WO2018045812A1 - 透镜装置 - Google Patents

透镜装置 Download PDF

Info

Publication number
WO2018045812A1
WO2018045812A1 PCT/CN2017/092175 CN2017092175W WO2018045812A1 WO 2018045812 A1 WO2018045812 A1 WO 2018045812A1 CN 2017092175 W CN2017092175 W CN 2017092175W WO 2018045812 A1 WO2018045812 A1 WO 2018045812A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
transparent substrate
lens
lens device
refractive index
Prior art date
Application number
PCT/CN2017/092175
Other languages
English (en)
French (fr)
Inventor
高健
董学
陈小川
杨亚锋
王维
谭纪风
孟宪东
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/742,896 priority Critical patent/US10551716B2/en
Publication of WO2018045812A1 publication Critical patent/WO2018045812A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1313Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells specially adapted for a particular application
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133371Cells with varying thickness of the liquid crystal layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133526Lenses, e.g. microlenses or Fresnel lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133368Cells having two substrates with different characteristics, e.g. different thickness or material

Definitions

  • the present disclosure relates to the field of optical device technologies, and in particular, to a lens device.
  • Lenses are optical devices commonly found in optical devices. With the development of optical technology, the requirements for lenses are getting higher and higher. Fresnel lenses are widely used in a variety of optical devices as a small, lightweight, and easy to replicate lens.
  • Fresnel lenses in existing optical devices can only function as a single concentrating light.
  • it is necessary to regulate the temperature if Fresnel Since the lens always condenses, it can only be heated continuously, and it is difficult to achieve temperature regulation. Therefore, the application of the existing Fresnel lens has certain limitations.
  • the embodiment of the present disclosure provides a lens device.
  • the technical solution is as follows:
  • An embodiment of the present disclosure provides a lens device including: a first transparent substrate, a second transparent substrate, and a liquid crystal layer filled between the first transparent substrate and the second transparent substrate; a transparent substrate is a Fresnel lens, and the Fresnel lens is provided with a groove spaced apart by a Fresnel zone toward one side of the liquid crystal layer; the second transparent substrate is used to control the state of the liquid crystal And switching a refractive index of the polarized light incident on the liquid crystal through the liquid crystal between a first refractive index of the liquid crystal and a second refractive index of the liquid crystal, the first refractive index being greater than the second The refractive index, the refractive index of the Fresnel lens is equal to the first refractive index of the liquid crystal in the liquid crystal layer.
  • the liquid crystal is a rod-like liquid crystal, and an initial alignment direction of a long axis of the liquid crystal is parallel to the first transparent substrate and perpendicular or parallel to a vibration direction of the polarized light; a second transparent substrate for controlling a long axis of the liquid crystal to change between an initial alignment direction and a control direction, wherein a control direction of the long axis of the liquid crystal is parallel to the first transparent substrate and perpendicular to the initial alignment direction .
  • the lens device further includes a polarizer, the polarizer is disposed on a light incident side of the lens device, and an initial axis of the polarizer and an initial axis of the liquid crystal
  • the alignment direction is vertical or parallel.
  • the second transparent substrate includes a transparent substrate, and a first transparent electrode layer, a transparent insulating layer, and a second transparent electrode layer sequentially disposed on the transparent substrate.
  • the second transparent electrode layer includes a plurality of strip electrodes arranged in parallel, the length direction of the strip electrodes being parallel to an initial alignment direction of a long axis of the liquid crystal.
  • the liquid crystal is a blue phase liquid crystal
  • the second transparent substrate is used to control the blue phase liquid crystal to switch between a spherical liquid crystal and a rod liquid crystal, and the long axis direction of the rod liquid crystal is parallel
  • the first transparent substrate is perpendicular or parallel to the vibration direction of the polarized light.
  • the device further includes a polarizer, the polarizer is disposed on a light incident side of the lens device, and a light transmission axis of the polarizer is perpendicular to a long axis direction of the rod liquid crystal Or parallel.
  • the second transparent substrate includes a transparent substrate, and a first transparent electrode layer, a transparent insulating layer, and a second transparent electrode layer sequentially disposed on the transparent substrate.
  • the second transparent electrode layer includes a plurality of strip electrodes arranged in parallel, the strip electrodes having a longitudinal direction perpendicular to a longitudinal direction of the rod-shaped liquid crystal.
  • the first transparent electrode layer is an ITO film layer or an IZO film layer
  • the second transparent electrode layer is an ITO film layer or an IZO film layer
  • a step is provided in the groove.
  • the at least two steps when at least two steps are provided in the groove, gradually rise along the groove to the center of the Fresnel lens.
  • the height of each of the steps satisfies the following formula:
  • h is the height of the step
  • is the wavelength
  • n 1 is the first refractive index of the liquid crystal
  • n 2 is the second refractive index of the liquid crystal.
  • the width of the step in the jth groove satisfies the following formula:
  • t j is the width of the step in the jth groove
  • j is the groove number from the center of the Fresnel lens outward direction
  • d j is the Fresnel zone corresponding to the jth groove Wavelength of the band
  • the width of the jth pattern in the Fresnel lens satisfies the following formula:
  • T j is the width of the jth pattern, which is a circle between two grooves or a circle between the first groove and the center of the Fresnel lens, the width of the circle
  • j is a pattern number from the center of the Fresnel lens outward direction
  • D j is the band width of the Fresnel zone corresponding to the jth pattern.
  • the device includes the first transparent substrate or the second transparent a polarizer on the substrate, or the device includes two polarizers disposed on the first transparent substrate and the second transparent substrate, respectively.
  • the apparatus further includes a driving circuit electrically connected to the first transparent electrode layer and the second transparent electrode layer.
  • the polarized light incident on the liquid crystal passes through the refractive index of the liquid crystal to be the second refractive index of the liquid crystal, because the polarized light passes through Fresnel
  • the refractive index of the lens is equal to the first refractive index of the liquid crystal.
  • the liquid crystal filled in the groove of the Fresnel lens functions similarly to air, and does not affect the function of the Fresnel lens.
  • the Fresnel lens And the liquid crystal realizes a lens concentrating function; when the polarized light incident on the liquid crystal passes through the liquid crystal, the refractive index of the liquid crystal is the first refractive index of the liquid crystal, and the polarized light is refracted by the Fresnel lens under the control of the second transparent substrate The rate is equal to the first refractive index of the liquid crystal.
  • the liquid crystal filled in the groove of the Fresnel lens has the same refractive index as the material of the Fresnel lens, and the groove corresponding to the Fresnel lens is filled.
  • the Ner lens and the liquid crystal are equivalent to a flat glass to realize the transmissive function of the flat glass.
  • the state of the liquid crystal is controlled by the second transparent substrate to realize switching between the collecting and transmitting functions of the Fresnel lens.
  • FIG. 1 is a schematic structural view of a lens device according to an embodiment of the present disclosure
  • FIGS. 2A and 2B are schematic structural views of another lens device according to an embodiment of the present disclosure.
