CN106441565A - 一种集成式带通滤波器及其制造方法和光谱仪 - Google Patents

一种集成式带通滤波器及其制造方法和光谱仪 Download PDF

Info

Publication number
CN106441565A
CN106441565A CN201610814317.8A CN201610814317A CN106441565A CN 106441565 A CN106441565 A CN 106441565A CN 201610814317 A CN201610814317 A CN 201610814317A CN 106441565 A CN106441565 A CN 106441565A
Authority
CN
China
Prior art keywords
metal
bandpass filter
hole
micron
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610814317.8A
Other languages
English (en)
Other versions
CN106441565B (zh
Inventor
但亚平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangzhong Henghai Electronic Technology Co Ltd
Original Assignee
Yangzhong Henghai Electronic Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangzhong Henghai Electronic Technology Co Ltd filed Critical Yangzhong Henghai Electronic Technology Co Ltd
Priority to CN201610814317.8A priority Critical patent/CN106441565B/zh
Publication of CN106441565A publication Critical patent/CN106441565A/zh
Priority to PCT/CN2017/099389 priority patent/WO2018045894A1/zh
Application granted granted Critical
Publication of CN106441565B publication Critical patent/CN106441565B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

本发明公开了一种集成式带通滤波器及其制造方法和光谱仪。本发明的集成式带通滤波器包括一金属层或一主要为金属的层,金属层中形成贯通的微米或纳米孔阵列,通过金属微米或纳米孔的光的特征波长λ近似满足以下公式:λ≈nD。这里,n是金属孔中填充材料的折射系数,D是金属孔的直径或宽度。本发明的集成式带通滤波器中每个金属孔都是一个带通滤波器,通过改变金属孔的大小,可以将大量选通波长不同的微型带通滤波器,通过一次加工的办法大规模集成在很小的芯片上。另外本发明的工艺制造方法与CMOS工艺兼容,成本低,并且比较容易制备金属孔,特别是孔内侧壁平滑且孔径均匀的金属孔。

