WO2018047870A1 - 光学レンズ、プロジェクター、及び光学レンズの製造方法 - Google Patents

光学レンズ、プロジェクター、及び光学レンズの製造方法 Download PDF

Info

Publication number
WO2018047870A1
WO2018047870A1 PCT/JP2017/032143 JP2017032143W WO2018047870A1 WO 2018047870 A1 WO2018047870 A1 WO 2018047870A1 JP 2017032143 W JP2017032143 W JP 2017032143W WO 2018047870 A1 WO2018047870 A1 WO 2018047870A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
lens
incident
optical
filter layer
Prior art date
Application number
PCT/JP2017/032143
Other languages
English (en)
French (fr)
Inventor
智春 増田
謙至 酒井
Original Assignee
セイコーエプソン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セイコーエプソン株式会社 filed Critical セイコーエプソン株式会社
Publication of WO2018047870A1 publication Critical patent/WO2018047870A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details

Definitions

  • the present invention relates to an optical lens, a projector, and an optical lens manufacturing method.
  • a light source device a color separation device that separates light emitted from the light source into red, green, and blue color light, and an image corresponding to image information by modulating each color light separated by the color separation device.
  • a projector including a light modulation device to be formed and a projection optical device that enlarges and projects a formed image onto a projection surface such as a screen is known.
  • a projector including a relay optical device that is arranged on an optical path of green light having a long optical path length among optical paths of each color light separated by a color separation apparatus is known (for example, a patent) Reference 1).
  • a color light component in a predetermined wavelength region included in green light is interposed between the dichroic mirror constituting the color separation device and the third relay lens constituting the relay optical device.
  • An optical element for selective reduction is located.
  • the filter layer is formed on the lens curved surface
  • the incident angle of the light incident on the filter layer varies depending on the position of the lens curved surface, so that the light incident on the filter layer passes through the filter layer.
  • the distance apparent layer thickness
  • the optical characteristics of the filter layer are different.
  • the layer thickness is uneven.
  • the optical characteristics of the filter layer vary depending on the position where light enters. For this reason, a lens in which a filter layer is formed on the lens curved surface has a problem that the optical characteristics of the filter layer differ depending on the unevenness of the layer thickness and the difference in the incident angle of light incident on the filter layer.
  • An object of the present invention is to solve at least a part of the above-described problems, and to provide an optical lens, a projector, and a method for manufacturing an optical lens that can suppress a difference in optical characteristics of a filter layer. Is one of the purposes.
  • the optical lens according to the first aspect of the present invention includes a curved incident surface on which light is incident, a curved emitting surface from which the light incident from the incident surface is emitted, the incident surface, and the emitting surface. And a filter layer that changes the optical characteristics of the incident light, and the filter layer is substantially flat.
  • the filter layer located between the incident surface and the emission surface is configured by a substantially flat surface
  • the incident angle of light incident through the incident surface (curved surface) of the optical lens is When it is substantially constant, the optical characteristics of the filter layer do not change at any position in the center and the periphery of the lens. Therefore, the light incident from the incident surface of the filter layer can be emitted from the emission surface as substantially uniform light within the surface.
  • the thickness (film thickness) of the filter layer is likely to be uneven.
  • the filter layer located between an entrance plane and an output surface is comprised by the substantially plane, possibility that the nonuniformity of the said film thickness will arise can be reduced. Therefore, even when the filter layer has an incident angle dependency, it is possible to reduce the possibility of uneven color and illuminance unevenness of light emitted by being changed by the filter layer.
  • the filter layer is positioned substantially parallel to a plane orthogonal to the optical axis of the optical lens. According to such a configuration, since the filter layer is positioned substantially parallel to the surface orthogonal to the optical axis of the optical lens, it is possible to easily design an optical lens including the filter layer. In addition, since the optical lens can be manufactured simply by providing the filter layer on the surface orthogonal to the optical axis of the optical lens, the optical lens can be easily manufactured.
  • the incident surface is any one of a convex surface protruding in a direction opposite to the incident direction of the light and a concave surface recessed in the incident direction, and the emitting surface is along the incident direction of the light. It is preferable that the convex surface protrudes in the direction opposite to the incident direction.
  • the optical lens is any one of a biconvex lens, a biconcave lens, and an uneven lens.
  • the optical lens in which the filter layer is arranged is any one of the biconvex lens, the biconcave lens, and the concavo-convex lens, the range in which the optical lens can be applied can be expanded.
  • the filter layer reduces light in a predetermined wavelength region out of the incident light.
  • a lens that also functions as an infrared cut filter, an ultraviolet cut filter, and a color filter can be configured.
  • a lens including an infrared cut filter can be used as a lens that reduces light in the infrared wavelength region
  • a lens including an ultraviolet cut filter is used as a lens that reduces light in the ultraviolet wavelength region.
  • a lens including a color filter can be used as a bandpass filter or the like that reduces light having a wavelength other than a predetermined wavelength, that is, transmits only light having a predetermined wavelength. Therefore, the possibility of applying the optical lens can be further expanded.
  • a projector includes a light source, a plurality of light modulation devices that respectively modulate the plurality of color lights, a projection optical device that projects light modulated by the plurality of light modulation devices, and the light source. And the above optical lens disposed between at least one of the plurality of light modulation devices.
  • the optical element when the optical element is separately disposed between the light source and at least one of the plurality of light modulation devices, the number of parts increases, and the luminance and projection of the color light incident on the light modulation device due to the increase in the interface. The brightness of the image light emitted from the optical device is reduced.
  • an increase in the number of components can be suppressed, and the increase in the interface reduces the luminance of the color light incident on the light modulation device. Can be suppressed, and as a result, it is possible to suppress a decrease in the luminance of the image light emitted from the projection optical device.
  • a color separation device that separates light emitted from the light source into a plurality of color lights, and an optical path length to the corresponding light modulation device among the plurality of color lights separated by the color separation device.
  • the relay optical device preferably includes the optical lens. According to such a configuration, even when the relay optical device is formed of a plurality of lenses that do not include a flat surface, an optical lens having a substantially flat filter layer can be disposed.
  • the degree of freedom in designing the relay optical device can be increased, and the optical characteristics of the filter layer depending on the display position can be improved without causing an increase in the number of parts and a decrease in luminance.
  • the difference can be suppressed, and color unevenness and brightness unevenness can be suppressed.
  • the relay optical device includes a plurality of lenses including the optical lens, and the optical lens among the plurality of lenses is disposed at a position where a light ray angle distribution in the relay optical device is the smallest. It is preferable.
  • the position where the light ray angle distribution is the smallest means that the light ray angle distribution is substantially uniform, that is, the incident angle of light incident on the position is substantially constant.
  • the optical lens (filter layer) is disposed at a position where the light ray angle distribution is the smallest in the relay optical device, that is, a position where light having substantially the same light ray angle is incident. The incident light is incident at substantially the same angle with respect to the filter layer at both the central and peripheral positions.
  • the method of manufacturing an optical lens according to the third aspect of the present invention includes light incident on the first flat surface of a first lens having a first curved surface and a first flat surface located on the opposite side of the first curved surface.
  • the filter layer that changes the optical characteristics of the light incident on the flat surface of the first lens having the first curved surface and the first flat surface is formed, and the first flat surface and the second flat surface are formed.
  • the optical lens can be formed only by integrating the first lens and the second lens with the surfaces facing each other. As described above, the optical lens can be formed by the two steps of the forming step and the fixing step, and thus the optical lens can be easily manufactured.
  • the method of manufacturing an optical lens according to the fourth aspect of the present invention includes a forming step of forming a filter layer that changes the optical characteristics of light incident on one of the two substrates, and the 2 A bonding step of bonding two substrates, and a processing step of processing at least one of the outer surfaces of the two substrates into a curved surface.
  • a processing step of processing at least one of the outer surfaces of the two substrates into a curved surface there can exist an effect similar to the manufacturing method of the optical lens which concerns on the said 3rd aspect.
  • the outer surfaces of the two substrates are processed into a curved surface after the two substrates are bonded together, for example, it is not necessary to precisely position the two substrates in the bonding step. Therefore, the optical lens can be easily manufactured.
  • FIG. 1 is a perspective view showing an external appearance of a projector according to an embodiment of the invention.
  • FIG. 2 is a schematic diagram showing a configuration of an image forming apparatus that constitutes the apparatus main body in the embodiment.
  • the schematic diagram which shows the structure of the relay optical apparatus in the said embodiment.
  • the figure which shows an example of the manufacturing method of the relay lens in the said embodiment.
  • FIG. 1 is a perspective view showing an external appearance of a projector 1 according to the present embodiment.
  • the projector 1 according to the present embodiment modulates light emitted from a light source device 41 (see FIG. 2) provided therein to form an image according to image information, and the image is a projection surface such as a screen. It is an image display device that projects an enlarged image.
  • the projector 1 includes an exterior housing 2 that forms an exterior, and an apparatus main body that is accommodated in the exterior housing 2.
  • the projector 1 is characterized in that the relay lens 5 having a filter layer 53 therein is used as one of the lenses constituting the relay optical device 44 (see FIG. 3).
  • the relay lens 5 having a filter layer 53 therein is used as one of the lenses constituting the relay optical device 44 (see FIG. 3).
  • the outer casing 2 includes an upper case 2A that constitutes the upper part of the outer casing 2, a lower case 2B that constitutes the lower part, a front case 2C that constitutes the front part, and a rear case 2D that constitutes the rear part. These are combined to form a substantially rectangular parallelepiped shape.
  • the exterior housing 2 includes a top surface portion 21, a bottom surface portion 22, a front surface portion 23, a back surface portion 24, a left side surface portion 25, and a right side surface portion 26.
  • An opening 211 for inserting and removing a light source device 41 to be described later is formed at positions on the back surface 24 side and the left side surface 25 side of the top surface portion 21, and the opening 211 is slidably provided on the left side surface portion 25 side.
  • the lamp cover 212 is closed.
  • the bottom surface portion 22 is provided with four leg portions 221 (only one leg portion 221 is shown in FIG. 1) that is in contact with the installation surface.
  • An opening 231 through which an image passes is formed in the approximate center of the front portion 23, exposing a part of a projection optical device 46 (see FIG. 2) to be described later.
  • an intake port 232 is formed in a portion of the front portion 23 on the right side surface portion 26 side
  • an exhaust port 233 is formed in a portion of the left side surface portion 25 side.
  • the + Z direction is the direction from the back surface portion 24 toward the front surface portion 23 (the traveling direction of light projected from the projection optical device 46).
  • the + Y direction is the direction from the bottom surface portion 22 toward the top surface portion 21, and the + X direction is the direction from the left side surface portion 25 toward the right side surface portion 26.
  • the direction opposite to the + Z direction is taken as the ⁇ Z direction.
  • the projection direction of the image by the projector 1 is a direction along the + Z direction as viewed from the + Y direction side.
  • FIG. 2 is a schematic diagram illustrating a configuration of the image forming apparatus 4 that constitutes a part of the apparatus main body.
  • the apparatus main body constitutes the main body of the projector 1.
  • the apparatus main body includes an image forming apparatus 4 shown in FIG.
  • the apparatus main body cools the control device that controls the operation of the projector 1, the power supply device that supplies power to the electronic components that constitute the projector 1, and the cooling object that constitutes the projector 1.
  • a cooling device is provided.
  • the image forming apparatus 4 forms and projects an image according to image information under the control of the control device.
  • the image forming apparatus 4 includes a light source device 41, a uniformizing device 42, a color separation device 43, a relay optical device 44, an electro-optical device 45, a projection optical device 46, and an optical component casing 47. Is provided.