  • FIG. 5 are schematic structural diagrams of three Fresnel lenses of different steps according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of another lens device according to an embodiment of the present disclosure.
  • FIG. 1 is a schematic structural diagram of a lens device according to an embodiment of the present disclosure.
  • the lens device includes a first transparent substrate 100, a second transparent substrate 200, and a liquid crystal layer 300 filled between the first transparent substrate 100 and the second transparent substrate 200.
  • the first transparent substrate 100 is Fresnel.
  • the lens 100, the Fresnel lens 100 is provided with a groove 101 spaced apart by a Fresnel zone on one side of the liquid crystal layer 300; the second transparent substrate 200 is used to control the state of the liquid crystal 301 to polarize the liquid crystal 301.
  • the refractive index of the liquid crystal 301 is switched between the first refractive index of the liquid crystal 301 and the second refractive index of the liquid crystal 301, and the first refractive index is greater than the second refractive index, Fresnel is transparent.
  • the refractive index of the mirror 100 is equal to the first refractive index of the liquid crystal 301 in the liquid crystal layer 300.
  • the Fresnel zone is composed of a central circle and a plurality of rings arranged concentrically with the circle, and the circle and each ring are a band of the Fresnel zone, and the Fresnel lens 100 is concave.
  • the groove corresponds to the wave band of the Fresnel zone, and the adjacent groove corresponds to the wave zone arranged in the Fresnel zone. For the specific corresponding manner, a detailed description of the groove will be described later.
  • the polarized light incident on the liquid crystal 301 passes through the second refractive index of the liquid crystal 301 under the control of the second transparent substrate 200
  • the polarized light passes through Fresnel.
  • the refractive index of the lens 100 is equal to the first refractive index of the liquid crystal 301, and the first refractive index of the liquid crystal 301 is greater than the second refractive index of the liquid crystal 301, and the liquid crystal 301 filled in the groove 101 functions similarly to air, so this
  • the liquid crystal 301 filled in the groove 101 of the Fresnel lens 100 does not affect the function of the Fresnel lens 100, and the Fresnel lens 100 and the liquid crystal 301 realize the lens collecting function; when in the second transparent substrate 200 Under the control, when the polarized light incident on the liquid crystal 301 passes through the liquid crystal 301 and the refractive index is the first refractive index of the liquid crystal 301, the refractive index of the polarized light passing through the Fresn
  • the liquid crystal 301 filled in the groove 101 of the Fresnel lens 100 has the same refractive index as that of the Fresnel lens 100, and the groove 101 corresponding to the Fresnel lens 100 is filled, and the Fresnel lens 100 is at this time.
  • LCD 301 is equivalent to a piece Plate glass, plate glass to realize a transmission function;
  • FIG. 2A and 2B are schematic diagrams showing the structure of another lens device according to an embodiment of the present disclosure.
  • the liquid crystal 301 in the lens device is a rod-like liquid crystal, and the initial alignment direction of the long axis of the liquid crystal 301 is parallel to the first transparent substrate 100 and perpendicular to the vibration direction of the polarized light.
  • FIG. 2A shows that the long axis direction of the liquid crystal 301 is the initial alignment direction, and the vibration direction of the polarized light is the left and right direction.
  • the initial alignment direction of the long axis of the liquid crystal 301 in FIG. 2A is perpendicular to the vibration direction of the polarized light.
  • the second transparent substrate 200 is for controlling the long axis of the liquid crystal 301 to change between the initial alignment direction and the control direction, and the control direction of the long axis of the liquid crystal 301 is parallel to the first transparent substrate 100 and perpendicular to the initial alignment direction.
  • FIG. 2B shows the control direction of the liquid crystal 301, and the control direction of the liquid crystal 301 is perpendicular to the initial alignment direction.
  • the refractive index of the polarized light passing through the liquid crystal is the ordinary light refractive index n o of the liquid crystal, and the Fresnel lens and the liquid crystal realize the lens collecting function; when the liquid crystal has a long axis direction and When the direction of vibration of the polarized light is parallel, the refractive index of the polarized light passing through the liquid crystal is the extraordinary refractive index n e of the liquid crystal, and the Fresnel lens and the liquid crystal correspond to a flat glass to realize the transmissive function of the flat glass.
  • the first refractive index of the liquid crystal is the extraordinary refractive index n e of the liquid crystal
  • the second refractive index of the liquid crystal is the ordinary refractive index n o of the liquid crystal.
  • the ordinary light of the liquid crystal refers to polarized light whose polarization direction is perpendicular to the long axis of the liquid crystal 301
  • the extraordinary light of the liquid crystal refers to polarized light whose polarization direction is parallel to the long axis of the liquid crystal 301.
  • the lens apparatus may further include a polarizer 400 disposed on the light incident side of the lens device, and the light transmission axis of the polarizer 400 is perpendicular to the initial alignment direction of the long axis of the liquid crystal 301.
  • the light emitted by natural light or artificial light source passes through the polarizer and becomes polarized light, which is then incident into the Fresnel lens and the liquid crystal.
  • the transmission axis of the polarizer 400 means an axis parallel to the direction of polarization of the polarized light that can pass through the polarizer.
  • the initial alignment direction of the long axis of the liquid crystal 301 may be parallel to the vibration direction of the polarized light, and the transmission axis of the polarizer 400 is parallel to the initial alignment direction of the long axis of the liquid crystal 301.
  • a step 111 may be provided in the recess 101.
  • the number of steps 111 can be set according to actual needs. The greater the number of steps 111, the better the concentrating effect, but the more complicated the manufacturing process, the preferred number of steps is 3, 7, and 15.
  • At least two steps 111 when at least two steps 111 are provided in the groove 101, at least two steps 111 gradually rise along the groove 101 to the center direction of the Fresnel lens 100.
  • Figures 3 to 5 provide schematic views of the structure of three Fresnel lenses of different steps, the number of steps being 1, 3 and 7, respectively.
  • the heights of all the steps in each groove are the same, and the heights of the steps in each groove are also the same. Specifically, the height of each step 111 satisfies the following formula:
  • h is the height of each step 111
  • is the wavelength
  • n 1 is the first refractive index of the liquid crystal 301 (that is, the refractive index of the Fresnel lens 100)
  • n o is the second refractive index of the liquid crystal 301.
  • the widths of all the steps in each groove are the same, but the step widths in the respective grooves are different, and the width of the step closer to the center of the Fresnel lens is larger.
  • the width of the step 111 in the jth groove 101 satisfies the following formula:
  • t j is the width of the step 111 in the jth groove 101
  • j is the number of the groove 101 in the outward direction from the center of the Fresnel lens 100
  • d j is the Fresnel zone corresponding to the jth groove 101 Waveband width; taking Figure 3 as an example, the first groove corresponds to the second band of the Fresnel zone, and the second groove corresponds to the fourth band of the Fresnel band, the third groove The slot corresponds to the sixth band of the Fresnel zone, and so on.
  • the width of the jth pattern 102 in the Fresnel lens 100 satisfies the following formula:
  • T j is the width of the jth pattern 102
  • the pattern 102 is a circle between the two grooves 101 or a circle between the first groove 101 and the center of the Fresnel lens 100
  • the width of the pattern 102 is the above ring width, or radius of the circle, the Fresnel pattern 102 number j by the lens center outward direction 100