Description

一种集成式带通滤波器及其制造方法和光谱仪
技术领域
本发明涉及一种光学领域,特别是涉及一种集成式带通滤波器及其制造方法和光谱仪。
背景技术
物质的光谱含有物质的大量化学信息,每一种物质均有对应的特征光谱,因此探测物质的光谱可以分析物质的化学组分,在地理遥感、污染遥感监测、无创医疗诊断以及军事目标的识别等领域具有广泛的应用前景。然而,目前的光谱分析技术主要依赖光栅分光或者多个分立带通滤波片进行分光,前者体积庞大,速度慢,不能满足小型化、快速化的应用要求;而后者只能探测少数几个波长上的信息。本发明提出通过制备垂直纳米或微米柱体并进一步形成垂直的金属孔,研究结果表明:不同直径的金属孔透过的波长也不同,即金属孔的直径与透过该金属孔的光的波长之间存在相应的关系。本发明通过一次性大规模形成直径不同的金属孔阵列,因而可以对入射光在大量波长上进行分光,从而实现微型的高精度的光谱分光。
发明内容
本发明针对上述技术问题,提出了一种集成式带通滤波器及其制造方法和光谱仪,其可以将大量选通波长不同的微型带通滤波器,通过一次加工大规模集成在很小的芯片上,具有高集成度的优点。
本发明的一个方面是提供了一种集成式带通滤波器,包括:包括一金属层或一主要为金属的层,金属层中形成贯通的微米或纳米孔阵列,通过金属微米或纳米孔的光的特征波长λ近似满足以下公式:λ≈nD,这里,n是金属孔中填充材料的折射系数,D是金属孔的直径或宽度。
本发明的另一个方面是提供了前述集成式带通滤波器的一种制造方法,包括以下步骤:
a、在衬底基板上形成多个规定形状的掩膜版,所述衬底基板为不吸收特定波长的光的材料;
b、利用蚀刻技术形成多个微米或纳米柱体即微米或纳米柱体阵列;
c、在所述整个微米或纳米柱体阵列上各向同性地沉积一层金属薄膜并继续用其他材料填充整个柱体阵列直至整个阵列填满;或者,在所述整个微米或纳米柱体阵列上各向同性地沉积金属,直至整个阵列填满;
d、对上述填充后的结构表面进行抛光,直至暴露出所述微米或纳米柱体部分,形成金属微米或纳米孔,此时金属孔内的填充材料为所述不吸收特定波长的光的材料;以及
e:可选地去除所述金属微米或纳米孔内的填充材料,形成中空柱体即中空金属孔。
本发明的再一个方面是提供了上述集成式带通滤波器的另一种制造方法,其特征在于,包括以下步骤:
a.在目标衬底上沉积适当厚度的介电材料,并在所述介电材料的表面形成暴露规定形状的掩模版;
b.利用刻蚀技术在所述介电材料中形成多个微米或纳米孔;
c.在所述多个微米或纳米孔的侧壁和所述介电材料的上表面各向同性地沉积一层金属薄膜,但在所述多个微米或纳米孔的底部不沉积金属,从而形成多个金属微米或纳米孔;以及
d.向所述多个金属微米或纳米孔中填充适当的材料或者不向所述多个金属微米或纳米孔中填充任何材料,填充的材料为不吸收特定波长的光的材料。
本发明的又一个方面是提供了一种光谱仪,包括:前述的集成式带通滤波器,以及设置在所述带通滤波器下方的光电探测器,其中,所述集成式带通滤波器的每个金属孔底部均设有一个探测器以将不同波长的光转换成电学信号。
本发明具有以下优点:
1、本发明的集成式带通滤波器中每个金属孔都是一个带通滤波器,通过改变金属孔的大小,可以将大量选通波长不同的微型带通滤波器,通过一次加工的办法大规模集成在很小的芯片上;
2、本发明的工艺制造方法与CMOS工艺兼容,成本低。
3、本发明的制造方法比较容易制备金属孔,特别是孔内侧壁平滑且孔径均匀的金属孔。
4、本发明的滤波器阵列对不同波长的光进行同时分光,具有速度快的优点。
附图说明
图1为本发明的集成式带通滤波器的结构示意图。
图2为本发明的集成式带通滤波器的一种制造方法的示意图。
图3为以锗为填充材料的不同直径的金属微米孔阵列在中红外区域的透射峰的示意图。
图4为本发明的集成式带通滤波器的另一实施例的结构示意图。
图5为本发明的光谱仪的一实施例的结构示意图。
具体实施方式