  • these devices 41 to 46 are combined with an optical component casing 47 to form a substantially L-shaped optical unit, and are arranged along the + X direction and the + Z direction.
  • the light source device 41 emits light in the + X direction toward the homogenizing device 42.
  • the light source device 41 includes an arc tube 411, a main reflecting mirror 412, and a collimating lens 413.
  • the light source device 41 may be a light source device including a solid light source (laser light source) and a phosphor.
  • the homogenizer 42 equalizes the illuminance in a plane orthogonal to the central axis of the light beam emitted from the light source device 41.
  • the homogenizer 42 includes a cinema filter 421, a first lens array 422, a dimmer 423, a second lens array 424, a polarization conversion element 425, and a superimposing lens 426 in the order of incidence of light beams from the light source device 41. Note that the homogenizing device 42 may not include the cinema filter 421 and the light control device 423.
  • the color separation device 43 separates the light beam incident from the uniformizing device 42 into three color lights of red, green, and blue.
  • the color separation device 43 includes dichroic mirrors 431 and 432 and a reflection mirror 433.
  • the dichroic mirror 431 uses the dielectric multilayer film to convert the light beam incident from the homogenizer 42 into blue light and light longer than the wavelength region of blue light (including red light and green light). Separated into light).
  • blue light includes light in a wavelength region (about 435 nm or more and less than about 500 nm) strictly defined as blue light and light in a wavelength region shorter than that (about 435 nm or less).
  • Blue light is reflected by the dichroic mirror 431, and light on the longer wavelength side than the wavelength region of blue light including red light and green light passes through the dichroic mirror 431.
  • the blue light reflected by the dichroic mirror 431 is reflected by the reflection mirror 433 and emitted toward a blue light field lens 451 described later.
  • the dichroic mirror 432 transmits the light on the long wavelength side (including green light and red light) transmitted through the dichroic mirror 431 to light on the short wavelength side of the wavelength region of red light by the dielectric multilayer film.
  • the light is separated into light having a wavelength region of red light or higher.
  • the dichroic mirror 432 separates the light into green light (about 500 nm or more and less than about 590 nm) and light containing red light (about 590 nm or more and less than about 680 nm) longer than the wavelength region of the green light. .
  • the green light is reflected by the dichroic mirror 432 and emitted toward the green field lens 451.
  • light in the wavelength region of red light that has passed through the dichroic mirror 432 is emitted toward the relay optical device 44.
  • the relay optical device 44 is provided on an optical path of red light having a long optical path from the dichroic mirror 431 to the corresponding light modulation device 453 compared to the other color lights (blue light and green light) among the three separated color lights.
  • the red light is relayed to the electro-optical device 45.
  • This relay optical device 44 prevents a reduction in light use efficiency due to, for example, the divergence of red light whose optical path length is longer than the optical path lengths of the other color lights.
  • the detailed configuration of the relay optical device 44 will be described later.
  • the electro-optical device 45 modulates the separated color lights according to the image information, and then synthesizes the color lights.
  • the electro-optical device 45 includes a field lens 451 that is a plano-convex lens into which each of blue light and green light is incident, an incident-side polarizing plate 452 provided for each color light, and a light modulation device 453 (for red, green, and blue).
  • the light modulators 453R, 453G, and 453B) and the output-side polarizing plate 454, and a color synthesizer 455 that combines the modulated color lights to form a projected image.
  • each light modulation device 453 is configured by a transmissive liquid crystal panel in the present embodiment, and the color synthesis device 455 is configured by a cross dichroic prism.
  • the electro-optical device 45 does not include a field lens on which red light is incident. This is because the emission side lens 442 constituting the relay optical device 44 functions as the field lens.
  • the projection optical device 46 enlarges and projects the formed projection image along the + Z direction, and displays the projection image on the projection surface.
  • the projection optical device 46 is configured as a combined lens including a plurality of lenses (not shown) and a lens barrel 461 that accommodates the plurality of lenses therein.
  • the optical component casing 47 is not shown in detail, but a light source storage portion in which the light source device 41 is disposed, and a component storage member in which the optical components and field lenses 451 constituting the devices 42 to 44 are disposed. And a lid-like member combined with the component storage member, and a support member combined with the component storage member and supporting the projection optical device 46.
  • An illumination optical axis Ax which is a designed optical axis, is set inside the optical component casing 47, and the devices 41 to 46 are arranged at predetermined positions on the illumination optical axis Ax. The For this reason, the central axis of the light emitted from the light source device 41 coincides with the illumination optical axis Ax.
  • FIG. 3 is an enlarged schematic diagram showing the relay optical device 44. 2 and 3, the relay optical device 44 includes an incident side lens 441, an output side lens 442, a relay lens 5, and reflection mirrors 443 and 444, which are disposed on the illumination optical axis Ax. ing.
  • the red light travels in the + X direction while passing through the incident side lens 441.
  • the red light is reflected to the + Z direction side by the reflection mirror 443 and travels in the + Z direction while passing through the relay lens 5.
  • the red light is reflected to the ⁇ X direction side by the reflection mirror 444, passes through the emission side lens 442, and is incident on the incident-side polarizing plate 452 for red light.
  • each of the entrance side lens 441, the exit side lens 442, and the relay lens 5 has a curved surface on both the entrance surface and the exit surface.
  • each of the incident side lens 441, the emission side lens 442, and the relay lens 5 is configured by a so-called biconvex lens.
  • the incident side lens 441 is disposed to face the dichroic mirror 432 at the position where the relay optical device 44 is incident on the red light, that is, on the ⁇ X direction side.
  • the reflection mirror 443 is disposed at a position on the + X direction side of the incident side lens 441 and is disposed, for example, in a state inclined by 45 ° with respect to the exit surface of the incident side lens 441.
  • the reflection mirror 443 receives the red light transmitted through the incident side lens 441 and emits the red light toward the + Z direction, that is, toward the relay lens 5.
  • the relay lens 5 is disposed at a position on the + Z direction side of the reflection mirror 443, changes the optical characteristics of the red light incident from the reflection mirror 443, and outputs the red light toward the reflection mirror 444.
  • the reflection mirror 444 is disposed at a position on the + Z direction side of the relay lens 5 and is disposed, for example, in a state inclined by 45 ° with respect to the emission surface 521 of the relay lens 5.
  • the reflection mirror 444 receives the red light transmitted through the relay lens 5 and emits the red light toward the ⁇ X direction, that is, toward the emission side lens 442.
  • the exit side lens 442 is a field lens disposed at a position on the ⁇ X direction side of the reflection mirror 444.
  • the red light reflected by the reflection mirror 444 is incident on the exit side lens 442, and the red light is incident on the entrance side polarizing plate 452 for red via the exit side lens 442.
  • the relay lens 5 is a biconvex lens corresponding to the optical lens of the present invention, and is positioned between the reflection mirrors 443 and 444 as described above. As shown in FIG. 3, the relay lens 5 includes a first lens element 51, a second lens element 52, and a filter layer 53, which are formed by integrating them.
  • the first lens element 51 has a plano-convex lens-like configuration formed of glass or the like. Specifically, the first lens element 51 has an incident surface 511 and a flat surface 512 corresponding to the first flat surface.
  • the incident surface 511 is a lens curved surface (first curved surface) on which red light reflected by the reflecting mirror 443 is incident, and is configured by a convex surface protruding toward the opposite direction side to the incident direction of red light (+ Z direction).
  • the flat surface 512 is a flat surface located on the opposite side (+ Z direction side) to the incident surface 511, and the filter layer 53 is formed on the flat surface 512.
  • the flat surface 512 is formed substantially parallel to the optical axis orthogonal plane (XY plane) of the relay lens 5.
  • the filter layer 53 is formed of a filter having a function of reducing light in the infrared wavelength region of incident red light, that is, an infrared cut filter.
  • the second lens element 52 is made of glass or the like, and is configured like a plano-convex lens like the first lens element 51.
  • the second lens element 52 has an emission surface 521 corresponding to a second flat surface and a flat surface 522.
  • the exit surface 521 is a curved surface (second curved surface) from which the red light incident through the entrance surface 511 and transmitted through the filter layer 53 is emitted, and protrudes in a direction along the incident direction (+ Z direction) of the red light. It is constituted by a convex surface.
  • the flat surface 522 is a flat surface located on the opposite side ( ⁇ Z direction side) to the emission surface 521, and the adhesive layer 54 (see FIG. 4) is deposited on the flat surface 522. Further, like the flat surface 512, the flat surface 522 is formed substantially parallel to the optical axis orthogonal surface (XY plane) of the red light incident via the incident surface 511.
  • the filter layer 53 is a substantially flat surface sandwiched between the flat surface 512 and the flat surface 522 and fixed by the adhesive layer 54. As described above, since the flat surface 512 and the flat surface 522 are formed substantially parallel to the optical axis orthogonal surface, the filter layer 53 is also in the relay lens 5 with respect to the optical axis orthogonal surface. It is formed substantially in parallel. As a result, the red light incident through the incident surface 511 becomes red light having a small ray angle distribution in the first lens element 51 (red light substantially parallel to the optical axis), and is substantially in the filter layer 53. Incident vertically.
  • the filter layer 53 is provided on a plane (flat surface 512) that is substantially orthogonal to the illumination light axis Ax of red light, the angle is substantially the same at both the center and the periphery of the relay lens 5.
  • the possibility that the red light is incident on the filter layer 53 is increased.
  • the red light incident through the incident surface 511 of the relay lens 5 is reduced in the infrared wavelength region at both the center and the peripheral positions, and the infrared wavelength region light is reduced.
  • the red light is emitted toward the reflection mirror 444 via the emission surface 521, that is, in the + Z direction.
  • the relay lens 5 Since the relay lens 5 includes the filter layer 53, the relay lens 5 is disposed at a position where the light source angle distribution of light incident on the filter layer 53 is small, that is, a position where substantially parallel light is incident on the filter layer 53. Need to be done.
  • the incident side lens 441 to which red light from the color separation device 43 is incident first may diffuse red light when color separation is performed by the dichroic mirror 432 of the color separation device 43. Therefore, there is a possibility that the arrangement position of the incident side lens 441 is a position with a large ray angle distribution. Further, the red light from the color separation device 43 is incident on the exit side lens 442 which is condensed and diffused by changing the optical characteristics of the red light by the relay lens 5.
  • the relay lens 5 is located at a position where each of the incident side lens 441, the emission side lens 442, and the relay lens 5 in the relay optical device 44 is disposed, as shown in FIGS. Among them, the light beam angle distribution is arranged at the smallest position. In other words, among the plurality of lenses (incident side lens 441, outgoing side lens 442, and relay lens 5) included in the relay optical device 44, the relay lens 5 is between the incoming side lens 441 and the outgoing side lens 442, that is, a filter.
  • the layer 53 is disposed at a position where red light having the smallest ray angle distribution is incident.
  • the red light having the smallest light angle distribution is incident on the relay lens 5, the light in the infrared wavelength region from the red light can be reliably reduced at any position of the filter layer 53. .
  • the filter layer 53 is incident. It is possible to appropriately change the optical characteristics of red light (reduce the light in the infrared wavelength region).
  • FIG. 4 is a schematic diagram showing a first manufacturing process of the relay lens 5.
  • the relay lens 5 as described above is manufactured through, for example, the first manufacturing process shown in FIG.
  • a forming process for forming a flat filter layer 53 on either the flat surface 512 of the first lens element 51 or the flat surface 522 of the second lens element 52 is executed.
  • the filter layer 53 is deposited on the flat surface 512 of the first lens element 51.
  • the fixing process which unifies the 1st lens element 51 and the 2nd lens element 52 is performed in the state which the flat surface 512 and the flat surface 522 oppose.
  • the adhesive layer 54 is applied to the flat surface 522 of the second lens element 52, and the flat surface 512 and the flat surface 522 are brought into contact with each other.
  • the first lens element 51 and the second lens element 52 are integrated by bonding the flat surface 512 and the flat surface 522 by the adhesive layer 54. Through these steps, the relay lens 5 is formed.
  • the filter layer 53 is formed on the flat surface 512 of the first lens element 51.
  • the present invention is not limited to this.
