを特徴とする付記1乃至8のいずれか一に記載の波形分離装置。
(付記10)
 コンピュータによる波形分離方法であって、
 一方向に一本のパスで遷移する区間を有する第1の状態遷移モデルに基づいた(対応した)動作を行う第1のユニットを含む複数のユニットの合成信号波形に対して、前記第1の状態遷移モデルに基づき、前記第1のユニットの信号波形を推定して分離する、ことを特徴とする波形分離方法。
(付記11)
 前記複数のユニットが、前記第1のユニットと同一又は同型の第2のユニットを含み、前記第1及び第2のユニットの合成信号波形に対して、前記第1のユニットに対応する前記第1の状態遷移モデルと前記第2のユニットの状態遷移モデルに基づき、前記第1のユニットの信号波形と、前記第2のユニットの信号波形とを分離する推定ステップを含む、ことを特徴とする付記10に記載の波形分離方法。
(付記12)
 前記第1の状態遷移モデルの前記区間に対応した制約動作として、前記第1のユニットは、ある時刻で前記第1の状態であるとき、次の時刻では遷移確率が1で前記第2の状態に遷移する、ことを特徴とする付記10又は11に記載の波形分離方法。
(付記13)
 前記第1、第2のユニットは、
 一つの生産ラインを構成する一つの設備内の第1、第2のユニット、
 一つの生産ラインを構成する第1、第2の設備、
 第1の生産ラインを構成する第1の設備の第1のユニットと、第2の生産ラインを構成する第2の設備の第2のユニット、
 第1、第2の家電製品、
 のうちのいずれかを含む、ことを特徴とする付記11に記載の波形分離方法。
(付記14)
 前記合成信号波形として、前記複数のユニットの合成電流波形を取得する電流波形取得ステップを含む、ことを特徴とする付記10乃至13のいずれか一に記載の波形分離方法。
(付記15)
 前記ユニットの動作状態のモデルを作成するモデル作成ステップをさらに含む、ことを特徴とする付記10乃至14のいずれか一に記載の波形分離方法。
(付記16)
 前記第1の状態遷移モデルと、所定の状態とに基づいて、1つ前又は1つ後の状態を推定する、ことを特徴とする付記10乃至15のいずれか一に記載の波形分離方法。
(付記17)
 前記第1の状態遷移モデルと、1つ前又は1つ後の状態とから、所定の状態を推定する、ことを特徴とする付記10乃至15のいずれか一に記載の波形分離方法。
(付記18)
 前記ユニットの動作状態のモデルは、ファクトリアル隠れマルコフモデル(Factorial Hidden Markov Model:FHMM)のファクタに対応する、ことを特徴とする付記10乃至17のいずれか一に記載の波形分離方法。
(付記19)
 一方向に一本のパスで遷移する区間を有する第1の状態遷移モデルに基づいた(対応した)動作を行う第1のユニットを含む複数のユニットの合成信号波形を入力とし、前記第1の状態遷移モデルに基づき、前記第1のユニットの信号波形を推定して分離する推定処理を、コンピュータに実行させるプログラム。
(付記20)
 前記複数のユニットが、前記第1のユニットと同一又は同型の第2のユニットを含み、
 前記推定処理は、前記第1及び第2のユニットの合成信号波形に対して、前記第1のユニットに対応する前記第1の状態遷移モデルと前記第2のユニットの状態遷移モデルとに基づき、前記第1のユニットの信号波形と前記第2のユニットの信号波形とを分離する、ことを特徴とする付記19に記載のプログラム。
(付記21)
 前記第1の状態遷移モデルの前記区間に対応した制約動作として、前記第1のユニットは、ある時刻で第1の状態であるとき、次の時刻では遷移確率が1で第2の状態に遷移する、ことを特徴とする付記19又は20に記載のプログラム。
(付記22)
 前記第1、第2のユニットは、
 一つの生産ラインを構成する一つの設備内の第1、第2のユニット、
 一つの生産ラインを構成する第1、第2の設備、