在下列说明中,为了提供对本发明的彻底了解而提出许多具体细节。本发明可在不具有部分或所有这些具体细节的情况下实施。在其他情况下,为了不对本发明造成不必要的混淆,不详述众所周知的过程操作。虽然本发明将结合具体实施例来进行说明,但应当理解的是,这并非旨在将本发明限制于这些实施例。
图1为本发明的集成式带通滤波器的结构示意图。如图1所示,本发明的集成式带通滤波器包括一金属层或一主要为金属的层1,该金属层或主要为金属的层1中形成贯通的微米或纳米孔阵列即金属微米或纳米孔阵列2,通过该金属微米或纳米孔(金属孔)2的光的特征波长λ近似满足以下公式:
λ≈nD (1)
这里,n是金属孔2中填充材料5的折射系数,D是金属孔的直径或宽度。
本发明中,所述金属层1中的金属可以为任意金属,比如可以是常见的铝或金。
本发明中,金属孔2的高度(深度,从金属层的一面贯通至另一面的距离)至少大于所需选通的波长,既可以保证对光的过滤效果,也不至于造成过多的损耗。
本实施例中,所述金属孔2为圆柱体。在另外的实施例中,金属孔也可以为方柱体或者横截面为六边形的柱体。
所述金属孔2中的填充材料5为不吸收所需要选通的波长的光的材料。例如,所需要选通的波长的光是中红外波段的光,则该材料可以是锗。最近的研究结果表明,相较于其他常用材料,中红外波段光穿透锗材料时的损耗小。
在其他实施例中,如果所需要选通的波长的光是可见光,则该材料可以是SiO2等介电材料。另外,所述金属孔2中可以不具有填充材料(即去除填充材料),则金属孔2中的折射系数为1。
另外,而金属微米或纳米孔阵列2与透过孔的光强有关,阵列越密,光强越大。金属孔2的排布方式可以正方形,也可以是蜂窝型。
上述金属微米或纳米孔2的物理尺寸及排布方式等可以通过仿真软件设计来确定。仿真软件例如可采用流行商业Lumerical的FDTD Solution模块。通过FDTD Solution模块设计金属纳米或微米孔的物理尺寸以及排布方式,可以使其吸收光谱位于所需波长范围之内。具体地,选定仿真区域并设置X、Y方向为周期性边界条件,光源由X、Y方向线偏振光相叠加,以模拟平行光并沿Z方向传播,即可模拟纳米或微米孔的滤波效果并得到透射谱图(如图3)。通过仿真软件,可获得金属孔2选通的具体波长取决于单个金属孔2的直径,即近似满足前述公式(1)。
图3为以锗为填充物的不同直径微米孔阵列在中红外区域的透射峰的示意图。图3中,横轴为波长,纵轴为透过率。不同形式的曲线代表不同波长的光。图中左上角的标识D标识微米线的直径,后面数字的单位是纳米。例如,实线代表的是波长为1200纳米的光。从图中可知,通过调整纳米或微米金属孔的直径,就可以使透射峰有效地覆盖需要的波段。
另外,本发明中,为了在较高集成度的基础上尽量减弱同一阵列当中纳米或微米柱体之间的相互影响,较佳地,干法蚀刻的情况下,所述金属孔阵列的占空比为大约1:3,所述占空比表示在柱体阵列的俯视图中XY平面(水平面)的孔内面积与孔外面积之比。
图2为本发明的集成式带通滤波器的一种制造方法的示意图。如图2(a)~(d)所示,制造方法包括以下步骤a~d。
步骤a、在衬底基板上形成规定形状的掩膜版3,所述衬底基板4为不吸收特定波长的光的材料,如图2(a)所示。衬底基板的材料可根据需要选通的波长而定,例如需要选通中红外波长的光,则不吸收特定波长的光的材料可以为锗,其不吸收中红外波段的光。
掩膜版3例如采用金属圆片,金属圆片3是通过光刻在锗片表面形成的包含不同直径的微米圆点的多个点阵,热蒸金属并浸入丙酮剥离,剩余下来的金属圆片图案用作掩膜,以用于下一步骤的蚀刻来形成微米或纳米柱体阵列。
这里举例的金属圆片掩膜版是干法刻蚀时需要金属作为刻蚀的掩模版。金属材料需要与干法刻蚀工艺兼容,一般选用铝或铬。另外,对于干法刻蚀法,掩模版也可以是其它材料,比如光刻胶。
另外,掩膜版的规定形状决定后面步骤中形成的金属孔的形状,可以是圆形或方形或六边形。