  • D j is the j-th pattern 102 corresponding to the band width of the Fresnel zone;
  • the first One graphic corresponds to the first band of the Fresnel zone (that is, the circle of the center of the Fresnel zone)
  • the second figure corresponds to the third band of the Fresnel zone
  • the third figure Corresponding to the fifth band of the Fresnel zone, and so on.
  • the band widths d j and D j of the Fresnel zone are related to the radius of the circle in the Fresnel zone.
  • the band widths D 1 , D 2 , and D 3 are r1, r3-r2, and r5-r4, respectively, and the band widths d 1 and d 2 of the Fresnel zone corresponding to the first, second, and third grooves, d 3 is r2-r1, r4-r3, and r6-r5, respectively.
  • r1-r6 is the radius of a circle in the Fresnel zone.
  • r i is the radius of the circle in the Fresnel zone
  • i is the number of the circle in the Fresnel band (from the center of the Fresnel band outward, the number is gradually increased)
  • f is phenanthrene
  • is the wavelength (the wavelength usually selects the wavelength of light more sensitive to the human eye, such as 440 nm).
  • the widths T 1 , T 2 , and T 3 of the first , second , and third patterns are exactly equal to r1, r3-r2, and r5-r4, respectively.
  • the width t 3 of the grooves 1, t 2, t 3 sequence exactly equal to r2-r1, r4-r3, r6-r5.
  • the width of the steps and graphics are set to the above width to ensure that the light can be focused to the center of the Fresnel lens.
  • the second transparent substrate 200 includes a transparent substrate 201, a first transparent electrode layer 202, a transparent insulating layer 203, and a second transparent electrode layer 204, which are sequentially disposed on the transparent substrate 201.
  • the liquid crystal angular deflection is controlled by applying electricity to the first transparent electrode layer and the second transparent electrode layer; the substrate, the electrode layer and the insulating layer are both disposed to be transparent to avoid affecting the refractive index of the Fresnel lens.
  • the second transparent electrode layer 204 includes a plurality of strip electrodes 241 arranged in parallel, and the length direction of the strip electrodes 241 is parallel to the initial alignment direction of the long axis of the liquid crystal 301.
  • the second transparent electrode layer is composed of a plurality of strip electrodes arranged in parallel, and the length direction of the strip electrodes is parallel to the initial alignment direction of the long axis of the liquid crystal, and the second transparent electrode layer and the first transparent electrode can be ensured.
  • FIG. 6 is a schematic structural diagram of another lens device according to an embodiment of the present disclosure.
  • the liquid crystal 301 in the lens device is a blue phase liquid crystal;
  • the second transparent substrate 200 is used to control the switching of the blue phase liquid crystal between the spherical liquid crystal and the rod liquid crystal, and the long axis direction of the rod liquid crystal is parallel to the first transparent substrate 100. And perpendicular or parallel to the vibration direction of the polarized light.
  • the blue phase liquid crystal is a spherical liquid crystal, it is isotropic, the refractive index is the same in all directions of the spherical liquid crystal, and the refractive index of the polarized light passes through the spherical liquid crystal is n;
  • the blue phase liquid crystal is a rod-shaped liquid crystal
  • the ordinary light refractive index of the rod-shaped liquid crystal is n o
  • the extraordinary refractive index of the rod-like liquid crystal is n e , n o ⁇ n ⁇ n e .
  • the blue phase liquid crystal has a first refractive index n and a second refractive index n o , and the long axis direction of the rod-shaped liquid crystal is perpendicular to the vibration direction of the polarized light. That is, when the blue phase liquid crystal is a spherical liquid crystal, the refractive index of the polarized light passing through the spherical liquid crystal is equal to the refractive index of the Fresnel lens, and the Fresnel lens and the liquid crystal realize the transmissive function of the flat glass; when the blue phase liquid crystal is a rod liquid crystal The direction of vibration of the polarized light is perpendicular to the long axis direction of the rod-like liquid crystal. The refractive index of the polarized light passing through the rod-like liquid crystal is smaller than the refractive index of the Fresnel lens, and the Fresnel lens and the liquid crystal realize the lens collecting function.
  • the blue phase liquid crystal has a first refractive index n e and a second refractive index n, and the long axis direction of the rod-shaped liquid crystal is parallel to the vibration direction of the polarized light. That is, when the blue phase liquid crystal is a spherical liquid crystal, the refractive index of the polarized light passing through the spherical liquid crystal is smaller than the refractive index of the Fresnel lens, and the Fresnel lens and the liquid crystal realize the lens collecting function; when the blue phase liquid crystal is a rod liquid crystal The direction of vibration of the polarized light is parallel to the long axis direction of the rod-like liquid crystal. The refractive index of the polarized light passing through the rod-like liquid crystal is equal to the refractive index of the Fresnel lens, and the Fresnel lens and the liquid crystal realize the transmissive function of the flat glass.
  • the lens device may further include a polarizer 400 disposed on the light incident side of the lens device, and the light transmission axis of the polarizer 400 is perpendicular or parallel to the long axis direction of the rod liquid crystal. After passing through the polarizer, the light becomes polarized light and is incident on the Fresnel lens and the liquid crystal.
  • the second transparent substrate 200 includes a transparent substrate 201, a first transparent electrode layer 202, a transparent insulating layer 203, and a second transparent electrode layer 204, which are sequentially disposed on the transparent substrate 201.
  • the liquid crystal angular deflection is controlled by applying electricity to the first transparent electrode layer and the second transparent electrode layer; the substrate, the electrode layer and the insulating layer are both disposed to be transparent to avoid affecting the refractive index of the Fresnel lens.
  • the second transparent electrode layer 204 includes a plurality of strip electrodes 241 arranged in parallel, and the length direction of the strip electrodes 241 is perpendicular to the long axis direction of the rod-like liquid crystal (the structure of the blue phase liquid crystal is a rod-like liquid crystal and FIG. 2B). the same).
  • the second transparent electrode layer is composed of a plurality of strip electrodes arranged in parallel, and the length direction of the strip electrodes is perpendicular to the long axis direction of the rod-shaped liquid crystal to ensure the electric field under the second transparent electrode layer and the first transparent electrode layer. Conversion of the rod-shaped liquid crystal of the spherical liquid crystal cell is realized, and the long-axis direction of the rod-like liquid crystal is perpendicular to the vibration direction of the polarized light.
  • the first transparent electrode layer 202 includes, but is not limited to, an indium tin oxide ITO thin film layer or an indium zinc oxide IZO thin film layer, and the second transparent electrode layer 204 is an ITO.
  • the polarizers 400 are disposed on the side of the first transparent substrate 100.
  • the polarizer 400 may be disposed on the second transparent substrate 200, or a polarizer 400 may be separately disposed on the first transparent substrate 100 and the second transparent substrate 200, respectively.
  • a polarizer can be arranged to limit incident light to be incident only from one side of the device, and incident light can be incident from two directions when two polarizers are disposed.
  • the lens device further includes a driving circuit electrically connected to the first transparent electrode layer 202 and the second transparent electrode layer 204.
  • the first transparent electrode layer and the second transparent electrode layer are energized by a driving circuit, so that switching between the condensing and transmitting functions of the Fresnel lens 100 can be achieved.
  • the driving circuit can be implemented by using an integrated circuit.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Geometry (AREA)
  • Liquid Crystal (AREA)