 第1の生産ラインを構成する第1の設備の第1のユニットと、第2の生産ラインを構成する第2の設備の第2のユニット、
 第1、第2の家電製品、
 のうちのいずれかを含む、ことを特徴とする付記21に記載のプログラム。
(付記23)
 前記合成信号波形として、前記複数のユニットの合成電流波形を取得する電流波形取得処理を含む、ことを特徴とする付記19乃至22のいずれか一に記載のプログラム。
(付記24)
 前記ユニットの動作状態のモデルを作成し前記記憶装置に記憶するモデル作成処理をさらに含む、ことを特徴とする付記19乃至23のいずれか一に記載のプログラム。
(付記25)
 前記第1の状態遷移モデルと、所定の状態とに基づいて、1つ前又は1つ後の状態を推定する、ことを特徴とする付記19乃至24のいずれか一に記載のプログラム。
(付記26)
 前記第1の状態遷移モデルと、1つ前又は1つ後の状態とから、所定の状態を推定する、ことを特徴とする付記19乃至24のいずれか一に記載のプログラム。
(付記27)
 前記ユニットの動作状態のモデルは、ファクトリアル隠れマルコフモデル(Factorial Hidden Markov Model:FHMM)のファクタに対応する、ことを特徴とする付記19乃至26のいずれか一に記載のプログラム。
(付記28)
 前記推定部が分離した前記信号波形または所定の状態から、前記ユニットの異常を検出する異常推定部をさらに備える、ことを特徴とする付記1乃至9のいずれか一に記載の波形分離装置。
(付記29)
 前記異常推定部は、
 前記推定部が分離した前記信号波形または前記所定の状態から、異常の発生度合いを表す異常度を計算し、前記異常度を閾値と比較することにより異常発生の有無を判定する、ことを特徴とする付記28に記載の波形分離装置。
(付記30)
 前記異常推定部は、
 前記推定部が分離した前記信号波形または前記所定の状態から、
 異常が発生しているファクタと異常が発生している状態のいずれか一方またはその双方を推定する、ことを特徴とする付記28又は29に記載の波形分離装置。
(付記31)
 前記異常推定部は、
 前記異常が検出された時刻に対応する状態の推定値に応じて、前記ファクタと前記状態の組に優先順位を定め、
 前記優先順位の高い前記ファクタと前記状態の組を、
 前記異常が発生しているファクタと異常が発生している状態のいずれか一方またはその双方として、推定する、ことを特徴とする付記30に記載の波形分離装置。
(付記32)
 前記異常推定部は、
 前記優先順位を定める基準として、
(a)前記状態は前記区間に含まれる、
(b)前記状態に対応する前記ファクトリアル隠れマルコフモデルの重みベクトルのノルムが大きい値をもつ、
(c)前記状態は前記区間の始点から特定の時間が経過した状態である、
(d)前記状態が発生する確率が大きい値をもつ、
の少なくとも1つを用いる、ことを特徴とする付記31に記載の波形分離装置。
(付記33)
 分離した前記信号波形または所定の状態から、前記ユニットの異常を検出する異常推定ステップを含む、ことを特徴とする付記10乃至18のいずれか一に記載の波形分離方法。
(付記34)
 前記異常推定ステップは、
 分離した前記信号波形または前記所定の状態から、異常の発生度合いを表す異常度を計算し、前記異常度を閾値と比較することにより異常発生の有無を判定する、ことを特徴とする付記33に記載の波形分離方法。
(付記35)
 前記異常推定ステップは、
 分離した前記信号波形または前記所定の状態から、
 異常が発生しているファクタと異常が発生している状態のいずれか一方またはその双方を推定する、ことを特徴とする付記33又は34に記載の波形分離方法。
(付記36)
 前記異常推定ステップは、
 前記異常が検出された時刻に対応する状態の推定値に応じて、前記ファクタと前記状態の組に優先順位を定め、