步骤b、利用蚀刻技术形成多个微米或纳米柱体即微米或纳米柱体阵列5,如图2(b)所示。步骤b中所述蚀刻技术为干法蚀刻或湿法化学蚀刻。为了保证侧壁较高的垂直度,例如,蚀刻可以采用Non-bosch process慢速工艺,通过优化两种反应气体SF6,C4F8的比例以及偏压和功率等参数,可以取得最佳的蚀刻结果。蚀刻完成后,可以通过扫描电子显微镜观察测量纳米线的直径及高度,以验证所得到的微米或纳米柱体阵列是否满足要求。这里,纳米或微米柱体的目的是为了方便制造金属纳米或微米孔,对金属纳米或微米孔起支撑作用。
步骤c、在所述整个微米或纳米柱体阵列上和柱体侧壁表面以及柱体底部的衬底表面各向同性地沉积一层金属薄层1,为了达到各向同性的效果,金属的沉积办法可以是离子溅射工艺或者原子层沉积工艺,如图2(c)所示。这里的金属可以是任意金属,比如常见的铝、铜或金,金属的厚度例如为200纳米,此时需要将微米或纳米柱体之间的空隙填充其它介电材料(比如氧化硅或氮化硅,未图示),以在下面的抛光工艺中对微米或纳米柱体起支撑作用。
或者,本步骤也可以在所述整个微米或纳米柱体阵列上各向同性地沉积金属1,直至整个阵列填满。同样,如前所述,为了达到各向同性的效果,金属的沉积办法可以是离子溅射工艺或者原子层沉积工艺并结合电镀工艺。金属1可以是任意金属,比如常见的铝、铜或金。
步骤d、对步骤c中形成的填充结构的表面进行抛光,直至暴露出所述微米或纳米柱体部分5,如图2(d)所示。
在另外的实施例中,步骤d之后可选地包括步骤e:去除所述微米或纳米柱体内的填充材料5(也可以包括去除所有衬底基板),形成中空柱体,即金属孔2中不具有任何填充材料,如图4所示。中空的金属孔2同样有滤波的效果,只是波长位置发生了变化,因为金属孔2中的介质常数变成了1。
本发明还提供了上述集成式带通滤波器的另一种制造方法。本方法与前述的制造方法中相同的部分不再赘述,这里只对不同之处进行详细说明。具体地,该制造方法包括如下步骤:
步骤a.在目标衬底上沉积适当厚度的介电材料,并在所述介电材料的表面形成暴露规定形状的掩模版;该规定形状为圆形或方形或六角形。也就是说,通过该掩膜版,可在下一蚀刻步骤中形成规定形状的微米或纳米孔。
步骤b.利用刻蚀技术在所述介电材料中形成多个微米或纳米孔;即多个微米或纳米孔的横截面形状为前述规定的形状。
步骤c.在所述多个微米或纳米孔的侧壁和介电材料的上表面各向同性地沉积一层金属薄膜,但在所述多个微米或纳米孔的底部不沉积金属,从而形成多个金属微米或纳米孔。
步骤d.向所述多个金属微米或纳米孔中填充适当的材料或者不向所述多个金属微米或纳米孔中填充任何材料,填充的材料为不吸收特定波长的光的材料。
本发明还提供了一种光谱仪设计,如图5所示,通过适当的工艺,可以将上述集成式带通滤波器(金属孔阵列滤波器)与光电探测器阵列集成在一起,每个金属孔底部均设有一个探测器6。该光谱仪可以将不同波长的光转同时换成电学信号。在其它实施例中,也可以在直径相同的金属孔下面只设置一个面积很大的光电探测器,这样光电探测器接收到的光(同一波长附近的光)的强度会更大,因而也会更灵敏。
本发明通过利用集成电路加工技术,可一次性大规模形成直径不同的金属孔阵列,因而可以对入射光在大量波长上进行分光,最终实现微型的高精度的光谱分光芯片。进一步地,基于本发明的微型的光谱分光芯片可制造微型便携式的光谱仪,其突破了现有技术的限制,具有重大的商业价值。
需要指出的是,由于技术的发展和标准的更新,具有相同功能的部件往往具有多个不同的称呼。本发明专利申请书中所使用的技术名词是为了解释和演示本发明的技术方案,应以其本领域内所共识的功能为准,而不能仅以名称的异同任意解读。
本发明的技术内容及技术特点已揭示如上,然而熟悉本领域的技术人员仍可能基于本发明的教示及揭示而作种种不背离本发明精神的替换及修饰。因此,本发明的保护范围应不限于实施例所揭示的内容,而应包括各种不背离本发明的替换及修饰,并为本专利申请权利要求书所涵盖。

