WO2018045653A1 - 一种非线性系统的准逆系统控制方法 - Google Patents

一种非线性系统的准逆系统控制方法 Download PDF

Info

Publication number
WO2018045653A1
WO2018045653A1 PCT/CN2016/109171 CN2016109171W WO2018045653A1 WO 2018045653 A1 WO2018045653 A1 WO 2018045653A1 CN 2016109171 W CN2016109171 W CN 2016109171W WO 2018045653 A1 WO2018045653 A1 WO 2018045653A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
controlled
original
inverse
quasi
Prior art date
Application number
PCT/CN2016/109171
Other languages
English (en)
French (fr)
Inventor
许其品
杨铭
Original Assignee
国电南瑞科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国电南瑞科技股份有限公司 filed Critical 国电南瑞科技股份有限公司
Publication of WO2018045653A1 publication Critical patent/WO2018045653A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B11/00Automatic controllers
    • G05B11/01Automatic controllers electric
    • G05B11/36Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential
    • G05B11/42Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential for obtaining a characteristic which is both proportional and time-dependent, e.g. P. I., P. I. D.

Definitions

  • the invention relates to the technical field of industrial automatic control, in particular to a quasi-reverse system control method for a nonlinear system.
  • the classic PID has many applications for linear or nonlinear processes, precise models without knowing the object, few parameters and easy debugging. It is suitable for the control environment of industrial processes. However, its advantages also imply at the expense of the global control performance of the system, it is difficult to achieve good dynamic response performance in the global scope, and because of the lack of understanding of process dynamics, simple feedback can not further optimize the control effect.
  • the object of the present invention is to provide a quasi-reverse system control method for a nonlinear system, which can realize the global excellent dynamic quality of the online real-time control of the nonlinear system, and is unified with good robustness.
  • the technical solution adopted by the present invention is specifically: a quasi-reverse system control method for a nonlinear system, comprising the following steps:
  • Step one model the controlled system:
  • x 1 , x 2 , ..., x n is the state quantity of the controlled system
  • u is the input quantity
  • the mathematical equation of the relationship between the system control target y and the system state quantity and input quantity is:
  • step two the system control target y is approximated into a combination of the reversible system and another system, namely:
  • g(x 1 , x 2 , . . . , x n , u) is a reversible system
  • h(x 1 , x 2 , . . . , x n , u) is another system
  • Step 3 find the inverse system g -1 (x 1 , x 2 ,..., x n , y) of the reversible system g(x 1 , x 2 ,..., x n , u), and then control the original system to
  • Step 4 PID control is performed based on the new system control target set value u ref '; at the same time, the real-time state quantity (x 1 , x 2 , .. x n ) and real-time output of the controlled system are detected at each sampling moment.
  • step 5 the PID-controlled output is used as the input quantity u of the original controlled system, thereby implementing control of the original controlled system, that is, the original controlled system has the characteristics of a quasi-linear system.
  • h(x 1 , x 2 , . . . , x n , u) 1.
  • h(x 1 , x 2 ,..., x n , u) is a system with certain linear characteristics. It can be seen that the present invention is generally adaptable to control objects.
  • the beneficial effects of the invention are: by constructing a new reversible system, the original system is approximated into a linearized system, and PID control is used to realize quasi-linear control of the original controlled system.
  • the invention is based on the comparison result between the measured output and the target given value, and performs feedback control to eliminate the error, so that the control system has excellent characteristics (good range of all working points coverage) and good robustness. In the case of disturbance or fault, the control system has a good dynamic response to meet the requirements of the increasingly industrial automatic control.
  • FIG. 1 is a schematic view showing the control principle of the present invention.
  • y is the original control target
  • y 0 is the system feedback value of the control target
  • PID control is proportional-integral-differential control
  • step one modeling the controlled system:
  • step two to convert the system control target y approximation into a combination of the reversible system and another system, namely:
  • g(x 1 , x 2 , . . . , x n , u) is a reversible system
  • h(x 1 , x 2 , . . . , x n , u) is another system having a certain linear characteristic
  • the original system has a simple quasi-linearization feature by the inverse system mapping PID control.
  • step 4 perform PID control based on the new system control target set value u ref '; at the same time, at each sampling moment, detect the real-time state quantity (x 1 , x 2 , .. x n ) of the controlled system and real-time
  • step 5 the PID-controlled output is used as the input quantity u of the original controlled system, thereby realizing the control of the original controlled system, so that the original controlled system has the characteristics of a quasi-linear system.
  • the system h(x 1 , x 2 , . . . , x n , u) 1. It can be seen that the present invention is generally adaptable to control objects.
  • the present invention has the following features:
  • the link with inverse system characteristics directly adopts the mapping relationship, that is, direct numerical solution, instead of adopting continuous control mode, avoiding the time lag characteristic of the link;
  • the quasi-linearization control method of the controlled system of the invention can make the control system have excellent control characteristics in a global scope, and the controller can still ensure a well-controlled dynamic response in the case of disturbance or failure, and meet the increasingly developed industry. Automatic control requirements.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)

