WO2018045894A1 - 一种集成式带通滤波器及其制造方法和光谱仪 - Google Patents

一种集成式带通滤波器及其制造方法和光谱仪 Download PDF

Info

Publication number
WO2018045894A1
WO2018045894A1 PCT/CN2017/099389 CN2017099389W WO2018045894A1 WO 2018045894 A1 WO2018045894 A1 WO 2018045894A1 CN 2017099389 W CN2017099389 W CN 2017099389W WO 2018045894 A1 WO2018045894 A1 WO 2018045894A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
micro
pass filter
hole
nano
Prior art date
Application number
PCT/CN2017/099389
Other languages
English (en)
French (fr)
Inventor
但亚平
Original Assignee
扬中市恒海电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 扬中市恒海电子科技有限公司 filed Critical 扬中市恒海电子科技有限公司
Publication of WO2018045894A1 publication Critical patent/WO2018045894A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters

Definitions

  • the present invention relates to the field of optics, and in particular to an integrated band pass filter, a method of manufacturing the same, and a spectrometer.
  • the spectrum of matter contains a large amount of chemical information of each substance, and each substance has a corresponding characteristic spectrum. Therefore, the spectrum of the detected substance can analyze the chemical composition of the substance, and is used in geographical remote sensing, pollution remote sensing monitoring, non-invasive medical diagnosis, and identification of military targets. Other fields have broad application prospects.
  • the current spectrum analysis technology mainly relies on grating splitting or multiple discrete bandpass filters for splitting. The former is bulky and slow, and cannot meet the requirements of miniaturization and rapid application; the latter can only detect a few wavelengths. Information.
  • the invention proposes that by preparing vertical nanometer or micrometer cylinders and further forming vertical metal pores, the research results show that the wavelengths of metal pores of different diameters are also different, that is, the diameter of the metal pores and the wavelength of light passing through the metal pores. There is a corresponding relationship between them.
  • the present invention can form an array of metal holes having different diameters at a large scale at a time, so that incident light can be split at a large number of wavelengths, thereby realizing micro-precision spectral splitting.
  • the present invention is directed to the above technical problem, and provides an integrated band pass filter, a manufacturing method thereof and a spectrometer, which can integrate a large number of micro band pass filters having different strobe wavelengths into a small chip by one processing. On top, it has the advantage of high integration.
  • One aspect of the present invention provides an integrated bandpass filter comprising: a metal layer or a predominantly metal layer, a through-hole micro or nanopore array formed in a metal layer, through a metal micro or nanopore
  • the characteristic wavelength ⁇ of the light approximately satisfies the following formula: ⁇ ⁇ nD, where n is the refractive index of the filling material in the metal hole, and D is the diameter or width of the metal hole.
  • Another aspect of the present invention provides a method of fabricating the aforementioned integrated bandpass filter, comprising the steps of:
  • e Optionally removing the filler material in the metal micro or nanopores to form a hollow cylinder, ie, a hollow metal hole.
  • Still another aspect of the present invention provides another method of fabricating the above-described integrated band pass filter, comprising the steps of:
  • the filled material being a material that does not absorb light of a particular wavelength.
  • Yet another aspect of the present invention provides a spectrometer comprising: the aforementioned integrated band pass filter, and a photodetector disposed under the band pass filter, wherein the integrated band pass filter A detector is placed at the bottom of each metal hole to convert light of different wavelengths into an electrical signal.
  • Each metal hole of the integrated band pass filter of the present invention is a band pass filter.
  • a plurality of micro band pass filters having different gate wavelengths can be processed by one process. Large scale integration on a small chip;
  • the process manufacturing method of the present invention is compatible with a CMOS process and has low cost.
  • the manufacturing method of the present invention makes it relatively easy to prepare metal pores, particularly metal pores having smooth sidewalls and uniform pore diameters.
  • the filter array of the present invention simultaneously splits light of different wavelengths, and has the advantage of high speed.
  • FIG. 1 is a schematic structural view of an integrated band pass filter of the present invention.
  • FIG. 2 is a schematic diagram of a method of fabricating an integrated bandpass filter of the present invention.
  • Figure 3 is a schematic illustration of the transmission peaks of the different diameter metal micropore arrays in the mid-infrared region with tantalum as the filler material.