Claims (10)

1.一种集成式带通滤波器,其特征在于,包括一金属层或一主要为金属的层,金属层中形成贯通的微米或纳米孔阵列,通过金属微米或纳米孔的光的特征波长λ近似满足以下公式:
λ≈nD
这里,n是金属孔中填充材料的折射系数,D是金属孔的直径或宽度。
2.根据权利要求1所述的滤波器,其特征在于,所述金属孔中的填充材料为不吸收所需要选通的波长的光的材料,或者所述金属孔中不具有填充材料。
3.根据权利要求1所述的滤波器,其特征在于,所述金属孔为圆柱体或方柱体或横截面为六边形的柱体。
4.根据权利要求1所述的滤波器,其特征在于,所述金属孔的柱体高度大于所需要选通的波长。
5.根据权利要去1-4中任一项所述的一种集成式带通滤波器的制造方法,其特征在于,包括以下步骤:
a、在衬底基板上形成多个规定形状的掩膜版,所述衬底基板为不吸收特定波长的光的材料;
b、利用蚀刻技术形成多个微米或纳米柱体即微米或纳米柱体阵列;
c、在所述整个微米或纳米柱体阵列上各向同性地沉积一层金属薄膜并继续用其他材料填充整个柱体阵列直至整个阵列填满;或者,在所述整个微米或纳米柱体阵列上各向同性地沉积金属,直至整个阵列填满;
d、对上述填充后的结构表面进行抛光,直至暴露出所述微米或纳米柱体部分,形成金属微米或纳米孔,此时金属孔内的填充材料为所述不吸收特定波长的光的材料;以及
e:可选地去除所述金属微米或纳米孔内的填充材料,形成中空柱体即中空金属孔。
6.根据权利要去1-4中任一项所述的一种集成式带通滤波器的制造方法,其特征在于,包括以下步骤:
a.在目标衬底上沉积适当厚度的介电材料,并在所述介电材料的表面形成暴露规定形状的掩模版;
b.利用刻蚀技术在所述介电材料中形成多个微米或纳米孔;
c.在所述多个微米或纳米孔的侧壁和所述介电材料的上表面各向同性地沉积一层金属薄膜,但在所述多个微米或纳米孔的底部不沉积金属,从而形成多个金属微米或纳米孔;以及
d.向所述多个金属微米或纳米孔中填充适当的材料或者不向所述多个金属微米或纳米孔中填充任何材料,填充的材料为不吸收特定波长的光的材料。
7.根据权利要求5或6所述的制造方法,其特征在于,步骤a中所述规定形状为圆形或方形或六边形,所述掩膜版为金属或光刻胶。
8.根据权利要求5或6所述的制造方法,其特征在于,步骤b中所述蚀刻技术为干法蚀刻或湿法化学蚀刻。
9.一种光谱仪,其特征在于,包括:根据权利要求1~8中任一项所述的集成式带通滤波器,以及设置在所述带通滤波器下方的光电探测器,其中,所述集成式带通滤波器的每个金属孔底部均设有一个探测器以将不同波长的光转换成电学信号。
10.根据权利要求9所述的光谱仪,其特征在于,将在所述集成式带通滤波器的直径或宽度相同的金属孔下面分别设置的多个探测器替换为一个大面积光电探测器。
CN201610814317.8A 2016-09-09 2016-09-09 一种集成式带通滤波器及其制造方法和光谱仪 Active CN106441565B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201610814317.8A CN106441565B (zh) 2016-09-09 2016-09-09 一种集成式带通滤波器及其制造方法和光谱仪
PCT/CN2017/099389 WO2018045894A1 (zh) 2016-09-09 2017-08-29 一种集成式带通滤波器及其制造方法和光谱仪

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610814317.8A CN106441565B (zh) 2016-09-09 2016-09-09 一种集成式带通滤波器及其制造方法和光谱仪

Publications (2)

Publication Number Publication Date
CN106441565A true CN106441565A (zh) 2017-02-22
CN106441565B CN106441565B (zh) 2019-11-12

Family

ID=58168943

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610814317.8A Active CN106441565B (zh) 2016-09-09 2016-09-09 一种集成式带通滤波器及其制造方法和光谱仪