  • the filter layer 53 includes the flat surface 522 of the second lens element 52. It is good also as being formed.
  • the adhesive layer 54 may be formed on the flat surface 512 of the first lens element 51. Even in this case, the relay lens 5 similar to the relay lens 5 manufactured by the first manufacturing method can be manufactured.
  • FIG. 5 is a diagram illustrating a second manufacturing method of the relay lens 5.
  • the relay lens 5 as described above may be manufactured through, for example, the second manufacturing process shown in FIG.
  • a forming process for forming a flat filter layer 53 on one of the two glass substrates BP1 and BP2 is executed.
  • the filter layer 53 is deposited on the flat surface BP11 of the glass substrate BP2 on the side facing the glass substrate BP1.
  • the joining process which joins two glass substrate BP1, BP2 on both sides of the filter layer 53 is performed.
  • the adhesive layer 54 is applied to the flat surface BP21 of the glass substrate BP2, and the glass substrate BP1 and the glass substrate BP2 are in a state where the flat surface BP11 and the flat surface BP21 face each other. Are joined.
  • the flat surface BP11 and the flat surface BP21 are bonded by the adhesive layer 54, and the glass substrate BP1 and the glass substrate BP2 are integrated.
  • a processing step of polishing the outer surfaces of the integrated glass substrate BP1 and glass substrate BP2 into a curved surface (convex surface) is performed, and the polished glass substrate BP1 becomes the first lens element 51 and is polished.
  • the glass substrate BP2 becomes the second lens element 52.
  • the relay lens 5 is also formed by the second manufacturing process.
  • the filter layer 53 is formed on the flat surface BP11 of the glass substrate BP1.
  • the present invention is not limited to this.
  • the filter layer 53 may be formed on the flat surface BP21 of the glass substrate BP2.
  • the adhesive layer 54 may be formed on the flat surface BP11 of the glass substrate BP1.
  • a lens similar to the relay lens 5 manufactured by the second manufacturing method can be manufactured.
  • the outer surface of each of the glass substrates BP1 and BP2 is processed into a curved surface in the processing step.
  • the present invention is not limited to this.
  • one glass substrate BP1 is used.
  • BP2 may not be performed on the outer surface.
  • a layer different from the filter layer 53 can be provided on the outer surface where the processing step is not performed, or the lens can be freely designed. Therefore, the aspect of the optical lens can be enlarged, and not only the projector 1 but also various types.
  • the optical lens can be applied to electronic devices and the like.
  • the projector 1 has the following effects. Since the filter layer 53 located between the entrance surface 511 and the exit surface 521 is substantially flat, light incident through the entrance surface 511 (curved surface) of the relay lens 5 is incident on the filter layer 53. It is possible to adopt a configuration in which the light is incident at a substantially constant incident angle, and the optical characteristics of the filter layer 53 can be kept unchanged at any position in the center and the periphery of the lens. Therefore, the light incident from the incident surface 511 can be emitted from the emission surface 521 as substantially uniform light within the surface.
  • the thickness (film thickness) of the filter layer 53 may be uneven. Is expensive.
  • the filter layer 53 located between the entrance surface 511 and the exit surface 521 is configured by a substantially flat surface, it is possible to reduce the possibility that the film thickness unevenness occurs. Therefore, even when the filter layer 53 has an incident angle dependency, it is possible to reduce the possibility of occurrence of uneven color or illuminance of the light changed by the filter layer 53.
  • the relay lens 5 including the filter layer 53 can be easily designed. Moreover, since the relay lens 5 can be manufactured only by providing the filter layer 53 on the surface orthogonal to the optical axis of the relay lens 5, the relay lens 5 can be easily manufactured.
  • the filter layer 53 can be disposed inside the relay lens 5 that is a biconvex lens, the possibility of applying the relay lens 5 (biconvex lens having the filter layer 53) can be expanded.
  • the relay lens 5 includes an infrared cut filter as the filter layer 53, it can be used as a lens for reducing light in the infrared wavelength region. Therefore, the applicable range of the relay lens 5 can be expanded.
  • the filter layer When the filter layer is separately disposed between the light source device 41 and the light modulation device 453R, the luminance of the color light incident on the light modulation device 453R is reduced due to the increase in the interface, and thus emitted from the projection optical device 46. The brightness of the image light is reduced.
  • the relay lens 5 since the relay lens 5 can be disposed between the light source device 41 and the light modulation device 453R, the increase in the interface suppresses a decrease in luminance of the color light incident on the light modulation device 453R. As a result, a decrease in the luminance of the image light emitted from the projection optical device 46 can be suppressed.
  • the relay lens 5 having the substantially flat filter layer 53 can be disposed. Accordingly, even in the case of red light including the relay optical device 44, the degree of freedom in designing the relay optical device 44 can be increased, and the filter layer 53 depending on the display position can be obtained without causing an increase in cost and a decrease in luminance due to an increase in the number of components. The difference in optical characteristics can be suppressed, and color unevenness and brightness unevenness can be suppressed.
  • the filter layer 53 is configured by an infrared cut filter that reduces light having a wavelength in the infrared region, it is possible to prevent infrared rays from being incident on the light modulation device 453, and thus the light modulation device 453 and thus the projector 1. Can be prevented from being deteriorated by the infrared rays.
  • the relay lens 5 (filter layer 53) is disposed at a position where the light ray angle distribution in the relay optical device 44 is the smallest, that is, a position where light having substantially the same light ray angle is incident, the center and the periphery of the relay lens 5 are arranged. At any position, the incident light is incident on the filter layer 53 at substantially the same angle. Therefore, since red light having substantially the same optical characteristics is emitted at any position in the center and the periphery of the relay lens 5, it is possible to suppress the occurrence of luminance unevenness and color unevenness of the light emitted from the relay optical device 44. . Therefore, the reliability of the projector 1 can be further improved. In addition, since it is not necessary to dispose the optical element including the filter layer 53 in the relay optical device 44 on the optical path of the red light separately from the relay lens 5, the number of components of the relay optical device 44 can be reduced.
  • the filter layer 53 is formed on the flat surface 512 of the first lens element 51 having the incident surface 511 and the flat surface 512, and the flat surface 512 and the flat surface 522 face each other.
  • the relay lens 5 can be formed only by integrating the first lens element 51 and the second lens element 52. Thus, since the relay lens 5 can be formed by the two steps of the forming step and the fixing step, the relay lens 5 can be easily manufactured.
  • the relay lens 5 can be manufactured more easily.
  • the present invention is not limited to the above-described embodiment, and modifications, improvements, and the like within the scope that can achieve the object of the present invention are included in the present invention.
  • the first lens element 51 and the second lens element 52 are integrated by the adhesive layer 54.
  • the present invention is not limited to this, and for example, a fixture that presses and fixes the first lens element 51 and the second lens element 52 from outside the entrance surface 511 and the exit surface 521 is provided.
  • the second lens element 52 may be integrated. According to this, the first lens element 51 and the second lens element 52 can be fixed without providing the adhesive layer 54. In this case, even when the filter layer 53 is heated by the incident light, there is no possibility that the adhesive layer 54 is deteriorated by the heat, so that the heat resistance of the relay lens 5 can be improved.
  • the first lens element 51 and the second lens element 52 are made of glass or the like.
  • the present invention is not limited to this.
  • at least one of the first lens element 51 and the second lens element 52 may be formed of resin or the like.
  • the first lens element 51 and the second lens element 52 are formed by plano-convex lenses having the same shape.
  • the present invention is not limited to this.
  • the first lens element 51 and the second lens element 52 may not have the same shape.
  • the incident surface 511 of the first lens element 51 is a convex surface that protrudes in the direction opposite to the light incident direction
  • the output surface 521 of the second lens element 52 is a direction along the light incident direction. It was decided to be a convex surface protruding in
  • the present invention is not limited to this.
  • the first lens element 51 may be a concave surface that is recessed along the light incident direction
  • the second lens element 52 is also a concave surface that is recessed in the direction opposite to the light incident direction.
  • the entrance surface 511 and the exit surface 521 may be curved surfaces.
  • the relay lens 5 may be a biconcave lens or a lens having one convex shape and the other having a concave shape.
  • the filter layer 53 is formed substantially parallel to the optical axis orthogonal plane of the relay lens 5.
  • the present invention is not limited to this, and for example, the filter layer 53 may not be parallel to the optical axis orthogonal plane. Even in this case, the number of components can be reduced as compared with the case where the optical element on which the filter layer 53 is formed is arranged in the relay optical device 44.
  • the filter layer 53 is formed flat on the flat surface 512 of the first lens element 51 and the flat surface BP11 of the glass substrate BP1.
  • the present invention is not limited to this.
  • the filter layer 53 may be formed on the flat surface 512 in a convex shape that matches the shape (convex shape) of the incident surface 511 of the first lens element 51.
  • the filter layer 53 is an infrared cut filter that reduces light in the infrared wavelength region.
  • the filter layer 53 may be an ultraviolet cut filter that reduces light in the ultraviolet wavelength region, or a color filter (low-pass filter, high-pass filter) that transmits only light of a predetermined wavelength. And a band-pass filter).
  • the filter layer 53 is an ultraviolet cut filter, the characteristics of the dichroic mirrors 431 and 432 are changed so that the optical path of the blue light is longer than the optical path of the other color light, and the relay optical device 44 is changed to the blue light light. It may be provided on the road.
  • the blue light can surely enter the light modulation device 453R, and the wavelength range from the blue light to the ultraviolet ray Light can be reduced. Therefore, it is possible to suppress deterioration of the light modulation device 453B that receives blue light due to ultraviolet rays.
  • the filter layer 53 is configured by a color filter (bandpass filter) that transmits only red light in a predetermined wavelength region out of red light, light outside the predetermined wavelength region enters the light modulation device 453R. Therefore, it is possible to improve the saturation of the projected image.
  • the relay optical device 44 is disposed on the optical path of blue light as described above, and the filter layer 53 is formed of a color filter that transmits only blue light in a predetermined wavelength region.
  • the filter layer 53 is formed of a color filter that transmits only green light in a predetermined wavelength region.
  • the polarization separation layer to which the filter layer 53 has an optical characteristic that reduces light in a predetermined wavelength region depending on the polarization and a polarization separation layer to which a characteristic for polarization separation is added, and a retardation layer having a birefringence characteristic. is there.
  • the relay lens 5 has the filter layer 53.
  • the present invention is not limited thereto.
  • the lens having the smallest ray angle distribution is the incoming side lens 441 or the like.
  • the emission side lens 442 either the incident side lens 441 or the emission side lens 442 may have the filter layer 53. Even in this case, the same effects as those of the above embodiments can be obtained.
  • either the incident side lens 441 or the emission side lens 442 may have a shape including a filter layer (for example, the color filter) having a property different from that of the filter layer 53 of the relay lens 5.
  • the incident side lens 441 or the emission side lens 442 transmits only red light in a predetermined wavelength region, and the light in the infrared wavelength region is reduced by the filter layer 53 of the relay lens 5, In addition, it is possible to suppress light outside the predetermined wavelength region from entering the light modulation device 453R. According to this, since the saturation of the projected image can be improved, the reliability of the projector 1 can be improved.
  • the image forming apparatus 4 of the projector 1 is formed in a substantially L shape.
  • the present invention is not limited to this.
  • the image forming apparatus 4 may be formed in a substantially U shape.
  • the relay lens 5 can be applied, and the same effects as those of the above embodiments can be obtained. That is, the configuration and arrangement of the optical components of the image forming apparatus 4 can be changed as appropriate.
  • the projector 1 includes the three light modulation devices 453 (453R, 453G, and 453B).
  • the present invention is not limited to this, and the present invention can also be applied to a projector including, for example, two or less or four or more light modulation devices.
  • the light modulation device 453 has a configuration including a liquid crystal panel in which the light incident surface and the light emitting surface are different.
  • the present invention is not limited to this, and a light modulation device including a reflective liquid crystal panel in which the light incident surface and the light emitting surface are the same may be employed.
  • the light modulation device can modulate an incident light beam and form an image according to image information
  • a device using a micromirror for example, a device using a DMD (Digital Micromirror Device) or the like can be used. You may employ

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Projection Apparatus (AREA)
  • Optical Filters (AREA)

Abstract

入射された光の光学特性を変換できる光学レンズ、プロジェクター、及び光学レンズの製造方法を提供すること。 光が入射される曲面状の入射面と、前記入射面から入射した前記光が出射される曲面状の出射面と、前記入射面及び前記出射面の間に位置し、入射された前記光の光学特性を変化させるフィルター層と、を有し、前記フィルター層は、略平面であることを特徴とする光学レンズ。

Description

光学レンズ、プロジェクター、及び光学レンズの製造方法
 本発明は、光学レンズ、プロジェクター、及び光学レンズの製造方法に関する。
 従来、光源装置と、光源から出射された光を赤、緑及び青の各色光に分離する色分離装置と、当該色分離装置により分離された各色光を変調して画像情報に応じた画像を形成する光変調装置と、形成された画像をスクリーン等の被投射面上に拡大投射する投射光学装置と、を備えたプロジェクターが知られている。
 このようなプロジェクターとして、色分離装置にて分離された各色光の光路のうち、光路長が長い緑色光の光路上に配置されるリレー光学装置を備えたプロジェクターが知られている(例えば、特許文献1参照)。
 なお、上記特許文献1に記載のプロジェクターにおいて、色分離装置を構成するダイクロイックミラーとリレー光学装置を構成する第3のリレーレンズとの間には、緑色光に含まれる所定波長領域の色光成分を選択的に低減させる光学素子が位置している。
特開2008-292877号公報
 しかしながら、上記特許文献1に記載のプロジェクターでは、上記光学素子を追加する必要があるので、部品点数が多くなるとともに、界面の増加によって、リレー光学装置を通過する色光の輝度が低下するという問題がある。
 これに対し、上記光学素子と同様のフィルター層がレンズ曲面に形成されたレンズを用いて、上記界面の増加を抑制することが考えられる。
 しかしながら、レンズ曲面にフィルター層が形成されていると、当該フィルター層に入射される光の入射角度が、当該レンズ曲面の位置によって異なることにより、フィルター層に入射される光がフィルター層を透過する距離(見かけ上の層厚)が異なり、当該フィルター層の光学特性が異なるという課題がある。
 また、レンズ曲面にフィルター層を形成すると層厚にムラが生じる可能性が高い。この場合、当該フィルター層の位置によって、フィルター層の層厚が異なるので、光が入射する位置によってフィルター層の光学特性が異なる。
 このため、レンズ曲面にフィルター層が形成されたレンズでは、上記層厚のムラやフィルター層に入射される光の入射角度の違いによって、当該フィルター層の光学特性が異なるという問題がある。
 本発明は、上記課題の少なくとも一部を解決することを目的とするものであり、フィルター層の光学特性の差を小さく抑えることができる光学レンズ、プロジェクター、及び光学レンズの製造方法を提供することを目的の1つとする。
 本発明の第1態様に係る光学レンズは、光が入射される曲面状の入射面と、前記入射面から入射した前記光が出射される曲面状の出射面と、前記入射面及び前記出射面の間に位置し、入射された前記光の光学特性を変化させるフィルター層と、を有し、前記フィルター層は、略平面であることを特徴とする。
 上記第1態様によれば、入射面と出射面との間に位置するフィルター層が略平面により構成されているので、光学レンズの入射面(曲面)を介して入射される光の入射角度が略一定の場合に、フィルター層の光学特性が当該レンズの中心及び周辺のいずれの位置においても変わらない。従って、フィルター層が入射面から入射された光を面内で略均一な光として出射面から出射させることができる。
 また、光学レンズの両面のそれぞれが曲面により構成されている場合に、当該曲面にフィルター層が形成されると、当該フィルター層の厚さ(膜厚)にムラが生じる可能性が高い。これに対して上記第1態様では、入射面と出射面との間に位置するフィルター層が略平面により構成されているので当該膜厚のムラが生じる可能性を低減できる。
 従って、フィルター層が入射角度依存性を有する場合であっても、フィルター層により変化されて出射される光の色ムラや照度ムラが生じる可能性を低減できる。
 上記第1態様では、前記フィルター層は、当該光学レンズの光軸に直交する面に対して略平行に位置していることが好ましい。
 このような構成によれば、光学レンズの光軸に直交する面に対して略平行にフィルター層が位置しているので、当該フィルター層を備える光学レンズの設計を容易にできる。また、上記光学レンズの光軸に直交する面に対してフィルター層を設けるのみで光学レンズを製造できるので、光学レンズを容易に製造することができる。
 上記第1態様では、前記入射面は、前記光の入射方向とは反対方向側に突出する凸面及び当該入射方向に凹む凹面のいずれかであり、前記出射面は、前記光の入射方向に沿って突出する凸面及び当該入射方向とは反対方向側に凹む凹面のいずれかであることが好ましい。
 このような構成によれば、上記光学レンズは、両凸レンズ、両凹レンズ及び凹凸レンズのいずれかである。このように、内部にフィルター層を配置した光学レンズを両凸レンズ、両凹レンズ及び凹凸レンズのいずれかとしたので、当該光学レンズを適用できる範囲を拡大することができる。
 上記第1態様では、前記フィルター層は、入射された前記光のうち、所定の波長領域の光を低減させることが好ましい。
 このような構成によれば、例えば、赤外線カットフィルター、紫外線カットフィルター及びカラーフィルターとしても機能するレンズを構成できる。
 例えば、赤外線カットフィルターを内部に含むレンズは、赤外線の波長領域の光を低減させるレンズとして用いることができ、紫外線カットフィルターを内部に含むレンズは、紫外線の波長領域の光を低減させるレンズとして用いることができる。また、カラーフィルターを内部に含むレンズは、所定波長以外の波長の光を低減させる、すなわち、所定波長の光のみを透過させるバンドパスフィルター等として用いることができる。従って、上記光学レンズが適用される可能性を更に拡大させることができる。
 本発明の第2態様に係るプロジェクターは、光源と、前記複数の色光をそれぞれ変調する複数の光変調装置と、前記複数の光変調装置により変調された光を投射する投射光学装置と、前記光源と前記複数の光変調装置の少なくともいずれかとの間に配置される、上記光学レンズと、を備えることを特徴とする。
 上記第2態様によれば、上記第1態様に係る光学レンズと同様の効果を奏することができる。また、光源と複数の光変調装置の少なくともいずれかとの間に、上記光学素子を別途配置すると、部品点数が増加するとともに、上記界面の増加によって、光変調装置に入射される色光の輝度及び投射光学装置から出射される画像光の輝度が低下する。
 これに対し、このような構成によれば、上記光学素子を別途設ける必要がないので、部品点数の増加を抑えられるとともに、上記界面の増加によって、光変調装置に入射される色光の輝度の低下を抑制でき、ひいては、投射光学装置から出射される画像光の輝度が低下することを抑制できる。
 上記第2態様では、前記光源から出射された光を複数の色光に分離する色分離装置と、前記色分離装置によって分離された前記複数の色光のうち、対応する前記光変調装置までの光路長が最も長い光路長上に位置し、入射される色光を前記光変調装置に導くリレー光学装置と、を備え、前記リレー光学装置は、前記光学レンズを有することが好ましい。
 このような構成によれば、リレー光学装置が平面を含まない複数のレンズ等により形成されている場合でも、略平面のフィルター層を有する光学レンズを配置できる。従って、リレー光学装置を備えた色光においても、リレー光学装置の設計の自由度を高めることができ、部品点数の増加によるコストアップや輝度低下を招くことなく、表示位置によるフィルター層の光学特性の差を抑えられ、色ムラや輝度ムラを抑えることができる。
 上記第2態様では、前記リレー光学装置は、前記光学レンズを含む複数のレンズを有し、前記複数のレンズのうち前記光学レンズは、前記リレー光学装置における光線角度分布が最も小さい位置に配置されていることが好ましい。
 上記光線角度分布が最も小さい位置とは、光線角度分布が略均一、すなわち、当該位置に入射される光の入射角度が略一定であることを意味する。
 このような構成によれば、リレー光学装置における光線角度分布が最も小さい位置、すなわち、略同じ光線角度の光が入射する位置に上記光学レンズ(フィルター層)が配置されるので、当該光学レンズの中心及び周辺のいずれの位置においても、当該入射される光がフィルター層に対して略同じ角度にて入射される。従って、上記光学レンズの中心及び周辺のいずれの位置においても略同様の光学特性の光が出射されるので、リレー光学装置から出射される光の輝度ムラ及び色ムラの発生を抑制できる。
 また、リレー光学装置において上記フィルター層を備えた光学素子を上記光学レンズとは別に上記色光の光路上に配置する必要がないので、リレー光学装置の部品点数を削減できる。
 本発明の第3態様に係る光学レンズの製造方法は、第1曲面及び当該第1曲面とは反対側に位置する第1平坦面を有する第1レンズの当該第1平坦面に入射された光の光学特性を変化させるフィルター層を形成する形成工程と、第2曲面及び当該第2曲面とは反対側に位置する第2平坦面を有する第2レンズの当該第2平坦面が、前記フィルター層を挟んで前記第1平坦面と対向する状態にて、前記第1レンズ及び前記第2レンズを一体化する固定工程と、を備えることを特徴とする。
 上記第3態様によれば、第1曲面と第1平坦面を有する第1レンズの平坦面に入射された光の光学特性を変化させるフィルター層を形成し、当該第1平坦面及び第2平坦面が対向する状態にて第1レンズ及び第2レンズを一体化するのみで、上記光学レンズを形成できる。このように、形成工程及び固定工程の2つの工程により、上記光学レンズを形成できるので、上記光学レンズを簡易に製造できる。
 本発明の第4態様に係る光学レンズの製造方法は、2つの基板のいずれか一方に入射された光の光学特性を変化させるフィルター層を形成する形成工程と、前記フィルター層を挟んで前記2つの基板を接合する接合工程と、前記2つの基板の外面の少なくとも一方を曲面状に加工する加工工程と、を備えることを特徴とする。
 上記第4態様によれば、上記第3態様に係る光学レンズの製造方法と同様の作用効果を奏することができる。また、2つの基板が接合された後に、当該2つの基板の外面が曲面状に加工されるので、例えば、接合工程において、2つの基板の位置合わせを精密にする必要がない。従って、上記光学レンズを簡易に製造できる。
本発明の一実施形態に係るプロジェクターの外観を示す斜視図。 上記実施形態における装置本体を構成する画像形成装置の構成を示す模式図。 上記実施形態におけるリレー光学装置の構成を示す模式図。 上記実施形態におけるリレーレンズの製造方法の一例を示す図。 上記実施形態におけるリレーレンズの製造方法の他の例を示す図。
 以下、本発明の一実施形態について、図面に基づいて説明する。
 [プロジェクターの外観構成]
 図1は、本実施形態に係るプロジェクター1の外観を示す斜視図である。
 本実施形態に係るプロジェクター1は、内部に設けられた光源装置41(図2参照)から出射された光を変調して画像情報に応じた画像を形成し、当該画像をスクリーン等の被投射面上に拡大投射する画像表示装置である。このプロジェクター1は、図1に示すように、外装を構成する外装筐体2と、当該外装筐体2内に収容される装置本体と、を備える。
 そして、詳しくは後述するが、プロジェクター1は、内部にフィルター層53を有するリレーレンズ5がリレー光学装置44を構成するレンズの1つとして用いられている点を特徴としている(図3参照)。
 以下、プロジェクター1の各構成について説明する。
 [外装筐体の構成]
 外装筐体2は、当該外装筐体2の上部を構成するアッパーケース2Aと、下部を構成するロアーケース2Bと、正面部を構成するフロントケース2Cと、背面部を構成するリアケース2Dと、を備え、これらが組み合わされて全体略直方体形状に形成されている。この外装筐体2は、天面部21、底面部22、正面部23、背面部24、左側面部25及び右側面部26を有する。
 天面部21における背面部24側及び左側面部25側の位置には、後述する光源装置41を挿抜するための開口部211が形成され、当該開口部211は左側面部25側にスライド可能に設けられるランプカバー212によって閉塞される。
 底面部22には、設置面に当接される4つの脚部221(図1においては1つの脚部221のみ図示)が設けられている。
 正面部23の略中央には、後述する投射光学装置46(図2参照)の一部を露出させ、画像が通過する開口部231が形成されている。また、正面部23における右側面部26側の部位には吸気口232が形成され、左側面部25側の部位には排気口233が形成されている。
 なお、以下の説明では、互いに直交する+X方向、+Y方向及び+Z方向のうち、+Z方向を背面部24から正面部23に向かう方向(投射光学装置46から投射される光の進行方向)とし、+Y方向を底面部22から天面部21に向かう方向とし、+X方向を左側面部25から右側面部26に向かう方向とする。また、+Z方向とは反対方向を-Z方向とする。-X方向及び-Y方向も同様である。
 このように各方向を規定した場合、プロジェクター1による画像の投射方向は、+Y方向側から見て+Z方向に沿う方向となる。
 [装置本体の構成]
 図2は、装置本体の一部を構成する画像形成装置4の構成を示す模式図である。
 装置本体は、プロジェクター1の本体を構成する。この装置本体は、図2に示す画像形成装置4を備える。この他、図示を省略するが、装置本体は、プロジェクター1の動作を制御する制御装置、プロジェクター1を構成する電子部品に電力を供給する電源装置、及び、プロジェクター1を構成する冷却対象を冷却する冷却装置を備える。
 [画像形成装置の構成]
 画像形成装置4は、上記制御装置による制御の下、画像情報に応じた画像を形成及び投射する。この画像形成装置4は、図2に示すように、光源装置41、均一化装置42、色分離装置43、リレー光学装置44、電気光学装置45、投射光学装置46、及び光学部品用筐体47を備える。そして、画像形成装置4は、これら装置41~46が光学部品用筐体47に組み合わされて略L字状の光学ユニットとして構成され、+X方向及び+Z方向に沿うように配置される。
 光源装置41は、均一化装置42に向けて+X方向に光を出射する。この光源装置41は、発光管411、主反射鏡412、及び平行化レンズ413を有する。なお、これに限らず、例えば、光源装置41は、固体光源(レーザー光源)及び蛍光体を備えた光源装置であってもよい。
 均一化装置42は、光源装置41から出射された光束の中心軸に対する直交面内の照度を均一化する。この均一化装置42は、光源装置41からの光束の入射順に、シネマフィルター421、第1レンズアレイ422、調光装置423、第2レンズアレイ424、偏光変換素子425及び重畳レンズ426を有する。
 なお、均一化装置42は、シネマフィルター421及び調光装置423を備えていなくてもよい。
 色分離装置43は、均一化装置42から入射される光束を、赤、緑及び青の3つの色光に分離する。この色分離装置43は、ダイクロイックミラー431,432及び反射ミラー433を有する。
 具体的に、ダイクロイックミラー431は、均一化装置42から入射される光束を、誘電体多層膜によって、青色光と、青色光の波長領域よりも長波長側の光(赤色光及び緑色光を含む光)とに分離する。なお、青色光とは、厳密に青色光と定義される波長領域(約435nm以上、約500nm未満)の光と、それ以下の波長領域(約435nm未満)の光とを含んだものである。
 青色光は、ダイクロイックミラー431にて反射され、赤色光及び緑色光を含む青色光の波長領域よりも長波長側の光は、ダイクロイックミラー431を透過する。
 ダイクロイックミラー431によって反射された青色光は、反射ミラー433にて反射され、後述する青色光用のフィールドレンズ451に向けて出射される。
 また、ダイクロイックミラー432は、ダイクロイックミラー431を透過した上記長波長側の光(緑色光及び赤色光を含む)を、誘電体多層膜によって、赤色光の波長領域よりも短波長側の光と、赤色光の波長領域以上の光とに分離する。換言すると、ダイクロイックミラー432は、緑色光(約500nm以上、約590nm未満)と、緑色光の波長領域よりも長波長側の赤色光(約590nm以上、約680nm未満)を含む光とに分離する。
 緑色光は、ダイクロイックミラー432によって反射され、緑色用のフィールドレンズ451に向けて出射される。一方、ダイクロイックミラー432を通過した赤色光の波長領域以上の光は、リレー光学装置44に向けて出射される。
 リレー光学装置44は、分離された3つの色光のうち、他の色光(青色光及び緑色光)に比べてダイクロイックミラー431から対応する光変調装置453までの光路が長い赤色光の光路上に設けられ、赤色光を電気光学装置45にリレーする。このリレー光学装置44は、光路長が他の色光の光路長よりも長い赤色光の発散等による光の利用効率の低下を防止する。
 なお、リレー光学装置44の詳しい構成については、後述する。
 電気光学装置45は、分離された各色光を画像情報に応じてそれぞれ変調した後、当該各色光を合成する。この電気光学装置45は、青色光及び緑色光のそれぞれが入射される平凸レンズであるフィールドレンズ451と、各色光毎に設けられる入射側偏光板452、光変調装置453(赤、緑及び青用の光変調装置をそれぞれ453R,453G,453Bとする)及び出射側偏光板454と、変調された各色光を合成して投射画像を形成する色合成装置455と、を有する。これらのうち、各光変調装置453は、本実施形態では透過型の液晶パネルによって構成され、色合成装置455は、クロスダイクロイックプリズムによって構成されている。
 なお、本実施形態では、電気光学装置45は、赤色光が入射されるフィールドレンズを備えていない。これは、リレー光学装置44を構成する出射側レンズ442が、当該フィールドレンズとして機能するためである。
 投射光学装置46は、形成された投射画像を+Z方向に沿って拡大投射して、当該投射画像を上記被投射面上に表示させる。この投射光学装置46は、複数のレンズ(図示省略)と、当該複数のレンズを内部に収納する鏡筒461とを備えた組レンズとして構成されている。
 光学部品用筐体47は、詳しい図示を省略するが、光源装置41が配置される光源収納部と、各装置42~44を構成する光学部品及びフィールドレンズ451が内部に配置される部品収納部材と、当該部品収納部材と組み合わされる蓋状部材と、部品収納部材と組み合わされ、投射光学装置46を支持する支持部材と、を備える。
 このような光学部品用筐体47の内部には、設計上の光軸である照明光軸Axが設定されており、上記各装置41~46は、当該照明光軸Axにおける所定位置に配置される。このため、光源装置41から出射される光の中心軸は、照明光軸Axと一致する。
 [リレー光学装置の構成]
 図3は、リレー光学装置44を拡大して示す模式図である。
 リレー光学装置44は、図2及び図3に示すように、入射側レンズ441、出射側レンズ442、リレーレンズ5及び反射ミラー443,444を有し、これらは上記照明光軸Ax上に配置されている。このリレー光学装置44において、赤色光は、入射側レンズ441を通過しつつ+X方向に進行する。この赤色光は、反射ミラー443にて+Z方向側に反射され、リレーレンズ5を通過しつつ+Z方向に進行する。この後、当該赤色光は、反射ミラー444にて-X方向側に反射され、出射側レンズ442を通過して、赤色光用の上記入射側偏光板452に入射される。
 入射側レンズ441、出射側レンズ442及びリレーレンズ5のそれぞれは、入射面及び出射面のいずれもが曲面により構成されている。換言すると、入射側レンズ441、出射側レンズ442及びリレーレンズ5のそれぞれは、所謂、両凸レンズにより構成されている。
 これらのうち、入射側レンズ441は、リレー光学装置44における赤色光の入射側、すなわち、-X方向側の位置にダイクロイックミラー432に対向して配置される。
 反射ミラー443は、入射側レンズ441の+X方向側の位置に配置され、当該入射側レンズ441の出射面に対して、例えば、45°傾斜した状態にて配置される。この反射ミラー443は、上記入射側レンズ441を透過した赤色光が入射され、当該赤色光を+Z方向、すなわち、リレーレンズ5に向けて出射させる。
 リレーレンズ5は、反射ミラー443の+Z方向側の位置に配置され、当該反射ミラー443から入射された赤色光の光学特性を変化させて反射ミラー444に向けて出射させる。
 反射ミラー444は、リレーレンズ5の+Z方向側の位置に配置され、当該リレーレンズ5の出射面521に対して、例えば、45°傾斜した状態にて配置される。この反射ミラー444には、上記リレーレンズ5を透過した赤色光が入射され、当該赤色光を-X方向、すなわち、出射側レンズ442に向けて出射させる。
 出射側レンズ442は、反射ミラー444の-X方向側の位置に配置されるフィールドレンズである。この出射側レンズ442には、上記反射ミラー444によって反射された赤色光が入射され、当該出射側レンズ442を介して当該赤色光が赤色用の入射側偏光板452に入射される。
 [リレーレンズの構成]
 リレーレンズ5は、本発明の光学レンズに相当する両凸レンズであり、上記のように、反射ミラー443,444の間に位置する。このリレーレンズ5は、図3に示すように、第1レンズ要素51、第2レンズ要素52及びフィルター層53を備え、これらが一体化されることにより形成されている。
 第1レンズ要素51は、ガラス等により形成される平凸レンズ様の構成を有する。具体的に、第1レンズ要素51は、入射面511と、第1平坦面に相当する平坦面512と、を有する。
 入射面511は、反射ミラー443により反射された赤色光が入射されるレンズ曲面(第1曲面)であり、赤色光の入射方向(+Z方向)とは反対方向側に向けて突出する凸面により構成されている。
 平坦面512は、入射面511とは反対側(+Z方向側)に位置する平坦面であり、当該平坦面512には、フィルター層53が形成されている。この平坦面512は、リレーレンズ5の光軸直交面(XY平面)に対して略平行に形成されている。
 フィルター層53は、本実施形態では、入射された赤色光のうち、赤外線の波長領域の光を低減させる機能を有するフィルター、すなわち、赤外線カットフィルターにより形成されている。
 第2レンズ要素52は、第1レンズ要素51と同様にガラス等により形成され、当該第1レンズ要素51と同様に平凸レンズ様に構成されている。この第2レンズ要素52は、第2平坦面に相当する出射面521と、平坦面522とを有する。
 出射面521は、入射面511を介して入射され、フィルター層53を透過した赤色光が出射される曲面(第2曲面)であり、赤色光の入射方向(+Z方向)に沿う方向に突出する凸面により構成されている。また、平坦面522は、出射面521とは反対方向側(-Z方向側)に位置する平坦面であり、当該平坦面522には、接着層54(図4参照)が蒸着されている。更に、平坦面522は、平坦面512と同様に、入射面511を介して入射される赤色光の光軸直交面(XY平面)に対して略平行に形成されている。
 フィルター層53は、上記平坦面512及び平坦面522に挟持され、上記接着層54により固定されている略平面である。上述したように、平坦面512及び平坦面522は、上記光軸直交面に対して略平行に形成されていることから、当該フィルター層53もリレーレンズ5内に上記光軸直交面に対して略平行に形成されている。これにより、入射面511を介して入射された赤色光が、第1レンズ要素51内において光線角度分布が小さい赤色光(上記光軸に略平行な赤色光)となり、フィルター層53に対して略垂直に入射される。換言すると、フィルター層53が赤色光の照明光軸Axに対して略直交する平面(平坦面512)に設けられているので、リレーレンズ5の中心及び周辺のいずれの位置においても略同じ角度にて上記赤色光がフィルター層53に入射される可能性が高まる。
 これにより、リレーレンズ5の入射面511を介して入射された赤色光は、上記中心及び周辺のいずれの位置においても赤外線の波長領域の光が低減され、当該赤外線の波長領域の光が低減された赤色光が出射面521を介して反射ミラー444に向けて、すなわち、+Z方向に向けて出射される。
 [リレーレンズの配置]
 リレーレンズ5は、フィルター層53を有しているため、当該フィルター層53に対して入射される光の光源角度分布が小さい位置、すなわち、当該フィルター層53に略平行光が入射する位置に配置される必要がある。
 しかしながら、色分離装置43からの赤色光が1番目に入射される入射側レンズ441には、当該色分離装置43のダイクロイックミラー432により色分離が実行される際に赤色光が拡散する可能性があるので、当該入射側レンズ441の配置位置は、光線角度分布が大きい位置である可能性がある。また、色分離装置43からの赤色光が3番目に入射される出射側レンズ442には、上記リレーレンズ5により赤色光の光学特性が変化させられることによって、集光及び拡散されて入射される可能性がある。
 これに対し、本実施形態では、リレーレンズ5は、図2及び図3に示すように、リレー光学装置44における入射側レンズ441、出射側レンズ442及びリレーレンズ5のそれぞれが配置される位置のうち、光線角度分布が最も小さい位置に配置されている。換言すると、リレー光学装置44が備える複数のレンズ(入射側レンズ441、出射側レンズ442及びリレーレンズ5)のうち、リレーレンズ5は、入射側レンズ441及び出射側レンズ442の間、すなわち、フィルター層53に光線角度分布が最も小さい赤色光が入射される位置に配置されている。
 これにより、リレーレンズ5には、光線角度分布が最も小さい赤色光が入射されるので、フィルター層53のいずれの位置においても、赤色光から赤外線の波長領域の光を確実に低減させることができる。換言すると、リレーレンズ5の中心及び周辺のいずれの位置においても、第1レンズ要素51により屈折されて略平行化された光が入射される可能性が高いので、フィルター層53は、入射された赤色光の光学特性を適切に変化させる(赤外線の波長領域の光を低減させる)ことができる。
 [リレーレンズの第1製造方法]
 図4は、リレーレンズ5の第1製造工程を示す模式図である。
 以上説明したようなリレーレンズ5は、例えば、図4に示す第1製造工程を経て製造される。
 まず、第1レンズ要素51の平坦面512及び第2レンズ要素52の平坦面522のいずれかに平坦なフィルター層53を形成する形成工程を実行する。例えば、本実施形態では、第1レンズ要素51の平坦面512に対して、フィルター層53を蒸着する。
 そして、平坦面512及び平坦面522が対向する状態にて、第1レンズ要素51及び第2レンズ要素52を一体化する固定工程を実行する。具体的に、本実施形態では、第2レンズ要素52の平坦面522に対して接着層54を塗布し、当該平坦面512と平坦面522とを当接させる。この接着層54により、平坦面512及び平坦面522が接着されることにより、第1レンズ要素51及び第2レンズ要素52が一体化される。このような工程を経て、リレーレンズ5が形成される。
 上記第1製造方法では、第1レンズ要素51の平坦面512にフィルター層53が形成されることとしたが、これに限らず、例えば、フィルター層53は、第2レンズ要素52の平坦面522に形成されることとしてもよい。この場合、第1レンズ要素51の平坦面512に接着層54が形成されればよい。この場合であっても、上記第1製造方法により製造されたリレーレンズ5と同様のリレーレンズ5を製造できる。
 [リレーレンズの第2製造方法]
 図5は、リレーレンズ5の第2製造方法を示す図である。
 以上説明したようなリレーレンズ5は、例えば、図5に示す第2製造工程を経て製造されてもよい。
 まず、2つのガラス基板BP1,BP2のいずれか一方に平坦なフィルター層53を形成する形成工程を実行する。例えば、本実施形態では、ガラス基板BP2のガラス基板BP1に対向する側の平坦面BP11に対して、フィルター層53を蒸着する。
 そして、フィルター層53を挟んで2つのガラス基板BP1,BP2を接合する接合工程を実行する。具体的に、本実施形態では、ガラス基板BP2の平坦面BP21に対して接着層54を塗布し、平坦面BP11と当該平坦面BP21とが対向する状態にて、ガラス基板BP1とガラス基板BP2とを接合させる。この接着層54により、平坦面BP11及び平坦面BP21が接着され、ガラス基板BP1及びガラス基板BP2が一体化される。
 そして、一体化されたガラス基板BP1及びガラス基板BP2の外面を曲面状(凸面状)に研磨等する加工工程が実行され、当該研磨されたガラス基板BP1が第1レンズ要素51となり、当該研磨されたガラス基板BP2が第2レンズ要素52となる。このように、第2製造工程によっても、上記リレーレンズ5が形成される。
 上記第2製造方法では、フィルター層53は、ガラス基板BP1の平坦面BP11に形成されることとした。しかしながら、これに限らず、例えば、フィルター層53は、ガラス基板BP2の平坦面BP21に形成されることとしてもよい。この場合、接着層54は、ガラス基板BP1の平坦面BP11に形成されればよい。この場合であっても、上記第2製造方法により製造されたリレーレンズ5と同様のレンズを製造することができる。
 また、上記第2製造方法では、上記加工工程において、ガラス基板BP1,BP2のいずれもの外面を曲面に加工することとしたが、これに限らず、例えば、上記加工工程において、一方のガラス基板BP1,BP2の外面に対して加工工程を実行しなくてもよい。この場合、加工工程が実行されない外面に上記フィルター層53とは異なる層を設けたり、レンズを自由に設計したりできるので、当該光学レンズの態様を拡大でき、プロジェクター1に限らず、多種多様の電子機器等に当該光学レンズを適用することができる。
 以上説明した本実施形態に係るプロジェクター1は、以下の効果を奏する。
 入射面511と出射面521との間に位置するフィルター層53が略平面により構成されているので、リレーレンズ5の入射面511(曲面)を介して入射される光がフィルター層53に対して略一定の入射角度で入射される構成とすることが可能であり、フィルター層53の光学特性がレンズの中心及び周辺のいずれの位置においても変わらないにできる。従って、入射面511から入射された光を面内で略均一な光として出射面521から出射させることができる。
 また、リレーレンズ5の両曲面のいずれか(入射面511及び出射面521のいずれか)にフィルター層53が形成されると、当該フィルター層53の厚さ(膜厚)にムラが生じる可能性が高い。これに対して、本実施形態では、入射面511と出射面521との間に位置するフィルター層53が略平面により構成されているので当該膜厚のムラが生じる可能性を低減できる。
 従って、フィルター層53が入射角度依存性を有する場合であっても、フィルター層53により変化された光の色ムラや照度ムラが生じる可能性を低減できる。
 リレーレンズ5の光軸に直交する面である平坦面512に対して略平行にフィルター層53が位置しているので、当該フィルター層53を備えるリレーレンズ5の設計を容易にできる。また、上記リレーレンズ5の光軸に直交する面に対してフィルター層53を設けるのみでリレーレンズ5を製造できるので、リレーレンズ5を容易に製造することができる。
 両凸レンズであるリレーレンズ5の内部にフィルター層53を配置できるので、当該リレーレンズ5(フィルター層53を有する両凸レンズ)が適用される可能性を拡大することができる。
 リレーレンズ5は、フィルター層53として赤外線カットフィルターを内部に含むので、赤外線の波長領域の光を低減させるレンズとして用いることができる。従って、上記リレーレンズ5の適用できる範囲を拡大することができる。
 光源装置41と光変調装置453Rとの間に、上記フィルター層を別途配置する場合、界面の増加によって、光変調装置453Rに入射される色光の輝度の低下、ひいては、投射光学装置46から出射される画像光の輝度が低下する。これに対し、本実施形態では、光源装置41と光変調装置453Rとの間にリレーレンズ5を配置できるので、上記界面の増加によって、光変調装置453Rに入射される色光の輝度の低下を抑制でき、ひいては、投射光学装置46から出射される画像光の輝度の低下を抑制できる。
 リレー光学装置44が平面を含まない複数のレンズ等により形成されている場合でも、略平面のフィルター層53を有するリレーレンズ5を配置できる。従って、リレー光学装置44を備えた赤色光においても、リレー光学装置44の設計の自由度を高めることができ、部品点数の増加によるコストアップや輝度低下を招くことなく、表示位置によるフィルター層53の光学特性の差を抑えられ、色ムラや輝度ムラを抑えることができる。
 例えば、フィルター層53が赤外線領域の波長の光を低減させる赤外線カットフィルターにより構成されているので、光変調装置453に赤外線が入射されることを抑制できるので、光変調装置453、ひいては、プロジェクター1が当該赤外線により劣化することを抑制できる。
 リレー光学装置44における光線角度分布が最も小さい位置、すなわち、略同じ光線角度の光が入射する位置に上記リレーレンズ5(フィルター層53)が配置されるので、当該リレーレンズ5の中心及び周辺のいずれの位置においても、当該入射される光がフィルター層53に対して略同じ角度にて入射される。従って、上記リレーレンズ5の中心及び周辺のいずれの位置においても略同様の光学特性の赤色光が出射されるので、リレー光学装置44から出射される光の輝度ムラ及び色ムラの発生を抑制できる。従って、プロジェクター1の信頼性を更に高めることができる。
 また、リレー光学装置44において上記フィルター層53を備えた光学素子を上記リレーレンズ5とは別に上記赤色光の光路上に配置する必要がないので、リレー光学装置44の部品点数を削減できる。
 上記第1製造方法によれば、入射面511と平坦面512を有する第1レンズ要素51の平坦面512にフィルター層53を形成し、当該平坦面512及び平坦面522が対向する状態にて第1レンズ要素51及び第2レンズ要素52を一体化するのみで、上記リレーレンズ5を形成できる。このように、形成工程及び固定工程の2つの工程により、上記リレーレンズ5を形成できるので、上記リレーレンズ5を簡易に製造できる。
 上記第2製造方法によれば、2つのガラス基板BP1,BP2が接合された後に、当該2つのガラス基板BP1,BP2の外面が曲面状に加工されるので、例えば、接合工程において、2つのガラス基板BP1,BP2の位置合わせを精密にする必要がない。従って、上記リレーレンズ5をより簡易に製造できる。
 [実施形態の変形]
 本発明は、上記実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
 上記実施形態では、第1レンズ要素51及び第2レンズ要素52は、接着層54により一体化されることとした。しかしながら、これに限らず、例えば、第1レンズ要素51及び第2レンズ要素52を入射面511及び出射面521の外側から押圧して固定する固定具を設け、当該固定具により第1レンズ要素51及び第2レンズ要素52が一体化されるようにしてもよい。これによれば、接着層54を設けることなく、第1レンズ要素51及び第2レンズ要素52を固定できる。この場合、フィルター層53が入射される光により熱を帯びた場合であっても、当該熱により接着層54が劣化する可能性がないので、リレーレンズ5の耐熱性を向上させることができる。
 上記実施形態では、第1レンズ要素51及び第2レンズ要素52は、ガラス等により形成されることとした。しかしながら、これに限らず、例えば、第1レンズ要素51及び第2レンズ要素52の少なくとも一方が樹脂等により形成されていてもよい。
 上記実施形態では、第1レンズ要素51及び第2レンズ要素52は、同形状の平凸レンズにより形成されていることとした。しかしながら、これに限らず、例えば、第1レンズ要素51と第2レンズ要素52とは、同形状でなくてもよい。
 上記実施形態では、第1レンズ要素51の入射面511は、光の入射方向とは反対方向側に突出する凸面であり、第2レンズ要素52の出射面521は、光の入射方向に沿う方向に突出する凸面であることとした。しかしながら、これに限らず、例えば、第1レンズ要素51は、光の入射方向に沿って凹む凹面であってもよいし、第2レンズ要素52も光の入射方向とは反対方向に凹む凹面であってもよい。すなわち、入射面511及び出射面521は、曲面であればよく、例えば、リレーレンズ5は、両凹レンズや一方が凸形状を有し、他方が凹形状を有するレンズであってもよい。
 上記実施形態では、フィルター層53は、リレーレンズ5の光軸直交面に対して略平行に形成されていることとした。しかしながら、これに限らず、例えば、フィルター層53は、上記光軸直交面に対して平行でなくてもよい。この場合であっても、フィルター層53が形成された光学素子をリレー光学装置44内に配置する場合に比べて、部品点数を削減できる。
 上記実施形態では、フィルター層53は、平坦に第1レンズ要素51の平坦面512及びガラス基板BP1の平坦面BP11に形成されることとした。しかしながら、これに限らず、例えば、フィルター層53は、第1レンズ要素51の入射面511の形状(凸面形状)に合わせた凸面形状に平坦面512に形成されてもよい。
 上記実施形態では、フィルター層53は、赤外線の波長領域の光を低減させる赤外線カットフィルターであることとした。しかしながら、これに限らず、例えば、フィルター層53は、紫外線の波長領域の光を低減させる紫外線カットフィルターであってもよいし、所定の波長の光のみを透過させるカラーフィルター(ローパスフィルター、ハイパスフィルター及びバンドパスフィルター)であってもよい。
 例えば、フィルター層53が紫外線カットフィルターである場合、青色光の光路が他の色光の光路よりも長くなるように、ダイクロイックミラー431,432の特性を変更し、リレー光学装置44を青色光の光路上に設けることとすればよい。これによれば、青色光の光路長が他の色光の光路長より長い場合であっても、青色光を確実に光変調装置453Rに入射させることができ、かつ、青色光から紫外線の波長領域の光を低減させることができる。従って、青色光が入射される光変調装置453Bの紫外線による劣化を抑制できる。
 更に、フィルター層53が赤色光のうち、所定波長領域の赤色光のみを透過させるカラーフィルター(バンドパスフィルター)により構成されている場合には、所定波長領域以外の光が光変調装置453Rに入射することを抑制できるので、投射画像の彩度を向上できる。また、上記のように青色光の光路上にリレー光学装置44が配置され、フィルター層53が所定波長領域の青色光のみを透過させるカラーフィルターにより構成されている場合も同様である。更に、緑色光の光路上にリレー光学装置44が配置され、フィルター層53が所定波長領域の緑色光のみを透過させるカラーフィルターにより構成されている場合も同様である。
 また、フィルター層53が、所定の波長領域の光を低減させる光学特性が偏光によって異なる特性として、偏光分離する特性を付加した偏光分離層や、複屈折特性を持つ位相差層においても、同様である。
 上記実施形態では、リレーレンズ5がフィルター層53を有することとした。しかしながら、これに限らず、例えば、リレー光学装置44を構成する複数のレンズ(入射側レンズ441、出射側レンズ442及びリレーレンズ5)のうち、光線角度分布が最も小さいレンズが入射側レンズ441や出射側レンズ442である場合に、当該入射側レンズ441及び出射側レンズ442のいずれかがフィルター層53を有する構成であってもよい。この場合であっても、上記各実施形態と同様の効果を奏することができる。また、入射側レンズ441及び出射側レンズ442のいずれかが上記リレーレンズ5のフィルター層53とは異なる性質のフィルター層(例えば、上記カラーフィルター)を備える形状であってもよい。この場合、入射側レンズ441及び出射側レンズ442のいずれかが所定波長領域の赤色光のみを透過させ、かつ、リレーレンズ5のフィルター層53により赤外線の波長領域の光が低減されるので、赤外線及び所定波長領域以外の光が光変調装置453Rに入射することを抑制できる。これによれば、投射画像の彩度を向上できるので、プロジェクター1の信頼性を向上させることができる。
 上記実施形態では、プロジェクター1の画像形成装置4は、略L字状に形成されていることとした。しかしながら、これに限らず、例えば、画像形成装置4は、略U字状に形成されていてもよい。この場合であっても、上記リレーレンズ5を適用でき、上記各実施形態と同様の効果を奏することができる。すなわち、画像形成装置4の光学部品の構成及び配置は、適宜変更可能である。
 上記実施形態では、プロジェクター1は、3つの光変調装置453(453R,453G,453B)を備えるとした。しかしながら、これに限らず、例えば2つ以下、或いは、4つ以上の光変調装置を備えたプロジェクターにも、本発明は適用可能である。
 また、光変調装置453は、光入射面と光出射面とが異なる液晶パネルを有する構成であった。しかしながら、これに限らず、光入射面と光出射面とが同一となる反射型の液晶パネルを備えた光変調装置を採用してもよい。また、入射光束を変調して画像情報に応じた画像を形成可能な光変調装置であれば、マイクロミラーを用いたデバイス、例えば、DMD(Digital Micromirror Device)等を利用したものなど、液晶以外の光変調装置を採用してもよい。
 1…プロジェクター、4…画像形成装置、5…リレーレンズ(光学レンズ)、41…光源装置、42…均一化装置、43…色分離装置、44…リレー光学装置、45…電気光学装置、46…投射光学装置、47…光学部品用筐体、51…第1レンズ要素(第1レンズ)、52…第2レンズ要素(第2レンズ)、53…フィルター層、54…接着層、441…入射側レンズ、442…出射側レンズ、443…反射ミラー、444…反射ミラー、453,453R,453G,453B…光変調装置、511…入射面(曲面、第1曲面)、512…平坦面(第1平坦面)、521…出射面(曲面、第2曲面)、522…平坦面(第2平坦面)、BP1,BP2…ガラス基板(基板)、BP11,BP21…平坦面。