  • FIG. 4 is a schematic structural view of another embodiment of the integrated band pass filter of the present invention.
  • Figure 5 is a schematic view showing the structure of an embodiment of the spectrometer of the present invention.
  • the integrated band pass filter of the present invention comprises a metal layer or a layer 1 which is mainly a metal, and the metal layer or the layer 1 of the metal mainly forms a micron or nanopore array which is a metal micron. Or nanopore array 2,
  • the characteristic wavelength ⁇ of light passing through the metal micro or nanopore (metal hole) 2 approximately satisfies the following formula:
  • n is the refractive index of the filling material 5 in the metal hole 2
  • D is the diameter or width of the metal hole.
  • the metal in the metal layer 1 may be any metal, such as common aluminum or gold.
  • the height (depth, the distance from one side of the metal layer to the other side) of the metal hole 2 is at least larger than the wavelength of the desired gate, thereby ensuring the filtering effect on the light without causing excessive loss.
  • the metal hole 2 is a cylinder. In other embodiments, the metal hole may also be a square cylinder or a cylinder having a hexagonal cross section.
  • the filler material 5 in the metal hole 2 is a material that does not absorb light of a wavelength to be gated.
  • the material may be germanium. Recent studies have shown that the loss of light in the mid-infrared band through the germanium material is small compared to other commonly used materials.
  • the material may be a dielectric material such as SiO2.
  • the metal hole 2 may not have a filling material (ie, the filling material is removed), and the refractive index in the metal hole 2 is 1.
  • the metal micron or nanopore array 2 is related to the light intensity of the transmission aperture, and the denser the array, the greater the light intensity.
  • the arrangement of the metal holes 2 may be square or honeycomb.
  • the physical size and arrangement of the above metal micro or nanopores 2 can be determined by simulation software design.
  • the simulation software can be, for example, the FDTD Solution module of the popular commercial Lumerical.
  • the physical size and arrangement of metal nano or micropores can be designed by the FDTD Solution module to have the absorption spectrum within the desired wavelength range. Specifically, the simulation region is selected and the X and Y directions are set as periodic boundary conditions, and the light source is superimposed by linearly polarized light in the X and Y directions to simulate parallel light and propagate in the Z direction, thereby simulating the filtering of the nano or micro hole. The effect is obtained and the transmission spectrum is obtained (Fig. 3).
  • the specific wavelength at which the metal hole 2 is gated can be determined depending on the diameter of the single metal hole 2, that is, approximately satisfying the above formula (1).
  • Figure 3 is a view showing the transmission peaks of the different diameter micropore arrays in the mid-infrared region with ruthenium as a filler. intention.
  • the horizontal axis represents the wavelength and the vertical axis represents the transmittance. Different forms of curves represent light of different wavelengths.
  • the mark D in the upper left corner of the figure identifies the diameter of the microwire, and the unit of the latter number is nanometer.
  • the solid line represents light having a wavelength of 1200 nm.
  • the transmission peak can effectively cover the required wavelength band.
  • the space of the metal hole array is occupied.
  • the ratio is about 1:3, and the duty ratio represents the ratio of the area inside the hole to the area outside the hole in the XY plane (horizontal plane) in the top view of the column array.
  • FIG. 2 is a schematic diagram of a method of fabricating an integrated bandpass filter of the present invention. As shown in Figs. 2(a) to (d), the manufacturing method includes the following steps a to d.
  • Step a forming a mask 3 of a predetermined shape on the base substrate, the base substrate 4 being a material that does not absorb light of a specific wavelength, as shown in Fig. 2(a).
  • the material of the base substrate may be determined according to the wavelength to be gated. For example, if light of a mid-infrared wavelength needs to be gated, the material that does not absorb light of a specific wavelength may be ⁇ , which does not absorb light in the mid-infrared band.
  • the mask plate 3 is, for example, a metal disc.
  • the metal wafer 3 is a plurality of lattices formed by microlithography on the surface of the ruthenium plate containing micro-dots of different diameters.
  • the metal is thermally evaporated and immersed in acetone to be stripped, and the remaining metal circle is removed.
  • the sheet pattern is used as a mask for etching in the next step to form an array of micro or nano-pillars.
  • the metal wafer mask exemplified herein is a mask that requires metal as an etch during dry etching.
  • Metal materials need to be compatible with dry etching processes, typically aluminum or chromium.
  • the reticle may also be other materials such as photoresist.
  • the prescribed shape of the mask determines the shape of the metal hole formed in the subsequent step, and may be a circle or a square or a hexagon.
  • Step b forming a plurality of micro or nano cylinders, that is, micro or nano cylinder arrays 5, using an etching technique, as shown in FIG. 2(b).
  • the etching technique described in step b is dry etching or wet chemical etching.
  • the etching can be performed by the Non-bosch process, and the optimum etching results can be obtained by optimizing the parameters of the two reaction gases SF6, C4F8, and bias voltage and power.
  • the diameter and height of the nanowires can be measured by scanning electron microscopy to verify whether the obtained micro or nano-pillar array meets the requirements.
  • the purpose of nano or micro-pillars is to facilitate the fabrication of metal nano- or micro-holes that support metal nano- or micro-holes.
  • Step c isotropically depositing a thin metal layer 1 on the entire micro- or nano-pillar array and the surface of the pillar sidewall and the substrate surface at the bottom of the cylinder, in order to achieve an isotropic effect, the metal
  • the deposition method may be an ion sputtering process or an atomic layer deposition process as shown in FIG. 2(c).
  • the metal here may be any metal, such as common aluminum, copper or gold.
  • the thickness of the metal is, for example, 200 nm. In this case, the gap between the micro or nano pillars needs to be filled with other dielectric materials (such as silicon oxide or nitride). Silicon, not shown), supports the micro or nano-pillars in the underlying polishing process.
  • this step may also deposit metal 1 isotropically over the entire micron or nanocylinder array until the entire array is filled.
  • the metal deposition method may be an ion sputtering process or an atomic layer deposition process in combination with an electroplating process.
  • Metal 1 can be any metal such as common aluminum, copper or gold.
  • Step d polishing the surface of the filling structure formed in step c until the micro or nano-pillar portion 5 is exposed, as shown in Figure 2(d).
  • step d optionally includes the step of: removing the filler material 5 in the micro or nano pillar (which may also include removing all of the substrate) to form a hollow cylinder, ie, the metal hole 2 Does not have any filling material, as shown in Figure 4.
  • the hollow metal hole 2 also has a filtering effect, except that the wavelength position changes because the dielectric constant in the metal hole 2 becomes 1.
  • the present invention also provides another manufacturing method of the above integrated band pass filter.
  • the same portions of the method as those in the foregoing manufacturing method will not be described again, and only the differences will be described in detail herein.
  • the manufacturing method includes the following steps:
  • Step a depositing a dielectric material of a suitable thickness on the target substrate, and forming a reticle exposed to a prescribed shape on the surface of the dielectric material; the prescribed shape is a circle or a square or a hexagon. That is, with the mask, micro- or nano-holes of a prescribed shape can be formed in the next etching step.
  • Step b forming a plurality of micro or nanopores in the dielectric material by an etching technique; that is, the cross-sectional shapes of the plurality of micro or nanopores are the aforementioned prescribed shapes.
  • Step c Isotropic on the sidewalls of the plurality of micro or nanopores and the upper surface of the dielectric material A metal film is deposited, but no metal is deposited at the bottom of the plurality of micro or nanopores to form a plurality of metal micro or nanopores.
  • Step d Filling the plurality of metal micro or nanopores with or without filling any of the plurality of metal micro or nanopores, the filled material being a material that does not absorb light of a particular wavelength.
  • the invention also provides a spectrometer design, as shown in FIG. 5, the integrated band pass filter (metal hole array filter) and the photodetector array can be integrated by a suitable process, each metal hole There is a detector 6 at the bottom.
  • the spectrometer can simultaneously convert light of different wavelengths into electrical signals.
  • the invention can form a metal hole array with different diameters at a large scale at a time, so that the incident light can be split at a large number of wavelengths, and finally a miniature high-precision spectral spectroscopic chip can be realized. Further, the miniature spectroscopic chip based on the present invention can manufacture a miniature portable spectrometer that breaks through the limitations of the prior art and has significant commercial value.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

一种集成式带通滤波器及其制造方法和光谱仪,集成式带通滤波器包括一金属层或一主要为金属的层(1),金属层(1)中形成贯通的微米或纳米孔阵列(2),通过金属微米或纳米孔(2)的光的特征波长λ近似满足以下公式:λ≈nD。这里,n是金属孔(2)中填充材料(5)的折射系数,D是金属孔(2)的直径或宽度。集成式带通滤波器中每个金属孔(2)都是一个带通滤波器,通过改变金属孔(2)的大小,可以将大量选通波长不同的微型带通滤波器,通过一次加工的办法大规模集成在很小的芯片上。工艺制造方法与CMOS工艺兼容,成本低,并且比较容易制备金属孔(2),特别是孔内侧壁平滑且孔径均匀的金属孔(2)。

Description

一种集成式带通滤波器及其制造方法和光谱仪 技术领域
本发明涉及一种光学领域,特别是涉及一种集成式带通滤波器及其制造方法和光谱仪。
背景技术
物质的光谱含有物质的大量化学信息,每一种物质均有对应的特征光谱,因此探测物质的光谱可以分析物质的化学组分,在地理遥感、污染遥感监测、无创医疗诊断以及军事目标的识别等领域具有广泛的应用前景。然而,目前的光谱分析技术主要依赖光栅分光或者多个分立带通滤波片进行分光,前者体积庞大,速度慢,不能满足小型化、快速化的应用要求;而后者只能探测少数几个波长上的信息。本发明提出通过制备垂直纳米或微米柱体并进一步形成垂直的金属孔,研究结果表明:不同直径的金属孔透过的波长也不同,即金属孔的直径与透过该金属孔的光的波长之间存在相应的关系。本发明通过一次性大规模形成直径不同的金属孔阵列,因而可以对入射光在大量波长上进行分光,从而实现微型的高精度的光谱分光。
发明内容
本发明针对上述技术问题,提出了一种集成式带通滤波器及其制造方法和光谱仪,其可以将大量选通波长不同的微型带通滤波器,通过一次加工大规模集成在很小的芯片上,具有高集成度的优点。
本发明的一个方面是提供了一种集成式带通滤波器,包括:包括一金属层或一主要为金属的层,金属层中形成贯通的微米或纳米孔阵列,通过金属微米或纳米孔的光的特征波长λ近似满足以下公式:λ≈nD,这里,n是金属孔中填充材料的折射系数,D是金属孔的直径或宽度。
本发明的另一个方面是提供了前述集成式带通滤波器的一种制造方法,包括以下步骤:
a、在衬底基板上形成多个规定形状的掩膜版,所述衬底基板为不吸收特定波长的光的材料;
b、利用蚀刻技术形成多个微米或纳米柱体即微米或纳米柱体阵列;
c、在所述整个微米或纳米柱体阵列上各向同性地沉积一层金属薄膜并继续用其他材料填充整个柱体阵列直至整个阵列填满;或者,在所述整个微米或纳米柱体阵列上各向同性地沉积金属,直至整个阵列填满;
d、对上述填充后的结构表面进行抛光,直至暴露出所述微米或纳米柱体部分,形成金属微米或纳米孔,此时金属孔内的填充材料为所述不吸收特定波长的光的材料;以及
e:可选地去除所述金属微米或纳米孔内的填充材料,形成中空柱体即中空金属孔。
本发明的再一个方面是提供了上述集成式带通滤波器的另一种制造方法,其特征在于,包括以下步骤:
a.在目标衬底上沉积适当厚度的介电材料,并在所述介电材料的表面形成暴露规定形状的掩模版;
b.利用刻蚀技术在所述介电材料中形成多个微米或纳米孔;
c.在所述多个微米或纳米孔的侧壁和所述介电材料的上表面各向同性地沉积一层金属薄膜,但在所述多个微米或纳米孔的底部不沉积金属,从而形成多个金属微米或纳米孔;以及
d.向所述多个金属微米或纳米孔中填充适当的材料或者不向所述多个金属微米或纳米孔中填充任何材料,填充的材料为不吸收特定波长的光的材料。
本发明的又一个方面是提供了一种光谱仪,包括:前述的集成式带通滤波器,以及设置在所述带通滤波器下方的光电探测器,其中,所述集成式带通滤波器的每个金属孔底部均设有一个探测器以将不同波长的光转换成电学信号。
本发明具有以下优点:
1、本发明的集成式带通滤波器中每个金属孔都是一个带通滤波器,通过改变金属孔的大小,可以将大量选通波长不同的微型带通滤波器,通过一次加工的办法大规模集成在很小的芯片上;
2、本发明的工艺制造方法与CMOS工艺兼容,成本低。
3、本发明的制造方法比较容易制备金属孔,特别是孔内侧壁平滑且孔径均匀的金属孔。
4、本发明的滤波器阵列对不同波长的光进行同时分光,具有速度快的优点。
附图说明
图1为本发明的集成式带通滤波器的结构示意图。
图2为本发明的集成式带通滤波器的一种制造方法的示意图。
图3为以锗为填充材料的不同直径的金属微米孔阵列在中红外区域的透射峰的示意图。
图4为本发明的集成式带通滤波器的另一实施例的结构示意图。
图5为本发明的光谱仪的一实施例的结构示意图。
具体实施方式
在下列说明中,为了提供对本发明的彻底了解而提出许多具体细节。本发明可在不具有部分或所有这些具体细节的情况下实施。在其他情况下,为了不对本发明造成不必要的混淆,不详述众所周知的过程操作。虽然本发明将结合具体实施例来进行说明,但应当理解的是,这并非旨在将本发明限制于这些实施例。
图1为本发明的集成式带通滤波器的结构示意图。如图1所示,本发明的集成式带通滤波器包括一金属层或一主要为金属的层1,该金属层或主要为金属的层1中形成贯通的微米或纳米孔阵列即金属微米或纳米孔阵列2, 通过该金属微米或纳米孔(金属孔)2的光的特征波长λ近似满足以下公式:
λ≈nD    (1)
这里,n是金属孔2中填充材料5的折射系数,D是金属孔的直径或宽度。
本发明中,所述金属层1中的金属可以为任意金属,比如可以是常见的铝或金。
本发明中,金属孔2的高度(深度,从金属层的一面贯通至另一面的距离)至少大于所需选通的波长,既可以保证对光的过滤效果,也不至于造成过多的损耗。
本实施例中,所述金属孔2为圆柱体。在另外的实施例中,金属孔也可以为方柱体或者横截面为六边形的柱体。
所述金属孔2中的填充材料5为不吸收所需要选通的波长的光的材料。例如,所需要选通的波长的光是中红外波段的光,则该材料可以是锗。最近的研究结果表明,相较于其他常用材料,中红外波段光穿透锗材料时的损耗小。
在其他实施例中,如果所需要选通的波长的光是可见光,则该材料可以是SiO2等介电材料。另外,所述金属孔2中可以不具有填充材料(即去除填充材料),则金属孔2中的折射系数为1。
另外,而金属微米或纳米孔阵列2与透过孔的光强有关,阵列越密,光强越大。金属孔2的排布方式可以正方形,也可以是蜂窝型。
上述金属微米或纳米孔2的物理尺寸及排布方式等可以通过仿真软件设计来确定。仿真软件例如可采用流行商业Lumerical的FDTD Solution模块。通过FDTD Solution模块设计金属纳米或微米孔的物理尺寸以及排布方式,可以使其吸收光谱位于所需波长范围之内。具体地,选定仿真区域并设置X、Y方向为周期性边界条件,光源由X、Y方向线偏振光相叠加,以模拟平行光并沿Z方向传播,即可模拟纳米或微米孔的滤波效果并得到透射谱图(如图3)。通过仿真软件,可获得金属孔2选通的具体波长取决于单个金属孔2的直径,即近似满足前述公式(1)。
图3为以锗为填充物的不同直径微米孔阵列在中红外区域的透射峰的示 意图。图3中,横轴为波长,纵轴为透过率。不同形式的曲线代表不同波长的光。图中左上角的标识D标识微米线的直径,后面数字的单位是纳米。例如,实线代表的是波长为1200纳米的光。从图中可知,通过调整纳米或微米金属孔的直径,就可以使透射峰有效地覆盖需要的波段。
另外,本发明中,为了在较高集成度的基础上尽量减弱同一阵列当中纳米或微米柱体之间的相互影响,较佳地,干法蚀刻的情况下,所述金属孔阵列的占空比为大约1:3,所述占空比表示在柱体阵列的俯视图中XY平面(水平面)的孔内面积与孔外面积之比。
图2为本发明的集成式带通滤波器的一种制造方法的示意图。如图2(a)~(d)所示,制造方法包括以下步骤a~d。
步骤a、在衬底基板上形成规定形状的掩膜版3,所述衬底基板4为不吸收特定波长的光的材料,如图2(a)所示。衬底基板的材料可根据需要选通的波长而定,例如需要选通中红外波长的光,则不吸收特定波长的光的材料可以为锗,其不吸收中红外波段的光。
掩膜版3例如采用金属圆片,金属圆片3是通过光刻在锗片表面形成的包含不同直径的微米圆点的多个点阵,热蒸金属并浸入丙酮剥离,剩余下来的金属圆片图案用作掩膜,以用于下一步骤的蚀刻来形成微米或纳米柱体阵列。
这里举例的金属圆片掩膜版是干法刻蚀时需要金属作为刻蚀的掩模版。金属材料需要与干法刻蚀工艺兼容,一般选用铝或铬。另外,对于干法刻蚀法,掩模版也可以是其它材料,比如光刻胶。