Abstract

一种非线性系统的准逆系统控制方法,方法步骤为,首先将被控系统按照控制目标与输入量、状态量之间的关系建立数学模型;然后将原被控系统近似转化为可逆系统和另一系统的组合,求出可逆系统的逆系统,将原系统输入结合被控系统的实时状态量,通过逆系统的映射直接得到新的系统控制目标;同时将反馈量结合被控系统的实时状态量经过同样的逆系统映射,进行反馈PID控制,再将PID控制后的输出量作为原被控系统的输入量,从而实现对原被控系统的近似线性控制,即使得被控系统具有准线性化特征。该方法可以实现全局范围内的准线性化,以及快速、稳定的控制,并最终实现全局性能指标的优化控制。

Description

一种非线性系统的准逆系统控制方法 技术领域
本发明涉及工业自动控制技术领域,特别是一种非线性系统的准逆系统控制方法。
背景技术
随着科学技术的不断发展,各种较为精确的分析和科学实验的结果表明,任何一个实际的物理系统都具有非线性特征。所谓线性只是对非线性的一种简化或近似,或者说是非线性的一种特例。选取适当的时间和空间尺度,在此范围内可以弱化非线性程度,从而可将非线性环节视为线性环节处理。然而适当的时间和空间尺度的选择或者线性化范围确定与转换往往非常困难,从而导致基于这一理论的控制方法效果很不理想。
经典PID具有适用于线性或非线性过程、无需知道对象的精确模型、参数少且易于调试的特点,适用于工业过程的控制环境,因而得到了大量应用。但它的优点也隐含了牺牲系统全局控制性能为代价,难以在全局范围内取得良好的动态响应性能,并且因为缺乏对过程动态的了解,简单反馈无法进一步优化控制效果。
目前非线性系统控制的效果与工业控制的实际需求之间还存在着巨大的鸿沟,非线性系统的控制理论与方法很多,能大规模应用的却很少。工业对象的结构、参数和环境大多难以准确测量或预知,精确且理想的控制模型很难获得,为获得具有良好鲁棒性的控制系统,需要克服理论与应用之间障碍;同时工业过程控制必须考虑控制手段的便捷性,且控制算法必须具有实时性特征,如果控制算法过于复杂则难以达到实时性效果。
发明内容
本发明的目的是提供一种非线性系统的准逆系统控制方法,其能够实现非线性系统在线实时控制的全局优良动态品质,与良好鲁棒性的统一。
本发明采取的技术方案具体为:一种非线性系统的准逆系统控制方法,包括以下步骤:
步骤一,对被控系统进行建模:
定义x1、x2、…、xn为被控系统的状态量,u为输入量,系统控制目标y与系统状态量、输入量之间关系的数学方程为:
y=f(x1,x2,…,xn,u);
步骤二,将系统控制目标y近似转化为可逆系统与另一系统的组合,即:
y≈g(x1,x2,…,xn,u)·h(x1,x2,…,xn,u)
上式中,g(x1,x2,…,xn,u)为可逆系统,h(x1,x2,…,xn,u)为另一系统;
步骤三,求出可逆系统g(x1,x2,…,xn,u)的逆系统g-1(x1,x2,…,xn,y),然后将原系统控制目标给定值yref作为上述逆系统函数的输入量,结合被控系统的实时状态量,经逆系统函数u′=g- 1(x1,x2,…,xn,y)映射后,直接得到新的系统控制目标给定值uref′;
步骤四,基于新的系统控制目标给定值uref′进行PID控制;同时,在每一个采样时刻,检测被控系统的实时状态量(x1,x2,..xn)和实时输出量y0,通过u0′=g-1(x1,x2,…,xn,y0)的函数映射得到反馈控制的反馈量,与新的系统控制目标给定值uref′进行比较,根据比较结果进行反馈控制;
步骤五,将经PID控制后的输出量作为原被控系统的输入量u,进而实现对原被控系统的控制,即使得原被控系统具有准线性系统的特征。
进一步的,针对原被控系统本身就是可逆系统的情况,则本发明步骤二中,另一系统h(x1,x2,…,xn,u)=1。h(x1,x2,…,xn,u)是一个具有一定线性特征的系统。可以看出,本发明对于控制对象具有普遍适应性。
本发明的有益效果为:通过构建新的可逆系统,将原系统近似成一个线性化的系统,同时采用PID控制,实现对原被控系统的准线性化控制。在上述基础上,本发明基于实测输出与目标给定值的比较结果,进行反馈控制,可消除误差,使得控制系统有全局(所有工作点覆盖的范围)的优良特性和较好的鲁棒性,在扰动或故障情况下控制系统均具有良好的动态响应,满足日益发展的工业自动控制的要求。
附图说明
图1所示为本发明控制原理示意图。
具体实施方式
以下结合附图和具体实施例进一步描述。
参考图1,其示出了原系统与采用本发明转化后系统的原理区别。其中y为原控制目标,y0为控制目标的系统反馈值,PID控制即比例-积分-微分控制,y=f(x1,x2,…,xn,u)为根据机理建模或运行数据分析方式得到的系统数学模型,g(x1,x2,…,xn,u)为可逆系统,其中x1、x2、…、xn为系统的状态量,u为输入量。
本发明方法在应用时,首先进行步骤一:对被控系统进行建模:
采用机理建模方式或根据运行数据分析的建模方式,建立具备展示系统未来动态行为能力的,控制目标y与系统输入量、状态量之间的关系,如按方程y=f(x1,x2,…,xn,u)或数值映射关系y→fn(x1,x2,…,xn,u)描述。
然后进行步骤二,将系统控制目标y近似转化为可逆系统与另一系统的组合,即:
y≈g(x1,x2,…,xn,u)·h(x1,x2,…,xn,u)
上式中,g(x1,x2,…,xn,u)为可逆系统,h(x1,x2,…,xn,u)为另一系统,其具有一定的线性特征;
在步骤二的基础上,进行步骤三:求出可逆系统g(x1,x2,…,xn,u)的逆系统g-1(x1,x2,…,xn,y),然后将原系统控制目标给定值yref作为上述逆系统函数的输入量结合被控系统的实时状态量,经逆系统函数u′=g-1(x1,x2,…,xn,y)映射后直接得到新的系统控制目标给定值uref′。原系统通过逆系统映射后的PID控制使原系统具有简单准线性化特征。
进行步骤四,基于新的系统控制目标给定值uref′进行PID控制;同时,在每一个采样时刻,检测被控系统的实时状态量(x1,x2,..xn)和实时输出量y0,通过u0′=g- 1(x1,x2,…,xn,y0)的函数映射作为反馈控制的反馈量,与新的系统控制目标给定值uref′进行比较,根据比较结果进行反馈控制;
最后进行步骤五,将经PID控制后的输出量作为原被控系统的输入量u,进而实现对原被控系统的控制,使得原被控系统具有准线性系统的特征。
针对原控制系统本身就是可逆系统的情况,则本发明步骤二中,系统h(x1,x2,…,xn,u)=1。可以看出,本发明对于控制对象具有普遍适应性。
综上,本发明具有以下特点:
1.在原控制系统的PID环节前引入具有逆系统特征的环节Z=g-1(x1,x2,…,xn)或
Figure PCTCN2016109171-appb-000001
1n(x1,x2,…,xn);将原系统近似成一个线性化的控制对象,从而使得控制目标具有全局良好的动态性能,同时具有很好的鲁棒性;
2.具有逆系统特征的环节直接采用映射关系即直接数值求解,而不采用连续控制方式,避免了该环节的时间滞后特性;
3.具有逆系统特征的环节是近似的,无需获得精确化的结果,简化了该方法应用的难度,同时可以克服计算的复杂性。
本发明对被控系统的准线性化控制方法,可以使得控制系统在全局范围内都具有优良的控制特性,在扰动或故障情况下控制器仍能保证控制良好的动态响应,满足日益发展的工业自动控制的要求。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。

Claims (2)

  1. 一种非线性系统的准逆系统控制方法,其特征是,包括以下步骤:
    步骤一,对被控系统进行建模:
    定义x1、x2、…、xn为被控系统的状态量,u为输入量,系统控制目标y与系统状态量、输入量之间关系的数学方程为:
    y=f(x1,x2,…,xn,u);
    步骤二,将系统控制目标y近似转化为可逆系统与另一系统的组合,即:
    y≈g(x1,x2,…,xn,u)·h(x1,x2,…,xn,u)
    上式中,g(x1,x2,…,xn,u)为可逆系统,h(x1,x2,…,xn,u)为另一系统;
    步骤三,求出可逆系统g(x1,x2,…,xn,u)的逆系统g-1(x1,x2,…,xn,y),然后将原系统控制目标给定值yref作为上述逆系统函数的输入量,结合被控系统的实时状态量,经逆系统函数u′=g- 1(x1,x2,…,xn,y)映射后,直接得到新的系统控制目标给定值uref′;
    步骤四,基于新的系统控制目标给定值uref′进行PID控制;同时,在每一个采样时刻,检测被控系统的实时状态量(x1,x2,..xn)和实时输出量y0,通过u0′=g-1(x1,x2,…,xn,y0)的函数映射得到反馈控制的反馈量,与新的系统控制目标给定值uref′进行比较,根据比较结果进行反馈控制;
    步骤五,将经PID控制后的输出量作为原被控系统的输入量u,进而实现对原被控系统的控制,即使得原被控系统具有准线性系统的特征。
  2. 根据权利要求1所述的方法,其特征是,步骤二中,h(x1,x2,…,xn,u)=1。
PCT/CN2016/109171 2016-09-12 2016-12-09 一种非线性系统的准逆系统控制方法 WO2018045653A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610816268.1A CN106249588A (zh) 2016-09-12 2016-09-12 一种非线性系统的准逆系统控制方法
CN201610816268.1 2016-09-12

Publications (1)

Publication Number Publication Date
WO2018045653A1 true WO2018045653A1 (zh) 2018-03-15

Family

ID=57599943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/109171 WO2018045653A1 (zh) 2016-09-12 2016-12-09 一种非线性系统的准逆系统控制方法

Country Status (2)

Country Link
CN (1) CN106249588A (zh)
WO (1) WO2018045653A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112130451A (zh) * 2020-09-23 2020-12-25 兰州理工大学 一种矿山充填浆料浓度高精度控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5091843A (en) * 1988-12-20 1992-02-25 Allied-Signal, Inc. Nonlinear multivariable control system
CN101242156A (zh) * 2008-01-22 2008-08-13 华北电力大学 单元制发电机组的非线性协调控制方法
CN102904505A (zh) * 2012-11-02 2013-01-30 江苏科技大学 一种六相永磁同步直线电机一体化逆控制方法
CN102969948A (zh) * 2012-11-02 2013-03-13 江苏科技大学 兼顾效率优化的两电机变频调速系统及其解耦控制方法
CN103105773A (zh) * 2012-12-27 2013-05-15 电子科技大学 基于神经网络逆辨识与自适应pid的声参量阵控制方法
CN103557037A (zh) * 2013-10-31 2014-02-05 河南城建学院 一种基于自适应逆控制的汽轮机转速控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5091843A (en) * 1988-12-20 1992-02-25 Allied-Signal, Inc. Nonlinear multivariable control system
CN101242156A (zh) * 2008-01-22 2008-08-13 华北电力大学 单元制发电机组的非线性协调控制方法
CN102904505A (zh) * 2012-11-02 2013-01-30 江苏科技大学 一种六相永磁同步直线电机一体化逆控制方法
CN102969948A (zh) * 2012-11-02 2013-03-13 江苏科技大学 兼顾效率优化的两电机变频调速系统及其解耦控制方法
CN103105773A (zh) * 2012-12-27 2013-05-15 电子科技大学 基于神经网络逆辨识与自适应pid的声参量阵控制方法
CN103557037A (zh) * 2013-10-31 2014-02-05 河南城建学院 一种基于自适应逆控制的汽轮机转速控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUANG, YINRONG ET AL.: "A Inverse Control System based on least squares support vector machine and PID", JOURNAL OF MECHANICAL & ELECTRICAL ENGINEERING, vol. 27, no. 2, 20 February 2010 (2010-02-20), pages 75 - 78 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112130451A (zh) * 2020-09-23 2020-12-25 兰州理工大学 一种矿山充填浆料浓度高精度控制方法

Also Published As

Publication number Publication date
CN106249588A (zh) 2016-12-21

Similar Documents

Publication Publication Date Title
Urrea et al. Design, simulation, comparison and evaluation of parameter identification methods for an industrial robot
Yang et al. Back-stepping control of two-link flexible manipulator based on an extended state observer
WO2019119726A1 (zh) 一种基于循环神经网络的动态模型辨识
ITRM20080014A1 (it) Dispositivo di controllo di posizionamento dell'asse di rotazione.
Meng et al. Integrated direct/indirect adaptive robust motion trajectory tracking control of pneumatic cylinders
JP6111913B2 (ja) 制御パラメータ調整システム
CN108762072B (zh) 基于核范数子空间法和增广向量法的预测控制方法
WO2018045653A1 (zh) 一种非线性系统的准逆系统控制方法
Butt et al. Adaptive backstepping control for an engine cooling system with guaranteed parameter convergence under mismatched parameter uncertainties
Ailon et al. Stability analysis of a rigid robot with output-based controller and time delay
Madadi et al. Comparison of different model-free control methods concerning real-time benchmark
Kalise et al. Reduced-order minimum time control of advection-reaction-diffusion systems via dynamic programming.
US10613045B2 (en) Process of determining at least one thermal property of a fluid under investigation with a thermal sensor
Matyakubova et al. Algorithms for increasing the reliability of primary measurement information
CN106033189A (zh) 飞行机器人位姿神经网络预测控制器
Schindele et al. Nonlinear model-predictive control with hysteresis compensation of an electro-pneumatic clutch for truck applications
Merrikh-Bayat Efficient method for time-domain simulation of the linear feedback systems containing fractional order controllers
Zhang et al. Statistical analysis and adaptive technique for dynamical process monitoring
US9851698B2 (en) Process variable transmitter
Rauh et al. Experimental validation of LMI approaches for robust control design of a spatially three-dimensional heat transfer process
Chen et al. LPV sliding mode observers for sensor fault reconstruction with erroneous scheduling parameter measurements
Rauh et al. Sensitivity-based feedforward and feedback control using algorithmic differentiation
CN107305348B (zh) 基于相依性度量的动态系统迟延计算方法
Rauh et al. A sensitivity-based approach for the control of repetitive processes
CN114200831B (zh) 一种带输入磁滞的机器人混合时间控制方法、系统及介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16915587

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16915587

Country of ref document: EP

Kind code of ref document: A1