Abstract

一种透镜装置。透镜装置包括:第一透明基板(100)、第二透明基板(200)、填充在第一透明基板(100)和第二透明基板(200)间的液晶层(300);第一透明基板(100)为菲涅尔透镜(100),菲涅尔透镜(100)朝向液晶层(300)的一面设有按菲涅尔波带间隔分布的凹槽(101);第二透明基板(200)用于控制液晶(301)的状态,使射入液晶(301)的偏振光经过液晶(301)的折射率在液晶(301)的第一折射率和液晶(301)的第二折射率之间切换,第一折射率大于第二折射率,菲涅尔透镜(100)的折射率等于液晶层(300)中的液晶(301)的第一折射率。

Description

透镜装置 技术领域
本公开涉及光学器件技术领域,特别涉及一种透镜装置。
背景技术
透镜是光学设备中常见的光学器件,随着光学技术的发展,对透镜的要求越来越高。菲涅尔透镜作为一种体积小、重量轻、便于复制的透镜被广泛应用在各种光学设备中。
现有光学设备中的菲涅尔透镜只能起单一的聚光作用,在某些应用场景下,例如采用菲涅尔透镜实现太阳能聚光聚热时,需要对温度进行调控,如果菲涅尔透镜始终起聚光作用,则只能持续加热,很难实现温度调控,因此,现有的菲涅尔透镜的应用具有一定局限性。
发明内容
为了解决现有技术菲涅尔透镜只能起单一的聚光作用,应用受限的问题,本公开实施例提供了一种透镜装置。所述技术方案如下:
本公开实施例提供了一种透镜装置,所述透镜装置包括:第一透明基板、第二透明基板、填充在所述第一透明基板和所述第二透明基板间的液晶层;所述第一透明基板为菲涅尔透镜,所述菲涅尔透镜朝向所述液晶层的一面设有按菲涅尔波带间隔分布的凹槽;所述第二透明基板用于控制所述液晶的状态,使射入所述液晶的偏振光经过所述液晶的折射率在所述液晶的第一折射率和所述液晶的第二折射率之间切换,所述第一折射率大于所述第二折射率,所述菲涅尔透镜的折射率等于所述液晶层中的液晶的第一折射率。
在本公开的一个实施例中,所述液晶为棒状液晶,所述液晶的长轴的初始配向方向平行于所述第一透明基板,且与所述偏振光的振动方向垂直或平行;所述第二透明基板用于控制所述液晶的长轴在初始配向方向和控制方向之间变换,所述液晶的长轴的控制方向平行于所述第一透明基板,且与所述初始配向方向垂直。
在本公开的一个实施例中,所述透镜装置还包括偏光片,所述偏光片设置在所述透镜装置的入光侧,所述偏光片的透光轴与所述液晶的长轴的初始配向方向垂直或平行。
在本公开的一个实施例中,所述第二透明基板包括透明基板,以及依次设置在所述透明基板上的第一透明电极层、透明绝缘层和第二透明电极层。
在本公开的一个实施例中,所述第二透明电极层包括多个平行间隔设置的条状电极,所述条状电极的长度方向与所述液晶的长轴的初始配向方向平行。
在本公开的一个实施例中,所述液晶为蓝相液晶;所述第二透明基板用于控制所述蓝相液晶在球状液晶和棒状液晶之间切换,所述棒状液晶的长轴方向平行于所述第一透明基板,且与所述偏振光的振动方向垂直或平行。
在本公开的一个实施例中,所述装置还包括偏光片,所述偏光片设置在所述透镜装置的入光侧,所述偏光片的透光轴与所述棒状液晶的长轴方向垂直或平行。
在本公开的一个实施例中,所述第二透明基板包括透明基板,以及依次设置在所述透明基板上的第一透明电极层、透明绝缘层和第二透明电极层。
在本公开的一个实施例中,所述第二透明电极层包括多个平行间隔设置的条状电极,所述条状电极的长度方向与所述棒状液晶的长轴方向垂直。
在本公开的一个实施例中,所述第一透明电极层为ITO薄膜层或IZO薄膜层,所述第二透明电极层为ITO薄膜层或IZO薄膜层。
在本公开的一个实施例中,所述凹槽内设有台阶。
在本公开的一个实施例中,当所述凹槽内设有至少两个台阶时,所述至少两个台阶沿凹槽至所述菲涅尔透镜中心方向逐渐升高。
在本公开的一个实施例中,每个所述凹槽内的台阶数目为N,N=2m-1,m为正整数,光经过相邻台阶的相位差为2π/(N+1)。
在本公开的一个实施例中,每个所述台阶的高度满足以下公式:
Figure PCTCN2017092175-appb-000001
h为所述台阶的高度,λ为波长,n1为所述液晶的第一折射率,n2为所述液晶的第二折射率。
在本公开的一个实施例中,第j个凹槽内台阶的宽度满足以下公式:
Figure PCTCN2017092175-appb-000002
tj为所述第j个凹槽内台阶的宽度,j为由所述菲涅尔透镜中心向外方向的凹槽序号,dj为所述第j个凹槽对应的菲涅尔波带的波带宽度;
所述菲涅尔透镜中第j个图形的宽度满足以下公式:
Figure PCTCN2017092175-appb-000003
Tj为所述第j个图形的宽度,所述图形为两个凹槽之间的环形或者第1个凹槽和所述菲涅尔透镜中心之间的圆形,所述圆形的宽度为圆形半径,j为由所述菲涅尔透镜中心向外方向的图形序号,Dj为所述第j个图形对应的菲涅尔波带的波带宽度。
在本公开的一个实施例中,所述装置包括在所述第一透明基板或者所述第二透明 基板上的一个偏光片,或者所述装置包括分别设置在所述第一透明基板和所述第二透明基板上的两个偏光片。
在本公开的一个实施例中,所述装置还包括驱动电路,所述驱动电路与所述第一透明电极层和所述第二透明电极层电连接。
本公开实施例提供的技术方案带来的有益效果是:
在本公开提供的透镜装置中,当在第二透明基板的控制下,射入液晶的偏振光经过所述液晶的折射率为所述液晶的第二折射率时,由于偏振光通过菲涅尔透镜的折射率等于液晶的第一折射率,此时填充在菲涅尔透镜的凹槽内的液晶发挥着和空气相似的作用,不会对菲涅尔透镜的功能造成影响,菲涅尔透镜和液晶实现透镜聚光功能;当在第二透明基板的控制下,射入液晶的偏振光经过所述液晶的折射率为液晶的第一折射率时,由于偏振光通过菲涅尔透镜的折射率等于液晶的第一折射率,此时填充在菲涅尔透镜的凹槽中的液晶与菲涅尔透镜的材料折射率相同,相当于菲涅尔透镜的凹槽被填平,此时菲涅尔透镜和液晶相当于一块平板玻璃,实现平板玻璃透射功能;综上,通过第二透明基板控制液晶的状态,实现对菲涅尔透镜在聚光和透射功能之间切换。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本公开实施例提供的透镜装置的结构示意图;
图2A和图2B是本公开实施例提供的另一种透镜装置的结构示意图;
图3~图5是本公开实施例提供的3种不同台阶数的菲涅尔透镜的结构示意图;
图6是本公开实施例提供的另一种透镜装置的结构示意图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开实施方式作进一步地详细描述。
图1是本公开实施例提供的透镜装置的结构示意图。参见图1,该透镜装置包括:第一透明基板100、第二透明基板200、以及填充在第一透明基板100和第二透明基板200间的液晶层300;第一透明基板100为菲涅尔透镜100,菲涅尔透镜100朝向液晶层300的一面设有按菲涅尔波带间隔分布的凹槽101;第二透明基板200用于控制液晶301的状态,使射入液晶301的偏振光经过液晶301的折射率在液晶301的第一折射率和液晶301的第二折射率之间切换,第一折射率大于第二折射率,菲涅尔透 镜100的折射率等于液晶层300中的液晶301的第一折射率。
这里,菲涅尔波带由中心的圆形及与该圆形同心设置的多个环形组成,圆形和每个环形均为菲涅尔波带的一个波带,菲涅尔透镜100的凹槽与菲涅尔波带的波带对应,且相邻的凹槽对应菲涅尔波带中间隔布置的波带,具体对应方式参见后文对凹槽的详细描述。
在本公开提供的透镜装置中,当在第二透明基板200的控制下,射入液晶301的偏振光经过液晶301的折射率为液晶301的第二折射率时,由于偏振光通过菲涅尔透镜100的折射率等于液晶301的第一折射率,且液晶301的第一折射率大于液晶301的第二折射率,填充在凹槽101内的液晶301发挥着和空气相似的作用,因此此时填充在菲涅尔透镜100的凹槽101中的液晶301不会对菲涅尔透镜100的功能造成影响,菲涅尔透镜100和液晶301实现透镜聚光功能;当在第二透明基板200的控制下,射入液晶301的偏振光经过液晶301的折射率为液晶301的第一折射率时,由于偏振光通过菲涅尔透镜100的折射率同样为液晶301的第一折射率,此时填充在菲涅尔透镜100的凹槽101中的液晶301与菲涅尔透镜100的材料折射率相同,相当于菲涅尔透镜100的凹槽101被填平,此时菲涅尔透镜100和液晶301相当于一块平板玻璃,实现平板玻璃透射功能;综上,本公开实施例通过第二透明基板200控制液晶301的状态,从而可以实现对菲涅尔透镜100在聚光和透射功能之间切换。
图2A和图2B是本公开实施例提供的另一种透镜装置的结构示意图。该透镜装置中的液晶301为棒状液晶,液晶301的长轴的初始配向方向平行于第一透明基板100,且与偏振光的振动方向垂直。例如,图2A所示为液晶301的长轴方向为初始配向方向,偏振光的振动方向为左右方向,图2A中液晶301的长轴的初始配向方向与偏振光的振动方向垂直。第二透明基板200用于控制液晶301的长轴在初始配向方向和控制方向之间变换,液晶301的长轴的控制方向平行于第一透明基板100,且与初始配向方向垂直。例如,图2B所示为液晶301的控制方向,液晶301的控制方向与初始配向方向垂直。当液晶长轴方向和偏振光的振动方向垂直时,该偏振光通过液晶的折射率为液晶的寻常光折射率no,菲涅尔透镜和液晶实现透镜聚光功能;当液晶长轴方向和所述偏振光的振动方向平行时,该偏振光通过液晶的折射率为液晶的非常光折射率ne,菲涅尔透镜和液晶相当于一块平板玻璃,实现平板玻璃透射功能。在该实现方式中,液晶的第一折射率为液晶的非常光折射率ne,液晶的第二折射率为液晶的寻常光折射率no
这里,液晶的寻常光是指偏振方向垂直于液晶301长轴的偏振光,液晶的非常光是指偏振方向平行于液晶301长轴的偏振光。
再次参见图2,该透镜装置还可以包括偏光片400,偏光片400设置在透镜装置的入光侧,偏光片400的透光轴与液晶301的长轴的初始配向方向垂直。自然光或人造光源发出的光经过偏光片后变为偏振光,然后入射到菲涅尔透镜和液晶中。
这里,偏光片400的透光轴是指与能够透过偏光片的偏振光振动方向平行的轴。
在另一种实现方式中,液晶301的长轴的初始配向方向还可以与偏振光的振动方向平行,此时偏光片400的透光轴与液晶301的长轴的初始配向方向平行。
在图2A(或图2B)提供的装置中,凹槽101内可以设有台阶111。台阶111的数量可以根据实际需要设置。台阶111的数量越多聚光效果越好,但制作工艺越复杂,优选的台阶数量为3、7、15个。
具体地,当凹槽101内设有至少两个台阶111时,至少两个台阶111沿凹槽101至菲涅尔透镜100中心方向逐渐升高。
在图2A(或图2B)提供的装置中,每个凹槽101内设有7个台阶。
在本公开实施例中,每个菲涅尔透镜中各个凹槽内的台阶数相同。具体地,每个凹槽101内的台阶111数目为N,N=2m-1,m为正整数,光经过相邻台阶111的相位差为2π/(N+1)。
图3~图5提供了3种不同台阶数的菲涅尔透镜的结构示意图,台阶数分别为1、3和7。
在本公开实施例中,每个凹槽内的所有台阶的高度均相同,且各个凹槽内的台阶高度也相同。具体地,每个台阶111的高度满足以下公式:
Figure PCTCN2017092175-appb-000004
h为每个台阶111的高度,λ为波长,n1为液晶301的第一折射率(也即菲涅尔透镜100的折射率),no为液晶301的第二折射率。
将台阶高度按此高度设置,保证凹槽填充液晶后,菲涅尔透镜仍能实现透镜效果。
在本公开实施例中,每个凹槽内的所有台阶的宽度均相同,但各个凹槽内的台阶宽度不相同,越靠近菲涅尔透镜的中心的台阶的宽度越大。具体地,第j个凹槽101内台阶111的宽度满足以下公式:
Figure PCTCN2017092175-appb-000005
tj为第j个凹槽101内台阶111的宽度,j为由菲涅尔透镜100中心向外方向的凹槽101序号,dj为第j个凹槽101对应的菲涅尔波带的波带宽度;以图3为例,第1个凹槽对应菲涅尔波带的第2个波带,第2个凹槽对应菲涅尔波带的第4个波带,第3个凹槽对应菲涅尔波带的第6个波带,依次类推。