Country Status (2)

Country Link
CN (1) CN106441565B (zh)
WO (1) WO2018045894A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018045894A1 (zh) * 2016-09-09 2018-03-15 扬中市恒海电子科技有限公司 一种集成式带通滤波器及其制造方法和光谱仪
CN107894625A (zh) * 2017-09-29 2018-04-10 扬中市恒海电子科技有限公司 一种集成式红外带通滤波器及其制造方法和光谱仪
CN110095079A (zh) * 2018-01-29 2019-08-06 陈亮嘉 共焦形貌测量系统及共焦形貌侦测方法
CN110174725A (zh) * 2019-05-28 2019-08-27 北京理工大学 一种基于平面矩形柱结构的片上波长路由器件
CN110346854A (zh) * 2019-07-18 2019-10-18 江西师范大学 一种与偏振无关的超窄多频带可调谐完美吸收器
CN111029789A (zh) * 2019-12-24 2020-04-17 中国航空工业集团公司沈阳飞机设计研究所 一种正蜂窝10°结构吸波材料
CN111811651A (zh) * 2020-07-23 2020-10-23 清华大学 光谱芯片、光谱仪及光谱芯片制备方法
WO2021017050A1 (zh) * 2019-07-31 2021-02-04 清华大学 一种光调制微纳结构、微集成光谱仪及光谱调制方法
CN112504453A (zh) * 2020-11-24 2021-03-16 湖南大学 一种成像芯片及其集成方法和成像方法、光谱成像仪

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1008870A1 (en) * 1998-12-09 2000-06-14 Nec Corporation Enhanced optical transmission apparatus utilizing metal films having apertures and periodic surface topography
CN102103224A (zh) * 2009-12-18 2011-06-22 乐金显示有限公司 利用表面等离子体的滤色器、液晶显示设备及其制造方法
CN102213785A (zh) * 2011-06-03 2011-10-12 深圳市华星光电技术有限公司 彩色滤光片基板的制造方法、光学掩膜及光反应层
CN105628199A (zh) * 2014-10-26 2016-06-01 中国科学院重庆绿色智能技术研究院 具有亚波长金属结构的芯片型光谱仪
CN206348070U (zh) * 2016-09-09 2017-07-21 扬中市恒海电子科技有限公司 一种集成式带通滤波器和光谱仪

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090059794A (ko) * 2007-12-07 2009-06-11 한국전자통신연구원 금속박막 적외선 필터 및 그 제작 방법
JP5018580B2 (ja) * 2008-03-21 2012-09-05 株式会社村田製作所 自立型バンドパスフィルタ及びその製造方法
CN102401917A (zh) * 2011-11-16 2012-04-04 电子科技大学 一种中红外波段透射式亚波长金属光栅
CN106441565B (zh) * 2016-09-09 2019-11-12 扬中市恒海电子科技有限公司 一种集成式带通滤波器及其制造方法和光谱仪

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1008870A1 (en) * 1998-12-09 2000-06-14 Nec Corporation Enhanced optical transmission apparatus utilizing metal films having apertures and periodic surface topography
CN102103224A (zh) * 2009-12-18 2011-06-22 乐金显示有限公司 利用表面等离子体的滤色器、液晶显示设备及其制造方法
CN102213785A (zh) * 2011-06-03 2011-10-12 深圳市华星光电技术有限公司 彩色滤光片基板的制造方法、光学掩膜及光反应层
CN105628199A (zh) * 2014-10-26 2016-06-01 中国科学院重庆绿色智能技术研究院 具有亚波长金属结构的芯片型光谱仪
CN206348070U (zh) * 2016-09-09 2017-07-21 扬中市恒海电子科技有限公司 一种集成式带通滤波器和光谱仪