另外,掩膜版的规定形状决定后面步骤中形成的金属孔的形状,可以是圆形或方形或六边形。
步骤b、利用蚀刻技术形成多个微米或纳米柱体即微米或纳米柱体阵列5,如图2(b)所示。步骤b中所述蚀刻技术为干法蚀刻或湿法化学蚀刻。为了保证侧壁较高的垂直度,例如,蚀刻可以采用Non-bosch process慢速工艺,通过优化两种反应气体SF6,C4F8的比例以及偏压和功率等参数,可以取得最佳的蚀刻结果。蚀刻完成后,可以通过扫描电子显微镜观察测量纳米线的直径及高度,以验证所得到的微米或纳米柱体阵列是否满足要求。这 里,纳米或微米柱体的目的是为了方便制造金属纳米或微米孔,对金属纳米或微米孔起支撑作用。
步骤c、在所述整个微米或纳米柱体阵列上和柱体侧壁表面以及柱体底部的衬底表面各向同性地沉积一层金属薄层1,为了达到各向同性的效果,金属的沉积办法可以是离子溅射工艺或者原子层沉积工艺,如图2(c)所示。这里的金属可以是任意金属,比如常见的铝、铜或金,金属的厚度例如为200纳米,此时需要将微米或纳米柱体之间的空隙填充其它介电材料(比如氧化硅或氮化硅,未图示),以在下面的抛光工艺中对微米或纳米柱体起支撑作用。
或者,本步骤也可以在所述整个微米或纳米柱体阵列上各向同性地沉积金属1,直至整个阵列填满。同样,如前所述,为了达到各向同性的效果,金属的沉积办法可以是离子溅射工艺或者原子层沉积工艺并结合电镀工艺。金属1可以是任意金属,比如常见的铝、铜或金。
步骤d、对步骤c中形成的填充结构的表面进行抛光,直至暴露出所述微米或纳米柱体部分5,如图2(d)所示。
在另外的实施例中,步骤d之后可选地包括步骤e:去除所述微米或纳米柱体内的填充材料5(也可以包括去除所有衬底基板),形成中空柱体,即金属孔2中不具有任何填充材料,如图4所示。中空的金属孔2同样有滤波的效果,只是波长位置发生了变化,因为金属孔2中的介质常数变成了1。
本发明还提供了上述集成式带通滤波器的另一种制造方法。本方法与前述的制造方法中相同的部分不再赘述,这里只对不同之处进行详细说明。具体地,该制造方法包括如下步骤:
步骤a.在目标衬底上沉积适当厚度的介电材料,并在所述介电材料的表面形成暴露规定形状的掩模版;该规定形状为圆形或方形或六角形。也就是说,通过该掩膜版,可在下一蚀刻步骤中形成规定形状的微米或纳米孔。
步骤b.利用刻蚀技术在所述介电材料中形成多个微米或纳米孔;即多个微米或纳米孔的横截面形状为前述规定的形状。
步骤c.在所述多个微米或纳米孔的侧壁和介电材料的上表面各向同性 地沉积一层金属薄膜,但在所述多个微米或纳米孔的底部不沉积金属,从而形成多个金属微米或纳米孔。
步骤d.向所述多个金属微米或纳米孔中填充适当的材料或者不向所述多个金属微米或纳米孔中填充任何材料,填充的材料为不吸收特定波长的光的材料。
本发明还提供了一种光谱仪设计,如图5所示,通过适当的工艺,可以将上述集成式带通滤波器(金属孔阵列滤波器)与光电探测器阵列集成在一起,每个金属孔底部均设有一个探测器6。该光谱仪可以将不同波长的光转同时换成电学信号。在其它实施例中,也可以在直径相同的金属孔下面只设置一个面积很大的光电探测器,这样光电探测器接收到的光(同一波长附近的光)的强度会更大,因而也会更灵敏。
本发明通过利用集成电路加工技术,可一次性大规模形成直径不同的金属孔阵列,因而可以对入射光在大量波长上进行分光,最终实现微型的高精度的光谱分光芯片。进一步地,基于本发明的微型的光谱分光芯片可制造微型便携式的光谱仪,其突破了现有技术的限制,具有重大的商业价值。
需要指出的是,由于技术的发展和标准的更新,具有相同功能的部件往往具有多个不同的称呼。本发明专利申请书中所使用的技术名词是为了解释和演示本发明的技术方案,应以其本领域内所共识的功能为准,而不能仅以名称的异同任意解读。
本发明的技术内容及技术特点已揭示如上,然而熟悉本领域的技术人员仍可能基于本发明的教示及揭示而作种种不背离本发明精神的替换及修饰。因此,本发明的保护范围应不限于实施例所揭示的内容,而应包括各种不背离本发明的替换及修饰,并为本专利申请权利要求书所涵盖。

Claims (10)

  1. 一种集成式带通滤波器,其特征在于,包括一金属层或一主要为金属的层,金属层中形成贯通的微米或纳米孔阵列,通过金属微米或纳米孔的光的特征波长λ近似满足以下公式:
    λ≈nD
    这里,n是金属孔中填充材料的折射系数,D是金属孔的直径或宽度。
  2. 根据权利要求1所述的滤波器,其特征在于,所述金属孔中的填充材料为不吸收所需要选通的波长的光的材料,或者所述金属孔中不具有填充材料。
  3. 根据权利要求1所述的滤波器,其特征在于,所述金属孔为圆柱体或方柱体或横截面为六边形的柱体。
  4. 根据权利要求1所述的滤波器,其特征在于,所述金属孔的柱体高度大于所需要选通的波长。
  5. 根据权利要去1-4中任一项所述的一种集成式带通滤波器的制造方法,其特征在于,包括以下步骤:
    a、在衬底基板上形成多个规定形状的掩膜版,所述衬底基板为不吸收特定波长的光的材料;
    b、利用蚀刻技术形成多个微米或纳米柱体即微米或纳米柱体阵列;
    c、在所述整个微米或纳米柱体阵列上各向同性地沉积一层金属薄膜并继续用其他材料填充整个柱体阵列直至整个阵列填满;或者,在所述整个微米或纳米柱体阵列上各向同性地沉积金属,直至整个阵列填满;
    d、对上述填充后的结构表面进行抛光,直至暴露出所述微米或纳米柱体部分,形成金属微米或纳米孔,此时金属孔内的填充材料为所述不吸收特定波长的光的材料;以及
    e:可选地去除所述金属微米或纳米孔内的填充材料,形成中空柱体即中空金属孔。
  6. 根据权利要去1-4中任一项所述的一种集成式带通滤波器的制造方法,其特征在于,包括以下步骤:
    a.在目标衬底上沉积适当厚度的介电材料,并在所述介电材料的表面形成暴露规定形状的掩模版;
    b.利用刻蚀技术在所述介电材料中形成多个微米或纳米孔;
    c.在所述多个微米或纳米孔的侧壁和所述介电材料的上表面各向同性地沉积一层金属薄膜,但在所述多个微米或纳米孔的底部不沉积金属,从而形成多个金属微米或纳米孔;以及
    d.向所述多个金属微米或纳米孔中填充适当的材料或者不向所述多个金属微米或纳米孔中填充任何材料,填充的材料为不吸收特定波长的光的材料。
  7. 根据权利要求5或6所述的制造方法,其特征在于,步骤a中所述规定形状为圆形或方形或六边形,所述掩膜版为金属或光刻胶。
  8. 根据权利要求5或6所述的制造方法,其特征在于,步骤b中所述蚀刻技术为干法蚀刻或湿法化学蚀刻。
  9. 一种光谱仪,其特征在于,包括:根据权利要求1~8中任一项所述的集成式带通滤波器,以及设置在所述带通滤波器下方的光电探测器,其中,所述集成式带通滤波器的每个金属孔底部均设有一个探测器以将不同波长的光转换成电学信号。
  10. 根据权利要求9所述的光谱仪,其特征在于,将在所述集成式带通滤波器的直径或宽度相同的金属孔下面分别设置的多个探测器替换为一个大面积光电探测器。
PCT/CN2017/099389 2016-09-09 2017-08-29 一种集成式带通滤波器及其制造方法和光谱仪 WO2018045894A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610814317.8A CN106441565B (zh) 2016-09-09 2016-09-09 一种集成式带通滤波器及其制造方法和光谱仪
CN201610814317.8 2016-09-09

Publications (1)

Publication Number Publication Date
WO2018045894A1 true WO2018045894A1 (zh) 2018-03-15

Family

ID=58168943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/099389 WO2018045894A1 (zh) 2016-09-09 2017-08-29 一种集成式带通滤波器及其制造方法和光谱仪

Country Status (2)

Country Link
CN (1) CN106441565B (zh)
WO (1) WO2018045894A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106441565B (zh) * 2016-09-09 2019-11-12 扬中市恒海电子科技有限公司 一种集成式带通滤波器及其制造方法和光谱仪
CN107894625A (zh) * 2017-09-29 2018-04-10 扬中市恒海电子科技有限公司 一种集成式红外带通滤波器及其制造方法和光谱仪
CN110095079A (zh) * 2018-01-29 2019-08-06 陈亮嘉 共焦形貌测量系统及共焦形貌侦测方法
CN110174725B (zh) * 2019-05-28 2020-10-02 北京理工大学 一种基于平面矩形柱结构的片上波长路由器件
CN110346854B (zh) * 2019-07-18 2022-05-20 江西师范大学 一种与偏振无关的超窄多频带可调谐完美吸收器
CN110346313A (zh) * 2019-07-31 2019-10-18 清华大学 一种光调制微纳结构、微集成光谱仪及光谱调制方法
CN111029789B (zh) * 2019-12-24 2021-10-22 中国航空工业集团公司沈阳飞机设计研究所 一种正蜂窝10°结构吸波材料
CN111811651A (zh) * 2020-07-23 2020-10-23 清华大学 光谱芯片、光谱仪及光谱芯片制备方法
CN112504453A (zh) * 2020-11-24 2021-03-16 湖南大学 一种成像芯片及其集成方法和成像方法、光谱成像仪

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090059794A (ko) * 2007-12-07 2009-06-11 한국전자통신연구원 금속박막 적외선 필터 및 그 제작 방법
JP2009229622A (ja) * 2008-03-21 2009-10-08 Murata Mfg Co Ltd 自立型バンドパスフィルタ及びその製造方法
CN102103224A (zh) * 2009-12-18 2011-06-22 乐金显示有限公司 利用表面等离子体的滤色器、液晶显示设备及其制造方法
CN102401917A (zh) * 2011-11-16 2012-04-04 电子科技大学 一种中红外波段透射式亚波长金属光栅
CN105628199A (zh) * 2014-10-26 2016-06-01 中国科学院重庆绿色智能技术研究院 具有亚波长金属结构的芯片型光谱仪
CN106441565A (zh) * 2016-09-09 2017-02-22 扬中市恒海电子科技有限公司 一种集成式带通滤波器及其制造方法和光谱仪
CN206348070U (zh) * 2016-09-09 2017-07-21 扬中市恒海电子科技有限公司 一种集成式带通滤波器和光谱仪

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6236033B1 (en) * 1998-12-09 2001-05-22 Nec Research Institute, Inc. Enhanced optical transmission apparatus utilizing metal films having apertures and periodic surface topography
CN102213785A (zh) * 2011-06-03 2011-10-12 深圳市华星光电技术有限公司 彩色滤光片基板的制造方法、光学掩膜及光反应层

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090059794A (ko) * 2007-12-07 2009-06-11 한국전자통신연구원 금속박막 적외선 필터 및 그 제작 방법
JP2009229622A (ja) * 2008-03-21 2009-10-08 Murata Mfg Co Ltd 自立型バンドパスフィルタ及びその製造方法
CN102103224A (zh) * 2009-12-18 2011-06-22 乐金显示有限公司 利用表面等离子体的滤色器、液晶显示设备及其制造方法
CN102401917A (zh) * 2011-11-16 2012-04-04 电子科技大学 一种中红外波段透射式亚波长金属光栅
CN105628199A (zh) * 2014-10-26 2016-06-01 中国科学院重庆绿色智能技术研究院 具有亚波长金属结构的芯片型光谱仪
CN106441565A (zh) * 2016-09-09 2017-02-22 扬中市恒海电子科技有限公司 一种集成式带通滤波器及其制造方法和光谱仪
CN206348070U (zh) * 2016-09-09 2017-07-21 扬中市恒海电子科技有限公司 一种集成式带通滤波器和光谱仪

Also Published As

Publication number Publication date
CN106441565A (zh) 2017-02-22
CN106441565B (zh) 2019-11-12

Similar Documents

Publication Publication Date Title
WO2018045894A1 (zh) 一种集成式带通滤波器及其制造方法和光谱仪
US9601529B2 (en) Light absorption and filtering properties of vertically oriented semiconductor nano wires
CN104541158B (zh) 表面增强拉曼散射元件、以及制造表面增强拉曼散射元件的方法
CN104520696B (zh) 表面增强拉曼散射元件及其制造方法
TWI604186B (zh) Surface Enhanced Raman Scattering Element
CN109001174B (zh) 表面增强拉曼散射元件
Jeon et al. Hierarchically ordered arrays of noncircular silicon nanowires featured by holographic lithography toward a high‐fidelity sensing platform
TW201410590A (zh) 表面增強拉曼散射元件
CN112968293B (zh) 基于增强异常光学透射的太赫兹器件及其制备方法
TW201706588A (zh) 用於表面增強拉曼光譜法的結構
US11293920B2 (en) Nanoplasmonic instrumentation, materials, methods and system integration
Leong et al. Fabrication of suspended, three-dimensional chiral plasmonic nanostructures with single-step electron-beam lithography
WO2013130027A1 (en) Light absorption and filtering properties of vertically oriented semiconductor nano wires
CN111266934B (zh) 一种离子束抛光单片集成Fabry-Pérot腔全彩滤光片大批量制造方法
CN104914073A (zh) 亚波长金柱阵列局域表面等离子体共振气液传感器及其制备方法
CN211122509U (zh) 光谱仪结构及电子设备
US20170164853A1 (en) Method for manufacturing metal electrode
CN206348070U (zh) 一种集成式带通滤波器和光谱仪
JP6023669B2 (ja) 表面増強ラマン散乱素子
Jeon et al. Dual length-scale nanotip arrays with controllable morphological features for highly sensitive SERS applications
CN112630878B (zh) 基于纳米孔阵列结构的滤光片
KR101733664B1 (ko) 저중합체 유전층을 이용한 표면증강라만분석용 기판의 제조방법
CN108132542B (zh) 带有栅棱结构的轻型分束器及制作方法
Pisco et al. Lab on fiber using self assembly technique: a preliminary study
TW201903383A (zh) 單分子檢測的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17848067

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17848067

Country of ref document: EP

Kind code of ref document: A1