 前記優先順位の高い前記ファクタと前記状態の組を、
 前記異常が発生しているファクタと異常が発生している状態のいずれか一方またはその双方として、推定する、ことを特徴とする付記35に記載の波形分離方法。
(付記37)
 前記異常推定ステップは、
 前記優先順位を定める基準として、
(a)前記状態は前記区間に含まれる、
(b)前記状態に対応する前記ファクトリアル隠れマルコフモデルの重みベクトルのノルムが大きい値をもつ、
(c)前記状態は前記区間の始点から特定の時間が経過した状態である、
(d)前記状態が発生する確率が大きい値をもつ、
の少なくとも1つを用いる、ことを特徴とする付記36に記載の波形分離方法。
(付記38)
 分離した前記信号波形または所定の状態から、前記ユニットの異常を検出する異常判定処理を前記コンピュータに実行させる、付記19に記載のプログラム。
(付記39)
 前記異常推定処理は、
 分離した前記信号波形または前記所定の状態から、異常の発生度合いを表す異常度を計算し、前記異常度を閾値と比較することにより、異常発生の有無を判定する、付記38に記載のプログラム。
(付記40)
 前記異常推定処理は、
 分離した前記信号波形または前記所定の状態から、
 異常が発生しているファクタと異常が発生している状態のいずれか一方またはその双方を推定する、付記38又は39に記載のプログラム。
(付記41)
 前記異常推定処理は、
 前記異常が検出された時刻に対応する状態の推定値に応じて、前記ファクタと前記状態の組に優先順位を定め、
 前記優先順位の高い前記ファクタと前記状態の組を、
 前記異常が発生しているファクタと異常が発生している状態のいずれか一方またはその双方として、推定する、付記40に記載のプログラム。
(付記42)
 前記異常推定処理は、
 前記優先順位を定める基準として、
(a)前記状態は前記区間に含まれる、
(b)前記状態に対応する前記ファクトリアル隠れマルコフモデルの重みベクトルのノルムが大きい値をもつ、
(c)前記状態は前記区間の始点から特定の時間が経過した状態である、
(d)前記状態が発生する確率が大きい値をもつ、
の少なくとも1つを用いる、ことを特徴とする付記41に記載のプログラム。
1-1~1-3 波形
2B-1 ファクタ1の状態遷移図
2B-2 遷移確率行列
2C-1 ファクタ2の状態遷移図
2C-2 遷移確率行列
3-1~3-5 合成波形
4-1~4-5 合成波形
5-1 前半ユニット(ステージ1)の状態遷移図
5-2 後半ユニット(ステージ2)の状態遷移図
6A  合成電流波形
6B 前半ユニットの電流波形
6C 後半ユニットの電流波形
7A 合成電流波形
7B~7C 3つのファクタの電流波形
8A 図式
8B 図式
10、10A、10B 波形分離装置
11 推定部
12 記憶装置
13 電流波形取得部
14 出力部
15 モデル作成部
16 異常推定部
20 家屋
21 通信装置
22 分電盤
23 電流センサ
24A、24B パソコン(PC)
25 プリンタ
26 スマートメータ
30 コンピュータ装置
31 CPU
32 記憶装置
33 表示装置
34 通信インタフェース
100 電源(商用交流電源)
101 通信装置
102 電流センサ
103 分電盤
104 変圧器
105 ローダ
106 はんだ印刷機
107 検査機1
108 マウンタ
108A マウンタ1
108B マウンタ2
108C マウンタ3
109 リフロー炉
110 検査機2
111 アンローダ
121~126 モデル(状態遷移モデル)
161 異常検知部
162 異常箇所推定部
211 データ取得部
212 状態推定部
213 モデル記憶部
214 モデル学習部
216 データ出力部
1081A~1081D フィーダ
1082A、1082B ヘッド
1083 コンベア
1084A、1084B 基板

Claims (20)

  1.  ユニットの動作状態のモデルとして、一方向に一本のパスで遷移する区間を有する第1の状態遷移モデルを記憶する記憶装置と、
     前記第1の状態遷移モデルに基づいて動作する第1のユニットを含む複数のユニットの合成信号波形を入力として受け、前記合成信号波形から、少なくとも前記第1の状態遷移モデルに基づき、前記第1のユニットの信号波形を推定して分離する推定部と、
     を備えたことを特徴とする波形分離装置。
  2.  前記複数のユニットが、前記第1のユニットと同一又は同型の第2のユニットを含み、
     前記推定部は、前記第1及び第2のユニットの合成信号波形に対して、前記第1のユニットに対応する前記第1の状態遷移モデルと前記第2のユニットの状態遷移モデルとに基づき、前記第1のユニットの信号波形と前記第2のユニットの信号波形とを分離する、ことを特徴とする請求項1に記載の波形分離装置。
  3.  前記第1の状態遷移モデルの前記区間に対応した制約動作として、前記第1のユニットは、ある時刻で第1の状態であるとき、次の時刻では遷移確率が1で第2の状態に遷移する、ことを特徴とする請求項1又は2に記載の波形分離装置。
  4.  前記第1、第2のユニットは、
     一つの生産ラインを構成する一つの設備内の第1、第2のユニット、
     一つの生産ラインを構成する第1、第2の設備、
     第1の生産ラインを構成する第1の設備の第1のユニットと、第2の生産ラインを構成する第2の設備の第2のユニット、
     第1、第2の家電製品、
     のうちのいずれかを含む、ことを特徴とする請求項2に記載の波形分離装置。
  5.  前記合成信号波形として、前記複数のユニットの合成電流波形を取得する電流波形取得部を含む、ことを特徴とする請求項1乃至4のいずれか1項に記載の波形分離装置。
  6.  前記ユニットの動作状態のモデルを作成し前記記憶装置に記憶するモデル作成部をさらに含む、ことを特徴とする請求項1乃至5のいずれか1項に記載の波形分離装置。
  7.  前記第1の状態遷移モデルと、所定の状態とに基づいて、1つ前又は1つ後の状態を推定する、ことを特徴とする請求項1乃至6のいずれか1項に記載の波形分離装置。
  8.  前記第1の状態遷移モデルと、1つ前又は1つ後の状態とから、所定の状態を推定する、ことを特徴とする請求項1乃至6のいずれか1項に記載の波形分離装置。
  9.  前記ユニットの動作状態のモデルは、ファクトリアル隠れマルコフモデル(Factorial Hidden Markov Model:FHMM)のファクタに対応する、ことを特徴とする請求項1乃至8のいずれか1項に記載の波形分離装置。
  10.  前記推定部が分離した前記信号波形または所定の状態から、前記ユニットの異常を検出する異常推定部をさらに備える、ことを特徴とする請求項1乃至9のいずれか1項に記載の波形分離装置。
  11.  前記異常推定部は、
     前記推定部が分離した前記信号波形または所定の状態から、異常の発生度合いを表す異常度を計算し、前記異常度を閾値と比較することにより異常発生の有無を判定する、ことを特徴とする請求項10に記載の波形分離装置。
  12.  前記異常推定部は、
     前記推定部が分離した前記信号波形または所定の状態から、
     異常が発生しているファクタと異常が発生している状態のいずれか一方またはその双方を推定する、ことを特徴とする請求項10又は11に記載の波形分離装置。
  13.  前記異常推定部は、
     前記異常が検出された時刻に対応する状態の推定値に応じて、前記ファクタと前記状態の組に優先順位を定め、
     前記優先順位の高い前記ファクタと前記状態の組を、
     前記異常が発生しているファクタと異常が発生している状態のいずれか一方またはその双方として、推定する、ことを特徴とする請求項12に記載の波形分離装置。
  14.  前記異常推定部は
     前記優先順位を定める基準として、
    (a)前記状態は前記区間に含まれる、
    (b)前記状態に対応する前記ファクトリアル隠れマルコフモデルの重みベクトルのノルムが大きい値をもつ、
    (c)前記状態は前記区間の始点から特定の時間が経過した状態である、
    (d)前記状態が発生する確率が大きい値をもつ、
    の少なくとも1つを用いる、ことを特徴とする請求項13に記載の波形分離装置。
  15.  コンピュータによる波形分離方法であって、
     一方向に一本のパスで遷移する区間を有する第1の状態遷移モデルに基づいて動作する第1のユニットを含む複数のユニットの合成信号波形に対して、前記第1の状態遷移モデルに基づき、前記第1のユニットの信号波形を推定して分離する、ことを特徴とする波形分離方法。
  16.  前記複数のユニットが、前記第1のユニットと同一又は同型の第2のユニットを含み、前記第1及び第2のユニットの合成信号波形に対して、前記第1のユニットに対応する前記第1の状態遷移モデルと前記第2のユニットの状態遷移モデルに基づき、前記第1のユニットの信号波形と、前記第2のユニットの信号波形とを分離する、ことを特徴とする請求項15に記載の波形分離方法。
  17.  前記第1の状態遷移モデルの前記区間に対応した制約動作として、前記第1のユニットは、ある時刻で前記第1の状態であるとき、次の時刻では遷移確率が1で前記第2の状態に遷移する、ことを特徴とする請求項15又は16に記載の波形分離方法。
  18.  分離した前記信号波形または所定の状態から、前記ユニットの異常を検出する、ことを特徴とする請求項15乃至17のいずれか1項に記載の波形分離方法。
  19.  一方向に一本のパスで遷移する区間を有する第1の状態遷移モデルに基づいて動作する第1のユニットを含む複数のユニットの合成信号波形を入力とし、前記第1の状態遷移モデルに基づき、前記第1のユニットの信号波形を推定して分離する処理を、コンピュータに実行させるプログラム。
  20.  分離した前記信号波形または所定の状態から、前記ユニットの異常を検出する異常判定処理を前記コンピュータに実行させる、請求項19に記載のプログラム。
PCT/JP2017/032704 2016-09-12 2017-09-11 波形分離装置、方法、プログラム WO2018047966A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/331,193 US20190277894A1 (en) 2016-09-12 2017-09-11 Waveform disaggregation apparatus, method and non-transitory medium
JP2018538499A JP7156029B2 (ja) 2016-09-12 2017-09-11 波形分離装置、方法、プログラム

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016177605 2016-09-12
JP2016-177605 2016-09-12
JP2017-100130 2017-05-19
JP2017100130 2017-05-19

Publications (1)

Publication Number Publication Date
WO2018047966A1 true WO2018047966A1 (ja) 2018-03-15

Family

ID=61562336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032704 WO2018047966A1 (ja) 2016-09-12 2017-09-11 波形分離装置、方法、プログラム

Country Status (3)

Country Link
US (1) US20190277894A1 (ja)
JP (1) JP7156029B2 (ja)
WO (1) WO2018047966A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113779342A (zh) * 2021-09-16 2021-12-10 南方电网科学研究院有限责任公司 一种故障波形库增殖方法、装置、电子设备及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0990980A (ja) * 1995-09-27 1997-04-04 Sanyo Electric Co Ltd 音声認識方法
JPH10111862A (ja) * 1996-08-13 1998-04-28 Fujitsu Ltd 再帰型ニューラルネットワークに基づく時系列解析装置および方法
JP2001125589A (ja) * 1999-10-28 2001-05-11 Atr Interpreting Telecommunications Res Lab 音響モデル学習装置、音響モデル変換装置及び音声認識装置
JP2007536050A (ja) * 2004-05-07 2007-12-13 アイシス イノヴェイション リミテッド 信号解析法
JP2012003494A (ja) * 2010-06-16 2012-01-05 Sony Corp 情報処理装置、情報処理方法及びプログラム
US20130132316A1 (en) * 2011-11-21 2013-05-23 Jinjun Wang Substructure and Boundary Modeling for Continuous Action Recognition
JP2013213825A (ja) * 2012-03-30 2013-10-17 Infometis Co Ltd 電気機器をモニタするための方法、及び、モニタ装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007003296A (ja) * 2005-06-22 2007-01-11 Toenec Corp 電気機器モニタリングシステム
JP4535398B2 (ja) * 2007-08-10 2010-09-01 国立大学法人名古屋大学 在宅者の行動・安否確認システム
JP5598200B2 (ja) * 2010-09-16 2014-10-01 ソニー株式会社 データ処理装置、データ処理方法、およびプログラム
CN106170708B (zh) * 2014-03-13 2017-09-22 斋藤参郎 个体电设备工作状态估计装置及其方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0990980A (ja) * 1995-09-27 1997-04-04 Sanyo Electric Co Ltd 音声認識方法
JPH10111862A (ja) * 1996-08-13 1998-04-28 Fujitsu Ltd 再帰型ニューラルネットワークに基づく時系列解析装置および方法
JP2001125589A (ja) * 1999-10-28 2001-05-11 Atr Interpreting Telecommunications Res Lab 音響モデル学習装置、音響モデル変換装置及び音声認識装置
JP2007536050A (ja) * 2004-05-07 2007-12-13 アイシス イノヴェイション リミテッド 信号解析法
JP2012003494A (ja) * 2010-06-16 2012-01-05 Sony Corp 情報処理装置、情報処理方法及びプログラム
US20130132316A1 (en) * 2011-11-21 2013-05-23 Jinjun Wang Substructure and Boundary Modeling for Continuous Action Recognition
JP2013213825A (ja) * 2012-03-30 2013-10-17 Infometis Co Ltd 電気機器をモニタするための方法、及び、モニタ装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113779342A (zh) * 2021-09-16 2021-12-10 南方电网科学研究院有限责任公司 一种故障波形库增殖方法、装置、电子设备及存储介质
CN113779342B (zh) * 2021-09-16 2023-05-16 南方电网科学研究院有限责任公司 一种故障波形库增殖方法、装置、电子设备及存储介质

Also Published As

Publication number Publication date
US20190277894A1 (en) 2019-09-12
JP7156029B2 (ja) 2022-10-19
JPWO2018047966A1 (ja) 2019-06-27

Similar Documents

Publication Publication Date Title
JP6609050B2 (ja) 時間的因果グラフにおける異常フュージョン
JP6374466B2 (ja) センサインタフェース装置、測定情報通信システム、測定情報通信方法、及び測定情報通信プログラム
JP5872732B2 (ja) 電力系統制御システムおよびそれに用いる分散コントローラ
JP6901039B2 (ja) モデル構造選択装置、方法、ディスアグリゲーションシステムおよびプログラム
JP6290255B2 (ja) 機器状態推定装置、機器消費電力推定装置、およびプログラム
US9921628B2 (en) Power converter for a computer device and method for operating a power converter
CN107408062A (zh) 用于卸载和加载处理器/协处理器安排的数据的技术
WO2013145778A2 (en) Data processing apparatus, data processing method, and program
JP2006197795A (ja) 複数のタイム・フレームに関して電力測定および省電力を行うための方法、システム、および調整技術
JP6003091B2 (ja) 電圧監視装置および電圧監視方法
Alahmad et al. Non-intrusive electrical load monitoring and profiling methods for applications in energy management systems
US20170063085A1 (en) PRE-CONFIGURATION AND INTEGRATION OF IEDs IN SUBSTATION AUTOMATION SYSTEMS
EP4133431A1 (en) Providing an alarm relating to an accuracy of a trained function method and system
US20150355698A1 (en) System and method for determining power loads
WO2018047966A1 (ja) 波形分離装置、方法、プログラム
JP6756603B2 (ja) 電力系統の状態推定装置および状態推定方法
WO2015083397A1 (ja) 演算装置
JP6436329B2 (ja) 分散型電源の状態検知プログラム、記録媒体、監視端末及び通信装置
CN107121616B (zh) 一种用于对智能仪表进行故障定位的方法和装置
JP2015199342A (ja) プリンタデバイス電力消費プロファイリング、および、それを使用する電力管理システム
CN115890684A (zh) 一种机器人调度方法、装置、设备及介质
Shetty et al. A hybrid prognostic model formulation and health estimation of auxiliary power units
CN114330437A (zh) 一种故障检测方法及故障分类模型的训练方法、装置
CN103076494A (zh) 耗电测量装置及其方法
Konakalla et al. Robustness to missing synchrophasor data for power and frequency event detection in electric grids

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17848904

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018538499

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17848904

Country of ref document: EP

Kind code of ref document: A1