Claims (9)

  1.  光が入射される曲面状の入射面と、
     前記入射面から入射した前記光が出射される曲面状の出射面と、
     前記入射面及び前記出射面の間に位置し、入射された前記光の光学特性を変化させるフィルター層と、を有し、
     前記フィルター層は、略平面であることを特徴とする光学レンズ。
  2.  請求項1に記載の光学レンズにおいて、
     前記フィルター層は、当該光学レンズの光軸に直交する面に対して略平行に位置していることを特徴とする光学レンズ。
  3.  請求項2に記載の光学レンズにおいて、
     前記入射面は、前記光の入射方向とは反対方向側に突出する凸面及び当該入射方向に凹む凹面のいずれかであり、
     前記出射面は、前記光の入射方向に沿って突出する凸面及び当該入射方向とは反対方向側に凹む凹面のいずれかであることを特徴とする光学レンズ。
  4.  請求項1から請求項3のいずれか一項に記載の光学レンズにおいて、
     前記フィルター層は、入射された前記光のうち、所定の波長領域の光を低減させることを特徴とする光学レンズ。
  5.  光源と、
     前記複数の色光をそれぞれ変調する複数の光変調装置と、
     前記複数の光変調装置により変調された光を投射する投射光学装置と、
     前記光源と前記複数の光変調装置の少なくともいずれかとの間に配置される、請求項1から請求項4のいずれか一項に記載の光学レンズと、を備えることを特徴とするプロジェクター。
  6.  請求項5に記載のプロジェクターにおいて、
     前記光源から出射された光を複数の色光に分離する色分離装置と、
     前記色分離装置によって分離された前記複数の色光のうち、対応する前記光変調装置までの光路長が最も長い光路長上に位置し、入射される色光を前記光変調装置に導くリレー光学装置と、を備え、
     前記リレー光学装置は、前記光学レンズを有することを特徴とするプロジェクター。
  7.  請求項6に記載のプロジェクターにおいて、
     前記リレー光学装置は、前記光学レンズを含む複数のレンズを有し、
     前記複数のレンズのうち前記光学レンズは、前記リレー光学装置における光線角度分布が最も小さい位置に配置されていることを特徴とするプロジェクター。
  8.  第1曲面及び当該第1曲面とは反対側に位置する第1平坦面を有する第1レンズの当該第1平坦面に入射された光の光学特性を変化させるフィルター層を形成する形成工程と、 第2曲面及び当該第2曲面とは反対側に位置する第2平坦面を有する第2レンズの当該第2平坦面が、前記フィルター層を挟んで前記第1平坦面と対向する状態にて、前記第1レンズ及び前記第2レンズを一体化する固定工程と、を備えることを特徴とする光学レンズの製造方法。
  9.  2つの基板のいずれか一方に入射された光の光学特性を変化させるフィルター層を形成する形成工程と、
     前記フィルター層を挟んで前記2つの基板を接合する接合工程と、
     前記2つの基板の外面の少なくとも一方を曲面状に加工する加工工程と、を備えることを特徴とする光学レンズの製造方法。
PCT/JP2017/032143 2016-09-08 2017-09-06 光学レンズ、プロジェクター、及び光学レンズの製造方法 WO2018047870A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-175293 2016-09-08
JP2016175293A JP6919165B2 (ja) 2016-09-08 2016-09-08 プロジェクター

Publications (1)

Publication Number Publication Date
WO2018047870A1 true WO2018047870A1 (ja) 2018-03-15

Family

ID=61561865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032143 WO2018047870A1 (ja) 2016-09-08 2017-09-06 光学レンズ、プロジェクター、及び光学レンズの製造方法

Country Status (2)

Country Link
JP (1) JP6919165B2 (ja)
WO (1) WO2018047870A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05224155A (ja) * 1992-02-10 1993-09-03 Fujitsu Ltd 投写型液晶表示装置
JP2003084364A (ja) * 2001-09-13 2003-03-19 Seiko Epson Corp プロジェクタ
JP2005250440A (ja) * 2003-12-24 2005-09-15 Seiko Epson Corp 光学表示装置及び投射型表示装置
JP2005326478A (ja) * 2004-05-12 2005-11-24 Fujikura Ltd フィルタ入りボールレンズ及び一心双方向光送受信モジュール
JP2014153418A (ja) * 2013-02-05 2014-08-25 Seiko Epson Corp プロジェクター

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05224155A (ja) * 1992-02-10 1993-09-03 Fujitsu Ltd 投写型液晶表示装置
JP2003084364A (ja) * 2001-09-13 2003-03-19 Seiko Epson Corp プロジェクタ
JP2005250440A (ja) * 2003-12-24 2005-09-15 Seiko Epson Corp 光学表示装置及び投射型表示装置
JP2005326478A (ja) * 2004-05-12 2005-11-24 Fujikura Ltd フィルタ入りボールレンズ及び一心双方向光送受信モジュール
JP2014153418A (ja) * 2013-02-05 2014-08-25 Seiko Epson Corp プロジェクター

Also Published As

Publication number Publication date
JP6919165B2 (ja) 2021-08-18
JP2018040970A (ja) 2018-03-15

Similar Documents

Publication Publication Date Title
US10101647B2 (en) Illuminator and projector
JP6000303B2 (ja) 表示モジュール
JP7247776B2 (ja) 光源装置およびプロジェクター
JP5056793B2 (ja) プロジェクタ
US7819534B2 (en) Projector and method for manufacturing projector
JP2007192989A (ja) スクリーンおよびリアプロジェクタ
JP4872272B2 (ja) 照明装置及びプロジェクタ
CN108388021B (zh) 偏振转换元件以及投影仪
US8827457B2 (en) Projector
JP4661635B2 (ja) 光学装置およびプロジェクタ
WO2018047870A1 (ja) 光学レンズ、プロジェクター、及び光学レンズの製造方法
JP2007226030A (ja) 光学部品保持部材およびプロジェクタ
JP2006163103A (ja) プロジェクタ
CN113544574A (zh) 光学元件及投影型显示装置
JP7131177B2 (ja) 光源装置およびプロジェクター
JP5257182B2 (ja) プロジェクター
JP2008112623A (ja) 光源装置、プロジェクタ
WO2021015101A1 (ja) 表示装置
CN115145098B (zh) 光学元件、投射光学装置和投影仪
US11333962B2 (en) Light source apparatus and projector
JP2022156884A (ja) 光学素子、投射光学装置及びプロジェクター
JP2006053430A (ja) プロジェクタ
JP2007249184A (ja) プロジェクタ
JP2020009692A (ja) 照明装置およびプロジェクター
CN113841088A (zh) 图像显示设备和图像显示单元

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17848808

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17848808

Country of ref document: EP

Kind code of ref document: A1