菲涅尔透镜100中第j个图形102的宽度满足以下公式:
Figure PCTCN2017092175-appb-000006
Tj为第j个图形102的宽度,图形102为两个凹槽101之间的环形或者第1个凹槽101和菲涅尔透镜100中心之间的圆形,图形102的宽度为上述环形宽度或者圆形 半径,j为由菲涅尔透镜100中心向外方向的图形102序号,Dj为第j个图形102对应的菲涅尔波带的波带宽度;以图3为例,第1个图形对应菲涅尔波带的第1个波带(也就是菲涅尔波带中心的圆形),第2个图形对应菲涅尔波带的第3个波带,第3个图形对应菲涅尔波带的第5个波带,依次类推。
这里,菲涅尔波带的波带宽度dj和Dj与菲涅耳波带中圆形的半径相关,以图3为例,第1、2、3个图形对应的菲涅尔波带的波带宽度D1、D2、D3分别为r1、r3-r2、r5-r4,第1、2、3个凹槽对应的菲涅尔波带的波带宽度d1、d2、d3分别为r2-r1、r4-r3、r6-r5。这里,r1-r6即为菲涅耳波带中圆形的半径。
这里,菲涅耳波带中圆形的半径满足以下公式:
Figure PCTCN2017092175-appb-000007
其中,ri为菲涅耳波带中圆形的半径,i为菲涅耳波带中圆形的序号(由菲涅尔波带中心向外方向,该序号逐渐增大),f为菲涅耳透镜的焦距,λ为波长(波长通常选择人眼较为敏感的光的波长,如440nm)。
另外,如图3所示,在N=1时,第1、2、3个图形的宽度T1、T2、T3正好依次等于r1、r3-r2、r5-r4,第1、2、3个凹槽的宽度t1、t2、t3正好依次等于r2-r1、r4-r3、r6-r5。
将台阶和图形的宽度按上述宽度设置,保证光能够聚焦到菲涅尔透镜的中心。
再次参见图2A和图2B,第二透明基板200包括透明基板201,依次设置在透明基板201上的第一透明电极层202、透明绝缘层203和第二透明电极层204。通过在第一透明电极层和第二透明电极层加电,控制液晶角度偏转;基板、电极层和绝缘层均设置为透明的,以避免影响菲涅尔透镜的光折射率。
再次参见图2A和图2B,第二透明电极层204包括多个平行间隔设置的条状电极241,条状电极241的长度方向与液晶301的长轴的初始配向方向平行。第二透明电极层由多个平行间隔设置的条状电极构成,且条状电极的长度方向与所述液晶的长轴的初始配向方向平行,可以保证在第二透明电极层和第一透明电极层通电时,产生水平电场,液晶在该电场作用下实现偏转,改变液晶的状态。
图6是本公开实施例提供的另一种透镜装置的结构示意图。参见图6,该透镜装置中的液晶301为蓝相液晶;第二透明基板200用于控制蓝相液晶在球状液晶和棒状液晶之间切换,棒状液晶的长轴方向平行于第一透明基板100,且与偏振光的振动方向垂直或平行。蓝相液晶为球状液晶时,具有各向同性,球状液晶的各个方向上折射率相同,偏振光通过球状液晶的折射率为n;蓝相液晶为棒状液晶时,棒状液晶的寻常光折射率为no,棒状液晶的非常光折射率为ne,no<n<ne
在一种实现方式中,蓝相液晶的第一折射率为n,第二折射率为no,棒状液晶的长轴方向与偏振光的振动方向垂直。即,当蓝相液晶为球状液晶时,偏振光通过球状液晶的折射率等于菲涅尔透镜的折射率,此时菲涅尔透镜和液晶实现平板玻璃透射功 能;当蓝相液晶为棒状液晶时,偏振光的振动方向垂直于棒状液晶的长轴方向,偏振光通过棒状液晶的折射率小于菲涅尔透镜的折射率,菲涅尔透镜和液晶实现透镜聚光功能。
在另一种实现方式中,蓝相液晶的第一折射率为ne,第二折射率为n,棒状液晶的长轴方向与偏振光的振动方向平行。即,当蓝相液晶为球状液晶时,偏振光通过球状液晶的折射率小于菲涅尔透镜的折射率,此时菲涅尔透镜和液晶实现透镜聚光功能;当蓝相液晶为棒状液晶时,偏振光的振动方向平行于棒状液晶的长轴方向,偏振光通过棒状液晶的折射率等于菲涅尔透镜的折射率,菲涅尔透镜和液晶实现平板玻璃透射功能。
再次参见图6,该透镜装置还可以包括偏光片400,偏光片400设置在透镜装置的入光侧,偏光片400的透光轴与棒状液晶的长轴方向垂直或平行。光经过偏光片后变为偏振光入射到菲涅尔透镜和液晶中。
再次参见图6,第二透明基板200包括透明基板201,依次设置在透明基板201上的第一透明电极层202、透明绝缘层203和第二透明电极层204。通过在第一透明电极层和第二透明电极层加电,控制液晶角度偏转;基板、电极层和绝缘层均设置为透明的,以避免影响菲涅尔透镜光折射率。
再次参见图6,第二透明电极层204包括多个平行间隔设置的条状电极241,条状电极241的长度方向与棒状液晶的长轴方向垂直(蓝相液晶为棒状液晶时结构与图2B相同)。第二透明电极层由多个平行间隔设置的条状电极构成,且条状电极的长度方向与棒状液晶的长轴方向垂直,保证在第二透明电极层和第一透明电极层的电场作用下实现球状液晶盒棒状液晶的转换,且棒状液晶的长轴方向与偏振光的振动方向垂直。
在图2A(或图2B)和图6提供的透镜装置中,第一透明电极层202包括但不限于是氧化铟锡ITO薄膜层或氧化铟锌IZO薄膜层,第二透明电极层204为ITO薄膜层或IZO薄膜层,从而保证电极层的透明度。
在图2A(或图2B)和图6提供的透镜装置中,偏光片400均设置在第一透明基板100一侧。在其他实施例中,偏光片400可以设置在第二透明基板200上,或者在第一透明基板100和第二透明基板200上同时分别设置一个偏光片400。上述方式均可以实现菲涅尔透镜,设置一个偏光片可以限定入射光只从装置的一侧射入,设置两个偏光片时入射光可以从两个方向射入。
在本公开实施例中,该透镜装置还包括驱动电路,驱动电路与第一透明电极层202和第二透明电极层204电连接。通过驱动电路为第一透明电极层和第二透明电极层加电,从而可以实现对菲涅尔透镜100在聚光和透射功能之间切换。其中,驱动电路可以采用集成电路实现。
以上所述仅为本公开的具体实施例,并不用以限制本公开,凡在本公开的精神和 原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (17)

  1. 一种透镜装置,所述透镜装置包括:
    第一透明基板、第二透明基板、填充在所述第一透明基板和所述第二透明基板间的液晶层;
    所述第一透明基板为菲涅尔透镜,所述菲涅尔透镜朝向所述液晶层的一面设有按菲涅尔波带间隔分布的凹槽;
    所述第二透明基板用于控制所述液晶的状态,使射入所述液晶的偏振光经过所述液晶的折射率在所述液晶的第一折射率和所述液晶的第二折射率之间切换,所述第一折射率大于所述第二折射率,所述菲涅尔透镜的折射率等于所述液晶层中的液晶的第一折射率。
  2. 根据权利要求1所述的透镜装置,其中,所述液晶为棒状液晶,所述液晶的长轴的初始配向方向平行于所述第一透明基板,且与所述偏振光的振动方向垂直或平行;
    所述第二透明基板用于控制所述液晶的长轴在初始配向方向和控制方向之间变换,所述液晶的长轴的控制方向平行于所述第一透明基板,且与所述初始配向方向垂直。
  3. 根据权利要求2所述的透镜装置,其中,所述透镜装置还包括偏光片,所述偏光片设置在所述透镜装置的入光侧,所述偏光片的透光轴与所述液晶的长轴的初始配向方向垂直或平行。
  4. 根据权利要求2所述的透镜装置,其中,所述第二透明基板包括透明基板,以及依次设置在所述透明基板上的第一透明电极层、透明绝缘层和第二透明电极层。
  5. 根据权利要求4所述的透镜装置,其中,所述第二透明电极层包括多个平行间隔设置的条状电极,所述条状电极的长度方向与所述液晶的长轴的初始配向方向平行。
  6. 根据权利要求1所述的透镜装置,其中,所述液晶为蓝相液晶;
    所述第二透明基板用于控制所述蓝相液晶在球状液晶和棒状液晶之间切换,所述棒状液晶的长轴方向平行于所述第一透明基板,且与所述偏振光的振动方向垂直或平行。
  7. 根据权利要求6所述的透镜装置,所述透镜装置还包括偏光片,所述偏光片设置在所述透镜装置的入光侧,所述偏光片的透光轴与所述棒状液晶的长轴方向垂直或平行。
  8. 根据权利要求6所述的透镜装置,其中,所述第二透明基板包括透明基板,以及依次设置在所述透明基板上的第一透明电极层、透明绝缘层和第二透明电极层。
  9. 根据权利要求8所述的透镜装置,其中,所述第二透明电极层包括多个平行间隔设置的条状电极,所述条状电极的长度方向与所述棒状液晶的长轴方向垂直。
  10. 根据权利要求4或8所述的透镜装置,其中,所述第一透明电极层为氧化铟锡ITO薄膜层或氧化铟锌IZO薄膜层,所述第二透明电极层为ITO薄膜层或IZO薄膜层。
  11. 根据权利要求1-9任一项所述的透镜装置,其中,所述凹槽内设有台阶。
  12. 根据权利要求11所述的透镜装置,其中,当所述凹槽内设有至少两个台阶时, 所述至少两个台阶沿凹槽至所述菲涅尔透镜中心方向逐渐升高。
  13. 根据权利要求11所述的透镜装置,其中,所述凹槽内的台阶数目为N,N=2m-1,m为正整数,光经过相邻台阶的相位差为2π/(N+1)。
  14. 根据权利要求13所述的透镜装置,其中,每个所述台阶的高度满足以下公式:
    Figure PCTCN2017092175-appb-100001
    h为所述台阶的高度,λ为波长,n1为所述液晶的第一折射率,n2为所述液晶的第二折射率。
  15. 根据权利要求13所述的透镜装置,其中,第j个凹槽内台阶的宽度满足以下公式:
    Figure PCTCN2017092175-appb-100002
    tj为所述第j个凹槽内台阶的宽度,j为由所述菲涅尔透镜中心向外方向的凹槽序号,dj为所述第j个凹槽对应的菲涅尔波带的波带宽度;
    所述菲涅尔透镜中第j个图形的宽度满足以下公式:
    Figure PCTCN2017092175-appb-100003
    Tj为所述第j个图形的宽度,所述图形为两个凹槽之间的环形或者第1个凹槽和所述菲涅尔透镜中心之间的圆形,所述圆形的宽度为圆形半径,j为由所述菲涅尔透镜中心向外方向的图形序号,Dj为所述第j个图形对应的菲涅尔波带的波带宽度。
  16. 根据权利要求3或7所述的透镜装置,其中,所述透镜装置包括在所述第一透明基板或者所述第二透明基板上的一个偏光片,或者所述透镜装置包括分别设置在所述第一透明基板和所述第二透明基板上的两个偏光片。
  17. 根据权利要求1-9任一项所述的透镜装置,所述透镜装置还包括驱动电路,所述驱动电路与所述第一透明电极层和所述第二透明电极层电连接。
PCT/CN2017/092175 2016-09-08 2017-07-07 透镜装置 WO2018045812A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/742,896 US10551716B2 (en) 2016-09-08 2017-07-07 Lens device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610811703.1 2016-09-08
CN201610811703.1A CN106226930B (zh) 2016-09-08 2016-09-08 一种菲涅尔透镜装置

Publications (1)

Publication Number Publication Date
WO2018045812A1 true WO2018045812A1 (zh) 2018-03-15

Family

ID=58074608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/092175 WO2018045812A1 (zh) 2016-09-08 2017-07-07 透镜装置

Country Status (3)

Country Link
US (1) US10551716B2 (zh)
CN (1) CN106226930B (zh)
WO (1) WO2018045812A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3400480B1 (en) * 2016-02-01 2023-09-20 e-Vision Smart Optics Inc. Prism-enhanced lenses and methods of using prism-enhanced lenses
CN106226930B (zh) * 2016-09-08 2023-06-20 京东方科技集团股份有限公司 一种菲涅尔透镜装置
CN106918917A (zh) * 2017-03-17 2017-07-04 京东方科技集团股份有限公司 液晶盒、显示器和电子设备
CN106842598B (zh) 2017-03-17 2019-09-06 京东方科技集团股份有限公司 显示切换装置、显示器和电子设备
CN107479248A (zh) * 2017-09-28 2017-12-15 京东方科技集团股份有限公司 一种衍射装置
CN108037598A (zh) 2017-11-23 2018-05-15 京东方科技集团股份有限公司 液晶盒及拍摄系统
CN108181671A (zh) * 2018-01-02 2018-06-19 京东方科技集团股份有限公司 透镜型调光装置和显示装置
CN108224367B (zh) * 2018-03-07 2020-03-10 京东方科技集团股份有限公司 光源切换装置以及显示装置
CN109031678A (zh) * 2018-08-20 2018-12-18 京东方科技集团股份有限公司 显示装置及用于控制该显示装置的方法
CN109669278B (zh) * 2018-11-21 2021-01-29 京东方科技集团股份有限公司 镜片和眼镜
CN109683422B (zh) * 2019-01-30 2022-05-20 京东方科技集团股份有限公司 一种液晶透镜及其制备方法
CN111261694A (zh) * 2020-03-25 2020-06-09 京东方科技集团股份有限公司 显示面板和显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101806967A (zh) * 2010-04-30 2010-08-18 友达光电股份有限公司 可调变式菲涅耳透镜
JP2010224424A (ja) * 2009-03-25 2010-10-07 Citizen Holdings Co Ltd 液晶光学素子とその製造方法
US20150168756A1 (en) * 2013-12-17 2015-06-18 Samsung Display Co., Ltd. Liquid crystal fresnel lens and manufacturing method thereof
CN105929619A (zh) * 2016-07-11 2016-09-07 宁波万维显示科技有限公司 蓝相液晶菲涅尔透镜及其制备方法
CN106226930A (zh) * 2016-09-08 2016-12-14 京东方科技集团股份有限公司 一种菲涅尔透镜装置
CN205992098U (zh) * 2016-09-08 2017-03-01 京东方科技集团股份有限公司 一种菲涅尔透镜装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7775660B2 (en) * 1999-07-02 2010-08-17 E-Vision Llc Electro-active ophthalmic lens having an optical power blending region
JP4752763B2 (ja) * 2004-04-30 2011-08-17 旭硝子株式会社 液晶レンズ素子および光ヘッド装置
JP4501611B2 (ja) * 2004-09-15 2010-07-14 旭硝子株式会社 液晶レンズ素子および光ヘッド装置
JP2008512700A (ja) * 2004-09-07 2008-04-24 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ フレネル構造を有する光学素子
KR101772153B1 (ko) * 2010-03-17 2017-08-29 삼성디스플레이 주식회사 회절 렌즈를 이용한 영상 표시 장치
TWI437273B (zh) * 2011-04-15 2014-05-11 Nat Univ Tsing Hua 可切換光聚焦位置之系統
JP5539279B2 (ja) * 2011-08-30 2014-07-02 株式会社ジャパンディスプレイ 液晶光学素子
CN102736352B (zh) * 2012-07-04 2015-03-25 信利半导体有限公司 电子产品及其液晶变焦透镜
CN105009002B (zh) * 2013-03-01 2019-03-05 西铁城时计株式会社 光束分割元件

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010224424A (ja) * 2009-03-25 2010-10-07 Citizen Holdings Co Ltd 液晶光学素子とその製造方法
CN101806967A (zh) * 2010-04-30 2010-08-18 友达光电股份有限公司 可调变式菲涅耳透镜
US20150168756A1 (en) * 2013-12-17 2015-06-18 Samsung Display Co., Ltd. Liquid crystal fresnel lens and manufacturing method thereof
CN105929619A (zh) * 2016-07-11 2016-09-07 宁波万维显示科技有限公司 蓝相液晶菲涅尔透镜及其制备方法
CN106226930A (zh) * 2016-09-08 2016-12-14 京东方科技集团股份有限公司 一种菲涅尔透镜装置
CN205992098U (zh) * 2016-09-08 2017-03-01 京东方科技集团股份有限公司 一种菲涅尔透镜装置

Also Published As

Publication number Publication date
CN106226930A (zh) 2016-12-14
CN106226930B (zh) 2023-06-20
US20180231867A1 (en) 2018-08-16
US10551716B2 (en) 2020-02-04

Similar Documents

Publication Publication Date Title
WO2018045812A1 (zh) 透镜装置
US9122112B2 (en) Liquid crystal lens, controlling method thereof and 3D display using the same
Kawamura et al. Liquid-crystal micro-lens array with two-divided and tetragonally hole-patterned electrodes
US8928854B2 (en) Liquid crystal lens structure and electrical controlling liquid crystal glasses structure thereof
WO2017118224A1 (zh) 视角定向光源装置及显示装置
TWI495943B (zh) 液晶顯示面板、其驅動方法及包含其之液晶顯示器
JP2008203360A (ja) 液晶光学デバイス
JP2010540983A (ja) ビーム成形装置
CN205992098U (zh) 一种菲涅尔透镜装置
CN106249448A (zh) 一种蓝相液晶透镜
TWI624696B (zh) 變焦液晶透鏡組件及其液晶透鏡結構
US11934078B2 (en) Display panel and display device
US20230375159A1 (en) Optical element and lighting device
CN107357110B (zh) 一种采用复合介电层的大口径液晶透镜阵列
KR20130064692A (ko) 전기-광 위상 변조기
WO2022267545A1 (zh) 可切换液晶光学器件
KR101866193B1 (ko) 이중 초점 렌즈 및 그 제조 방법
US20100085640A1 (en) Polarizing plate and polarizing device comprising the same
KR20090047070A (ko) 2d-3d 컨버터블 디스플레이 장치 및 방법
JP5156999B2 (ja) 液晶光学レンズ
TWI468731B (zh) 光切換模組
CN110082982A (zh) 一种简单电极结构的液晶透镜阵列
Kang et al. Liquid crystal microlens with tunable-focus over focal plane driven by low-voltage signal
KR101661234B1 (ko) 액정 표시 장치
KR101886792B1 (ko) 액정상 고분자를 이용한 이중 초점 렌즈

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15742896

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17847985

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15.07.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17847985

Country of ref document: EP

Kind code of ref document: A1