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018045894A1 (zh) * 2016-09-09 2018-03-15 扬中市恒海电子科技有限公司 一种集成式带通滤波器及其制造方法和光谱仪
CN107894625A (zh) * 2017-09-29 2018-04-10 扬中市恒海电子科技有限公司 一种集成式红外带通滤波器及其制造方法和光谱仪
CN110095079A (zh) * 2018-01-29 2019-08-06 陈亮嘉 共焦形貌测量系统及共焦形貌侦测方法
CN110174725A (zh) * 2019-05-28 2019-08-27 北京理工大学 一种基于平面矩形柱结构的片上波长路由器件
CN110346854A (zh) * 2019-07-18 2019-10-18 江西师范大学 一种与偏振无关的超窄多频带可调谐完美吸收器
WO2021017050A1 (zh) * 2019-07-31 2021-02-04 清华大学 一种光调制微纳结构、微集成光谱仪及光谱调制方法
KR20210016318A (ko) * 2019-07-31 2021-02-15 칭화대학교 광변조 마이크로 나노 구조, 마이크로 통합 스펙트로미터 및 스펙트럼 변조 방법
KR102436236B1 (ko) 2019-07-31 2022-08-25 칭화대학교 광변조 마이크로 나노 구조, 마이크로 통합 스펙트로미터 및 스펙트럼 변조 방법
CN111029789A (zh) * 2019-12-24 2020-04-17 中国航空工业集团公司沈阳飞机设计研究所 一种正蜂窝10°结构吸波材料
CN111029789B (zh) * 2019-12-24 2021-10-22 中国航空工业集团公司沈阳飞机设计研究所 一种正蜂窝10°结构吸波材料
CN111811651A (zh) * 2020-07-23 2020-10-23 清华大学 光谱芯片、光谱仪及光谱芯片制备方法
CN112504453A (zh) * 2020-11-24 2021-03-16 湖南大学 一种成像芯片及其集成方法和成像方法、光谱成像仪

Also Published As

Publication number Publication date
WO2018045894A1 (zh) 2018-03-15
CN106441565B (zh) 2019-11-12

Similar Documents

Publication Publication Date Title
CN106441565A (zh) 一种集成式带通滤波器及其制造方法和光谱仪
CN102564586B (zh) 衍射孔阵列结构微型光谱仪及其高分辨率光谱复原方法
EP1219984B1 (en) Photonic crystal waveguide
EP1434069A2 (en) Photonic crystal waveguide
CN109883567B (zh) 一种基于非对称mzi光波导的温度传感器及其制备方法
US20060126699A1 (en) Optical element, method of manufacturing same, and optical apparatus using optical element
JP2001272555A (ja) 2次元フォトニック結晶導波路、および波長分波器
US10989867B2 (en) Microsphere based patterning of metal optic/plasmonic sensors including fiber based sensors
CN107894625A (zh) 一种集成式红外带通滤波器及其制造方法和光谱仪
US11293920B2 (en) Nanoplasmonic instrumentation, materials, methods and system integration
CN206348070U (zh) 一种集成式带通滤波器和光谱仪
US6358860B1 (en) Line width calibration standard manufacturing and certifying method
CN103018827B (zh) 一种高q值微型圆形谐振腔器件及其制备方法
CN102301213B (zh) 包括多个发射源的光谱学装置
CN100394229C (zh) 具有空气桥结构的二维光子晶体及其制造方法
US8640543B2 (en) Micro-electro-mechanical system device, out-of-plane sensor and method for making micro-electro-mechanical system device
CN106057699B (zh) 光阻层上过孔的测量方法
TWI249616B (en) Optical scatterometry method of sidewall spacer analysis
US20170139087A1 (en) Plasmonic optical filter
CN110361349B (zh) 基于集成电路工艺的多通道红外光谱探测器及其制备方法
CN112630878B (zh) 基于纳米孔阵列结构的滤光片
CN108627894A (zh) 一种大面积的纳米透镜型阵列及其制备方法
KR101011681B1 (ko) 습식공정을 이용한 광결정 수동소자의 제조방법
KR20090059794A (ko) 금속박막 적외선 필터 및 그 제작 방법
CN108132542A (zh) 带有栅棱结构的轻型分束器及制作方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant