WO2018047265A1 - ヒートポンプ装置 - Google Patents

ヒートポンプ装置 Download PDF

Info

Publication number
WO2018047265A1
WO2018047265A1 PCT/JP2016/076396 JP2016076396W WO2018047265A1 WO 2018047265 A1 WO2018047265 A1 WO 2018047265A1 JP 2016076396 W JP2016076396 W JP 2016076396W WO 2018047265 A1 WO2018047265 A1 WO 2018047265A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
circuit
heat exchanger
outdoor unit
valve
Prior art date
Application number
PCT/JP2016/076396
Other languages
English (en)
French (fr)
Inventor
康巨 鈴木
博和 南迫
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP16901904.9A priority Critical patent/EP3312531B1/en
Priority to CN201680088679.1A priority patent/CN109661546A/zh
Priority to PCT/JP2016/076396 priority patent/WO2018047265A1/ja
Priority to JP2018537929A priority patent/JP6671484B2/ja
Priority to US16/308,284 priority patent/US10962267B2/en
Publication of WO2018047265A1 publication Critical patent/WO2018047265A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/26Refrigerant piping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • F24H9/2007Arrangement or mounting of control or safety devices for water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • F25B47/025Defrosting cycles hot gas defrosting by reversing the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/10Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/375Control of heat pumps
    • F24H15/38Control of compressors of heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/375Control of heat pumps
    • F24H15/385Control of expansion valves of heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2525Pressure relief valves

Definitions

  • the present invention relates to a heat pump device including a refrigerant circuit and a heat medium circuit.
  • Patent Document 1 describes an outdoor unit of a heat pump device using a flammable refrigerant.
  • This outdoor unit includes a refrigerant circuit in which a compressor, an air heat exchanger, a throttling device, and a water heat exchanger are connected by piping, and excess water pressure in the water circuit for supplying water heated by the water heat exchanger.
  • At least one of a pressure relief valve for preventing the rise and an air vent valve for discharging the air in the water circuit is provided.
  • Patent Document 1 does not mention the location of the pressure relief valve and the air vent valve provided in the outdoor unit. Therefore, for example, depending on the location of the pressure relief valve and the air vent valve, when an electric spark or the like occurs in the electric parts of the outdoor unit, the flammable refrigerant released from the pressure relief valve or the air vent valve may cause ignition. There was a problem.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a heat pump device that can more reliably prevent the combustible refrigerant from igniting.
  • a heat pump device includes a refrigerant circuit that circulates a flammable refrigerant, a heat medium circuit that circulates a heat medium, a heat medium heat exchanger that performs heat exchange between the refrigerant and the heat medium, and An outdoor unit that houses a refrigerant circuit and the heat medium heat exchanger; and an indoor unit that houses a part of the heat medium circuit, wherein the outdoor unit includes a pressure relief valve and an air vent provided in the heat medium circuit. At least one of the valves is provided as a refrigerant discharge valve, and the refrigerant discharge valve is provided outside the casing of the outdoor unit.
  • the released refrigerant can be prevented from encountering the ignition source. Therefore, it can prevent more reliably that a combustible refrigerant
  • coolant reaches ignition.
  • FIG. 1 is a circuit diagram showing a schematic configuration of the heat pump apparatus according to the present embodiment.
  • a heat pump hot water supply apparatus 1000 is illustrated as the heat pump apparatus.
  • the dimensional relationship and shape of each component may differ from the actual ones.
  • the heat pump hot water supply apparatus 1000 includes a refrigerant circuit 110 that circulates a refrigerant and a water circuit 210 that circulates water.
  • the heat pump hot water supply apparatus 1000 includes an outdoor unit 100 installed outdoors (for example, outdoors) and an indoor unit 200 installed indoors.
  • the indoor unit 200 is installed, for example, in a storage space such as a storage room in a building, in addition to a kitchen, a bathroom, and a laundry room.
  • the refrigerant circuit 110 includes a compressor 3, a refrigerant flow switching device 4, a load side heat exchanger 2, a first pressure reducing device 6, an intermediate pressure receiver 5, a second pressure reducing device 7, and a heat source side heat exchanger 1.
  • a compressor 3 a refrigerant flow switching device 4
  • a load side heat exchanger 2 a first pressure reducing device 6, an intermediate pressure receiver 5, a second pressure reducing device 7, and a heat source side heat exchanger 1.
  • the refrigerant flows in the reverse direction with respect to the normal operation (for example, heating hot water supply operation) for heating the water flowing through the water circuit 210 and the normal operation, and the heat source side heat exchanger 1
  • a defrosting operation for performing defrosting is possible.
  • the compressor 3 is a fluid machine that compresses sucked low-pressure refrigerant and discharges it as high-pressure refrigerant.
  • the compressor 3 of this example includes an inverter device and the like, and can change the capacity (the amount of refrigerant sent out per unit time) by arbitrarily changing the drive frequency.
  • the refrigerant flow switching device 4 switches the flow direction of the refrigerant in the refrigerant circuit 110 between the normal operation and the defrosting operation.
  • a four-way valve is used as the refrigerant flow switching device 4.
  • the load side heat exchanger 2 is a water heat exchanger that performs heat exchange between the refrigerant flowing through the refrigerant circuit 110 and the water flowing through the water circuit 210.
  • a plate heat exchanger is used as the load-side heat exchanger 2 .
  • the load-side heat exchanger 2 is a thin plate that separates the refrigerant flow path through which the refrigerant flows as part of the refrigerant circuit 110, the water flow path through which water flows as part of the water circuit 210, and the refrigerant flow path from the water flow path. And a partition wall.
  • the load-side heat exchanger 2 functions as a condenser (heat radiator) that heats water during normal operation, and functions as an evaporator (heat absorber) during defrosting operation.
  • the first decompression device 6 adjusts the flow rate of the refrigerant, and for example, adjusts the pressure of the refrigerant flowing through the load-side heat exchanger 2.
  • the intermediate pressure receiver 5 is located between the first decompression device 6 and the second decompression device 7 in the refrigerant circuit 110 and stores excess refrigerant.
  • a suction pipe 11 connected to the suction side of the compressor 3 passes inside the intermediate pressure receiver 5.
  • heat exchange between the refrigerant passing through the suction pipe 11 and the refrigerant in the intermediate pressure receiver 5 is performed. For this reason, the intermediate pressure receiver 5 has a function as an internal heat exchanger in the refrigerant circuit 110.
  • the second decompression device 7 adjusts the flow rate of the refrigerant to adjust the pressure.
  • the first decompression device 6 and the second decompression device 7 of this example are electronic expansion valves that can change the opening degree based on an instruction from the control device 101 described later.
  • the heat source side heat exchanger 1 is an air heat exchanger that performs heat exchange between the refrigerant flowing through the refrigerant circuit 110 and outdoor air blown by an outdoor blower (not shown) or the like.
  • the heat source side heat exchanger 1 functions as an evaporator (heat absorber) during normal operation and functions as a condenser (heat radiator) during defrosting operation.
  • a slightly flammable refrigerant such as HFO-1234yf and HFO-1234ze (E) or a strong flammable refrigerant such as R290 and R1270 is used.
  • These refrigerants may be used as a single refrigerant, or may be used as a mixed refrigerant in which two or more kinds are mixed.
  • a refrigerant having a flammability that is equal to or higher than the slight combustion level (for example, 2 L or more according to the ASHRAE 34 classification) may be referred to as “flammable refrigerant” or “flammable refrigerant”.
  • These refrigerants have a density higher than that of air at atmospheric pressure (for example, the temperature is room temperature (25 ° C.)).
  • the compressor 3, the refrigerant flow switching device 4, the load side heat exchanger 2, the first pressure reducing device 6, the intermediate pressure receiver 5, the second pressure reducing device 7, and the heat source side heat exchanger 1 are accommodated in the outdoor unit 100. Yes. That is, substantially all the components of the refrigerant circuit 110 are accommodated in the outdoor unit 100.
  • the outdoor unit 100 mainly controls the operation of the refrigerant circuit 110 (for example, the compressor 3, the refrigerant flow switching device 4, the first decompression device 6, the second decompression device 7, an outdoor blower not shown).
  • a control device 101 is provided.
  • the control device 101 has a microcomputer equipped with a CPU, ROM, RAM, I / O port, and the like.
  • the control device 101 can communicate with a control device 201 and an operation unit 202 described later via a control line 102.
  • the flow direction of the refrigerant during normal operation in the refrigerant circuit 110 is indicated by solid line arrows.
  • the refrigerant flow path switching device 4 switches the refrigerant flow path as indicated by solid arrows, and the refrigerant circuit 110 is configured such that high-temperature and high-pressure refrigerant flows into the load-side heat exchanger 2.
  • the load side heat exchanger 2 functions as a condenser. That is, in the load side heat exchanger 2, heat exchange between the refrigerant flowing through the refrigerant flow path and the water flowing through the water flow path is performed, and the condensation heat of the refrigerant is radiated to the water.
  • coolant flow path of the load side heat exchanger 2 is condensed, and turns into a high voltage
  • the water which flows through the water flow path of the load side heat exchanger 2 is heated by the heat radiation from the refrigerant.
  • the high-pressure liquid refrigerant condensed in the load-side heat exchanger 2 flows into the first decompression device 6 and is slightly decompressed to become a two-phase refrigerant.
  • the two-phase refrigerant flows into the intermediate pressure receiver 5 and is cooled by heat exchange with the low-pressure gas refrigerant flowing through the suction pipe 11 to become a liquid refrigerant.
  • This liquid refrigerant flows into the second decompression device 7 and is decompressed to become a low-pressure two-phase refrigerant.
  • the low-pressure two-phase refrigerant flows into the heat source side heat exchanger 1. During normal operation, the heat source side heat exchanger 1 functions as an evaporator.
  • the heat source side heat exchanger 1 heat exchange is performed between the refrigerant circulating in the interior and the outdoor air blown by the outdoor blower, and the heat of evaporation of the refrigerant is absorbed from the outdoor air.
  • the refrigerant flowing into the heat source side heat exchanger 1 evaporates to become a low-pressure gas refrigerant.
  • the low-pressure gas refrigerant flows into the suction pipe 11 via the refrigerant flow switching device 4.
  • the low-pressure gas refrigerant flowing into the suction pipe 11 is heated by heat exchange with the refrigerant in the intermediate-pressure receiver 5 and is sucked into the compressor 3.
  • the refrigerant sucked into the compressor 3 is compressed into a high-temperature and high-pressure gas refrigerant. In normal operation, the above cycle is continuously repeated.
  • the flow direction of the refrigerant during the defrosting operation in the refrigerant circuit 110 is indicated by a broken line arrow.
  • the refrigerant channel 110 is configured such that the refrigerant channel is switched by the refrigerant channel switching device 4 as indicated by the broken-line arrows, and the high-temperature and high-pressure refrigerant flows into the heat source side heat exchanger 1.
  • the heat source side heat exchanger 1 functions as a condenser. That is, in the heat source side heat exchanger 1, the heat of condensation of the refrigerant flowing inside is radiated to the frost attached to the surface of the heat source side heat exchanger 1.
  • circulates the inside of the heat source side heat exchanger 1 is condensed, and turns into a high voltage
  • the frost adhering to the surface of the heat source side heat exchanger 1 is melted by heat radiation from the refrigerant.
  • the high-pressure liquid refrigerant condensed in the heat source side heat exchanger 1 becomes a low-pressure two-phase refrigerant via the second decompression device 7, the intermediate pressure receiver 5, and the first decompression device 6, and the refrigerant in the load-side heat exchanger 2. It flows into the flow path.
  • the load side heat exchanger 2 functions as an evaporator. That is, in the load side heat exchanger 2, heat exchange between the refrigerant flowing through the refrigerant flow path and the water flowing through the water flow path is performed, and the evaporation heat of the refrigerant is absorbed from the water.
  • coolant flow path of the load side heat exchanger 2 evaporates, and becomes a low voltage
  • This gas refrigerant is sucked into the compressor 3 via the refrigerant flow switching device 4 and the suction pipe 11.
  • the refrigerant sucked into the compressor 3 is compressed into a high-temperature and high-pressure gas refrigerant. In the defrosting operation, the above cycle is continuously repeated.
  • a pump 53 In the water circuit 210, a pump 53, a three-way valve 55, a hot water storage tank 51, a strainer 56, a flow switch 57, a load side heat exchanger 2, a pressure relief valve 58, an air vent valve 59, a booster heater 54, and the like are connected via a water pipe. It has the structure which was made.
  • a drain outlet 62 for draining the water in the water circuit 210 is provided in the middle of the water pipe constituting the water circuit 210.
  • the load side heat exchanger 2 the pressure relief valve 58 and the air vent valve 59 are provided in the outdoor unit 100.
  • devices other than the load-side heat exchanger 2, the pressure relief valve 58, and the air vent valve 59 are provided in the indoor unit 200. That is, the water circuit 210 is provided across the outdoor unit 100 and the indoor unit 200. A part of the water circuit 210 is provided in the outdoor unit 100, and the other part of the water circuit 210 is provided in the indoor unit 200.
  • the outdoor unit 100 and the indoor unit 200 are connected via two connection pipes 211 and 212 that are part of the water pipe.
  • the hot water storage tank 51 is a device for accumulating water inside.
  • the hot water storage tank 51 contains a coil 61 connected to the water circuit 210.
  • the coil 61 heats the water accumulated in the hot water storage tank 51 by exchanging heat between the water (hot water) circulating in the water circuit 210 and the water stored in the hot water storage tank 51.
  • the hot water storage tank 51 has a built-in submerged heater 60.
  • the submerged heater 60 is a heating means for further heating the water accumulated in the hot water storage tank 51.
  • the water in the hot water storage tank 51 flows into a sanitary circuit side pipe 81a (outward pipe) connected to, for example, a shower.
  • the sanitary circuit side pipe 81b (return pipe) is also provided with a drain port 63.
  • the hot water storage tank 51 is covered with a heat insulating material (not shown).
  • a heat insulating material for example, felt, cinsalate (registered trademark), VIP (Vacuum Insulation Panel), or the like is used.
  • the pump 53 is a device that applies pressure to the water in the water circuit 210 to circulate the water circuit 210.
  • the booster heater 54 is a device that further heats the water in the water circuit 210 when the heating capacity of the outdoor unit 100 is insufficient.
  • the three-way valve 55 is a device for branching water in the water circuit 210.
  • the three-way valve 55 allows the water in the water circuit 210 to flow to the hot water storage tank 51 side, or a heating circuit side pipe 82a (outward pipe) to which a heating device 300 such as a radiator or floor heating provided outside is connected. To switch to.
  • the heating circuit side pipe 82 a forward pipe
  • the heating circuit side pipe 82 b return pipe
  • the strainer 56 is a device that removes scale (sediment) in the water circuit 210.
  • the flow switch 57 is a device for detecting whether or not the flow rate of water circulating in the water circuit 210 is a certain amount or more.
  • the expansion tank 52 is a device for controlling the pressure that changes due to the volume change of the water in the water circuit 210 accompanying heating or the like within a certain range.
  • the expansion tank 52 of this example is connected to a booster heater 54 via a pipe 52a.
  • the pressure relief valve 58 is provided in the outdoor unit 100 on the downstream side of the load-side heat exchanger 2 in the water flow direction of the water circuit 210 (arrow F1 in FIG. 1).
  • the pressure relief valve 58 is a protection device that prevents an excessive increase in pressure in the water circuit 210.
  • the pressure in the water circuit 210 becomes higher than the pressure control range of the expansion tank 52, the water in the water circuit 210 is discharged to the outside by the pressure relief valve 58.
  • the air vent valve 59 is provided in the outdoor unit 100 on the downstream side of the load-side heat exchanger 2 in the water flow direction of the water circuit 210.
  • the air vent valve 59 is provided further downstream of the pressure relief valve 58 in the water flow direction of the water circuit 210, but is not limited thereto.
  • the air vent valve 59 is a device that releases the gas generated in the water circuit 210 and the gas mixed in the water circuit 210 to the outside, and prevents the pump 53 from idling (air-engagement).
  • a float type automatic air vent valve is used as the air vent valve 59.
  • water is used as an example of the heat medium flowing through the water circuit 210, but other liquid heat medium such as brine can be used as the heat medium.
  • the indoor unit 200 is provided with a control device 201 that mainly controls the operation of the water circuit 210 (for example, the pump 53, the booster heater 54, the three-way valve 55, etc.).
  • the control device 201 has a microcomputer provided with a CPU, ROM, RAM, I / O port, and the like.
  • the control device 201 can communicate with the control device 101 and the operation unit 202.
  • the operation unit 202 allows the user to perform operations and various settings of the heat pump hot water supply apparatus 1000.
  • the operation unit 202 of the present example includes a display unit 203 and can display various information such as the state of the heat pump hot water supply apparatus 1000.
  • the operation unit 202 is provided, for example, in the housing of the indoor unit 200.
  • FIG. 2 is a schematic diagram showing the configuration of the outdoor unit 100 of the heat pump apparatus according to the present embodiment.
  • the outdoor unit 100 has a housing 120.
  • the housing 120 is made of metal, for example.
  • the casing 120 accommodates the compressor 3, the load side heat exchanger 2, the heat source side heat exchanger 1 (not shown in FIG. 2), the outdoor blower 124, and electrical components that operate these.
  • a space in the housing 120 is partitioned into a blower chamber 122 and a machine chamber 123 by a partition plate 121.
  • the partition plate 121 is made of metal, for example.
  • the blower chamber 122 is provided with a heat source side heat exchanger 1 (not shown in FIG. 2) that is an air heat exchanger, and an outdoor blower 124 that supplies outdoor air to the heat source side heat exchanger 1.
  • the outdoor blower 124 includes an impeller and a motor that drives the impeller.
  • the machine room 123 is provided with devices such as the compressor 3 and the load-side heat exchanger 2 that constitute the refrigerant circuit 110, and an electrical component box 125 that houses electrical components.
  • the electrical product includes a control board that constitutes the control device 101, a relay that switches between supply and interruption of power to the compressor 3 and the outdoor fan 124, and the like.
  • the outdoor-side pipes 126 and 127 that are part of the water piping of the water circuit 210 are connected to the load-side heat exchanger 2.
  • the outdoor unit pipe 126 is a water pipe upstream of the load-side heat exchanger 2 in the water flow direction, and the outdoor unit pipe 127 is water downstream of the load-side heat exchanger 2 in the water flow direction. It is piping.
  • the outdoor unit pipes 126 and 127 pass through the casing 120 and project outside the casing 120. Joint portions 128 and 129 are provided at the distal ends of the outdoor unit pipes 126 and 127 outside the housing 120, respectively.
  • the outdoor unit pipes 126 and 127 are connected to connection pipes 211 and 212 via joint portions 128 and 129, respectively.
  • a pressure relief valve 58 and an air vent valve 59 are provided outside the casing 120 in the outdoor unit pipe 127. That is, the pressure relief valve 58 and the air vent valve 59 are provided outside the housing 120 in the outdoor unit 100 and downstream of the load-side heat exchanger 2 in the water flow direction.
  • the load side heat exchanger 2 functions as an evaporator during the defrosting operation. For this reason, the partition wall of the load-side heat exchanger 2 may be damaged due to freezing of water or the like particularly during the defrosting operation.
  • the pressure of the refrigerant flowing through the refrigerant flow path of the load-side heat exchanger 2 is higher than the pressure of water flowing through the water flow path of the load-side heat exchanger 2 in both the normal operation and the defrosting operation.
  • the refrigerant in the refrigerant channel flows out into the water channel in both the normal operation and the defrosting operation, and the refrigerant is mixed into the water in the water channel.
  • the refrigerant mixed in the water is gasified by a decrease in pressure.
  • the pressure in the water flow path rises when refrigerant having a higher pressure than water is mixed into the water.
  • the pressure relief valve 58 and the air vent valve 59 are provided outside the casing 120 of the outdoor unit 100. For this reason, when the pressure in the water circuit 210 rises due to the mixing of the refrigerant, the refrigerant mixed in the water is released together with water into the atmosphere of the outdoor space outside the housing 120 by the pressure relief valve 58. Alternatively, the gaseous refrigerant mixed in the water is released into the atmosphere of the outdoor space outside the housing 120 by the air vent valve 59. Thus, the refrigerant mixed in the water of the water circuit 210 can be discharged to the outside by any of the pressure relief valve 58 and the air vent valve 59.
  • both the pressure relief valve 58 and the air vent valve 59 function as a refrigerant release valve that releases the refrigerant mixed in the water in the water circuit 210 to the outside. Therefore, both the pressure relief valve 58 and the air vent valve 59 may be provided outside the housing 120 of the outdoor unit 100, or only one of the pressure relief valve 58 or the air vent valve 59 is provided. It may be.
  • At least one of the pressure relief valve 58 and the air vent valve 59 is provided downstream of the load side heat exchanger 2 and upstream of the indoor unit 200 in the water flow direction. For this reason, the refrigerant mixed in the water in the load side heat exchanger 2 is released into the atmosphere of the outdoor space by the pressure relief valve 58 or the air vent valve 59 before flowing into the indoor unit 200.
  • the heat pump device includes the refrigerant circuit 110 that circulates a flammable refrigerant, the water circuit 210 that circulates water (an example of a heat medium), and an example of a heat medium circuit.
  • a load-side heat exchanger 2 (an example of a heat medium heat exchanger) that performs heat exchange between the refrigerant and water
  • an outdoor unit 100 that houses the refrigerant circuit 110 and the load-side heat exchanger 2
  • a water circuit 210 that accommodates the section.
  • the outdoor unit 100 has at least one of a pressure relief valve 58 and an air vent valve 59 provided in the water circuit 210 as a refrigerant release valve that can release the refrigerant mixed in the water circuit 210 to the outside.
  • the refrigerant discharge valve of the outdoor unit 100 is provided outside the housing 120 of the outdoor unit 100.
  • the refrigerant mixed in the water circuit 210 by the load side heat exchanger 2 can be discharged into the atmosphere of the outdoor space outside the casing 120 of the outdoor unit 100. For this reason, even if the refrigerant mixed in the water circuit 210 is released from the pressure relief valve 58 or the air vent valve 59, the released refrigerant encounters an electrical product in the housing 120 that can be an ignition source. Can be prevented. Therefore, it is possible to more reliably prevent the refrigerant from being ignited by an electric spark or the like generated in the electric product in the housing 120.
  • the refrigerant discharge valve of the outdoor unit 100 is provided on the downstream side of the load-side heat exchanger 2 in the water flow direction.
  • the refrigerant mixed in the water circuit 210 by the load side heat exchanger 2 can be released into the atmosphere of the outdoor space before flowing into the indoor unit 200. Therefore, even if the pressure relief valve or the air vent valve is also provided in the indoor unit 200, it is possible to prevent the refrigerant from being discharged into the room by the pressure relief valve or the air vent valve of the indoor unit 200. it can.
  • the joint portions 128 and 129 are provided so as to protrude from the housing 120 by the outdoor unit pipes 126 and 127. Therefore, in this embodiment, there is a margin in the space in the casing 120 of the outdoor unit 100 as compared with the configuration in which the joint portions 128 and 129 are provided in the casing 120 or on the surface of the casing 120. The layout design in the housing 120 is facilitated. Further, in the present embodiment, compared to the configuration in which the joint portions 128 and 129 are provided in the housing 120 or on the surface of the housing 120, the connection between the outdoor unit 100 and the connection pipes 211 and 212 is not limited. Workability is improved.
  • FIG. 3 is a schematic diagram showing the configuration of the outdoor unit 100 of the heat pump apparatus according to the present embodiment.
  • symbol is attached
  • a valve chamber 131 covered with, for example, a resin cover 130 is formed outside the housing 120. Since the valve chamber 131 is formed outside the housing 120, the valve chamber 131 is partitioned from both the fan chamber 122 and the machine chamber 123 in the housing 120. In the outdoor unit 100, a blower chamber 122 and a machine chamber 123 provided inside the housing 120, and a valve chamber 131 provided outside the housing 120 are formed.
  • the valve chamber 131 is provided with a pressure relief valve 58 and an air vent valve 59.
  • a pressure relief valve 58 for example, only the pressure relief valve 58, the air vent valve 59 and the outdoor unit pipes 126 and 127 are accommodated.
  • the valve chamber 131 communicates with the outdoor space through an opening (not shown) provided in the cover 130.
  • FIG. 4 is a schematic diagram showing the configuration of the outdoor unit 100 of the heat pump apparatus according to a modification of the present embodiment.
  • a partition plate 121 that partitions the blower chamber 122 and the machine chamber 123 and a partition plate 132 that partitions the machine chamber 123 and the valve chamber 133 are provided in the housing 120. That is, the space in the housing 120 is divided into the blower chamber 122, the machine chamber 123, and the valve chamber 133 by the partition plates 121 and 132.
  • Each of the partition plates 121 and 132 is made of metal, for example.
  • a valve chamber 133 is formed by a partition plate 132 instead of the cover 130 shown in FIG.
  • the valve chamber 133 is provided with a pressure relief valve 58 and an air vent valve 59.
  • a pressure relief valve 58 for example, only the pressure relief valve 58, the air vent valve 59, and the outdoor unit pipes 126 and 127 are accommodated.
  • the valve chamber 133 communicates with the outdoor space through an opening (not shown) provided in the housing 120.
  • the joint portions 128 and 129 are provided in the housing 120 or on the surface of the housing 120.
  • the design of the outdoor unit 100 can be improved as compared with the configuration in which the joint portions 128 and 129 protrude from the housing 120 by the outdoor unit pipes 126 and 127.
  • the heat pump device includes the refrigerant circuit 110 that circulates a flammable refrigerant, the water circuit 210 that circulates water (an example of a heat medium), and an example of a heat medium circuit.
  • a load-side heat exchanger 2 (an example of a heat medium heat exchanger) that performs heat exchange between the refrigerant and water
  • an outdoor unit 100 that houses the refrigerant circuit 110 and the load-side heat exchanger 2
  • a water circuit 210 a water circuit 210.
  • an indoor unit 200 that accommodates the section.
  • the outdoor unit 100 has at least one of a pressure relief valve 58 and an air vent valve 59 provided in the water circuit 210 as a refrigerant release valve.
  • the outdoor unit 100 is formed with a first chamber (for example, a machine chamber 123) in which at least electrical equipment is provided and a second chamber (for example, valve chambers 131 and 133) partitioned from the first chamber. .
  • the refrigerant discharge valve included in the outdoor unit 100 is provided in the second chamber.
  • the refrigerant mixed in the water circuit 210 by the load-side heat exchanger 2 can be discharged into the second chamber partitioned from the first chamber in which the electrical product is provided. Therefore, even when the refrigerant mixed in the water circuit 210 is released from the pressure relief valve 58 or the air vent valve 59, it is possible to more reliably prevent the refrigerant from being ignited by an electric spark or the like generated in the electric product. it can.
  • the refrigerant discharge valve of the outdoor unit 100 is provided in the second chamber, it is possible to prevent the refrigerant discharge valve from getting wet and corroded by rainwater.
  • FIG. 5 is a schematic diagram showing the configuration of the outdoor unit 100 of the heat pump apparatus according to the present embodiment.
  • symbol is attached
  • the space in the housing 120 is partitioned into a blower chamber 122 and a machine chamber 123 by a partition plate 121. That is, in the present embodiment, no valve chamber is provided.
  • the machine room 123 is provided with a compressor 3 (not shown in FIG. 5) constituting the refrigerant circuit 110, the load-side heat exchanger 2, the outdoor unit pipes 126, 127, and the like, and an electrical component box 125. .
  • the blower chamber 122 includes a heat source side heat exchanger 1 (not shown in FIG. 5), an outdoor fan 124 that blows outdoor air to the heat source side heat exchanger 1, a pressure relief valve 58, and an air vent valve 59.
  • the pressure relief valve 58 is connected to an outdoor unit pipe 127 provided in the machine room 123 via a conduit 58 a that penetrates the partition plate 121.
  • the air vent valve 59 is connected to an outdoor unit pipe 127 provided in the machine room 123 via a conduit 59 a that penetrates the partition plate 121.
  • a non-brush type motor for example, a DC brushless motor, an induction motor, or the like
  • a non-brush type motor for example, a DC brushless motor, an induction motor, or the like
  • the heat pump device includes the refrigerant circuit 110 that circulates a flammable refrigerant, the water circuit 210 that circulates water (an example of a heat medium), and an example of a heat medium circuit.
  • a load-side heat exchanger 2 (an example of a heat medium heat exchanger) that performs heat exchange between the refrigerant and water
  • an outdoor unit 100 that houses the refrigerant circuit 110 and the load-side heat exchanger 2
  • a water circuit 210 a water circuit 210.
  • an indoor unit 200 that accommodates the section.
  • the outdoor unit 100 has at least one of a pressure relief valve 58 and an air vent valve 59 provided in the water circuit 210 as a refrigerant release valve.
  • the outdoor unit 100 is formed with a first chamber (for example, a machine chamber 123) in which at least electrical equipment is provided and a second chamber (for example, a blower chamber 122) partitioned from the first chamber.
  • the refrigerant discharge valve included in the outdoor unit 100 is provided in the second chamber.
  • the refrigerant mixed in the water circuit 210 by the load-side heat exchanger 2 can be discharged into the second chamber partitioned from the first chamber in which the electrical product is provided. Therefore, even when the refrigerant mixed in the water circuit 210 is released from the pressure relief valve 58 or the air vent valve 59, it is possible to more reliably prevent the refrigerant from being ignited by an electric spark or the like generated in the electric product. it can.
  • the refrigerant discharge valve of the outdoor unit 100 is provided in the second chamber, it is possible to prevent the refrigerant discharge valve from getting wet and corroded by rainwater.
  • the heat pump device further includes a heat source side heat exchanger 1 that performs heat exchange between the refrigerant and the outdoor air, and an outdoor fan 124 that blows outdoor air to the heat source side heat exchanger 1. ing.
  • the outdoor blower 124 is provided in the second chamber.
  • the refrigerant released into the second chamber can be quickly diffused into the outdoor space by the outdoor fan 124.
  • outdoor fan 124 has non-brush motor 124a.
  • FIG. 6 is a schematic diagram showing the configuration of the outdoor unit 100 of the heat pump apparatus according to the present embodiment. Note that components having the same functions and operations as in any of Embodiments 1 to 3 are denoted by the same reference numerals and description thereof is omitted. Moreover, the positional relationship (for example, up-and-down relationship) between each structural member in this Embodiment is a thing when installing a heat pump apparatus in the state which can be used in principle.
  • the space in the housing 120 is partitioned into a blower chamber 122 and a machine chamber 123 by a partition plate 121.
  • the machine room 123 is provided with the compressor 3 constituting the refrigerant circuit 110, the load side heat exchanger 2, the outdoor unit pipes 126, 127, etc., the electrical component box 125, the pressure relief valve 58, and the air vent valve 59. It has been.
  • the electrical component box 125 accommodates electrical components such as relays.
  • An electrical product (for example, a relay) in the electrical product box 125 and a terminal 3 a provided on the terminal block of the compressor 3 are connected via an electrical wiring 134.
  • the pressure relief valve 58 and the air vent valve 59 are provided below an electrical product (for example, a relay) in the electrical product box 125, and are provided, for example, below a lower end portion of the electrical product box 125. Further, the pressure relief valve 58 and the air vent valve 59 are provided below the terminal 3 a of the compressor 3.
  • the height positions of the pressure relief valve 58 and the air vent valve 59 can be specified by the height positions of the discharge ports of the pressure relief valve 58 and the air vent valve 59, respectively.
  • the machine room 123 is formed with a first ventilation hole 135 and a second ventilation hole 136 that allow air to flow between the outside of the housing 120 and the blower room 122, respectively.
  • the first vent 135 is provided above the pressure relief valve 58 and the air vent valve 59.
  • the second vent hole 136 is provided below the pressure relief valve 58 and the air vent valve 59.
  • Each of the first vent 135 and the second vent 136 is formed with a louver.
  • the first vent 135 is formed on the side wall of the casing 120 in order to circulate air between the machine room 123 and the outside of the casing 120.
  • the second vent 136 is formed in the partition plate 121 in order to allow air to flow between the machine room 123 and the blower room 122.
  • both the first vent 135 and the second vent 136 may be formed in the partition plate 121, or both may be formed in the housing 120.
  • the first vent 135 and the second vent 136 may be formed on the same side wall of the housing 120.
  • the heat pump device includes the refrigerant circuit 110 that circulates a flammable refrigerant, the water circuit 210 that circulates water (an example of a heat medium), and an example of a heat medium circuit.
  • a load-side heat exchanger 2 (an example of a heat medium heat exchanger) that performs heat exchange between the refrigerant and water
  • an outdoor unit 100 that houses the refrigerant circuit 110 and the load-side heat exchanger 2
  • a water circuit 210 a water circuit 210.
  • an indoor unit 200 that accommodates the section.
  • the outdoor unit 100 has at least one of a pressure relief valve 58 and an air vent valve 59 provided in the water circuit 210 as a refrigerant release valve.
  • the outdoor unit 100 is formed with a first chamber (for example, a machine chamber 123) in which at least electrical equipment is provided.
  • the refrigerant release valve included in the outdoor unit 100 is the first chamber and is provided below the electrical component.
  • a first vent 135 provided above the refrigerant discharge valve and a second vent 136 provided below the refrigerant discharge valve are formed in the first chamber.
  • the refrigerant release valve (for example, the pressure relief valve 58 and the air vent valve 59) is provided below the electrical component (for example, a relay that is an electrical contact part). For this reason, it is possible to prevent the refrigerant released into the machine chamber 123 by the pressure relief valve 58 or the air vent valve 59 from encountering the ignition source.
  • the first vent 135 provided above the refrigerant discharge valve and the second vent 136 provided below the refrigerant discharge valve are formed in the machine chamber 123. Yes. Therefore, when the refrigerant is released into the machine chamber 123 by the pressure relief valve 58 or the air vent valve 59, external air flows into the machine chamber 123 from the first vent 135 due to natural convection due to the density difference between the refrigerant and the air. At the same time, the refrigerant in the machine chamber 123 flows out from the second vent 136 to the outside. As a result, the refrigerant discharged into the machine room 123 does not stay in the machine room 123 and is discharged from the second vent 136 to the outside.
  • coolant which has a density smaller than air under atmospheric pressure is used, the refrigerant
  • the refrigerant discharge valve of the outdoor unit 100 is provided in the machine room 123, it is possible to prevent the refrigerant discharge valve from getting wet and corroded by rainwater.
  • the relay that can be an ignition source is housed in the electrical component box 125, the refrigerant discharged to the first chamber and the ignition source can be more reliably isolated, and the refrigerant is ignited. Can be avoided more reliably.
  • a plate-type heat exchanger has been exemplified as the load-side heat exchanger 2, but the load-side heat exchanger 2 can perform heat exchange between the refrigerant and the heat medium, Other than the plate-type heat exchanger such as a double-pipe heat exchanger may be used.
  • the heat pump hot water supply apparatus 1000 is taken as an example of the heat pump apparatus, but the present invention is also applicable to other heat pump apparatuses such as a chiller.
  • a pressure relief valve and an air vent valve is other than the indoor unit 200 or the indoor unit 200 It may be provided in a use side circuit (for example, sanitary circuit side pipes 81a and 81b, heating circuit side pipes 82a and 82b, heating equipment 300, etc.).
  • the indoor unit 200 provided with the hot water storage tank 51 is taken as an example, but the hot water storage tank may be provided separately from the indoor unit 200.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Housings, Intake/Discharge, And Installation Of Fluid Heaters (AREA)

Abstract

ヒートポンプ装置は、可燃性を有する冷媒を循環させる冷媒回路と、熱媒体を流通させる熱媒体回路と、冷媒と熱媒体との熱交換を行う熱媒体熱交換器と、冷媒回路及び熱媒体熱交換器を収容する室外機と、熱媒体回路の一部を収容する室内機と、を備え、室外機は、熱媒体回路に設けられる圧力逃がし弁及び空気抜き弁の少なくとも一方を冷媒放出弁として有しており、冷媒放出弁は、室外機の筐体の外部に設けられているものである。

Description

ヒートポンプ装置
 本発明は、冷媒回路と熱媒体回路とを備えたヒートポンプ装置に関するものである。
 特許文献1には、可燃性冷媒を用いたヒートポンプ装置の室外機が記載されている。この室外機は、圧縮機、空気熱交換器、絞り装置及び水熱交換器が配管接続された冷媒回路と、水熱交換器で加熱された水を供給するための水回路内の水圧の過上昇を防止する圧力逃がし弁と当該水回路内の空気を排出する空気抜き弁との少なくとも一方と、を備えている。これにより、水熱交換器において冷媒回路と水回路とを隔離する隔壁が破壊されて、可燃性冷媒が水回路に混入した場合でも、圧力逃がし弁又は空気抜き弁を介して可燃性冷媒を屋外に排出することができる。
特開2013-167398号公報
 しかしながら、特許文献1では、室外機に備えられる圧力逃がし弁及び空気抜き弁の配置場所について言及されていない。したがって、例えば、圧力逃がし弁及び空気抜き弁の配置場所によっては、室外機の電気部品で電気火花等が生じた場合、圧力逃がし弁又は空気抜き弁から放出された可燃性冷媒が着火に至るおそれがあるという課題があった。
 本発明は、上述のような課題を解決するためになされたものであり、可燃性冷媒が着火に至るのをより確実に防止できるヒートポンプ装置を提供することを目的とする。
 本発明に係るヒートポンプ装置は、可燃性を有する冷媒を循環させる冷媒回路と、熱媒体を流通させる熱媒体回路と、前記冷媒と前記熱媒体との熱交換を行う熱媒体熱交換器と、前記冷媒回路及び前記熱媒体熱交換器を収容する室外機と、前記熱媒体回路の一部を収容する室内機と、を備え、前記室外機は、前記熱媒体回路に設けられる圧力逃がし弁及び空気抜き弁の少なくとも一方を冷媒放出弁として有しており、前記冷媒放出弁は、前記室外機の筐体の外部に設けられているものである。
 本発明によれば、水回路に混入した可燃性冷媒が圧力逃がし弁又は空気抜き弁から放出された場合であっても、放出された冷媒が着火源と遭遇するのを防ぐことができる。したがって、可燃性冷媒が着火に至るのをより確実に防止することができる。
本発明の実施の形態1に係るヒートポンプ装置の概略構成を示す回路図である。 本発明の実施の形態1に係るヒートポンプ装置の室外機100の構成を示す模式図である。 本発明の実施の形態2に係るヒートポンプ装置の室外機100の構成を示す模式図である。 本発明の実施の形態2の変形例に係るヒートポンプ装置の室外機100の構成を示す模式図である。 本発明の実施の形態3に係るヒートポンプ装置の室外機100の構成を示す模式図である。 本発明の実施の形態4に係るヒートポンプ装置の室外機100の構成を示す模式図である。
実施の形態1.
 本発明の実施の形態1に係るヒートポンプ装置について説明する。図1は、本実施の形態に係るヒートポンプ装置の概略構成を示す回路図である。本実施の形態では、ヒートポンプ装置として、ヒートポンプ給湯装置1000を例示している。なお、図1を含む以下の図面では、各構成部材の寸法の関係や形状等が実際のものとは異なる場合がある。
 図1に示すように、ヒートポンプ給湯装置1000は、冷媒を循環させる冷媒回路110と、水を流通させる水回路210と、を有している。また、ヒートポンプ給湯装置1000は、室外(例えば、屋外)に設置される室外機100と、室内に設置される室内機200と、を有している。室内機200は、例えば、キッチンやバスルーム、ランドリールームの他、建物の内部にある納戸などの収納スペースに設置される。
 冷媒回路110は、圧縮機3、冷媒流路切替装置4、負荷側熱交換器2、第1減圧装置6、中圧レシーバ5、第2減圧装置7、及び熱源側熱交換器1が冷媒配管を介して順次環状に接続された構成を有している。ヒートポンプ給湯装置1000の冷媒回路110では、水回路210を流れる水を加熱する通常運転(例えば、暖房給湯運転)と、通常運転に対して冷媒を逆方向に流通させ、熱源側熱交換器1の除霜を行う除霜運転と、が可能となっている。
 圧縮機3は、吸入した低圧冷媒を圧縮し、高圧冷媒として吐出する流体機械である。本例の圧縮機3は、インバータ装置等を備え、駆動周波数を任意に変化させることにより、容量(単位時間あたりに冷媒を送り出す量)を変化させることができるものとする。
 冷媒流路切替装置4は、通常運転時と除霜運転時とで冷媒回路110内の冷媒の流れ方向を切り替えるものである。冷媒流路切替装置4としては、例えば四方弁が用いられる。
 負荷側熱交換器2は、冷媒回路110を流れる冷媒と、水回路210を流れる水と、の熱交換を行う水熱交換器である。負荷側熱交換器2としては、例えば、プレート式熱交換器が用いられる。負荷側熱交換器2は、冷媒回路110の一部として冷媒を流通させる冷媒流路と、水回路210の一部として水を流通させる水流路と、冷媒流路と水流路とを隔離する薄板状の隔壁と、を有している。負荷側熱交換器2は、通常運転時には水を加熱する凝縮器(放熱器)として機能し、除霜運転時には蒸発器(吸熱器)として機能する。
 第1減圧装置6は、冷媒の流量を調整し、例えば負荷側熱交換器2を流れる冷媒の圧力調整を行う。中圧レシーバ5は、冷媒回路110において、第1減圧装置6と第2減圧装置7との間に位置し、余剰冷媒を溜めておくものである。中圧レシーバ5の内部には、圧縮機3の吸入側と接続されている吸入配管11が通過している。中圧レシーバ5では、吸入配管11を通過する冷媒と、中圧レシーバ5内の冷媒との熱交換が行われる。このため、中圧レシーバ5は、冷媒回路110における内部熱交換器としての機能を有している。第2減圧装置7は、冷媒の流量を調整し、圧力調整を行う。本例の第1減圧装置6及び第2減圧装置7は、後述する制御装置101からの指示に基づいて開度を変化させることができる電子膨張弁である。
 熱源側熱交換器1は、冷媒回路110を流れる冷媒と、室外送風機(図示せず)等により送風される室外空気との熱交換を行う空気熱交換器である。熱源側熱交換器1は、通常運転時には蒸発器(吸熱器)として機能し、除霜運転時には凝縮器(放熱器)として機能する。
 冷媒回路110を循環する冷媒としては、例えば、HFO-1234yf、HFO-1234ze(E)等の微燃性冷媒、又は、R290、R1270等の強燃性冷媒が用いられる。これらの冷媒は単一冷媒として用いられてもよいし、2種以上が混合された混合冷媒として用いられてもよい。以下、微燃レベル以上(例えば、ASHRAE34の分類で2L以上)の燃焼性を有する冷媒のことを「可燃性を有する冷媒」又は「可燃性冷媒」という場合がある。これらの冷媒は、大気圧下(例えば、温度は室温(25℃))において空気よりも大きい密度を有している。
 圧縮機3、冷媒流路切替装置4、負荷側熱交換器2、第1減圧装置6、中圧レシーバ5、第2減圧装置7及び熱源側熱交換器1は、室外機100に収容されている。すなわち、冷媒回路110の実質的に全ての構成要素は、室外機100に収容されている。
 また、室外機100には、主に冷媒回路110(例えば、圧縮機3、冷媒流路切替装置4、第1減圧装置6、第2減圧装置7、不図示の室外送風機等)の動作を制御する制御装置101が設けられている。制御装置101は、CPU、ROM、RAM、I/Oポート等を備えたマイクロコンピュータを有している。制御装置101は、制御線102を介して、後述する制御装置201及び操作部202と相互に通信できるようになっている。
 次に、冷媒回路110の動作の例について説明する。図1では、冷媒回路110における通常運転時の冷媒の流れ方向を実線矢印で示している。通常運転時には、冷媒流路切替装置4によって冷媒流路が実線矢印で示すように切り替えられ、高温高圧の冷媒が負荷側熱交換器2に流入するように冷媒回路110が構成される。
 圧縮機3から吐出された高温高圧のガス冷媒は、冷媒流路切替装置4を経て、負荷側熱交換器2の冷媒流路に流入する。通常運転時には、負荷側熱交換器2は凝縮器として機能する。すなわち、負荷側熱交換器2では、冷媒流路を流れる冷媒と水流路を流れる水との熱交換が行われ、冷媒の凝縮熱が水に放熱される。これにより、負荷側熱交換器2の冷媒流路を流れる冷媒は、凝縮して高圧の液冷媒となる。また、負荷側熱交換器2の水流路を流れる水は、冷媒からの放熱によって加熱される。
 負荷側熱交換器2で凝縮した高圧の液冷媒は、第1減圧装置6に流入し、若干減圧されて二相冷媒となる。この二相冷媒は、中圧レシーバ5に流入し、吸入配管11を流れる低圧のガス冷媒との熱交換により冷却されて液冷媒となる。この液冷媒は、第2減圧装置7に流入し、減圧されて低圧の二相冷媒となる。低圧の二相冷媒は、熱源側熱交換器1に流入する。通常運転時には、熱源側熱交換器1は蒸発器として機能する。すなわち、熱源側熱交換器1では、内部を流通する冷媒と、室外送風機により送風される室外空気との熱交換が行われ、冷媒の蒸発熱が室外空気から吸熱される。これにより、熱源側熱交換器1に流入した冷媒は、蒸発して低圧のガス冷媒となる。低圧のガス冷媒は、冷媒流路切替装置4を経由して吸入配管11に流入する。吸入配管11に流入した低圧のガス冷媒は、中圧レシーバ5内の冷媒との熱交換により加熱され、圧縮機3に吸入される。圧縮機3に吸入された冷媒は、圧縮されて高温高圧のガス冷媒となる。通常運転では、以上のサイクルが連続的に繰り返される。
 次に、除霜運転時の動作の例について説明する。図1では、冷媒回路110における除霜運転時の冷媒の流れ方向を破線矢印で示している。除霜運転時には、冷媒流路切替装置4によって冷媒流路が破線矢印で示すように切り替えられ、高温高圧の冷媒が熱源側熱交換器1に流入するように冷媒回路110が構成される。
 圧縮機3から吐出された高温高圧のガス冷媒は、冷媒流路切替装置4を経て、熱源側熱交換器1に流入する。除霜運転時には、熱源側熱交換器1は凝縮器として機能する。すなわち、熱源側熱交換器1では、内部を流通する冷媒の凝縮熱が、熱源側熱交換器1の表面に付着した霜に放熱される。これにより、熱源側熱交換器1の内部を流通する冷媒は、凝縮して高圧の液冷媒となる。また、熱源側熱交換器1の表面に付着した霜は、冷媒からの放熱によって溶融する。
 熱源側熱交換器1で凝縮した高圧の液冷媒は、第2減圧装置7、中圧レシーバ5及び第1減圧装置6を経由して低圧の二相冷媒となり、負荷側熱交換器2の冷媒流路に流入する。除霜運転時には、負荷側熱交換器2は蒸発器として機能する。すなわち、負荷側熱交換器2では、冷媒流路を流れる冷媒と水流路を流れる水との熱交換が行われ、冷媒の蒸発熱が水から吸熱される。これにより、負荷側熱交換器2の冷媒流路を流れる冷媒は、蒸発して低圧のガス冷媒となる。このガス冷媒は、冷媒流路切替装置4及び吸入配管11を経由して、圧縮機3に吸入される。圧縮機3に吸入された冷媒は、圧縮されて高温高圧のガス冷媒となる。除霜運転では、以上のサイクルが連続的に繰り返される。
 次に、水回路210について説明する。水回路210は、ポンプ53、三方弁55、貯湯タンク51、ストレーナ56、フロースイッチ57、負荷側熱交換器2、圧力逃がし弁58、空気抜き弁59及びブースタヒータ54等が水配管を介して接続された構成を有している。水回路210を構成する水配管の途中には、水回路210内の水を排水するための排水口62が設けられている。
 水回路210のうち、負荷側熱交換器2、圧力逃がし弁58及び空気抜き弁59は、室外機100に設けられている。水回路210のうち、負荷側熱交換器2、圧力逃がし弁58及び空気抜き弁59以外の機器は、室内機200に設けられている。すなわち、水回路210は、室外機100と室内機200とに跨がって設けられている。水回路210の一部は室外機100に設けられ、水回路210の他の一部は室内機200に設けられている。室外機100と室内機200との間は、水配管の一部である2本の接続配管211、212を介して接続されている。
 貯湯タンク51は、内部に水を溜める装置である。貯湯タンク51は、水回路210に接続されたコイル61を内蔵する。コイル61は、水回路210を循環する水(温水)と貯湯タンク51内部に溜まった水とを熱交換させて、貯湯タンク51内部に溜まった水を加熱する。また、貯湯タンク51は、浸水ヒータ60を内蔵している。浸水ヒータ60は、貯湯タンク51内部に溜まった水をさらに加熱するための加熱手段である。
 貯湯タンク51内の水は、例えばシャワー等に接続されるサニタリー回路側配管81a(往き管)に流れる。また、サニタリー回路側配管81b(戻り管)にも排水口63が設けられている。ここで、貯湯タンク51の内部に溜まった水が外部の空気により冷えるのを防止するため、貯湯タンク51は断熱材(図示せず)で覆われている。断熱材には、例えばフェルト、シンサレート(登録商標)、VIP(Vacuum Insulation Panel)等が用いられる。
 ポンプ53は、水回路210内の水に圧力を与えて水回路210内を循環させる装置である。ブースタヒータ54は、室外機100の加熱能力が足りない場合等に、水回路210内の水をさらに加熱する装置である。三方弁55は、水回路210内の水を分岐させるための装置である。例えば、三方弁55は、水回路210内の水を貯湯タンク51側へ流すか、外部に設けられたラジエータ又は床暖房等の暖房機器300が接続される暖房用回路側配管82a(往き管)へ流すかを切り替える。ここで、暖房用回路側配管82a(往き管)及び暖房用回路側配管82b(戻り管)は、室内機200の水回路210と暖房機器300との間で水を循環させる配管である。ストレーナ56は、水回路210内のスケール(堆積物)を取り除く装置である。フロースイッチ57は、水回路210内を循環する水の流量が一定量以上であるか否かを検出するための装置である。
 膨張タンク52は、加熱等に伴う水回路210内の水の容積変化により変化する圧力を一定範囲内に制御するための装置である。本例の膨張タンク52は、配管52aを介してブースタヒータ54に接続されている。
 圧力逃がし弁58は、室外機100のうち、水回路210の水の流れ方向(図1中の矢印F1)において負荷側熱交換器2の下流側に設けられている。圧力逃がし弁58は、水回路210内の圧力の過上昇を防ぐ保護装置である。水回路210内の圧力が膨張タンク52の圧力制御範囲を超えて高くなった場合には、水回路210内の水が圧力逃がし弁58によって外部に放出される。
 空気抜き弁59は、室外機100のうち、水回路210の水の流れ方向において負荷側熱交換器2の下流側に設けられている。本例では、空気抜き弁59は、水回路210の水の流れ方向において圧力逃がし弁58のさらに下流側に設けられているが、これに限らない。空気抜き弁59は、水回路210で発生したガス及び水回路210内に混入したガスを外部に放出し、ポンプ53が空回り(エア噛み)することを防止する装置である。空気抜き弁59としては、例えばフロート式の自動空気抜き弁が用いられる。
 本実施の形態では、水回路210を流通する熱媒体として水を例に挙げているが、熱媒体としては、ブライン等の他の液状熱媒体を用いることができる。
 室内機200には、主に水回路210(例えば、ポンプ53、ブースタヒータ54、三方弁55等)の動作を制御する制御装置201が設けられている。制御装置201は、CPU、ROM、RAM、I/Oポート等を備えたマイクロコンピュータを有している。制御装置201は、制御装置101及び操作部202と相互に通信できるようになっている。
 操作部202は、ヒートポンプ給湯装置1000の操作や各種設定をユーザが行うことができるようになっている。本例の操作部202は、表示部203を備えており、ヒートポンプ給湯装置1000の状態等の各種情報を表示することができる。操作部202は、例えば室内機200の筐体に設けられている。
 図2は、本実施の形態に係るヒートポンプ装置の室外機100の構成を示す模式図である。図2に示すように、室外機100は筐体120を有している。筐体120は、例えば金属製である。筐体120には、圧縮機3、負荷側熱交換器2、熱源側熱交換器1(図2では図示せず)、室外送風機124、及びこれらを動作させる電気品などが収容されている。筐体120内の空間は、仕切板121によって、送風機室122と機械室123とに仕切られている。仕切板121は、例えば金属製である。
 送風機室122には、空気熱交換器である熱源側熱交換器1(図2では図示せず)と、熱源側熱交換器1に室外空気を供給する室外送風機124と、が設けられている。室外送風機124は、羽根車と、羽根車を駆動するモータとを含んでいる。
 機械室123には、冷媒回路110を構成する圧縮機3及び負荷側熱交換器2等の機器と、電気品を収容する電気品箱125とが設けられている。電気品には、制御装置101を構成する制御基板や、圧縮機3及び室外送風機124への電力の供給及び遮断を切り替えるリレー等が含まれる。
 負荷側熱交換器2には、水回路210の水配管の一部である室外機配管126、127が接続されている。室外機配管126は、水の流れ方向において負荷側熱交換器2よりも上流側の水配管であり、室外機配管127は、水の流れ方向において負荷側熱交換器2よりも下流側の水配管である。室外機配管126、127は、筐体120を貫通して筐体120の外部に突出している。筐体120の外部における室外機配管126、127の先端部には、継手部128、129がそれぞれ設けられている。室外機配管126、127は、継手部128、129を介してそれぞれ接続配管211、212に接続されている。室外機配管127のうち筐体120の外部には、圧力逃がし弁58及び空気抜き弁59が設けられている。すなわち、圧力逃がし弁58及び空気抜き弁59は、室外機100のうち筐体120の外部であって、かつ水の流れ方向において負荷側熱交換器2の下流側に設けられている。
 次に、負荷側熱交換器2において、冷媒流路と水流路とを隔離する隔壁が破損した場合の動作について説明する。負荷側熱交換器2は、除霜運転時に蒸発器として機能する。このため、負荷側熱交換器2の隔壁は、特に除霜運転時には、水の凍結等により破損してしまう場合がある。一般に、負荷側熱交換器2の冷媒流路を流れる冷媒の圧力は、通常運転時及び除霜運転時のいずれにおいても、負荷側熱交換器2の水流路を流れる水の圧力よりも高い。このため、負荷側熱交換器2の隔壁が破損した場合、通常運転時及び除霜運転時のいずれにおいても冷媒流路の冷媒が水流路に流出し、水流路の水に冷媒が混入する。このとき、水に混入した冷媒は、圧力の低下によりガス化する。また、水よりも圧力の高い冷媒が水に混入することによって、水流路内の圧力は上昇する。
 本実施の形態では、圧力逃がし弁58及び空気抜き弁59が、室外機100のうちの筐体120の外部に設けられている。このため、冷媒の混入によって水回路210内の圧力が上昇すると、水に混入した冷媒は、圧力逃がし弁58によって、筐体120外部の屋外空間の大気中に水と共に放出される。あるいは、水に混入したガス状態の冷媒は、空気抜き弁59によって、筐体120外部の屋外空間の大気中に放出される。このように、水回路210の水に混入した冷媒は、圧力逃がし弁58及び空気抜き弁59のいずれによっても外部に放出され得る。すなわち、圧力逃がし弁58及び空気抜き弁59はいずれも、水回路210内の水に混入した冷媒を外部に放出する冷媒放出弁として機能する。このため、室外機100のうちの筐体120の外部には、圧力逃がし弁58及び空気抜き弁59の両方が設けられていてもよいし、圧力逃がし弁58又は空気抜き弁59の一方のみが設けられていてもよい。
 また、本実施の形態では、圧力逃がし弁58及び空気抜き弁59の少なくとも一方が、水の流れ方向において負荷側熱交換器2の下流側であって室内機200の上流側に設けられている。このため、負荷側熱交換器2で水に混入した冷媒は、室内機200に流入する前に、圧力逃がし弁58又は空気抜き弁59によって屋外空間の大気中に放出される。
 以上説明したように、本実施の形態に係るヒートポンプ装置は、可燃性を有する冷媒を循環させる冷媒回路110と、水(熱媒体の一例)を流通させる水回路210(熱媒体回路の一例)と、冷媒と水との熱交換を行う負荷側熱交換器2(熱媒体熱交換器の一例)と、冷媒回路110及び負荷側熱交換器2を収容する室外機100と、水回路210の一部を収容する室内機200と、を備えている。室外機100は、水回路210に設けられる圧力逃がし弁58及び空気抜き弁59の少なくとも一方を、水回路210に混入した冷媒を外部に放出し得る冷媒放出弁として有している。室外機100が有する冷媒放出弁は、室外機100の筐体120の外部に設けられている。
 この構成によれば、負荷側熱交換器2で水回路210に混入した冷媒を、室外機100の筐体120の外部である屋外空間の大気中に放出することができる。このため、水回路210に混入した冷媒が圧力逃がし弁58又は空気抜き弁59から放出された場合であっても、放出された冷媒が、着火源となり得る筐体120内の電気品と遭遇するのを防ぐことができる。したがって、筐体120内の電気品で生じる電気火花等によって冷媒が着火に至るのをより確実に防止することができる。
 また、本実施の形態に係るヒートポンプ装置では、室外機100が有する冷媒放出弁は、水の流れ方向において負荷側熱交換器2の下流側に設けられている。
 この構成によれば、負荷側熱交換器2で水回路210に混入した冷媒を、室内機200に流入する前に屋外空間の大気中に放出することができる。したがって、仮に、圧力逃がし弁又は空気抜き弁が室内機200にも設けられている場合であっても、室内機200の圧力逃がし弁又は空気抜き弁によって冷媒が室内に放出されてしまうのを防ぐことができる。
 また、本実施の形態では、継手部128、129が室外機配管126、127によって筐体120から突出して設けられている。したがって、本実施の形態では、継手部128、129が筐体120の内部又は筐体120の表面に設けられている構成と比較すると、室外機100の筐体120内の空間に余裕が生じるため、筐体120内のレイアウト設計が容易になる。また、本実施の形態では、継手部128、129が筐体120の内部又は筐体120の表面に設けられている構成と比較すると、室外機100と接続配管211、212とを接続する際の施工性が向上する。
実施の形態2.
 本発明の実施の形態2に係るヒートポンプ装置について説明する。図3は、本実施の形態に係るヒートポンプ装置の室外機100の構成を示す模式図である。なお、実施の形態1と同一の機能及び作用を有する構成要素については、同一の符号を付してその説明を省略する。
 図3に示すように、筐体120の外部には、例えば樹脂製のカバー130で覆われた弁室131が形成されている。弁室131は、筐体120の外部に形成されているため、筐体120内の送風機室122及び機械室123のいずれからも仕切られている。室外機100には、筐体120の内部に設けられた送風機室122及び機械室123と、筐体120の外部に設けられた弁室131と、が形成されている。
 弁室131には、圧力逃がし弁58及び空気抜き弁59が設けられている。弁室131には、例えば、圧力逃がし弁58、空気抜き弁59及び室外機配管126、127のみが収容されている。弁室131は、カバー130に設けられた不図示の開口部を介して、屋外空間と連通している。
 図4は、本実施の形態の変形例に係るヒートポンプ装置の室外機100の構成を示す模式図である。図4に示すように、筐体120内には、送風機室122と機械室123とを仕切る仕切板121と、機械室123と弁室133とを仕切る仕切板132と、が設けられている。すなわち、筐体120内の空間は、仕切板121、132によって、送風機室122と機械室123と弁室133とに仕切られている。仕切板121、132は、例えばいずれも金属製である。本変形例では、図3に示したカバー130に代えて、仕切板132によって弁室133が形成されている。
 弁室133には、圧力逃がし弁58及び空気抜き弁59が設けられている。弁室133には、例えば、圧力逃がし弁58、空気抜き弁59及び室外機配管126、127のみが収容されている。弁室133は、筐体120に設けられた不図示の開口部を介して、屋外空間と連通している。
 また、本変形例では、継手部128、129が筐体120の内部又は筐体120の表面に設けられている。これにより、本変形例では、継手部128、129が室外機配管126、127によって筐体120から突出している構成と比較すると、室外機100の意匠性を高めることができる。
 以上説明したように、本実施の形態に係るヒートポンプ装置は、可燃性を有する冷媒を循環させる冷媒回路110と、水(熱媒体の一例)を流通させる水回路210(熱媒体回路の一例)と、冷媒と水との熱交換を行う負荷側熱交換器2(熱媒体熱交換器の一例)と、冷媒回路110及び負荷側熱交換器2を収容する室外機100と、水回路210の一部を収容する室内機200と、を備えている。室外機100は、水回路210に設けられる圧力逃がし弁58及び空気抜き弁59の少なくとも一方を冷媒放出弁として有している。室外機100には、少なくとも電気品が設けられる第1室(例えば、機械室123)と、第1室から仕切られた第2室(例えば、弁室131、133)と、が形成されている。室外機100が有する冷媒放出弁は、第2室に設けられている。
 この構成によれば、負荷側熱交換器2で水回路210に混入した冷媒を、電気品が設けられる第1室から仕切られた第2室に放出することができる。したがって、水回路210に混入した冷媒が圧力逃がし弁58又は空気抜き弁59から放出された場合であっても、電気品で生じる電気火花等によって冷媒が着火に至るのをより確実に防止することができる。
 また、この構成によれば、室外機100が有する冷媒放出弁が第2室に設けられているため、冷媒放出弁が雨水に濡れて腐食してしまうのを防止することができる。
実施の形態3.
 本発明の実施の形態3に係るヒートポンプ装置について説明する。図5は、本実施の形態に係るヒートポンプ装置の室外機100の構成を示す模式図である。なお、実施の形態1又は2と同一の機能及び作用を有する構成要素については、同一の符号を付してその説明を省略する。
 図5に示すように、筐体120内の空間は、仕切板121によって、送風機室122と機械室123とに仕切られている。すなわち、本実施の形態では、弁室が設けられていない。機械室123には、冷媒回路110を構成する圧縮機3(図5では図示せず)、負荷側熱交換器2及び室外機配管126、127等と、電気品箱125とが設けられている。
 送風機室122には、熱源側熱交換器1(図5では図示せず)と、熱源側熱交換器1に室外空気を送風する室外送風機124と、圧力逃がし弁58及び空気抜き弁59と、が設けられている。圧力逃がし弁58は、仕切板121を貫通する導管58aを介して、機械室123内に設けられた室外機配管127に接続されている。空気抜き弁59は、仕切板121を貫通する導管59aを介して、機械室123内に設けられた室外機配管127に接続されている。室外送風機124のモータ124aには、非ブラシ式のモータ(例えば、DCブラシレスモータ、誘導モータなど)が用いられている。
 以上説明したように、本実施の形態に係るヒートポンプ装置は、可燃性を有する冷媒を循環させる冷媒回路110と、水(熱媒体の一例)を流通させる水回路210(熱媒体回路の一例)と、冷媒と水との熱交換を行う負荷側熱交換器2(熱媒体熱交換器の一例)と、冷媒回路110及び負荷側熱交換器2を収容する室外機100と、水回路210の一部を収容する室内機200と、を備えている。室外機100は、水回路210に設けられる圧力逃がし弁58及び空気抜き弁59の少なくとも一方を冷媒放出弁として有している。室外機100には、少なくとも電気品が設けられる第1室(例えば、機械室123)と、第1室から仕切られた第2室(例えば、送風機室122)と、が形成されている。室外機100が有する冷媒放出弁は、第2室に設けられている。
 この構成によれば、負荷側熱交換器2で水回路210に混入した冷媒を、電気品が設けられる第1室から仕切られた第2室に放出することができる。したがって、水回路210に混入した冷媒が圧力逃がし弁58又は空気抜き弁59から放出された場合であっても、電気品で生じる電気火花等によって冷媒が着火に至るのをより確実に防止することができる。
 また、この構成によれば、室外機100が有する冷媒放出弁が第2室に設けられているため、冷媒放出弁が雨水に濡れて腐食してしまうのを防止することができる。
 また、本実施の形態に係るヒートポンプ装置は、冷媒と室外空気との熱交換を行う熱源側熱交換器1と、熱源側熱交換器1に室外空気を送風する室外送風機124と、をさらに備えている。室外送風機124は、第2室に設けられている。
 この構成によれば、室外送風機124が動作しているときには、第2室に放出された冷媒を室外送風機124によって屋外空間に速やかに拡散させることができる。
 また、本実施の形態に係るヒートポンプ装置では、室外送風機124は、非ブラシ式のモータ124aを有している。
 この構成によれば、室外送風機124のモータ124aで電気火花が生じるのを防ぐことができるため、第2室に放出された冷媒が着火に至るのをより確実に防止することができる。
実施の形態4.
 本発明の実施の形態4に係るヒートポンプ装置について説明する。図6は、本実施の形態に係るヒートポンプ装置の室外機100の構成を示す模式図である。なお、実施の形態1~3のいずれかと同一の機能及び作用を有する構成要素については、同一の符号を付してその説明を省略する。また、本実施の形態における各構成部材同士の位置関係(例えば、上下関係等)は、原則として、ヒートポンプ装置を使用可能な状態に設置したときのものである。
 図6に示すように、筐体120内の空間は、仕切板121によって、送風機室122と機械室123とに仕切られている。機械室123には、冷媒回路110を構成する圧縮機3、負荷側熱交換器2及び室外機配管126、127等と、電気品箱125と、圧力逃がし弁58及び空気抜き弁59と、が設けられている。電気品箱125には、リレー等の電気品が収容されている。電気品箱125内の電気品(例えば、リレー)と、圧縮機3の端子台に設けられた端子3aとは、電気配線134を介して接続されている。圧力逃がし弁58及び空気抜き弁59は、電気品箱125内の電気品(例えば、リレー)よりも下方に設けられており、例えば電気品箱125の下端部よりも下方に設けられている。また、圧力逃がし弁58及び空気抜き弁59は、圧縮機3の端子3aよりも下方に設けられている。ここで、圧力逃がし弁58及び空気抜き弁59の高さ位置は、圧力逃がし弁58及び空気抜き弁59のそれぞれの放出口の高さ位置で特定することができる。
 機械室123には、それぞれ筐体120の外部又は送風機室122との間で空気を流通させる第1通気口135及び第2通気口136が形成されている。第1通気口135は、圧力逃がし弁58及び空気抜き弁59よりも上方に設けられている。第2通気口136は、圧力逃がし弁58及び空気抜き弁59よりも下方に設けられている。第1通気口135及び第2通気口136のそれぞれには、ガラリが形成されている。
 本例では、第1通気口135は、機械室123と筐体120の外部との間で空気を流通させるために、筐体120の側壁に形成されている。また、第2通気口136は、機械室123と送風機室122との間で空気を流通させるために、仕切板121に形成されている。しかしながら、第1通気口135及び第2通気口136は、いずれも仕切板121に形成されていてもよいし、いずれも筐体120に形成されていてもよい。また、第1通気口135及び第2通気口136は、筐体120の同一の側壁に形成されていてもよい。
 以上説明したように、本実施の形態に係るヒートポンプ装置は、可燃性を有する冷媒を循環させる冷媒回路110と、水(熱媒体の一例)を流通させる水回路210(熱媒体回路の一例)と、冷媒と水との熱交換を行う負荷側熱交換器2(熱媒体熱交換器の一例)と、冷媒回路110及び負荷側熱交換器2を収容する室外機100と、水回路210の一部を収容する室内機200と、を備えている。室外機100は、水回路210に設けられる圧力逃がし弁58及び空気抜き弁59の少なくとも一方を冷媒放出弁として有している。室外機100には、少なくとも電気品が設けられる第1室(例えば、機械室123)が形成されている。室外機100が有する冷媒放出弁は、第1室であって電気品よりも下方に設けられている。第1室には、冷媒放出弁よりも上方に設けられた第1通気口135と、冷媒放出弁よりも下方に設けられた第2通気口136と、が形成されている。
 本実施の形態で用いられる冷媒は、大気圧下で空気よりも大きい密度を有しているため、圧力逃がし弁58又は空気抜き弁59によって機械室123に放出された冷媒は、下方に流れ落ちる。本実施の形態では、冷媒放出弁(例えば、圧力逃がし弁58及び空気抜き弁59)が電気品(例えば、電気接点部品であるリレー)よりも下方に設けられている。このため、圧力逃がし弁58又は空気抜き弁59によって機械室123に放出された冷媒が、着火源と遭遇するのを防ぐことができる。
 また、本実施の形態では、冷媒放出弁よりも上方に設けられた第1通気口135と、冷媒放出弁よりも下方に設けられた第2通気口136と、が機械室123に形成されている。このため、圧力逃がし弁58又は空気抜き弁59によって機械室123に冷媒が放出されると、冷媒と空気の密度差による自然対流によって、第1通気口135から外部の空気が機械室123内に流入するとともに、機械室123内の冷媒が第2通気口136から外部に流出する。これにより、機械室123に放出された冷媒は、機械室123内に滞留せず、第2通気口136から外部に排出される。したがって、機械室123内に可燃域が形成されるのを防ぐことができる。なお、大気圧下で空気よりも小さい密度を有する冷媒が用いられる場合には、機械室123に放出された冷媒は、上記とは逆の流れによって第1通気口135から外部に放出される。したがって、大気圧下で空気よりも小さい密度を有する冷媒が用いられる場合であっても、機械室123内に可燃域が形成されるのを防ぐことができる。
 このように、本実施の形態では、圧力逃がし弁58又は空気抜き弁59によって機械室123内に冷媒が放出されたとしても、機械室123内に可燃域が形成されるのを防ぐことができ、かつ、機械室123に放出された冷媒が着火源と遭遇するのを防ぐことができる。したがって、負荷側熱交換器2で水回路210に冷媒が混入した場合であっても、冷媒が着火に至るのをより確実に防止することができる。
 また、本実施の形態では、室外機100が有する冷媒放出弁が機械室123に設けられているため、冷媒放出弁が雨水に濡れて腐食してしまうのを防止することができる。
 また、本実施の形態では、着火源となり得るリレーが電気品箱125内に収容されているため、第1室に放出される冷媒と着火源とをより確実に隔離でき、冷媒が着火に至るのをより確実に回避できる。
 本発明は、上記実施の形態に限らず種々の変形が可能である。
 例えば、上記実施の形態では、負荷側熱交換器2としてプレート式熱交換器を例に挙げたが、負荷側熱交換器2は、冷媒と熱媒体との熱交換を行うものであれば、二重管式熱交換器など、プレート式熱交換器以外のものであってもよい。
 また、上記実施の形態では、ヒートポンプ装置としてヒートポンプ給湯装置1000を例に挙げたが、本発明は、チラー等の他のヒートポンプ装置にも適用可能である。
 また、上記実施の形態では、室内機200に圧力逃がし弁及び空気抜き弁が設けられていない構成を例に挙げたが、圧力逃がし弁及び空気抜き弁の少なくとも一方が室内機200又は室内機200以外の利用側回路(例えば、サニタリー回路側配管81a、81b、暖房用回路側配管82a、82b、暖房機器300等)に設けられていてもよい。
 また、上記実施の形態では、貯湯タンク51を備えた室内機200を例に挙げたが、貯湯タンクは室内機200とは別に設けられていてもよい。
 上記の各実施の形態は、互いに組み合わせて実施することが可能である。
 1 熱源側熱交換器、2 負荷側熱交換器、3 圧縮機、3a 端子、4 冷媒流路切替装置、5 中圧レシーバ、6 第1減圧装置、7 第2減圧装置、11 吸入配管、51 貯湯タンク、52 膨張タンク、52a 配管、53 ポンプ、54 ブースタヒータ、55 三方弁、56 ストレーナ、57 フロースイッチ、58 圧力逃がし弁、58a 導管、59 空気抜き弁、59a 導管、60 浸水ヒータ、61 コイル、62、63 排水口、81a、81b サニタリー回路側配管、82a、82b 暖房用回路側配管、100 室外機、101 制御装置、102 制御線、110 冷媒回路、120 筐体、121 仕切板、122 送風機室、123 機械室、124 室外送風機、124a モータ、125 電気品箱、126、127 室外機配管、128、129 継手部、130 カバー、131 弁室、132 仕切板、133 弁室、134 電気配線、135 第1通気口、136 第2通気口、200 室内機、201 制御装置、202 操作部、203 表示部、210 水回路、211、212 接続配管、300 暖房機器、1000 ヒートポンプ給湯装置。

Claims (6)

  1.  可燃性を有する冷媒を循環させる冷媒回路と、
     熱媒体を流通させる熱媒体回路と、
     前記冷媒と前記熱媒体との熱交換を行う熱媒体熱交換器と、
     前記冷媒回路及び前記熱媒体熱交換器を収容する室外機と、
     前記熱媒体回路の一部を収容する室内機と、
     を備え、
     前記室外機は、前記熱媒体回路に設けられる圧力逃がし弁及び空気抜き弁の少なくとも一方を冷媒放出弁として有しており、
     前記冷媒放出弁は、前記室外機の筐体の外部に設けられているヒートポンプ装置。
  2.  可燃性を有する冷媒を循環させる冷媒回路と、
     熱媒体を流通させる熱媒体回路と、
     前記冷媒と前記熱媒体との熱交換を行う熱媒体熱交換器と、
     前記冷媒回路及び前記熱媒体熱交換器を収容する室外機と、
     前記熱媒体回路の一部を収容する室内機と、
     を備え、
     前記室外機は、前記熱媒体回路に設けられる圧力逃がし弁及び空気抜き弁の少なくとも一方を冷媒放出弁として有しており、
     前記室外機には、少なくとも電気品が設けられる第1室と、前記第1室から仕切られた第2室と、が形成されており、
     前記冷媒放出弁は、前記第2室に設けられているヒートポンプ装置。
  3.  前記冷媒と室外空気との熱交換を行う空気熱交換器と、
     前記空気熱交換器に室外空気を送風する送風機と、
     をさらに備え、
     前記送風機は、前記第2室に設けられている請求項2に記載のヒートポンプ装置。
  4.  前記送風機は、非ブラシ式のモータを有する請求項3に記載のヒートポンプ装置。
  5.  可燃性を有する冷媒を循環させる冷媒回路と、
     熱媒体を流通させる熱媒体回路と、
     前記冷媒と前記熱媒体との熱交換を行う熱媒体熱交換器と、
     前記冷媒回路及び前記熱媒体熱交換器を収容する室外機と、
     前記熱媒体回路の一部を収容する室内機と、
     を備え、
     前記室外機は、前記熱媒体回路に設けられる圧力逃がし弁及び空気抜き弁の少なくとも一方を冷媒放出弁として有しており、
     前記室外機には、少なくとも電気品が設けられる第1室が形成されており、
     前記冷媒放出弁は、前記第1室であって前記電気品よりも下方に設けられており、
     前記第1室には、前記冷媒放出弁よりも上方に設けられた第1通気口と、前記冷媒放出弁よりも下方に設けられた第2通気口と、が形成されているヒートポンプ装置。
  6.  前記冷媒放出弁は、前記熱媒体の流れ方向において前記熱媒体熱交換器の下流側に設けられている請求項1~請求項5のいずれか一項に記載のヒートポンプ装置。
PCT/JP2016/076396 2016-09-08 2016-09-08 ヒートポンプ装置 WO2018047265A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP16901904.9A EP3312531B1 (en) 2016-09-08 2016-09-08 Heat pump device
CN201680088679.1A CN109661546A (zh) 2016-09-08 2016-09-08 热泵装置
PCT/JP2016/076396 WO2018047265A1 (ja) 2016-09-08 2016-09-08 ヒートポンプ装置
JP2018537929A JP6671484B2 (ja) 2016-09-08 2016-09-08 ヒートポンプ装置
US16/308,284 US10962267B2 (en) 2016-09-08 2016-09-08 Heat pump apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/076396 WO2018047265A1 (ja) 2016-09-08 2016-09-08 ヒートポンプ装置

Publications (1)

Publication Number Publication Date
WO2018047265A1 true WO2018047265A1 (ja) 2018-03-15

Family

ID=61562795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076396 WO2018047265A1 (ja) 2016-09-08 2016-09-08 ヒートポンプ装置

Country Status (5)

Country Link
US (1) US10962267B2 (ja)
EP (1) EP3312531B1 (ja)
JP (1) JP6671484B2 (ja)
CN (1) CN109661546A (ja)
WO (1) WO2018047265A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020071008A (ja) * 2018-11-02 2020-05-07 三菱電機株式会社 ヒートポンプ装置
WO2022044219A1 (ja) * 2020-08-27 2022-03-03 三菱電機株式会社 冷凍サイクル装置
EP3967943A1 (en) 2020-09-14 2022-03-16 Panasonic Intellectual Property Management Co., Ltd. Heat medium circulation system
EP4075074A1 (en) * 2021-04-15 2022-10-19 Panasonic Intellectual Property Management Co., Ltd. Heat medium circulation device
EP4075078A1 (en) 2021-04-12 2022-10-19 Panasonic Intellectual Property Management Co., Ltd. Heat medium circulation system
WO2023095427A1 (ja) 2021-11-29 2023-06-01 パナソニックIpマネジメント株式会社 熱媒体循環システム
WO2023095418A1 (ja) * 2021-11-29 2023-06-01 パナソニックIpマネジメント株式会社 熱媒体循環装置
WO2024185067A1 (ja) * 2023-03-08 2024-09-12 ダイキン工業株式会社 冷凍サイクル装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2020010022A (es) 2018-03-29 2020-12-07 Mt Tec Llc Componente de automovil.
DE102019108367A1 (de) * 2019-04-01 2020-10-15 Vaillant Gmbh Außen aufgestellte Wärmepumpe
CN114829845B (zh) * 2019-12-04 2024-04-30 伊莱克斯电器股份公司 具有流体箱的空调器
KR20220010865A (ko) * 2020-07-20 2022-01-27 엘지전자 주식회사 히트펌프
CN114014132B (zh) * 2021-10-12 2023-06-06 上海三菱电梯有限公司 电梯轿厢内气压控制装置、方法及电梯
JP2024052196A (ja) 2022-09-30 2024-04-11 パナソニックIpマネジメント株式会社 ヒートポンプ装置
JP2024051514A (ja) * 2022-09-30 2024-04-11 パナソニックIpマネジメント株式会社 ヒートポンプサイクル装置
JP2024052211A (ja) 2022-09-30 2024-04-11 パナソニックIpマネジメント株式会社 ヒートポンプ装置
JP2024051511A (ja) * 2022-09-30 2024-04-11 パナソニックIpマネジメント株式会社 ヒートポンプサイクル装置
JP2024052186A (ja) 2022-09-30 2024-04-11 パナソニックIpマネジメント株式会社 ヒートポンプ装置
JP2024052212A (ja) 2022-09-30 2024-04-11 パナソニックIpマネジメント株式会社 ヒートポンプ装置
JP2024052197A (ja) 2022-09-30 2024-04-11 パナソニックIpマネジメント株式会社 ヒートポンプ装置
JP2024052185A (ja) 2022-09-30 2024-04-11 パナソニックIpマネジメント株式会社 ヒートポンプ装置
JP2024122202A (ja) 2023-02-28 2024-09-09 パナソニックIpマネジメント株式会社 ヒートポンプ装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58175735A (ja) * 1982-04-06 1983-10-15 Matsushita Electric Ind Co Ltd 放熱器
JP2011075276A (ja) * 2011-01-21 2011-04-14 Sharp Corp ヒートポンプ式給湯機
JP2013047591A (ja) * 2011-08-29 2013-03-07 Noritz Corp ヒートポンプ給湯装置
JP2013064538A (ja) * 2011-09-16 2013-04-11 Mitsubishi Electric Corp ヒートポンプ給湯室外機
JP2013167398A (ja) 2012-02-15 2013-08-29 Mitsubishi Electric Corp 室外機及びヒートポンプサイクル装置
JP2013167395A (ja) * 2012-02-15 2013-08-29 Mitsubishi Electric Corp ヒートポンプサイクル装置

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000039246A (ja) * 1998-07-24 2000-02-08 Sanyo Electric Co Ltd 冷却装置
US6378320B1 (en) * 1999-11-05 2002-04-30 International Comfort Products, Corporation Condenser unit for air conditioner or heat pump
FR2827948B1 (fr) * 2001-07-26 2016-07-29 Jacques Bernier Pompe a chaleur a dispositif de ventilation de securite
LU90841B1 (en) * 2001-09-25 2003-03-26 Delphi Tech Inc Combined heating and cooling system
JP4904841B2 (ja) * 2006-02-17 2012-03-28 ダイキン工業株式会社 空気調和装置
KR101198457B1 (ko) * 2006-09-01 2012-11-06 엘지전자 주식회사 수냉식 공기조화기
KR101266657B1 (ko) * 2006-10-17 2013-05-28 엘지전자 주식회사 공기조화기
US20090241577A1 (en) * 2008-03-26 2009-10-01 Sanyo Electric Co., Ltd. Chiller unit, refrigeration system having chiller unit and air conditioner having chiller unit
JP5246041B2 (ja) * 2009-05-27 2013-07-24 パナソニック株式会社 温水暖房装置
JP5321384B2 (ja) 2009-09-17 2013-10-23 パナソニック株式会社 ヒートポンプ式温水暖房装置
ITUD20100056A1 (it) * 2010-03-23 2011-09-24 Regola Engineering S R L Apparato di termocondizionamento
CN201652623U (zh) * 2010-04-22 2010-11-24 广东美的电器股份有限公司 防可燃性制冷剂聚积的空调室外机
US9273889B2 (en) * 2011-04-21 2016-03-01 United States Thermoamp Inc. Monitoring and control system for a heat pump
JP5834625B2 (ja) * 2011-08-26 2015-12-24 株式会社ノーリツ ヒートポンプ給湯装置
JP5805598B2 (ja) 2012-09-12 2015-11-04 三菱電機株式会社 冷凍サイクル装置
CN202835659U (zh) * 2012-09-19 2013-03-27 广东美的制冷设备有限公司 密闭电控盒和空调室外机
JP5769684B2 (ja) * 2012-10-18 2015-08-26 三菱電機株式会社 ヒートポンプ装置
JP5665937B1 (ja) * 2013-09-13 2015-02-04 三菱電機株式会社 冷凍サイクル装置
WO2015173938A1 (ja) * 2014-05-15 2015-11-19 三菱電機株式会社 熱交換器、及び、この熱交換器を備えた冷凍サイクル装置
JP6448981B2 (ja) * 2014-10-23 2019-01-09 日立ジョンソンコントロールズ空調株式会社 空気調和機の室内機
JP6582236B2 (ja) * 2015-06-11 2019-10-02 パナソニックIpマネジメント株式会社 冷凍サイクル装置
FR3041420B1 (fr) * 2015-09-22 2019-08-16 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dispositif de production d'eau chaude sanitaire par recuperation de chaleur des eaux usees, une installation et un procede de production associe
US20170211862A1 (en) * 2016-01-25 2017-07-27 Sharp Kabushiki Kaisha Dual temperature heat pump system
JP2016095130A (ja) * 2016-02-16 2016-05-26 三菱電機株式会社 ヒートポンプサイクル装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58175735A (ja) * 1982-04-06 1983-10-15 Matsushita Electric Ind Co Ltd 放熱器
JP2011075276A (ja) * 2011-01-21 2011-04-14 Sharp Corp ヒートポンプ式給湯機
JP2013047591A (ja) * 2011-08-29 2013-03-07 Noritz Corp ヒートポンプ給湯装置
JP2013064538A (ja) * 2011-09-16 2013-04-11 Mitsubishi Electric Corp ヒートポンプ給湯室外機
JP2013167398A (ja) 2012-02-15 2013-08-29 Mitsubishi Electric Corp 室外機及びヒートポンプサイクル装置
JP2013167395A (ja) * 2012-02-15 2013-08-29 Mitsubishi Electric Corp ヒートポンプサイクル装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020071008A (ja) * 2018-11-02 2020-05-07 三菱電機株式会社 ヒートポンプ装置
JP7243132B2 (ja) 2018-11-02 2023-03-22 三菱電機株式会社 ヒートポンプ装置
WO2022044219A1 (ja) * 2020-08-27 2022-03-03 三菱電機株式会社 冷凍サイクル装置
JPWO2022044219A1 (ja) * 2020-08-27 2022-03-03
JP7357804B2 (ja) 2020-08-27 2023-10-06 三菱電機株式会社 冷凍サイクル装置
EP3967943A1 (en) 2020-09-14 2022-03-16 Panasonic Intellectual Property Management Co., Ltd. Heat medium circulation system
JP7557667B2 (ja) 2020-09-14 2024-09-30 パナソニックIpマネジメント株式会社 熱媒体循環システム
EP4075078A1 (en) 2021-04-12 2022-10-19 Panasonic Intellectual Property Management Co., Ltd. Heat medium circulation system
EP4075074A1 (en) * 2021-04-15 2022-10-19 Panasonic Intellectual Property Management Co., Ltd. Heat medium circulation device
WO2023095427A1 (ja) 2021-11-29 2023-06-01 パナソニックIpマネジメント株式会社 熱媒体循環システム
WO2023095418A1 (ja) * 2021-11-29 2023-06-01 パナソニックIpマネジメント株式会社 熱媒体循環装置
WO2024185067A1 (ja) * 2023-03-08 2024-09-12 ダイキン工業株式会社 冷凍サイクル装置

Also Published As

Publication number Publication date
CN109661546A (zh) 2019-04-19
JPWO2018047265A1 (ja) 2019-04-04
JP6671484B2 (ja) 2020-03-25
EP3312531A1 (en) 2018-04-25
EP3312531A4 (en) 2018-11-21
US20190264964A1 (en) 2019-08-29
US10962267B2 (en) 2021-03-30
EP3312531B1 (en) 2020-03-11

Similar Documents

Publication Publication Date Title
WO2018047265A1 (ja) ヒートポンプ装置
JP6336121B2 (ja) 冷凍サイクル装置
JP6887496B2 (ja) ヒートポンプ利用機器
JP6611958B2 (ja) ヒートポンプ利用機器の室内機及びそれを備えたヒートポンプ利用機器
WO2018167861A1 (ja) ヒートポンプ装置及びその設置方法
JP5818900B2 (ja) ヒートポンプ装置
WO2015190144A1 (ja) ヒートポンプ装置
WO2016047278A1 (ja) ヒートポンプ装置
WO2017006462A1 (ja) 空気調和機
JP2016197006A (ja) 冷凍サイクル装置及び冷凍サイクルシステム
WO2015115404A1 (ja) 空気調和システム
JP6785961B2 (ja) ヒートポンプ利用機器
JP6177158B2 (ja) 空気調和機
WO2017081988A1 (ja) 冷凍サイクル装置及び冷媒漏洩検知方法
WO2018116404A1 (ja) ヒートポンプ利用機器
JP2010236834A (ja) 空気調和機
JP2009168298A (ja) ヒートポンプ式給湯機
JP2009270732A (ja) 空気調和装置の室外ユニット
JP6818865B2 (ja) ヒートポンプ利用機器
KR100441003B1 (ko) 냉매 가열장치를 갖춘 공기조화시스템
JP6650846B2 (ja) 室外機

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018537929

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE